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We revisit the proof of small-data global existence for semilinear wave equations

that satisfy a null condition. This new approach relies on a weighted local energy

estimate that is akin to those of Dafermos and Rodnianski. Using weighted

Sobolev estimates to obtain spatial decay and arguing in the spirit of the work of

Keel, Smith, and Sogge, we are able to obtain global existence while only relying

on translational and (spatial) rotational symmetries.

1. Introduction

We shall examine systems of semilinear wave equations in (1+3)-dimensions of

the form
{
□u I := (∂2

t −1)u I = Q I (∂u), (t, x) ∈ R+×R
3, I = 1,2, . . . , M,

u I (0, ·) = f I, ∂t u
I (0, ·) = g I.

(1-1)

Here ∂u = (∂t u, ∇u) is the space-time gradient, and each component Q I is a smooth

function that vanishes to second order at the origin. As we shall only consider small

data, the long-time behavior is dictated by the lowest-order terms, and, as such, we

will truncate Q to the quadratic level.

As the linear wave equation decays like t−(n−1)/2 in n-spatial dimensions and as

this factor is integrable at infinity when n g 4, it has long been known that global

existence of solutions to (1-1) for sufficiently small initial data is guaranteed in these

dimensions. When n = 3, however, a logarithmic blow up is instead encountered,

and only almost global existence, which states that the lifespan of the solution

grows exponentially as the size of the initial data shrinks, is available generically;

see, e.g., [Sogge 2008].
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When the nonlinearity is assumed to satisfy a null condition, it was discovered in

[Christodoulou 1986; Klainerman 1986] that sufficiently small initial data always

produce global solutions in three dimensions. In the current setting, assuming that

our quadratic nonlinearity is of the form

Q I (∂u) = A
³´,I

J K ∂³u J ∂´uK,

the null condition requires that

A
³´,I

J K À³À´ = 0, when À 2
0 − À 2

1 − À 2
2 − À 2

3 = 0. (1-2)

Here we are using the summation convention with ³, ´ running from 0 to 3 and the

common conventions that ∂0u = ∂t u, ∂j u = ∂x j
u. We are also allowing repeated

capital indices to sum from 1 to M.

A common approach for establishing such long-time existence results relies

on the method of invariant vector fields and the Klainerman–Sobolev inequality

[Klainerman 1985]. Due to the unbounded normal component on the boundary, the

Lorentz boosts xk∂t + t∂k are inappropriate when studying such nonlinear equations,

say, exterior to a compact obstacle with Dirichlet boundary conditions. In response,

[Keel et al. 2002] developed a method of establishing long-time existence for

three-dimensional semilinear wave equations that only relies upon the generators

of translations and spatial rotations:

�i j = xi ∂j − x j ∂i , Z = (∂1, ∂2, ∂3, �23, �13, �12).

Here the authors depended on the integrated local energy estimate, which will be

introduced in Section 2, and a weighted Sobolev estimate [Klainerman 1986] that

provided decay in |x | rather than t but only requires the vector fields Z . This method

was adapted to the quasilinear setting in [Metcalfe and Sogge 2006] by exploring

local energy estimates for perturbations of the d’Alembertian. The desire for a

method that did not necessitate the use of the Lorentz boosts was also motivated by

wanting to understand multiple speed systems of wave equations and the equations

of elasticity; see, e.g., [Klainerman and Sideris 1996; Sideris 2000].

Here we shall explore small-data global existence for null-form wave equations.

Many approaches exist for establishing such global existence, see, e.g., [Klainer-

man 1986; Christodoulou 1986; Sideris and Tu 2001; Metcalfe and Sogge 2007;

Katayama and Kubo 2008; Lindblad et al. 2013]. Unlike many of the preceding

results, our method shall only rely on the time-independent vector fields Z .

The key to our argument is to replace the use of the local energy estimate with a

variant, specifically a type of r p-weighted local energy estimate of [Dafermos and

Rodnianski 2010]. See [Moschidis 2016] for some generalizations of this method.

This estimate has been applied in a number of nonlinear settings such as [Luk 2013;

Yang 2015a; 2015b; Keir 2018]. Typically it is used to derive decay in t . Such

decay is then used to control the integral within the energy inequality and thus
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provides long-time existence. We believe our approach to be more straightforward,

though those preceding results were all in much more complicated settings.

The r p-weighted local energy estimate only controls the “good” derivatives

̸∂ = (∂t + ∂r , ̸∇), where ̸∇ = ∇ − (x/r)∂r are the angular derivatives. These are

the directions that are tangent to the light cone and for which better decay is known.

The r p-weighted estimate is particularly well-suited to null form wave equations as

the algebraic cancellation condition (1-2) precisely guarantees that in each quadratic

term of Q(∂u) one of the two factors is a good derivative.

Our main result is:

Theorem 1.1. Suppose that f, g ∈ (C∞(R3))M. And let 0 < p < 1. Then, for any

ε > 0 sufficiently small, if

∥(1 + r)p/2 Zf10 f ∥L2(R3) + ∥(1 + r)p/2 Zf9g∥L2(R3) f ε, (1-3)

then (1-1) with nonlinearity satisfying (1-2) has a unique global solution u ∈

C∞(R+ × R
3).

Here, and throughout, we shall use the abbreviation ZfN u =
∑

|³|fN Z³u.

To keep the exposition as accessible as possible, we have only focused on

semilinear equations on Minkowski space. We expect that the argument can readily

be extended to, e.g., quasilinear equations and equations on exterior domains, and

these topics will be explored subsequently.

Our proof of Theorem 1.1 most resembles [Lindblad et al. 2013]. There an

alternate local energy estimate that relies upon t−r weights, which is from [Lindblad

and Rodnianski 2005; Alinhac 2001], was used. In order to achieve the decay in t−r ,

the authors called upon decay estimates of [Klainerman and Sideris 1996], but these

in turn required the use of the time-dependent vector fields. The current argument

is much more directly reminiscent of [Keel et al. 2002].

2. Integrated local energy estimates

The integrated local energy estimate first appeared in [Morawetz 1968]. Through

subsequent refinements, on R+× R
n, n g 3, we know that

∥∂u∥2
L∞

t L2
x
+ sup

Rg1

R−1∥∂u∥2
L2

t L2
x (R+×{ïxð≈R})

+ sup
Rg1

R−3∥u∥2
L2

t L2
x (R+×{ïxð≈R})

≲ ∥∂u(0, · )∥2
L2 +

∫ ∞

0

∫
|□u|(|∂u| + ïxð−1|u|) dx dt. (2-1)

The most robust proof of this estimate pairs the equation □u with a multiplier

of the form

C∂t u +
r

r +R
∂r u +

n−1

2

1

r +R
u

and follows from integration by parts; see, e.g., [Sterbenz 2005; Metcalfe and Sogge

2006]. Related estimates are known to hold for stationary, nontrapping perturbations
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and for sufficiently small nonstationary perturbations. See [Metcalfe et al. 2020]

for a more complete history and the most general results in the nontrapping setting.

Our first task will be to prove the following r p-weighted estimate, which first

appeared in [Dafermos and Rodnianski 2010].

Proposition 2.1. Suppose u ∈ C∞(R+ × R
3) and that for every T there is an R so

that u(t, x) = 0 for t ∈ [0, T ] and |x | > R. Then, for 0 < p < 1,

∥r (p−1)/2 ̸∂u∥2
L2

t L2
x
+ ∥r (p−3)/2u∥2

L2
t L2

x
+ sup

t

Ẽ[u](t)

≲ Ẽ[u](0) + ∥r (p+1)/2□u∥2
L2

t L2
x
, (2-2)

where

Ẽ[u](t) =
1

2

∫
r p−2|̸∂(ru(t, x))|2 dx +

p

2

∫
r p−2u2(t, x) dx .

The local energy estimate (2-1) has an ℓ∞-summation over the annuli, which we

may take to be dyadic, in the left side. In [Keel et al. 2002], the difference between

this and having ℓ2-summability accounts for a logarithm, which in turn corresponds

to the exponential within the notion of almost global existence. While restricted

only to the good directions, the above estimate has the desired ℓ2-summability, and

as such, it will yield global existence so long as the equation permits its application

on each term, which the null condition exactly provides.

Proof. For any 0 f p f 2, we first consider

∫ T

0

∫
□u · r p

(
∂t u + ∂r u +

1

r
u
)

dx dt

=
∫ T

0

∫∫
r p(∂2

t − ∂2
r − ̸∇ · ̸∇)(ru)(∂t + ∂r )(ru) dÃ dr dt.

Using integration by parts and the fact that [̸∇, ∂r ] = (1/r) ̸∇, the right side is equal

to

1

2

∫ T

0

∫∫
r p(∂t − ∂r )[(∂t + ∂r )(ru)]2 dÃ dr dt

+
1

2

∫ T

0

∫∫
r p(∂t + ∂r )|̸∇(ru)|2 dÃ dr dt +

∫ T

0

∫∫
r p−1 |̸∇(ru)|2 dÃ dr dt.

Further integrating by parts yields

∫ T

0

∫
□u · r p

(
∂t u + ∂r u +

1

r
u
)

dx dt

=
1

2

∫∫
r p{[(∂t + ∂r )(ru)]2 + |̸∇(ru)|2} dÃ dr

∣∣T

t=0

+
p

2

∫ T

0

∫∫
r p−1[(∂t + ∂r )(ru)]2 dÃ dr dt

+

(
1 −

p

2

)∫ T

0

∫∫
r p−1 |̸∇(ru)|2 dÃ dr dt. (2-3)
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For simplicity, we now restrict to 0 f p < 1. We then observe that

p

2

∫ T

0

∫∫
r p−1[(∂t + ∂r )(ru)]2 dÃ dr dt =

p

2

∫ T

0

∫
r p−1(∂t u + ∂r u)2 r2 dÃ dr dt

+
p

2

∫ T

0

∫∫
r p(∂t + ∂r )u

2 dÃ dr dt

+
p

2

∫ T

0

∫∫
r p−1u2 dÃ dr dt,

which upon a last integration by parts and reverting back to rectangular coordinates

gives

p

2

∫
r p−2u2 dx

∣∣T

t=0
+

p

2

∫ T

0

∫
r p−1(∂t u+∂r u)2 dx dt+

p(1−p)

2

∫ T

0

∫
r p−3u2 dx dt.

Making this replacement in (2-3) and applying the Schwarz inequality gives

p

2
∥r (p−1)/2(∂t + ∂r )u∥2

L2
t L2

x
+

2−p

2
∥r (p−1)/2 ̸∇u∥2

L2
t L2

x

+
p(1−p)

2
∥r (p−3)/2u∥2

L2
t L2

x
+ Ẽ[u](T )

f Ẽ[u](0)+∥r (p+1)/2□u∥L2
t L2

x

(
∥r (p−1)/2(∂t + ∂r )u∥L2

t L2
x
+∥r (p−3)/2u∥L2

t L2
x

)
.

Bootstrapping the last factor of the last term completes the proof. We moreover note

that the implicit constant is independent of T, and thus we may take the supremum

over all T to obtain (2-2). □

In the sequel, we shall require a version of (2-2) that permits the application of

the invariant vector fields, which is presented in the next proposition.

Proposition 2.2. Let 0 < p < 1 and fix any N ∈ N. Suppose u ∈ C∞(R+ ×R
3) and

that, for every T, there is an R so that u(t, x) = 0 for t ∈ [0, T ] and |x | > R. Then,

∥ZfN ∂u∥2
L∞

t L2
x
+∥(1+r)(p−1)/2 ZfN ̸∂u∥2

L2
t L2

x
+∥(1+r)(p−3)/2 ZfN u∥2

L2
t L2

x

≲ ∥(1 + r)p/2 ZfN ∂u(0, · )∥2
L2 + ∥(1 + r)(p+1)/2 ZfN□u∥2

L2
t L2

x
. (2-4)

Proof. We first note that

∫ ∞

0

∫
|□u|(|∂u| + ïxð−1|u|) dx dt

f ∥(1 + r)(p+1)/2 □u∥L2
t L2

x

(
∥(1 + r)−(p+1)/2 ∂u∥L2

t L2
x
+ ∥(1 + r)−(p+3)/2u∥L2

t L2
x

)
,

and that

∥(1 + r)−(p+1)/2 ∂u∥L2
t L2

x
+ ∥(1 + r)−(p+3)/2u∥L2

t L2
x

≲ sup
jg0

2− j/2∥∂u∥L2
t L2

x (R+×{ïxð≈2 j }) + sup
jg0

2−3 j/2∥u∥L2
t L2

x (R+×{ïxð≈2 j }).
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Thus, by bootstrapping this factor into the left side of (2-1), we see from (2-1) that

∥∂u∥L∞
t L2

x
≲ ∥∂u(0, · )∥L2 + ∥(1 + r)(p+1)/2 □u∥L2

t L2
x
.

Since [□, Z ] = 0 and since [Z , ∂] ∈ span(∂), the bound for the first term in (2-4)

follows by replacing u by ZfN u.

Since

[∂i , ∂t + ∂r ] =
1

r
̸∇i , [∂i , ̸∇j ] =

1

r

(
−¶i j +

xi x j

r2

)
∂r −

1

r

x j

r
̸∇i ,

[�i j , ̸∇k] = ¶ jk ̸∇i − ¶ik ̸∇j , [�i j , ∂t + ∂r ] = 0

and since |̸∇u| f (1/r)|�u|, we have that |[Z , ̸∂ ]u| f (1/r)|Zu|. Thus the re-

mainder of the proof follows upon replacing u by ZfN u in (2-2). We may readily

replace r by 1+r in the L2
t L2

x -terms since the powers in the left are negative, while

powers in the right are positive. We also note that, due to a Hardy-type inequality,

Ẽ[u](t) ≲ ∥(1 + r)p/2∂u(t, · )∥2
L2 . □

3. Proof of Theorem 1.1

The decay that we require will be obtained from the following weighted Sobolev

estimate of [Klainerman 1986]. This estimate only provides decay in |x |, but

simultaneously it does not necessitate the use of any time-dependent vector fields.

Lemma 3.1. For h ∈ C∞(R3) and R g 1,

∥h∥L∞({R/2<ïxð<R}) ≲ R−1∥Zf2h∥L2({R/4<ïxð<2R}). (3-1)

The bound (3-1) follows, after localizing appropriately, from applying Sobolev

estimates in the r - and É-variables separately and comparing the volume element

dr dÃ(É) with that of R
3 in spherical coordinates: r2 dr dÃ(É).

As mentioned earlier, the null condition (1-2) guarantees that at least one of the

two factors in each nonlinear term is a “good” derivative. In fact, using a product

rule argument, we have

|Zf10 Q(∂u)| ≲ |Zf5∂u||Zf10 ̸∂u| + |Zf5 ̸∂u||Zf10∂u|. (3-2)

This is well known; we refer the reader to, e.g., [Lindblad et al. 2013, Lemma 2.3].

We will use an iteration to solve (1-1). We let u−1 ≡ 0 and let uk solve
{
□uk = Q(∂uk−1),

uk(0, · ) = f, ∂t uk(0, · ) = g.

Boundedness: Our first step is to show an appropriate boundedness of this iteration.

To this end, we shall set

Mk =∥Zf10∂uk∥L∞
t L2

x
+∥(1+r)(p−1)/2 Zf10̸∂uk∥L2

t L2
x
+∥(1+r)(p−3)/2 Zf10uk∥L2

t L2
x
.
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Due to (2-4) and (1-3), there is a constant C0 so that

M0 f C0ε.

We shall argue inductively that for every k

Mk f 2C0ε. (3-3)

To show (3-3), we use (2-4), which provides the bound

Mk f C0ε + C∥(1 + r)(p+1)/2 Zf10 Q(∂uk−1)∥L2
t L2

x
.

Applying (3-2) and (3-1) we obtain

∥(1 + r)(p+1)/2 Zf10 Q(∂uk−1)∥L2
t L2

x

≲ ∥(1 + r)(p+1)/2|Zf5 ∂uk−1||Z
f10 ̸∂uk−1|∥L2

t L2
x

+ ∥(1 + r)(p+1)/2|Zf5 ̸∂uk−1||Z
f10 ∂uk−1|∥L2

t L2
x

≲ ∥Zf7 ∂uk−1∥L∞
t L2

x
∥(1 + r)(p−1)/2 Zf10 ̸∂uk−1∥L2

t L2
x

+ ∥(1 + r)(p−1)/2 Zf7 ̸∂uk−1∥L2
t L2

x
∥Zf10 ∂uk−1∥L∞

t L2
x
.

Thus, using the inductive hypothesis, it follows that

Mk f C0ε + C(Mk−1)
2 f C0ε + C · C2

0ε2.

And if ε < 1/(C · C0), (3-3) results as desired.

Cauchy: We complete the proof by showing that the sequence is Cauchy in an

appropriate norm. By completeness, the sequence must converge and by standard

results the limiting function solves (1-1) as desired.

To this end, we set

Ak = ∥Zf10 ∂(uk − uk−1)∥L∞
t L2

x
+ ∥(1 + r)(p−1)/2 Zf10 ̸∂(uk − uk−1)∥L2

t L2
x

+ ∥(1 + r)(p−3)/2 Zf10(uk − uk−1)∥L2
t L2

x
.

We note that

Q I (∂uk−1) − Q I (∂uk−2)

= A
³´,I

J K ∂³(u J
k−1 − u J

k−2)∂´uK
k−1 + A

³´,I

J K ∂³u J
k−2∂´(uK

k−1 − uK
k−2).

Thus, as in (3-2), we obtain

|Zf10 Q(∂uk−1) − Zf10 Q(∂uk−2)|

≲ |Zf5 ̸∂(uk−1 − uk−2)|(|Z
f10 ∂uk−1| + |Zf10 ∂uk−2|)

+ (|Zf5 ∂uk−1| + |Zf5 ∂uk−2|)|Z
f10 ̸∂(uk−1 − uk−2)|

+ |Zf5 ∂(uk−1 − uk−2)|(|Z
f10 ̸∂uk−1| + |Zf10 ̸∂uk−2|)

+ (|Zf5 ̸∂uk−1| + |Zf5 ̸∂uk−2|)|Z
f10 ∂(uk−1 − uk−2)|. (3-4)
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As above, we apply (3-1) to the lower-order factor in each term to see that

∥(1 + r)(p+1)/2(Zf10 Q(∂uk−1) − Zf10 Q(∂uk−2))∥L2
t L2

x

≲ ∥(1 + r)(p−1)/2 Zf7 ̸∂(uk−1 − uk−2)∥L2
t L2

x

×
(
∥Zf10 ∂uk−1∥L∞

t L2
x
+ ∥Zf10 ∂uk−2∥L∞

t L2
x

)

+
(
∥Zf7 ∂uk−1∥L∞

t L2
x
+ ∥Zf7 ∂uk−2∥L∞

t L2
x

)

× ∥(1 + r)(p−1)/2 Zf10 ̸∂(uk−1 − uk−2)∥L2
t L2

x

+∥Zf7 ∂(uk−1 − uk−2)∥L∞
t L2

x

×
(
∥(1 + r)(p−1)/2 Zf10 ̸∂uk−1∥L2

t L2
x
+ ∥(1 + r)(p−1)/2 Zf10 ̸∂uk−2∥L2

t L2
x

)

+
(
∥(1 + r)(p−1)/2 Zf7 ̸∂uk−1∥L2

t L2
x
+ ∥(1 + r)(p−1)/2 Zf7 ̸∂uk−2∥L2

t L2
x

)

× ∥Zf10 ∂(uk−1 − uk−2)∥L∞
t L2

x
.

From (2-4) it then follows that

Ak f C(Mk−1 + Mk−2)Ak−1 f C · C0εAk−1.

So long as, say, ε < 1/(2C · C0), we obtain

Ak f 1
2

Ak−1 for all k,

which implies that the sequence is Cauchy and completes the proof.
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