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Abstract. We derive purely gravitational constraints on dark matter and cosmic neutrino
profiles in the solar system using asteroid (101955) Bennu. We focus on Bennu because of its
extensive tracking data and high-fidelity trajectory modeling resulting from the OSIRIS-REx
mission. We find that the local density of dark matter is bound by ρDM ≲ 3.3×10−15 kg/m3 ≃
6 × 106 ρ̄DM, in the vicinity of ∼ 1.1 au (where ρ̄DM ≃ 0.3 GeV/cm3). We show that high-
precision tracking data of solar system objects can constrain cosmic neutrino overdensities
relative to the Standard Model prediction n̄ν , at the level of η ≡ nν/n̄ν ≲ 1.7×1011(0.1 eV/mν)
(Saturn), comparable to the existing bounds from KATRIN and other previous laboratory
experiments (with mν the neutrino mass). These local bounds have interesting implications
for existing and future direct-detection experiments. Our constraints apply to all dark
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matter candidates but are particularly meaningful for scenarios including solar halos, stellar
basins, and axion miniclusters, which predict overdensities in the solar system. Furthermore,
introducing a DM-SM long-range fifth force with a strength α̃D times stronger than gravity,
Bennu can set a constraint on ρDM ≲ ρ̄DM

(
6 × 106/α̃D

)
. These constraints can be improved

in the future as the accuracy of tracking data improves, observational arcs increase, and more
missions visit asteroids.

Keywords: dark matter experiments, dark matter simulations, dark matter theory, gravity
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1 Introduction

The distribution of dark matter (DM) in the universe has been cemented as a crucial aspect
of cosmology (see, e.g., [1, 2]), as the ubiquitous gravitational influence of DM has driven
much of the formation and dynamics of large structures such as galaxies and galaxy clusters.
In our own galaxy, observations of stellar kinematics point towards an average density
of ρDM ≃ 0.3 GeV/cm3 near the position of the Sun [3–6]. However, there is no precise
measurement of the density of dark matter in the solar system, and it may be much larger
than the prediction from large-scale halo properties. Not only can substructure form in DM
halos through gravity alone, overdensities of dark matter in the solar system are predicted
or allowed by various beyond the Standard Model (BSM) theories (see, e.g., [7–9]). The
interactions in these BSM theories that lead to overdensities are model-dependent, however,
making it difficult to constrain the large swath of possibilities. It is therefore extremely
important to develop model-independent, gravitational probes of dark matter [10–15], and to
investigate dark matter models with only gravitational interactions (see, e.g., [16]).

Additionally, detecting the cosmic neutrino background (CνB) is an important problem
for neutrino physics and cosmology. The CνB decoupled from the early-universe plasma
at temperatures of T ∼ O(MeV) [17], corresponding to when the universe was about a
second old. Successful detection of the CνB, therefore, presents the ability to probe the
very early universe. However, given its feeble interactions and non-relativistic energies, it is
extremely difficult to directly detect the CνB, which has motivated attempts and proposals
on the experimental front (see, e.g., [18]). At present, KATRIN [19] has set the leading
laboratory bound on the CνB density, and there are other ongoing experimental efforts such
as PTOLEMY [20]. The constraints on the profiles of dark matter and cosmic neutrinos
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impact the physics interpretation of respective direct detection results, insofar as the density
at the position of the experiment may be much larger than the value that is usually assumed
(see, e.g., [8, 21, 22]).

The possibility of probing the local dark matter density through purely gravitational
interactions has been considered, mainly by exploring how an overdensity of dark matter in
the solar system leads to an observable influence on the perihelion precession of the planets.
In refs. [10, 11], weak limits were derived from the perihelion precession of Uranus, Neptune,
and Pluto. Refs. [12–14] analyzed nearer planets to the Sun to set analogous constraints,
which were improved in [15] through the use of updated ephemerides; the most constraining
of these were Mars and Saturn, which bounded the DM overdensity to be less than O(104)
near the planets’ respective orbits. These bounds could be extended to more objects and
other orbital radii (including regions whose DM densities are so-far unconstrained by any
direct measurement) by using asteroids. In fact, ref. [10] attempted to use the asteroid Icarus
for this purpose, though the resulting limit was at the level of 108 overdensity and neglected
key systematic uncertainties (see appendix A).

Potentially hazardous near-Earth objects (NEOs) have motivated the careful tracking
and modeling of asteroid orbits [23], for which observations and dedicated space missions (such
as the OSIRIS-REx mission [24]) have recently provided exceptional orbital constraints [25].
Even further in the interest of the safety of Earth from potentially hazardous NEOs, the
Double Asteroid Redirection Test (DART) mission [26] studied the viability of redirecting
asteroids’ trajectories with deliberate spacecraft impacts. Further determinations of asteroids’
orbits are of interest for safety. In addition to planetary defense purposes, data from asteroids
can be applied to study a wide range of fundamental physics topics, including but not
limited to general relativity (GR) [27, 28], modified gravity [29], dark energy theory [30],
fifth forces [31, 32], and the Yarkovsky effect [33]. Planetary and asteroidal ephemerides are
crucial not only for planetary defense and fundamental physics, but also for experimental
applications, as they are also a source of uncertainty for the Pulsar Timing Array [34].

When considering possible asteroids that could provide DM constraints, (101955) Bennu
stands out. In fact, Bennu has a long ground-based data arc (from 1999 to 2020) and was the
target of the OSIRIS-REx mission, which provided meter-level tracking data [25]. Fitting these
data required the most detailed force model ever implemented for an asteroid. To get a sense of
the orbital constraints on asteroid Bennu, the Yarkovsky effect [35] was measured with a signal-
to-noise ratio of 1400, and the Poynting-Robertson [36] drag was needed as part of the force
model. Therefore, Bennu is an obvious candidate to look for constraints on DM using asteroids.

In this paper, we conduct the first analysis using asteroids to constrain the local DM
profiles. Even in the absence of any additional interactions, the DM in the vicinity of the
Sun causes the perihelion of objects orbiting the Sun to precess through purely gravitational
interactions. By using orbital data and modeling, we derive an upper bound for the DM
density ρDM and cosmic neutrino density ρν near the orbits of asteroids by requiring that the
DM-induced precession is within the variation due to measurement and modeling uncertainties.
We utilize the Comet and Asteroid Orbit Determination Package developed and maintained
by NASA Jet Propulsion Lab (JPL), taking advantage of all the available observational data
for Bennu to conduct our detailed analysis.

Limits on the matter density in our solar system can also be translated to a bound
on the CνB. Although they are not yet sensitive enough to test the overdensities predicted
by cosmic neutrino clustering models [37], the planetary bounds are competitive with the
KATRIN bounds, and constraints from asteroids can be improved in the future.

– 2 –
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We also discuss models which introduce clustering mechanisms of DM and cosmic
neutrinos, to motivate the types of specific models that could be constrained by our results.
Even though our bound is model-independent in the sense that it only relies on gravity, the
shape of the profile matters, and new shapes can be studied with our method. It is also worth
noting that throughout this work, we assume that the cluster profile is spherically symmetric
around the Sun; non-spherical distributions could lead to more dramatic effects.

The paper is organized as follows. We start in section 2 by discussing models and
mechanisms which induce dark matter or cosmic neutrino clustering. In section 3, we proceed
to introduce the effect that invisible matter has on orbital precession and describe the detailed
analysis we performed to derive the constraints. Section 4 describes the derived bounds on
the local dark matter density; we also convert these results into bounds on the dark matter
with a long-range fifth force and cosmic neutrinos. We conclude in section 5, and describe
future directions to explore. Unless otherwise specified, we use the convention of natural units
(ℏ = c = 1) in this work.

2 Clustering mechanisms

2.1 Dark matter

Under minimal cosmological assumptions, cold and non-interacting dark matter virializes
into (approximately) spherically-symmetric halos. Under this assumption, observations of
the circular velocity of stars in the Milky Way Galactic mid-plane imply a local DM density
in the solar neighborhood of roughly ρ̄DM ≃ 0.3 GeV/cm3 (see, e.g., [3–6]). Indeed, the vast
majority of dark matter experiments use this value as an input to determine their sensitivity.

However, it is well-known that DM halos could possess substructure, which could arise
from cosmological sources, or at late times from gravitational interactions alone. For non-
interacting cold DM, the subhalo mass function follows an approximate power law, implying
many subhalos over a wide range of physical scales in the galaxy (see e.g. [38]). Recent mergers
of smaller halos into the Milky Way can also give rise to streams, a type of low-dispersion
substructure, though the densities of streams are typically below the virial density in the halo
(see, e.g., [39]).

For dark matter composed of very light bosons (with mϕ ≲ eV), the situation is even
more complicated. Gravitationally-bound substructure is generally suppressed at scales below
the de Broglie wavelength, R ≲ λdB ∼ 103 km (10−7 eV/mϕ)(10−3/v)2, which can cut off the
subhalo mass function at small masses [40]. However, relaxation of the dark matter scalar
fields can give rise to gravitationally-bound objects of size R ≃ λdB, including self-gravitating
boson stars [41–52] and bound bosonic halos [8, 21, 53] around large astrophysical objects.1
These high-density objects can modify the trajectories of planets and other objects in the
solar system, thereby providing a possible method of detection.

In many theories of light DM scalars (including the QCD axion2), the breaking of a high-
scale U(1) symmetry [65] after inflation gives rise to large density perturbations that collapse
at (or just before) matter-radiation equality [66, 67], which are well-described by power-law
profiles [68]; similar arguments apply to spin-1 DM candidates [69]. These overdensities
are known as axion miniclusters, and they may constitute a large fraction of the total DM

1Note also that gravitationally unbound substructure, in the form of traveling waves sometimes known as
quasiparticles or granules [54–56], is ubiquitous in such models, though the overdensities in such waves are
typically O(1) of the background density.

2See [57–62], or for more recent reviews see [63, 64] and references therein.
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mass in galaxies (see, e.g., [70]). The precision of such predictions is limited due to the
presence of tidal disruption, which can destroy these objects [71–73], as well as uncertainties
around the decay of topological defects (global strings and domain walls) after symmetry
breaking [7, 74–77], which in part determines their abundance. However, it is possible that
either a minicluster will pass through our solar system, modifying the local density for a
finite (though potentially very long) time, or that the solar system formed in the presence of
a minicluster.

Boson stars [41, 42, 44], which can form in the cores of miniclusters [66, 78–80] or in
more exotic scenarios [81, 82], could modify the trajectory of asteroid orbits in a number of
ways. First, a self-gravitating boson star could transit into our solar system, giving rise to a
transient signal that might appear as a sudden kink in the trajectory of an asteroid. Secondly,
boson stars with small masses could be bound inside the solar system, for example, inside
the asteroid belt; this latter scenario would appear as an additional perturbing object in the
analysis of asteroid trajectory. In this work, we do not investigate these possibilities, though
they remain very interesting targets for future searches.

Dark matter bosons can also become bound in a bosonic halo around stars [8, 53], though
the plausible range of densities for these objects remains the topic of ongoing investigations.
Direct constraints on such bound overdensities around the Sun have been derived from
observations of trajectories of planets, and this work provides analogous and competitive
constraints using asteroids. Perihelion precession of planets gives rise to constraints roughly
at the level of (104 − 105)ρ̄DM [15], assuming a bound solar halo with radius R⋆ ≳ 0.4 au (the
orbital radius of Mercury); in the bound halo scenario, this corresponds to a particle mass in
the range mϕ ≲ 10−14 eV [8, 53]. Space-based missions with on-board quantum clocks flying
nearer to the Sun may provide a highly-sensitive probe of smaller bound states in the future,
and can reach DM scalar masses up to mϕ ≃ 10−13 eV [21].

Scalar and vector particles produced in the Sun which have speeds below the escape
velocity can become captured, in what is called a solar basin [83]. While these basins typically
have densities below ρ̄DM, in some scenarios, they can reach or even exceed this background
value [84]. It has also been suggested that decay of axion quark nuggets can lead to captured
axions near the Earth with densities at or near ρ̄DM [85]. Therefore local gravitational
measurements can constrain these models as well.

One additional possibility of note is the formation of dark stars from dark matter self-
interaction [86]. Although the formation typically involves early-Universe physics, certain
parameters may result in late-time overdensity covering the solar system, thereby affecting
the asteroid trajectories.

In each of the above models, overdensities beyond the galactic ρ̄DM are allowed by all
existing constraints, which can greatly impact the direct detection of DM, both in existing
and future experiments.

2.2 Cosmic neutrinos

Within the SM, the CνB has a predicted total number density of n̄ν ≃ 336 cm−3 today
(counting all flavors of both neutrinos and anti-neutrinos). This, however, neglects the
possibility of clustering. Since they are nonrelativistic, they are expected to cluster purely
through gravitational influences. Moreover, if the neutrinos feel an attractive long-range
BSM force, their clustering can be enhanced beyond the expectations from gravity alone.
The overdensity is typically given in terms of the parameter η = nν/nν , where nν is the

– 4 –
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number density of the cluster, and nν is the average density of relic neutrinos, here fixed to
the SM prediction.

For instance, models which extend the SM to include a light scalar ϕ coupled to neutrinos
via a Yukawa interaction yϕνν have been considered [87]. Neutrinos are then subjected to
a long-range attractive Yukawa potential and, depending on the parameters in the model,
the neutrinos can cluster together as a Fermi gas. These clusters (sometimes referred to as
neutrino stars) have sizes that can be estimated by R ∼ 4π

√
2/(ymν), as long as the length

scale of the interaction is much larger than the cluster size, mϕ ≪ 1/R (where mν is the
neutrino mass). Neutrino clusters can therefore have length scales anywhere from ∼ km to
10 Mpc. In this minimal extension, the overdensity can reach magnitudes of η = 107.

Regardless of the clustering model, the overdensity of relic neutrinos can be constrained
by direct observation. Before the KATRIN bounds, the best limits on η were given by
LANL [88] and Troitsk [89] neutrino mass experiments, and from cosmic ray data using the
GZK limit [90]. Currently, the KATRIN global upper limit of the neutrino overdensity at 3σ
is η = 7.7 × 1011; the best-fit limit ranges from 2.6 × 1011 ≤ η ≤ 3.8 × 1011 [91].

It should be noted that the Pauli exclusion principle would restrict CνB overdensities,
assuming that they are free fermions, to the level of overdensity η ∼ 5 × 106 (mν/1 eV)3/2

(EF /1.4 µeV)3/2, where EF is the Fermi energy of the neutrino gas in the galaxy (see [91]).
However, introducing new interactions for the neutrinos as described above can help alleviate
this constraint.

Beyond the standard cosmic neutrino background, if neutrinos are Dirac in nature,
an analogous neutrino background for right-handed neutrinos (RHN) can exist which is
non-thermally produced [92]. This RHN background also contributes to the overall number
density and therefore affects the asteroid precession as well.

3 Gravitational matter and asteroid trajectories

Any matter3 with gravitational effects in the solar neighborhood provides an additional
non-1/r potential, which causes the orbits of objects in the solar system to precess. We
derive below the orbital equations in the presence of the modified gravitational potential, and
determine the magnitude of the resulting orbital precession, following the derivation given
in ref. [10]. The assumption we make here is that the gravitating matter is non-relativistic
and spherically symmetric around the Sun. Note that in this section, we only consider
gravitational effects, without any other interactions or fifth forces (see section 4.2 for a model
with non-gravitational interactions).

For a static and spherically symmetric matter distribution, the gravitational metric takes
the general form

ds2 = −e2µ(r)dt2 + e2λ(r)dr2 + r2dΩ2, (3.1)

where µ(r) and λ(r) are functions determined by the Einstein field equations, Gµν = 8πG Tµν ,
and dΩ2 = dθ2 + sin2 θdϕ2 is the usual spherical line element. If we assume the density of the
additional matter component ρ(r) is constant throughout the asteroid trajectory ρ(r) = ρ0,

3This section applies to dark matter, cosmic neutrinos, or any other gravitating matter around the Sun.
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δϕ
Perihelion Semimajor Axis

aSun

OSIRIS − REx

Local Dark Matter Density

Bennu

Figure 1. Schematic visualization of the perihelion precession of Bennu that would be caused by dark
matter. Local gravitating matter, including dark matter or cosmic neutrinos, could cause presessions
of asteroid orbits. Images of Bennu [93], CC BY 4.0., and OSIRIS-REx [94], CC BY 4.0., from NASA.

the solution to the Einstein equations is

ds2 = −
(

1 − 2M⊙
r

+ 4π

3 ρ0r2
)

dt2 + dr2(
1 − 2M⊙

r − 8π
3 ρ0r2

) + r2dΩ2, (3.2)

where M⊙ is the mass of the Sun. Given the above metric, the Lagrangian describing the
motion of an object orbiting the Sun is

L = − 1
2

(
1 − 2M⊙

r
+ 4π

3 ρ0r2
)

ṫ2 + 1
2

(
1 − 2M⊙

r
− 8π

3 ρ0r2
)

ṙ2 + r2ϕ̇2. (3.3)

The spherical symmetry of the system allows us to restrict our equations to any plane (which
we associate with the orbital plane of the probe mass), so we conveniently choose to restrict
the motion to the θ = π/2 plane. Using the normalization condition for a test mass in this
metric,

gµνpµpν = −1, (3.4)

with pµ = ∂L/∂ẋµ, we have

pt =
(

1 − 2M⊙
r

+ 4π

3 ρ0r2
)

ṫ ≡ E

pr =
(

1 − 2M⊙
r

− 8π

3 ρ0r2
)

ṙ

pθ = r2ϕ̇ ≡ ℓ, (3.5)
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where E is identified with the energy of the orbit, and ℓ the angular momentum. Using the
substitution u = 1/r yields the orbital equation,

d2u

dϕ2 + u = M⊙
ℓ2 + 3M⊙u2 + 4π

3
ρ0

u2ℓ2 . (3.6)

By perturbatively expanding around the Newtonian solution, u0(ϕ) = M⊙(1+e cos ϕ)/ℓ2,
one can derive that (see appendix B)

δϕ ≃ −4π2ρ0a3(1 − e2)1/2/M⊙, (3.7)

which is the precession induced by a constant matter density along the asteroid trajectory,
where a is its semi-major axis. Note that if the profile of the gravitating matter near the
asteroid trajectories is not constant, this would modify the metric, and the orbital equation
would be modified accordingly. However, although the constant density assumption isn’t
entirely generic, it does naturally arise in many models, including a bound solar halo for very
low DM masses [8, 21, 53].

Note an important feature of the perihelion precession: δϕ is proportional to the cube of
the semi-major axis a, implying a benefit to the consideration of asteroids and Trans-Neptunian
objects (TNOs) at larger distances from the Sun.

3.1 DM contributions to an asteroid’s motion

The motion of an asteroid is mostly driven by gravitational forces from the Sun, planets,
Pluto, the Moon, and other perturbing asteroids [95]. As observational arcs get extended
and high-quality data collected, there are additional requirements on the accuracy of the
force model and additional terms, such as solar radiation pressure [36] and the Yarkovsky
effect [35], that can be added. Not only can these terms become necessary to match the
observational data, but the parameters defining them can be estimated as part of the fit to
the data [e.g., 96].

Bennu, the target of the OSIRIS-REx mission [24], is the asteroid with the most-
constrained trajectory in the entire catalog. Besides ground-based optical data since 1999 and
ground-based radar in 1999, 2005, and 2011, meter-level positional constraints were derived
from OSIRIS-REx tracking data during the mission’s proximity operations from January 2019
to October 2020 [25]. This exquisite dataset called for an unprecedented level of fidelity in
the force model, including relativistic effects, perturbations from 343 asteroid perturbers,
Yarkovsky effect based on a thermophysical model derived from in-situ characterization, solar
radiation pressure, and Poynting-Robertson drag [25]. Therefore, Bennu stands out as the
most promising asteroid candidate to derive constraints on dark matter.

Here, we use the same force model employed for the Bennu trajectory analysis based
on OSIRIS-REx data [25]. We introduce an additional term to represent the perturbation
due to dark matter. In our derivation, as before, we only need to assume a constant and
spherically-symmetric DM density populating radii from the perihelion, r0, to the aphelion,
rmax, of the asteroid’s orbit. For Bennu, r0 = 0.90 au and rmax = 1.36 au. The mass contained
within the orbit up to a radius r is

µ(r) = 4π

∫ r

r0
ρ0r2dr = 4πρ0

3 (r3 − r3
0). (3.8)

– 7 –
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Figure 2. Asteroid (Bennu in red, Apophis and future targets in gray, as described in the text) and
planetary (black square [10], triangles [11], circles [15]) constraints on the overdensity of dark matter in
the solar system. Each point probes the density of dark matter at that orbital distance, and therefore,
they each provide distinct bounds; the length of the horizontal bars represents the range from r0
to rmax probed by each object. Constraints on the profile of the dark matter can be determined by
utilizing the full list of points together. The gray arrows represent the range of distances that could
be probed by near-Earth objects (NEOs), including those with high-ellipticity, Main Belt objects in
the range 2.1 − 3.4 au, and other more distant asteroids, including trans-Neptunian objects (TNOs),
as labeled.

The potential for an asteroid of mass m is

U(r) = 2π

3 Gm

[
r2

0 + 2r3
0

( 1
r0

− 1
r

)
− r2

]
ρ0, (3.9)

which gives rise to a force of the form

F(r) = 2π

3 Gmρ0

(
2r3

0
r2 − 2r

)
r̂

≃ −4π

3 Gmρ0rr̂ + 4π

3 Gmρ0
r3

0
r2 r̂. (3.10)

What matters here is the potential gradient in the radial direction during the asteroid orbit (the
first term). Any mass contained inside r0 can be absorbed into the effective 1/r2 contribution
of the Sun (the second term, neglected below); this additional mass is much smaller than that
of the Sun. Therefore, the second term in eq. (3.10) does not play an appreciable role and
can be neglected.

– 8 –
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4 Results

4.1 Purely gravitational constraints on dark matter

We added the dark matter term in eq. (3.10) to the force model and estimated ρDM as
part of the fit to the observational data. For Bennu we obtain ρDM = (−2.0 ± 1.1) × 10−15

kg/m3 at 1σ, where the uncertainty given is the formal statistical uncertainty from the fit.
The formal uncertainty in ρDM does not account for sources of error due to force model
assumptions. We discuss and quantify the most important contributions in appendix A.
Varying the model parameters yields differences up to ∆ρDM ≈ 2 × 10−15 kg/m3. Adding
together the statistical uncertainty at 3σ with the model sensitivity, the bound on the DM
density is ρmax ≲ 3.3 × 10−15 kg/m3. Thus, we determined bounds on the local density of
DM in the vicinity of the orbit of Bennu:

ρDM(r ∼ 1.1 au) ≲ 3.3 × 10−15 kg/m3

≃ 6 × 106 ρ̄DM . (4.1)

In figure 2, we plot the constraint from Bennu (red) along with the previous constraints
from planets (black) [10, 11, 15], defining ρmax as the maximum density ρ0 allowed by the
uncertainty of the measurement in both cases. One can see that the constraints for Bennu
are comparable to the level of the planets, and provide complementary results.

Although not at the same level of precision as Bennu, using the same method, we also
derived constraints for another well-studied near-Earth asteroid, Apophis (see gray point in
figure 2). This yields

ρDM(r ∼ 0.9 au) ≲ 1.53 × 10−13 kg/m3

≃ 3 × 108 ρ̄DM (4.2)

The constraint from Bennu is nearly two orders of magnitude better than that of Apophis,
though the Apophis constraint may improve with data from OSIRIS-APEX [97], the extended
OSIRIS-REx mission.

The region marked by gray arrows in figure 2 illustrates the possible reach for asteroid
probes of the inner and outer solar system. In the inner region, high-ellipticity near-Earth
objects (NEOs) can reach far inside the orbit of Mercury, whereas TNOs and other distant
asteroids have radii extending beyond 10 au; in between, thousands of Main Belt objects
between ∼ 2−3 au may be utilized. These probes may, however, be challenging to utilize. The
inner region could see larger non-gravitational perturbations as well as additional sensitivity
to contributions from relativistic effects and solar oblateness. Astrometric data of distant
asteroids provide weaker positional constraints, and data arcs are much shorter relative to
the orbital period, which also results in weaker orbital constraints.

Note that, again, our constraint and probes are model-independent in the sense that it
does not rely on DM-SM interaction. However, the constraint would still be modified based
on the assumption of the shape of the DM profile (more specifically, the radial dependence of
the DM density). One can easily modify the force in eq. (3.10) accordingly to produce a new
bound for a non-trivial radial profile.

In the future, with sufficient precision, it could be possible to constrain the local dark
matter density even in the absence of any local overdensity; in section 5 we discuss some
possibilities for improving these constraints. Note also that in the case of galactic dark matter,

– 9 –



J
C
A
P
0
2
(
2
0
2
4
)
0
2
9

the variation in the profile on solar system scales is negligible, with a suppression factor of
order ∼ au/kpc. This means that we can treat the dark matter profile near the Sun to be
approximately constant, and the conditions laid out here still hold.

4.2 Non-gravitational DM-SM interactions
Here, we discuss the constraints with the existence of DM-SM long-range interactions stronger
than gravity. Despite our results not relying on any non-gravitational DM-SM interactions,
the constraints above do have important implications in the context of DM-SM long-range
interactions stronger than gravity. Such long-range force would enhance the effects on asteroids,
and could also provide new mechanisms for the structure to form around the Sun.

We consider a Yukawa-type long-range force between DM and SM, mediated by a
field ϕ, with mass mϕ ≪ 1/au. The mediator ϕ can be either a vector particle or a scalar
particle, which will affect the sign of the dark fifth force. A simple parameterization can
capture the complicated model-specifications in one parameter, α̃D, which is essentially a
parameterization of how strong the DM-SM coupling is compared to gravity. Under the same
assumption that the DM forms a spherically-symmetric structure, the new long-range force is
then parametrized as (cf. eq. (3.10))

FDM−SM(r) ≃ −α̃D
4π

3 Gmρ′
0rr̂. (4.3)

Requiring FDM−SM(r) = F (r) from gravity in eq. (3.10), we arrive at a simple conclusion that

ρ′
DM(r) ≲ ρmax(r)

α̃D
. (4.4)

Reading from figure 2, for Bennu, this would imply that ρ′
DM ≲

(
6 × 106/α̃D

)
ρ̄DM near the

trajectory of Bennu, and ρ′
DM ≲

(
104/α̃D

)
ρ̄DM near Saturn’s trajectory.

We note that α̃D is a heavy-handed parametrization, which does not describe the detailed
DM model parameters. The class of models with such DM-SM interactions can be found in,
e.g., [98, 99], and will be further discussed in follow-up works. Also, note that the DM we
consider here is quite different from the usual galactic DM, as galactic DM usually forms a
structure centered around the Milky Way. We simply show that with DM-SM long-range
interactions, one can set stronger constraints on DM densities. For the usual galactic DM
with long-range fifth forces to the SM, one can find more discussions in [100–103].

4.3 Constraints on cosmic neutrinos
In the same light as probing the dark matter density in the solar system using the orbits
of asteroids and planets, we can also constrain the overdensity of relic neutrinos in our
solar system. If the average galactic density of dark matter is assumed to occupy the solar
neighborhood, we can rescale the DM bounds into a bound on neutrino density. The bound
on a general overdensity is

η ≡ nν

n̄ν
≲

ρmax
mν n̄ν

= 9 × 106
(

ρmax
ρ̄DM

)(0.1 eV
mν

)
.

This results in bounds of

η ≡ nν

n̄ν
≲ 1.7 × 1011

(0.1 eV
mν

)
(Saturn),

η ≡ nν

n̄ν
≲ 5.4 × 1013

(0.1 eV
mν

)
(Bennu). (4.5)
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Recall from section 2 that the current KATRIN global upper limit at 3σ is η = 7.7 × 1011.
We can see above that the planetary bounds are competitive with such direct searches, and
the asteroid bounds, while a bit weaker, could be improved in the future, as we discuss in
section 5.

5 Summary and discussion

In this work, we derived new constraints on the local density of dark matter and cosmic
neutrinos using asteroids, via purely gravitational interactions. The physical picture is that
a halo of invisible matter provides a perturbation that leads to orbital precession. We seek
signals arising from gravitating matter using high-fidelity modeling of asteroid trajectories.

Although we focused on Bennu, these results represent a proof of concept. There are
many avenues to explore and ways to improve in the future. Using asteroids as a probe of
local invisible matter has benefits and can provide timely improvements relative to planetary
studies:

1. We anticipate a significant improvement of the constraint from Apophis, given that
its tracking data will be significantly improved by the subsequent OSIRIS-APEX
mission [97], operated by the OSIRIS-REx spacecraft after its sample-return operation
in September 2023.

2. There are millions of objects to analyze, and although higher precision data is needed
to provide stringent bounds, they could be useful in the future.

3. The trajectories of asteroids can span a much greater range of distances (especially
when the eccentricity is large), both below 0.4 au and above 9.5 au (semi-major axis of
Mercury and Saturn orbit, respectively). This allows one to constrain DM overdensities
of vastly different sizes, and in regions where direct constraints are currently very weak
or nonexistent (see also [21]).

Additionally, throughout the analysis, we assumed that the dark matter density is
constant over the orbit of the asteroid. However, some models predict drastically different
profiles that may change significantly over the orbits of asteroids with large eccentricities.
This would modify the metric and, therefore, the orbital equations (as well as the force model),
yielding a different form for the perihelion precession. Exploring these possibilities is left for
future work.

The reliability of dark matter upper bounds can be improved by refining the force model
using, e.g., ever-improved planetary ephemerides, better estimates of perturber masses, a
more complete set of perturbing bodies, and modeling of other nongravitational effects such
as solar wind. Additionally, as the analytical estimate of the precession scales in eq. (3.7)
as a3, asteroids that are further from the Sun could yield better bounds. For instance, the
sensitivity reaches using Jovian and Neptunian Trojans would be enhanced by a factor of
O(102) and O(104) relative to Bennu, based on the relative distance to the Sun. If we obtain
the same level of measurement and modeling precision for these Trojans as for Bennu, then a
constraint would probe overdensities down to O(104) and O(102), respectively.

Future missions to other asteroids could prove helpful. Quantum sensors on a spacecraft,
such as accelerometers, can improve navigation, which could lead to overall better asteroid
tracking [104]. Additionally, detectors and quantum sensors stationed on asteroids could
measure gravity gradients coming from dark matter or provide direct ranging, both of
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which have been considered in the context of gravitational wave (GW) detection [105, 106].
Exploration of how space-based quantum sensors can improve asteroid science, in general,
deems further investigation.
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A Uncertainties in asteroid modeling

As discussed by ref. [25], there are force model limitations, and we should ensure that the
results are not affected by modeling assumptions. Within the high-fidelity model, we vary
the assumptions individually, and rerun the fit to the dark matter density. In table 1, we
show the extracted values of the ρDM compared to the baseline model. The assumption that
yields the largest change is using a more recent ephemeris (DE440 instead of the DE424
baseline), which we report in our constraint. Otherwise, the results are not too sensitive
to the modeling assumptions. There are some effects that are not captured in the model,
such as solar winds, YORP effect, ejected particles, and interactions between Bennu and the
OSIRIS-REx spacecraft. Of these, solar winds are likely to be the most important. As pointed
out in ref. [15], solar winds are approximately spherical with a density of roughly O(10−20)
kg/m3 near the Earth’s orbit. Since the contribution that leads to precession depends on
the gradient of the potential, the much smaller density at these orbits renders the solar-wind
effects negligible.
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Model Parameter ∆ρDM [kg/m3]
DE440 2.0 × 10−15

DE440 w/ TNOs 1.8 × 10−15

Galilean satellite separation −9.9 × 10−17

Solar quadruple moment J2 2.4 × 10−16

No PR drag −1.0 × 10−23

Solar mass loss −8.4 × 10−20

Linear Yarkovsky model (V00) 1.5 × 10−15

Non-spherical SRP −1.0 × 10−17

Table 1. List of the modeling assumptions that were adjusted, and the resulting change in the
extracted values of the dark matter density. The baseline is given by ρDM = (−2.0 ± 1.1) × 10−15

kg/m3. DE440 stands for the replacement of the ephemeris DE424 with DE440. DE440 w/ TNOs
means the additional inclusion of the TNOs in the force model. In the table, we also consider the effects
of the Galilean satellites being treated as separate objects from Jupiter, adding the solar quadruple
moment J2, turning off the Poynting-Robertson (PR) drag, adding solar mass loss, switching to the
linear Yarkovsky model, and adding non-spherical Solar Radiation Pressure (SRP).

Number of Perturbers ρDM [kg/m3]
16 −7.27 × 10−16 ± 6.76 × 10−16

32 −1.00 × 10−15 ± 7.49 × 10−16

64 −1.79 × 10−15 ± 9.78 × 10−16

128 −1.92 × 10−15 ± 1.03 × 10−15

256 −2.02 × 10−15 ± 1.06 × 10−15

343 −2.04 × 10−15 ± 1.06 × 10−15

Table 2. Dark matter density determined by the fit as a function of the number of perturbers included
in the model. As we approach 343 perturbers, ρDM and its uncertainty converge, implying that the
number of perturbers included is sufficient.

Lastly, we checked that the 343 perturbers that we use in the model lead to a sufficiently
convergent result. As a check, we determine ρDM while adjusting the number of perturbers
included in the analysis, and find that the density prediction does indeed converge well, as
displayed in table 2.

B Analytical approximation for precession from dark matter

Here we rederive the expression for the dark matter induced perihelion precession, starting
from the orbital equations of motion.

First, recall the orbital equation of eq. (3.6):

d2u

dϕ2 + u = M⊙
ℓ2 + 3M⊙u2 + 4π

3
ρ0

u3ℓ2 . (B.1)

Perturbatively expanding around the Newtonian solution, u0(ϕ) = M⊙(1 + e cos ϕ)/ℓ2 (where
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e is the eccentricity), and writing our solution as u(r) = u0(r) + ∆u(r), gives

d2∆u

dϕ2 + ∆u = 3M⊙u2
0 + 4π

3
ρ0

u3
0ℓ2 (B.2)

= 3M⊙
ℓ4 (1 + e cos ϕ)2 + 4π

3 ρ0
ℓ4

M3
⊙

1
(1 + e cos ϕ)3 . (B.3)

The solution, keeping only terms that contribute to precession, is

∆u =
3M3

⊙
ℓ4 eϕ sin ϕ − 4πρ0ℓ4

M3
⊙

e

(1 − e2)5/2 arctan
( 1 − e√

1 − e2
tan ϕ

2

)
sin ϕ. (B.4)

If we expand the arctan term around e = 0, only the zeroth-order term accumulates over the
period of the orbit. Keeping only this term yields

∆u =
3M3

⊙
ℓ4 eϕ sin ϕ − 2πρ0ℓ4

M3
⊙

1
(1 − e2)5/2 eϕ sin ϕ. (B.5)

Note that these perturbations vanish when e → 0, which implies that the radial distance must
change throughout the orbit to see precession.

We can recast this result into a change in the ϕ-period P of the orbit, since, as the
perihelion precesses, the object will return to its perihelion at an angle that is different than
2π. That is, we write the full solution as

u(ϕ) ≈ M⊙
ℓ2

(
1 + e cos (ϕ{1 − α})

)
, (B.6)

where α shifts the ϕ-period. For our perturbative expansion α ≪ 1, so we expand this as
cos (ϕ{1 − α}) ≈ cos ϕ + αϕ sin ϕ + O(α2). We therefore identify the coefficients on ϕ sin ϕ of
eq. (B.5) with αM⊙/ℓ2, giving

α = 3M⊙
ℓ2 − 2πρ0ℓ6

M4
⊙

1
(1 − e2)5/2 . (B.7)

In terms of α, the ϕ-period becomes

P = 2π

1 − α
≈ 2π(1 + α). (B.8)

The precession δϕ is defined by how much the ϕ-period is shifted from 2π, i.e. δϕ = P − 2π,
which implies

δϕ = 2πα

= 6πM⊙
a(1 − e2) − 4π2ρ0

M⊙
a3
√

1 − e2, (B.9)

where we have used a = M⊙/(ℓ2(1 − e2)). The second term reproduces eq. (3.7), as expected.
We have checked this result numerically by solving eq. (B.1) directly, and we recover eq. (B.9)
for small but finite e.
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