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Efficient transport and harvesting of excitation energy under low light conditions is an important process in
nature and quantum technologies alike. Here we formulate a quantum optics perspective to excitation energy
transport in configurations of two-level quantum emitters with a particular emphasis on efficiency and robustness
against disorder. We study a periodic geometry of emitter rings with subwavelength spacing, where collective
electronic states emerge due to near-field dipole–dipole interactions. The system gives rise to collective subradiant
states that are particularly suited to excitation transport and are protected from energy disorder and radiative
decoherence. Comparing ring geometries with other configurations shows that the former are more efficient in
absorbing, transporting, and trapping incident light. Because our findings are agnostic as to the specific choice of
quantum emitters, they indicate general design principles for quantum technologies with superior photon transport
properties and may elucidate potential mechanisms resulting in the highly efficient energy transport efficiencies in
natural light-harvesting systems.
© 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
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1. INTRODUCTION
In quantum optics, ordered quantum emitter lattices with sub-
wavelength spacing have emerged as a resourceful platform for
near-term quantum technologies [1–12]. Here long-range inter-
actions between light-induced dipoles lead to highly modified
optical properties of the quantum emitter ensemble, includ-
ing Dicke superradiance [13] and the emergence of collective
long-lived subradiant states [14,15]. Applications range from
single-photon switch gates [16] to enhanced single-photon
detection for biomedical applications [17,18] and topological
edge state lasing [19,20]. Likewise, uncovering design principles
underlying biological systems and applying this understanding
to synthetic systems is crucial for near-term quantum technolo-
gies. Ring geometries of quantum emitters promise to enhance
single-photon sensing, transport, storage, and light generation
in engineered nanoscale systems [15,21–23]. In photosynthetic
energy transfer, as it occurs in nature, organisms use ring-shaped
antennae that increase the photon scattering cross section of
a single reaction center: the site where photosynthesis takes
place. This transfer process occurs at near unit efficiency, and
understanding the mechanisms behind this remarkable feat is an
outstanding scientific challenge [24–34].

Taking inspiration from biological systems, we examine the
long-range excitation transport between a donor and an acceptor
emitter through a lattice of quantum emitter rings [Fig. 1(a)].

As a main result, we show that efficient excitation transport at
low trapping rates preferentially occurs for ring geometries, as
compared with other lattices. This property has important con-
sequences for devising artificial light harvesting and transport
systems, and may be relevant for understanding the excellent
excitation transport capabilities of biological systems [35]. We
also highlight that for ring lattices, the trapping of light at
an acceptor site under low-light conditions is enhanced by
many orders of magnitude as compared to other geometries
and to independent emitters. By choosing an optimal detun-
ing for the donor and acceptor with respect to the lattice,
radiative losses are strongly suppressed, and excitations are pro-
tected during the transport by subradiance [14,15]. While the
influence of the excitation trapping rate on the transport effi-
ciency in other geometries has been explored in other works
[36–39], as have certain design principles for bio-inspired arti-
ficial solar-harvesting devices [24,26,27,40–44], our findings
specifically highlight the advantages of the rotationally sym-
metric ring geometry. This special feature of ring configurations
is particularly intriguing for its close connection to natural pho-
tosynthetic complexes found in biological systems. Our work
therefore opens the possibility of exploiting quantum effects in
bio-inspired configurations of quantum emitters for near-term
optical technologies that enable quantum-enhanced light–matter
coupling on the nanoscale.
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2. QUANTUM OPTICAL MODEL
As a paradigmatic quantum optical model to simulate excitation
energy transport, we consider a one-dimensional lattice of M
rotationally symmetric rings, each composed of NR identical
two-level emitters with a ground state |g⟩ and an excited state
|e⟩. The two states are connected via the transition operator
σ̂n = |gn⟩⟨en | for the nth emitter. Additional emitters acting as
donor and acceptor sites are placed in the center of two rings at
either end of the lattice, as illustrated in Fig. 1(a). The transport
efficiency between these two sites is the core quantity of interest
and is defined as

ηt = ΓT

∫ t

0
dt′⟨Ψ(t′)|σ̂†

a σ̂a |Ψ(t′)⟩. (1)

Here t is the integration time over which excitation can accumu-
late in the trap state [see Fig. 1(a)], ηt can take values between 0
and 1, where 0 corresponds to no transport at all and 1 identifies
maximal transport efficiency, and σ̂†

a σ̂a = |ea⟩⟨ea | corresponds
to the projector onto the excited state of the acceptor. The trap
population accumulates over time and reaches a steady-state
value at large times t when the total excited state population
is either dissipated via radiative losses or accumulated in the
trap. The transition frequencies and decay rates of the ring emit-
ters are assumed to be equal and given by ω0 = 2πc/λ0 and
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Fig. 1. Lattices of nanoscopic quantum emitter rings. (a) Each
ring is composed of two-level quantum emitters with resonance fre-
quencyω0 and separation d<λ0, where λ0 = ω0/c is the wavelength
of light. The excited state |e⟩ spontaneously decays with rate Γ0 to
the ground state |g⟩ and the emitters are coupled via long-range
dipole–dipole interactions with nearest-neighbor coupling strength
J. Emitters acting as donor and acceptor are shown in yellow and the
acceptor features an additional trapping state to which excitations
irreversibly decay with rate ΓT. (b) More detailed sketch illustrating
the inter-ring separation dR. The ring radius R and the emitter spac-
ing d are related via d = 2R sin(π/NR), with NR emitters per ring.
(c) Excitation transport efficiency according to Eq. (1) for a chain
of 10 rings and various NR. Parameters: d/λ0 = 0.05, dR/d = 0.9,
ΓT/Γ0 = 2, and ∆ = 0.

Γ0, respectively, whereas the donor/acceptor transitions may be
detuned by ∆ = ωd,a − ω0 with respect to the ring emitter fre-
quencies. We assume ωd = ωa for the remainder of this work.
The acceptor features an extra trapping channel through which
excitations are extracted from the system at a rate ΓT. Further-
more, the quantum emitters are confined in the x–y plane with
intra-ring separation d = 2R sin(π/NR) and inter-ring separation
dR, where R is the ring radius, as illustrated in Fig. 1(b). To
reduce the number of free parameters, all dipole emitters are
assumed to be circular polarized, namely (1, i, 0)T/

√
2. How-

ever, qualitatively similar results can be obtained for geometries
consisting of linear polarized emitters.

We model the system within the Born–Markov approxima-
tion [14], and only consider the quantum emitter’s internal
degrees of freedom. Furthermore, we assume the weak exci-
tation regime, where at most a single excitation is present in
the system (see Supplement 1 for details), and therefore the sys-
tem can be described (in the rotating frame with ω0) by the
non-Hermitian Hamiltonian Ĥeff = Ĥad + Ĥlattice + Ĥint. Here,
Ĥad = (∆ − i

2Γ0)(σ̂
†
a σ̂a + σ̂

†

d σ̂d) −
i
2ΓTσ̂

†
a σ̂a is the bare Hamilto-

nian of the donor and acceptor, Ĥlattice describes the emitters in
the ring lattice, and Ĥint describes the interaction between the
ring emitters and the donor/acceptor,

Ĥlattice =
∑︂
n,m

(︂
Jnm − i

Γnm

2

)︂
σ̂†

n σ̂m, (2a)

Ĥint =
∑︂

n;k=a,d

(︂
Jnk − i

Γnk

2

)︂
(σ̂†

n σ̂k + σ̂
†

k σ̂n). (2b)

All emitters interact via vacuum-mediated dipole–dipole
interactions in free space. The pairwise coherent and dissipa-
tive interactions are given by Jnm = −3πΓ0/k0 Real(Gnm) and
Γnm = 6πΓ0/k0 Imag(Gnm), respectively, with Gnm being the free
space Green’s function (see Supplement 1 for details). The
Green’s function depends only on the separations between the
emitters and their dipole orientation. The time evolution of the
system is described by the effective Hamiltonian in Eq. (2) via the
Schrödinger equation i∂t |Ψ(t)⟩ = Ĥeff |Ψ(t)⟩. Since the Hamilto-
nian is non-Hermitian, the amplitude of the wavefunction for
the quantum emitters decreases with time, which is a direct
manifestation of the dissipative nature of the system.

3. COLLECTIVE MODES
As discussed in previous works [14,15,21], a subwavelength-
spaced ring of quantum emitters exhibits guided eigenmodes that
are extremely subradiant, exhibiting an exponentially increas-
ing lifetime, τΓ0 ∼ exp(NR), of a single excitation [21]. Aside
from the bright symmetric superposition state, the fields of the
remaining eigenmodes vanish at the center of the ring due to
symmetry. Thus, they are decoupled from any emitter at the
center. Here we demonstrate that a donor/acceptor at the center
of the ring that is dipole–dipole coupled to the symmetric ring
mode can form a subradiant state with a majority of the excita-
tion concentrated in the donor/acceptor. We start by analyzing a
single ring of NR emitters with a single donor in the center. For
a single ring, where the dipole orientations preserve the discrete
rotational invariance, the collective eigenmodes of the effective
Hamiltonian are spin waves of the form |Ψm⟩ = Ŝ†

m |G⟩, where

Ŝm =
1

√
NR

NR∑︂
j=1

eimϕj σ̂j (3)
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Fig. 2. Band structure, edge states, and excitation transport for a chain of rings. (a) Eigenmodes of the effective Hamiltonian Ĥlattice in
Eq. (2a) can be cast into NR = 9 energy bands with an angular momentum projection |m| using the Ansatz shown in Supplement 1 and
translation along the ring chain axis is given by d̃ = 2R + dR, the spacing between adjacent ring centers. (Decay rates of all eigenmodes are
color coded.) A band gap emerges with two edge states residing inside with an energy separation ∆(0,1)

gap to the nearest lower/upper band edge
respectively. (b) Minimal energy gap ∆(0,1)

gap to the nearest lower/upper band edge normalized by the maximal nearest-neighbor coupling J
shows distinct maxima as a function of dR. These maxima correspond to an optimal transport efficiency ηt as shown in panel (e) for NR = 8, 9.
Furthermore, smaller emitter numbers per ring NR are affected more by randomly rotated rings except for even NR. The average was taken
over 50 random realizations and where the rings can be randomly rotated between ±2π/NR. (c) For NR = 9, edge states appear with maximum
amplitude on the left/right end of the ring chain and a superradiant decay rate for decreasing inter-ring spacings dR/d. Notably, topological
edge states have been observed in zigzag chains of gold nano-rings [19,20] with lasing from the edge rings. (d) With decreasing inter-ring
spacing dR, edge states become more pronounced with distinct minima where the bulk amplitude vanishes leading to a suppression of
excitation transport. (e) Excitation transport between a donor and acceptor site placed in the center of the edge rings. The transport efficiency
ηt is evaluated after a time tΓ0 = 150 with the donor/acceptor detuning ∆ optimized for maximum transport. Suppression appears when the
edge states become too pronounced with vanishing amplitude in the bulk rings as shown in panel (d). (f) Time dynamics of the excitation
transport process between a donor and acceptor site with ∆ = 0. The eigenstate fidelity |⟨Ψ(t)|Ψeig⟩|

2 for NR = 9 demonstrates the importance
of edge states at early times. Parameters: d = 0.05λ0, ΓT/Γ0 = 1 in panels (e),(f) and 10 rings in panels (b)–(f).

and |G⟩ denotes all emitters in the ground state. Here φj =

2πj/NR is the angle between neighboring emitters along the
ring and m = 0,±1, · · ·, ⌈±(NR − 1)/2⌉ is the angular momen-
tum of the collective mode. The associated energy shifts and
decay rates of these spin waves are given by J̃m =

∑︁
j eimϕj J1j and

Γ̃m =
∑︁

j eimϕjΓ1j, respectively. In such a configuration, all ring
emitters couple equally to the central donor, which restricts
the spectrum to the m = 0 mode. This system features two
eigenstates |Ψ±⟩ that are symmetric/anti-symmetric superpo-
sitions of the symmetric ring mode and the central donor. The
anti-symmetric state can be extremely subradiant depending on
the detuning ∆ of the donor with respect to the ring emitters,
resulting in a vanishingly small net dipole strength [23]. This
leads to an optimal detuning ∆sub ≈ Jd(Γ̃0 − Γ0) − J̃0 that maxi-
mizes the subradiance of the donor with an effective decay rate
Γeff/Γ0 ≲ 10−3 (see Supplement 1 for details). Here, Jd is the
coherent coupling between the donor and a ring emitter.

Likewise, a chain of quantum emitter rings features a rich
collective eigenmode structure. In particular, the subradiance of
the eigenmodes protects the excitations from radiative decoher-
ence and leads to efficient excitation transport [15,45]. As shown
above, eigenmodes of a rotationally symmetric ring carry angu-
lar momentum m. Similarly, the eigenmodes of a linear chain
of quantum emitters carry linear momentum k [5,14]. This
leads to an ansatz wavefunction for the eigenmodes of a ring
chain, |Ψm,k⟩, with an angular and linear quasi-momentum pair
(m, k), and associated eigenenergies ω0 + Jm,k and decay rates

Γm,k [46] (details provided in Supplement 1). The translational
distance between adjacent ring centers along the chain is given
by d̃ = 2R + dR. Figure 2(a) shows the energy bands for NR = 9
and dR/d = 0.9. The band structure exhibits a nontrivial topol-
ogy with a non-zero Zak phase φ = i

∫
BZ

dk ⟨Ψm=0,k |∂k |Ψm=0,k⟩

[47] as well as gapped edge states between the energy bands
of the m = 0 and |m| = 1 eigenmodes. The edge states emerge
for decreasing inter-ring spacings dR, illustrated in Fig. 2(c), and
become more pronounced until a critical spacing of dR/d ≈ 0.58
and dR/d ≈ 0.34 for NR = 8, 9 emitters per ring, respectively.
The edge states are energetically degenerate and detuned by
∆

(0,1)
gap from the lower/upper band edge, respectively. Figure 2(b)

shows the minimum distance of the edge states to the nearest
band edge as a function of the inter-ring spacing dR. Topolog-
ically protected edge states are crucial for resilient excitation
transport in disordered systems [4] and min(∆(0,1)

gap ) can serve as
a figure of merit in this regard. Specifically for lattices of rings,
the band gap remains finite in the presence of rotational disorder
and exhibits a distinct maximum, e.g., dR/d ≈ 0.9 for NR = 9, as
shown in Fig. 2(b). Edge states also become superradiant at the
critical distance where excitation transport is surpressed, as is
shown in Fig. 2(c). This points to the possibility of edge mode
lasing, already observed in gold nano-rings arranged in zigzag
chains [19,20,48].

Figures 2(e) and 2(f) demonstrate the fundamental influence
of the edge states on the transport dynamics between a donor and
acceptor site for 10 rings with NR = 9. At the critical spacings,
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transport is either completely or strongly suppressed because the
edge states possess no amplitudes in the bulk rings. Conversely,
at other spacings dR, edge states are crucial during the early times
of the transport process, as demonstrated by the eigenstate fideli-
tiesF (t) = |⟨Ψ(t)|Ψeig⟩|

2 for NR = 9. Qualitatively similar results
hold for other NR. Indeed, edge states have been thoroughly stud-
ied in dimerized chains (NR = 2), which reproduces a long-range
generalization of the well-known Su–Schrieffer–Heeger (SSH)
model [20]. A more complete discussion of the emergence of
edge and corner states [48] in two-dimensional ring lattices is
briefly discussed in Supplement 1 and warrants further study.

4. RESULTS: EXCITATION TRANSPORT AND
TRAPPING
We now focus on the excitation transport dynamics and discuss
the time evolution of a single initially excited donor. We find that
excitation transport is optimized at particular donor/acceptor
detunings, and that efficient transport occurs only for ring emit-
ter numbers NR ≥ 6. In particular, rings with 8-, 9-, and 10-fold
symmetry seem to be most optimal. This is particularly intrigu-
ing because 8-, 9-, and 10-fold rings, the most abundant type
occurring in natural light harvesting antennae, show the highest
resilience when rings are randomly rotated with respect to each
other [49–51]. In Fig. 3, the donor excited state populations and
the trap populations ηt are shown after a time tΓ0 = 150 for a
chain of 10 rings with various inter-ring spacings dR. The detun-
ing ∆ where the donor excited state population is maximized
(i.e., most subradiant) follows the optimal detuning ∆sub for
the single-ring case. Here, the donor excitation largely remains
trapped in the subradiant state discussed above, even for small
inter-ring spacings.

Fig. 3. (a)–(c) Excitation transport in quantum emitter rings
between a donor and acceptor site. Scan over the number of emit-
ters per ring NR and donor/acceptor detuning ∆ for 10 rings with
decreasing inter-ring spacings dR after a time tΓ0 = 150. Efficient
transport emerges only with NR ≥ 6, irrespective of dR. The excited
state population in the donor can get trapped in a subradiant state
involving the ring surrounding the donor and follows the detuning
∆sub (white dashed line) derived in the main text. For 9-fold sym-
metric rings, the donor/acceptor detuning that optimizes transport
is given by ∆ ≈ 0 for all inter-ring spacings. Additional parameters
are: ΓT = 2Γ0, d = 0.05λ0.

A crucial element of excitation energy transport is robustness
against energy disorder. We provide a comparison of ring lat-
tices with other lattice geometries, including the influence of
static frequency disorder in the lattice emitters. This is achieved
by taking emitter frequencies ωm from a Gaussian distribution
around the unperturbed emitter frequency ω0 with a standard
deviation δω and adding the term

∑︁
m(ωm − ω0)σ̂

†
mσ̂m to the

Hamiltonian in Eq. (2). The donor/acceptor detuning ∆ remains
unchanged and is chosen such that unperturbed excitation trans-
port is maximized. Figure 4 shows various geometries, many
of which also have been studied previously for atoms trapped
in optical lattices [4,5,10,12,21,45]. The nearest-neighbor dis-
tance is kept at d = 0.06λ0 and the donor–acceptor distance
at ∼ λ0 to establish a uniform comparison between the dif-
ferent geometries. Figures 4(a) and 4(b) show a hexagonal
lattice with ∆ = 0 and a honeycomb lattice with ∆ = 4.5 Γ0.
In Fig. 4(c), a 1D ring chain and 2D hexagonal ring lattice with
NR = 9 are shown with ∆ = Γ0. The fluctuation in the emitter
frequencies δω is set to |J |/4 and |J |/2, where J ≈ −8.4Γ0. Alto-
gether, the different geometries show a similar reduction in the
maximal transport efficiencies under disorder but behave quite
differently in the range of trapping frequencies ΓT where max-
imal transport occurs. Whereas the hexagonal lattice exhibits
peak transport at a trapping rate far above the optical decay
rate, namely at ΓT/|J | ∼ 2, the ring lattices demonstrate effi-
cient transport over a large range Γopt

T /|J | ∼ 0.01–1, even in the
moderately disordered case. Qualitatively similar conclusions
also apply to ring lattices with NR ≠ 9. Just as importantly, the
ring lattices in Fig. 4(c) show significant transport enhance-
ment for ΓT ≪ |J | compared to the independent case where
no lattice is present. In summary, the ring lattices show sig-
nificantly better transport capability and robustness against
disorder.

So far, we have assumed that a single donor is initially excited,
and we have quantified the transport behavior by calculating the
fraction of the excitation that accumulates in a trap state via
Eq. (1) after a waiting time t. However, in many realistic sce-
narios, a perfectly excited donor is rather unlikely, and emitters
close to the donor will be excited too. This motivates the study
of the trapping rate at which the excitation ends up in the trap
state under continuous coherent illumination in the form of a
Gaussian laser beam with finite beam waist w. The continuous
coherent drive is modeled by

Ĥlaser = Ω0

∑︂
i

exp
(︂
−

|r⃗d − r⃗i |
2

2w2

)︂
(σ̂†

i + σ̂i), (4)

where Ω0 is the laser Rabi frequency and r⃗d is the position
of the donor with the sum including all emitters. The driving
rate of the laser is kept small (Ω0 ≪ Γ0) to ensure that the sys-
tem stays in the single-excitation regime and the model remains
valid. As a figure of merit for energy transport efficiency, we
define ΓT⟨σ̂

†
a σ̂a⟩st/(4Ω2

0) as the steady-state trapping rate at the
acceptor emitter. The effective trapping rate is normalized by the
trapping rate of a single acceptor, given by σ0Γ0ΓT/(Γ0 + ΓT)

2,
where σ0 = 6π/k2

0 is the single emitter scattering cross section
[23]. In Figs. 5(a)–5(c), a hexagonal lattice, a honeycomb lat-
tice, and a hexagonal ring lattice with NR = 9, respectively, are
compared for two laser beam waists under continuous driving.
By choosing a beam waist of w/λ0 = 0.3, most of the incom-
ing light is focused around the donor emitter while the acceptor
emitter remains mostly undriven. For w/λ0 = 3, the whole lattice
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Fig. 4. Excitation transport in ring geometries exhibits superior robustness against disorder. Comparison of transport efficiency in (a) chain
and hexagonal lattices and in the absence of a lattice (gray line), (b) honeycomb, and (c) ring lattices as a function of the trapping rate ΓT
and frequency disorder. Lattice emitter frequencies are randomly fluctuating by δω around the resonance frequency ω0. The donor–acceptor
distance is approximately the wavelength of light λ0. Also shown in the dash-dotted lines is the case of a donor–acceptor pair separated by
d in the absence of any lattice. Although frequency disorder decreases the long-range transport capacity, it prevails remarkably well even at
large frequency fluctuations. In particular, the ring lattices exhibit high transport efficiencies (close to 90%) over a wide range of trapping
rates as compared to the other geometries. At trapping rates much below the magnitude of the coherent transfer rate J, ring-based lattices
are superior to any other lattice in our study. Additional parameters: dR/d = 0.9, d/λ0 = 0.06, J/Γ0 ≈ −8.4, tΓ0 = 150. An average over 25
random realizations with standard deviation δω was performed in all plots. Donor/acceptor detunings of (a) ∆ = 0, (b) ∆ = 4.5Γ0, and (c)
∆ = −Γ0.

Fig. 5. Ring lattices exhibit the most efficient energy trapping under weak light illumination and small trapping rates. A comparison of
the steady-state effective trapping rate ΓT⟨σ̂

†
a σ̂a⟩st/(4Ω2

0) between different lattice geometries under continuous coherent driving with rate
Ω0/Γ0 = 10−3. The drive is modeled by a Gaussian beam with waist w centered at the acceptor emitter and is on-resonance with the lattice
emitter frequencies ω0 [see Eq. (4)]. The effective trapping rate is normalized by the single emitter trapping rate driven on resonance (see
main text). We study a hexagonal and chain lattice in panel (a) with 20 and 8 × 9 emitters, a honeycomb lattice in panel (b) with 130 lattice
emitters, a chain of five rings in panel (c), and a 3 × 3 hexagonal ring lattice in panel (d). The donor/acceptor distance is approximately the
wavelength of light λ0 in all lattices. Strikingly, only the ring-based lattices are orders of magnitude more efficient at trapping incoming light
for trapping rates below the nearest-neighbor coupling rate, namely when ΓT ≪ |J |. Conversely, the honeycomb and hexagonal lattices are
orders of magnitude less efficient in the same regime with the honeycomb lattice not deviating significantly from the single acceptor case.
The linear chain (gray dashed) and the free space transfer (solid gray) shown in panel (a) is more efficient at trapping rates ΓT> |J |. Additional
parameters: d/λ0 = 0.06, J/Γ0 ≈ −8.4 and donor/acceptor detunings of (a) ∆/Γ0 = −18 (hexagonal), ∆ = 0 (chain), (b) ∆/Γ0 = −20, (c)
∆/Γ0 = −3.85, (d) ∆/Γ0 = −4.63 with dR/d = 0.9, NR = 9, in panels (c) and (d).

is uniformly driven—a scenario more applicable to deeply sub-
wavelength lattices under illumination from a non-directional
light source. Natural light-harvesting antennae in purple bac-
teria offer an example [24]. In all cases, the donor/acceptor
detuning∆ is chosen optimally such that the trapping rate is max-
imized. We find that the ring lattice is many orders of magnitude

more efficient in trapping incident light as compared to both the
triangular and honeycomb lattices as well as the single emit-
ter at trapping rates much below the nearest-neighbor coherent
transfer rate J. In particular, for ΓT/|J | ≲ 0.01, the ring lattice
exhibits an almost 100× higher trapping efficiency compared to
an independent emitter and the other lattices.
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5. CONCLUSIONS
In conclusion, we have demonstrated intriguing optical proper-
ties of quantum emitter ring lattices, including the emergence
of topological edge states. Furthermore, we have shown based
on general symmetry principles that ring lattices form a supe-
rior platform for transporting and trapping excitations. We
have also elucidated the guiding principles that govern opti-
mal donor/acceptor detunings, trapping rates, and geometric
arrangements with robustness against static energy disorder.
Under more realistic conditions of weak coherent light illumi-
nation, we have shown that ring lattices are orders of magnitude
more efficient at trapping the absorbed light when the trap-
ping rate is much smaller than the nearest-neighbor coherent
coupling rate. This result is thought-provoking since natural
light-harvesting systems also operate with trapping mechanisms
that are orders of magnitude slower than the coherent transfer
time between neighboring chromophores [52,53]. Measure-
ments performed on natural light-harvesting complexes show
that the coherent energy transfer time between neighboring chro-
mophores during photosynthesis is of the order of ∼ 0.1–10 ps
whereas the trapping time in the reaction center is typically
∼ 0.1–10 ns [35,52,53]. For a pre-existing trapping structure,
this could provide an explanation why nature uses ring geome-
tries as a moderating mechanism to trap absorbed sun light
in reaction centers. Other studies have focused on molecular
emitters in ambient conditions with vibrational degrees of free-
dom as well as multiple decoherence channels [54–56]. These
works have shown that coupling between electronic and vibronic
modes can aid the transport and trapping processes in ordered
molecular arrays such as ring geometries via unidirectional
transfer from superradiant to subradiant collective electronic
states [57–59]. The impact of these additional effects on the
results presented here are an exciting avenue for future research
[60–62]. Nevertheless, our results suggest that there exist general
and platform-agnostic design principles that govern the efficient
transport of excitation energy at the nano scale. These geometri-
cal considerations may have played a role in evolutionary design
and warrant further study.
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