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INTEGRATED LOCAL ENERGY DECAY FOR THE DAMPED WAVE

EQUATION ON STATIONARY SPACE-TIMES\ast 
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Abstract. We prove integrated local energy decay for the damped wave equation on stationary,
asymptotically flat space-times in (1+3) dimensions. Local energy decay constitutes a powerful tool
in the study of dispersive partial differential equations on such geometric backgrounds. By utilizing
the geometric control condition to handle trapped trajectories, we are able to recover high frequency
estimates without any loss. We may then apply known estimates from the work of Metcalfe, Sterbenz,
and Tataru in the medium and low frequency regimes in order to establish local energy decay. This
generalizes the integrated version of results established by Bouclet and Royer from the setting of
asymptotically Euclidean manifolds to the full Lorentzian case.

Key words. local energy estimates, asymptotically flat, damped wave equation, trapping, geo-
metric control
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1. Introduction.

1.1. Background. The goal of this paper is to establish local energy decay for
the damped wave equation on asymptotically flat space-times with time-independent
metrics (in the sense that \partial t is a Killing field) subject to the geometric control condi-
tion. The primary advance in this work is recovering the high frequency local energy
estimate present in [MST20] for waves on nontrapping space-times. Since the afore-
mentioned work only utilized the nontrapping assumption at high frequencies, this
establishes the key step in extending time-integrated versions of previously known re-
sults for damped waves on product manifolds (see [BR14]) to the full Lorentzian case.
From the proven high frequency estimate, we may apply known results in [MST20] to
conclude local energy decay to complete this extension.

Local energy estimates are a collection of rich and well-studied quantities within
the field of dispersive partial differential equations, originally introduced on Minkowski
space in classical works such as [Mor66, Mor68, Mor75], [MRS77]. A particularly
important class of local energy estimates is the integrated local energy estimates; if u
solves the homogeneous flat wave equation

(\partial 2t  - \Delta )u= 0, \Delta =

n
\sum 

j=1

\partial 2xj

in spatial dimension n \geq 3, then the integrated local energy estimate which we are
interested in takes the form
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LOCAL ENERGY DECAY FOR DAMPED WAVES 5087

sup
j\geq 0

\biggl( 

\bigm\| 

\bigm\| 

\bigm\| \langle x\rangle  - 1/2\partial u
\bigm\| 

\bigm\| 

\bigm\| 

L2
tL

2
x

\bigl( 

\BbbR +\times \{ \langle x\rangle \approx 2j\} 
\bigr) +
\bigm\| 

\bigm\| 

\bigm\| \langle x\rangle  - 3/2u
\bigm\| 

\bigm\| 

\bigm\| 

L2
tL

2
x

\bigl( 

\BbbR +\times \{ \langle x\rangle \approx 2j\} 
\bigr) 

\biggr) 

\lesssim \| \partial u(0)\| L2 ,

(1.1)

where \partial = (\partial t,\nabla ) denotes the space-time gradient, and \langle x\rangle = (1+ | x| 2)1/2 denotes the
Japanese bracket of x. This estimate is known to hold in the flat setting through a pos-
itive commutator argument using the multiplier introduced in the appendix of [Ste05].
In such a case, we will say that (integrated) local energy decay holds. This is a quan-
titative statement on dispersion, and it heuristically expresses that the energy of the
wave must decay quickly enough within compact spatial sets to be integrable in time.
Estimates of this form have significant utility, as they have been used to prove other
important measures of dispersion, such as Strichartz estimates (see [BT07], [BT08],
[JSS90], [JSS91], [MMT08], [MMTT10], [MT09], [MT12], [Tat08], [Toh12], and the
references therein) and pointwise decay estimates (see [Hin22], [Loo22], [MTT12],
[Mor20], [MW21], [Tat13], and references in these works). Additionally, local energy
estimates have applications to nonlinear wave equations where one can develop esti-
mates on an appropriate linearization of the problem, viewing the nonlinearity as a
perturbation. These techniques have been applied in many works; see, e.g., [BH10],
[KSS02], [KSS04], [MS06], [MS07], [SW10], and the citations contained in them. We
will be focused on establishing local energy decay rather than demonstrating its utility
via applications.

In [MST20], the authors proved that local energy decay holds for a broad class of
stationary wave operators if and only if

1. the space-time is nontrapping : there are no null bicharacteristic rays which
stay within a compact set for all time;

2. the operator satisfies certain spectral assumptions : upon replacing time de-
rivatives in the wave operator with a complex parameter, one requires that
this family of operators have no eigenvalues in the lower half-plane nor real
resonances/embedded eigenvalues (see [MST20] for more precise definitions);
equivalently, one requires analytic continuation of the inverse (resolvent) of
this family of operators to the entire lower half-plane and continuous exten-
sion to the real line.

They also established results for almost stationary operators, though that is not the
context of the work presented here. While the authors employed a nontrapping hy-
pothesis, their work did not require product structure on their space-times, which
makes their work highly influential in our own.

Although the absence of trapping is known to be necessary for waves to experience
local energy decay (see [Ral69], [Sbi15]), one can recover weak local energy decay
estimates with a prescribed loss at high frequencies for certain types of trapping
(see [Bur98], [Chr08], [Ika82], [Ika88], [MMTT10], [NZ09], [Toh12], [WZ11], and the
contained references). When the trapping is sufficiently weak/unstable, then this loss
is nominal (in fact, logarithmic); this is the case for both the Schwarzschild [MMTT10]
and Kerr [Toh12] space-times. Both space-times possess nontrivial trapped sets,
which constitute regions where light remains for all time. Although one can extract
weak local energy decay estimates, the trapping still generates an immutable barrier
to full local energy decay. We will not be working in a scenario that generates loss,
although we would be remiss if we did not briefly mention weak local energy decay
and essential space-times that enjoy it.

The study of damped waves also possesses a deep history, especially on com-
pact manifolds. The seminal work [RT74] introduced the geometric control condition,
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5088 COLLIN KOFROTH

which required that all null bicharacteristic rays intersect the damping region, and the
authors used it to show that the energy of solutions to damped hyperbolic equations on
compact product manifolds enjoys exponential decay in time. The uniform exponen-
tial bound is equivalent to so-called strong stabilization, whereby one can bound the
energy at an arbitrary time by the initial energy multiplied by a monotone-decreasing,
nonnegative function tending to zero as t\rightarrow \infty . This established the sufficiency of geo-
metric control for strong stabilization in such settings, while [Ral69] demonstrated ne-
cessity (also, see [Leb96]). The work [BLR92] showed sufficiency for observability and
control on compact manifolds with boundary where the observability/control region is
contained within the boundary. While there is notably less literature in the noncom-
pact setting, it was proven in [BR14] that local energy decay holds for the damped
wave equation on asymptotically Euclidean space-times with time-independent met-
rics under the assumption of geometric control on trapped geodesics. The authors
proved dissipative Mourre estimates to obtain uniform resolvent bounds in different
frequency regimes in order to apply a limiting absorption argument. This approach is
highly dependent on the metric coefficients being independent of time and the prod-
uct structure (asymptotically Euclidean metrics contain no metric cross terms). This
result was improved in [Roy18] to estimates in the (weighted) energy space.

In this article, we combine the approaches of [BR14] and [MST20] to establish
high frequency local energy estimates for damped waves on stationary, asymptoti-
cally flat space-times and explain how such a result can be readily combined with
the existing work in [MST20] to prove local energy decay. We underscore that we
are not requiring the product structure evident in [BR14] nor [Roy18] but, instead,
allow for the full Lorentzian formulation. Nonproduct metrics possess nontrivial cross
terms and are called nonstatic, of which the Kerr metric constitutes an important
example. We most closely keep to the framework present in [MST20], which does
not assume product structure and has results for even more general asymptotically
flat nontrapping space-times (such as nonstationary ones). We again stress their use
of a nontrapping hypothesis, which we replace by imposing geometric control. Trap-
ping is an intrinsically high frequency phenomenon, so only their high frequency work
is affected by the trapping. Hence, this is the portion of the argument that needs
modification to ensure local energy decay, and this is where the influence of [BR14]
comes into play. Since the medium and low frequency analyses (as well as the proce-
dure of combining the different frequency regime estimates into the full local energy
decay estimate) do not depend on the nontrapping hypothesis nor use the damping
themselves, the corresponding results in [MST20] readily apply (i.e., our problem es-
sentially becomes a special case here). We omit the details of such results in this
work, but we will explain why they apply in our context.

1.2. Problem setup and main results. Let (\BbbR 4, g) be a Lorentzian manifold
with coordinates (t, x) \in \BbbR \times \BbbR 

3, where g has signature ( - +++). We will consider
damped wave operators of the form

P =2g + iaDt, 2g =D\alpha g
\alpha \beta D\beta ,

where a \in C\infty 
c (\BbbR 3) is nonnegative and positive on an open set, and D\alpha = 1

i \partial \alpha , \alpha =
0,1,2,3. Greek indices will generally range over such values, whereas Latin indices
will run over the integers 1,2, and 3. Notice that we are using the standard Einstein
summation convention, which we will do throughout this work. We will also subject
g to an asymptotic flatness condition. More precisely, we first define the norm
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LOCAL ENERGY DECAY FOR DAMPED WAVES 5089

\| h\| AF =
\sum 

| \alpha | \leq 2

\bigm\| 

\bigm\| 

\bigm\| \langle x\rangle 
| \alpha | 
\partial \alpha h
\bigm\| 

\bigm\| 

\bigm\| 

\ell 1jL
\infty ([0,T ]\times Aj)

,

where Aj = \{ \langle x\rangle \approx 2j\} for j \geq 0 denote inhomogeneous dyadic regions, and \ell 1j denotes
the \ell 1 norm over the j index. The notation A \lesssim B means that A \leq CB for some
C > 0, and the notation A\approx B means that B \lesssim A\lesssim B. In the definition of the Aj 's,
we require that these implicit constants are compatible to cover \BbbR 3. This allows us to
define the AF topology.

Definition 1.1. We say that P is asymptotically flat if \| g - m\| AF <\infty , where
m denotes the Minkowski metric, and

\bigm\| 

\bigm\| 

\bigm\| 
\langle x\rangle | \alpha | \partial \alpha g

\bigm\| 

\bigm\| 

\bigm\| 

\ell 1jL
\infty ([0,T ]\times Aj)

\lesssim \alpha 1

for all \alpha \in \BbbN 
3 with | \alpha | \geq 3.

The latter condition will be necessary for certain functions appearing in this work
to be symbolic in the Kohn--Nirenberg sense. We remark that the dyadic summability
assumptions on our metric are weaker than the long-range perturbation condition
present in [BR14] (which provides a symbolic-type decay estimate for derivatives of
the metric in x in terms of \langle x\rangle  - \rho 

with \rho > 0 fixed). In [BR14], the damping is not
assumed to be compactly supported, but rather nonnegative everywhere and subject
to a similar symbolic estimate to the metric (with an additional power of decay). Since
the damping is a helpful term which will only be necessary within a compact spatial
set (this is made explicit with the introduction of the parameter R0 on the next page),
it is unnecessarily beneficial for us to assume that it is nonnegative everywhere.

We will primarily be interested in when \partial t is a Killing field for g, in which case
we say that P is stationary.

Definition 1.2. We say that P is stationary if g is independent of t.

Next, we introduce the following:
\bullet The parameters R0 and c, which are such that

\| g - m\| AF>R0
\leq c\ll 1,

where the subscript denotes the restriction of the norm to \{ | x| > R0\} . The
parameter c should be viewed as being fixed first, after which we find an R0

for which the above holds. Without loss of generality, we will assume that
suppa\subset \{ | x| \leq R0\} (as it is unnecessarily beneficial outside of this set).

\bullet The sequence (cj)j\geq \mathrm{l}\mathrm{o}\mathrm{g}2 R0
satisfying

\| g - m\| AF (Aj)
\lesssim cj ,

\sum 

j

cj \lesssim c,

where \| \cdot \| AF (Aj)
denotes the restriction of the AF norm to the dyadic region

Aj .We may assume, without any loss of generality, that the sequence is slowly
varying, i.e.,

cj/ck \leq 2\delta | k - j| , \delta \ll 1.

This sequence will be utilized when working in spatial weights within dyadic
regions.
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5090 COLLIN KOFROTH

These parameters tell us that, outside of a large enough spatial ball, the operator P
is a uniformly small perturbation of the flat wave operator 2m = \partial 2t  - \Delta (which we
simply denote as 2). The sequence (cj) provides a quantitative measure on the size
of the AF norm throughout each spatial dyadic region outside of this ball.

We will also assume throughout that the vector field \partial t is uniformly time-like,
which essentially constitutes a choice of coordinates. This condition, coupled with
the signature of the metric, ensures that Dig

ijDj is uniformly elliptic, i.e.,

(1.2) gij\xi i\xi j \approx | \xi | 2, \xi \not = 0,

where | \cdot | denotes the standard Euclidean norm. This follows from the positive-
definiteness of the momentum-energy tensor when applied to time-like vector fields.

Next, we define the local energy norms

\| u\| LE = sup
j\geq 0

\bigm\| 

\bigm\| 

\bigm\| \langle x\rangle  - 1/2u
\bigm\| 

\bigm\| 

\bigm\| 

L2
tL

2
x

\bigl( 

\BbbR +\times Aj

\bigr) ,

\| u\| LE1 = \| \partial u\| LE +
\bigm\| 

\bigm\| \langle x\rangle  - 1u
\bigm\| 

\bigm\| 

LE
.

A predual-type norm to the LE norm is the LE\ast norm, which is defined as

\| f\| LE\ast =

\infty 
\sum 

j=0

\bigm\| 

\bigm\| 

\bigm\| \langle x\rangle 1/2f
\bigm\| 

\bigm\| 

\bigm\| 

L2
tL

2
x

\bigl( 

\BbbR +\times Aj

\bigr) .

Here, Lp
tL

q
x denotes the Bochner space Lp(\BbbR +,L

q(\BbbR 3)). In the particular case of
p, q = 2, then this is a Hilbert space; we will use \langle \cdot , \cdot \rangle to denote the inner product
on L2

tL
2
x. Last, we define the sum-space norm

\| f\| LE\ast +L1
tL

2
x
= inf

f=f1+f2

\Bigl( 

\| f1\| LE\ast + \| f2\| L1
tL

2
x

\Bigr) 

.

If we wish for the time interval to be, e.g., [0, T ] in the above norms, then we
will use the notation \| u\| LE[0,T ] ,\| u\| LE1[0,T ] ,\| u\| LE\ast [0,T ] ,\| u\| LE\ast +L1

tL
2
x[0,T ] (although

we will write LE\ast [0, T ] + L1
tL

2
x[0, T ] when referring to this space outside of norm

subscripts), etc. A subscript of c on any of these spaces denotes compact spatial
support.

There are two additional function spaces that will be utilized extensively in this
work. The first is the class of Schwartz functions \scrS (\BbbR 4), which will be useful for
approximation arguments. The second is a particular collection of functions which is
often the natural class to study wave equations.

Definition 1.3. Let T > 0. We define the class \scrW T to be the space of all
functions u \in C2([0, T ]\times \BbbR 

3) for which there exists R > 0 so that u(t, x) = 0 for all
t\in [0, T ] and | x| >R. That is,

\scrW T = \{ u\in C2([0, T ]\times \BbbR 
3) : (\exists R> 0)(\forall | x| >R)(\forall t\in [0, T ]) u(t, x) = 0\} .

We are interested in Cauchy problems of the form
\Biggl\{ 

Pu= f \in LE\ast [0, T ] +L1
tL

2
x[0, T ],

u[0] = (u(0), \partial tu(0))\in \.H1 \oplus L2.

Remark 1.4. The decay conditions on u\in \scrW T are not as restrictive as they might
initially appear. If the Cauchy data is compactly supported, then the condition is free
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LOCAL ENERGY DECAY FOR DAMPED WAVES 5091

by finite speed of propagation. If it is not, then one can approximate the data (which
generically lives in the energy space) by compactly supported data. The regularity
conditions on u are also not restrictive, as one can perform density arguments to
reduce to the case of increased regularity.

Now, we state the pertinent local energy estimates for such problems.

Definition 1.5. We say that (integrated) local energy decay holds for an asymp-
totically flat wave operator if the following estimate holds for all T > 0:

(1.3) \| u\| LE1[0,T ] + \| \partial u\| L\infty 
t L2

x[0,T ] \lesssim \| \partial u(0)\| L2 + \| Pu\| LE\ast +L1
tL

2
x[0,T ]

for all u\in \scrW T such that u[0]\in \.H1 \oplus L2, with the implicit constant being independent
of T .

The notion of an asymptotically flat wave operator is more broad than an asymp-
totically flat damped wave operator. They need not feature a damping term, and
they are allowed to possess general lower-order terms which are asymptotically flat in
an appropriate sense (see Definition 1.1 in [MST20] for a precise definition).

Note that, due to global energy conservation for the flat wave problem, the gen-
eral definition of local energy decay that we have given here is consistent with the
integrated local energy estimate for the flat wave equation in (1.1) (in the inhomo-
geneous case, one applies H\"older's inequality to the forcing). This estimate is known
to hold whenever P is a small asymptotically flat perturbation of 2 (see [Ali06],
[MS06], [MS07], [MT12]). In [MST20], the authors considered large AF perturba-
tions and proved that, for stationary problems, the local energy decay estimate (1.3)
is equivalent to assuming that the wave operator P is nontrapping and has no neg-
ative eigenfunctions (L2 eigenfuctions with corresponding eigenvalues in the lower
half-plane) nor real resonant states (outgoing non-L2 eigenfunctions with real ``eigen-
values,"" which are called resonances); see Definitions 2.2, 2.4, and 2.8 in [MST20] for
more precise statements. The nontrapping hypothesis only arose during their proof
of a high frequency estimate (Theorem 2.11 in [MST20]), which took the form

\| u\| LE1[0,T ] + \| \partial u\| L\infty 
t L2

x[0,T ] \lesssim \| \partial u(0)\| L2 +
\bigm\| 

\bigm\| 

\bigm\| \langle x\rangle 
 - 2
u
\bigm\| 

\bigm\| 

\bigm\| 

LE[0,T ]
+ \| Pu\| LE\ast +L1

tL
2
x[0,T ] .

(1.4)

The implicit constant in the above estimate is crucially independent of T . This
estimate does not require u to be truncated to large time frequencies, but this is the
context in which it is used in proving local energy decay.

The added spatial weight in the error term does not play a particular role in mak-
ing this high frequency. Rather, it is the weight that naturally arises when performing
a bootstrapping argument in the proof of the estimate; it is largely unimportant since
this estimate can be reduced to studying solutions with compact spatial support (see
section 2.5).

Remark 1.6. To see this as an estimate on the high frequencies, let u\in \scrS (\BbbR 4) be
frequency-supported in time for \tau in the range 1\ll \tau 1 \leq | \tau | <\infty (1.4) is only applied
for such u in the proof of local energy decay). Then, we can use Plancherel's theorem
in t to obtain that

\bigm\| 

\bigm\| 

\bigm\| 
\langle x\rangle  - 2

u
\bigm\| 

\bigm\| 

\bigm\| 

LEt,x

\approx 
\bigm\| 

\bigm\| 

\bigm\| 
\langle x\rangle  - 2

\^u(\tau ,x)
\bigm\| 

\bigm\| 

\bigm\| 

LE\tau ,x

\lesssim 
1

\tau 1

\bigm\| 

\bigm\| 

\bigm\| \langle x\rangle 
 - 2
\tau \^u(\tau ,x)

\bigm\| 

\bigm\| 

\bigm\| 

LE\tau ,x

\lesssim 
1

\tau 1
\| u\| LE1

t,x
.

(1.5)
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5092 COLLIN KOFROTH

For large enough \tau 1, this term can be absorbed into the left-hand side of (1.4), pro-
viding local energy decay for solutions restricted to high frequencies.

In fact, we may apply the high frequency estimate (1.4) to u(t - T/2) to get (after
dropping the uniform energy piece) that

\| u\| LE1[ - T/2,T/2] \lesssim \| \partial u( - T/2)\| L2 +
\bigm\| 

\bigm\| 

\bigm\| 
\langle x\rangle  - 2

u
\bigm\| 

\bigm\| 

\bigm\| 

LE[ - T/2,T/2]
+ \| Pu\| LE\ast [ - T/2,T/2] .

Since the implicit constant is independent of T , we may take the limit as T \rightarrow \infty and
apply the prior work in (1.5) to obtain that

\| u\| LE1 \lesssim \| Pu\| LE\ast .

This is the context that we will apply the estimate to establish local energy decay.

Our first main theorem is the following, which states that we recover the high
frequency estimate (1.4) of [MST20] when working with damped waves and replacing
the nontrapping hypothesis with the geometric control condition.

Theorem 1.7. Let P be a stationary, asymptotically flat damped wave operator
satisfying the geometric control condition, and suppose that \partial t is uniformly time-like.
Then, the high frequency local energy estimate (1.4) holds for all u \in \scrW T such that
u[0]\in \.H1 \oplus L2. The implicit constant is independent of T .

The geometric control condition, initially introduced in [RT74] for dissipative
hyperbolic equations on compact product manifolds, requires that every trapped null
bicharacteristic ray intersect the damping region. We will make this more precise in
section 2.2.

Remark 1.8. The implicit constant in the bound depends on R0. In fact, much of
our work will implicitly depend on R0 due to our applications of asymptotic flatness.
It is essential to note that this parameter is fixed second (with c being fixed first), after
which our other parameters (such as the scaling parameter \gamma and the high frequency
parameter \lambda , which will both be introduced in section 3) will be chosen (and hence
depend on it). We will not track the dependence on R0 within our implicit constants
any longer. Our constants throughout will not depend on T , however.

Our second main theorem is local energy decay.

Theorem 1.9. Let P be a stationary, asymptotically flat damped wave operator
satisfying the geometric control condition, and suppose that \partial t is uniformly time-like.
Then, local energy decay holds, with the implicit constant in (1.3) independent of T .

Remark 1.10. Unlike [MST20], we do not require any spectral hypotheses. The
damping eliminates the possibility of nonzero real resonances, and a zero resonance
cannot occur since P | Dt=0 is elliptic, which is independent of the damping. The latter
is discussed further in section 3.2.

This follows rather directly from our high frequency estimate and the existing
work in [MST20]. We will cite the necessary result from [MST20] and explain why
they apply here.

The structure of the paper is as follows. In section 2.2, we will introduce the
Hamiltonian formalism required to define trapping and geometric control, and then
we will state a key lemma (Lemma 2.4) for the proof of Theorem 1.7; namely, we con-
struct an appropriate escape function and lower-order correction to allow for a posi-
tive commutator argument proof of the theorem. In section 2.3, we establish various
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LOCAL ENERGY DECAY FOR DAMPED WAVES 5093

results on the bicharacteristic flow that are vital for proving Lemma 2.4, which we
establish in section 2.4. In section 2.5, we will establish and cite supplemental energy
estimates and provide multiple case reductions to simplify the proof of Theorem 1.7.
In section 2.6, we will prove Theorem 1.7. Finally, section 3 will present the applica-
ble theorems from [MST20] which are required to establish local energy decay for our
problem and discuss why they apply in our setting. Sections 3.1 and 3.2 introduce the
relevant medium and low frequency estimates, respectively, and section 3.3 provides
a discussion on the proof of Theorem 1.9.

1.3. Cutoff notation. For the remainder of paper, we will fix the cutoffs

\chi \in C\infty 
c nonincreasing, \chi \equiv 1 for | x| \leq 1, \chi \equiv 0 for | x| > 2,

\chi <R(| x| ) = \chi 

\biggl( 

| x| 

R

\biggr) 

, \chi >R = 1 - \chi <R,

and

\chi R \in C\infty 
c , 0\leq \chi R \leq 1, supp\chi R \subset \{ | x| \approx R\} .

We will choose \chi such that its square root is smooth (otherwise, we replace \chi with
\chi 2; we only use \chi for notational convenience). When working in frequency variables,
we will often add the variable into the subscript to make the dependence clear (e.g.,
\chi | \xi | >\lambda ). We will also occasionally write r= | x| .

2. High frequency analysis.

2.1. Introduction. In this section, we will establish Theorem 1.7. The notions
of trapping and geometric control are intrinsically dynamical, so we will provide a
thorough discussion of the relevant theory. Namely, we must introduce the bichar-
acteristic flow generated by the principal symbol of the damped wave operator and
the properties that it satisfies. From here, we will construct an escape function and
correction term in order to apply a utilize commutator argument and prove the the-
orem. The constructed symbols will satisfy an appropriate positivity bound, which
will allow us to apply the sharp G\r arding inequality upon swapping to the framework
of pseudodifferential operators. The symbols will also be supported in an unbounded
range of frequencies [\lambda ,\infty ) with \lambda \gg 1. This will be fundamentally important for
bootstrapping error terms resulting from employment of pseudodifferential calculus.

2.2. Dynamical framework. In order to state the geometric control condition
more precisely, we must first outline our dynamical framework, which is rooted in the
Hamiltonian dynamics pertaining to the principal symbol of the operator P . Since we
assumed that \partial t is uniformly time-like, the signature of the metric and the cofactor
expansion for the inverse metric tell us that g00 \lesssim  - 1, as well. This allows us to
divide through by  - g00 and preserve the assumptions on the operator coefficients
(see [MT12]). Hence, we may assume (without loss of generality) that g00 = - 1.

After these modifications, the principal symbol of P is

p(\tau ,x, \xi ) = - (\tau 2  - 2\tau g0j(x)\xi j  - gij(x)\xi i\xi j).

This is considered as a smooth function on T \ast 
\BbbR 

4 \setminus o, where o denotes the zero section.
This symbol generates a bicharacteristic/Hamiltonian flow on \BbbR \times T \ast 

\BbbR 
4 given by

\varphi s(w) = (ts(w), \tau s(w), xs(w), \xi s(w)) which solves
\biggl\{ 

\.ts = \partial \tau p(\varphi s(w)), \.\tau s = - \partial tp(\varphi s(w)),

\.xs =\nabla \xi p(\varphi s(w)), \.\xi s = - \nabla xp(\varphi s(w)),
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5094 COLLIN KOFROTH

with initial data w \in T \ast 
\BbbR 

4. Explicitly, one can write the system as

\biggl\{ 

\.ts = - 2\tau s + 2g0j(xs)[\xi s]j , \.\tau s = 0,

( \.xs)k = 2\tau sg
0k(xs) + 2gkj(xs)[\xi s]j , ( \.\xi s)k = - 2\tau s\partial xk

g0j(xs)[\xi s]j  - \partial xk
gij(xs)[\xi s]i[\xi s]j.

Since g is smooth and asymptotically flat, and \partial t is uniformly time-like, we have
a unique, smooth, globally defined flow with smooth dependence on the data. We will
have particular interest in null bicharacteristics, i.e., those with initial data lying in
the zero set of p (also called the characteristic set of P and denoted Char(P )). Using
the flow \varphi s, we define the forward and backward trapped and nontrapped sets with
respect to \varphi s, respectively, as

\Gamma tr =

\biggl\{ 

w \in T \ast 
\BbbR 

4 \setminus o : sup
s\geq 0

| xs(w)| <\infty 

\biggr\} 

\cap Char(P ),

\Lambda tr =

\biggl\{ 

w \in T \ast 
\BbbR 

4 \setminus o : sup
s\geq 0

| x - s(w)| <\infty 

\biggr\} 

\cap Char(P ),

\Gamma \infty =
\bigl\{ 

w \in T \ast 
\BbbR 

4 \setminus o : | xs(w)| \rightarrow \infty as s\rightarrow \infty 
\bigr\} 

\cap Char(P ),

\Lambda \infty =
\bigl\{ 

w \in T \ast 
\BbbR 

4 \setminus o : | x - s(w)| \rightarrow \infty as s\rightarrow \infty 
\bigr\} 

\cap Char(P ).

The trapped and nontrapped sets are defined as

\Omega p
tr =\Gamma tr \cap \Lambda tr and \Omega p

\infty =\Gamma \infty \cap \Lambda \infty ,

respectively.

Definition 2.1. The flow is said to be nontrapping if \Omega p
tr=\emptyset .

Now, we may state the geometric control condition precisely. Recall that our
damping function was denoted a.

Definition 2.2. We say that geometric control holds if

(\forall w \in \Omega p
tr)(\exists s\in \BbbR ) a(xs(w))> 0.(2.1)

In contrast to the definition given in Assumption (A) in [RT74], we apply this
condition specifically to the trapped null bicharacteristic rays (since all null bichar-
acteristic rays are trapped when the manifold is compact, such a specification was
unnecessary in [RT74]). We will assume that (2.1) holds. Note that if (2.1) holds and
a \equiv 0, then \Omega p

tr must be empty, meaning that the flow is nontrapping. In this case,
we are back in the setting of [MST20]. For this reason, we will assume that a > 0 on
an open set.

It will be beneficial to utilize a scaling property of P . Given a solution u to
Pu= f , consider

\~v(t, x) := \gamma  - 2u(\gamma t, \gamma x), \gamma > 0.

If we call

\~P =D\alpha \~g
\alpha \beta D\beta + i\gamma \~aDt, \~g\alpha \beta (x) = g\alpha \beta (\gamma x), \~a(x) = a(\gamma x),

then \~v solves

\~P \~v= \~f, \~f(t, x) = f(\gamma t, \gamma x)
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LOCAL ENERGY DECAY FOR DAMPED WAVES 5095

if and only if u solves Pu= f (we can similarly undo the scaling to move between the
frameworks). Notice that the scaled problem allows for an arbitrarily large constant
\gamma in front of the damping.

Analogous Hamiltonian systems and trapped sets exist for the principal symbol
\~p of \~P , and this amounts to simply replacing g by \~g. If we assume that geometric
control holds for the flow generated by p, then we must check that it holds for the
scaled problem.

Proposition 2.3. Assume that (2.1) holds. Then, for any \gamma > 0, (2.1) holds for
the flow generated by \~p, with a replaced by \~a.

Note that since g00 \equiv  - 1, it follows that \~g00 \equiv  - 1.

Proof. The flow generated by \~p solves the system
\left\{ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d

ds
\~ts = - 2\~\tau s + 2\~g0j(\~xs)[\~\xi s]j ,

d

ds
\~\tau s = 0,

d

ds
(\~xs)k = 2\~\tau s\~g

0k(\~xs) + 2\~gkj(\~xs)[\~\xi s]j ,

d

ds
(\~\xi s)k = - 2\~\tau s\partial xk

\~g0j(\~xs)[\~\xi s]j  - \partial xk
\~gij(\~xs)[\~\xi s]i[\~\xi s]j ,

(\~ts, \~\tau s, \~xs, \~\xi s)
\bigm| 

\bigm| 

s=0
= (t, \tau , x, \xi ).

Applying the chain rule and multiplying through by \gamma provides us with the system
\left\{ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d

ds
(\gamma \~ts) = - 2(\gamma \~\tau s) + 2g0j(\gamma \~xs)[\gamma \~\xi s]j ,

d

ds
(\gamma \~\tau s) = 0,

d

ds
(\gamma \~xs)k = 2(\gamma \~\tau s)g

0k(\gamma \~xs) + 2gkj(\gamma \~xs)[\gamma \~\xi s]j ,

d

ds
(\gamma \~\xi s)k = - 2(\gamma \~\tau s)[(\partial xk

g0j)(\gamma \~xs)][\gamma \~\xi s]j  - [(\partial xk
gij)(\gamma \~xs)][\gamma \~\xi s]i[\gamma \~\xi s]j ,

\bigl( 

(\gamma \~t)s, (\gamma \~\tau )s, (\gamma \~x)s, (\gamma \~\xi )s
\bigr) \bigm| 

\bigm| 

s=0
= (\gamma t, \gamma \tau , \gamma x, \gamma \xi ).

This is the same system that is solved by the Hamiltonian flow generated by p with
initial data (\gamma t, \gamma \tau , \gamma x, \gamma \xi ). By uniqueness, we can conclude that

\biggl\{ 

\gamma \~ts(t, \tau , x, \xi ) = ts(\gamma t, \gamma \tau , \gamma x, \gamma \xi ), \gamma \~\tau s(t, \tau , x, \xi ) = \tau s(\gamma t, \gamma \tau , \gamma x, \gamma \xi ),

\gamma \~xs(t, \tau , x, \xi ) = xs(\gamma t, \gamma \tau , \gamma x, \gamma \xi ), \gamma \~\xi s(t, \tau , x, \xi ) = \xi s(\gamma t, \gamma \tau , \gamma x, \gamma \xi ).

Now, let w=\Omega \~p
tr. From the above, we have that

\~xs(w) = \gamma  - 1xs( \~w), \~w= \gamma w.

Since

sup
s\in \BbbR 

| xs( \~w)| = \gamma sup
s\in \BbbR 

| \~xs(w)| <\infty ,

it follows that \~w \in \Omega p
tr. By (2.1), there exists s\prime \in \BbbR so that a(xs\prime ( \~w))> 0, and so

\~a(\~xs\prime (w)) = a(\gamma \~xs\prime (w)) = a(xs\prime ( \~w))> 0,

which completes the proof.
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5096 COLLIN KOFROTH

Now that we have shown that geometric control is invariant under scaling, we
will fix a large \gamma > 0 and study the problem from the scaled perspective (where our
damping is now multiplied by \gamma ) while reverting back to our original notation (x and
\xi , no tildes, etc.). More precise conditions on the size of \gamma will come in section 2.4.
It is readily seen that it is equivalent to prove Theorem 1.7 for the scaled problem,
where we now have a large constant in front of the damping term.

Our proof of Theorem 1.7 is a positive commutator argument. At the symbolic
level, this requires the construction of an escape function (as well as a lower-order
correction). We must consider the skew-adjoint contribution of P , which will be a
purely beneficial term due to the presence of the damping. Let p and sskew represent
the principal symbols of the self and skew-adjoint parts of P , respectively. Namely,

p(\tau ,x, \xi ) = - (\tau 2  - 2\tau g0j(x)\xi j  - gij(x)\xi i\xi j),

sskew(\tau ,x, \xi ) = i\gamma \tau a(x).

The multiplication by \gamma in sskew will prove advantageous for a bootstrapping argu-
ment, which is precisely why we implement the \gamma -scaling. Now, we are ready to state
our escape function result, which we will prove in section 2.4.

Lemma 2.4. For all \lambda > 1, there exist symbols qj \in S
j(T \ast 

\BbbR 
3) and m\in S0(T \ast 

\BbbR 
3),

all supported in | \xi | \geq \lambda , so that

Hpq - 2isskewq+ pm\gtrsim 1| \xi | \geq \lambda \langle x\rangle 
 - 2 \bigl( 

\tau 2 + | \xi | 2
\bigr) 

,

where q= \tau q0 + q1.

Here, Sm(T \ast 
\BbbR 

n) denotes the mth-order Kohn--Nirenberg symbol class. To each
q \in Sm(T \ast 

\BbbR 
n), we will associate the pseudodifferential operator q\mathrm{w}(x,D) : \scrS (\BbbR n) \rightarrow 

\scrS (\BbbR n), namely the Weyl quantization of p, which is defined via the action

q\mathrm{w}(x,D)u(x) = (2\pi ) - n

\int 

\BbbR n

\int 

\BbbR n

ei(x - y)\cdot \xi q

\biggl( 

x+ y

2
, \xi 

\biggr) 

u(y)dyd\xi .

In the proof of Lemma 2.4, it will be useful to work with the half-wave decompo-
sition, which allows us to avoid the cross terms in the principal symbol. To that end,
we factor p as

p(\tau ,x, \xi ) = - (\tau  - b+(x, \xi ))(\tau  - b - (x, \xi )),

where

b\pm (x, \xi ) = g0j\xi j \pm 

\sqrt{} 

(g0j\xi j)
2
+ gij\xi i\xi j .

Observe that b\pm are both homogeneous of degree 1 in \xi . Additionally, they are
both signed.

Proposition 2.5. For any (x, \xi )\in T \ast 
\BbbR 

3\setminus o, we have that b+(x, \xi )> 0> b - (x, \xi ).

Proof. Let \xi \not = 0. First, we show that b+ > b - . Indeed, observe that

b+  - b - = 2

\sqrt{} 

(g0j\xi j)
2
+ gij\xi i\xi j > 0

using the ellipticity (see (1.2)). Using ellipticity again, we have that

\sqrt{} 

(g0j\xi j)
2
+ gij\xi i\xi j > | g0j\xi j | .
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LOCAL ENERGY DECAY FOR DAMPED WAVES 5097

Thus,

b+ > g0j\xi j + | g0j\xi j | \geq 0, b - < g0j\xi j  - | g0j\xi j | \leq 0.

We will call p\pm = \tau  - b\pm , so that p =  - p+p - . In particular, p = 0 if and
only if p+ = 0 or p - = 0; due to Proposition 2.5, it cannot be the case that
p+(w) = p - (w) = 0 for any w \in T \ast 

\BbbR 
4 \setminus o. The Hamiltonians p\pm also generate flows

\varphi \pm 
s (w)= (t\pm s (w), \tau 

\pm 
s (w), x\pm s (w), \xi 

\pm 
s (w)) on \BbbR \times T \ast 

\BbbR 
4 which solve the Hamiltonian sys-

tems

\biggl\{ 

\.t\pm s = \partial \tau p
\pm (\varphi \pm 

s (w)), \.\tau \pm s = - \partial tp
\pm (\varphi \pm 

s (w)),

\.x\pm s =\nabla \xi p
\pm (\varphi \pm 

s (w)),
\.\xi \pm s = - \nabla xp

\pm (\varphi \pm 
s (w)),

with initial data w \in T \ast 
\BbbR 

4. Note that

\biggl\{ 

\.t\pm s = 1, \.\tau \pm s = 0,

\.x\pm s = - \nabla \xi b
\pm (\varphi \pm 

s (w)),
\.\xi \pm s =\nabla xb

\pm (\varphi \pm 
s (w)).

There is a direct correspondence between null bicharacteristics for \varphi s and null bichar-
acteristics for \varphi \pm 

s .

Proposition 2.6. Every null bicharacteristic for the flow generated by p is a
null bicharacteristic for the flow generated by either p+ or p - . The converse is also
true.

Proof. Recall that for any (t\prime , \tau \prime , x\prime , \xi \prime )=:w \in T \ast 
\BbbR 

4 \setminus o, we have that p(w)=0 if
and only if either p+(w)=0 or p - (w)=0. Without loss of generality, suppose that
p+(w)=0. The Hamiltonians p and p+ generate the systems
(2.2)
\biggl\{ 

\.ts = - p+(\varphi s) - p - (\varphi s), \.\tau s = 0,

( \.xs)k = - p+(\varphi s)p
 - 
\xi k
(\varphi s) - p - (\varphi s)p

+
\xi k
(\varphi s), ( \.\xi s)k = p+(\varphi s)p

 - 
xk
(\varphi s) + p - (\varphi s)p

+
xk
(\varphi s),

and

(2.3)

\biggl\{ 

\.t+s = 1, \.\tau +s = 0,

( \.x+s )k = p+\xi k(\varphi 
+
s ), ( \.\xi +s )k = - p+xk

(\varphi +
s ),

respectively. We will take both systems to have initial data w.
We claim that since p+(w)=0, we must have that p+(\varphi s(w))=0 for all s. If not,

then there would exist s\prime so that p - (\varphi s\prime (w))=0, i.e., \tau  - s\prime (w) = b - (xs\prime (w), \xi s\prime (w))<0.
However, \tau  - is constant and p+(w) = 0, which implies that \tau  - s (w) = \tau \prime > 0 for all s.

Thus, we can rewrite (2.2) as

(2.4)

\biggl\{ 

\.ts = - p - (\varphi s), \.\tau s = 0,

( \.xs)k = - p - (\varphi s)p
+
\xi k
(\varphi s), ( \.\xi s)k = p - (\varphi s)p

+
xk
(\varphi s),

with initial data (ts, \tau s, xs, \xi s)
\bigm| 

\bigm| 

s=0
=w. Notice that t+= t\prime + s, and so we may repa-

rameterize (2.3) in terms of t+:

\left\{ 

 

 

 

 

d

dt+
t+t+ - t\prime = 1,

d

dt+
\tau +t+ - t\prime = 0,

\biggl( 

d

dt+
x+t+ - t\prime 

\biggr) 

k

= p+\xi k(\varphi 
+
t+ - t\prime ),

\biggl( 

d

dt+
\xi +t+ - t\prime 

\biggr) 

k

= - p+xk
(\varphi +

t+ - t\prime ),

with initial data (t+t+ - t\prime , \tau 
+
t+ - t\prime , x

+
t+ - t\prime , \xi 

+
t+ - t\prime )

\bigm| 

\bigm| 

t+=t\prime 
=w.
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5098 COLLIN KOFROTH

Next, we reparameterize (2.4) to change the flow variable from s to t (which can
be done since ts is strictly increasing and hence invertible), generating the system

\left\{ 

 

 

 

 

d

dt
ts(t) = 1,

d

dt
\tau s(t) = 0,

\biggl( 

d

dt
xs(t)

\biggr) 

k

= p+\xi k(\varphi s(t)),

\biggl( 

d

dt
\xi s(t)

\biggr) 

k

= - p+xk
(\varphi s(t)),

which has initial data (ts(t), \tau s(t), xs(t), \xi s(t))| t=t\prime =w. An application of uniqueness
theory yields that \varphi s(t)(w) = \varphi +

t+ - t\prime (w). The converse is similar by reversing the
above process.

When working with the factored flow, the decoupling of (t, \tau ) and (x, \xi ) al-
lows us to project onto the (x, \xi ) components of the flow without worrying about
loss of information. For this reason, we will write \Pi x,\xi \circ \varphi 

\pm as simply \varphi \pm , where
\Pi x,\xi (t, \tau , x, \xi )=(x, \xi ). Notice that when we project, we are no longer looking at null
bicharacteristics but, rather, bicharacteristics with initial data having nonzero \xi com-
ponent.

Now, we may define all of the corresponding forward and backward trapped and
nontrapped sets for the half-wave flows as

\Gamma \pm 
tr =

\biggl\{ 

w \in T \ast 
\BbbR 

3 \setminus o : sup
s\geq 0

| x\pm s (w)| <\infty 

\biggr\} 

,

\Lambda \pm 
tr =

\biggl\{ 

w \in T \ast 
\BbbR 

3 \setminus o : sup
s\geq 0

| x\pm  - s(w)| <\infty 

\biggr\} 

,

\Gamma \pm 
\infty =

\bigl\{ 

w \in T \ast 
\BbbR 

3 \setminus o : | x\pm s (w)| \rightarrow \infty as s\rightarrow \infty 
\bigr\} 

,

\Lambda \pm 
\infty =

\bigl\{ 

w \in T \ast 
\BbbR 

3 \setminus o : | x\pm  - s(w)| \rightarrow \infty as s\rightarrow \infty 
\bigr\} 

.

The trapped and nontrapped sets are

\Omega \pm 
tr =\Gamma \pm 

tr \cap \Lambda \pm 
tr and \Omega \pm 

\infty =\Gamma \pm 
\infty \cap \Lambda \pm 

\infty ,

\Omega tr =\Omega +
tr \cup \Omega  - 

tr and \Omega \infty =\Omega +
\infty \cup \Omega  - 

\infty .

Note that the identities

\Omega tr =\Pi x,\xi (\Omega 
p
tr) and \Omega \infty =\Pi x,\xi (\Omega 

p
\infty )

hold as an immediate consequence of the factoring. Additionally, the factoring allows
us to restate the geometric control condition as

\bigl( 

w \in \Omega +
tr =\Rightarrow (\exists s\in \BbbR )

\bigl( 

a(x+s (w))> 0
\bigr) \bigr) 

and
\bigl( 

w \in \Omega  - 
tr =\Rightarrow (\exists s\in \BbbR )

\bigl( 

a(x - s (w))> 0
\bigr) \bigr) 

.

If w \in \Omega tr, then it is trapped with respect to the flow generated by either p+ or p - 

by Proposition 2.6. If it is trapped with respect to p+, then there is a time so that
w is flowed along a p+-bicharacteristic ray to a place where the damping is positive,
and similarly if it is trapped with respect to p - .

2.3. Results on the flow. Here, we establish results regarding the trapped/
nontrapped sets and scalings for the flows, culminating in an extension of geometric
control to bicharacteristic rays bounded either forward or backward in time. These
results largely follow the path outlined in [BR14], although we require certain scal-
ing results in order to utilize homogeneity arguments in later proofs (which were
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LOCAL ENERGY DECAY FOR DAMPED WAVES 5099

unnecessary in [BR14] due to their use of semiclassical rescaling). In particular,
Lemma 2.10 and Propositions 2.11 and 2.12 are analogous to results in Chapter 8 of
[BR14] (namely, Lemma 8.2 and Propositions 8.3 and 8.4, respectively).

We will start with a scaling result on the flow.

Proposition 2.7. The flows generated by p\pm satisfy the scalings
\Biggl\{ 

x\pm s (x, \xi ) = x\pm s (x,\lambda \xi ),

\lambda \xi \pm s (x, \xi ) = \xi \pm s (x,\lambda \xi )

for any \lambda > 0.

Proof. Label the functions on the right-hand side as x\pm s,\lambda and \xi \pm s,\lambda , respectively.
Using the homogeneity of b\pm , the left-hand side (x\pm s , \lambda \xi 

\pm 
s ) solves the system

\left\{ 

 

 

 

 

 

 

 

 

 

 

d

ds
x\pm s =\nabla \xi p

\pm (x\pm s , \xi 
\pm 
s ) =\nabla \xi p

\pm (x\pm s , \lambda \xi 
\pm 
s ),

d

ds
(\lambda \xi \pm s ) = - \lambda \nabla xp

\pm (x\pm s , \xi 
\pm 
s ) = - \nabla xp

\pm (x\pm s , \lambda \xi 
\pm 
s ),

(x\pm s , \lambda \xi 
\pm 
s )
\bigm| 

\bigm| 

s=0
= (x,\lambda \xi ),

while the right-hand side solves
\left\{ 

 

 

 

 

 

 

 

 

 

 

d

ds
x\pm s,\lambda =\nabla \xi p

\pm (x\pm s,\lambda , \xi 
\pm 
s,\lambda ),

d

ds
(\xi \pm s,\lambda ) = - \nabla xp

\pm (x\pm s,\lambda , \xi 
\pm 
s,\lambda ),

(x\pm s,\lambda , \xi 
\pm 
s,\lambda )
\bigm| 

\bigm| 

s=0
= (x,\lambda \xi ).

Applying uniqueness theory completes the proof.

This scaling implies that the trapped/nontrapped sets, and hence geometric con-
trol, are entirely determined by unit speed null bicharacteristics, i.e., by what happens
on the unit cosphere bundle S\ast 

\BbbR 
3 = \{ (x, \xi )\in T \ast 

\BbbR 
3 : | \xi | = 1\} . Indeed, observe that

x\pm s (x, \xi ) = x\pm s (x, \xi /| \xi | ).

The forward/backward trapped sets are defined in terms of supremums of the above
over s, while the forward/backward nontrapped sets are defined via limits in s, and the
prior equation shows that all of these are unaffected by the scaling in the \xi component
of the initial data. A more pertinent scaling is given by the function

\Phi \pm (x, \xi ) =

\biggl( 

x,
\xi 

| b\pm (x, \xi )| 

\biggr) 

.

The utility of this scaling comes from the fact that b\pm is a constant of motion under
the corresponding projected Hamiltonian flows and that

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\xi 

b+(x, \xi )

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\approx 1,

which we now prove.

Proposition 2.8. For any (x, \xi )\in T \ast 
\BbbR 

3 \setminus o,
\bigm| 

\bigm| 

\bigm| 

\bigm| 

\xi 

b\pm (x, \xi )

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\approx 1.
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5100 COLLIN KOFROTH

Proof. By homogeneity,
\bigm| 

\bigm| 

\bigm| 

\bigm| 

\xi 

b\pm (x, \xi )

\bigm| 

\bigm| 

\bigm| 

\bigm| 

=
1

\bigm| 

\bigm| 

\bigm| b\pm 
\Bigl( 

x, \xi 
| \xi | 

\Bigr) \bigm| 

\bigm| 

\bigm| 

.

Write

\bigm| 

\bigm| 

\bigm| 

\bigm| 

b\pm 
\biggl( 

x,
\xi 

| \xi | 

\biggr) \bigm| 

\bigm| 

\bigm| 

\bigm| 

=

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

g0j
\xi j
| \xi | 

\pm 

\sqrt{} 

\biggl( 

g0j
\xi j
| \xi | 

\biggr) 2

+ (gij  - mij)
\xi i
| \xi | 

\xi j
| \xi | 

+mij
\xi i
| \xi | 

\xi j
| \xi | 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

.

Since \| g - m\| AF (| x| >R0)
\ll 1, asymptotic flatness guarantees that g0j and gij  - mij

are small in the exterior region \{ | x| >R0\} . Hence,

\bigm| 

\bigm| 

\bigm| 

\bigm| 

b\pm 
\biggl( 

x,
\xi 

| \xi | 

\biggr) \bigm| 

\bigm| 

\bigm| 

\bigm| 

\approx 

\sqrt{} 

mij
\xi i
| \xi | 

\xi j
| \xi | 

= 1

when | x| >R0.
In the interior region, we are considering b\pm on the compact set \{ | x| \leq R0\} \times 

\{ | \xi | = 1\} . Since we know that | b\pm | > 0 for all \xi \not = 0 from Proposition 2.5, continuity
guarantees the desired boundedness here.

In view of Proposition 2.8, it follows that

\xi j
b\pm (x, \xi )

\in S0
\mathrm{h}\mathrm{o}\mathrm{m}(T

\ast 
\BbbR 

3 \setminus o), j = 1,2,3,

where S0
\mathrm{h}\mathrm{o}\mathrm{m}(T

\ast 
\BbbR 

3 \setminus o) denotes the 0th-order homogeneous symbol class.

Remark 2.9. As a consequence of the scaling, the sets

\.\Gamma \pm 
tr =\Gamma \pm 

tr \cap \Phi \pm (T \ast 
\BbbR 

3 \setminus o) and \.\Lambda \pm 
tr =\Lambda \pm 

tr \cap \Phi \pm (T \ast 
\BbbR 

3 \setminus o)

are invariant under the flow. Indeed, it is readily seen that the (semi) trapped nature is
preserved. Further, since b\pm is constant along the flow, it follows from Proposition 2.7
that

\xi \pm s

\biggl( 

x,
\xi 

| b\pm (x, \xi )| 

\biggr) 

=
1

| b\pm (x, \xi )| 
\xi \pm s (x, \xi ) =

1

| b\pm (x\pm s (x, \xi ), \xi 
\pm 
s (x, \xi ))| 

\xi \pm s (x, \xi ).

Now, we prove a key result on nontrapped trajectories.

Lemma 2.10. If R\geq R0 and

| x\pm \pm s\prime (x, \xi )| \geq max\{ 2R, | x| + \delta \} 

for some (x, \xi )\in T \ast 
\BbbR 

3 \setminus o, \delta > 0, and s\prime > 0, then it holds for all s\geq s\prime , and

| x\pm \pm s(x, \xi )| \rightarrow \infty 

as s\rightarrow \infty .

That is, if we can get sufficiently far away from the origin and move radially out-
ward from the initial position, then the trajectories are necessarily nontrapped. This
can be proven directly, but the computations are simpler if one uses the correspon-
dence between null bicharacteristics for p and p\pm .
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LOCAL ENERGY DECAY FOR DAMPED WAVES 5101

Proof. Without loss of generality, we will work with the x+ bicharacteristic ray.
By Proposition 2.6, it suffices to prove the result for the null bicharacteristic ray x\pm s

with initial data \~w, where \~w is the lift of w to T \ast 
\BbbR 

4\setminus o which is consistent with the
comment immediately following the aforementioned proposition (in particular, the \tau 
component is strictly positive). For any z \in T \ast 

\BbbR 
4\setminus o, we explicitly calculate that

1

2

\partial 2

\partial s2
| x\pm s(z)| 

2 =

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\partial 

\partial s
x\pm s(z)

\bigm| 

\bigm| 

\bigm| 

\bigm| 

2

+ x\pm s(z) \cdot 
\partial 2

\partial s2
x\pm s(z),

where
\bigm| 

\bigm| 

\bigm| 

\bigm| 

\partial 

\partial s
x\pm s(z)

\bigm| 

\bigm| 

\bigm| 

\bigm| 

2

= 4\tau 2\pm s(z)

\Biggl( 

3
\sum 

k=1

g0k(x\pm s(z))

\Biggr) 2

+ 4

3
\sum 

k=1

[(gki(x\pm s(z))(\xi \pm s(z))i][(g
kj(x\pm s(z))(\xi \pm s(z))j ]

+ 8

3
\sum 

k=1

\tau \pm s(z)g
0k(x\pm s(z))g

kj(x\pm s(z))(\xi j(z))\pm s,

and

x\pm s(z) \cdot 
\partial 2

\partial s2
x\pm s(z)

= 4\tau \pm s(z)(x\pm s(z))k[\partial \ell g
0k(x\pm s(z))]

\bigl( 

\tau \pm s(z)g
0\ell (x\pm s(z)) + g\ell j(x\pm s(z))(\xi \pm s(z))j

\bigr) 

+ 4(x\pm s(z))j [\partial \ell g
kj(x\pm s(z))]

\bigl( 

\tau \pm s(z)g
0\ell (x\pm s(z)) + g\ell j(x\pm s(z))(\xi \pm s(z))j

\bigr) 

(\xi \pm s(z))j

 - 2(x\pm s(z))kg
kj(x\pm s(z))(2\tau \pm s(z)\partial jg

0i(x\pm s(z))(\xi \pm s(z))i

+ \partial jg
i\ell (x\pm s(z))(\xi \pm s(z))i(\xi \pm s(z))\ell ).

Since \tau s is constant for stationary P , it follows that

\tau \pm s(z) = \tau 0 = b+(\Pi x,\xi (z)) = b\pm 
\bigl( 

x+\pm s(\Pi x,\xi (z)), \xi 
+
\pm s(\Pi x,\xi (z))

\bigr) 

\approx | \xi +\pm s(\Pi x,\xi (z))| ,

and so

\partial 2

\partial s2
| x\pm s(z)| 

2
\gtrsim | \xi +\pm s(\Pi x,\xi (z))| 

2
\Bigl( 

1 - \| g - m\| AF>R

\Bigr) 

provided that | x\pm s(z)| >R. In such a case, we have that \| g - m\| AF>R
\ll 1, and thus

\partial 2

\partial s2
| x\pm s(z)| 

2 > 0.

Using the condition that | x\pm \pm s\prime (x, \xi )| \geq max\{ 2R, | x| + \delta \} in a typical mean value
theorem argument (elementary and, thus, omitted) establishes the existence of an
s\prime \prime \in [0, s\prime ] such that

| x\pm s\prime \prime ( \~w)| 
2 >R2 and

\biggl( 

\partial 

\partial s
| x\pm s( \~w)| 

2

\biggr) 

\bigm| 

\bigm| 

\bigm| 

s=s\prime \prime 
> 0.

All together, we have that | x\pm s( \~w)| 
2 has positive derivative at s= s\prime \prime , and its deriv-

ative is increasing for all s\geq s\prime \prime . In particular, | x\pm s( \~w)| 
2 is increasing for all s\geq s\prime \prime ,

which implies the result.

As a consequence, we can use the trapped and nontrapped sets to partition phase
space.
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5102 COLLIN KOFROTH

Proposition 2.11.

(a) We can partition T \ast 
\BbbR 

3 \setminus o as

T \ast 
\BbbR 

3 \setminus o=\Gamma \pm 
tr \sqcup \Gamma \pm 

\infty =\Lambda \pm 
tr \sqcup \Lambda \pm 

\infty ,

T \ast 
\BbbR 

3 \setminus o=\Gamma \pm 
tr \cup \Lambda \pm 

tr \cup \Omega \pm 
\infty .

(b) \Gamma \pm 
\infty ,\Lambda 

\pm 
\infty ,\Omega 

\pm 
\infty are open in T \ast 

\BbbR 
3 \setminus o, and \Gamma \pm 

tr,\Lambda 
\pm 
tr,\Omega 

\pm 
tr are closed.

(c) If K \subset \Omega \pm 
\infty is compact, then for every R\geq R0, there exists T \prime \geq 0 so that

| x\pm s (v)| >R

for every | s| \geq T \prime and v \in K. Also,

\bigcup 

s\in \BbbR 

\varphi \pm 
s (K)

is closed in T \ast 
\BbbR 

3 \setminus o.

We omit the proof of this result, as it follows directly from using Lemma 2.10 and
continuity of the flow in both the evolution parameter and the data, as in [BR14] (see
Proposition 8.3 in the aforementioned work).

Finally, we show that if one assumes geometric control for bounded bicharacter-
istic rays, then it holds for semibounded bicharacteristic rays (that is, those that are
bounded forward or backward in time). Although the proof is similar to that given
in [BR14], we include it here due to its importance in our work and the seemingly
increased complexity of our sets (at least notationally).

Proposition 2.12. Assume that the geometric control condition (2.1) holds. If
w \in \.\Gamma \pm 

tr, then there exists s\pm \geq 0 so that a(x\pm s\pm (w))> 0. The same is true for w \in \.\Lambda \pm 
tr,

but with s\pm \leq 0.

Proof. We will only demonstrate this for \.\Gamma +
tr, as the work to establish the remain-

ing cases is similar. If w \in \.\Gamma +
tr, then

\alpha := sup
s\geq 0

| x+s (w)| <\infty .

According to Remark 2.9, | \xi +s (w)| \approx 1 for all s\in \BbbR . Thus,

sup
s\geq 0

| \varphi +
s (w)| <\infty .

Then, there exists a point w\prime \in T \ast 
\BbbR 

3 and a sequence (sn) of nonnegative real
numbers such that \varphi +

sn(w)\rightarrow w\prime as sn \rightarrow \infty . For any s\in \BbbR , the group law for the flow
tells us that \varphi +

s+sn(w) =\varphi +
s (\varphi 

+
sn(w)), and so

x+s+sn(w) =\Pi x \circ \varphi 
+
s (\varphi 

+
sn(w))\rightarrow x+s (w

\prime ) as sn \rightarrow \infty .

Since s + sn \geq 0 for large enough n, it follows that | x+s (w
\prime )| \leq \alpha for all s \in \BbbR . By

(2.1), there exists s\prime \in \BbbR for which a(x+
s
\prime (w

\prime ))> 0. Recall that x+s\prime +sn
(w)\rightarrow x+s\prime (w

\prime ) as

n\rightarrow \infty . Since a is continuous and s\prime + sn \geq 0 for n large enough, we conclude that
a(x+

s
\prime 
+sN

(w))> 0 for some large N .
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LOCAL ENERGY DECAY FOR DAMPED WAVES 5103

2.4. Escape function construction. We will construct our symbols in multiple
steps:

1. On the characteristic set. Since we are utilizing the half-wave decomposi-
tion, working on the characteristic set amounts to working on each individual
light cone, then combining together. There are three regions of interest, two
subregions of the interior region \{ | x| \leq R\} and the exterior region \{ | x| >R\} .
Here, R\geq R0.
(a) Interior, semibounded null bicharacteristics. As opposed to work-

ing with the trapped and nontrapped sets, we will first work with the
semibounded null bicharacteristics with initial data living in the interior
region \{ | x| \leq R\} . Working with the trapped and nontrapped sets can be
difficult, since one can have nontrapped trajectories which are bounded
forward or backward in time (but not both). Heuristically, these trajec-
tories constitute the boundary of the nontrapped set. Instead, we will
explicitly work with trajectories which are bounded forward or backward
in time. This is where geometric control is used. This step is inspired by
the work in [BR14].

(b) The remainder of the interior region. Since there is no trapping
here, we construct a symbol similar to the one constructed in [BR14],
[Doi96], and [MST20]. We will need to make an appropriate modification
to avoid trapped trajectories while working with the half-wave symbols.

(c) The exterior region. As a consequence of asymptotic flatness, there
are no trapped trajectories here. Hence, this follows from a similar mul-
tiplier to that used to prove local energy decay for the flat wave equation,
although the multiplier must be appropriately adapted to the geometry.
Here, we are motivated by prior work in [MMT08] and [MST20].

2. On the elliptic set. Here, we construct a correction term. That is, we
will construct a lower-order symbol which provides no contribution on the
characteristic set and provides positivity off of it. This is based on the work
in [MST20].

We will break this construction up into a sequence of lemmas, starting with 1(a).
While our construction follows that of [BR14], we reason differently. Their argument
utilizes semiclassical rescaling, which provides compactness for their interior, semi-
trapped set. Since we are sticking with the microlocal framework, we instead utilize
homogeneity arguments to obtain this compactness. This is one of the reasons to
work with the half-wave decomposition (the other being related to step 1(b), which
we will outline once we get there).

With this in mind, we will utilize the sets

\Omega \pm 
R :=

\bigl( 

\Gamma \pm 
tr \cup \Lambda \pm 

tr

\bigr) 

\cap \{ | x| \leq R\} ,

\.\Omega \pm 
R := \Omega \pm 

R \cap \Phi \pm (T \ast 
\BbbR 

3 \setminus o).

As a consequence of Propositions 2.8 and 2.11(b), the latter set is compact.

Lemma 2.13 (semibounded escape function construction). There exist q\pm \in 
C\infty (T \ast 

\BbbR 
3 \setminus o), an open set V \pm 

R \supset \Omega \pm 
R, and C

\pm \in \BbbR + so that

Hp\pm q\pm +C\pm a\gtrsim R 1V \pm 
R
.

Further, q\pm = q\pm 1 \circ \Phi \pm , where q\pm 1 \in C\infty 
c (T \ast 

\BbbR 
3 \setminus o).
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5104 COLLIN KOFROTH

Here, \Phi \pm \in S0
\mathrm{h}\mathrm{o}\mathrm{m}(T

\ast 
\BbbR 

3 \setminus o) is the scaling function introduced in section 2.3. The
fact that we omit the zero section is unavoidable, but it is nonproblematic; we will
introduce high frequency cutoffs to our symbols later on which allow for smooth
extensions to all of phase space.

Proof. We will first construct a symbol q\pm 1 and an open set \.V \pm 
R \supset \.\Omega \pm 

R such that

Hp\pm q\pm 1 +C\pm a\gtrsim R 1 \.V \pm 
R
.

To that end, let w\pm \in \.\Omega \pm 
R. By Proposition 2.12, there exists sw\pm \in \BbbR for which

a(x\pm sw\pm 
(w\pm )) > 0. Say that 2\alpha w\pm := a(x\pm sw\pm 

(w\pm )). By the continuity of the flow in

the initial data, there exists a neighborhood Uw\pm of w\pm so that a(x\pm sw\pm 
(z))>\alpha w\pm for

all z \in Uw\pm . Select a smooth cutoff \chi w\pm \in C\infty 
c (T \ast 

\BbbR 
3) so that supp \chi w\pm \subset Uw\pm and

\chi w\pm \equiv 1 on a smaller neighborhood Vw\pm of w\pm . Now, we define a symbol on T \ast 
\BbbR 

3 \setminus o
given by

qw\pm (x, \xi ) =

\int sw\pm 

0

\bigl( 

\chi w\pm \circ \varphi \pm 
 - s

\bigr) 

(x, \xi )ds.

Such a symbol is readily seen to be well-defined, and it is smooth by the
aforementioned smooth flow dependence on data. Next, we demonstrate its sym-
bolic nature. By continuity of the flow, \varphi \pm 

[0,sw\pm ](Uw\pm ) := \varphi \pm ([0, sw\pm ] \times Uw\pm ) is

compact. If (x, \xi ) /\in \varphi \pm 
[0,sw\pm ](Uw\pm ), then (x, \xi ) /\in \varphi \pm 

s (Uw\pm ) for any s \in [0, sw].

Then, \varphi \pm 
 - s(x, \xi ) /\in Uw\pm for any s \in [0, sw\pm ], implying that qw\pm (x, \xi ) = 0. Hence,

qw\pm \in C\infty 
c (T \ast 

\BbbR 
3 \setminus o).

Applying the Hamiltonian vector field Hp\pm gives us

Hp\pm qw\pm =

\int sw\pm 

0

Hp\pm (\chi w\pm \circ \varphi \pm 
 - s)ds= - 

\int sw\pm 

0

\partial s
\bigl( 

\chi w\pm \circ \varphi \pm 
 - s

\bigr) 

ds= \chi w\pm  - \chi w\pm \circ \varphi \pm 
 - sw\pm 

.

Notice that the term  - \chi w\pm \circ \varphi \pm 
 - sw\pm 

is nonpositive and that

supp
\Bigl( 

\chi w\pm \circ \varphi \pm 
 - sw\pm 

\Bigr) 

\subset 
\Bigl\{ 

v :\varphi \pm 
 - sw\pm 

(v)\in Uw\pm 

\Bigr\} 

=
\Bigl\{ 

v : v \in \varphi \pm 
sw\pm 

(Uw\pm )
\Bigr\} 

\subset \{ x : a(x)>\alpha w\pm \} .

Using this support property, we can use the damping to absorb the poorly signed
term and obtain nonnegativity of Hp\pm qw\pm . Indeed, if we call Cw\pm = 2(\alpha w\pm ) - 1, then
we have

\chi w\pm \circ \varphi  - sw\pm +Cw\pm a(x)\geq 0.

Thus,

Hp\pm qw\pm +Cw\pm a\gtrsim 1Vw\pm .

Since \.\Omega \pm 
R is compact, we can reduce the open cover \{ Vw\pm \} w\pm \in \.\Omega \pm 

R
to a finite

subcover \{ Vw\pm 
j
\} mj=1 with each w\pm 

j \in \.\Omega \pm 
R. Call

\.V \pm 
R =

m
\bigcup 

j=1

Vw\pm 
j
, q\pm 1 =

m
\sum 

j=1

qw\pm 
j
, and C\pm =

m
\sum 

j=1

Cw\pm 
j
.

This provides us with a symbol q\pm 1 \in C\infty 
c (T \ast 

\BbbR 
3 \setminus o) so that

Hp\pm q\pm 1 +C\pm a\gtrsim 1 \.V \pm 
R
, \.V \pm 

R \supset \.\Omega \pm 
R.
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LOCAL ENERGY DECAY FOR DAMPED WAVES 5105

Finally, we will extend the above estimate from an indicator on \.V \pm 
R to an indicator

on a neighborhood V \pm 
R \supset \Omega \pm 

R. Consider the function q\pm : T \ast 
\BbbR 

3 \setminus o\rightarrow \BbbR given by

q\pm = q\pm 1 \circ \Phi \pm .

Since geometric control is invariant under \Phi \pm , we can see that q\pm \not = 0. By definition,

Hp\pm q\pm 
\bigm| 

\bigm| 

\bigm| 

\bigm| 

(x,\xi )

=
d

ds

\bigl( 

q\pm (x\pm s , \xi 
\pm 
s )
\bigr) 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

s=0

.

Since b\pm is a constant of motion for the Hamiltonian system generated by p\pm , it
follows that

(\nabla xb
\pm )(x\pm s , \xi 

\pm 
s ) \.x\pm s + (\nabla \xi b

\pm )(x\pm s , \xi 
\pm 
s ) \.\xi \pm s = 0

for all s. Using this, we calculate that

d

ds

\bigl( 

q\pm (x\pm s , \xi 
\pm 
s )
\bigr) 

=
d

ds

\biggl( 

q\pm 1

\biggl( 

x\pm s ,
\xi \pm s

| b\pm (x\pm s , \xi 
\pm 
s )| 

\biggr) \biggr) 

= (\nabla xq
\pm 
1 )

\biggl( 

x\pm s ,
\xi \pm s

| b\pm (x\pm s , \xi 
\pm 
s )| 

\biggr) 

\cdot 
\bigl( 

\.x\pm s
\bigr) 

+ (\nabla \xi q
\pm 
1 )

\biggl( 

x\pm s ,
\xi \pm s

| b\pm (x\pm s , \xi 
\pm 
s )| 

\biggr) 

\cdot 
(| b\pm (x\pm s , \xi 

\pm 
s )| \.\xi \pm s  - \xi \pm s

\Bigl( 

(\nabla xb
\pm )(x\pm s , \xi 

\pm 
s ) \.x\pm s + (\nabla \xi b

\pm )(x\pm s , \xi 
\pm 
s ) \.\xi \pm s

\Bigr) 

| b\pm (x\pm s , \xi 
\pm 
s )| 2

= (\nabla xq
\pm 
1 )

\biggl( 

x\pm s ,
\xi \pm s

| b\pm (x\pm s , \xi 
\pm 
s )| 

\biggr) 

\cdot (\nabla \xi p
\pm )(x\pm s , \xi 

\pm 
s )

 - 
1

| b\pm (x\pm s , \xi 
\pm 
s )| 

(\nabla \xi q
\pm 
1 )

\biggl( 

x\pm s ,
\xi \pm s

| b\pm (x\pm s , \xi 
\pm 
s )| 

\biggr) 

\cdot (\nabla xp
\pm )(x\pm s , \xi 

\pm 
s )

= (\nabla xq
\pm 
1 )

\biggl( 

x\pm s ,
\xi \pm s

| b\pm (x\pm s , \xi 
\pm 
s )| 

\biggr) 

\cdot (\nabla \xi p
\pm )

\biggl( 

x\pm s ,
\xi \pm s

| b\pm (x\pm s , \xi 
\pm 
s )| 

\biggr) 

 - (\nabla \xi q
\pm 
1 )

\biggl( 

x\pm s ,
\xi \pm s

| b\pm (x\pm s , \xi 
\pm 
s )| 

\biggr) 

\cdot (\nabla xp
\pm )

\biggl( 

x\pm s ,
\xi \pm s

| b\pm (x\pm s , \xi 
\pm 
s )| 

\biggr) 

=Hp\pm q\pm 1
\bigm| 

\bigm| 
\biggl( 

x\pm 
s ,

\xi 
\pm 
s

| b\pm (x
\pm 
s ,\xi 

\pm 
s )| 

\biggr) ,

where we have used homogeneity to obtain that

(\nabla \xi p
\pm )
\bigl( 

x\pm s , \xi 
\pm 
s

\bigr) 

= (\nabla \xi p
\pm )

\biggl( 

x\pm s ,
\xi \pm s

| b\pm (x\pm s , \xi 
\pm 
s )| 

\biggr) 

and

1

| b\pm (x\pm s , \xi 
\pm 
s )| 

(\nabla xp
\pm )
\bigl( 

x\pm s , \xi 
\pm 
s

\bigr) 

= (\nabla xp
\pm )

\biggl( 

x\pm s ,
\xi \pm s

| b\pm (x\pm s , \xi 
\pm 
s )| 

\biggr) 

.

If we define V \pm 
R = (\Phi \pm ) - 1( \.V \pm 

R ), then we have an open neighborhood of \Omega \pm 
R such that

Hp\pm q\pm 
\bigm| 

\bigm| 

(x,\xi )
+C\pm a(x) =Hp\pm q\pm 1

\bigm| 

\bigm| 
\Bigl( 

x, \xi 

| b\pm (x,\xi )| 

\Bigr) +C\pm a(x)\gtrsim 
\Bigl( 

1 \.V \pm 
R

\circ \Phi \pm 
\Bigr) 

(x, \xi )\geq 1V \pm 
R
,

since \Phi \pm (V \pm 
R )\subset \.V \pm 

R .
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5106 COLLIN KOFROTH

Now that we have completed step 1(a), we move on to parts 1(b) and 1(c). Step
1(b) pertains to nontrapped null bicharacteristics in the interior region. The symbol
that we produce follows the construction appearing in [Doi96] and utilized in many
other works, such as [BR14] and [MST20]. Like in [MST20], we perform a factoring
argument. The reason for studying the half-wave decomposition is due to the presence
of a cutoff needed to make our constructed ``symbol"" genuinely symbolic. In the
unfactored setting, cross terms in the metric arise when differentiating the cutoff in
the computation of the Poisson bracket, generating an error term that is difficult to
control. In the factored setting, this error can be handled straightforwardly.

Step 1(c) takes place in the exterior region. This is of little concern, as we possess
robust exterior estimates. We utilize this symbol as a means of bootstrapping the
aforementioned error term, which will be compactly supported in the region where
the exterior symbol has strictly positive Poisson bracket with p\pm .

To these ends, we will analyze both half-waves simultaneously (as in Lemma 2.13).
While this portion of the argument follows the one given in [MST20], it does require a
modification; the escape function on interior, nontrapped null bicharacteristics needs
an appropriate adjustment to ensure that it avoids trapped trajectories. We start
with a proposition where we construct a function that will be used for the previ-
ously described error absorption. The construction of this function comes from, e.g.,
[MST20], [Tat08].

Proposition 2.14. Let \sigma > 0. Then, there exists f \in C\infty satisfying f(r) \approx \sigma 1
when r >R0 and f \prime (r)\approx \sigma cj2

 - jf(r) when r\approx 2j >R0.

Here, (cj) is the slow-varying sequence introduced in section 1.2.

Remark 2.15. Although the sequence (cj) is not defined for all natural numbers,
the indices where it is not defined index finitely many dyadic regions (in particu-
lar, they omit where the operator P need not be a small AF perturbation). Since
this region is compact, we can extend the sequence to such indices in an arbitrary
manner. The typical way that this sequence is extended is by choosing cj so that
\| g - m\| AF (Aj)

\lesssim cj for the previously undefined indices j.

Proof. As in [Tat08], we can construct a smooth function c(s) from the sequence
(cj) such that c(s) \in (cj ,2cj) for each s \in (2j ,2j+1) and | c\prime (s)| \leq \delta s - 1c(s). Since (cj)
is a positive sequence which converges to zero, it has a positive maximum, say cN .
Then, we observe that

c\lesssim cN \leq c(2N + 2N - 1) =

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\int \infty 

2N+2N - 1

c\prime (s)ds

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\lesssim 

\infty 
\int 

1

c(s)

s
ds

and

\infty 
\int 

1

c(s)

s
ds\leq 

\infty 
\sum 

j=0

2j+1
\int 

2j

2cj
2j

ds= 2
\infty 
\sum 

j=0

cj \lesssim c.

That is,

\infty 
\int 

1

c(s)

s
ds\approx c.
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LOCAL ENERGY DECAY FOR DAMPED WAVES 5107

Now, set

f(r) = exp

\left( 

 \sigma 

r
\int 

1

c(s)

s
ds

\right) 

 .

From our prior estimate, it is immediate that

f(r)\approx e\sigma c \approx \sigma 1

for r >R0 and

f \prime (r) = \sigma 
c(r)

r
f(r)\approx \sigma cj2

 - jf(r)

for r\approx 2j .

Now, we complete steps 1(b) and 1(c).

Lemma 2.16 (nontrapped escape function construction). Let R \geq R0. Then,
there exist q\pm \in C\infty (T \ast 

\BbbR 
3 \setminus o) and W\pm \subset \Omega \pm 

\infty so that V \pm 
R \cup W\pm = T \ast 

\BbbR 
3 \setminus o and

Hp\pm q\pm \gtrsim cj2
 - j

1W\pm , | x| \approx 2j .

Further, q\pm = \varepsilon q\pm in + q\pm out, where q
\pm 
in = \~q\pm in \circ \Phi \pm with \~q\pm in \in C\infty (T \ast 

\BbbR 
3 \setminus o) is supported

in \{ | x| \leq 4R\} , q\pm out \in S
0
\mathrm{h}\mathrm{o}\mathrm{m}(T

\ast 
\BbbR 

3 \setminus o), and \varepsilon > 0 is sufficiently small.

The inclusion of the sequence (cj) is necessitated by the prior proposition, which
is used for bootstrapping purposes in the exterior region. Its slowly varying nature
allows one to work in the weight \langle x\rangle  - 2

from the powers | x| \approx 2 - j which will arise in
the exterior (there is no trouble working in the weight \langle x\rangle  - 2

in the interior region by
compactness).

Proof. Recall from Proposition 2.8 that | \xi | \approx | b\pm (x, \xi )| on T \ast 
\BbbR 

3\setminus o; let c\pm ,C\pm > 0
denote the respective lower and upper bound implicit constants in the inequalities and
take \delta \pm such that c\pm  - \delta \pm > 0. Now, choose \psi \pm \in C\infty 

c (T \ast 
\BbbR 

3 \setminus o) such that

supp\psi \pm \subset \Omega \pm 
\infty \cap \{ | x| \leq R\} \cap \{ c\pm  - \delta \pm < | \xi | <C\pm + 1\} ,

\psi \pm \equiv 1 on U\pm 
R :=

\bigl( 

\Omega \pm 
\infty \cap \{ | x| \leq R\} \cap \Phi \pm (T \ast 

\BbbR 
3 \setminus o)

\bigr) 

\setminus \.VR,

where R\geq R0. Now, we define the function

\~q\pm in(x, \xi ) = - \chi <2R(| x| )

\int \infty 

0

\psi \pm \circ \varphi \pm 
s (x, \xi )ds, (x, \xi )\in T \ast 

\BbbR 
3 \setminus o.

Since nontrapped null bicharacteristic rays must exit any compact set after a finite
amount of time, this integral is well-defined for each (x, \xi )\in T \ast 

\BbbR 
3\setminus o, which establishes

\~q\pm in as a well-defined function. It takes more work to show that \~q\pm in is smooth. Similar
to [BR14], we will begin by establishing a maximal amount of time that bicharacter-
istic rays can remain in the support of the integrand. We already know that supp\psi \pm 

is compact. Let V \pm be an open neighborhood of supp\psi \pm such that V \pm \subset \Omega \pm 
\infty . Take

V \pm =K in Proposition 2.11(c), and let T \prime be as given in the proposition. We claim
that every point w\pm \in T \ast 

\BbbR 
3 \setminus o has a neighborhood Uw\pm of w\pm and a time sw\pm \geq 0

such that (\psi \pm \circ \varphi \pm 
s )(z) = 0 for every z \in Uw\pm and s \in \BbbR + \setminus [sw\pm , sw\pm + T \prime ]. That

is, all bicharacteristics (with speed \approx 1) can spend no more than time T \prime within
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5108 COLLIN KOFROTH

supp\psi \pm . The time sw\pm bears no similarity to the variable of the same name in the
proof of Proposition 2.13. As a direct consequence of Proposition 2.11, we may take
Uw\pm = V \pm and sw\pm = 0 whenever w\pm \in supp\psi \pm \subset V \pm . If

w\pm /\in 
\bigcup 

s\in \BbbR 

\varphi \pm 
 - s

\bigl( 

supp\psi \pm 
\bigr) 

=:\scrX \pm ,

then the fact that \scrX \pm is closed provides an open neighborhood Uw\pm of w\pm such that
\scrX \pm \cap Uw\pm = \emptyset . For each z \in Uw\pm , we have that \varphi \pm 

s (z) /\in supp\psi \pm for all s \in \BbbR , i.e.,
(\psi \pm \circ \varphi \pm 

s )(z) = 0 for s \in \BbbR . Hence, this case holds with Uw\pm as defined and sw\pm = 0.
Finally, let w\pm \in \scrX \pm \setminus supp\psi \pm . Then, \varphi \pm 

s
\prime (w

\pm ) \in supp\psi \pm for some s\prime \in \BbbR \setminus \{ 0\} . If

s\prime > 0, then we can combine this with the fact that \varphi \pm 
0 (w) /\in supp\psi \pm and the continuity

of the flow to obtain sw\pm > 0 such that \varphi \pm 
sw\pm 

(w) \in V \pm and \varphi \pm 
s (w) /\in supp\psi \pm for all

s \in [0, sw\pm ]. By continuity of the flow in the data, we can extend the above to a
neighborhood Uw\pm . That is, there exists a neighborhood Uw\pm of w\pm so that for all
z \in Uw\pm , we have that \varphi \pm 

sw\pm 
(z) \in V \pm and (\psi \pm \circ \varphi \pm 

s )(z) = 0 for all s \in [0, sw\pm ].

Applying Proposition 2.11 to K = V \pm implies that (\psi \pm \circ \varphi \pm 
s )(z) = 0 for all z \in Uw\pm 

and s\in [0, sw\pm ]\cup [sw\pm +T \prime ,\infty ). It remains to consider if we cannot assume that s\prime > 0.
In this case,

w\pm /\in 
\bigcup 

s\in \BbbR +

\varphi \pm 
 - s(supp\psi 

\pm ) =:\scrX \pm 
 - .

Note that \scrX \pm 
 - is closed by the same logic which showed that \scrX \pm is closed (see the

proof in Proposition 2.11(c)). From here, one can simply proceed as in the case where
w\pm /\in \scrX \pm .

Using this result, we know that the integral present in \~q\pm in is always over an interval
of maximal length T \prime . Hence, differentiation under the integral sign is nonproblematic,
and in view of the regularity of the flow map, we conclude that \~q\pm in \in C\infty (T \ast 

\BbbR 
3 \setminus o).

Additionally, it is supported in \{ | x| \leq 4R\} . In particular, it is smooth and bounded
in all derivatives on the compact set

\{ | x| \leq 4R\} \cap \Phi \pm (T \ast 
\BbbR 

3 \setminus o).

Now, consider the smooth function

q\pm in = \~q\pm in \circ \Phi \pm 

defined on T \ast 
\BbbR 

3 \setminus o. As in the proof of Lemma 2.13, we get that

Hp\pm q\pm in
\bigm| 

\bigm| 

(x,\xi )
=Hp\pm \~q\pm in

\bigm| 

\bigm| 

\Phi \pm (x,\xi )
.

Now, we calculate that

Hp\pm \~q\pm in
\bigm| 

\bigm| 

\Phi \pm (x,\xi )
= \chi <2R(| x| )\psi 

\pm 

\biggl( 

x,
\xi 

| b\pm (x, \xi )| 

\biggr) 

+
1

2R
b\pm \xi k

\biggl( 

x,
\xi 

| b\pm (x, \xi )| 

\biggr) 

xk
| x| 
\chi \prime 

\biggl( 

| x| 

2R

\biggr) 

\infty 
\int 

0

\psi \pm \circ \varphi \pm 
s

\biggl( 

x,
\xi 

| b\pm (x, \xi )| 

\biggr) 

ds.

The first term is nonnegative, supported in \Omega \pm 
\infty \cap \{ | x| \leq R\} , and equal to 1 on U\pm :=

\Phi  - 1( \.U\pm 
R ). The second term is an error term which is supported in \{ 2R\leq | x| \leq 4R\} .
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LOCAL ENERGY DECAY FOR DAMPED WAVES 5109

The primary purpose of the exterior multiplier is to absorb this error term. To that
end, let

q\pm out = - \chi >R(| x| )f(| x| )b
\pm 
\xi k

xk
| x| 
,

where f is the function constructed in Proposition 2.14. It is easy to see that q\pm out \in 
S0
\mathrm{h}\mathrm{o}\mathrm{m}(T

\ast 
\BbbR 

3\setminus o), as it is smooth, bounded in all x derivatives due to asymptotic flatness,
and homogeneous of degree 0, and it satisfies the appropriate symbol estimate. One
can readily compute that

Hp\pm q\pm out = b\pm \xi k
xk
| x| 
\chi >R(| x| )f

\prime (| x| )b\pm \xi j
xj
| x| 

+ b\pm \xi k

\biggl( 

\delta jk  - 
xjxk
| x| 2

\biggr) 

\chi >R(| x| )
f(| x| )

| x| 

\biggl( 

\delta jl  - 
xjxl
| x| 2

\biggr) 

b\pm \xi l

+R - 1\chi \prime 

\biggl( 

| x| 

R

\biggr) 

b\pm \xi k
xk
| x| 
f(| x| )b\pm \xi j

xj
| x| 

+\scrO (\langle x\rangle | \partial g| )\chi >R(| x| )| x| 
 - 1.

We remark that the last term is small for | x| > R by asymptotic flatness (and
it is localized to this region due to the cutoff), while the remaining terms are all
nonnegative. The third term is nonnegative and supported in the annulus \{ R\leq | x| \leq 
2R\} due to the support of \chi \prime . Making \sigma large enough and using asymptotic flatness
provides that, for any | x| \approx 2j ,

Hp\pm q\pm out >
\sigma 

2
cj2

 - jf(| x| )\chi >R(| x| )
| x \cdot \nabla \xi b

\pm | 2

| x| 2
+ \chi >R(| x| )

f(| x| )

| x| 

\biggl( 

| \nabla \xi b
\pm | 2  - 

| x \cdot \nabla \xi b
\pm | 2

| x| 2

\biggr) 

\gtrsim cj2
 - j\chi >R(| x| )| \nabla \xi b

\pm | 2

\gtrsim cj2
 - j\chi >R(| x| ).

Thus, Hp\pm q\pm out is nonnegative, is strictly positive for | x| >R, and

Hp\pm q\pm out \gtrsim cj2
 - j\chi >R, | x| \approx 2j .

Recall that the error term in Hp\pm q\pm in is bounded and supported in \{ 2R \leq | x| \leq 4R\} ,
and Hp\pm q\pm out is strictly positive on the support of this error (with a uniform bound
from below on this set).

Define

q\pm = \varepsilon q\pm in + q\pm out \in C
\infty (T \ast 

\BbbR 
3 \setminus o),

where 0< \varepsilon \ll 1. By choosing \varepsilon sufficiently small, we may absorb the aforementioned
error due to our prior discussion, obtaining that Hp\pm q\pm is nonnegative everywhere
and positive on

W\pm :=U\pm \cup \{ (x, \xi )\in T \ast 
\BbbR 

3 \setminus o : | x| >R\} .

By Proposition 2.11(a),

V \pm 
R \cup U\pm = V \pm 

R \cup 
\bigl( 

(\Omega \pm 
\infty \cap \{ | x| \leq R\} ) \setminus V \pm 

R

\bigr) 

\supset 
\bigl( 

\Omega \pm 
R \cup \Omega \infty 

\bigr) 

\cap \{ | x| \leq R\} 

=
\bigl( 

T \ast 
\BbbR 

3 \setminus o
\bigr) 

\cap \{ | x| \leq R\} ,
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5110 COLLIN KOFROTH

and so

V \pm 
R \cup U\pm =

\bigl( 

T \ast 
\BbbR 

3 \setminus o
\bigr) 

\cap \{ | x| \leq R\} ,

V \pm 
R \cup W\pm = T \ast 

\BbbR 
3 \setminus o.

We have already shown that

Hp\pm q\pm \approx 1, (x, \xi )\in U\pm ,

and

Hp\pm q\pm \gtrsim cj2
 - j\chi >R, | x| \approx 2j .

The latter estimate readily extends to

Hp\pm q\pm \gtrsim cj2
 - j

1W\pm , | x| \approx 2j ,

by the compactness of the interior region \{ | x| \leq R\} .

Now, we combine on the light cones to get our desired symbol q, as well as obtain
positivity on the elliptic set (step 2). This largely follows the steps present in [MST20],
although we have additional technicalities resulting from the damping.

Proof of Lemma 2.4. Let q\pm 1 denote the symbol q\pm constructed in Lemma 2.13
(not the symbol q\pm 1 from the same lemma) and q\pm 2 denote the symbol q\pm constructed
in Lemma 2.16. We remark that, as a consequence of the chain rule, both symbols
satisfy the standard S0 bounds for | \xi | \geq 1. First, we truncate to the high frequency
regime via the symbols

q\pm j,>\lambda = e - \sigma q\pm j \chi >\lambda (| b
\pm | ), j = 1,2,

where \sigma is the parameter in Proposition 2.14. We assume that \lambda > 1. The exponen-
tiation is implemented for bootstrapping: taking derivatives of the exponential will
provide multiplication by \sigma \gg 1. Since | b\pm | \approx | \xi | , these cutoffs genuinely truncate to
high frequencies when \lambda is large. Further, the truncation to | \xi | \gtrsim 1 eliminates the
singularities of q\pm j , i.e., q

\pm 
j \chi >\lambda (| b

\pm | ) smoothly extends to an element of S0(T \ast 
\BbbR 

3).

We claim that exponentiation preserves the symbol class, so that q\pm j,>\lambda \in 

S0(T \ast 
\BbbR 

3). We can immediately see that q\pm j,>\lambda is smooth. Note that for | \xi | \geq \lambda ,

the exponentials e - \sigma q\pm j are bounded since q\pm j are bounded, and for | \xi | < \lambda , we im-

mediately have that q\pm j,>\lambda \equiv 0. When checking the symbolic nature of q\pm j,>\lambda , we only

need to study the boundedness of the \xi derivatives since our symbols q\pm j are bounded
in all derivatives in x. Taking a partial derivative in \xi provides that

\partial \xi kq
\pm 
j,>\lambda = - \sigma (\partial \xi kq

\pm 
j )q

\pm 
j,>\lambda \mp 

e - \sigma q\pm j

\lambda 
(\partial \xi kb

\pm )\chi \prime 

\biggl( 

| b\pm | 

\lambda 

\biggr) 

.

The first term is \scrO (\langle \xi \rangle  - 1
), and the second term is compactly supported in \xi . Due to

the aforementioned compact support, we only need consider further \xi differentiation of
\sigma (\partial \xi kq

\pm 
j )q

\pm 
j,>\lambda . If the \xi derivative lands on the exponential, then the result is \scrO (\langle \xi \rangle  - 2

)

by the prior argument. If the derivative lands on \partial \xi q
\pm 
j , then the same asymptotics

hold since \partial \xi q
\pm 
j \in S - 1(T \ast 

\BbbR 
3). If the derivative lands on the cutoff, then the result is

compactly supported in \xi . Inducting establishes that q\pm j,>\lambda \in S0(T \ast 
\BbbR 

3).
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LOCAL ENERGY DECAY FOR DAMPED WAVES 5111

Now, we combine the symbols constructed on each light cone together as

q(\tau ,x, \xi ) = (\tau  - b+)(q - 1,>\lambda + q - 2,>\lambda ) + (\tau  - b - )(q+1,>\lambda + q+2,>\lambda ).

Calling

qj = (\tau  - b+)q - j,>\lambda + (\tau  - b - )q+j,>\lambda ,

we can see that

(Hpq+ 2\gamma \tau aq)
\bigm| 

\bigm| 

\tau =b\pm 
= (Hpq1 + 2\gamma \tau aq1)

\bigm| 

\bigm| 

\tau =b\pm 
+ (Hpq2 + 2\gamma \tau aq2)

\bigm| 

\bigm| 

\tau =b\pm 

=Hpq1
\bigm| 

\bigm| 

\tau =b\pm 
\pm 2\gamma b\pm (b+  - b - )aq\pm 1,>\lambda 

+Hpq2
\bigm| 

\bigm| 

\tau =b\pm 
\pm 2\gamma b\pm (b+  - b - )aq\pm 2,>\lambda .

We will work with each term in the last equality separately. First, we compute that

Hpqj
\bigm| 

\bigm| 

\tau =b\pm 
= - (b+  - b - )2Hp\pm q\pm j,>\lambda 

 - (b\pm  - b\mp )q\pm j,>\lambda (b
\pm 
\xi j
b\mp xj

 - b\pm xj
b\mp \xi j )

= \sigma (b+  - b - )2q\pm j,>\lambda Hp\pm q\pm j

 - (b\pm  - b\mp )q\pm j,>\lambda (b
\pm 
\xi j
b\mp xj

 - b\pm xj
b\mp \xi j ).

By making \sigma sufficiently large, we get that

Hpqj
\bigm| 

\bigm| 

\tau =b\pm 
\geq 

1

2
\sigma (b+  - b - )2q\pm j,>\lambda Hp\pm q\pm j +E\pm 

j ,

where E\pm 
j are error terms which are supported in a neighborhood of the region where

Hp\pm q\pm j = 0. These terms are nonproblematic, as they are readily absorbed into the
above estimate with differing j when we combine the estimates together. Hence, we
will drop the E\pm 

j 's for ease of notation.
Observe that

b\pm 

b\pm  - b\mp 
\approx 1.

By choosing \gamma large enough, we may apply Lemma 2.13 to obtain that

(Hpq1 + 2\gamma \tau aq1)
\bigm| 

\bigm| 

\tau =b\pm 
\geq 

1

2
\sigma (b+  - b - )2q\pm 1,>\lambda Hp\pm q\pm 1 \pm 2\gamma b\pm (b+  - b - )aq\pm 1,>\lambda (2.5)

=
1

2
\sigma (b+  - b - )2q\pm 1,>\lambda 

\biggl( 

Hp\pm q\pm 1 +

\biggl( 

4\gamma 

\sigma 

\biggr) 

b\pm 

b\pm  - b\mp 
a

\biggr) 

\gtrsim | \xi | 2q\pm 1,>\lambda 

\Bigl( 

Hp\pm q\pm 1 +
\gamma 

\sigma 
a
\Bigr) 

\gtrsim 1| \xi | \geq \lambda 1V \pm 
R
| \xi | 2.

Notice that \gamma depends on c (and \sigma ). For the j = 2 term, we use the prior computation,
the fact that the damping term has positive sign, and Lemma 2.16:

(Hpq2 + 2\gamma \tau aq2)
\bigm| 

\bigm| 

\tau =b\pm 
\geq 

1

2
\sigma (b+  - b - )2q\pm 2,>\lambda Hp\pm q\pm 2 \pm 2\gamma b\pm (b+  - b - )aq\pm 2,>\lambda (2.6)

\gtrsim 1| \xi | \geq \lambda 1W\pm cj2
 - j | \xi | 2, | x| \approx 2j .
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5112 COLLIN KOFROTH

Recall that V \pm 
R \cup W\pm = T \ast 

\BbbR 
3 \setminus o. Combining (2.5) and (2.6) together, we conclude

that

(Hpq+ 2\gamma \tau aq)
\bigm| 

\bigm| 

\tau =b\pm 
\gtrsim 1| \xi | \geq \lambda \langle x\rangle 

 - 2| \xi | 2,

where we have used the slowly varying, summable nature of (cj).
This provides the desired bound over the characteristic set. To extend it to all of

phase space, we must construct a lower-order correction term. Explicitly, we seek an
m\in S0 so that

Hpq+ 2\gamma \tau aq+mp\gtrsim 1| \xi | \geq \lambda \langle x\rangle 
 - 2 | \xi | 2.

If we write

Hpq+ 2\gamma a\tau q= a0\tau 
2 + a1\tau + a2,

where aj \in S
j , then we have already established that

a0(x, \xi )(b
\pm (x, \xi ))2 + a1(x, \xi )b

\pm (x, \xi ) + a2(x, \xi )\gtrsim 1| \xi | \geq \lambda \langle x\rangle 
 - 2 | \xi | 2.(2.7)

So, we must analyze the quantity

a0\tau 
2 + a1\tau + a2 + pm= (a0  - m)\tau 2 + (a1 + (b+ + b - )m)\tau + (a2  - b+b - m).

If we choose m so that

a0  - m> 0, | \xi | \geq \lambda (2.8)

and

(a1 + (b+ + b - )m)2  - 4(a0  - m)(a2  - b+b - m)< 0, | \xi | \geq \lambda ,(2.9)

then we will have that a0\tau 
2 + a1\tau + a2 +mp is positive for | \xi | \geq \lambda (the first condition

on m guarantees that this polynomial in \tau is concave up, and the second guarantees
that there are no real zeros).

Let us begin by focusing on (2.9). The function

P (m) = (a1 + (b+ + b - )m)2  - 4(a0  - m)(a2  - b+b - m)

= (b+  - b - )2m2 + (2a1(b
+ + b - ) + 4a0b

+b - + 4a2)m+ (a21  - 4a0a2)

is a quadratic polynomial in m with a positive coefficient on the quadratic term, so
it will achieve a minimal value at

m= - 
a1(b

+ + b - ) + 2(a0b
+b - + a2)

(b+  - b - )2
.

It is readily seen that m \in S0 and that m is supported where | \xi | \geq \lambda . This
minimal value is

P (m) =

\biggl( 

a1  - (b+  - b - )
a1(b

+ + b - ) + 2(a0b
+b - + a2)

(b+  - b - )2

\biggr) 2

 - 4

\biggl( 

a0 +
a1(b

+ + b - ) + 2(a0b
+b - + a2)

(b+  - b - )2

\biggr) 

\times 

\biggl( 

a2 + b+b - 
a1(b

+ + b - ) + 2(a0b
+b - + a2)

(b+  - b - )2

\biggr) 

= - 4
(a0(b

+)2 + a1b
+ + a2)(a0(b

 - )2 + a1b
 - + a2)

(b+  - b - )2

= - 4(b+  - b - ) - 2
\bigl( 

(Hpq+ 2\gamma \tau aq)
\bigm| 

\bigm| 

\tau =b+

\bigr) \bigl( 

Hpq+ 2\gamma \tau aq)
\bigm| 

\bigm| 

\tau =b - 

\bigr) 

< 0,
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LOCAL ENERGY DECAY FOR DAMPED WAVES 5113

where we have used (2.7). So, (2.9) is satisfied. To establish (2.8), one can readily
check that

a0  - m= a0 +
a1(b

+ + b - ) + 2(a0b
+b - + a2)

(b+  - b - )2

= (b+  - b - ) - 2
\bigl( 

(Hpq+ 2\gamma \tau aq)
\bigm| 

\bigm| 

\tau =b+
+ (Hpq+ 2\gamma \tau aq)

\bigm| 

\bigm| 

\tau =b - 

\bigr) 

> 0

for | \xi | \geq \lambda .

This gives us that

Hpq+ 2\gamma \tau aq+mp> 0

for | \xi | \geq \lambda . In fact, we can check that the minimal value of the above in \tau for | \xi | \geq \lambda 
is

(a0(b
+)2 + a1b

+ + a2)(a0(b
+)2 + a1b

+ + a2)

(a0(b+)2 + a1b+ + a2) + (a0(b - )2 + a1b - + a2)

=

\bigl( 

(Hpq+ 2\gamma \tau aq)
\bigm| 

\bigm| 

\tau =b+

\bigr) \bigl( 

Hpq+ 2\gamma \tau aq)
\bigm| 

\bigm| 

\tau =b - 

\bigr) 

(Hpq+ 2\gamma \tau aq)
\bigm| 

\bigm| 

\tau =b+
+ (Hpq+ 2\gamma \tau aq)

\bigm| 

\bigm| 

\tau =b - 

.

The numerator is bounded below by \langle x\rangle  - 4 | \xi | 4. In view of the support and symbolic
properties of q, the denominator satisfies the bounds

(Hpq+ 2\gamma \tau aq)
\bigm| 

\bigm| 

\tau =b+
+ (Hpq+ 2\gamma \tau aq)

\bigm| 

\bigm| 

\tau =b - 
\approx \langle x\rangle  - 2 | \xi | 2.

Since | b\pm (x, \xi )| \approx | \xi | and | \tau | = | b\pm (x, \xi )| in the above, we conclude the desired result.

2.5. Starting energy estimates and case reductions. In this section, we
will establish various useful energy estimates, then reduce the proof of Theorem 1.7
to a simpler problem. Our starting point is a standard uniform energy inequality.

Proposition 2.17. Let P be a stationary damped wave operator, \partial t be uniformly
time-like, and T > 0. Then, we have the estimate

\| \partial u(t)\| 2L2 \lesssim \| \partial u(0)\| 2L2 +

\int T

0

\int 

\BbbR 3

| Pu \partial tu| dxdt, 0\leq t\leq T,(2.10)

for all u\in \scrW T .

Proof. Call Pu= f , and define the energy functional

E[u](t) =

\int 

\BbbR 3

Dig
ijDjuu - g00| \partial tu| 

2 dx.

After integrating the first term by parts, this functional is readily seen to be coercive
due to the uniformly time-like nature of \partial t, i.e.,

E[u](t)\approx \| \partial u(t)\| 2L2 .
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5114 COLLIN KOFROTH

Differentiating in t and integrating by parts, gives that

d

dt
E[u](t) = - 

\int 

\BbbR 3

g00(\partial 2t u\partial t\=u+ \partial tu\partial 
2
t \=u)dx+

\int 

\BbbR 3

Dig
ijDj\partial tu\=u+Dig

ijDju\partial t\=udx

=

\int 

\BbbR 3

(g00D2
t +Dig

ijDj)u\partial t\=u+ \partial tu(g00D2
t +DigijDj)udx

=

\int 

\BbbR 3

\bigl( 

 - (g0jDjDt +Djg
0jDt + iaDt)u+ f

\bigr) 

\partial t\=u

+ \partial tu( - (g0jDjDt +Djg0jDt + iaDt)u+ f)dx

= 2Re

\int 

\BbbR 3

\=f\partial tudx - 2

\int 

\BbbR 3

a| \partial tu| 
2 dx.

Dropping the damping term and integrating the resulting estimate in time yields
the inequality

E[u](t)\lesssim E[u](0) +

T
\int 

0

\int 

\BbbR 3

| f\partial tu| dxdt, 0\leq t\leq T.

Applying the coercivity allows us to conclude.

Remark 2.18. Note that when Pu= 0, we have the energy dissipation statement

d

dt
E[u](t) = - 2

\int 

\BbbR 3

a| \partial tu| 
2 dx\leq 0.

Applying the Schwarz inequality to Proposition 2.17 provides us with estimates
which will prove useful throughout this work.

Corollary 2.19. Under the same assumptions as Proposition 2.17, the uniform
energy estimates

\| \partial u\| L\infty 
t L2

x
\lesssim \| \partial u(0)\| L2 + \| Pu\| L1

tL
2
x
,

\| \partial u\| L\infty 
t L2

x
\lesssim \| \partial u(0)\| L2 + \| Pu\| 

1/2
LE\ast \| u\| 

1/2
LE1 ,

and

\| \partial u\| L\infty 
t L2

x
\lesssim \| \partial u(0)\| L2 + \varepsilon  - 1 \| Pu\| LE\ast +L1

tL
2
x
+ \varepsilon \| u\| LE1 \forall \varepsilon > 0

hold.

Proof. By Proposition 2.17, we have the estimate

\| \partial u(t)\| 2L2 \lesssim \| \partial u(0)\| 2L2 +

\int T

0

\int 

\BbbR 3

| Pu\partial tu| dxdt, 0\leq t\leq T.

To obtain the first estimate that we claimed, one applies the Schwarz inequality, takes
a supremum in time of \partial tu, and uses Young's inequality for products. To obtain the
second estimate, write

| Pu \partial tu| =
\Bigl( 

\langle x\rangle 1/2 | Pu| 
\Bigr) \Bigl( 

\langle x\rangle  - 1/2 | \partial tu| 
\Bigr) 
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LOCAL ENERGY DECAY FOR DAMPED WAVES 5115

in (2.10) and apply the Schwarz inequality and H\"older's inequality applied to \ell 1 with
conjugate exponents (p, q) = (1,\infty ).

Next, we cite an exterior estimate from [MST20] (see [MMT08] for a similar
result for the Schr\"odinger equation). Outside of a large enough compact spatial set,
the operator P is a small AF perturbation of 2, in which case we obtain good energy
estimates with a necessary truncation error (here, we must measure the energy at
time T , which is nonproblematic in view of Corollary 2.19).

Proposition 2.20 (Proposition 3.2 in [MST20]). If P is asymptotically flat and
R\geq R0, then

\| u\| LE1
>R

\lesssim \| \partial u(0)\| L2
>R

+ \| \partial u(T )\| L2
>R

+R - 1 \| u\| LER
+ \| Pu\| LE\ast 

>R
.(2.11)

Since the damping is identically zero in this region, the result holds without
any modification to the proof given in [MST20]. For this reason, we will omit the
details here, although we will provide the overarching idea: Their proof is a positive
commutator argument using the multiplier Q1 +Q2, where

Q1 = \chi >2R(| x| )f(| x| )
xj
| x| 
gjkDk +Dk\chi >2R(| x| )f(| x| )

xj
| x| 
gjk

is the principal term, and

Q2 = \chi >2R(| x| )f
\prime (| x| )

is the lower-order correction term. Here, f(| x| ) = | x| 
| x| +2j , and j is chosen so that

2j \geq R.
Before moving on to proving Theorem 1.7, we will simplify its proof through

case reductions. As in section 4 of [MST20], one can readily reduce to the case of
u having zero Cauchy data at times 0 and T , as well as f \in LE\ast 

c . To do this, one
constructs an approximate solution to a problem with the same data and forcing
with a wave operator which is a small AF perturbation of 2 and agrees with P
for | x| > R0, then considers approximations using a unit time interval partition of
unity and matching the initial (respectively, final time) Cauchy data on the first
(respectively, last) solution granted by the partition. In view of these reductions, it
is enough to establish

(2.12) \| u\| LE1[0,T ] \lesssim 
\bigm\| 

\bigm\| 

\bigm\| 
\langle x\rangle  - 2

u
\bigm\| 

\bigm\| 

\bigm\| 

LE[0,T ]
+ \| Pu\| LE\ast 

c [0,T ]

for all u \in \scrW T satisfying that u[0] = u[T ] = 0 in order to prove Theorem 1.7. The
implicit constant in (2.12) is still independent of T .

We will explicitly establish an additional reduction, namely to solutions with
compact spatial support, using Proposition 2.20.

Claim. It suffices to prove (2.12), and hence Theorem 1.7, for u supported in \{ | x| \leq 
2R0\} .

Proof. Write u= \chi <R0
u+\chi >R0

u. On the exterior piece \chi >R0
u, we apply Propo-

sition 2.20 and Corollary 2.19 to get that

\| \chi >R0
u\| LE1[0,T ] \lesssim R - 1

0 \| \chi >R0
u\| LER0

[0,T ] + \| P (\chi >R0
u)\| LE\ast 

>R0
[0,T ] .
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5116 COLLIN KOFROTH

The first term on the right is directly bounded by \| u\| LE1
R0

[0,T ] . For the second term,

we write

P (\chi >R0
u) = (\chi >R0

)Pu+ [P,\chi >R0
]u,

and one can calculate that

[P,\chi >R0
]u(t, x) =\scrO (R - 1

0 )\chi \prime 

\biggl( 

| x| 

R0

\biggr) 

\partial u(t, x) +\scrO (R - 2
0 )\chi \prime \prime 

\biggl( 

| x| 

R0

\biggr) 

u(t, x).

In LE\ast , this term bounded by \| u\| LE1
R0\leq | \cdot | \leq 2R0

[0,T ], and so we have

\| \chi >R0
u\| LE1[0,T ] \lesssim \| u\| LE1

R0
[0,T ] .

Suppose that (2.12) holds for \chi <R0
u. From this, we get the estimate

\| \chi <R0u\| LE1[0,T ] \lesssim 
\bigm\| 

\bigm\| 

\bigm\| \langle x\rangle 
 - 2
\chi <R0u

\bigm\| 

\bigm\| 

\bigm\| 

LE[0,T ]
+ \| Pu\| LE\ast 

c [0,T ] + \| [P,\chi <R0 ]u\| LE\ast 
c [0,T ] ,

and so

\| u\| LE1[0,T ] \leq \| \chi <R0u\| LE1[0,T ] + \| \chi >R0u\| LE1[0,T ]

\lesssim 
\bigm\| 

\bigm\| 

\bigm\| \langle x\rangle 
 - 2
u
\bigm\| 

\bigm\| 

\bigm\| 

LE[0,T ]
+ \| Pu\| LE\ast 

c [0,T ] + \| u\| LE1
R0\leq | \cdot | \leq 2R0

[0,T ] .

The last term is readily estimated via Proposition 2.20, which establishes (2.12).

We record the results of these case reductions in the following proposition.

Proposition 2.21. In order to establish Theorem 1.7, it is sufficient to prove
the estimate

\| v\| LE1[0,T ] \lesssim \| v\| L2
tL

2
x[0,T ] + \| Pv\| LE\ast [0,T ](2.13)

for v supported in \{ | x| \leq 2R0\} with v[0] = v[T ] = 0.

Again, this implicit constant is independent of T but will depend on R0. Using
the compact support of v to transition between the weighted and unweighted spaces
will inherently generate multiplication by powers of R0, but this does not matter since
the constant in the above may depend on such a parameter.

2.6. Proof of the high frequency estimate. Armed with the established case
reductions, we will proceed with a proof of Theorem 1.7. Recall that it is equivalent
to analyze the scaled problem.

Proof of Theorem 1.7. We will break this proof into a sequence of steps.
Step 1: Setting up the positive commutator and the frequency decomposition.

First, we remark that in view of Proposition 2.21, it will suffice to prove (2.13) for v
supported in \{ | x| < 2R0\} with v[0] = v[T ] = 0. We can extend v by zero to be defined
for t\in \BbbR and vanish for t /\in (0, T ). Then,

2Im

\biggl\langle 

Pv,

\biggl( 

q\mathrm{w}  - 
i

2
m\mathrm{w}

\biggr) 

v

\biggr\rangle 

+
i\gamma 

2
\langle [aDt,m

\mathrm{w}]v, v\rangle = \langle i[2g, q
\mathrm{w}]v, v\rangle 

+ \gamma \langle (q\mathrm{w}aDt + aDtq
\mathrm{w})v, v\rangle (2.14)

+
1

2
\langle (2gm

\mathrm{w} +m\mathrm{w}
2g)v, v\rangle .
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LOCAL ENERGY DECAY FOR DAMPED WAVES 5117

The right-hand side of (2.14) can be written as

\langle i[2g, q
\mathrm{w}]v, v\rangle + \gamma \langle (q\mathrm{w}aDt + aDtq

\mathrm{w})v, v\rangle +
1

2
\langle (2gm

\mathrm{w} +m\mathrm{w}
2g)v, v\rangle 

= \langle (Hpq+ 2\gamma \tau aq+mp)\mathrm{w}v, v\rangle + \langle A0v, v\rangle ,

where A0 \in \Psi 0. Recall that 2\gamma \tau a =  - 2isskew. By choosing \gamma > 0 large enough, we
can apply Lemma 2.4 to get

Hpq - 2isskewq+mp - C1| \xi | \geq \lambda \langle x\rangle 
 - 2(| \xi | 2 + \tau 2)\geq 0,(2.15)

where C > 0 is the implicit constant in Lemma 2.4. We can readily replace 1| \xi | \geq \lambda 

with \chi | \xi | >\lambda .
We will split v into frequency components via v= v>>\lambda + v<<\lambda , where

v>>\lambda = \chi | \xi | +| \tau | >\lambda (\partial )v,

v<<\lambda = \chi | \xi | +| \tau | <\lambda (\partial )v.

Since the desired estimate is a high frequency estimate, we will first analyze the high
frequency components of v.

Step 2a: High frequencies---applying the G\r arding inequality . By (2.15), we may
apply the sharp G\r arding inequality to obtain that

\langle (Hpq - 2isskewq+mp)\mathrm{w}v>>\lambda , v>>\lambda \rangle \gtrsim 
\Bigl\langle 

\bigl( 

\chi | \xi | >\lambda \langle x\rangle 
 - 2(| \xi | 2 + \tau 2)

\bigr) \mathrm{w}
v>>\lambda , v>>\lambda 

\Bigr\rangle 

 - \| v>>\lambda \| 
2

H
1/2
t,x

.

We remark that the implicit constant may be chosen independently of \lambda since there is a
\chi | \xi | >\lambda cutoff embedded into q andm, and hence differentiation occurring in asymptotic
expansion calculations possesses coefficients which either are independent of \lambda or
feature inverse powers of \lambda (one can also entirely ignore the potential \lambda dependence
and argue via Cauchy--Schwarz and Young's inequality for products, although this
introduces more parameters to track).

Since \chi | \xi | +| \tau | <\lambda \in S - \infty , it follows that

\langle (Hpq - 2isskewq+mp)\mathrm{w}v, v\rangle = \langle (Hpq - 2isskewq+mp)\mathrm{w}v>>\lambda , v>>\lambda \rangle + \langle S0v, v\rangle ,

where S0 \in \Psi  - \infty . In particular,

\langle (Hpq - 2isskewq+mp)\mathrm{w}v, v\rangle \gtrsim 
\Bigl\langle 

\bigl( 

\chi | \xi | >\lambda \langle x\rangle 
 - 2(| \xi | 2 + \tau 2)

\bigr) \mathrm{w}
v>>\lambda , v>>\lambda 

\Bigr\rangle 

(2.16)

 - \| v>>\lambda \| 
2

H
1/2
t,x

+ \langle S0v, v\rangle .

Using the pseudodifferential composition formula, we compute that

\bigl( 

\chi | \xi | >\lambda \langle x\rangle 
 - 2(| \xi | 2 + \tau 2)

\bigr) \mathrm{w}
= (\chi | \xi | >\lambda (Dx))

1/2D\alpha \langle x\rangle 
 - 2D\alpha (\chi | \xi | >\lambda (Dx))

1/2 +A1,

(2.17)

where A1 \in \Psi 1 arises from nonprincipal terms in the asymptotic expansion of the
Moyal product (and the expansion features terms that are either independent of \lambda or
involve inverse powers of \lambda ). Integrating by parts once gives that

\Bigl\langle 

\bigl( 

\chi | \xi | >\lambda \langle x\rangle 
 - 2(| \xi | 2 + \tau 2)

\bigr) \mathrm{w}
v>>\lambda , v>>\lambda 

\Bigr\rangle 

=
\bigm\| 

\bigm\| 

\bigm\| 
\langle x\rangle  - 1

\partial v>\lambda 

\bigm\| 

\bigm\| 

\bigm\| 

2

L2
tL

2
x

+ \langle A1v>>\lambda , v>>\lambda \rangle 

(2.18)

\gtrsim \| \partial v>\lambda \| 
2
LE<2R0

+ \langle A1v>>\lambda , v>>\lambda \rangle ,
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5118 COLLIN KOFROTH

where v>\lambda = \chi | \xi | >\lambda (Dx)v and A1 \in \Psi 1 is now a modification of the previous version
of the same variable in (2.17) (to be explained momentarily). One might expect the
term \partial ((\chi | \xi | >\lambda (Dx))

1/2)v>>\lambda ) to appear instead of \partial v>\lambda , but it is readily seen that

\bigl( 

\chi | \xi | >\lambda (| \xi | )
\bigr) 1/2

\chi | \xi | +| \tau | >\lambda (| (\tau , \xi )| )\approx \chi | \xi | >\lambda (| \xi | )\chi | \xi | +| \tau | >\lambda (| (\tau , \xi )| ) = \chi | \xi | >\lambda (| \xi | ).

In particular, the \tau has no effect on the resulting cutoff, and \chi ,\chi 1/2 are both smooth
and nondecreasing and have the same support properties (and differ only on a compact
set). The only effect in exchanging these terms is modifying A1 in order to account for
the error resulting from this switch (i.e. the difference between the cutoffs); hence, the
A1 in (2.18) is different than in (2.17). For this reason, none of our analysis changes
by working with v>\lambda , and we will stick with this for notational convenience.

After incorporating (2.18) into (2.16), we have that

\langle (Hpq - 2isskewaq+mp)\mathrm{w}v, v\rangle + \langle A0v, v\rangle \gtrsim \| \partial v>\lambda \| 
2
LE<2R0

 - \| v>>\lambda \| 
2

H
1/2
t,x

(2.19)

 - | \langle A1v>>\lambda , v>>\lambda \rangle |  - | \langle A0v, v\rangle |  - | \langle S0v, v\rangle | .

Step 2b: High frequencies---handling the error terms in (2.19). We will first an-
alyze the term \langle A1v>>\lambda , v>>\lambda \rangle . Since A1 \in \Psi 1, it is bounded from H1

t,x to L2
tL

2
x

(and the operator norm will yield no positive-power \lambda contributions due to the pre-
vious comment on the asymptotic expansion of the symbol). By using the Schwarz
inequality and this mapping property, we have that

| \langle A1v>>\lambda , v>>\lambda \rangle | \lesssim \| v>>\lambda \| H1
t,x

\| v>>\lambda \| L2
tL

2
x
.(2.20)

Using Plancherel's theorem in (t, x), the frequency localization, and the compact
support of v, we obtain the bounds

\| v>>\lambda \| H1
t,x

\lesssim 
\bigm\| 

\bigm\| \langle (\tau , \xi )\rangle \chi | \xi | +| \tau | >\lambda \^v
\bigm\| 

\bigm\| 

L2
\tau L

2
\xi 

\lesssim \| \langle (\tau , \xi )\rangle \^v\| L2
\tau L

2
\xi 
= \| v\| H1

t,x
\lesssim \| v\| LE1(2.21)

and

\| v>>\lambda \| L2
tL

2
x
\approx 
\bigm\| 

\bigm\| \chi | \xi | +| \tau | >\lambda \^v
\bigm\| 

\bigm\| 

L2
\tau L

2
\xi 

\lesssim 

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

| \tau | + | \xi | 

\lambda 
\chi | \xi | +| \tau | >\lambda \^v

\bigm\| 

\bigm\| 

\bigm\| 

\bigm\| 

L2
\tau L

2
\xi 

(2.22)

\lesssim \lambda  - 1 \| \partial v\| L2
tL

2
x
\lesssim \lambda  - 1 \| v\| LE1 .

Applying (2.21) and (2.22) to (2.20) yields that

| \langle A1v>>\lambda , v>>\lambda \rangle | \lesssim \lambda  - 1 \| v\| 2LE1 .

For the term \| v>>\lambda \| 
2

H
1/2
t,x

, note that

\| v>>\lambda \| 
2

H
1/2
t,x

\lesssim 
\bigm\| 

\bigm\| 

\bigm\| 
\langle (\tau , \xi )\rangle 1/2 \chi | \xi | +| \tau | >\lambda \^v

\bigm\| 

\bigm\| 

\bigm\| 

2

L2
\tau L

2
\xi 

=
\bigm\| 

\bigm\| 

\bigm\| \langle (\tau , \xi )\rangle 
 - 1/2 \langle (\tau , \xi )\rangle \chi | \xi | +| \tau | >\lambda \^v

\bigm\| 

\bigm\| 

\bigm\| 

2

L2
\tau L

2
\xi 

\lesssim \lambda  - 1
\bigm\| 

\bigm\| \langle (\tau , \xi )\rangle \chi | \xi | +| \tau | >\lambda \^v
\bigm\| 

\bigm\| 

2

L2
\tau L

2
\xi 

\lesssim \lambda  - 1 \| v\| 2LE1 .

For the \langle A0v, v\rangle term, we can use L2-boundedness and the compact support of v to
get

| \langle A0v, v\rangle | \leq \| A0v\| L2
tL

2
x
\| v\| L2

tL
2
x
\lesssim C(\lambda )\| v\| 2L2

tL
2
x
.(2.23)
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LOCAL ENERGY DECAY FOR DAMPED WAVES 5119

While this bound is \lambda -dependent, such terms appear on the upper bound side of the
desired inequality, and hence can depend on \lambda in an arbitrary manner (as opposed to
the LE1 terms, which need an inverse power of \lambda for bootstrapping). The meaning
of C(\lambda ) will change fluidly, just as one continuously re-notates a potentially changing
constant by C when calculating successive inequalities.

The smoothing term \langle S0v, v\rangle can be bounded in the same way as \langle A0v, v\rangle (in
particular, S0 \in \Psi 0). Thus, we have the lower bound

\langle (Hpq - 2isskewq+mp)\mathrm{w}v, v\rangle + \langle A0v, v\rangle \gtrsim \| \partial v>\lambda \| 
2
LE<2R0

 - C(\lambda )\| v\| 2L2
tL

2
x
 - \lambda  - 1\| v\| 2LE1.

(2.24)

Next, we look at the left-hand side of (2.14).
Step 3: Bounding the left-hand side of (2.14). Since [aDt,m

\mathrm{w}] \in \Psi 0, performing
the same work as in (2.23) provides that

\bigm| 

\bigm| 

\bigm| 

\bigm| 

i\gamma 

2
\langle [aDt,m

\mathrm{w}]v, v\rangle 

\bigm| 

\bigm| 

\bigm| 

\bigm| 

\lesssim C(\lambda )\| v\| 2L2
tL

2
x
.(2.25)

For the remaining term on the left-hand side of (2.14), we split v into high and low
frequency components once again to get that

2Im

\biggl\langle 

Pv,

\biggl( 

q\mathrm{w}  - 
i

2
m\mathrm{w}

\biggr) 

v

\biggr\rangle 

= 2Im

\biggl\langle 

Pv,

\biggl( 

q\mathrm{w}  - 
i

2
m\mathrm{w}

\biggr) 

v>>\lambda 

\biggr\rangle 

+ \langle S1v, v\rangle ,

where S1 \in \Psi  - \infty . We have already demonstrated how to bound smoothing operator
terms. For the other (primary) piece, we apply the Schwarz inequality, use the \Psi DO
mapping properties of q\mathrm{w} \in \Psi 1 and m\mathrm{w} \in \Psi 0, and leverage the compact support of v
(just as performed previously) to get

\bigm| 

\bigm| 

\bigm| 

\bigm| 

2Im

\biggl\langle 

Pv,

\biggl( 

q\mathrm{w}  - 
i

2
m\mathrm{w}

\biggr) 

v>>\lambda 

\biggr\rangle \bigm| 

\bigm| 

\bigm| 

\bigm| 

\lesssim C(\lambda )\| Pv\| L2
tL

2
x
\| v\| LE1 \lesssim C(\lambda )\| Pv\| LE\ast 

c
\| v\| LE1 .

(2.26)

Step 4: Combining the established bounds into a high frequency bound. Putting
(2.14), (2.24), (2.25), and (2.26) together, we obtain that

\| \partial v>\lambda \| LE<2R0
\lesssim C(\lambda )

\Bigl( 

\| Pv\| 
1/2
LE\ast \| v\| 

1/2
LE1 + \| v\| L2

tL
2
x

\Bigr) 

+ \lambda  - 1/2 \| v\| LE1 .

Completing the LE1
<2R0

norm on the left-hand side of the above,

\| v>\lambda \| LE1
<2R0

\lesssim C(\lambda )
\Bigl( 

\| Pv\| 
1/2
LE\ast \| v\| 

1/2
LE1 + \| v\| L2

tL
2
x

\Bigr) 

+ \lambda  - 1/2 \| v\| LE1 +
\bigm\| 

\bigm\| 

\bigm\| \langle x\rangle 
 - 1
v>\lambda 

\bigm\| 

\bigm\| 

\bigm\| 

LE
.

We note that

\bigm\| 

\bigm\| 

\bigm\| \langle x\rangle 
 - 1
v>\lambda 

\bigm\| 

\bigm\| 

\bigm\| 

LE
\lesssim \| v\| L2

tL
2
x
,

once again using Plancherel's theorem. Thus,

\| v>\lambda \| LE1
<2R0

\lesssim C(\lambda )
\Bigl( 

\| Pv\| 
1/2
LE\ast \| v\| 

1/2
LE1 + \| v\| L2

tL
2
x

\Bigr) 

+ \lambda  - 1/2 \| v\| LE1 .(2.27)

This establishes an estimate on the high frequencies. We must add in the lower
frequencies to the left-hand side. That is, we must add \| v<\lambda \| LE1

<2R0

to both sides of

(2.27).
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5120 COLLIN KOFROTH

Step 5a: Lower frequencies---further frequency splitting and bounding the low-low
term. First, we get the bound

\bigm\| 

\bigm\| 

\bigm\| \langle x\rangle 
 - 1
v<\lambda 

\bigm\| 

\bigm\| 

\bigm\| 

LE
\lesssim \| v\| L2

tL
2
x

via Plancherel's theorem. For the term \| \partial v<\lambda \| LE , we write

v<\lambda = v<>\sigma \lambda + v<<\sigma \lambda ,

where

v<>\sigma \lambda = \chi | \xi | <\lambda (Dx)\chi | \tau | >\sigma \lambda (Dt)v,

v<<\sigma \lambda = \chi | \xi | <\lambda (Dx)\chi | \tau | <\sigma \lambda (Dt)v,

and \sigma \gg 1 will be chosen later (and does not denote the same \sigma as used in the construc-
tion of the escape function). Applying Plancherel's theorem, frequency localization,
and the compact support of v again yields

\| \partial v<<\sigma \lambda \| LE \lesssim 
\bigm\| 

\bigm\| (| \tau | + | \xi | )\chi | \xi | <\lambda \chi | \tau | <\sigma \lambda \^v
\bigm\| 

\bigm\| 

L2
\tau L

2
\xi 

\lesssim \sigma \lambda \| v\| L2
tL

2
x
.

Step 5b: Lower frequencies---bounding the low-high term. For v<>\sigma \lambda , we compute
that

\| \partial v<>\sigma \lambda \| LE \lesssim 
\bigm\| 

\bigm\| (| \tau | +| \xi | )\chi | \xi | <\lambda \chi | \tau | >\sigma \lambda \^v
\bigm\| 

\bigm\| 

L2
\tau L

2
\xi 

\lesssim \lambda \| v\| L2
tL

2
x
+(\sigma \lambda ) - 1

\bigm\| 

\bigm\| (\partial 2t v)<>\sigma \lambda 

\bigm\| 

\bigm\| 

L2
tL

2
x
.

(2.28)

For the last term on the right, we utilize the expression for Pv to write
\bigm\| 

\bigm\| (\partial 2t v)<>\sigma \lambda 

\bigm\| 

\bigm\| 

L2
tL

2
x
\lesssim \| (Pv)<>\sigma \lambda \| L2

tL
2
x
+
\bigm\| 

\bigm\| 

\bigm\| 

\bigl( 

(g0jDj +Djg
0j)Dtv

\bigr) 

<>\sigma \lambda 

\bigm\| 

\bigm\| 

\bigm\| 

L2
tL

2
x

(2.29)

+
\bigm\| 

\bigm\| (Dig
ijDjv)<>\sigma \lambda 

\bigm\| 

\bigm\| 

L2
tL

2
x
+ \| (aDtv)<>\sigma \lambda \| L2

tL
2
x
.

One can readily check that

\| (Pv)<>\sigma \lambda \| L2
tL

2
x
\lesssim \| Pv\| LE\ast (2.30)

and

\| (aDtv)<>\sigma \lambda \| L2
tL

2
x
\lesssim \| \partial v\| LE .(2.31)

For the other terms, we note that as functions, one has that g\alpha j ,Djg
\alpha j \in S0 for all

\alpha \in \{ 0,1,2,3\} and j \in \{ 1,2,3\} , and so

[\chi | \xi | <\lambda (Dx)\chi | \tau | >\sigma \lambda (Dt), g
\alpha j ]\in \Psi  - 1, [\chi | \xi | <\lambda (Dx)\chi | \tau | >\sigma \lambda (Dt),Djg

\alpha j ]\in \Psi  - 1.

In particular, the above two operators are bounded on L2
tL

2
x. Pairing this with the

fact that Fourier multipliers commute, we have that

\bigm\| 

\bigm\| 

\bigm\| 

\bigl( 

(g0jDj +Djg
0j)Dtv

\bigr) 

<>\sigma \lambda 

\bigm\| 

\bigm\| 

\bigm\| 

L2
tL

2
x

\lesssim 
\bigm\| 

\bigm\| (Djg
0j) (Dtv)<>\sigma \lambda 

\bigm\| 

\bigm\| 

L2
tL

2
x

(2.32)

+
\bigm\| 

\bigm\| g0j (DjDtv)<>\sigma \lambda 

\bigm\| 

\bigm\| 

L2
tL

2
x

+
\bigm\| 

\bigm\| [\chi | \xi | <\lambda (Dx)\chi | \tau | >\sigma \lambda (Dt), (Djg
0j)]Dtv

\bigm\| 

\bigm\| 

L2
tL

2
x

+
\bigm\| 

\bigm\| [\chi | \xi | <\lambda (Dx)\chi | \tau | >\sigma \lambda (Dt), g
0j ]DjDtv

\bigm\| 

\bigm\| 

L2
tL

2
x

\lesssim \lambda \| \partial v\| LE +C(\lambda )\| v\| L2
tL

2
x
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LOCAL ENERGY DECAY FOR DAMPED WAVES 5121

and

\bigm\| 

\bigm\| (Dig
ijDjv)<>\sigma \lambda 

\bigm\| 

\bigm\| 

L2
tL

2
x
\lesssim 
\bigm\| 

\bigm\| (Dig
ij)(Djv)<>\sigma \lambda 

\bigm\| 

\bigm\| 

L2
tL

2
x
+
\bigm\| 

\bigm\| gij(DiDjv)<>\sigma \lambda 

\bigm\| 

\bigm\| 

L2
tL

2
x

(2.33)

+
\bigm\| 

\bigm\| ([\chi | \xi | <\lambda (Dx)\chi | \tau | >\sigma \lambda (Dt), (Dig
ij)](Djv)<>\sigma \lambda 

\bigm\| 

\bigm\| 

L2
tL

2
x

+
\bigm\| 

\bigm\| ([\chi | \xi | <\lambda (Dx)\chi | \tau | \geq \sigma \lambda (Dt), g
ij ](DiDjv)<>\sigma \lambda 

\bigm\| 

\bigm\| 

L2
tL

2
x

\lesssim C(\lambda )\| v\| L2
tL

2
x
.

Applying (2.30)--(2.33) to (2.29) gives that

\bigm\| 

\bigm\| (\partial 2t v)<>\sigma \lambda 

\bigm\| 

\bigm\| 

L2
tL

2
x
\lesssim C(\lambda )\| v\| L2

tL
2
x
+ \lambda \| \partial v\| LE + \| Pv\| LE\ast .

Plugging the resulting estimate into (2.28) implies that

\| \partial v<>\sigma \lambda \| LE \lesssim C(\lambda )\| v\| L2
tL

2
x
+ (\sigma \lambda ) - 1 \| Pv\| LE\ast + \sigma  - 1 \| \partial v\| LE .

Step 5c: Lower-frequency---combining all lower frequency contributions. Thus,
the full low frequency contribution yields

\| \partial v<\lambda \| LE \lesssim max\{ C(\lambda ), \sigma \lambda \} \| v\| L2
tL

2
x
+ (\sigma \lambda ) - 1 \| Pv\| LE\ast + \sigma  - 1 \| \partial v\| LE(2.34)

\lesssim max\{ C(\lambda ), \sigma \lambda \} \| v\| L2
tL

2
x
+ (\sigma \lambda ) - 1 \| Pv\| LE\ast + \sigma  - 1 \| v\| LE1 .

Step 6: Combining the high and lower-frequency bounds . Now, we can combine
the high frequency work (2.27) with the low frequency work (2.34) and apply Young's
inequality for products with parameter \delta > 0 to obtain that

\| v\| LE1
<2R0

\lesssim C(\lambda )\| Pv\| 
1/2
LE\ast \| v\| 

1/2
LE1 +max\{ C(\lambda ), \sigma \lambda \} \| v\| L2

tL
2
x
+ (\sigma \lambda ) - 1 \| Pv\| LE\ast 

+
\Bigl( 

\sigma  - 1 + \lambda  - 1/2
\Bigr) 

\| v\| LE1

\lesssim max\{ C(\lambda ), \sigma \lambda \} \| v\| L2
tL

2
x
+
\bigl( 

[C(\lambda )]2\delta  - 1 + (\sigma \lambda ) - 1
\bigr) 

\| Pv\| LE\ast 

+
\Bigl( 

\delta + \sigma  - 1 + \lambda  - 1/2
\Bigr) 

\| v\| LE1 .

Due to the support of v in x, we know that \| v\| LE1
<2R0

= \| v\| LE1 . Picking \delta sufficiently

small and \lambda ,\sigma sufficiently large (all of which will depend on R0) allows us to absorb
the \| v\| LE1 term on the right-hand side into the left-hand side, providing (2.13) and
completing the proof.

3. Local energy decay. In this section, we explain how recovering the high
frequency estimate in [MST20] allows us to establish local energy decay by appealing
to existing estimates in their work (which makes it easier to perform time-frequency
localization). By an extension argument outlined in section 3.3, it is sufficient to
reduce to the case of Schwartz functions, which allows for the removal of data terms.
The simplified version of local energy decay for Schwartz functions can be readily
proven by combining the proven high frequency estimates with appropriate medium
and low frequency estimates, then utilizing a time-frequency partition of unity. The
medium and low frequency estimates that we require come from the work in [MST20]
and do not depend on the trapping nor the damping. We remark that such analyses
are also independent of the stationarity of P .
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5122 COLLIN KOFROTH

3.1. Medium frequencies. The goal of the medium frequency estimate is to
establish a weighted estimate which implies local energy decay for solutions supported
at any range of time frequencies bounded away from both zero and infinity. This is
rooted in the notion of a Carleman estimate, which is weighted L2

tL
2
x estimates where

the weight is pseudoconvex. The constants in our inequalities will depend on the
parameter c introduced in section 1.2, but they will (and must) be independent of
the parameters in \varphi ; the Carleman weights for our estimates are radial. The Carleman
weights which we use here are constructed in, e.g., [Boo18], [KT01].

The main medium frequency estimate is the following, and the corresponding
theorem in [MST20] is Theorem 5.4.

Theorem 3.1. Let P be an asymptotically flat damped wave operator, and sup-
pose that \partial t is uniformly time-like. Then, for any \delta > 0, there exists a bounded,
nondecreasing radial weight \varphi = \varphi (ln(1 + r)) so that for all u \in \scrS (\BbbR 4), we have the
bound

(3.1)
\bigm\| 

\bigm\| 

\bigm\| 
(1 +\varphi \prime \prime 

+)
1/2e\varphi (\nabla u, \langle r\rangle  - 1

(1 +\varphi \prime )u
\bigm\| 

\bigm\| 

\bigm\| 

LE
+
\bigm\| 

\bigm\| 

\bigm\| (1 +\varphi \prime )1/2e\varphi \partial tu
\bigm\| 

\bigm\| 

\bigm\| 

LE

\lesssim \| e\varphi Pu\| LE\ast + \delta 
\Bigl( \bigm\| 

\bigm\| 

\bigm\| (1 +\varphi \prime )1/2e\varphi u
\bigm\| 

\bigm\| 

\bigm\| 

LE
+
\bigm\| 

\bigm\| 

\bigm\| \langle r\rangle 
 - 1

(1 +\varphi \prime \prime 
+)

1/2(1 +\varphi \prime )e\varphi \partial tu
\bigm\| 

\bigm\| 

\bigm\| 

LE

\Bigr) 

.

Remark 3.2. We will justify why this is an appropriate estimate on the medium
frequencies. To that end, suppose that u is supported at time frequencies \tau such that
0< \tau 0 \leq | \tau | \leq \tau 1, where \tau 0 < \tau 1. For compatibility with the other frequency regimes,
we will want \tau 0 \ll 1\ll \tau 1. Plancherel's theorem yields that

\delta 
\bigm\| 

\bigm\| 

\bigm\| (1 +\varphi \prime )1/2e\varphi u
\bigm\| 

\bigm\| 

\bigm\| 

LE
\lesssim 
\delta 

\tau 0

\bigm\| 

\bigm\| 

\bigm\| (1 +\varphi \prime )1/2e\varphi \partial tu
\bigm\| 

\bigm\| 

\bigm\| 

LE
,

while

\delta 
\bigm\| 

\bigm\| 

\bigm\| \langle r\rangle 
 - 1

(1 +\varphi \prime \prime 
+)

1/2(1 +\varphi \prime )e\varphi \partial tu
\bigm\| 

\bigm\| 

\bigm\| 

LE
\lesssim \delta \tau 1

\bigm\| 

\bigm\| 

\bigm\| \langle r\rangle 
 - 1

(1 +\varphi \prime \prime 
+)

1/2(1 +\varphi \prime )e\varphi u
\bigm\| 

\bigm\| 

\bigm\| 

LE
.

By choosing \delta sufficiently small, both terms absorb into the left-hand side of (3.1) in
a direct fashion. We can translate our work immediately into a local energy decay
estimate for u, with an implicit constant which depends on \varphi . Notice that since \delta can
be chosen arbitrarily, (3.1) allows for any interval of frequencies bounded away from
both zero and infinity.

The proof of this theorem is broken up into two Carleman estimates, one that
applies within a large compact set and one that applies outside of this compact set.
Within the compact set, the damping term is well-signed and readily absorbable as a
perturbation due to the conditions on the weight \varphi . Here, the weight will be convex.
Outside of the compact set, the damping is zero, so the proof in [MST20] follows
through without any modification. In this region, one desires to use Proposition 2.20,
which requires a constant weight. To that end, one breaks up the exterior into three
regions: one where the Carleman weight is convex, a transition region where the
conditions break in order to bend the weight to be constant near infinity, and a region
near infinity where the weight is constant.

In both regions (the compact set and its exterior), the work in [MST20] allows for
more general (e.g., unsigned) lower-order terms than a damping term. The proofs of
these estimates within the aforementioned regions are based on positive commutator
arguments utilizing the self- and skew-adjoint parts of the conjugated operator P\varphi =
e\varphi Pe - \varphi . The work is then combined using a cutoff argument.
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3.2. Low frequencies. We will set

P0 := P
\bigm| 

\bigm| 

Dt=0
=Dig

ijDj .

This represents P at time frequency zero, and one can utilize it to obtain information
in a neighborhood of this frequency. Since \partial t is uniformly time-like, P0 is uniformly
elliptic. The operator P0 is a special case of that found in [MST20], so all of the results
in their work apply here with almost no modification. Notice that the damping does
not arise in P0.

At low frequencies, the obstruction to local energy decay arises when P has a
resonance at frequency zero.

Definition 3.3. A function u is called a zero resonant state for P if u\in \scrL \scrE 0 is
nonzero and P0u= 0. If, in addition, u\in L2, then we call u a zero eigenfunction.

Here, the space \scrL \scrE is a variant of the LE space where there is no time dependence
(i.e., the time is fixed, and there is no time derivative arising in the norm), and \scrL \scrE 0
is the closure of C\infty 

c in the \scrL \scrE norm.
For a general wave operator P , such resonant states are annihilated by P while

having finite energy. However, they also possess an infinite LE1 norm when integrat-
ing in t over [0,\infty ), which violates local energy decay. Such states are ruled out in the
context of this paper due to the uniform ellipticity of P0. A quantitative condition
on the existence of such resonant states is as follows.

Definition 3.4. P is said to satisfy a zero resolvent bound/zero nonresonance
condition if there exists some K0, independent of t, such that

\| u\| \.H1 \leq K0 \| P0u\| \.H - 1 \forall u\in \.H1.(3.2)

Proposition 2.10 of [MST20] demonstrates that a stationary wave operator P has
no zero resonant states/zero eigenfunctions if and only if the zero nonresonance con-
dition holds. In our problem, this condition is satisfied due to the uniform ellipticity
of P0.

The relevant low frequency estimate is the following, and the corresponding the-
orem in [MST20] is Theorem 6.1.

Theorem 3.5. Let P be an asymptotically flat damped wave operator, and sup-
pose that \partial t is uniformly time-like. Then,

(3.3) \| u\| LE1 \lesssim \| \partial tu\| LE1
c
+ \| Pu\| LE\ast 

for all u\in \scrS (\BbbR 4).

Remark 3.6. The error term \| \partial tu\| LE1
c
has the unfortunate effect of requiring

information on the size of first-order derivatives of \partial tu. However, this estimate will
only be used when the time frequency is close to zero, in which case this term will be
absorbable into the left-hand side of the inequality. Indeed, if we consider u \in \scrS (\BbbR 4)
with frequency support 0\leq | \tau | \leq \tau 0 \ll 1, then we may apply Plancherel's theorem to
obtain that

\| \partial tu\| LE1
c
\lesssim \tau 0 \| u\| LE1

c
.

If \tau 0 is sufficiently small, then we may absorb this term into the lower-bound side of
(3.3) to obtain local energy decay for such u.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
o
w

n
lo

ad
ed

 0
5
/2

0
/2

4
 t

o
 1

5
2
.2

.1
0
5
.7

5
 .
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/t
er

m
s-

p
ri

v
ac

y



5124 COLLIN KOFROTH

The proof leverages weighted elliptic estimates for the flat Laplacian \Delta in order
to get similar estimates for AF perturbations. Once again, the damping does not play
a harmful (or even meaningful) role. At frequency zero, it provides no contribution,
and near frequency zero, it can be readily absorbed by the error term in (3.3).

3.3. Establishing local energy decay. Now, we discuss the second main the-
orem, local energy decay. First, the authors in [MST20] show that it is sufficient to
remove the Cauchy data at times 0 and T . This makes it significantly easier to perform
frequency localization. The corresponding theorem in [MST20] is Theorem 7.1.

Theorem 3.7. Let P be a stationary, asymptotically flat damped wave operator
satisfying the geometric control condition (2.1), and suppose that \partial t is uniformly time-
like. Then, the estimate

\| u\| LE1 \lesssim \| Pu\| LE\ast (3.4)

holds for all u\in \scrS (\BbbR 4).

In order to prove Theorem 3.7, one splits u into its low, medium, and high fre-
quency parts using a time-frequency partition of unity. In each relevant frequency
regime, one applies the corresponding frequency estimate (as in Remarks 1.6, 3.2,
and 3.6), and then sums them together. For the medium frequency estimate to be
compatible with the low and high frequency regimes, one needs that it applies to any
range of time frequencies bounded away from both zero (compatibility with low) and
infinity (compatibility with high), which is the utility of the \delta parameter in Theo-
rem 3.1. The commutators of the time-frequency cutoffs and P are zero since P is
stationary.

As in section 7 of [MST20], one proves that Theorem 3.7 implies Theorem 1.9
by fixing u and constructing a function v which matches the Cauchy data of u at
times 0 and T (and satisfies an appropriate bound) which allows one to apply (3.4)
to u - v. This construction is performed using a partition of unity on the support of
u[0], u[T ], and Pu. In particular, one splits into an interior region \{ | x| < 4R0\} and
an exterior region \{ | x| > 2R0\} . The damping is nonproblematic in the interior (here,
one uses the uniform energy bounds) and is zero in the exterior. It is important to
highlight the latter fact since the authors use a time reversal symmetry argument
in the exterior region, and time reversal turns the damping into a driving force (and
hence a harmful term). However, our damping is zero in the exterior region, rendering
such an argument nonproblematic by choosing an appropriate small AF perturbation
of 2 which matches P in the exterior (where the damping is zero). In the context of
[MST20], this provides the ``two point"" local energy estimate

\| u\| LE1[0,T ] + \| \partial u\| L\infty 
t L2

x[0,T ] \lesssim \| \partial u(0)\| L2 + \| \partial u(T )\| L2 + \| Pu\| LE\ast +L1
tL

2
x[0,T ] .

In view of Corollary 2.19, this implies local energy decay.
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