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Abstract: We discuss models of ultralight scalar Dark Matter (DM) with linear and
quadratic couplings to the Standard Model (SM). In addition to studying the phenomenology
of linear and quadratic interactions separately, we examine their interplay. We review the
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1 Introduction

One possible solution to the “missing mass” problem is that of an ultralight sub-eV bosonic
Dark Matter (DM) field, coherently oscillating to account for the observed DM density
(e.g. [1–5]). Such a light field would oscillate with a frequency proportional to its mass mφ,
and an amplitude which is determined by mφ and the DM density ρDM,

〈φ (t, ~x)〉 '
√

2ρDM
mφ

cos(mφ t+ δ) , (1.1)

where δ = mφ
~β · ~x is some random phase with |~β| ∼ 10−3 being the virial DM velocity.

Possibly the most simple model of an ultralight dark matter (ULDM) field is obtained by
augmenting the Standard Model (SM) (of fundamental interactions and elementary particles)
with only one degree of freedom. Adding a free light spin-0 field, with its misalignment angle
appropriately tuned towards the end of inflation so that its oscillation amplitude yields the
right DM abundance, fully address the missing mass problem (see for instance [6] for more
detail). Such a model can be tested solely by its gravitational interactions [7–9], however,
adding self-interactions may render the DM distribution, and hence the corresponding
bounds, non-robust.

More conceptually, models with spin-0 ULDM face two main theoretical challenges.
The first is associated with the hierarchy problem, namely, the challenge of keeping the
scalar light, although in the presence of interactions microscopic quantum fluctuations are
generically expected to contribute dramatically to its mass. We shall discuss it further
in the following sections. The second challenge is associated with the fact that all fields
interact via gravity. Even in the absence of a direct coupling of the scalar to the SM fields,
one may argue that if the spin-0 particle is an elementary, point-like, microscopic field,
“gravity-mediated” interactions will inevitably generate such an effective coupling. Below
the Planck scale, an Effective Field Theory (EFT) describing the SM elementary fields
and the new spin-0 elementary field would consist of (local) interaction terms between the
ULDM and the SM, suppressed by the Planck scale. Such a coupling may be eliminated if
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the field is composite or in the presence of additional discrete symmetries (see [10, 11] for
recent discussions).1

Let us first consider the case where the DM field is elementary and there are no
additional discrete symmetries. It is interesting to note that for ULDM models with scalar-
linear couplings between the DM and the SM fields, any masses below roughly 10−6 eV are
excluded by experiments testing the Equivalence Principle (EP) (corresponding to regions
with effective coupling d(1)

x & 1, see text around figure 9 for more details). Along this line,
we point out that one can identify a set of models where the EP bound is greatly ameliorated
or absent (one example for such a model is a pure dilaton, but there are others, see [23, 24]).
In this case, a weaker bound associated with fifth-force searches can be enforced, excluding
models with scalar ULDM Planck suppressed couplings for ULDM masses below 10−10 eV.

In addition, there is a broad class of well-motivated models where the ULDM is
predicted to interact with the SM fields beyond merely Planck suppressed couplings. Two
prime examples are models where the ULDM is spin-0 but a pseudo-scalar, Axion-Like
Particle (ALP), or where it is a CP-even scalar. ALPs naturally arise in theories where a
global U(1) symmetry is spontaneously broken, for instance, in Froggatt-Nielsen type of
models [25] that address the mass hierarchies (usually denoted as the flavor puzzle), models
which account for lepton number conservation [26], models of QCD axion solution to the
strong CP problem [27–30], models which solve the hierarchy problem [31] or combinations
of the above [11, 14, 15, 32]. As we have already mentioned, scalar ULDM models are
more involved as they are susceptible to naturalness problems, however, two main options
were described in the literature. In the first, the ULDM mass is protected by either an
approximate scale-invariance symmetry [3] or a discrete ZN symmetry [33]. In the second,
inspired by the relaxion paradigm [31], the ULDM is an exotic type of ALP [5], with its
associated shift symmetry and charge-parity (CP) invariance broken by two independent
sectors [34–36]. In all of the above models but the last one, the ULDM couplings to
the SM fields are, to leading order, dominated by the ULDM derivative couplings to the
appropriate SM current operators, with the strength of these interactions dictated by the
transformations of the SM fields under the ULDM shift-symmetry. Generically, we expected
the dominant interaction to be linear with the DM field.

Most of the theoretical and experimental effort has been put towards studying the
linear-DM-SM interactions (see [37–39] for a recent review and refs. therein). However, as
mentioned above, both fundamental scalar and axion models suffer from a rather severe
quality problem, namely they do not provide sufficient protection against operators that
link the ULDM field with the SM ones (usually denoted as irrelevant operators), even if
they are suppressed by super-Planckian cutoffs. It motivates us to consider cases where the
quadratic interactions dominate over the linear ones, at least when considering the more
severely constrained scalar SM-operators. One example of such a scenario is in the case

1This can be thought of as a generalized version of the axion quality problem [12–15], (for a more
general discussion see [16, 17], and [11, 17–20] for models that address the quality problem). In some more
detail, the QCD axion quality problem is attributed to the fact that the axion potential resulting of QCD
instanton-corrections can be disrupted by the presence of Planck suppressed operators that do not respect
the Pecci-Quinn Symmetry, see for instance [21, 22] for reviews on the topic.
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of ultralight QCD axions, where the product of the mass, mφ, and the decay constant, f ,
satisfies mφf � Λ2

QCD, where ΛQCD is the dynamical scale of QCD. This can arise due to
fine-tuning, or in a particular type of ZN models [40, 41]. In such a case, quantum sensors
looking for scalar-quadratic oscillations of constants of nature, would be more sensitive
to the presence of ULDM QCD axion [42], compared with the well known conventional
searches which are based on magnetometer-type of quantum sensors. From the properties
of quantum field theory (QFT), and its low energy EFT perspective, theories where the
quadratic interactions of an ULDM scalar are experimentally significant, seem to be exotic.
First, it implies that the linear coupling that should dominate the phenomenology is, for
some reason, is suppressed. Furthermore, the quadratic coupling of the ULDM, which is
expected to generate large additive contributions to the ULDM mass, is thus being pressured
by naturalness arguments. We nevertheless find it interesting to consider in depth models
where the phenomenology is dominated by the ULDM quadratic coupling, in view of the
interplay between the direct and indirect experimental searches. Together with presenting
the current and expected future bounds on these models, we outline the experimental and
theoretical challenges associated with them, and study concrete examples in which these
challenges can be ameliorated.

The paper is organized as follows: in subsections 1.1 and 1.2, we introduce the ULDM
models of interest and discuss their phenomenology, in particular, the profile of quadratically
coupled DM. In section 2, we review the bounds from different ULDM searches, considering
current and future probes. In section 3, we study in detail the behavior of a quadratically
coupled DM field in the presence of a massive source such as the Earth. In addition, we
comment on the challenges of EP tests and Direct Dark Matter (DDM) searches due to the
DM field profile, and show how those can be addressed by performing experiments in space.
In sections 4 and 5, we review the theoretical aspects of models with sizable quadratic
DM interactions with the SM, and provide various examples in which these couplings are
technically-natural, and dominate over the linear ones. In section 6, we study two specific
models solving the naturalness problem of the ULDM and allowing for a hierarchy between
the linear and quadratic coupling of the DM field. We conclude our results in section 7.

1.1 Model with linear DM couplings

We start by reviewing the case where the DM couples linearly to the SM fields. Since
we choose to focus on CP invariant theories, we distinguish between a CP odd pseudo-
scalar, φ(x) = a(x), and a CP-even scalar, φ(x) = ϕ(x). The linear interactions can be
characterized by the following low-energy effective Lagrangians

Lϕlin scalar = d
(1)
e

4MPl
ϕFµνFµν −

d
(1)
g βg

2MPl g
ϕGbµνGbµν −

d
(1)
mi

MPl
ϕmfψfψ

c
f + h.c. , (1.2)

Lalin pseudo-scalar = d̃
(1)
e

MPl
aFµνF̃

µν + d̃
(1)
g

MPl
aGbµνG̃

bµν − id̃
(1)
mi

MPl
amfψfψ

c
f + h.c. , (1.3)

where, Fµν is the Electro-magnetic (EM) field strength, Gbµν is the gluon field strength
with color index b. βg = −

(
11
3 −

2
3Nf

)
g3

16π2 is the QCD beta functions, with Nf being the
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number of light quarks. ψi (ψci ) are the SM Weyl fermions (anti-fermion) with mass mf

(f = u, d, e being a flavor index), MPl = 2.4× 1018 GeV is the reduced plank mass,
X̃µν = εµνρσXρσ with X = F,Gb. d(1)

i and d̃(1)
i are dimensionless scalar and pseudo-

scalar linear DM couplings, respectively.2

The analysis and the bounds on the scalar coupling, d(1)
i , can be found in [3, 43]. The

oscillating background of φ, as given in eq. (1.1), induces a temporal variation of the mass of
the SM fermions, the fine-structure constant (α), and the strong coupling constant (αs) as

Yi(t) = Yi(1 + d
(1)
i 〈φ〉 /MPl) (1.4)

where Y ∈ (α, αs,mf ). DDM searches are sensitive to the time variation of fundamental
constants, with their sensitivity at a given frequency ω given as

ηDDM (ω) = Fω

((
δYi
Yi

(t)
)DDM−lin)

' ∆κi
d

(1)
i

MPl
Fω (〈φ〉) ' ∆κi

d
(1)
i

MPl

√
2ρDM
mφ

. (1.5)

In equation (1.5), ∆κi ≡ κAi − κBi is the difference of the sensitivity coefficients of a specific
transition (see e.g. [43, 44] and refs. therein) and Fω (f (t)) is the root of power spectral

density at frequency ω, given by Fω (f (t)) =
√

1
2πT

∣∣∣ ∫ T0 f (t) e−iωtdt
∣∣∣2 where T is total

duration of the experiment.
In addition, the scalar field φ can also mediate long-range forces between two masses.

Therefore, another constraint on the parameter space of a light scalar DM arises from
experiments testing the EP or deviations from Newtonian gravity [45]. A linear φ coupling
with the SM generates a Yukawa force at tree-level, as shown in figure 1.

The Yukawa poten tial that affects a test body A in the presence of a massive central
body C, such as the Earth, has the following form

V lin
Yukawa ' −QAi QCi

(
d

(1)
i

)2 1
4πre

−mφr , (1.6)

where QA and QC are the dilatonic charges of the test body and the central body respec-
tively, (see e.g [46]) and r is the distance between A and C. The sensitivity of EP violation
tests is characterized in terms of the differential acceleration a between two test bodies A
and B in the presence of a source C, and takes the following form

ηEP =
(
δatest
a

)EP-linear
∝
(
d

(1)
i

)2
∆QiQCi , (1.7)

where ∆Qi = QA
i −QB

i .

1.2 Model with quadratic DM couplings

The same analysis for the DDM and EP bounds on a linear φ theory can be extended
to quadratic interactions. We focus on a CP invariant quadratic φ2 theory, given by the

2Eq. (1.3) is basis dependent. One can perform pseudo-scalar dependent redefinition of the fermion fields
to remove pseudo-scalar coupling from the mass term or from a topological term.
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Figure 1. A Yukawa potential is generated at tree level from the exchange of φ.

following effective Lagrangian

Lquad-int= φ2

2

[
d

(2)
e

4M2
Pl
FµνFµν −

d
(2)
g βg

2M2
Pl g

GbµνGbµν −
d

(2)
mi

M2
Pl
miψiψ

c
i + h.c.

]
, (1.8)

where the d(2)
i are the dimensionless quadratic couplings.

Since φ acquires a time-dependent vacuum expectation value (VEV) as in eq. (1.1),
oscillations of fundamental constants will be generated similarly to the linear theory, but
with a background value of

〈
φ2〉 instead of 〈φ〉. For example, the variation of a constant Yi

can be written as,

δYi(t)
Yi

' ∆κi
d

(2)
i

2M2
Pl

〈
φ2
〉
' ∆κi

d
(2)
i

M2
Pl

ρDM
m2
φ

cos2 (mφt+ δ) (1.9)

One should note that since the temporal modulation of the fundamental constant should
follow a cos2 (mφt) behavior, a bound on (δYi(t)/Yi) at an angular frequency ν should
be interpreted as a bound on the couplings of a DM candidate with a mass of mφ = ~ν

2c2 .
Moreover, since the time-averaged value of

〈
cos2 (mφt)

〉
= 1

2 , there is an additive constant
contribution to the fundamental coupling constants. In this work, we are interested in
timescales on which DM density variations, and decoherence effects can be neglected. For a
discussion related to the slow variation of the DM amplitude see e.g. [47, 48] (cosmological
evolution) and [49] (velocity dispersion decoherence).

The EP bounds on the quadratic interactions are of different nature than the EP bounds
on the linear theory. In the quadratic theory, there is no Yukawa potential generated at
tree level. However the time and space dependent background value of

〈
φ2〉, in the presence

of a massive central object, results with an effective long range force. In appendix C, we
analyze the obtained background value of

〈
φ2〉 and its affect on the acceleration of a test

body, and compare it to the 1-loop quantum corrections of φ2. We find that in the regime
of our interest of ULDM, the quantum corrections are negligible compared to the classical
ones. See [50] for a discussion of the Yukawa force for generalised potentials. Below, we
take a closer look at the profile of φ and its implications to EP and DDM bounds.
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1.2.1 The profile of quadratically coupled DM, boundary condition
dependence

The dynamics related to quadratic coupling have a strong dependence on the boundary
conditions. In our analysis, we assume that far away from the Earth, φ takes its galactic
DM background, following [37]. This assumption is somewhat idealistic since the Earth
is moving in the solar system, which consists of the moon, other planets, and the Sun, in
addition to our solar system moving within the galactic medium, all perturbing the value
of the scalar. In that way, it might not be entirely realistic to set the value of φ to its
vacuum solution, assuming it is only be affected by the Earth, as this may depend on other
variables such as the relaxation time and the dynamical history of the formation of the
scalar background [7, 51–53].

Alternatively, one can assume other boundary conditions and consider the phenomenol-
ogy of a transient scalar background [54]. In fact the affect of gravitational focusing of
ultralight DM in the solar system was recently analyzed in [55] where it was shown that it
leads to some changes to the distribution of the ultralight DM, distribution that would have
a preferred direction due to the velocity of the Sun in the DM galactic halo. Finally, the
self interaction of the DM in the presence of a central gravitational potential, is expected to
modify the ULDM distribution, but requires a dedicated focused study beyond the scope of
this paper, as reported in [56]. For the sake of concreteness and despite the fact that the
analysis might be incomplete, we shall follow the treatment of [37], assuming trivial DM
background at infinity as in eq. (1.1).

These boundary conditions lead to two important implications; the first is that the
field is mediating long-distance forces despite being massive, and the second is a screening
behavior near the surface of a massive source. Given the boundary conditions discussed
above, the solution to the Equation of Motion (EOM) extracted from eq. (1.8) near a
massive central object yields the following analytical solution to φ

φ (t, x) = φ0 cos (mφt+ δ)
[
1− s(2)

C [d(2)
i ] GMC

r

]
, (1.10)

where φ0 ≡
√

2ρDM/mφ is the background amplitude of φ at infinity, s(2)
C [d(2)

i ] is some
function of the quadratic couplings (explained in appendix A), G is Newton’s gravitational
constant and MC the mass the central body, see subsection B for additional details.

In this section, we follow two limits: the weakly coupled limit and the strongly coupled
limit. In those limits, the solution takes the following form

φ (t, x) = φ0 cos (mφt+ δ)


[
1− RC

r

(
1−

√
dcrit
i

d
(2)
i

)]
for d

(2)
i � dcrit

i[
1− RC

r
d

(2)
i

3 dcrit
i

]
for d

(2)
i � dcrit

i ,
(1.11)

where the critical value of the coupling is defined as dcrit
i = RC/(3QCi GMC), where RC is

the radius of the central body. Therefore, for a given DM mass mφ, there exists a critical
value of the quadratic coupling d(2), at which the background value of

〈
φ2〉 is screened, and
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thus the sensitivity to quadratically coupled ULDM is suppressed. This can be seen by
taking the limit r → RC in eq. (1.11), when the DDM sensitivity becomes

ηDDM (ω) = Fω

((
δYi
Yi

(t)
)DDM-quad

d
(2)
i �d

crit
i ,r'Rc

)
' ∆κd(2)

i

2M2
Pl
Fω
(〈
φ2
〉)

' ∆κ φ2
0

M2
Pl

dcrit
i + ∆r

RC
d

(2)
i

√√√√dcrit
i

d
(2)
i

+
(∆r
RC

)2
d

(2)
i

×Fω (cos2 (mφt+ δ)
)

' ∆κ φ2
0

M2
Pl
dcrit
i ×Fω

(
cos2 (mφt+ δ)

)
, (1.12)

where ∆r
r ≡

r−Rc
r � 1.

Finally, we comment on the negative coupling scenario (when the sign of the DM
quadratic coupling is opposite relative to the mass term). In this case, the loss of control
over the system is related to the fact that if inside the Earth the mass is too negative, it
would overcome the pressure gradient from the kinetic term of the order of 1/RC . Thus,
it would lead to tachyonic instabilities (where within the Earth, the mass squared of the
field is negative) and to a runaway behavior of the field into large-amplitudes inside and
outside [51, 52, 57].

1.3 Summary of EP and DDM sensitivities

We end this introduction by summarizing the sensitivities again, ηDDM and ηEP, and
provide their full description as a function of the DM scalar field background. The complete
derivation of these sensitivities can be found in appendix A. For the linear couplings DM
model, we found:

ηEP
linear = 2 |~aA,C−~aB,C |

|~aA,C+~aB,C |
' |∆Qid

(1)
i
~∇VC (φ) |

MPlGMC/r2 ' ∆Qid(1)
i

MPlGMC/r2

[
∇φ(x,t)+~vφ̇(x,t)

]
, (1.13)

ηDDM
linear (ω) =Fω

(
δY (t)
Y

)
' ∆κAi d

(1)
i

MPl
Fω (〈φ(x,t)〉) . (1.14)

In both equation (1.13) and (1.14), the letters A and B represent two different test bodies,
while C denotes the central heavy object such as the Earth. d(1)

i is the linear DM coupling
to the ith SM field. For the quadratic DM model, we find

ηEP
quad = 2 |~aA,C − ~aB,C |

|~aA,C + ~aB,C |
' ∆Qid(2)

i

M2
PlGMC/r2φ (x, t)

[
∇φ (x, t) + ~vφ̇ (x, t)

]
, (1.15)

ηDDM
quad (ω) = Fω

(
δY (t)
Y

)
' ∆κAi d

(2)
i

2M2
Pl
Fω
(〈
φ2 (x, t)

〉)
. (1.16)

Finally, we present the approximate sensitivities given the specific DM background solution
of eq. (1.10) with its special boundary conditions. For the linear DM model, we get

ηEP
linear = 2 |~aA,C − ~aB,C |

|~aA,C + ~aB,C |
' QCj d

(1)
j ∆Qid(1)

i e−mφr , (1.17)

ηDDM
linear (mφ) = |δY (t)|

Y
' ∆κAi d

(1)
i

MPl
φ0 . (1.18)
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Lastly, the results for the quadratic DM model are

ηEP
quad = 2 |~aA,C−~aB,C |

|~aA,C+~aB,C |
'∆Qid(2)

i s
(2)
C [d(2)

i ] (∆Q)ABj d
(2)
j

φ2
0

2M2
Pl

[
1−s(2)

C

GMC

r

]
, (1.19)

ηDDM
quad (2mφ) = |δY (t)|

Y
' ∆κAi d

(2)
i

4M2
Pl

φ2
0

[
1−s(2)

C

GMC

r

]2
. (1.20)

2 Updated Bounds from EP and DDM searches

In this section we present the bounds on the DM models both from EP and DDM searches.
We also discuss the interplay between the EP and DDM searches for the linear and the
quadratically coupled DM with the SM. We also discuss two proposed ways to alleviate the
EP test constraints in details and present the reach of DDM searches in those scenarios.

2.1 Summary of current and future bounds

The known bounds on scalar, pseudo-scalar and quadratic DM interactions with the SM
are summarized in tables 1–3 for various ULDM masses. In addition, we also present
current and future-projected bounds on the linear scalar couplings d(1)

i and on the quadratic
couplings d(2)

i as a function of the DM mass for various local DM densities, up to 105 the
DM density at the solar position ρ�DM [58], as motivated by [56, 59, 60]. The bounds for the
electron couplings, dme , are shown in figure 2, the bounds for the photon couplings, de, are
shown in figure 3, the bounds for the quark couplings, dmq , are shown in figure 4, and the
bounds for the gluon couplings, dg, are shown in figure 5. For all linear couplings, the EP
test bounds are derived from the terrestrial Eöt-Wash Be/Ti [61] and Eöt-Wash Cu/Pb [62]
measurements, as well as from the MICROSCOPE data [63] taken on a satellite orbiting the
Earth at an approximate altitude of 700 km. For the quadratic couplings, we present only the
bounds from MICROSCOPE, which are expected to be the strongest [37]. The current DDM
bounds for dme are given from the H/Si clock-cavity comparison measurements presented
in [64]. For de, the current DDM bounds are given both from H/Si and Sr/Si clock-cavity
comparisons [64], where for masses larger than ∼ 10−16 eV an additional measurement with
using dynamical decoupling was applied to improve the sensitivity at high frequencies [65].
For both dme and de, we also show a line representing a DDM sensitivity of ηDDM = 10−18 at
all masses, as well as the expected bound from the future DDM MAGIS-100 experiment [66].
A DDM experiment involving hyperfine transitions [64, 67] and/or vibrational levels of a
molecule [23] can be used to constraint DM couplings to nucleus i.e. dmq and dg. However,
here we present the expected bounds from a nuclear clock with a sensitivity of ηDDM = 10−24,
using a Ramsey sequence with the parameters given in [36]. The astrophysical constraints
mentioned in tables 1–3, are coming from various stellar cooling processes as mentioned in
the given references.

2.2 Complementarity of EP tests and DDM searches

We can compare the bounds on the DM couplings coming from DDM experiments to
the ones coming from EP tests, both for linear and quadratic interactions. We begin by
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Figure 2. Top: the bounds on d(1)
me from the linear DM electrons couplings. Bottom: the bounds

on d(2)
me from the quadratic DM electron couplings.
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Figure 3. Top: the bounds on d(1)
e from the linear DM photon couplings. Bottom: the bounds

on d(2)
e from the quadratic DM photon couplings. Note the bounds in [64] were modified for the

assumption of a stochastic DM background.
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Figure 4. Top: the bounds on d(1)
mq from the linear DM light quarks couplings. Bottom: the bounds

on d(2)
mq from the quadratic DM light quarks couplings.
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Figure 5. Top: the bounds on d(1)
g from the linear DM gluon couplings. Bottom: the bounds on

d
(2)
g from the quadratic DM gluon couplings.
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mφ = 10−8 eV

operator current bound type of experiment
d

(1)
e

4MPl
φFµνFµν d

(1)
e . 10−2 [62] EP test: Eöt-Wash Cu/Pb

d̃
(1)
e
MPl

φFµνF̃µν d̃
(1)
e . 2× 108 [68] axion/ALP searches: CAST∣∣∣d(1)

me

∣∣∣
MPl

φmeψeψ
c
e

∣∣∣d(1)
me

∣∣∣ . 1 [62] EP test: Eöt-Wash Cu/Pb

i

∣∣∣d̃(1)
me

∣∣∣
MPl

φmeψeψ
c
e

∣∣∣d̃(1)
me

∣∣∣ . 8× 108 [69] Astrophysics

d
(1)
g β(g)
2MPl g

φGµνGµν d
(1)
g . 10−3 [62] EP test: Eöt-Wash Cu/Pb

d̃
(1)
g

MPl
φGµνG̃µν d̃

(1)
g . 108 [70, 71] Astrophysics∣∣∣d(1)

mN

∣∣∣
MPl

φmNψNψ
c
N

∣∣∣d(1)
mN

∣∣∣ . 6× 10−3 [61] EP test: Eöt-wash 2008

i

∣∣∣d̃(1)
mN

∣∣∣
MPl

φmNψNψ
c
N

∣∣∣d̃(1)
mN

∣∣∣ . 3× 108 [72] Astrophysics

d
(2)
e

8M2
Pl
φ2 FµνFµν d

(2)
e . 1025 [63] EP test: MICROSCOPE∣∣∣d(2)

me

∣∣∣
2M2

Pl
φ2meψeψ

c
e

∣∣∣d(2)
me

∣∣∣ . 1027 [63] EP test: MICROSCOPE

d
(2)
g βg

4M2
Pl g

φ2GµνGµν d
(2)
g . 1025 [63] EP test: MICROSCOPE∣∣∣d(2)

mN

∣∣∣
2M2

Pl
φ2mNψNψ

c
N

∣∣∣d(2)
mN

∣∣∣ . 1025 [63] EP test: MICROSCOPE

Table 1. Strongest existing bounds on various DM couplings for a mass of the order ofmφ = 10−8 eV.

summarizing the scaling of the DDM and EP bounds, both in the linear and quadratic
theories, as presented in table 4. As one can easily read from table 4, the ratio of the
bounded couplings from different types of experiments, i.e., the ratio: (d)DDM / (d)EP has
the same parametric dependence in both the linear and the quadratic theory, as long as
the spatial dependence of the bounds may be neglected (namely, away from the Yukawa
decoupling of the linear bounds and in the sub-critical region for the quadratic bounds).
Therefore, under these conditions, if one type of experiment dominates the bounds on the
linear interaction in some region of the parameter space, we expect it to also dominate
the bounds on the quadratic couplings and vice versa. As is further shown in the table,
in agreement with the plots above, DDM experiments tend to be more powerful at lower
masses. Their corresponding constraints improve linearly with the experimental sensitivity,
whereas EP tests are expected to take over at higher masses while scaling only with the
square root of the experimental sensitivity.
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mφ = 10−15 eV

operator current bound type of experiment
d

(1)
e

4MPl
φFµνFµν d

(1)
e . 10−4 [63] EP test: MICROSCOPE

d̃
(1)
e
MPl

φFµνF̃µν d̃
(1)
e . 2× 106 [73] Astrophysics∣∣∣d(1)

me

∣∣∣
MPl

φmeψeψ
c
e

∣∣∣d(1)
me

∣∣∣ . 10−3 [63] EP test: MICROSCOPE

i

∣∣∣d̃(1)
me

∣∣∣
MPl

φmeψeψ
c
e

∣∣∣d̃(1)
me

∣∣∣ . 8× 108 [69] Astrophysics

d
(1)
g β(g)
2MPl g

φGµνGµν d
(1)
g . 6× 10−6 [63] EP test: MICROSCOPE

d̃
(1)
g

MPl
φGµνG̃µν d̃

(1)
g . 108 [70, 71] SN1987A, NS∣∣∣d(1)

mN

∣∣∣
MPl

φmNψNψ
c
N

∣∣∣d(1)
mN

∣∣∣ . 6× 10−6 [63] EP test: MICROSCOPE

i

∣∣∣d̃(1)
mN

∣∣∣
MPl

φmNψNψ
c
N

∣∣∣d̃(1)
mN

∣∣∣ . 3× 108 [72] Astrophysics

d
(2)
e

8M2
Pl
φ2 FµνFµν d

(2)
e . 1011 [63] EP test: MICROSCOPE∣∣∣d(2)

me

∣∣∣
2M2

Pl
φ2meψeψ

c
e

∣∣∣d(2)
me

∣∣∣ . 1012 [63] EP test: MICROSCOPE
d

(2)
g βg

4M2
Pl g

φ2GµνGµν d
(2)
g . 1011 [63] EP test: MICROSCOPE.∣∣∣d(2)

mN

∣∣∣
2M2

Pl
φ2mNψNψ

c
N

∣∣∣d(2)
mN

∣∣∣ . 1011 [63] EP test: MICROSCOPE

Table 2. Strongest existing bounds on various DM couplings for a mass of the order of mφ =
10−15 eV.

While one of these searches usually dominates the bounds for specific masses, we would
like to argue that EP-tests and the DDM searches are complementary to each other and
provide independent information. Below we point out two engaging scenarios in which the
naive ratio between EP and DDM bounds is violated, demonstrating their complementary.

2.2.1 Enhanced DM Density

The current EP bounds for the quadratic theory and the DDM bounds for both the linear
and the quadratic couplings strongly depend on the local DM density. These bounds
become more stringent if the on-Earth DM density is enhanced compared to the DM density
at the solar position ρ�DM [58], as would be the case if a compact boson star consisting
of φ is formed in the early universe, and is gravitationally bounded to the Sun or the
Earth [56, 75, 76]. Importantly, note that DDM searches are more sensitive to the local
DM density than EP tests, and thus the ratio of their corresponding bounds dDDM

i /dEPi
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mφ = 10−18 eV

operator current bound type of experiment
d

(1)
e

4MPl
φFµνFµν d

(1)
e . 10−4 [64] DDM oscillations

d̃
(1)
e
MPl

φFµνF̃µν d̃
(1)
e . 2× 106 [73] Astrophysics∣∣∣d(1)

me

∣∣∣
MPl

φmeψeψ
c
e

∣∣∣d(1)
me

∣∣∣ . 2× 10−3 [64] DDM Oscillations

i

∣∣∣d̃(1)
me

∣∣∣
MPl

φmeψeψ
c
e

∣∣∣d̃(1)
me

∣∣∣ . 7× 108 [69] Astrophysics

d
(1)
g β(g)
2MPl g

φGµνGµν d
(1)
g . 6× 10−6 [63] EP test: MICROSCOPE

d̃
(1)
g

MPl
φGµνG̃µν d̃

(1)
g . 4 [74] Oscillating neutron EDM∣∣∣d(1)

mN

∣∣∣
MPl

φmNψNψ
c
N

∣∣∣d(1)
mN

∣∣∣ . 2× 10−6 [63] EP test: MICROSCOPE

i

∣∣∣d̃(1)
mN

∣∣∣
MPl

φmNψNψ
c
N

∣∣∣d̃(1)
mN

∣∣∣ . 4 [74] Oscillating neutron EDM

d
(2)
e

8M2
Pl
φ2 FµνFµν d

(2)
e . 106 [64] DDM oscillations∣∣∣d(2)

me

∣∣∣
2M2

Pl
φ2meψeψ

c
e

∣∣∣d(2)
me

∣∣∣ . 106 [64] DDM oscillations

d
(2)
g βg

4M2
Pl g

φ2GµνGµν d
(2)
g . 107 [63] EP test: MICROSCOPE.∣∣∣d(2)

mN

∣∣∣
2M2

Pl
φ2mNψNψ

c
N

∣∣∣d(2)
mN

∣∣∣ . 107 [63] EP test: MICROSCOPE

Table 3. Strongest existing bounds on various DM couplings for a mass of the order of mφ =
10−18 eV.

would vary with the density. The ratios dDDM
i /dEPi , are presented as a function of the

DM on-Earth density enhancement ρDM/ρ
�
DM for a few different benchmark DM masses

in figures 6–7. Although a density enhancement factor much larger than 105 is currently
not motivated by theoretical or experimental considerations [56, 59, 60], higher densities
are included for completeness. For (dme)

DDM / (dme)
EP and (de)DDM / (de)EP in figure 6,

the atomic/molecular clock sensitivity is taken to be ηDDM = 10−18 for all values of mφ.
For

(
dmq

)DDM
/
(
dmq

)EP and (dg)DDM / (dg)EP in figure 7, the nuclear clock sensitivity is
taken to be ηDDM = 10−24 for all values of mφ. The EP sensitivity is taken from current
experiments and depends on the mass of the DM.

As expected, an enhanced DM density would make the ratio between the DDM bounds
and the EP bounds smaller. In particular, for the electron coupling and for the photon
coupling, the hierarchy between the two searches may be flipped for masses greater than
∼ 10−15 eV. In addition, for the quadratic interactions, the DM density enhancement could
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linear theory: d
(1)
i
MPl

φOiSM quadratic theory: d
(2)
i

2M2
Pl
φ2OiSM

DDM bounds:
(
δYi
Y (t)

)
< ηDDM

d
(1)
i
MPl

√
2ρDM
mφ

d
(2)
i

2M2
Pl

ρDM
m2
φ

EP bounds:
(
δatest
a

)
< ηEP

(
d

(1)
i d

(1)
j

)
∆Qtest

i QEarth
j

1
M2

Pl

(
d

(2)
i d

(2)
j

)
∆Qtest

i QEarth
j

ρDM
m2
φ

Ratio: (d)DDM
(d)EP

MPlmφ
√

∆Qtest
i QEarth

i√
2ρDM

ηDDM√
ηEP

2MPlmφ
√

∆Qtest
i QEarth

i√
ρDM

ηDDM√
ηEP

Table 4. Theoretical estimation of the bounds on the linear and quadratic couplings between the
light scalar DM and the SM light fields. ηDDM and ηEP are defined as the sensitivity of the DDM
and EP experiments, respectively. Y is a fundamental constant Y ∈ (α, αs,mf ) and OSM is the
appropriate SM operator OSM ∈

(
1
4F

µνFµν ,
β(g)
2g G

µν
a Gaµν ,miψiψ

c
i

)
. The spatial dependence of

the bounds is disregarded (equivalent to taking the mφ � 1/RC limit for the linear case and the
d

(2)
i � dcrit

i limit for the quadratic case).

also effectively shift the onset of the critical behavior to higher masses, making DDM
searches sensitive to the quadratic couplings at these masses, as opposed to the ρDM = ρ�DM
case. Therefore, when considering the possibility of a larger DM density, the DDM and EP
searches may have competing sensitivities, making them complimentary.

2.2.2 Non-generic couplings

Let us discuss the bounds from the EP test experiments, which are generically stronger
than the constraints arising from the DDM searches for individual coupling in the region
10−18 eV . mφ . O( eV) [37, 64]. As discussed, the EP tests compare the dilatonic
charges of two test bodies. To calculate the “dilatonic charge” of an atom a with Z(N)
being the number of protons (neutrons), one can write the mass of an atom ma as,
ma(Z,N) = ma

nuc(Z,N) + Zme , where, ma
nuc is the mass of the nucleus of a. Furthermore,

the nucleus mass contribution can be decomposed in terms of the proton (mp) and the
neutron (mn) masses, and the binding energy of the strong (E3) and electromagnetic (E1)
interaction as, ma

nuc(Z,N) = Zmp +Nmn + E3 + E1 . Note that E1 is dominated by the
EM force within the nucleus, and thus we will ignore the electrons’ effect on it [46]. For a
generic atom a, the dilatonic charges, ~Qa, can be written as [46],

~Qa≈F a
(

3×10−4−4rI+8rZ , 3×10−4−3rI , 0.9 ,0.09− 0.04
A1/3−2×106r2

I−rZ ,0.002rI
)
.

In what follows we use the following notation for a vector ~X ≡ Xe,me,g,m̂,δm , with m̂ ≡ (md+
mu)/2, δm ≡ (md−mu), 104 rI;Z ≡ 1−2Z/A;Z(Z−1)/A4/3 , and F a = 931Aa/(ma/MeV)
with Aa being the atomic number of the atom a. The MICROSCOPE experiment [63,
77, 78], which provides the strongest EP bounds for masses below 10−12 eV, is sensitive
to the difference between the dilatonic charges of Platinum/Rhodium alloy (90/10) and
Titanium/Aluminum/Vanadium (90/6/4) which is given by

(
−→

∆Q )Mic ' 10−3(−1.94 , 0.03 , 0.8 , −2.61 , −0.19) .
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Figure 6. Ratio between DDM bounds and EP bounds on the DM-SM electron coupling dme (top)
and photon coupling de (bottom) as a function of the on-Earth DM density enhancement, relative
to the DM density at the solar position ρ�DM. Solid — ratio for the linear coupling d(1), dashed —
ratio for the quadratic coupling d(2). The vertical lines mark the minimal density enhancement
required to probe sub-critical quadratic couplings by DDM tests. The DDM sensitivity is taken to
be ηDDM = 10−18 for all DM masses mφ. The EP bound is taken as from existing EP-tests results.
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Figure 7. Ratio between DDM bounds and EP bounds on the DM-SM quark coupling dmq (top)
and the gluon coupling dg (bottom) as a function of the on-Earth DM density enhancement, relative
to the DM density at the solar position ρ�DM. Solid — ratio for the linear coupling d(1), dashed —
ratio for the quadratic coupling d(2). The vertical lines mark the minimal density enhancement
required to probe sub-critical quadratic couplings by DDM tests. The DDM sensitivity is taken to
be ηDDM = 10−24 for all DM masses mφ. The EP bound is taken as from existing EP-tests results.
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(
−→
∆Q ) for other experiments looking for EP violation are discussed in [23]. We find that
these sensitivities map to directions in the five-dimensional ULDM coupling space that
are very different from that of DDM searches, denoted by (

−→
∆κ )DDM, which usually have

O(1) sensitives for variations in α and me (e.g. [44, 79, 80] and refs. therein). Examining
the four best EP bounds, Cu-Pb [62], Be-Ti [61], and Be-Al [81] along with the previously
mentioned MICROSCOPE experiment, in the five-dimensional vector space of coupling,
we can construct a combination that would be orthogonal to all of them, approximately
given by,

Q̂⊥ ∼
(
0.01 , 0.99 , 0.01 , −0.01 , 0.13

)
. (2.1)

It implies that models of light scalar DM with coupling direction defined according to Q̂⊥ · ~d
would not be subject to these four leading EP bounds.

Here for simplicity, we consider an ULDM quadratically coupled to the SM and assume
two scenarios:

1. A model where only d(2)
me 6= 0,

2. A model defined by a vector of sensitivities, Q̂⊥ · ~d(2), that is orthogonal to the
sensitivities of the four leading EP test experiments.

We present the bounds on these two models in figure 8 by the solid and the dashed
lines, respectively. For the second model, we have projected the bounds on d

(2)
me as Q̂⊥

has a relatively significant overlap with the direction corresponding to me (the second
entry of it, which is the largest). Also for simplicity we have considered a DDM search
experiment, which only depends on me and thus the sensitivity vector can be written as
(
−→
∆κ )DDM = ( 0, 1, 0, 0, 0) . Note that, due to the large overlap of Q̂⊥ with the me direction,
the specific choice of (

−→
∆κ )DDM has a negligible effect on the final conclusion. In our case,

Q̂⊥ · (
−→
∆κ )DDM ' 0.99, which is approximately the sensitivity coefficients corresponding to

me. In addition, the sensitivity of both the EP tests and the DDM searches depend on the
geometry of the source body as discussed in eqs. (1.19) and (1.20) respectively. We also
assume a homogeneous spherically symmetric Earth as the source body, which is made of
32% Iron and 68% silicon oxide. With the above assumption, we get the dilatonic charge of
the source body as

Qsource ' 10−3 ( 1.87 , 0.27 , 1000.19 , 80.51 , 0.04 ) . (2.2)

As mentioned below eq. (B.6), the critical value of a coupling is inversely proportional
to the corresponding dilatonic charge of the source. In figure 8, we see that dcrit

me (shown
by the solid yellow line) is 35 times larger than the critical value of the second model
which is defined by a vector of sensitivities, Q̂⊥ · ~d(2) (shown by the dashed yellow line) as
Qsource · Q̂⊥ = 9.49× 10−3, whereas Qsource

me = 0.27× 10−3. Unlike the first model, where
only d(2)

me 6= 0, the second model is not constrained by the four leading EP experiments. In
the Q̂⊥ direction, the strongest EP bound is coming from the Be-Cu test [82] (the fifth best
one), which is more than five orders of magnitude weaker than the MICROSCOPE [63]
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experiment, which provides the most stringent bound for any model with only one non-zero
coupling [37]. The turquoise and the pink lines in figure 8 depict the strongest bounds from
the EP tests on the first and the second models, respectively. The black lines depict the
bounds from DDM searches located on the surface of the Earth, whereas the red and the
blue lines represent bounds from DDM searches located 400 km (average altitude of the
International Space Station) and 5000 km above the surface of the Earth (see [83] clock
proposal), respectively. See section 3.2 for more details. We have assumed the sensitivity of
the DDM searches to be ηDDM = 10−18. Note that, below criticality, even the terrestrial
DDM searches provide stronger bounds than the EP tests for both the scenarios discussed
here. These bounds are O(105) stronger than that of the EP test in the lower mass region.
As explained before, for a given sensitivity, the reach of the space-based DDM searches
is better than the Earth-based ones due to the screening effect of theories with quadratic
couplings. Above mφ & 2× 10−16 eV, the bound from the MICROSCOPE experiment is
slightly stronger than that of the space-based DDM searches for the first scenario, where
only d(2)

me 6= 0. However, for the second scenario, due to the considerable overlap of Q̂⊥ with
the me direction, the reach of the DDM searches is not reduced, unlike the EP tests. This
allows the space-based DDM searches to provide the strongest bound even for the higher
masses and above the critical value of the coupling. Around mφ ∼ 10−13 eV, the bounds
from DDM searches are O(109) stronger than the best EP bound (coming from the Be-Cu
test shown by the dashed magenta line in figure 8).

Let us consider a case where the five-dimensional coupling is universal, thus does not
violate EP. As discussed in [23], if a scalar-field coupling to the SM is defined according to
~Qdil · ~d(i) where i = 1, 2 with ~Qdil ' (−0.01, 1, 1, 1, 0) , then it will not be subjected to the
EP tests bounds. However, it will still give rise to deviations from the inverse square law
and, thus, will be constrained by fifth-force search experiments. To simplify our discussion,
we will consider the case of a linearly coupled scalar to the SM; however, our main result
also applies to a quadratically coupled theory.

To briefly see how the EP non-violation works, we know that gravity couples to the
Ricci scalar R, and using Einstein’s equation, one can write R ∝ Tµµ where Tµµ is the trace
of the energy-momentum tensor. Thus, if a scalar-field coupling to the SM is proportional
to Tµµ , it will not generate any EP violation. This is an idealistic limit and is realized only
in pure dilaton models, where the dilaton (φ) couplings are precisely given by

L ⊃ φ

fdil
Tµµ , (2.3)

where fdil is the conformal invariance breaking scale [84]. As discussed before and in [37, 46],
above interaction would induce a Yukawa interaction between two bodies. The interaction
strength can be written as

α = 1√
4πGN

∂ lnm(φ)
∂φ

∝ 1
fdil

. (2.4)

This shows that the dilaton coupling is universal, and the conformal invariance breaking
scale determines the coupling strength. The differential acceleration between two test bodies
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Figure 8. Exclusion plot for d(2)
me ; the solid lines assume a model where only d(2)

me 6= 0. The dashed
lines depict the bounds for a model defined by a vector of sensitivities, Q̂⊥ · ~d(2), that is orthogonal
to the sensitivities of four leading EP test experiments projected onto d(2)

me . The black lines depict
the bounds from DDM searches located on the surface of the Earth, whereas the red and the blue
lines represent bounds from DDM searches located at 400 km and 5000 km above the surface of the
Earth, respectively. We have assumed the sensitivity of the DDM searches is ηDDM = 10−18. The
magenta line depicts the strongest bound from the EP tests (which is coming from MICROSCOPE
experiment [63]) for only d(2)

me 6= 0 models. The pink line represents the strongest EP bound for
a model defined by a vector of sensitivities Q̂⊥ · ~d(2)(which is coming from Be-Cu test [82]). The
yellow lines represent the critical value of the couplings.
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is proportional to the difference between their Yukawa interaction strength, as shown in
eq. (A.5), and it vanishes due to the universality of the dilaton coupling. Thus, a pure
dilaton does not generate EP violation. However, it is easy to see using eq. (2.4) that in
the presence of a source with mass ms, the acceleration of a test body can be written as

~aA = −r̂GNm
S

r2

[
1 + 2M2

Pl
f2

dil
(1 +mdil r) e−mdil r

]
, (2.5)

where M2
Pl = 1/(8πGN ) and mdil is the mass of the dilaton. The above equation shows that

the presence of a dilaton causes deviation from 1/r2 force and thus can be constrained by
various experiments that test for deviations from Newtonian gravity (fifth-force searches)
(see [45] and refs. therein). We are also assuming that the dilaton would acquire a small
mass from a sector other than the SM [85] in order to be a viable DM candidate [3].

So far, we have argued a scalar that interacts with the SM as given in eq. (2.3) would
not violate EP but would give rise to deviations from Newtonian gravity. Now to get the
direction in the five-dimensional coupling space, we need to write the expression for Tµµ .
Assuming that the SM is valid up to the scale fdil, Tµµ can be written as

Tµµ = β(g)
2g G2 + β(g2)

2g2
W 2 + β(y)

2y B2 + (1− γ)
∑
ψ

mψψ̄ψ , (2.6)

where g, g2 are the coupling strength of SU(3) and SU(2) gauge groups, respectively, y
represents the hypercharge corresponding to U(1)y, and G, W and B are the corresponding
gauge fields respectively. Also, ψ denotes the SM fermions with mass mψ. For simplicity,
in the above formula, we assume that the conformal breaking scale fdil is far below the
Landau pole of U(1)y and above the electro-weak (EW) scale. As Tµµ is invariant under the
evolution of the Renormalization Group (RG) equation (manifested in the above equation),
the dilaton always couples through anomaly matching to the same quantity at any scale µ.
For our purpose, we consider our theory at µ = 1 GeV and Tµµ can be expressed as,

Tµµ = β(gs)
2gs

G2 + β(e)
2e F 2 +

∑
ψ

mψψ̄ψ . (2.7)

In the above equation, we have redefined the fermion masses in terms of their pole masses.
Combining this with eq. (2.3) and along with our convention of defining a vector in the
five-dimensional coupling space, we can write the dilaton coupling vector, ~Qdil as

~Qdil = (−2β(e)
e

, 1, 1, 1, 0) , (2.8)

where e is the electric charge and β(e) = e3/(12π2). As below me ∼ MeV, the theory
essentially becomes free, we find 2β(e)/e ∼ e2/(6π2)× 10 ∼ 0.015 as log(GeV/MeV) ∼ 10.
Thus, we get ~Qdil = (−0.01, 1, 1, 1, 0) . Thus, we have argued that a scalar field (the
dilaton), whose coupling is defined according to ~Qdil · ~d(1), will not generate an EP-violating
acceleration, as the direction is indistinguishable from that of gravity. In figure 9 we show
the bounds from various fifth-force searches projected on the d(1)

me and d(1)
g directions on a
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Fifth force

Figure 9. Bounds from various experiments which are looking for EP-violation and/or deviation
from Newtonian gravity (fifth force searches) on d

(1)
me (left) and d

(1)
g (right). The turquoise lines

show the strongest constraints from various EP violation searches [61–63, 81] assuming a model
where only d(1)

i 6= 0 where i = me, g. The blue lines depict the strongest bound coming from various
fifth force experiments (see [45, 88, 89] and refs. therein). The red dashed lines indicate d(1)

i = 1.

pure dilaton model by the blue solid line. For comparison, we also show the bounds from
various EP tests on a model which only couples to either me or gluon field strength linearly
i.e. L ⊃ d

(1)
meφmeēe/MPl or L ⊃ d

(1)
g β(g)φG2/(2gMPl) by the turquoise line. Various

constraints on these models are shown in details in figure 2 and figure 5 respectively.
We, finally, note that if the dilaton couplings are not perfectly aligned with that

obtained from the trace of the energy-momentum tensor, it will generate EP-violating
acceleration as discussed in [86, 87].

3 Quadratic interactions and screening

In the previous section, we observed that the bounds on the quadratic couplings are weaker
than the bounds on the linear couplings. One reason is the cutoff-suppression, attenuating
the effects of the quadratic coupling by a factor of φ/ΛUV compared to those of the linear
coupling, where ΛUV is the UV scale that characterizes the EFT. This happens as a
quadratic couplings represents a higher-dimensional effective operator than the linear one.

The other reason is the fact that the quadratic coupling might be screened at the surface
of a central body as discussed in section 1.2.1, as well as in appendix A, and previously
in [37]. Below we discuss two important scenarios that alter the effects of the screening
behavior. The first is a theoretical one — a model in which both linear and quadratic
couplings are present simultaneously, and the second is an experimental one — positioning
DDM experiments in space.

3.1 Screening and criticality in a model with both linear and quadratic
couplings

Let us discuss the sensitivity of EP tests and DDM searches in the presence of both
linear and quadratic couplings between the ULDM and the SM. While the interplay of
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linear and quadratic interactions has been previously discussed in the context of non-DM
models [90], the DM boundary condition plays a crucial role in setting the field’s profile,
and thus leads to qualitatively and quantitatively different results. As we will show here,
a theory with linear and quadratic couplings has more severely constrained linear and
quadratic couplings than a theory with only one of the couplings turned on. Also, in the
presence of both the couplings, there is a small region of the parameter space where the
DDM bounds are stronger than those of the EP tests.

The Lagrangian of that model can be written as

L = Llin-int + L quad-int , (3.1)

where Llin-int and L quad-int are defined in eq. (1.2) and eq. (1.8) respectively. As we are
interested in calculating the sensitivities of DDM searches and EP tests, we would like to
solve for the profile of φ. As discussed above, we assume a homogeneous boundary condition
at large distances for φ i.e.

φ(r →∞, t) = φ0 cos(mφt+ δ) , (3.2)

with φ0 =
√

2ρDM/mφ. The EOM of this combined model is(
∂2

∂t2
−∇ · ∇+ m̃2

φ (r)
)
φ = Jsource (r) , (3.3)

where we define

m̃2
φ (r) ≡ m2

φ + QCi d
(2)
i

M2
Pl

ρC (r) and Jsource (r) ≡ −Q
C
i d

(1)
i

MPl
ρC (r) . (3.4)

Notice that the linear coupling, d(1)
i , provides a source term for the EOM whereas the

quadratic coupling d(2)
i modifies the mass term of φ. As discussed in [37], in the presence of

a source body C, the SM fields can be replaced by the density of the source body ρC (r)
with corresponding dilatonic charge QCi , where i runs over the SM species coupled to the
ULDM. If we model the source body C as a uniform density sphere of radius RC and mass
MC , then one can write

ρC (r) =


3MC

4πR3
C

r ≤ RC
0 r > RC .

(3.5)

See the discussion around eq. (B.1) for more details. The solution of the EOM given in
eq. (3.3) with the boundary condition of eq. (3.2) can be written as

φ (r, t) =


φ0 cs

sinhc
(

r
RC

√
d

(2)
i /dcrit

i

)
cosh

[√
d

(2)
i /dcrit

i

] −MC
r2

R3
C

QCj d
(1)
j

MPl
I (m̃φr) e

−m̃φr

4π r < RC

φ0 cs
(
1− sC [d(2)

i ]GMC
r

)
−MC

QCj d
(1)
j

MPl
I (mφRc) e

−mφr

4πr r ≥ RC ,

(3.6)
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where we define cs = cos (mφt+ δ) and the functions I(x) and sC [d(2)
i ] are given by

I(x) = 3 x cosh x− sinh x
x3 , s

(2)
C [d(2)

i ] = QCi d
(2)
i J+

(√
d

(2)
i /dcrit

i

)
. (3.7)

In addition, dcrit
i = RC/(3QCi GMC) as defined before, and the function J+(x) is defined as

J+(x) = 3(x− tanh x)/x3 [37]. G and MPl can be used interchangeably with 4πG = 1/M2
Pl .

Using the solution of the EOM for r ≥ RC , and assuming the signal will be time averaged,
we get the sensitivity of the EP tests as

ηEP(r) = 2 |~aA,C − ~aB,C |
|~aA,C + ~aB,C |

' (∆Q)ABi
GMC/r2

(
d

(1)
i

MPl
+ d

(2)
i

M2
Pl
φ

)
|~∇φ|

' (∆Q)ABi

(
s

(2)
C [d(2)

j ]d(2)
i

φ2
0

2M2
Pl

[
1− s(2)

C [d(2)
j ]GMC

r

]
+QCj d

(1)
j d

(1)
i I(mφRC) (1 +mφr) e−mφr

−
(
QCj d

(1)
j

)2
d

(2)
i

GMC

r
I(mφRC)2 (1 +mφr) e−2mφr

)
, (3.8)

and the sensitivity of DDM searches as

ηDDM
ω (r) = |δY (t)|

Y
≈ ∆κid(2)

i

2M2
Pl
× φ2

0

(
1− sC [d(2)

j ]GMC

r

)2
Fω
(
cs2
)

− ∆κid(2)
i

M2
Pl

MCQ
C
j d

(1)
j

MPl
I (mφRc)

e−mφr

4πr × φ0

[
1− sC [d(2)

k ]GMC

r

]
Fω (cs)

+ ∆κid(1)
i

MPl
× φ0

(
1− s(2)

C [d(2)
j ]GMC

r

)
Fω (cs) . (3.9)

We want to describe the screening effect in this model. As most of the DDM searches
are terrestrial, in this section we consider them to be performed very close to the surface of
the source body, i.e., at r ' RC . In section 3.2 we discuss the space based DDM searches
where r & RC .

As discussed before, in a model where the DM interacts only quadratically with the
SM, if the coupling is larger than the critical value, the DDM sensitivity is screened, and
the dependence on the quadratic couplings is suppressed. However, in a model with both
linear and quadratic couplings, due to the mixed d(2)d(1) term, there is no such criticality
for the DDM searches.

To see how it works, let us start with the case when d(2)
i � dcrit

i . In this limit s(2)
C [d(2)

i ]
can be written as eq. (B.6) and we get,

1− s(2)
C [d(2)

i ]GMC

r
=

√√√√dcrit
i

d
(2)
i

+O
(∆r
RC

)
, (3.10)
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and eq. (3.9) becomes

ηDDM(ω)
∣∣∣(
d

(2)
i �d

crit
i , r'Rc

) ≈ ∆κi
M2

Pl
φ2

0 d
crit
i ×Fω

(
cs2
)

− ∆κi
MPl

φ0

 QCj3QCi
d

(1)
j

√√√√ d
(2)
i

dcrit
i

 I (mφRc) e−mφRc ×Fω (cs)

+ ∆κj
MPl

φ0

d(1)
j

√√√√dcrit
i

d
(2)
i

×Fω (cs) +O
(∆r
RC

)
. (3.11)

As expected, the above equation shows that if we have only quadratic couplings, i.e., d(1)
i = 0,

then DDM searches become insensitive to the quadratic couplings, as the sensitivity does
not depend on d(2)

i in the supercritical limit. However when d(1)
i 6= 0, it is sensitive to

√
d

(2)
i .

We can further simplify the above expression for mφ � 1/RC as

ηDDM (ω)
∣∣∣(
d

(2)
i �d

crit
i , r'Rc�1/mφ

) ≈ − ∆κj
3MPl

φ0 d
(1)
j

√√√√ d
(2)
i

dcrit
i

×Fω (cs) +O
(

∆r
RC

,
dcrit
i

d
(2)
i

)
,

(3.12)

and for mφ � 1/RC as

ηDDM
∣∣∣(
d

(2)
i �d

crit
i ,r'Rc�1/mφ

)≈ ∆κj
MPl

φ0 d
(1)
j

√√√√ d
(2)
i

dcrit
i

(
dcrit
i

d
(2)
i

− 1
2m2

φR
2
C

)
×Fω (cs)+O

(∆r
RC

)
,

(3.13)

by noting the limiting case of the function I(x)

lim
x→0

I(x)→ 1 and lim
x→∞

I(x)e−x → 1
2x2 . (3.14)

For completeness we also discuss the case of small quadratic coupling, d(2)
i � dcrit

i . In this
case sC [d(2)

i ] ' QCi d
(2)
i and eq. (3.9) becomes

ηDDM
∣∣∣(
d

(2)
i �d

crit
i , r'Rc

) ' ∆κid(2)
i

2M2
Pl
× φ2

0 cs2 + ∆κid(1)
i

MPl
× φ0 cs +O

(
d

(2)
i

dcrit
i

)
, (3.15)

for all masses.
In figures. 10–11, we present the allowed parameter space of a model with both the

linear and quadratic couplings for different masses of the DM. We notice that introducing
a non-zero quadratic coupling changes the bounds on the linear coupling and vice-versa.
This means that a theory that has both linear and quadratic couplings has a stronger
constraint on each compared to a theory with only one of the couplings. Despite that, we
see that in most of the parameter space of interest, the EP bounds from the linear coupling
are still the dominant ones. Due to the scalar field profile in the presence of both linear
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and quadratic couplings, there is a small region of the parameter space where the DDM
bounds are stronger than the EP bounds, as can be seen in all the figures below. This could
be of potential interest to DDM searches whose accuracy has improved vastly in the last
few years.

The above observation motivates us to present a few models where the linear couplings
are suppressed compared to the quadratic ones. We require that these theories are natural
in the sense that there is no fine-tuning in order to achieve such hierarchies between the
small values of the linear coupling compared to the relatively large values of the quadratic
coupling. We present two such models within the Clockwork framework in section 5.4, and
another model of within the Relaxed Relaxion framework in section 6.2.3.

3.2 Screening and criticality in space

Since the screening of the ULDM is most dominant at the surface of the Earth, experiments
done further away are less affected by it, as can be seen by eq. (1.11). This is the key to
the dominance of the MICROSCOPE EP test, positioned at an altitude of roughly 700 km,
over the bounds on the quadratic coupling. If, however, DDM searches are also performed
in geocentric orbits, they too would become sensitive to the ULDM quadratic couplings. To
demonstrate this point, we show in figure 12 the bounds on the electron coupling and photon
coupling, d(2)

me and d(2)
e respectively, as expected for DDM experiments with sensitivities

of 10−18, and 10−20, located at 400 km, 5000 km, and 23000 km above the surface of the
Earth. Below we survey some of the recent proposals with the potential to launch highly
sensitive DDM experiments into space.

The NASA Deep Space Atomic Clock (DSAC) mission has recently demonstrated a
microwave trapped ion clock based on Hg+ ions achieving a factor of 10 improvement over
previous space-based clocks [91]. The such clock was proposed for the auto-navigation
of spacecraft [92]. Cold atom microwave clock was demonstrated in space in [93]. The
ACES (Atomic Clock Ensemble in Space) mission [94] is planned to perform an absolute
measurement of the red-shift effect between the microwave PHARAO clock on-board the
International Space Station (ISS) and clocks on Earth, to improve such limit by an order
of magnitude.

The progress in the development of optical clocks has been extraordinary, with three
orders of magnitude improvement in uncertainty over the last 15 years [95]. Several optical
clocks have reached uncertainty at the 10−18 level (see, e.g., [96]), with further improvements
expected as there is no apparent technical limit. Portable high-precision optical clocks
were also demonstrated [97], which is a prerequisite for space deployment. Various clock-
comparisons and clock-cavity comparison experiments are sensitive to d(i)

e , d(i)
me , and d

(i)
g .

The applications of the different clock types of clocks and optical cavities for ULDM searches
were recently reviewed in [98].

Deployment of high-precision optical clocks in space will enable both practical and
fundamental applications, including tests of general relativity [83], DM searches [99],
gravitational wave detection in new wavelength ranges [100, 101], relativistic geodesy [102],
linking Earth optical clocks [103], and others. The roadmap for cold atom technologies in
space has been outlined in [104]. In the present work, we demonstrate another window of
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Figure 10. Allowed parameter space for the linear and quadratic electron coupling for masses of
mφ = 10−13 eV (top), 10−15 eV (bottom).

opportunity to study ULDMwith clocks in space, taking advantage of the space environments
that are drastically different from that of the Earth. Being away from the Earth’s surface
allows us to test the quadratic models described above. We used orbital parameters of
proposal [83] as an example in section 2.2.2. Ref. [83] describes a space mission concept
that would place a state-of-the-art optical atomic clock in an eccentric orbit around Earth.
The main mission goal is to test the gravitational red-shift, a classical test of general
relativity, with sensitivity 30,000 times beyond current limits by comparing clocks on Earth
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Figure 11. Allowed parameter space for the linear and quadratic gluon coupling for masses of
mφ = 10−14 eV (top), 10−15 eV (bottom).

and the spacecraft. A high stability laser link between the Earthbound and space clocks
is needed to connect the relative time, range, and velocity of the orbiting spacecraft to
Earthbound stations. In general relativity, the tick rate of time slows in the presence of
massive bodies, and locating one or more clocks in orbits around the Earth provides a
low-noise environment for tests of gravity. Sr high-precision optical atomic clock aboard
an Earth-orbiting space station (OACESS) [105] was proposed for DM searches, including
static or quasi-static apparent variations of me with changing height above Earth’s surface

– 29 –



J
H
E
P
1
0
(
2
0
2
3
)
0
4
2

and transient changes in the apparent value of α due to the passage of a relativistic scalar
wave from an intense burst of extraterrestrial origin. The goal of this pathfinder mission
is to compare the space-based high-precision optical atomic clock (OAC) with one or
more ultra-stable terrestrial OACs to search for space-time-dependent signatures of dark
scalar fields that manifest as anomalies in the relative frequencies of station-based and
ground-based clocks. The OACESS will serve as a pathfinder for dedicated missions (e.g.,
FOCOS described above [83]) to establish high-precision OAC as space-time references in
space. We used the orbital parameters of the International Space Station (∼ 400 km above
the surface of the Earth) and FOCOS mission proposal [83] in figure 8 and figure 12.

A version of the such proposal with a state-of-the-art cavity will enable test the quadratic
models by also running a clock-cavity experiment as carried out in [64], sensitive to d(2)

e

coupling. We note that a time transfer link to Earth is not required for such an experiment.
The clock-comparison experiment in space involving a molecular clock will also be sensitive
to d(2)

me . Molecular clocks are projected to reach 10−18 uncertainties [106].
In ref. [99], a clock-comparison satellite mission with two clocks onboard to the inner

reaches of the solar system was proposed to search for a DM halo bound to the Sun and to
look for the spatial variation of the fundamental constants associated with a change in the
gravitation potential. Various clock combinations were considered to provide sensitivities
to various couplings. This work showed that the projected sensitivity of space-based clocks
for the detection of Sun-bound DM halo exceeds the reach of Earth-based clocks by orders
of magnitude. This mission in its proposed form can be used to test the quadratic coupling
models. A DM halo bound to the Sun can drastically improve the experimental reach due
to much higher DM densities.

4 Theoretical challenges of models with quadratic couplings

In this section, we describe the theoretical issues related to theories with sizable quadratic
couplings. The first is the EFT expectation setting a hierarchy between the linear and
the quadratic couplings of a generic theory. The second is the naturalness problem caused
by the lightness of the scalar, as a desirable large scalar quadratic coupling is associated
with high corrections to the scalar mass. In section 5, we present the symmetry principles
that can give rise to a large hierarchy between linear and quadratic interactions, and in
section 6 we present a model in which in addition the scalar is kept dynamically light even
for detectable quadratic couplings.

Linear vs. quadratic EFT: Consider any naive dimension 4 (not necessarily of anoma-
lous dimension greater than 4) SM operator, OSM. Since the action of the theory is
dimensionless, any coupling between the scalar DM field and this operator has to be sup-
pressed by some cutoff of the theory, denoted by Λ. For a linear coupling, we have only one
power of Λ suppression, φ

ΛOSM, while for a quadratic coupling, we have two powers of Λ
suppression, φ2

Λ2OSM. In the Wilsonian picture of RG, Λ is expected to be the largest scale
of the described system. As a result, we naively expect a large hierarchy between the linear
and quadratic interaction strength.
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Figure 12. The bounds on the quadratic interactions with electrons (top) and photons (bottom)
from a hypothetical DDM experiment done on satellites orbiting at different radii.
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Figure 13. 1-loop correction to the new scalar mass in the
d(2)
mψ

Λ2 mψφ
2ψψc model.

Naturalness: Consider the following interaction between the DM field and the SM
fermions,

Lint = d
(2)
me

Λ2 meφ
2ψeψ

c
e , ρA = ψeψ

c
e , (4.1)

where ψe is the electron field. In a natural model, the quantum corrections to the mass of
the light scalar, δm2

φ, are small compared to the classical bare mass parameter, m2
φ. The

simplest 1-loop diagram that contributes to δm2
φ is presented in figure 13. Given the above

electron coupling, the diagram gives the following mass correction

δ(m2
φ)1-loop ∼ 4

16π2 ×
d

(2)
me

Λ2 (meΛeUV)2 , (4.2)

where me is the electron mass, and Λe
UV is the effective cut-off of the loop in figure 13,

where new degrees of freedom are required to cancel the UV sensitivity of the scalar mass.
The requirement δm2

φ . m
2
φ yields

ΛeUV . Λ 2π√
d

(2)
me

mφ

me
. (4.3)

For an ultra-light scalar, a measurable coupling of eq. (4.1) requires a very small cutoff of
the theory. For example, if we parameterize the experimental reach in terms of the effective
temporal variation of the electron mass δme/me, induced by the ULDM field φ, we find that

ΛeUV .
2π
me

√
2ρDM

(δme/me)exp . 20 eV
(

10−18

(δme/me)exp

)1/2(
ρDM
ρ�DM

)1/2

, (4.4)

where, ρ�DM = 0.4 GeV/(cm)3 is the mean galactic DM energy density, similar to the one
expected in our solar system [58], and (δme/me)exp is defined as the experiment sensitivity
to the variations of the electron mass. The relatively low cutoff of eq. (4.4) is theoretically
unfavorable, as it suggests that there exist some new fields with masses below 20 eV that
are coupled to the SM fermions. The same analysis can be done for DM coupling to the
photons, the quarks and the gluons as well. The quarks couplings yield the following bound

Λq
UV .

2π
mq

√
ρDM

(δmq/mq)exp . 1 keV
(

10−22

(δmq/mq)exp

)1/2(
ρDM
ρ�DM

)1/2

. (4.5)

Due to the difference in the degree of divergence, the parametric form of the cut-offs for
the DM couplings to the photons and the gluons are different than that of eqs. (4.4)–(4.5).
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For the gluon coupling, we get

Λg
UV .

(
8π2 ρDM

(δαs/αs)exp

)1/4
. 40 keV

(
10−22

(δαs/αs)exp

)1/4(
ρDM
ρ�DM

)1/4

. (4.6)

The cutoff can be raised if the on-Earth DM density, which drives the oscillations
observed in terrestrial DDM searches, is enhanced compared to the mean galactic DM
density.3 Note that while the parameterisation above can be easily applied to any DDM
experiment probing such oscillations, the effect of a DM density enhancement on the
experimental sensitivity is model-dependent and experiment-dependent. One should also
note that the, existence of new physics at the keV scale is constrained by various astrophysical
and cosmological considerations, which are subjected to recent critical investigations [107,
108]. A linear coupling between the DM and the SM may also possess a naturalness problem
for CP-even scalars. However, it could be protected due to the existence of accidental/non-
accidental symmetries, which are absent in the case of a quadratic coupling. In addition,
a CP-odd linear theory can be embedded in an axion-like theory, thus protected from a
fine-tuning problem, as explained in the following section.

5 Examples of technically-natural models of DM with quadratic
interactions

In this section, we survey a few models which yield a technically-natural hierarchy between
the linear ULDM coupling and the quadratic one, allowing the quadratic interactions to
dominate the phenomenology of the ULDM. We begin by addressing the symmetries
protecting these couplings in the agnostic EFT approach, identifying those that may retain
the linear couplings small in subsection 5.1. We then specify two models in which the
linear interactions are absent — a pseudo Nambu-Goldstone boson (pNGB) effective model
in subsection 5.2 and a UV-complete Higgs-portal model in subsection 5.3. Finally, in
subsection 5.4 we present two variations of the Clockwork framework in which the hierarchy
between the linear and the quadratic couplings can be ameliorated in a technically-natural
way. Although these models present theoretically-sound mechanisms for altering the naive
hierarchy between the strength of the quadratic and the linear interactions, a naturally
light scalar implies the quadratic interactions despite being dominant, are beyond the reach
of current and near future DDM searches. We present a possible solution to this issue in
section 6.

5.1 EFT perspective of the linear vs. the quadratic couplings

In this subsection, we analyze the effective interaction between the φ sector and the SM
without specifying a UV model. We consider the following three types of operators,

Lint (φ) = clin1 φOSM + clin2 ∂µφJ
5µ
SM + cquad1 φ2OSM . (5.1)

Here we assume φ is a light pNGB and thus a pseudo-scalar, while OSM is taken to be a dimen-
sion four, CP-even operator, consist of SM fields only, such as OSM = FµνF

µν , mψψψ
c etc,

3A much higher density is allowed if the DM is forming a halo around the Earth [11, 56, 75].
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U (1)shift CP Zφ2

clin1 φOSM x x x
clin2 ∂µφJ

5µ
SM � � x

cquad1 φ2OSM x � �

Table 5. Symmetry preserving and symmetry breaking operators.

J5µ
SM = ψ̄γµγ5ψ is the SM axial current. At this point, we ignore possible self coupling of φ

and the possible interactions with some hidden sectors.
In general, we expect the linear φ couplings to dominate over the quadratic couplings

unless the quadratic φ2 couplings are protected by symmetry. In this context, we consider
three types of accidental symmetries that act non-trivially on the field φ

Gglobal ⊃ U(1)Φ × CP × Zφ2 . (5.2)

The U(1)Φ symmetry is a non-linearly realized global U (1) group, which acts as a constant
shift for a pNGB, thus protecting the pNGB from acquiring a mass. Thus, the smallness of
the DM mass φ is protected by a shift symmetry,

U(1)Φ : φ 7→ φ+ α . (5.3)

Therefore, unless the SM is charged under the U(1)Φ group, both clin1 φOSM and cquad1 φ2OSM
breaks this symmetry. Moreover, we consider both CP and Zφ2 to act similarly on the field
φ. CP is an external symmetry with well-defined transformation rules for the SM fields,
while the internal Zφ2 can be taken to affect only φ. For example, we consider the action of
the discrete groups as follows

Zφ2 : φ 7→ −φ , (5.4)

while a general CP transformation in an arbitrary basis can be written as

CP : φ (t, ~x) 7→ −φ (t,−~x)
OSM (t, ~x) 7→ OSM (t,−~x) (5.5)

∂µJ
5µ
SM (t, ~x) 7→ −∂µJ5µ

SM (t,−~x) . (5.6)

Each operator in eq. (5.1) may break one or more of the global symmetries. We
summarize the symmetry breaking pattern in table 5. In principle, each symmetry can
be broken by a different sector. Thus, the naive expectation that the highly irrelevant
operators such as φ2OSM are less relevant than the linear ones does not hold. Moreover, the
Zφ2 is considered a good approximate symmetry if the internal Zφ2 is highly protected. Thus,
the quadratic coupling i.e. cquad1 φ2OSM, can have the leading effect on the violation of EP
and/or oscillations of the fundamental constants. The difference between the quadratic
theory and a linear is emphasized through the analytic expressions of the EP constraints, as
shown in eq. (1.19) and eq. (1.17). As discussed below eq. (1.9), a quadratically coupled DM
induces fundamental constants oscillations at an angular frequency of ω = 2mφ compare
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to that of the a linear coupling such as clin1 φOSM (clin2 ∂µφJ
5µ
SM) which yields fundamental

constant oscillations (spin precision) at an angular frequency of ω = mφ. In order to be
able to probe both the quadratic and the CP-even linear interaction in DDM experiments,
we must require that both the couplings are not suppressed compared to one another. This
criteria posses an apparent tuning problem from the perspective of a naive EFT analysis.
which can be ameliorated as shown in subsection 5.4.

5.2 A Simple pseudo-Goldstone model as a naturally ultra-light scalar DM
candidate

There are several ways to avoid the naturalness requirement of a small effective cutoff. One
of the most appealing solutions is to consider φ as a pNGB of some Spontaneous Symmetry
Breaking (SSB). In the non-linear sigma model description of the Goldstone interactions,
one must add an appropriate linear φ coupling, as well as other polynomial powers of φ
interactions. The low energy theory of a spontaneous broken U(1)Φ symmetry can be
described by

LEFT = LSM + f2

2 ∂µU
†∂µU −mψUψψ

c + 1
Λ2∂µU

†∂µUmψUψψ
c + . . .+ h.c. , (5.7)

where U = e
iφ
f , ψ is some SM fermion with mass mψ, f is the scale at which U(1)Φ is

broken spontaneously, Λ & f is the cutoff of the theory, and the ellipsis represents higher
derivatives and/or higher dimensional irrelevant operators in the Lagrangian. As shown in
eq. (5.14), the last term of eq. (5.7) gives rise to a quadratic interaction between the SM
fermions and φ. This derivative term arises naturally from the low-energy physics and does
not require an ad-hoc source in the UV. For example, consider a complex scalar field with
a U(1)Φ preserving potential

V (Φ†Φ) = λΦ

(
Φ†Φ− f2

2

)2

. (5.8)

This potential results in the SSB of the U(1)Φ symmetry. Therefore, at low energies,
expanding around the true vacuum of the theory, one finds a mass less Goldstone boson, φ,
appearing as the phase of the complex scalar as

Φ = f + ρ√
2
e
iφ
f , (5.9)

where ρ is the radial mode of Φ with mass mρ ∼ f . The above parameterization manifestly
provides an interaction between ρ and φ, which arises from the kinetic term of Φ as

∂µΦ†∂µΦ ' ∂µ
(
f + ρ√

2
e
−iφ

f

)
∂µ

(
f + ρ√

2
e
iφ
f

)
= 1

2∂µρ∂
µρ+ 1

2∂µφ∂
µφ+ 1

2f2 (f + ρ)2 ∂µφ∂
µφ . (5.10)

Thus, eq. (5.10) suggests that upon integrating out the radial mode, a coupling between
ρ and the SM will result in a low energy effective coupling between ∂µφ∂µφ and the SM.
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Going back to eq. (5.7) and expanding the exponent in terms of the small fluctuations of
φ/f , one finds

LEFT ⊃ LSM + 1
2∂µφ

†∂µφ−mψ

(
1 + i

φ

f
− φ2

2f2 + . . .

)
ψψc

+ 1
m2
ρf

2∂µφ
†∂µφmψ

(
1 + i

φ

f
− φ2

2f2 + . . .

)
ψψc + . . .+ h.c. . (5.11)

The corrections to δm2
φ from the quadratic φ2ψψc are exactly canceled by the corrections

from the other interactions. As already mentioned, this cancellation is guaranteed by the
shift symmetry of φ, which is a non-linear realization of the original U(1)Φ symmetry. This
non-linearly U(1)Φ symmetry also forbids any potential of φ as well which is manifested in
a different basis. To see how it works, one can do an axial field redefinition as

ψ −→ e
i φ2f ψ , ψc −→ e

i φ2f ψc , (5.12)

which yields the following effective Lagrangian

L′EFT ⊃ LSM + 1
2∂µφ

†∂µφ−mψψψ
c − 1

f
∂µφJ

µ
A + 1

m2
ρf

2∂µφ∂
µφmψψψ

c + . . .+ h.c. ,

(5.13)
where JµA = ψ̄σ̄µ∂µψ + ψ̄cσ̄µ∂µψ

c is the axial current. Note that we ignored any anomalies
as these can be eliminated by an appropriate choice for the U(1)Φ charges of the other
fermions. Even in the absence of anomalies, the shift symmetry would be explicitly broken
by a soft mass term for φ, related to its nature as a DM candidate. Therefore, by using
the EOM for φ, one can replace, to leading order, ∂µφ∂µφ→ m2

φφ
2, yielding an interaction

term similar to the one in eq. (4.1)

Lnatint = 1
Λ2f2mψ∂µφ∂

µφψψc −→
m2
φ

Λ2f2mψφ
2ψψc . (5.14)

As expected, this implies that a natural d(2)
mi coupling would be proportional tom2

φ, protecting
mφ against radiative corrections.

The model presented above is usually discussed in the context of ALPs. As we are
interested in the (pseudo) scalar-electrons coupling, we note that it is strongly constrained
by stellar evolution consideration, as those couplings provide alternative channels for stellar
energy loss processes [109–111]. For instance, the most stringent bound on the pseudo-scalar
electron-Yukawa coupling, L ⊃ igpeφψ̄eγ5ψe, is gpe . 3× 10−13 , obtained from the evolution
of red giants [109]. This can be translated to a bound on the ALP decay constant as
f & 2 × 109 GeV . The temporal oscillation of the mass of electron for an ALP decay
constant allowed by cosmological consideration can be written as

δme

me
' ρDM

f4 . 2× 10−79
(

2× 109 GeV
f

)4(
ρDM
ρ�DM

)
, (5.15)

which for detection, requires unrealistically high precision from the current and the near
future DDM searches [43].
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Below, we present different types of light scalar models which do not generate a linear
axion-like interaction of the form 1

f ∂µφJ
µ
A, or in which such linear interaction is suppressed,

and are thus significantly less constrained. In these models, φ mainly interacts with the SM
via its quadratic derivatives. These interactions can be naturally obtained from the kinetic
mixing between φ and its radial mode, as shown in eq. (5.10).

One example of such realization which leads to quadratic φ2 couplings without linear
couplings is to consider the Zφ2 even coupling of a complex scalar field Φ as

LΦ−SM = LSM + ∂µΦ†∂µΦ + V (Φ†Φ) + 16π2 Φ†Φ
Λ ψψc , (5.16)

where ψ,ψc are some SM fermionic fields with mass mψ, Λ is the cut-off scale of the effective
interaction. As explained in section 4, imposing a U(1)Φ symmetry that acts solely on Φ
ensures that Φ may only couple to the SM through powers of Φ†ΦOsSM or higher derivative
powers, where OsSM is an operator contains the SM fields which is a singlet of all SM
symmetries.

Using eq. (5.10) and the last term of eq. (5.16), after integrating out the radial mode ρ
at energies below mρ, we get an effective interaction between ∂µφ∂µφ and the SM fermion
ψ as,

LEFT ⊃
16π2

Λm2
ρ

∂µφ∂
µφψψc . (5.17)

We require that the effective cutoff would be the largest scale of the EFT, and thus

Λ & Max [4πf,mψ] ⇒ Λ & Max [mρ,mψ] . (5.18)

Note that the interaction term between the Φ sector and the SM explicitly breaks the chiral
symmetry and generates a correction to the SM fermion mass at the tree-level. Assuming
no fine cancellation against other contributions to the fermion mass, we require that the
correction to mψ from eq. (5.16) is smaller than the physical value found in experiments.
Thus,

δmψ = 16π2

Λ
f2

2 . mψ ⇒ Λ & 16π2 f2

2mψ
. (5.19)

By the consistency of the Goldstone theory, where mρ . 4πf , we obtain

Λ &
m2
ρ

2mψ
. (5.20)

We note that if the radial mode ρ is lighter than ψ, we expect eq. (5.18) to give a stronger
lower bound on Λ than eq. (5.20) as,

Λ & Max
[
m2
ρ

2mψ
, mρ ,mψ

]
& mψ . (5.21)

However, as the strength of the φ2 interactions is inversely proportional to Λ, raising the
cut-off requires a higher experimental sensitivity to detect the temporal variation of mψ. If

– 37 –



J
H
E
P
1
0
(
2
0
2
3
)
0
4
2

we parameterise the sensitivity of a DDM search experiment in terms of the variation of
the electron mass (δme/me), the maximal Λ such an experiment can probe is

Λ . 1 MeV
(

10−18

(δme/me)exp

)(
30 eV
mρ

)2(
ρDM
ρ�DM

)
. (5.22)

This translate to a bound on the mass of the radial mode, which has to satisfy

mρ . 45 eV
(

10−18

(δme/me)exp

)1/2(
ρDM
ρ�DM

)1/2

. (5.23)

The characteristic sensitivity of (δme/me)exp ∼ 10−18, would allow probing models with ρ
as heavy as mρ ∼ 45 eV, saturating the requirement above and a corresponding maximal
cutoff of the same order. We note that an enhanced local DM density would allow DDM
searches to probe models with higher cut-offs and heavier radial modes accordingly.

5.3 The Higgs-portal model — an example of a UV complete theory with no
linear DM couplings

In this section, we provide an example of a specific renormalizable UV model that could
result in the effective low energy SM with additional interactions of the form of eq. (1.8).
We allow other even orders of derivatives of φ, such as (∂µφ∂µφ)2 or �φ�φ, to be coupled
to the SM, but forbid linear derivative couplings. To achieve the desirable low energy EFT,
we extend the SM field content by introducing a new complex scalar field Φ, which is a
singlet of the SM gauge group. We impose an additional U(1)Φ global symmetry, acting
only on the Φ field, under which the SM fields are neutral.

The most general renormalizable model can be written as

LUV = LSM + ∂µΦ†∂µΦ− λΦHΦ†ΦH†H − V (Φ†Φ) , (5.24)

where LSM denotes the usual SM Lagrangian, V (Φ†Φ) is the potential described in eq. (5.8)
and H is the SM Higgs doublet. We assume that the potential of Φ induces a SSB of the
U(1)Φ symmetry, upon which the low energy description of the theory is given in terms of
the radial and compact modes of Φ, presented in eq. (5.9). After the electroweak symmetry
breaking, the Higgs portal coupling induces an interaction between the Φ sector and the
SM fermions through a mixing of the radial mode ρ with the physical Higgs singlet h as,

LH-portal ' −λΦH

(
f + ρ√

2

)2 (vH + h√
2

)2
. (5.25)

After diagonalizing the mass matrix Mρh, one obtains a h− ρ mixing angle of

sin θhρ ≈
λΦH vH f

m2
h −m2

ρ

. (5.26)

After integrating out ρ at energy below mρ, we obtain interactions between ∂µφ∂µφ and the
light SM fermions as discussed before. In the limit of small mixing, we obtain the following
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→

Figure 14. A diagrammatic description of the effective operator in the low energy theory.

effective operator

LEFT '
sin θhρmψ

fm2
ρ vH

∂µφ∂
µφψψc = λΦH(

m2
h −m2

ρ

)mψ

m2
ρ

∂µφ∂
µφψψc , (5.27)

which is shown diagrammatically in figure 14.
While this model is UV complete, it sets a very low upper bound on the mass of ρ. In

order for such a model to be detectable considering the current experimental sensitivity,
the mass of the radial mode would have to be mρ . 10−5 eV. While such a light invisible
scalar that couples to the Higgs makes this model less appealing, we consider it to be more
of a proof of concept rather than a conclusive case study. In the next subsection, we would
take a more agnostic approach, studying the low-energy behavior of the natural quadratic
coupling without specifying a UV completion.

5.4 The clockwork mechanism — an example of a tunable hierarchy between
linear and quadratic couplings

In the previous section 5.1, we introduced a general EFT approach to linear and quadratic
couplings between the DM φ and some CP-even SM operators such asOSM=FµνFµν ,mψψψ

c

etc. We argued that different operators might break/preserve different approximate symme-
tries. Therefore, there could be, in principle, a large hierarchy between the dimensionless
coefficient of different types of operators. For example, in some models, we expect the linear
φ couplings to be suppressed and the quadratic couplings of φ2 to the SM to dominate the
physical effects on the induced forces and potential, even though their naive dimension is
higher than the linear couplings.

In this section, we provide two examples where the suppression of the linear couplings is
based on symmetry principles. The examples are based on Clockwork framework [112, 113],
and the suppression is due to the existence of a large hierarchy between the effective
periodicity, F , compare to the smaller periodicity f , which is the dynamical scale of a
spontaneous symmetry breaking. A detailed description of the Clockwork model can be
found in appendix D.

In the Clockwork model, the remaining U(1)shift symmetry, which keeps the DM mass
small, is identified with the remaining U(1)clock of the N+1 Clockwork model, as shown in
eq. (D.8) where N is the number of Clockwork sites. Note that in the limit of exact U(1)shift
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symmetry, φ is mass-less. In order to achieve suppression of the linear φ couplings, we
assign small charges to the SM fermions, i.e., [ψ] ∼ O(1), such that the leading symmetry
preserving interaction is on the last Clockwork site,

Lleadingint ⊃ cN
ΦN

Λ LHEc + Vmixing (ΦN , H) + h.c. , (5.28)

where L are the left-handed SU(2) doublet SM Lepton fields, while Ec are the left-handed
SU(2) singlet SM Lepton fields. We assume that Vmixing (ΦN , H) breaks CP spontaneously
by some parameter θCP � 1, which is defined as the CP mixing angle between the Clockwork
and the Higgs CP eigenstates:

φ = cos θCPφ̂+ sin θCPĥ , (5.29)
h = − sin θCPφ̂+ cos θCPĥ . (5.30)

Vmixing (ΦN , H) can give rise to both CP-even and CP-odd interactions between φ and the
SM fields.

At low energies, we can integrate out the heavy modes of the Clockwork and obtain an
effective Lagrangian of the pNGB which is identified as the ULDM field,

LleadingEFT- int ⊃ cN
f ei

φ
F

Λ hψψc + Vmixing

(
φ

F
,H

)
+ h.c. , (5.31)

where cN is some O(1) coefficient. As a result, the derivative coupling of φ, of the form
f
Λ
∂µφ
F mψ

[
ψ̄σ̄µψ − ψ̄cσ̄µψc

]
, is highly suppressed by F = 3Nf .

The higher dimensional operator

LNLint ⊃ c0
Φ†0Φ0

Λ2 mψψψ
c + h.c. , (5.32)

gives rise to a quadratic coupling that is only suppressed by f , not F . c0 is some O(1)
coefficient. After integrating out the heavy Clockwork radial modes, from eq. (5.32)
we obtain,

LEFT- int ⊃ c0
1

2f2Λ2∂µφ∂
µφmψψψ

c . (5.33)

Since F = 3Nf , is just an artifact scale of the Clockwork model, it can be larger than the
cutoff scale, Λ & f . Thus, we achieve a hierarchy between the linear and the quadratic
(dimensionless) couplings.

Moreover, adding the both the interactions of eq. (5.28) and eq. (5.32) leads to a
collective breaking of the U(1)clock symmetry. As a result, one can write the effective
potential generated for this pNGB. The 1-loop Coleman-Weinberg (CW) effective potential
of φ can be written as,

VCW (φ) = (−1)F

64π2 Tr

[
2M † (φ)M (φ) Λ2

c +
(
M † (φ)M (φ)

)2
ln M

† (φ)M (φ)
Λ̃2
c

]
. (5.34)

In the equation above, Tr is performed over all field degrees of freedom, (−1)F is +1 for
bosons and −1 for fermions. The momentum cutoff Λc, is taken to be of the order of the
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radial mode mass, which is of O(f). Thus, at the leading order the effective potential of φ
can be approximately written as

V (φ) ' −c0cN
m2
ψf

3

16π2Λ cos
(
φ

F

)
. (5.35)

The induced DM potential of eq. (5.35) generates a contribution to the DM mass of

m2
φ ' c0cN

m2
ψf

3

16π2Λ
1
F 2 . (5.36)

Therefore, if eq. (5.35) is the only source of the DM mass, the quadratic interaction will
also be suppressed by 1/F 2, and similar to the linear interaction. Therefore, we require
that there is an additional source of the DM mass, m2

φ which is not suppressed by 1/F 2.
Another way to employ the Clockwork mechanism is one where the shift symmetry is

broken at the two ends of the Clockwork chain i.e. at the first site, at Φ0, and at the last
site, at ΦN . We assume two different Z2 symmetries are conserved in each site, such that
the Lagrangian of these U(1)clock breaking sectors can be written as,

Lleadingint ⊃ cN
ΦN − Φ†N

Λ mψψψ
c + c0

Φ0 + Φ†0
Λ mψψψ

c . (5.37)

Therefore, the effective Lagrangian of the pNGB takes the form of

Lleadingeffective ' cN
f sin

(
φ
F

)
Λ mψψψ

c + c0
f cos

(
φ
f

)
Λ mψψψ

c . (5.38)

Assuming the clockwork potential is dominated by a backreaction potential which has a
minimum near φ ' 0, one can expand the trigonometric functions to achieve the desired
hierarchy between the linear coupling and the quadratic coupling, relatively suppressed by
f/F � 1, as

Lleadingeffective '
cN f

ΛF φmψψψ
c + c0

Λf φ
2mψψψ

c . (5.39)

6 Sensible models of light scalars with large quadratic couplings

As mentioned in previous sections, we are interested in keeping the scalar naturally light,
while also maintaining its quadratic interactions within experimental reach. This should be
achieved in conjunction to ensuring that the linear scalar interactions are suppressed. In this
section we shall consider two main constructions that realize such a scenario. We begin by
briefly reviewing the idea presented in [40], which involves a QCD axion with a ZN symmetry
acting on N copies of the SM. We then move to describe a realization of the relaxed-relaxion
idea [36], that shows that relaxion models may yield naively unnaturally-large couplings for
a light relaxion.
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6.1 Quadratic interactions of the naturally light ZN QCD-axion

It is interesting to note that there is a class of models that naturally leads to sizeable
quadratic interactions between the ULDM and the SM field, with no corresponding linear
scalar coupling. This is precisely the effective theory of a certain kind of a naturally light
QCD-axion model, where the axion mass is suppressed relative to the conventional models
due to the presence of N copies of the SM, which furnish a ZN symmetry [40, 41] . In this
class of models, while the axion couplings to the SM fields (our SM) follow the conventional
models, the axion mass is suppressed by an additional factor of zN , with z ≡ mu/md ∼ 1/2
given by the up to down quark mass ratio. Furthermore, as was demonstrated in [42], while
at linear order, the axion couplings to the SM fields are only to pseudo-scalar operators
(thus preserving parity), the axion also possesses quadratic couplings to the hadrons. This
leads to exciting phenomenology as the QCD axion can be searched for in experiments that
consider the variation of coupling constants instead of the conventional QCD-axion searches
(see e.g. [2]). For more information, we refer the reader to [42].

6.2 Quadratic interactions of a light relaxed-relaxion

Another possibility to ameliorate the naturalness bound for a light scalar is by relaxing its
mass in a dynamical way [11, 36]. Dynamical relaxation of a light scalar is discussed in the
context of the relaxion mechanism [31], where the light scalar field scans the Higgs mass
parameter starting from some high cut-off down to its measured value. As discussed [36],
due to the small incremental change of the Higgs VEV as a function of the scalar field value,
the scalar stops at a shallow part of its potential and the stopping point (in the field space)
is very close to φ/f ∼ π/2. As a result of the shallowness of the scalar’s potential, its mass
is suppressed compare to the naive expected value, however the interaction strength with
the Higgs/SM is not. Thus for low energy observers, the scalar appears to be unnatural
although the relaxion mechanism is constructed in a technically-natural way.

Below we use a similar idea in order to suppress the mass of the ULDM field, while
maintaining its quadratic interactions observable and suppressing its linear interactions
with the SM. To achieve that we relax the mass of a hidden sector Higgs, Ĥ, from some
cut-off Λ to its true VEV v̂, and invoke an interaction of the scalar with the SM as given
in eq. (6.1).

6.2.1 Interaction with the SM

We assume that the field φ is coupled to the light SM matter as4

Lint ⊃ − sin
(
φ

f

) ∑
ψ=e,u,d

gφψmψψψ
c + gφγ

2 FµνF
µν + gφg

2 GµνG
µν + h.c.

 , (6.1)

which can be obtained by demanding that the UV completion of this sector includes a linear
complex field Φ = (ρ+ f) exp

(
iφf

)
, and respects a version of charge conjugation under

4In principle there could be some renormalizable portal interaction between the SM Higgs and Ĥ. Thus
through the mixing with the hidden Higgs, φ will also have some interaction with the SM. However we
consider the strength of such portal interaction to be small and thus this contribution is negligible.
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+
Figure 15. Feynman diagrams for generating Coleman Weinberg for φ at 1-loop order coming from
eq. (6.1).

which Φ → −Φ∗. At leading order, eq. (6.1) generates a quadratic coupling to the light
matter in a technically natural way. We can calculate the 1-loop potential of φ, generated
by the diagrams presented in figure 15, similarly to eq. (5.34), as

V (φ)' 1
16π2

 ∑
ψ=e,u,d

2gφψm2
ψΛ2

cut

[
sin
(
φ

f

)
+gφψ sin2

(
φ

f

)]
+
∑
A=γ,g

gφAΛ4
cut sin

(
φ

f

),
(6.2)

where Λcut & me is the momentum cut-off of the loop. The overall potential for φ can be
written as,

V (φ, Ĥ) = −gΛ3φ+
(

Λ2 − gΛφ− µ2
br cos φ

f

)
|Ĥ|2 + |Ĥ|4

+ 1
8π2

∑
ψ=e,u,d

gφψm
2
ψΛ2

cut sin φ
f

+ 1
16π2

∑
A=γ,g

gφAΛ4
cut sin φ

f
, (6.3)

Ĥ belongs to a new hidden sector whose mass is being relaxed from some cut-off Λ to its
true vacuum expectation value v̂ =

〈
Ĥ
〉
, g is small theory parameter and µbr . v̂ is the

scale of the cosine potential (for more details of this kind of construction see e.g. [31, 36]).
To achieve a successful relaxation of the mass parameter of Ĥ, we require

µ2
brv̂

2 &
1

8π2 gφψm
2
ψ Λ2

cut . (6.4)

Minimizing eq. (6.3) with respect to both Ĥ and φ, and using the above constraint, we find
the field stopping point as

φ0
f
' π

2 −
µ2

br
2v̂2 −

gφψm
2
ψ Λ2

cut
8π2µ2

brv̂
2 ± µbr

Λ ≡ π

2 − δπ/2 , (6.5)

where δπ/2 � 1 is defined as the deviation from π/2. As explained in [36], we obtain the
mass of the light scalar φ as,

m2
φ ≈

µ2
brv̂

2

f2
µbr
Λ = µ2

brv̂
2

f2 δ , (6.6)

which is suppressed compare to the naive expected value of m2
naive ∼ µ2

brv̂
2/f2 by a small

parameter defined as δ = µbr/Λ � 1. This suppression is a result of the flatness of the
effective potential of φ, which characterizes the first point at which the derivative of the
backreaction potential, mainly controlled by a periodic function of φ with a slowly rising
amplitude, balances out the constant derivative of the UV term.
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Expanding eq. (6.1) around the stopping point of φ gives rise to linear and quadratic
couplings of φ to the SM as

Lint ⊃−
∑

ψ=e,u,d
gφψmψψψ

c

(
1−

δ2
π/2
2 − φ2

2f2 − δπ/2
φ

f

)

+
[
gφγ
2 FµνF

µν + gφg
2 GµνG

µν
](

1−
δ2
π/2
2 − φ2

2f2 − δπ/2
φ

f

)
. (6.7)

Moreover, for a valid weakly coupled theory, we require

δmψ . mψ i.e gφψ . O(1) , (6.8)
δα(s) . α(s) i.e. gφγ(g) . O(1) . (6.9)

Combining eq. (6.4) and eq. (6.9) we get

gφψ . Min
[
1, 8π2 µ

2
brv̂

2

m2
ψ Λ2

]
, (6.10)

gφγ(g) . Min
[
1, 4π2µ

2
brv̂

2

Λ4

]
. (6.11)

6.2.2 Relaxation of the cutoff

Consider a model where the field stopping point is not near φ0/f ∼ π
2 as in eq. (6.5), but a

naive order one stopping point, (
φ0
f

)
Naive

∼ O(1) . (6.12)

For simplicity, let us focus on the quadratic coupling of φ to the electron

L ⊃ gφe
φ2

f2 me ee
c . (6.13)

Given the naive stopping point, this interaction leads to a quadratic contribution to the
scalar mass as (

δm2
φ

)
Naive

' gφem2
e

Λ2
e

8π2f2 , (6.14)

where Λe is the cut-off of the electron loop. In addition, if the scalar field φ accounts for
the DM in the present universe, it acquires a time-dependent background value. Thus, the
same coupling would induce temporal variations of the mass of the electron as

δme

me
(t) ' gφe

ρDM
f2m2

φ

. (6.15)

We then obtain a simple relation between the variation of the fundamental constant and
the correction to the mass of φ

(
δm2

φ

)
Naive

=
(
δme

me

)
(t)×

m2
em

2
φ Λ2

e

ρDM 8π2 . (6.16)
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Without the relaxed relaxion dynamics, a theory involving such interactions can only be
natural if (

δm2
φ

)
Naive

. m2
φ ⇒

δme

me
(t)× Λ2

e

8π2 .
ρDM
m2
e

. (6.17)

Thus, naively, theories of natural light scalars generating observable variations of constants
of nature would imply new physics should appear at relatively low scales as

Λe . 30 eV
(
ρDM
ρ�DM

)1/2( 10−18

(δme/me)exp

)1/2

. (6.18)

In light of this consideration, we can determine whether a theory described by eq. (6.3) is
natural or unnatural, by quantifying by how much the cut-off of the theory is being relaxed
away from the naive estimation above.

In the relaxed scenario, the 1-loop order corrections to the mass of φ are already taken
into account via the effective potential in eq. (6.3), yielding the stopping point given in
eq. (6.5), and the suppressed mass in eq. (6.6). Therefore, naturalness does not require
that these 1-loop corrections are kept smaller than mφ. However, for the relaxation to be
successful (both of the mass of Ĥ and of the mass of φ), we must require that the coupling
of φ to the SM does not overcome the derivative of the Ĥ-dependent potential of φ at the
first stopping point. This requirement is expressed in eq. (6.4), and can be re-expressed as

gφem
2
e Λ2

e

8π2f2 .
µ2

brv̂
2

f2 , (6.19)

or

(
δm2

φ

)
Naive

.
m2
φ

δ
, (6.20)

which is less restrictive than the naive requirement in eq. (6.17) since δ . 1. Consequently,
the phenomenological effects associated with the coupling of φ to the SM may be enhanced,
without significantly altering the mass of the scalar. Namely, the cut-off scale of such a
theory Λe, including a light scalar and observable quadratic interactions with the SM, is
relaxed by a factor of 1/

√
δ with respect to the naive prediction of eq. (6.18).

6.2.3 A large hierarchy between the linear and quadratic coupling due to the
Relaxed Relaxion mechanism

A large hierarchy between the effective linear and quadratic couplings of φ can be simply
parameterize in terms of the deviation of the scalar’s stopping point from π

2 , denoted by
δπ/2. The different scaling between the dimensionless linear and quadratic couplings is

clinear ∼ gφ(ψ,A) × δπ/2, while cquadratic ∼ gφ(ψ,A) . (6.21)

In our natural theory we consider gφ(ψ,A) ∼ O (1). Moreover, we wish to have natural values
of the scaled couplings, which gives new bounds that are absent if only either the linear or
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the quadratic coupling were to be turned on. For example, in order to match the observed
bound of d(2)

me ∼ 1014, one must require that

O(1) ∼ c(2)
me = d(2)

me ×
f2

M2
pl
' f2

GeV2 × 10−23 ⇒ f ' 3× 1011 GeV , (6.22)

in order to get O(1) coupling. This, in turn, sets the value of the relaxion dynamical scale,
f . For the linear coupling, matching the observed bound on d(1)

me ∼ 10−3 translates to

c(1)
me = d(1)

me ×
f

Mpl
' 10−10 ∼ δπ/2 (6.23)

which sets the value of δπ/2. Assuming no cancellation between the different terms con-
tributing to δπ/2, we get the following constraints:

µ2
br
v̂2 . 10−10

µbr
Λ . 10−10

gφψm
2
ψ Λ2

cut
8π2µ2

br
v̂2 . 10−10 .

(6.24)

The first two constraints from eq. (6.24) can be easily satisfied by constructing µbr � v̂,Λ.
The last constraint from eq. (6.24) can also be achieved. However, it suggests that it is
more likely to see an effect of both linear and quadratic couplings to light SM matter.

An example of the allowed parameter space for this model, including the theoretical
considerations above as well as the experimental bounds, is presented in figure 16 for a
fixed f = 10 v̂ = 107 GeV and a cutoff of Λe = 10MeV. We plot both the bounds on the
quadratic coupling and on the linear coupling (for a generic O (1) stopping point and for
the relaxed-relaxion mechanism) separately, however, since they are not independent in this
model, the bound should be drawn from satisfying these constraints simultaneously (shaded
lilac region of figure 16). This yields non-trivial constraints both due to the interdependence
of these couplings in this model, making it impossible to turn off the quadratic coupling
without turning off the linear coupling as well, and also taking into account the non-linear
effects discussed in subsection 3.1. Note that the EP constraints involving the quadratic
coupling strongly depend on the radius of the source RC and on the distance from the
center of the source r. Our bounds are calculated assuming RC = r = R⊕ for Eöt-Wash
Be/Ti [61] and RC = R⊕ , r = R⊕ + 700 km for MICROSCOPE [63], with R⊕ being the
radius of the Earth. Although we have focused on the electron coupling gφe, the same
analysis can be easily extended to other couplings between φ and the SM fields, such as
gφγ , gφu(d) and gφg.

7 Conclusions

In this work, we considered a special class of spin-0 ultralight dark matter (ULDM) models.
In this class, the dominant operators describing the interactions between the ULDM field
φ and the Standard Model (SM) are quadratic in the ULDM field, namely, of the form
φ2OSM where OSM composed of SM fields.
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Figure 16. The allowed parameter space of an ULDM relaxed-relaxion inspired model with
f = Λ = 10 v̂ = 107 GeV, and Λe = 10 MeV. Blue-bounds on a model with only the suppressed
linear coupling given, purple-bounds on a model with only the quadratic coupling, light blue-bounds
on a model with a naive linear coupling, lilac-bounds given by the combination of the quadratic
coupling and the suppressed linear coupling. Pink-the critical coupling for the quadratic interactions.
Black-the region in which there is no relaxation of the mass parameter of Ĥ, gray-region in which
the ULDM amplitude is greater than f .

A dominant quadratic interaction between the ULDM field and the SM poses two
problems to a quantum field theory. First, naive Effective Field Theory (EFT) power
counting suggests that linear ULDM couplings would dominate over the quadratic couplings,
as the former are associated with effective operators of lower mass-dimensions. Second,
generic quadratic interactions generate a large additive contribution to the mass of the
ULDM, thus resulting in a naturalness problem. We discussed theoretical constructs in
which these challenges are ameliorated. First, we presented technically-natural models
where the dominant interaction between the ULDM and the SM is in fact quadratic with
the ULDM field, and the linear (scalar) coupling is either absent or suppressed. Second,
with a ZN QCD axion model and a relaxed-relaxion inspired framework, we demonstrated
that a large quadratic coupling and a parametrically smaller mass can be achieved naturally.

We have also studied the phenomenology of this class of models, considering various
terrestrial and space-based existing and near future experimental probes. Finally, we
considered the interplay between indirect searches for the ULDM field, related to tests of
the violation of the Equivalence Principle (EP) and the existence of the fifth-force, and the
direct searches associated with temporal oscillations of the fundamental constants of nature.
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A The Equation of Motion (EOM) of Dark Matter (DM) for linearly
coupled model

Let us consider a linearly coupled CP-even scalar Dark Matter (DM) with the SM described
by eq. (1.2). The Equation of Motion (EOM) for the DM field φ can be written as,(

∂2

∂t2
−∇ · ∇+m2

φ

)
φ = Jsource (r) , (A.1)

where Jsource (r) ≡ −QCi d
(1)
i

MPl
ρC (r) is coming because of the presence of a source term with

density ρC and dilatonic QCi are the dilatonic charges for the body C, corresponding to
the i-th fundamental constant (and corresponding coupling). We consider a homogeneous
spherically symmetric source satisfies

ρC (r) =


3MC

4πR3
C

r ≤ RC
0 r > RC ,

(A.2)

where MC and RC are the mass and the radius of the body C. The solution to the EOM
for the scalar field φ, in the presence of a homogeneous spherical source, is

φ (t, x) = φ0 cos (mφt+ δ)− QCi d
(1)
i

MPl
I (mφRC) MC

r
e−mφr , (A.3)

where the function I (x) is given by

I (x) = 3x cosh x− sinh x
x3 =

1 x� 1
ex

2x x� 1 ,
(A.4)

and φ0 =
√

2ρDM/mφ, and δ is a random phase of the DM background. ρDM is the local
DM density. The sensitivity of EP tests can be written as (eq. (1.17) in the main text)

ηEPlin = 2 |~aA,C − ~aB,C |
|~aA,C + ~aB,C |

≈
|
(
QAi d

(1)
i −QBi d

(1)
i

)
~∇VC (φ) |

GMC
r2

' QCj d
(1)
j

(
QAi d

(1)
i −Q

B
i d

(1)
i

)
e−mφr . (A.5)
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Having a time-varying background field, as in eq. (A.3), induces a small temporal
dependence of fundamental constants which can be probed by Direct Dark Matter (DDM)
searches. In DDM searches, we compare two systems (say A and B) with sensitivity
coefficients κA/Bi corresponding to the i-th fundamental constant. The sensitivity of the
DDM searches can be written as (eq. (1.18) in the main text)

ηDDM
lin = |δY (t)|

Y
≈ ∆κid(1)

i

MPl
φ0 cos (mφt+ δ) , (A.6)

where ∆κi = κAi − κBi is the difference of the sensitivity coefficients of a specific transition.

B The EOM of a quadratically coupled DM model

The EOM for the DM field in the quadratic model, described by eq. (1.8), is(
∂2

∂t2
−∇ · ∇+ m̃2

φ (r)
)
φ = 0 , (B.1)

where we define m̃2
φ (r) ≡ m2

φ + QCi d
(2)
i

M2
Pl

ρC (r). We also replace the SM matter fields, with
the background source density, ρC (r), in the presence of a spherically homogeneous source
as described in eq. (A.2).

The EOM yields a solution outside the source body of the form

φ (t, x) = φ0 cos (mφt+ δ)
[
1− s(2)

C [d(2)
i ] GMC

r

]
. (B.2)

In the above equation, C stands for the source body with

s
(2)
C [d(2)

i ] = QCi d
(2)
i Jsign[d(2)

i ]

(√
3QCi d

(2)
i

GMC

RC

)
, (B.3)

where the function Jsign[d(2)
i ] (x) is defined in [37] as

J+(x) = 3x− tanh x
x3 and J−(x) = 3tan x− x

x3 . (B.4)

Note that, we consider the case where all the couplings are positive i.e. sign[d(2)
i ] ≥ 0. Also,

G and MPl can be used interchangeably with 8πG = 1/M2
Pl .

B.1 The criticality of quadratic couplings

As seen from the solution of eq. (B.2), for very large positive values of the coupling coefficient,
d

(2)
i QCi

GMC
RC
� 1, J+(x) can be approximated as

lim
x�1

J+(x) = 3
x2 −

3
x3 +O

( 1
x4

)
. (B.5)
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In the large coupling limit, s(2)
C [d(2)

i ] can be written as

s
(2)
C [d(2)

i ] = RC
GMC

1−

√√√√dcrit
i

d
(2)
i

 , (B.6)

where we define dcrit
i = RC/(3QCi GMC). For sub-critical values of the coupling coefficient

d
(2)
i QCi

GMc
Rc
� 1, J+(x) ≈ 1 +O

(
x2), and sC [d(2)

i ] = QCi d
(2)
i . Therefore, the solution of the

EOM, eq. (B.2), can be written as

φ (t, x) ' φ0 cos (mφt+ δ)


[
1− RC

r

(
1−

√
dcrit
i

d
(2)
i

)]
for d

(2)
i � dcrit

i[
1− RC

r
d

(2)
i

3 dcrit
i

]
for d

(2)
i � dcrit

i .
(B.7)

The motion of a test mass can be derived from the geodesic path [37]:

ST =
∫
dτ m(φ)

√
−g(vγ(τ), vγ(τ))

=
∫
dτ m(φ)

√
−gµν

dxµ

dτ

dxν

dτ
, (B.8)

where T stands for a test-particle. From eq. (B.8) we can derive the geodesic path of a test
particle as,

|~aT | ' |~aGravity| −
QCi d

(2)
i

2M2
Pl

φ
[
∇φ+ ~vφ̇

]
. (B.9)

Let us denote two different test bodies by A and B. The EP test, measure the contribution
to the violation of the universal free fall from purely gravity theory. The sensitivity of EP
tests, which essentially gives the upper bound on the couplings, is then given by (eq. (1.19)
in the main text)

ηEP = 2 |
~∇VA,C − ~∇VB,C |
|~∇VA,C + ~∇VB,C |

' s(2)
C [d(2)

i ] (∆Q)ABj d
(2)
j

φ2
0

2M2
Pl

[
1− s(2)

C

GMC

r

]
, (B.10)

where (∆Q)ABj =
(
QAj −QBj

)
.

The DDM sensitivity in terms of the quadratic couplings is given by

ηDDM = |δY (t)|
Y

' ∆κid(2)
i

M2
Pl

φ2
0

[
1− s(2)

C

GMC

r

]2
× cs2 , (B.11)

where ∆κi ≡ κAi − κBi is the difference of the sensitivity coefficients of a specific transition
(see e.g. [43] and refs. therein), and we have defined cs2 = cos2 (mφt+ δ).

Using eq. (B.7), we can write the DDM sensitivity at the surface of the central body,
in the small coupling limit d(2)

i � dcrit
i , as

ηDDM
∣∣∣(
d

(2)
i �d

crit
i ,r'Rc

) ≈ ∆κid(2)
i

M2
Pl

φ2
0

[
1− RC

3 r
d

(2)
i

dcrit
i

]2

× cs2, (B.12)
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and in the large coupling limit, d(2)
i � dcrit

i , as

ηDDM
∣∣∣(
d

(2)
i �d

crit
i ,r'Rc

) ' ∆κid(2)
i

M2
Pl

φ2
0

1− RC
r

1−

√√√√dcrit
i

d
(2)
i

2

× cs2

' ∆κi
M2

Pl
φ2

0

dcrit
i + ∆r

RC
d

(2)
i

√√√√dcrit
i

d
(2)
i

+
(∆r
RC

)2
d

(2)
i

× cs2. (B.13)

Here we have defined ∆r = r−Rc. On the surface of the spherical body, where ∆r
r � 1, the

first term of eq. (B.13) does not depend on the coupling d(2)
i . Therefore, above criticality,

d
(2)
i � dcrit

i , the change in fundamental constants becomes independent on d(2)
i and cannot

be translated to bound on the couplings.

C EP bounds from the classical solution vs quantum corrections in a
quadratic theory

The background value of the quadratically coupled DM field, which was discussed in
section B and in the main text, yields some variations in the acceleration of a test particle.
The changes in the acceleration can be approximated by

∣∣∣∆aClassical∣∣∣ ' ∣∣∣∣∣d
(2)
i QAi
M2

Pl
φ
[
∇φ+ ~vφ̇

]∣∣∣∣∣
' d(2)

i QAi
φ2

0
M2

Pl
s

(2)
C

GMC

r2

[
1− s(2)

C

GMC

r

]
, (C.1)

where QAi is the dilatonic charge of the test body. As discussed before, for relatively large
couplings, d(2)

i � dcrit
i , eq. (C.1) can be approximated by,

∣∣∣∆aClassical∣∣∣ ' d(2)
i QAi

φ2
0

M2
Pl

RC
r2

[∆r
Rc

+ ε

]
, with ∆r ≡ r −Rc . (C.2)

Thus, for distances r ' Rc there exists a suppression of the classics potential. ε � 1 is
higher order the sub-leading corrections of O((∆r)2,

√
dcrit
i /d

(2)
i ). If we consider an electron

as the test body, the above formula can be simplified to,

∣∣∣∆aClassical∣∣∣ ' d(2)
me

φ2
0

M2
Pl

RC
r2

[∆r
Rc

+ ε

]
. (C.3)

We can compare the classical effect to the quantum corrections from a φ2 exchange. The
quantum potential calculated in the non relativistic limit, Mbody � |q|, where Mbody is the
mass of the test particle, while |q| is the momentum transfer by the interaction/potential.
In the Born approximation, the scattering amplitude in the non-relativistic limit, can be
mapped to the potential by

iM≡
〈
p′|iT |p

〉
= −iṼ (q) 2πδ

(
Ep − Ep′

)
, (C.4)
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+
Figure 17. 1-loop Feynman diagrams that generates the non relativistic potential.

where iM is the scattering amplitude from a state with momentum p to a state with
momentum p′, and Ṽ (q) is the non-relativistic potential in 3d-momentum space. Assuming
conservation of spin and other quantum numbers, the non-relativistic amplitude can be
approximated as

iM = −4m2G
(
p− p′

)
(C.5)

where G (p− p′) is the value of amputated diagram. In our φ2 coupling scenario, the leading
diagrams are 1-loop order, as in figure 17.

Performing a contour integral to evaluate the integral over |q| in the complex plane
yields the potential between an electron and a heavy central body,

V (r) = −
∫

d3q
(2π)3G1−loop (q) eiq·x =


− (d(2)

me )2QCmemeMC

(2M2
Pl )264π3r2

√
mφe

−2mφr
√
r

mφr � 1

− (d(2)
me )2QCmemeMC

(2M2
Pl )2 64π3r3 mφr � 1 .

(C.6)

In the limit mφr � 1, the potential is exponentially suppressed by e−2mφr and
√
mφ

r5/2 , and
thus negligible. We can also show that in the other limit i.e. mφr � 1, the quantum
potential is also negligible compare to the classical one. To see this, one can compare the
accelerations from quantum and classical effects. The acceleration from quantum effect can
be written as,

lim
mφr�1

∣∣∣∆aQuantum
∣∣∣ '

∣∣∣∣∣∣3(d(2)
me)2QCmeMC

256π3M4
Plr

4

∣∣∣∣∣∣ . (C.7)

Comparing eq. (C.3) to eq. (C.7) and using φ0 =
√

2ρDM/mφ we find

lim
mφr�1

∣∣∣∣∣∆aClassical

∆aQuantum

∣∣∣∣∣ ' 512π3

3 d(2)
meQCme

ρDMM
2
Pl

m2
φ

RC
MC

r2
[∆r
Rc

]

' 1050
[∆r
Rc

](10−14 eV
mφ

)2(
ρDM
ρ�DM

)
, (C.8)

where, we take r ' RC , and use the Earth as the source body with QCme ' 2.7 × 10−4.
For the coupling, we use the current bound of d(2)

me ∼ 1014 at the considered mass as
shown in figure 2. Thus, even if one is very close to the surface of the central body (very
close to the surface of the Earth), the classical effects are still dominating compare to the
quantum ones. This is expected from the classical behavior of the scalar field, with a large
occupation number.
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D The clockwork model

Consider N + 1 complex scalar fields, Φ0 to ΦN , where each field represents a site on a
lattice in the theory (field) space. The potential of these uncoupled sites is

Vclock ({Φj}) =
N∑
i=0

(
−m2

iΦ
†
iΦi + λi

∣∣∣Φ†iΦi

∣∣∣2) . (D.1)

For simplicity, we consider the case where all couplings at different sites scale the same, i.e.

∀i : m2
i ' m2 > 0 , λi ' λ . (D.2)

Small deviation from the above alignment will have a negligible effect on the following
analysis.

The clockwork potential has a U(1)N+1 global symmetry which is broken spontaneously
by N +1 vacuum expectation values (VEVs) of the complex scalar fields, 〈Φi〉 ≡ f√

2 =
√

m2

2λ .
In addition to the above potential, we explicitly break the global U(1)N+1 symmetry to a
single U(1), by connecting neighboring sites through a small parameter, |ε| < 1,

∆Vclock ({Φj}) = −
N−1∑
j=0

(
εΦ†jΦ

3
j+1 + h.c.

)
. (D.3)

Expanding all the scalars around their VEVs,

Φj = 1√
2

(f + ρj)Uj , Uj = eiπj/f ,

and taking the limit ε� λ ∼ 1, such that the radial modes can be decoupled, we get the
following potential for the compact degrees of freedom,

∆Vclock ({πj}) = −εf
4

2

N−1∑
j=0

cos
(3πj+1 − πj

f

)
.

The above potential respects a U(1) symmetry under which the fields, Φ0,Φ1 . . .ΦN , have
charges Q = 1, 1

3 . . . ,
1

3N . The potential induces a mass matrix of the N + 1 pseudo
Nambu-Goldstone boson (pNGB)s,

M2
(π) = ε

f2

2



1 −3 0 · · · 0
−3 10 −3 · · · 0
0 −3 10 · · · 0
...

...
... . . . ...

10 −3
0 0 0 · · · −3 32


.

The matrix M2
(π) becomes diagonal in the field basis φj (j = 0, . . . , N), related to the basis

πj by a real (N + 1)× (N + 1) orthogonal matrix O,

π = Oφ , OTM2O = diag
(
m2
φ0 , . . . ,m

2
φN

)
.
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The eigenvalues of the mass matrix are given by

m2
φ0 = 0 , m2

φk
= λk ε

f2

2 , k = 1, . . . , N , (D.4)

λk ≡ 10− 6 cos kπ

N+1 . (D.5)

The projection of the pNGB πj , into the scalars in the mass basis φk, are given by the
elements of the rotation matrix,

Oj0 = N0
3j , Ojk = Nk

[
3 sin jkπ

N+1 − sin (j + 1) kπ
N+1

]
, j = 0, . . . , N ; k = 1, . . . , N

N0 ≡
√

9− 1
9− 3−2N , Nk ≡

√
2

(N+1)λk
. (D.6)

As expected by the breaking of [U (1)]N+1 → U (1), there are N massive scalars
φk, (k = 1, . . . , N), and a single mass-less Goldstone whose wave function is exponen-
tially peaked on the first site,

φ ≡ φ0 = N0

N∑
j=0

1
3j πj . (D.7)

For N � 1 the normalization constant is N0(N) ≈
√

8/9. The overlap between the mass-less
eigenstate φ and the site j is 〈πj |φ〉 ≈ 1/3j . Under the spontaneously broken U(1)clock
symmetry, φ and the other compact fields transform as follows,

U(1)clock : πj 7→ πj + 1
3j fα ,

φ 7→ φ+ fα , (D.8)

where α ∈
[
0, 2π × 3N

]
. Introducing an explicit breaking of the global U(1)clock at the site

j would generate a potential for φ with periodicity of order 3jf . Therefore, by placing the
backreaction sector at the 0th site and the rolling sector at the N th site, we obtain the
desired hierarchy between the periodicities, F/f ≈ 3N .

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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