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We revisit the proof of small-data global existence for semilinear wave equations
that satisfy a null condition. This new approach relies on a weighted local energy
estimate that is akin to those of Dafermos and Rodnianski. Using weighted
Sobolev estimates to obtain spatial decay and arguing in the spirit of the work of
Keel, Smith, and Sogge, we are able to obtain global existence while only relying
on translational and (spatial) rotational symmetries.

1. Introduction

We shall examine systems of semilinear wave equations in (1+3)-dimensions of
the form

{Du’ = (02—Au! = QT @u), (t,x) eR xR, I=1,2,..., M,

w0, =f1, au'0,)=g". (1-1)

Here du = (3;u, Vu) is the space-time gradient, and each component Q' is a smooth
function that vanishes to second order at the origin. As we shall only consider small
data, the long-time behavior is dictated by the lowest-order terms, and, as such, we
will truncate Q to the quadratic level.

As the linear wave equation decays like ="~/ in n-spatial dimensions and as
this factor is integrable at infinity when n > 4, it has long been known that global
existence of solutions to (1-1) for sufficiently small initial data is guaranteed in these
dimensions. When n = 3, however, a logarithmic blow up is instead encountered,
and only almost global existence, which states that the lifespan of the solution
grows exponentially as the size of the initial data shrinks, is available generically;
see, e.g., [Sogge 2008].
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When the nonlinearity is assumed to satisfy a null condition, it was discovered in
[Christodoulou 1986; Klainerman 1986] that sufficiently small initial data always
produce global solutions in three dimensions. In the current setting, assuming that
our quadratic nonlinearity is of the form

0" (u) = A% du” Bgu’,
the null condition requires that
A%{J «5p =0, when 55 —512 - 522 —532 =0. (1-2)

Here we are using the summation convention with ¢, 8 running from 0 to 3 and the
common conventions that dou = d;u, dju = 8xju. We are also allowing repeated
capital indices to sum from 1 to M.

A common approach for establishing such long-time existence results relies
on the method of invariant vector fields and the Klainerman—Sobolev inequality
[Klainerman 1985]. Due to the unbounded normal component on the boundary, the
Lorentz boosts xjd; + ¢ d; are inappropriate when studying such nonlinear equations,
say, exterior to a compact obstacle with Dirichlet boundary conditions. In response,
[Keel et al. 2002] developed a method of establishing long-time existence for
three-dimensional semilinear wave equations that only relies upon the generators
of translations and spatial rotations:

Qjj=x;0; —x;0;, Z =101, 0d, 03, 23, Q13, L12).

Here the authors depended on the integrated local energy estimate, which will be
introduced in Section 2, and a weighted Sobolev estimate [Klainerman 1986] that
provided decay in |x| rather than ¢ but only requires the vector fields Z. This method
was adapted to the quasilinear setting in [Metcalfe and Sogge 2006] by exploring
local energy estimates for perturbations of the d’Alembertian. The desire for a
method that did not necessitate the use of the Lorentz boosts was also motivated by
wanting to understand multiple speed systems of wave equations and the equations
of elasticity; see, e.g., [Klainerman and Sideris 1996; Sideris 2000].

Here we shall explore small-data global existence for null-form wave equations.
Many approaches exist for establishing such global existence, see, e.g., [Klainer-
man 1986; Christodoulou 1986; Sideris and Tu 2001; Metcalfe and Sogge 2007;
Katayama and Kubo 2008; Lindblad et al. 2013]. Unlike many of the preceding
results, our method shall only rely on the time-independent vector fields Z.

The key to our argument is to replace the use of the local energy estimate with a
variant, specifically a type of r”-weighted local energy estimate of [Dafermos and
Rodnianski 2010]. See [Moschidis 2016] for some generalizations of this method.
This estimate has been applied in a number of nonlinear settings such as [Luk 2013;
Yang 2015a; 2015b; Keir 2018]. Typically it is used to derive decay in #. Such
decay is then used to control the integral within the energy inequality and thus
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provides long-time existence. We believe our approach to be more straightforward,
though those preceding results were all in much more complicated settings.

The r?-weighted local energy estimate only controls the “good” derivatives
7 = (3; +9,, V), where ¥ =V — (x/r)d, are the angular derivatives. These are
the directions that are tangent to the light cone and for which better decay is known.
The r?-weighted estimate is particularly well-suited to null form wave equations as
the algebraic cancellation condition (1-2) precisely guarantees that in each quadratic
term of Q(du) one of the two factors is a good derivative.

Our main result is:

Theorem 1.1. Suppose that f, g € (C®*(R*)M. And let0 < p < 1. Then, for any
& > 0 sufficiently small, if

1A +rP2Z=0 fll gy + 1 (L4 1)PP 2508 agsy <. (1-3)

then (1-1) with nonlinearity satisfying (1-2) has a unique global solution u €
C*®(R; x R3).

Here, and throughout, we shall use the abbreviation Z=Ny = > al<n Zu.

To keep the exposition as accessible as possible, we have only focused on
semilinear equations on Minkowski space. We expect that the argument can readily
be extended to, e.g., quasilinear equations and equations on exterior domains, and
these topics will be explored subsequently.

Our proof of Theorem 1.1 most resembles [Lindblad et al. 2013]. There an
alternate local energy estimate that relies upon ¢t —r weights, which is from [Lindblad
and Rodnianski 2005; Alinhac 2001], was used. In order to achieve the decay in t —r,
the authors called upon decay estimates of [Klainerman and Sideris 1996], but these
in turn required the use of the time-dependent vector fields. The current argument
is much more directly reminiscent of [Keel et al. 2002].

2. Integrated local energy estimates

The integrated local energy estimate first appeared in [Morawetz 1968]. Through
subsequent refinements, on R x R”, n > 3, we know that

2 2

-3
L2L2(Rs x{(x)~R)) T SUP R ||”||L,2L§(R+x{(x>w})

2 —1
102|700, 2 + sup R™" || Que]]
Y > | R>1

S IIBM(O,-)Iliz+/ooofIDMI(|3MI+(X>_1|u|)dxdt- (2-1)

The most robust proof of this estimate pairs the equation Lu with a multiplier

of the form
n—1 1

2 r+R "
and follows from integration by parts; see, e.g., [Sterbenz 2005; Metcalfe and Sogge
2006]. Related estimates are known to hold for stationary, nontrapping perturbations

r
Catu+r+—R8,u—|—
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and for sufficiently small nonstationary perturbations. See [Metcalfe et al. 2020]
for a more complete history and the most general results in the nontrapping setting.

Our first task will be to prove the following r”-weighted estimate, which first
appeared in [Dafermos and Rodnianski 2010].

Proposition 2.1. Suppose u € C*®° (R, x R3) and that for every T there is an R so
thatu(t,x) =0 fort € [0, T] and |x| > R. Then, for 0 < p <1,
1P P02 gull s o + 1Pl + sup E[ul(t)

S E[ul©) + rP020u)?,,,. (2-2)
where

Flul() = %/ P2 30ru, X)) dx + g/ FP22(¢, x) dix.

The local energy estimate (2-1) has an £°°-summation over the annuli, which we
may take to be dyadic, in the left side. In [Keel et al. 2002], the difference between
this and having £2-summability accounts for a logarithm, which in turn corresponds
to the exponential within the notion of almost global existence. While restricted
only to the good directions, the above estimate has the desired £?-summability, and
as such, it will yield global existence so long as the equation permits its application
on each term, which the null condition exactly provides.

Proof. For any 0 < p <2, we first consider
r 1
P 2
/O/Du r (Btu +0,u+ ru)de dt
= //frﬂ(a,z — 92— Y W) (ru) (3 + 9,) (ru) do dr dt.
0

Using integration by parts and the fact that [¥, 8,] = (1/7)¥, the right side is equal
to

%/()T//”p(at —3)[(8 +8,) (ru)* do dr dt
+%/()T/frl’(3z+3r)|v(i’u)|2d0 drdt+/0T//rp—1|W(m)|zda drdi

Further integrating by parts yields

/OT/ Ou -rp<8,u + 0,u+ %M) dx dt
- %// rP{[@: + 8, r) 2 + ¥ (ru) P do dr ],
+ 2 L] 1@+ ot do drai

+ (1 _ %)/OT//;»”_IW(M)FLIU drdt. (2-3)
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For simplicity, we now restrict to 0 < p < 1. We then observe that

Pt 2 _P e e 2.2
2/0//1" [(0; +0,)(ru)]*do dr dt = 2/0/r (O;u+0,u) r do drdt

p r p 2
+5///r (0 + 8, u*do dr d
0
T
+£///rp_lu2dodrdt,
2Jo

which upon a last integration by parts and reverting back to rectangular coordinates
gives

gf P2l p/ /rp @utdy ) dx di+ L0 _p)/f Py dx dt.

Making this replacement in (2-3) and applying the Schwarz inequality gives

2—
||r<p V@0 0ul Ty + SIRRE 2T

p(I—=p) ~
+T|W V2ullZs, + ELul(T)
< E[ul©) + 1+ 20u) 2 (1772 @ + 00wl 22 + 10?0 1212).

Bootstrapping the last factor of the last term completes the proof. We moreover note
that the implicit constant is independent of 7, and thus we may take the supremum
over all T to obtain (2-2). O

In the sequel, we shall require a version of (2-2) that permits the application of
the invariant vector fields, which is presented in the next proposition.

Proposition 2.2. Let 0 < p < 1 and fix any N € N. Suppose u € C*(R;. x R?) and
that, for every T, there is an R so that u(t, x) =0 fort € [0, T] and |x| > R. Then,
1Z=N0ull o + 11+ PR ZEN gl Ty, + 140 P72 25V 7

SHA+r)PPZ=N9u(0, )13, + (14 1) P2 Z=NOy? (2-4)

L2
Proof. We first note that

o ~1
/0 /|Du|(|au|+<x) lu|) dx dt
<INA+nP*20ull 22 (1A +7) P2 dull 22 + 1A+ 1) P20 12)5),
and that
I+~ )l 2y + 1A+ 0]

<Su132 " ”a”||L2L2<R+x{<x>~2J})+S“P2_ Y20 212, ety
]>
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Thus, by bootstrapping this factor into the left side of (2-1), we see from (2-1) that
19ull o2 S 1810, llz2 + 1A +1) P2 Ol 22

Since [[], Z] = 0 and since [Z, 3] € span(d), the bound for the first term in (2-4)
follows by replacing u by Z=Nu.
Since
1 1 X:X: 1x;
[0, 8+ 8,1 = Wi, [3;, ¥j]= —(—6,-,- + ’—;)a, — =LV,
r r r rr
[, Yel =8 ¥i — 8 ¥, [, 0, +3,1=0

and since |Yu| < (1/r)|Qu|, we have that |[Z, #1u| < (1/r)|Zu|. Thus the re-
mainder of the proof follows upon replacing u by Z=Nu in (2-2). We may readily
replace r by 1+ r in the LtzLi—terms since the powers in the left are negative, while
powers in the right are positive. We also note that, due to a Hardy-type inequality,

E[ul@) S 1A +m"du, )12, 0

3. Proof of Theorem 1.1

The decay that we require will be obtained from the following weighted Sobolev
estimate of [Klainerman 1986]. This estimate only provides decay in |x|, but
simultaneously it does not necessitate the use of any time-dependent vector fields.

Lemma 3.1. For h € C®*(R*) and R > 1,

12l (r2<x)<r) S RTNZZ2R0 2R fa< () <2R)- (3-1)
The bound (3-1) follows, after localizing appropriately, from applying Sobolev
estimates in the r- and w-variables separately and comparing the volume element
dr do (w) with that of R? in spherical coordinates: r2dr do ().
As mentioned earlier, the null condition (1-2) guarantees that at least one of the
two factors in each nonlinear term is a “good” derivative. In fact, using a product
rule argument, we have

12=1°00u)| < 12=°0ul|Z=" Ju| + | Z=° Ju| Z="0u]. (3-2)

This is well known; we refer the reader to, e.g., [Lindblad et al. 2013, Lemma 2.3].
We will use an iteration to solve (1-1). We let u_; = 0 and let u; solve

{Dukz Q(Qug-1),
uk(ov'):fv atuk(o"):g'

Boundedness: Our first step is to show an appropriate boundedness of this iteration.
To this end, we shall set

M =11Z="0u ]| oo 12 (AP P TP ZZ10ug | 2 21 A1) P2 250 2.
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Due to (2-4) and (1-3), there is a constant Cy so that
My < Coe.
We shall argue inductively that for every k
My <2Coe. (3-3)
To show (3-3), we use (2-4), which provides the bound
My < Cog + CIl(L+1) P2 Z=00@ug 1) 1212
Applying (3-2) and (3-1) we obtain
1A +r)PD2Z=00@u 1)l 2,0
SUA+n 2122 dup 11 Z51 Jugi |l 212
+ A +0 P21 Z2 Gup 12590 w1l 22
SNZ=7 ol o2 1A +1) P~ D2 Z=0%0 ]2
AT g 2125 B 2.
Thus, using the inductive hypothesis, it follows that
My < Cog + C(My_1)* < Coe + C - Ce”.
And if ¢ < 1/(C - Cy), (3-3) results as desired.

Cauchy: We complete the proof by showing that the sequence is Cauchy in an
appropriate norm. By completeness, the sequence must converge and by standard
results the limiting function solves (1-1) as desired.

To this end, we set

Ak =1Z5"00ur — w2 + 1A +0 P2 25050 —ug 1)l 22
HIA+nP 2220 — g 1)l 22
We note that

Q' (dur—1) — Q" (Bux—)

= Aoﬁél O (U] _y — uj_y)dpug_; + A(;f;él ot _o0p(ufy —ug_,).
Thus, as in (3-2), we obtain
1Z=°00u—1) — Z="°Q(dur—2)|

S1Z5 Pup—1 — uk—2)1(1Z=" Buge—1| +1Z="0 dug o)
+ (127 duk—1 | +1Z7° dup—2DI1Z="° Plup—1 — ux—2)|
+1Z2% 3 up—r — w2 (125" Puuse—1 | + 125" Ju )
+ (122 Pur—1 | + 122 Jur—2DI Z="0 3wy —uk—2)]. (3-4)
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As above, we apply (3-1) to the lower-order factor in each term to see that
11+ r)P*D2(Z=100 Quy 1) — 2510 Q(ur-2)) 12,2

SIA+nNP Y2255y — )l
x (125" g1 oo 2 + 125" Qg ol o12)

+(1Z57 dup—1ll peor2 + 11257 Dug sl g 12)
X (1 4+r) P2 Z=0G gy —ug2) 20
HI1Z=7 8 (et — wk—2) | or2
X (”(1+r)(p_1)/zzfloauk—1”L%L%+“(1+r)(p_l)/zziloauk—ZHLtZL%)

H(I A+ P22 gug 2o + 1A +0) P2 Z5 Jup ol 1242)
x 12518 (ue—1 — up—2) 2012
From (2-4) it then follows that

Ay <CMy—1 +My_2)A—1 <C-CoeAp_1.
So long as, say, € < 1/(2C - Cy), we obtain
Ap < %Ak_l for all &,

which implies that the sequence is Cauchy and completes the proof.
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