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Abstract

Graph Neural Networks (GNNs) are a powerful class of machine learning models
with applications in recommender systems, drug discovery, social network analysis,
and computer vision. One challenge with their implementation is that GNNs often
take large-scale graphs as inputs, which imposes significant computational/storage
costs in the training and testing phases. In particular, the message passing opera-
tions of a GNN require multiplication of the graph adjacency matrix A € R™*"
and the data matrix X € R™*¢, and the O(n?d) time complexity can be prohibitive
for large n. Thus, a natural question is whether it is possible to perform the GNN
operations in (quasi-)linear time by avoiding the full computation of AX. To study
this question, we consider the setting of a regression task on a two-layer Linear
Graph Convolutional Network (GCN). We develop an efficient training algorithm
based on (1) performing node subsampling, (2) estimating the leverage scores of
AX based on the subsampled graph, and (3) performing leverage score sampling
on AX. We show that our proposed scheme learns the regression model observing
only O(nde~%logn) entries of A in time O(nd?c~2logn), with the guarantee
that the learned weights deviate by at most £ under the ¢5 norm from the model
learned using the entire adjacency matrix A. We present empirical results for
regression problems on real-world graphs and show that our algorithm significantly
outperforms other baseline sampling strategies that exploit the same number of
observations.

1 Introduction

Graph Neural Networks (GNNs) have gained popularity as a powerful machine learning method for
graph-structured data. By learning rich representations of graph data, GNNs can solve a variety of
prediction tasks on graphs [1H7]. GNNs have delivered impressive results across many different areas,
including social network analysis [8], bioinformatics [9H11]], and recommendation systems [12].

Given their remarkable performance, being able to train GNNs efficiently is an important task.
However, training GNNs can be quite challenging in the context of large-scale graphs, which impose
significant computational costs. In particular, the message passing scheme in GNNs requires, for
each node, summing up the feature vectors of all neighboring nodes into one feature vector. For a
multi-layer Graph Convolutional Network (GCN) [3]], the layer-wise propagation rule is

U+ O'(AH(Z)W(Z)>, (1)

where H(®) denotes the feature representation at the /th layer, with H(®) = X (i.e., the data matrix
consisting of nodes’ features of an input graph G); W) denotes the weight matrix; o(-) is a
non-linear activation function like the ReL.U; and A denotes the adjacency matrix of G.
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If the graph has n nodes and the feature dimension is d, computing the matrix multiplication AX
requires O(n?d) time and can be prohibitive in big data settings. A natural question is whether it is
possible to train a GCN to avoid the quadratic complexity scaling with n.

Another motivation for avoiding the full computation of AX is applications where the adjacency
matrix A is not fully known a priori, and it must be learned via node/edge queries. For example, in
large social networks (the current number of social media users is over 4.89 billion [[13]), one may
need to access the adjacency matrix A by querying the adjacency list of specific nodes. As another
example, certain biological networks must be learned through the physical probing of pairwise
interactions, which may make obtaining the entire adjacency matrix A prohibitively expensive.
For example, the mapping of the neural network of living organisms (such as the connectome of
C. elegans [14])) requires physical probing of the connectivity between neurons.

A natural approach to avoid the quadratic complexity of computing AX is via the subsampling of
the graph G [15116} [16] [17]. If the resulting subgraph is sparse enough, AX can be computed very
efficiently. But how many entries of A need to be observed in order to guarantee that the message
passing step AX can be computed accurately enough in the context of GNNs? What kinds of graph
subsampling strategies are amenable to theoretical performance guarantees on the training of GNNs?

We consider the setting of a regression task to be learned via a GCN. Let A € R™*" be the weighted
adjacency matrix of a graph G = (V, A) with |V| = n. Each node v; € V has an associated feature
vector of dimension d (< n) and a label, denoted by (x;,y;) € R? x R, which can also be represented
as an x d data matrix X and label vector y. Training the GCN corresponds to minimizing the loss

LW, A, X,)y) = |y — faen(W, A, X)|3, 2)

on the training data {(x;,v;)}"_,, where W denotes the GCN network weights, and feen(W, A4, X)
denotes a feed-forward computation of a GCN’s output. As a first step to studying whether (2)) can
be solved accurately on a sparse subgraph of G, we focus on a simple linear GCN, where there is
no non-linearity o (-). Specifically, the feed-forward output is given by firs¥(w, A, X) := AXw,
where we use w € R? (instead of W € R'*9) to indicate that the learnable parameters are in the
form of a vector. Hence, our goal is to solve

min 5o [ly — AXw|3. 3)

Note that one can view this optimization problem as a graph-weighted linear regression problem.

The setting of linear regression provides natural suggestions for a subsampling strategy. It is known
that leverage score sampling allows one to solve the linear regression problem with (1 + ) accuracy
using only O(de~2 log n) subsampled rows of the data matrix X and in time O (nd? + d3 [18H22].
Nevertheless, to apply this strategy to (3, one would need to first compute AX, requiring O(n?d)
time, so that the row leverage scores of AX can then be computed. This motivates us to propose a
two-step approach that (1) performs node subsampling to obtain an approximate observation of AX
and estimate the leverage scores of the rows of the augmented matrix [AX| — y] € R™*(¢+1) and (2)
performs leverage score sampling on the rows of [AX | — y]| using the estimated scores.

This two-step approach is illustrated in Figure[I} In order to obtain an estimator of AX, our sampling
scheme in the first step builds O(log n) rank-1 matrices by sampling the same amount of columns of
A and the corresponding rows of X . The key idea behind this approach is taking a random subset of
nodes and propagating their feature vectors to their neighbors. We provide a spectral approximation
guarantee for the resulting estimate of AX and an approximation guarantee for the leverage scores
of the augmented matrix [AX| — y] computed on this estimate. In the second step, we adopt the
standard leverage score sampling for sampling rows of A, using the leverage score estimates of
[AX| — y] obtained from the first step. With O(dz~2 logn) sampled rows of A and 7, the training
algorithm then computes AX and uses it to solve the regression problem. We show that our proposed
scheme learns the regression model with learned weights deviated by at most € from those with full
information, by observing only O(nde~2logn) entries of A, and in time O(nd2c~2logn).

On real-world benchmark datasets, we demonstrate the performance improvements of the two
proposed schemes over other baseline sampling schemes via numerical simulations.

"More precisely, the time complexity is O((nnz(AX) + d*) log(e ™)), where O(-) hides factors polyloga-
rithmic in (n, d).



Step 1: Estimate leverage scores Step 2: Use leverage score estimate for training

]
g;(",ll (X y)— = - EREET

y
sample O(¢ 2logn) A x Xj.'s w.p. p; sample O(de ?logn) rows perform a regression task
via leverage score sampling

Figure 1: Two-step Algorithm: (1) perform node subsampling to obtain an estimate AX , from which
we can compute ¢;([AX)| — y] fori = 1,...,n; and (2) use the leverage score estimates to perform
leverage score sampling on A and y and perform regression using AX and y instead of AX and y.

Notation: Throughout the paper, we use A = (a;;) € RZ5" to denote the graph adjacency matrix,
where each entry value is nonnegative and bounded (i.e., 0< a;; < M for some constant M > 0).
We write A;. and A.; to indicate the th row and jth column of the matrix A respectively. In addition,
X e R™*4 denotes the data (design) matrix, where the ¢th row in X, x;, corresponds to the node
vector at the ith node v; in the graph G. We also assume that the absolute value of each entry
value of X is bounded by M (i.e., | X;;| < M). We denote vectors by a lowercase bold letter (e.g.,
x € R™), and by default, all the vectors will be in column format, hence X = (x{;...;x )T, where
()T denotes the transpose. We indicate the ith entry of x with either [x]; or x;, and we use [x]s
to denote the concatenation of x;s for all ¢ € S. We also let [n] := {1,2,...,n}. We denote by
(x,¥) := >, x;y; € R the inner product between x and y. Unless otherwise mentioned, we use || v||

for the /o-norm for vector v. We let || A|| := maxy|—1 [|Av|| denote the operator norm of a matrix,
and [|Allp == />, a?; denote the Frobenius norm. We denote the standard basis vector by e;. We

write Bern(p) for a Bernoulli distribution with parameter p. Lastly, we denote by nnz(A) the number
of non-zero entries in matrix A.

Related Work: We provide a detailed discussion of related works in Appendix A,

2 Motivation: Leverage Score Sampling for Linear Regression

First, we briefly describe key results on leverage score sampling that will be relevant to our discussion.
We refer to [23] for a detailed discussion on the subject, and we provide key proofs in Appendix D.

Definition 1. The leverage score of the ith row of X is £;(X) := x,; (X " X)x;, where ()T denotes
the Moore-Penrose pseudoinverse.

Intuitively, a row’s leverage score measures how important it is in composing the row space of
X. If a row has a component orthogonal to all the other rows, its leverage score is 1. Removing
it would decrease the rank of X, completely changing its row space. The leverage scores are
the diagonal entries of the projection matrix X (X ' X)~1X T, which can be used to show that

Yo, 4i(X) = rank(X). The following alternative characterizations of ¢;(X) will be useful.

Proposition 1. Let X = UXVT be the singular value decomposition (SVD) of X, where U € Rnxd
¥ € R4 and V € R4*?, Then ¢;(X) = ||U..||3, where U;. is the ith row of U.

(x/v)?

Proposition 2. The leverage score can be alternatively computed as ¢;(X) = max,, Tz
2

Through the use of leverage scores, it is possible to approximately solve a linear regression task
using a subset of the data points [[18H22]). In particular, leverage score sampling allows the spectral
approximation of a matrix.

Definition 2. A matrix X € R"*? is an e-spectral approximation of X € R"* if, for all v € R,

(1=2) 1XV]l2 < | Xv]l2 < (1 +¢) - | X V]2 @)
Suppose we are given a data matrix X = (x{;...;x, )T and a vector u = (uy,...,u,) of leverage

score overestimates of X (i.e., £;(X) < u;, Vi € [n]). We create a matrix X by including the ith row



of X in X with probability p; = min[1, cu;e =2 log n] for some constant ¢, scaled by 1/ V/Pi- The
following is a slight modification of Lemma 4 in [21]] (which we prove in Appendix [D):

Lemma 1. With probability at least 1 — n=2W for any v, we have

(L—2)- [IXv]| < [[Xv] < (1 +e)- [ Xv]|.

Notice that the expected number of rows in X is ¢||ul|;e~2 log n. Hence, as long as ||ul|; = O(d),
we only need to sample O(ds~2 logn) rows of X to obtain a good spectral approximation.

Now suppose we want to solve the OLS problem min, %Ily — Xw||% where y € R™ is the response
vector corresponding to X. The optimal solution is given by w* = (X' X)"'X Ty. Exactly
computing w* requires O(nd? + d*) time.

An alternative approach using leverage score sampling would be as follows. First, we note that the
OLS objective can be rewritten using |y — Xw|| = ||[X]| —y] - [{]ll. If we now have leverage
score overestimates 11, . . . , u,, for the augmented matrix [X| — y] € R™*(4*+1)we can construct

the subsampled matrix [Xs| — ys] € RI¥*(@+1) (with rows rescaled by 1/ v/Pi)- Then, by Lemmalll
a solution to

v?/:argn‘lhiln H[Xs|—y5]'[leH ) ®)
2

would satisfy [|ys — Xsw|2 < [lys — Xsw*[2 < (1 +¢)[ly — Xw*||2.

The exact leverage scores of X can be computed in time O(nd?) (see Algorithm Ein Appendix
and, since |S| = O(de~2logn), the reduced linear system (5) can be solved in time O(d®c =2 logn).
The overall complexity for solving the OLS problem in this way is given by O(nd? + d3c=2logn).
Notice that there is no real acceleration obtained by this procedure. But also notice that here we are
using the exact leverage scores for sampling while, from Lemma|I] we know that this approach works
as long as we have good leverage score overestimates.

3 Efficient Training of a Linear GCN via Leverage Scores

In this section, we introduce an efficient training algorithm that approximately solves the graph-
weighted regression task by observing only O(nds~2logn) entries of A, and in time
O(nd?c=21ogn). The necessity for introducing the efficient training algorithm comes from the
O(n?%d) time complexity of computing AX via matrix multiplication.

Motivated by the discussion in Section2|for standard linear regression, a natural approach is to attempt
to compute leverage score overestimates for AX efficiently without the full computation of AX. Our
proposed algorithm uses the following three steps to approximately solve the graph-weighted linear
regression problem.

1. ESTIMATELEVERAGESCORES(A, X ) (See Algorithm|[I]and Algorithm

2. LEVERAGESCORESAMPLING(A, {/;([AX| — y]), Vi € [n]}) (See AlgorithmEin Ap-
pendix[B)

3. REGRESSIONSOLVER(AX, ¥) (See Algorithm [5]in Appendix[B)

In ESTIMATELEVERAGESCORES(A, X)), a node subsampling technique is used to build an estimate
AX of AX with an approximation guarantee. The estimate AX can then be used to produce
provably good overestimates of the leverage scores of the augmented matrix [AX| — y]. Next,
LEVERAGESCORESAMPLING(A, {/;([AX| —y]), Vi € [n]}) uses these overestimates to produce
a matrix A and scaled labels y consisting of a reduced number of rows of A and y respectively.
Using Lemma |I, we then show that AX provides a spectral approximation for AX, which allows
approximately solving the regression problem (3) using REGRESSIONSOLVER(AX ,¥). We note
that none of the algorithmic procedures requires fully computing AX and the end-to-end algorithm
has an O(n logn) time dependence on n.



Algorithm 1 ESTIMATELEVERAGESCORES (A, X) via Uniform Sampling

Input: Adjacency matrix A € R™*", data matrix X € R"*9, budget B, threshold ¢ > 0
Output: Leverage score overestimates for A X

{(G(AX| —y)), Vie ]} « 2.5

return ;([AX| — y)), Vi € [n]

1: Draw I; ~ Bern(p), Vj € [n] independently, where p = min [g, 1]

2: m — %A:ij:,Vj € [n]

3: Z)\(%Z?:lm >0 (Bd)

4: S « LEVERAGESCORE([AX|— y]) > See Alg. [flin App.[B} O(mnz([AX]| - y]) + d*)
5:

6:

3.1 First Stage: Uniform Sampling of A.; X ;.

In order to efficiently estimate the leverage scores of AX, a key observation we make is that AX can
be decomposed as a sum of n rank-1 matrices as AX = Z?Zl A.;X;., where A.; and X denote

jth column of the adjacency matrix A and jth row of the data matrix X. Notice that one can view
A.;X;. as the effect of node j’s feature vector propagated to other nodes after the one-step message
passing operation. Hence, a natural approximation strategy is to take a subset of these rank-1 matrices.
First, we consider a uniform sampling strategy that samples node indices 7 uniformly at random and
computes A.; X ;.. See Algorithm|l|for the detailed procedure.

Given a budget B (the total number of nodes that should be observed), the algorithm draws sampling
indicator variables I; ~ Bern(p) independently with p = min [B/n, 1]. For j = 1,...,n, we build

A_]X] - ?]ijja

and then set AX = Zj m Notice that AX is an unbiased estimate of AX , because for all 7, j,

E [[ﬁ]”} — Zp. lai}cxkj = Zaikwkj = [AX]” (6)
= P k=1

In addition, one can readily see that B rank-1 matrices are sampled in expectation, and, with high
probability, the actual number of sampled rank-1 matrices is less than (1 + «)B for @ > 0.

Next, we present a spectral approximation guarantee for AX. In order to establish that result, we
make the following mild assumption on the density of the input graph.

Assumption 1. We assume that the input graph G satisfies
|AX|| > n®/2d"/2. (7

Strictly speaking, (7)) is not just an assumption about the density of G, as it takes into consideration
the interaction between A and X. Nevertheless, this assumption would be expected to hold in
cases where the graph G is dense. In particular, since [|AX| > d~/?||AX||r, Assumption E
holds if ||AX |z > n%/2d. Assuming that A has dn? non-zero entries and that entries of X are
drawn i.i.d. from some distribution with positive second moment 32, independently of A, we have

|AX || F ~ \/0n2dB? = 36'/?n3/2d"/?, Treating d as a constant and rescaling X by a constant, we
have that the assumption holds. More generally, if d is a constant and

[{(i,4) € [n] x [d] : e] AXe; > cin}| > con

for constants c; and cs, then the assumption holds (after a constant rescaling of the data matrix). The
following stronger assumption will be needed to establish guarantees for the leverage score estimates:

Assumption 2. For all (i, ) € [n] x [d], e] AXe; > cin for some constant c;.

Notice that if the graph G is instead sparse, the problem we focus on due to the computation of AX
is less severe since one can efficiently compute AX in time that depends on nnz(A).

The proof of the following theorem is in Appendix [E.



Theorem 1. Under Assumption |I, if we run Algorithm |I with budget B = Ce~2logn for large
enough C > 0, the estimate AX satisfies

(1—¢) |AXV| < |[AXv] < 1 +¢) - |AXv|, YveR? ®)

with probability at least 1 — n~ (1),
Given the spectral approximation guarantee in Theorem|[I] we expect the leverage scores computed

on the augmented matrix [Z)\( | — y] to be close to the leverage scores of [AX| — y]. Since we want

an overestimate of the leverage scores, we use the the multiplicative constant ( iJ_rE )? to obtain

1+¢
1—¢

A(AX] — y) ( )wi([my]), vi € . ©)

The following lemma, whose proof is in Appendix EL asserts that E—([AX | — y]) is indeed an
overestimate of 4;([AX | — y]).

Lemma 2. Under Assumptionlgl Algorithmll] with budget B = C'e~2 log n for large enough C' > 0
outputs leverage score overestimates satisfying

4
G1AX] 3D < BAXT-3) < (155) 6(AX|-3), vicll a0

with probability at least 1 — = (1),

3.2 Second Stage: Leverage Score Sampling and Approximate Regression

The second step of the proposed algorithm exploits the leverage score estimates E([AX | —vy]),
Vi € [n] to perform the standard leverage score sampling. With Lemma |I, one can readily obtain a
(1 + &)-approximation guarantee for the graph-weighted linear regression task.

Theorem 2. Under Assumption |Z, suppose we run Algorithm |I with budget B = Ces~?logn
for large enough C' > 0, to obtain {E([AX | — y]), Vi € [n]}. Subsequently, if we run
LEVERAGESCORESAMPLING(A, {/;([AX| — y]), Vi € [n]}). we obtain A € RO(de " logn)xn
and § € RO(=""1ogn) quch that REGRESSIONSOLVER (AX, ¥) provides W satisfying

Iy — AXw]3 < (1 +¢) - min [y — AXw]]3.

Theorem |Z captures our main contribution. By only observing O(dlogn) rows of A, we
can obtain a reduced adjacency matrix A (and corresponding label vector y¥. Running
REGRESSIONSOLVER(AX ,¥) then yields a solution W with an approximation guarantee. We
refer to detailed descriptions of LEVERAGESCORESAMPLING (A, {Z([AX| —yl), Vi € [n]}) and
REGRESSIONSOLVER(AX ,¥) in Appendix

Sample complexity and run-time: We note that the sample complexity is O(nds =2 logn). First,
ESTIMATELEVERAGESCORES(A, X) exploits O(¢~2?logn) columns of A and the same number
of rows of X, thus accessing O(ne~2logn) entries of A and O(de=2?logn) of X. In addition,

LEVERAGESCORESAMPLING(A, {(;([AX| — y]), Vi € [n]}) exploits O(de~2logn) rows and
thus uses O(nds~2logn) entries. Hence, the total number of entry observations is O(nds~2logn).
For the time complexity, the run time of ESTIMATELEVERAGESCORES (A4, X) is O(nde~2logn);
that of LEVERAGESCORESAMPLING (A, {¢;([AX| — y]), Vi € [n]}) is O(nd?c~2logn). Finally,

we note that the run time of REGRESSIONSOLVER(AX,, y) is O(nd? + d*f} Hence, the total run
time is O(nd?c~2logn) given the setting that we consider has d < n.

*We refer to [24-28] that introduce a variety of acceleration algorithms for regression.



Extension to the more-than-two-layer case: Note that without non-linearities, considering a
multi-layer network is equivalent to performing additional matrix multiplication by A to the output
of the previous layer. Since our proposed scheme yields a spectral approximation guarantee for
matrix multlphcatlon an analysis similar to that of Algorithm [T|should be possible for this extension
to obtain a (1 + ¢)’-approximation guarantee, where L denotes the number of layers. Since the
approximation guarantee comes with high probability, a union bound could be used to obtain a high
probability guarantee for the multi-layer case (since the order or error for each approximate matrix
multiplication is the same).

4 Variance Minimization via Data-dependent Random Sampling

As stated in the previous section, Algorithm [I] produces an unbiased estimate of AX. Yet the uniform
sampling strategy used in Algorithm [I]does not take the variance of the estimator into consideration.
This motivates us to develop an estimator of AX that further reduces the estimator variance while

maintaining unbiasedness. Due to the unbiasedness of AX , the total variance of the estimator
coincides with the mean square error (MSE): Var(AX) = E||AX — AX|% = MSE(AX).

In order to reduce the estimator variance Var(Z)\( ), we consider a data-dependent sampling probabil-
ity p; that depends on the jth column of A and the jth row of X. As we view A.; X;. as capturing the
impact of node j’s features after a one-step message passing operation, one way to set the sampling
probability for node j is to take the norm of A.; X;. into account. Specifically, we set

[ A: I

B =————— 1. (11)
225 145111

Algorithm 2 describes the detailed procedure, where the only distinction relative to Algorithm|[T is

the choice of p;. We claim that this sampling probability choice minimizes the total variance (as well
as the MSE) of the estimator. First notice that the total variance can be expressed as

p; = min

n d d
Var(AX Z ZVar ( AX]”> = z (Z a,k> Zzij — C5 (Cq :=ndCh)

=1 j=1 k=1 i=1 Jj=1

i [ ||A:k|2||Xk;||2> ( S >

&) NEN 1Ak ) e | —

. n 2

Z (Z HA:k|||Xk:||> — (s,

k=1

where (i) follows from the fact that

Var ( [AX] 11) ZVar < azk‘rk]) =

1
= Z —a?kxkj Zalkx,ﬁ = Z kakj C (for some constant C )
k=1 P¥ k=1 Pk
and (iz) follows from using the fact that >_;pj = 1; and (i) follows from Cauchy-Schwarz
inequality. Notice that, in order for Cauchy-Schwarz to hold with equality, we must have py
proportional to || A.x|||| Xk.||. This implies that is an optimal choice of the sampling probabilities.

n n

~1 45 5 L—pk o o
—ag.wi; Var (I) = Z T QT
k=1 Pk k=1 Pk

As it turns out, the same theoretical guarantees obtained for Algorithm[I hold in this case. See Ap-
pendix [G for the detailed proof. While the theoretical performance guarantee is the same, in settings
where the budget B is very small, the data-dependent sampling probabilities p; lead to a better

estimate AX , which improves the overall performance of the algorithm.

One important observation is that it is not obvious how to use the data-dependent sampling probabili-
ties p; while avoiding the an O(n?) computation complexity. In particular, a naive computation of
| 4;.1l, 7 € [n] would require observing all n? entries of A. However, standard sampling techniques
could be used in order to also estimate || A;.||, j € [n] fairly accurate, and use those estimates to
compute the sampling probabilities p;, j € [n].



Algorithm 2 ESTIMATELEVERAGESCORES (A, X) via Data-dependent Sampling

Input: Adjacency matrix A € R"*", data matrix X € R"*9, budget B, threshold € > 0
Output: Leverage score estimates ¢;([AX| — y]), Vi € [n]

1: Draw I; ~ Bern(p,), Vj € [n] independently, where p; = min [B : m, 1

m — Z%A:ij:’Vj € [n}
AX Y0 44X, > O (Bd)
S + LEVERAGESCORE([AX| — y]) > O(nnz([AX| — y]) + d®)

{E([AX| —yl]), Vi € [n]} « gfgz .S

return ;([AX| — y]). Vi € [n]

AN A R i

S Empirical Results

We support our theoretical findings via numerical experiment to validate the performance of Algo-
rithm[T]and Algorithm [2]in a non-asymptotic setting.

Dataset and evaluation methods: We consider benchmark datasets from the Open Graph Bench-
mark (OGB) [29], Stanford Network Analysis Project (SNAP) [30], and House dataset [31]. We
defer detailed explanations of the datasets to Appendix [H. For evaluation methods, we compute
the mean squared error (MSE), wall-clock run-time, and peak memory usage of our two proposed
schemes and five baselines: (1) REGRESSIONSOLVER(AX,y) with fully known A and X; (2)

REGRESSIONSOLVER(AX ,y) with parts of rows of A, say A, obtained from sampling rows of A
uniformly at random; (3) REGRESSIONSOLVER(AX, y) with the exact leverage score sampling for
sampling rows of A to obtain partial A; (4) REGRESSIONSOLVER(AX y) with Algorithm E; )

REGRESSIONSOLVER(AX,y) with Algorithm |Z; (6) REGRESSIONSOLVER(AX, y) with a sam-
pling scheme inspired by GraphSage [[6] that selects the neighborhood of feature aggregation for
each node; and (7) REGRESSIONSOLVER(AX,y) with a sampling scheme motivated by Graph-
Saint [32] that selects a subgraph of the original graph. We note that (6) and (7) are not the tools
themselves [6,[32]], but graph subsampling strategies inspired by these tools.

Results and analysis:

Mean squared error: Figure|2 plots the mean squared error with respect to the budget allocation.
First, we observe that Algorithm [T and Algorithm [2 have a similar performance to the one with
exact leverage scores sampling, and the performance of the two proposed schemes tends to be
similar to that of REGRESSIONSOLVER with full (AXy), as the budget increases. Particularly seen
from Figure 2a, the error reduction on Algorithm2]from Algorithm|[T]is 84% when the budget is at 3%.
Even for the sparse datasets, as seen from Figure [2b]and Figure 2c| the corresponding improvements
of 86% and 67% exist when the budget is at 3% and 7% respectively. We also observe that the error
decrease for Algorithm 2 over Algorithm [T} for instance Figure 2b demonstrates the existence of
91% improvement at 5% observation budget. On the other hand, we observe that other subsampling
approaches—including those employed in uniform sampling, GraphSage, and GraphSaint—do not
perform the graph-weighted regression task as well, especially in the low-budget regime.

Extension to nonlinear GCN: While our theoretical results are for linear GCNs, we also assess the
efficacy of our proposed algorithm on nonlinear GCNs. Using the ReLU activation function and
one hidden layer, Figure [2d plots the mean squared error as a function of the observation budget,
shown as a percentage of the number of observed nodes in the graph. Interestingly, we observe that
running the non-linear GCN with uniformly sampled (A X, y) fails to perform the graph-weighted
regression task, especially in the low-budget regime. On the other hand, we observe that running the
non-linear GCN with our proposed sampling technique has a similar performance to the one with
exact leverage scores sampling, and the performance of the two proposed schemes tends to be similar
to that of Regression with exact (AX,y), as the budget increases. Particularly, the error reduction
on Algorithm [I] from Regression with uniformly sampled (AX, y) is 60% when the budget is at 5%.

3Our code is publicly available online at https: //github. com/seiyun-shin/gnn_node_subsampling,
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Figure 2: MSE w.r.t. observation budget (%): (1) Regression with full AX; (2) one with partially
observed AX obtained by sampling rows of A uniformly at random; (3) one with partial AX based
on the exact leverage score sampling; (4) and (5) one with Algorithmm and Algorithm@ and (6) and
(7) ones with GraphSage [6] inspired sampling and GraphSaint [32] inspired sampling algorithms.

Table 1: Wall-clock time comparison on end-to-end processes
Dataset #Nodes #Edges # Features ‘Wall-clock time (sec)

use of full AX use of AlgorithmE
and leverage score sampling

ogbl-ddi [29] 43K 1.3M 100 1.49 1.39
ogbn-arxiv [29] 169.3K  1.2M 128 299.48 7.40
Synthetic data (Gaussian)  50.0K 625.0M 500 27.28 5.77
Synthetic data (Gaussian) 100.0K  2.5B 500 107.10 8.97
Synthetic data (Gaussian) 150.0K  5.6B 500 247.70 9.96

Wall-clock time: In Table|l} we provide a run-time comparison for the end-to-end training process
for a regression task. We compare the wall-clock time of performing a regression task with full AX
computation and that with Algorithm T] that uses partial observations of A and X. The results show
that our proposed scheme requires orders of magnitude less wall-clock time for large-scale graphs
than the regression with exact AX computation. In particular, for the ogbn-arxiv dataset [29], our
algorithm runs about 40x faster than the regression with the exact computation of AX.

Peak memory usage: We also demonstrate the efficacy on the memory usage of our proposed
algorithms. See Table [3]in Appendix [H for details.

6 Concluding Remarks

Motivated by the prohibitive computational/storage costs of running GNNs with large-scale graphs,
we considered the problem of subsampling nodes’ information for performing a regression task.



Our main contribution lies in providing an efficient sampling algorithm for learning linear GNN's
with a large number of nodes with a theoretical guarantee. Specifically, for a two-layer linear GNN
with adjacency matrix A € R™*™ and data matrix X € R™*?, we show that it is possible to learn
the model accurately while observing only O(ndlogn) entries of A. This in turn yields a run-time
of O(nd?logn), avoiding the computation time O(n?d) of using the full matrix multiplication
AX. While we view our main contribution to be of a theoretical flavor, on real-world benchmark
datasets, we also demonstrate the run-time/memory improvements of our proposed schemes over
other baselines via wall-clock time and peak-memory usage comparisons and MSE comparisons with
respect to the observation budget.

7 Discussion and Future Work

Our result on learnability with the run-time complexity reduction is particularly significant when the
number of nodes n is large and the feature dimension is much smaller compared to n (i.e., d < n).
In addition, we note that the result holds even when the graph adjacency matrix and the data matrix
are dense (e.g., weighted graphs where the a;; entries of the adjacency matrix are non-negative real
values, and not restricted to {0, 1}). Examples include pairwise similarity matrices and Erdos-Renyi
graphs with constant edge probability p, which have a number of edges that scales as n2. In such
cases, sparse matrix multiplication would not help much, and our approach could be very useful.

Our proposed scheme is not only useful for speeding up the training of linear GCNS. It is also useful
in partial observation settings where the algorithm only has access to a partial view of the graph, and
we provide theoretical guarantees that this partial view is still sufficient to accurately perform the
regression task. On the contrary, conventional speed-up methods such as sparse matrix multiplication
are purely a technique for computational purposes and still require complete information on A and
X. For instance, consider a social network setting where, in order to know friendships between users,
a learner needs to use an API to query the friendships. Note that one needs fewer queries for using
our method (since it requires partial A) than for using the sparse matrix multiplication (which needs
full knowledge of A). If the graph is large, the query complexity gain becomes larger.

Several extensions of our results are possible. First, establishing theoretical guarantees for the non-
linear GCN framework, and for other target tasks, such as graph link prediction and node classification,
would be of significant interest. Based on the empirical observation that our training scheme works
well for a two-layer non-linear GCN, extending our theoretical results to the non-linear GCN under
some assumptions (as in [34]) on non-linear activation functions seems to be promising. Note that
our proposed sampling scheme (based on approximating the leverage score) and the theoretical
guarantee we made are tailored for the node-level regression task in the training phase. The reason
we focused on this specific setting was so that we could take advantage of the theoretical results on
leverage score sampling and linear regression in order to obtain theoretical results for GNN training
using a subsampled graph. In particular, we are helped by the fact that in the linear GCN setting,
the optimal solution for the linear regression is a matrix-vector product which can be expressed as
(AX)T(AX))T(AX) Ty, where A, X, and y denote the adjacency matrix, data matrix, and the
labels respectively.

For graph link prediction and classification tasks, on the other hand, since the optimal solution cannot
be expressed as a matrix-vector product (due to non-linearities and different cost functions), our
proposed algorithm does not extend to the classification problems in a straightforward way, and
similarly, our theoretical guarantee may not hold anymore. For future work, we want to study whether
our same subsampling process can have any guarantee for a node classification task. For more general
tasks, we believe that we need different sampling strategies other than the leverage score sampling
and hence we may need other tools for developing a theoretical guarantee for sampling algorithms.

Another direction for future work is to establish generalization guarantees beyond the approximation
errors [35]. Lastly, motivated by the fast acceleration of gradient descent algorithms [24-28]] and
iterative schemes that sample a subset of the entries of A [21} [36], developing algorithms that
adaptively select a subset (A, X) to observe based on the information at each gradient descent step
would be an interesting direction to explore.
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A Related Work

Leverage score sampling for linear regression: The history of leverage scores traces back to
linear regression problems in statistics [37, 38]]. The statistical leverages of a matrix indicate the
importance of rows in solving a least-squares problem. It has been well-known that leverage score
sampling [39, 40] uses leverage scores to sample a subset of the rows of the matrix and solve the
regression task with (1 + ¢) accuracy using only O(de~2log d) subsampled rows of the data matrix
X and in time O(nd* + d?), and there have been extensive works on reducing the time complexity
as well as the sample complexity [41} [18-H22]]. However, we note that our setting is a graph-weighted
linear regression, which involves a matrix multiplication of A and X, taking O(n?d) time. To the
best of our knowledge, our work is the first one that addresses the setting of graph-weighted linear
regression and proposes an algorithm with subquadratic time complexity in 7.

Sampling on Graph Convolutional Networks (GCNs): Most of the related works focus on
reducing the receptive field size via subsampling neighbors of nodes in the input graph. The
motivation is that the neighborhood size can grow exponentially with respect to the number of layers
due to the message passing operation of each layer. In contrast, we focus on the effect of partial
observation in one hidden layer and show that node subsampling can reduce the run time as well as
the sample complexity while ensuring the desired performance guarantee. We also highlight that our
work provides a theoretical guarantee, whereas many of the cited works below provide empirical
results without a theoretical guarantee. For readers interested in works related to sampling on GCNss,
we refer to the comprehensive survey in [42]]. Here we provide a brief summary.

To mitigate the “neighbor explosion” problem, most of the related works [6} 16} 15 !43] take layer-
wise sampling approaches to sample neighbors of the nodes in the previous layer in a top-down
manner. Specifically, layer-wise samplers [[16,115]143]] adopt importance sampling to sample neighbors
in the lower layer given each node in the upper layer, assuming that the sample size for each layer is
independent of each other.

Second, node-wise samplers [[6] randomly sample neighbors in the lower layer given each node in
the upper layer. In addition, [[17] proposed a bandit-based approach to perform node-wise sampling
in order to optimize the variance in the vein of layer sampling approaches. See also [44], which
proposed a variance-reduced estimator to reduce the receptive field of a single node.

Third, there have been several works [45 32] that adopt graph-wise sampling approaches. In
particular, the proposed schemes first partition the node set of a graph [45] or sample subgraphs [32],
and then train models on those partitions or subgraphs in a batch mode [3]. They show that the
training time of each epoch may be much faster compared with layer-wise sampling approaches.

Graph-weighted linear regression: We note that there have been a few works that address
linear regression on network-linked data [46-48]]. Yet neither sample complexity analysis nor time
complexity analysis is provided.

B Basic Algorithms

Algorithm 3 LEVERAGESCORE(X)

Input: Data matrix X € R"*¢
Output: Leverage score ¢;( X )'| Vi € [n]

1I: Compute K := XX > O(nd?)
2 (V,5,VT) - SVD(K) > O(d?)
3: U« X(VETY > O(nd?)
4: return (;(X) = ||U..||3, Vi € [n] > O(nd)

*The time complexity is O(nd? + d°) in total, and more precisely, it is O((nnz(AX) + d*)log(e™1));
see [18H22] for details.
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Algorithm 4 LEVERAGESCORESAMPLING(A, {;([AX| —y]), Vi € [n]})

Input: Adjacency matrix A € R"*", leverage score estimate of AX {(;([AX| —y]), Vi € [n]}
Output: A € RO logn)xn_gcaled labels § € RO(de " logn)

Draw I; ~ Bern(p;), Vj € [n] independently, where p; = c[j([AX| —y))e?logn

1 n I]‘

A« Zj:l \/—pf]e]AJ

~ n I]‘

y < ij1 p; Yi€i

return (A4,y)

L

Algorithm 5 REGRESSIONSOLVER(AX, §)

Input: Matrix AX € RO "logn)xd_gcaled labels y € RO(de " logn)
Output: Weight vector w € R?

I W ((AX)T(,ZU())T (AX)Ty
2: return w

C Proof of Proposition

(x] v)?
[BS4H

. Hence, it follows that

Vv, v’ (xixiT) v<t-v' (XTX) V.
Equivalently, this means that ¢ is the smallest value such that
xix;r <t XTX.

Let w = Xv. Since X has full column rank, we know that v = X fw. Without loss of generality,
assume ||w||2 = 1, then we can equivalently transform the above constraint as

vw, [[wla=1, w'(XT) xx] XTw <t
However, note that (X ) "x;x. XT is a rank-one matrix, hence it suffices to choose ¢ such that
t>tr ((XT)qu;xiTXT) =tr (xiTXT(XT)Tx,-) =tr (xiT(XTX)Txi)
=tr(x{ (XTX)'x;) =x] (XTX)Tx; = £;(X).
This completes the proof.

Define t := max,,

D Proof of Lemmal/l]

In this section, we prove Lemmal[I} which yields a good approximation by sampling with probability
proportional to the leverage score overestimates:

Lemma 3. Given a data matrix X = (x/;...;x,))" € R"*? and a vector u = (uy, ..., u,) of

leverage score overestimates of X (i.e., £;(X) < u;, Vi € [n]), suppose we create a matrix X by
including the ith row of X in X with probability p; = min|[1, cu;e~2logn| for some constant c,
scaled by 1/,/p;. With probability at least 1 — n~2W for any v, we have

(I—e)- [ Xv] <[[Xv]| < (T +e)- | Xv].

To prove the lemma, we rely on the following matrix Chernoff bound, which is a variant of the matrix
Chernoff bound in [21, Lemma 11] (also, see [49]]).

Suppose W1, ..., W, are independent, random positive semidefinite matrices with size d x d. Define
Z:=%"_ W;.If W; < R-E[Z], then
j=
2
Pr(Z = (1+¢)E[Z]) <d-exp <_§R) ; (12)
2
Pr(Z < (1—&)E[Z]) <d-exp (—;%) : (13)
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where A < B is equivalent to saying v (A — B)v > 0 for matrices A and B and for all v.
To apply this inequality, define W; := p%_xj x , which is sampled with probability p;. We first know
that Z is an unbiased estimate of X " X since

n 1 n
E[Z] = ij . ;xjx; = ijx;r =XTX.
j=1 J j=1

First, consider the case where p; < 1. This implies that
1
~ e 2logn’

In order to invoke the matrix Chernoff bound, we only need to verify that 1W; (= 0) is spectrally
upper bounded:
1 T 1 T, LX) XTX XTX

= XX, X ——————— ; = 14
/ cuj5*21ognxjxj T clj(X)e? lognxjxj ~ clj(X)e2logn  ce2logn’ 14

where the last inequality holds due to the proof of Proposition[2l Now, the statement follows from

the matrix Chernoff bound with W = (X TX)V2WH(XTX)" /2 and R = m, to conclude
that

(1-e) XX ) W, =(1+e) - X'X,

j=1

with probability at least 1 — d(n~¢/3 +n=¢/2) =1 — n =1 for some ¢ > 0 and the regime where
d < n. Note that we use a union-bound technique to derive the desired high probability guarantee.

Now consider the case where p; = 1, where W, := x;x. is sampled with probability 1. In this

case, generally does not hold. However, since sampling IW; with probability 1 is equivalent to

selecting Wj(l)7 - Wj(cgi2 logm) "sach equal to =g XiX | with probability 1, it follows that
i XTx
y® < —— i=1,...,cc ?logn.
J ce~2logn

2logn Y(z)

Here we assume that c==2 log 7 is an integer for simplicity. Replacing Y; with 3¢, f

yields the desired result since it does not change E[Z]. This completes the proof.

E Proof of Theorem

We will use the following statement of Matrix Bernstein’s inequality [49, Theorem 6.1.1]: Suppose
Wi, ..., W, are independent, random matrices with common dimension d; X ds satisfying

E[W;] =0, and |W;| <L, Vje€|n].
Define Z := »_7_, W;. Then for all t > 0,

1
EfZ]] < \/QU(Z) log(dy +d2) + 3 log(dy + da); (15)
n %tQ
where
o(2) = max (£ [227]| £ [27 2]} = max || S [y | S0 (9w
j=1 j=1
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To apply this inequality, first recall that Algorithmsamples A.; X . to get arank-1 matrix m =
2i A.; X . with probability

[
p;j =min |—,1].
n

Defining W; := A/]Yj — A,; X;., we note that E[W;] = 0 as shown in (€). In addition, assuming
that entries of A € R™*" and X € R"*4 satisfy |A4;;| < M and | X;;| < M, we then have

I
()
bj

1
< — || A5 X
J

1| =]

I
A X = Ay X,
pj

n
= max |:E, 1i| . HAJH ! ||XJ||
i)

—

n
5 A X

(i) n3/2d1/2M2

< - 5

- B
where (i) follows from the fact that we are interested in the regime where £ = o(1); and (i) follows
from the fact that ||A.;|| < v/nM and || X;.|| < V/dM. We can also bound |[E[Z " Z]|| as

[BLZ7 2] = | >_E (W Wil < X [ (W) Wil
j=1 j=1
n 1. 2
=> |E <p?—1> XALAGX;
j=1 /

n 1 5 9
<D= IXGIP 144

=1 P
n3dM*
< )
- B
and E[ZZ 7] can be similarly bounded, implying that v(Z) < %. Setting t = ¢||AX]|| yields
n 1.2 2
3¢ [AX]]
Pr Wil >e-||AX <2(n+d)-exp|— 2
j; J ” ” ( ) < nsdBM4 + %n3/2d];/2M2EHAX”

1e’B
= 2(” + d) TeXp | — n3dMA 1 1 n3/2d1/2M2€
Axyz ' 3 [JAX]]

(4i) 1:2p
< 2(n+d)~exp< 25)

S Mt 1M
(1v) %EZB
< 4n-exp 77M4+%M25 ,

where (i) follows from Assumption|1|that [| AX || > 73/2d"/?; and (i) follows from the setting that
we focus on d < n. Hence, as long as we set B = Ce~2logn for some constant C' (> 3M* > 0),
the exponent of the Matrix Bernstein inequality can be bounded as —C’ log nn for some C” > 0, and
thus can bound the deviation probability to be n~?(1),

Now using the reverse triangle inequality,

[AX] = [AX]l] < [[AX — AX|| < e[| AX],
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we can conclude that the following spectral approximation holds
(1 =) AX] < [AX] < (1 +¢)[[AX],

with probability at least 1 — n~(1), This completes the proof.

F Proof of Lemma 2

We will use the following statement of Bernstein’s inequality to get the desired result: If W5,..., W,
are independent zero-mean random variables such that |W;| < M with probability 1. Then for all

t>0,
142
Pr >t]| <2exp | ——=5 2 . 17
=t = p( zi_lﬁ[WfH;,Mt) {an

To apply this inequality, we first provide the following proposition which will serve as key ingredients
for proving the lemma.

Proposition 3. Fix (i, ) € [n] x [d]. Let W}, := ]ﬁ—’z [AXk:]ij — [A:xXk:]ij. Then for all k € [n],
the following two hold:

> Wi

k=1

M?
1. |Wk| < nT

nM*
2. B [W7) < ok
Note that these two hold for all (i, ) € [n] x [d].
Proof. We first bound || as:

I
[Wi| = ]Ti[A:ka:]ij — [Au X:]ij

where (i) follows from the fact that we are interested in the regime where £ = o(1). We also bound
the second moment of W, as:

I 2
E[W2 =E (k — 1> [A:ka:]l?j}
Pk
1 2
< }Tk[A:ka li;
nM*
< )
- B
where we used the facts that E[[ g)] = p;. This completes the proof. ]

Now setting t = ¢ - e, AX e; and applying the Bernstein’s inequality now yields:
> >
k=1

=Pr ((i,j) € [n] x[d] : eiTZ)\(ej —e] AXe;

Pr ((i,j) € [n] x [d] :

> €~eiTAXej>

(®)
<n? ~Pr(

eiTZ)\(ej - eiTAXej’ >e- eiTAXej)
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(i7) ( Be?
< 2n% - exp —% ,
M4+ 3 M2
where (i) follows from a union-bound technique; and (ii) follows from Assumption [2] that
e] AXe; = Q(n), V(i,5) € [n] x [d]. Setting B = %logn for sufficiently large C' > 12 M* > 0,
one can observe that the last bound is upper bounded by n~*(!). Since the other direction holds
similarly, we conclude that with probability 1 — n~(1), with budget of B = 8%log n,

(1—¢)-ef AXe; <e] AXe; < (1+¢)-e] AXe;, Y(i,j) € [n] x [d].
For the augmented matrix [AX| — y], the above then yields
(1—¢)-ef [AX]| —yle; < €] [AX| —yle; < (1 +¢) - e/ [AX| —yle;, ¥(i,j) € [n] x [d].

Pick v € R%*1, where it can be represented as

d+1
v = Z OReL,
k=1
for some a1, . .., g4 1. From the above, one can readily see that with probability at least 1 — n (1),

(el [AX| —yv)* _ (1+e\* (e[[AX| —ylv)* _ (1+e\" (eJ[AX|—yv)*
<( ) << ) .

I[AX]=y]v[F — \1-¢ I[AX|—ylv|z ~— \1-¢ I[AX] = y]v]i3 ~

(e] [AX|-y]v)* (e] [AX|-y]w)?

Choosing v* := arg maxy, X |—yIvI2 and w* 1= arg maxy, TAX —yiwl2 > from the above,

we have

<1+e>2 (e] [AX] —yIv')* _ <1+s>4 (e] [AX] — yIv)? _ <1+e)4 (e] [AX] ~ ylw*)?
l—¢ I[AX|—ylv*)2 ~ \l-¢ IAX|—ylv*3 — \1-¢ [[AX] - ylw=|3

where the last formula is (1££)*¢;(AX) by the choice of w*. In a similar manner, we obtain

(ef [AX] — y]w*)? _ (1 + ) (el [AX| - ylw*)? (1 + ) (el [AX| — y]v*)?

— < — .
IAXT=ylw*lz = \1=</  JAX|=yw=} ~ \1=</  [[AX|-y]v*[3

Referring to Propositionl%' and the leverage score estimate E (AX) satisfying

Fiax v = (275N o yh = (1FE) T e (CLAX] = yIv)?
FAX) ) = (2] 6R -y = (F12) e SIS

we get the desired result of

T55) a(axi -y, viel

G(AX| — y]) < BIAX] —y]) < <

This completes the proof.

G Theoretical Guarantees for Algorithm

In this section, we provide theoretical guarantees for Algorithm[2. As mentioned in Section[d, we
obtain the same series of theoretical guarantees as those for Algorithm[I] For completeness, we leave
the detailed statements below.

Theorem 3. Under Assumption m if we run Algorithm [2{ with the budget B = C=~2logn for large
enough C > 0, the estimate AX satisfies

(1—¢)- |AXV| < |AXV] < (1+¢)-||AXv], VveR? (18)
with probability at least 1 — = (1),
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Lemma 4. Under Assumption |: Algorlthml: with the budget B = Ce?logn for large enough
C > 0 outputs the leverage score overestimates with a ( 1+5) multiplicative ratio; i.e.,

G0AXT -] < A - y) < (120) 6(AXT-v), Vil a9

with probability at least 1 — n~ (1),

Theorem 4. Under Assumption |I, suppose we run Algorithm@with the budget B = Ce2logn
for large enough C' > 0, to obtain {/;([AX| — y]), Vi € [n]}. Subsequently, if we run
LEVERAGESCORESAMPLING (A, {(;([AX| — y]), Vi € [n]}), we obtain A € RO(d " logn)xn
and y € RO(=""1ogn) quch that REGRESSIONSOLVER (A X, y) provides

min [y — AXW||3 < (1+¢) - minly — AXw]j.

We note that it suffices to provide the proof of Theorem 3] as the rest follows in a similar manner to
those for Algorithm

Proof of Theorem[3: As in Appendix [E, we will use the Matrix Bernstein’s inequality described
I-Epsamples A.;X;. to get a rank-1 matrix A.; X, :=

in (16)). Recall that Algorithm # A X ;. with
J
probability as in (11

p; = min

205 1A NG

5. Al 1]

such that Zj p; < B.

Defining W; := m — A.; X and we note that E[W]] = (0 as shown in (]§[) In addition, assuming
that entries of A € R"*" and X € R"*? satisfy |A;;| < M and |X;;| < M, we then have

w1 = 24, H(l)
<— A X
< 4%
S, A }
=max | = - —————— 1| - || 4] - | X;.]]
B A% -1

1 n
= max | & DM AG G A X

j=1
) rn3/271/2 112
< max ndB]Wml/?dlﬂM}

(41) n3/2d1/2M2
< - 5 >
- B

where (i) follows from the fact that | A;|| < v/nM and || X ;.|| < v/dM; and (ii) follows from the
fact that we are interested in the regime where B = o(n). We can also bound |[E[Z T Z]]|| as

n I. T 7.
IE[Z7Z]| = ||E Z(JA:J‘XJ‘:—A:J‘XJ‘:) (;A:ij:—A:ij:> ||

= \pj j
= Z pig(A:jX) (A X5) - pj — 2(A5X5) (A;ij:)+(A:ij;)T(A:ij:)]
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= (2 -1) 0 XX

=1 Dy

<.

Dol 2 A
<3| L (2 (4] XX
25\ Ty ) (407 X
1 - A
<= A IX0 | - XX,
B\ 2 I |12 e s
2
1 n
=5 S IAG X
j=1
n3dM*
<
- B

Also, one can readily see that E[ZZ ] can be similarly bounded, implying that v(Z) < %.
Setting t = ¢||AX]|| yields:

Pr E Wil >e-||AX] | <2(n+d)-ex < %52HAX||2 >
fi € - n “exp | — o S YERTVES Ve
3dM ;’ 3/2d41/2 M EHAXH

j=1

%EQB
<2n+d)-exp |~ soE T g
TAX]Z T3 JAX] ©

D o+ a) 3¢5
= An PP\ M e

(iv) 1e’B
= AneR \CyE T )

where (i74) follows from Assumptionthat |AX || > n?/2d"/?; and (iv) follows from the setting that
we focus on d < n. Hence, as long as we set B = C'e~2 log n for some constant C' (> 3M* > 0),

the exponent of the Matrix Bernstein inequality can be bounded as —C” log n for some C’ > 0, and

thus can bound the deviation probability to be n~ (1),

Now using the reverse triangle inequality,
[AX]| = [[AX]]] < [|AX — AX]| < e[| AX]],
we can conclude that the following spectral approximation holds
(1 —e)l|AX]| < [AX] < (1 + &) AX],

with probability at least 1 — n~(1), This completes the proof.

H Further Implementation Details

In this section, we provide additional details on the explanations of the datasets, wall-clock time with
the adoption of sparse matrix multiplication, and peak memory usage comparisons.

Datasets: We consider benchmark datasets from the Open Graph Benchmark (OGB) [29], Stanford
Network Analysis Project (SNAP) [30], and House dataset [31]. For the MSE comparisons, we
consider (1) ogbl-ddi dataset from OGB, (2) ego-Facebook dataset from SNAP, and (3) House dataset.
We note that while the third dataset has its data matrix (i.e., a concatenation of feature vectors) and
labels, the first two datasets do not have feature matrices and target variables. Accordingly, to conduct
controlled experiments, we synthetically generate data matrix X, weight vector w, and noisy labels
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Table 2: Wall-clock time comparison on end-to-end processes with sparse matrix multiplication
Dataset #Nodes #Edges # Features Wall-clock time (sec)

use of full AX use of Algorithmlz
and leverage score sampling

ogbl-ddi [29] 43K 1.3M 100 1.02 0.84
ogbn-arxiv [29] 169.3K 1.2M 128 6.69 0.86
Synthetic data (Gaussian)  50.0K 625.0M 500 2452.14 58.30

Table 3: Peak memory usage comparison on sampling and regression steps
Dataset #Nodes #Edges # Features Peak memory (MiB)

use of full AX use of Algorithmlz
and leverage score sampling

ogbl-ddi [29] 43K 1.3M 100 1.45 0.17
ogbn-arxiv [29] 169.3K 1.2M 128 330.75 160.45
Synthetic data (Gaussian)  50.0K 625.0M 500 240.43 0.17
Synthetic data (Gaussian) 100.0K  2.5B 500 431.82 0.52
Synthetic data (Gaussian) 150.0K  5.6B 500 865.25 19.39

y by setting the linear relationship between labels and features: y := Xw + n. Here n denotes an
additive Gaussian noise with parameters (i, ) = (1, 10). Based upon the size of the two datasets
described below, we consider the data matrices X € R™*¢ (with n € {4267,4039} and d = 100),
where each row (i.e., each node’s feature vector) is drawn according to the Cauchy distribution
with parameters (xg,~) = (10, 100), in an i.i.d. manner. Here z denotes the location parameter,
indicating the location of the peak of the distribution, and  denotes the scale parameter, specifying
the half-width at half-maximum (HWHM). Also, we consider w € R? generated by the Cauchy
distribution with (z,~) = (10, 100).

ogbl-ddi dataset [29]: This dataset represents a undirected and unweighted graph which models the
drug-drug interactions. Each node corresponds to an FDA-approved or experimental drug. An edge
indicates interactions between drugs that can be interpreted as the difference between the joint effect
of taking the two drugs together and the expected effect when drugs act independently of each other.
As there are neither feature vectors nor labels that are available, we synthetically generate those as
mentioned above.

ego-Facebook dataset [30]: This dataset models a social network that represents friendship of
“circles” between users from Facebook. Examples of such relationships between users include
students of common universities, sports teams, relatives, etc. Notice that the graph adjacency matrix
is more sparse compared to ogbl-ddi dataset. As above, since there exists no feature vectors and
labels that are available, we synthetically generate those to perform regression task.

House dataset [31]: This dataset represents a graph in which nodes correspond to the properties; the
existence of edges means that two properties are located close to each other; and the target label is the
property’s price. In addition, there exist node features representing MedInc, HouseAge, AveRooms,
AveBedrms, Population, and AveOccup. In particular, we use the refined dataset from [33]].

Furthermore, for the wall-clock time and peak memory usage comparisons, we additionally use ogbl-
arxiv [29] dataset, representing the citation network between all Computer Science (CS) arXiv papers
(although the dataset is tailored for classification of 40 subject areas) and synthetic dataset where all
(A, X,y) are generated according to Gaussian distribution with size specified in Table E, Table |Z,
and Table[3l

Additional results and analysis:

Wall-clock time with the adoption of sparse matrix multiplication: Notice that as compared to
results in Table[T, Table[2 demonstrates that the computation time of both our approach and using
exact AX become faster due to the adoption of sparse matrix multiplication and the reduction time
was larger for using exact AX (especially for the ogbn-arxiv dataset which is sparse). However, we
observe that our proposed scheme is faster than the regression by using the exact multiplication of
AX. Furthermore, for the synthetic dataset where A and X are generated according to a Gaussian
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distribution and hence A is dense, we observe that the sparse matrix multiplication does not help
speed up the computation time and the matrix multiplication with scipy.sparse package took even
longer than the matrix multiplication with numpy package.

Peak memory usage: In addition to run-time, we expect our proposed approach to offer significant
improvements in terms of memory usage. As a simple experiment in terms of memory usage, we
provide the peak memory usage comparison for the same datasets during the sampling and regression
steps of the algorithm. As shown in Table|3| in the best case, the proposed algorithm requires 1414x
less memory than the algorithm using the exact computation of AX.

Computing architecture for wall-clock time and peak-memory usage comparisons: For a fair
comparison on Table |I, Table |Z, and Table E, we use the same regression solver and use the same
specification of 48 cores of an x86 64 processor with 503.74GB memory.
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