Communications on Applied Mathematics and Computation
https://doi.org/10.1007/542967-023-00318-1

ORIGINAL PAPER

®

Check for
updates

Nearest Neighbor Sampling of Point Sets Using Rays

Liangchen Liu'® . Louis Ly? - Colin B. Macdonald? - Richard Tsai'-2

Received: 8 November 2022 / Revised: 13 September 2023 / Accepted: 13 September 2023
© Shanghai University 2023

Abstract

We propose a new framework for the sampling, compression, and analysis of distributions
of point sets and other geometric objects embedded in Euclidean spaces. Our approach
involves constructing a tensor called the RaySense sketch, which captures nearest neigh-
bors from the underlying geometry of points along a set of rays. We explore various opera-
tions that can be performed on the RaySense sketch, leading to different properties and
potential applications. Statistical information about the data set can be extracted from the
sketch, independent of the ray set. Line integrals on point sets can be efficiently computed
using the sketch. We also present several examples illustrating applications of the proposed
strategy in practical scenarios.

Keywords Point clouds - Sampling - Classification - Registration - Deep learning - Voronoi
cell analysis

Mathematics Subject Classification 68T09 - 65D19 - 68T07 - 65D40

Liangchen Liu, Colin B. Macdonald, and Richard Tsai contributed equally to this work.

P4 Liangchen Liu
Icliu@utexas.edu

Louis Ly
louisly @utexas.edu

Colin B. Macdonald
cbm@math.ubc.ca

Richard Tsai

ytsai@math.utexas.edu

Department of Mathematics, The University of Texas at Austin, 2515 Speedway, Austin,
TX 78712, USA

Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin,
201 E 24th St, Austin, TX 78712, USA

Department of Mathematics, University of British Columbia, 1984 Mathematics Rd, Vancouver,
BC V6T 172, Canada

Published online: 11 December 2023) Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s42967-023-00318-1&domain=pdf
http://orcid.org/0000-0002-5102-8842

Communications on Applied Mathematics and Computation

1 Introduction

The comparison and analysis of objects in d-dimensional Euclidean spaces are funda-
mental problems in many areas of science and engineering, such as computer graphics,
image processing, machine learning, and computational biology, to name a few.

When comparing objects in Euclidean spaces, one usually assumes that the underly-
ing objects are solid or continuous. Typical examples include data manifolds and physi-
cal or probabilistic density representations.

One commonly used approach is the distance-based comparison, which involves
measuring the distance between two objects using metrics such as the Euclidean dis-
tance, Manhattan distance, or Mahalanobis distance [35]. When the underlying object
can be viewed as distributions, optimal transport [42, 59], utilizing the Wasserstein dis-
tance, is also a popular choice.

However, in general, distance-based comparisons overlook helpful geometric infor-
mation about the underlying objects, which turns out to be useful in many applications.
This is because intrinsic geometric features such as curvature and volume are invariant
to rotations and translations. Shape-based information is also suitable for comparing
objects of different sizes or resolutions. Therefore, comparison techniques using geo-
metric features are favorable choices in many scenarios, such as the object recognition,
classification, and segmentation.

One simple example illustrating such an idea is the Monte-Carlo rejection sampling
technique used to approximate the volume of an object. This technique considers the
collision of O-dimensional objects (points) with the target object. This is a specific
example of a collision detection algorithm [32], which is popular in computer graphics
and computational geometry communities [21]. The idea of collisions is also considered
in the field of integral geometry [49], where one investigates the collision probability of
certain affine subspaces with the target data manifold to deduce information about the
manifold.

Furthermore, in integral geometry, one considers integral transforms on the underly-
ing objects. Typical examples are the X-ray transform [55] and the Radon transform
[18, 46]. These transforms can provide a more compact and informative representation
than the original data. For example, one can recover spectral information from the X-ray
transform or reconstruct the original object through an inverse Radon transform.

However, the aforementioned techniques generally rely on the assumption that the
underlying object is solid or continuous. With the prevalence of big data and advance-
ments in sensing technology, such as the LiDAR, the analysis and comparison of the
point cloud data (which consists of a set of points in some d-dimensional Euclid-
ean spaces) have gained increasing attention, yet they pose challenges to classical
approaches.

We propose a novel method for sampling, comparing, and analyzing point clouds,
or other geometric objects, embedded in high-dimensional space. We call our approach
“RaySense” because it “senses” the structure of the object I' by sending line segments
through the ambient space occupied by I" and recording some functions of the nearest
neighbors in I" to points on the line segment. Motivated by the X-ray transform, we will
refer to the oriented line segments as “rays”. We can then work with this sampled data
as a “sketch” of the original object I, which can be a point cloud, triangulated sur-
face, volumetric representation, etc. A visualization of the proposed method applied to
3-dimensional (3D) point clouds is provided in Fig. 1.

@ Springer

Communications on Applied Mathematics and Computation

\ Hollow sphere \ Solid ball

ZCoordinate Y Coordinate .X Coordinate

0 1 10 20 0 10 20 10
Point Point Point Point

Fig.1 RaySense sketches using 30 sample points per ray. Row 1: visualization of two rays (black) through
points sampled from various objects (gray). Closest point pairs are shown in green and red. Rows 2—4: the
x, y, and z coordinates of the closest points to the ray

Our method incorporates several ideas mentioned above as follow.

e In the context of integral geometry, we also consider using affine subspaces to detect
the underlying geometry. To overcome the discontinuity from the object representa-
tion relative to the topology of the ambient space (as is the case with point clouds), we
search for nearest neighbors within the representation. To prevent the computational
cost of high-dimensional operations in practice, we work with a low-dimensional affine
subspace. In this paper, we use 1-dimensional (1D) lines.

e In the context of inverse problems, our observed data consist of some points on I’
obtained by the closest point projection of points on the rays. This is somewhat analo-
gous to seismic imaging, where designated points on each ray correspond to geophones
that record the first arrival time of waves from known sources.

e By using a fixed number of rays and sampling a fixed number of points along a ray,
the resulting tensor from our method, the RaySense sketch, is of fixed size, even for
point clouds with different cardinalities. Then, metrics suitable for comparing tensors
are available for use, or one could consider other distance-based approaches to compare
different RaySense sketches.

In this work, we will focus exclusively on point clouds since it is one of the most challeng-
ing data representations for many algorithms. When the object is a point cloud, finding
the RaySense samples is straightforward via discrete nearest-neighbor searches. There are
computationally efficient algorithms for performing nearest-in-Euclidean-distance neigh-
bor searches. Examples include tree-based algorithms [2], grid-based algorithms [58], and
building an indexing structure [22]. In very high dimensions, one may also consider rand-
omized nearest neighbor search algorithms such as [19, 23], or certain dimension reduction
approaches.

The remaining paper is organized as follows: in Sect. 2, we provide a detailed descrip-
tion of the RaySense method; in Sect. 3, we present various properties of the RaySense

@ Springer

Communications on Applied Mathematics and Computation

method, along with theoretical analysis, including line integral approximations and salient
point sampling; finally, in Sect. 4, we demonstrate that the concept of RaySense can be
applied to many different downstream tasks, including the salient point/outlier detection,
point cloud registration, and point cloud classification.

1.1 Related Work

In this section, we provide a more detailed discussion of the existing literature to contextu-
alize our approach.

Integral geometry

In the field of Integral Geometry [49], one uses the probability of the intersection of affine
subspaces of different dimensions with the target data manifold to deduce information about
the manifold itself. For example, in the classic problem of Buffon’s needle, one determines the
length of a dropped needle by investigating the probability of intersections with strips on a floor.
Similarly, Crofton’s formula connects the length of a 2-dimensional (2D) plane curve with the
expected number of intersections with random lines. In these cases, the interaction information
obtained from the “sensing” affine subspaces is binary: yes or no. One thus has a counting prob-
lem: how frequently affine subspaces intersect with the data manifold. From these probabilities,
geometric information about the manifold can be extracted, relying on a duality between the
dimensions of the “sensing” subspaces and the Hausdorff dimensions of the data set; see e.g.,
[17, 26]. Nevertheless, such approaches may be inefficient in practical computations.

Our idea of using rays is perhaps most-closely related to the X-ray transform, which
coincides with the Radon Transform in two dimensions [39]. In an X-ray transform, one
integrates a given real-valued function defined in R? along lines, while in the Radon trans-
form, one integrates the given function restricted on hyperplanes of R

We advocate using lines (rays) to record information about the underlying data along
each ray, instead of accumulating a scalar or binary “yes/no” information over each rays. In
this paper, we collect points in the data set closest to the points on the rays, along with the
values of some function at those points. With such data, we can compute approximate line
integrals and relate our method to the X-ray transform.

Computer vision

From the perspective of the computer vision community, our method can be considered as
a shape descriptor, mapping from 3D point sets to a more informative feature space where
point sets can be easily compared. Generally, descriptors aim to capture statistics related to
local and global features. See [24] for a survey. More recently, researchers have combined
shape descriptors with machine learning [15, 47, 54, 64]. But all these works focus primarily
for point sets in 3D, RaySense applies more generally to data in arbitrary dimensions.

Some methods use machine learning directly on the point set to learn features for spe-
cific tasks, such as classification [1, 27, 31, 44, 45, 53, 60, 61, 65]. PointNet [44] pioneered
deep learning on point clouds by applying independent operations on each point and aggre-
gating features using a symmetric function. Building upon that, other architectures [45, 52]
exploit neighboring information to extract local descriptors. SO-Net [30] uses self-organ-
izing maps to hierarchically group nodes while applying fully-connected layers for feature
extraction. PCNN [1] defines an extension and pulling operator similar to the closest point
method [33, 48] to facilitate the implementation of regular convolution. DGCNN [61] and
PointCNN [31] generalize the convolution operator to point sets.

@ Springer

Communications on Applied Mathematics and Computation

In contrast, our approach uses the RaySense sketch as input rather than applying
machine learning directly to the point set. In Sect. 4.5, we present a deep learning model
for 3D point cloud classification based on this idea. Our experiments suggest that the
model is very efficient for classification, and the resulting classifiers can be robust against
outliers by storing multiple nearest neighbors to points on the ray.

Unsupervised learning methods

Our method, by recording the closest points from the underlying point cloud, can be
thought of as a sampling scheme. However, the RaySense sampling is biased towards the
“salient” points in the underlying geometry, as will be discussed in Sect. 3.2.1. By further
retaining only the most frequently sampled points, RaySense resembles key-point detec-
tors [28] or compression algorithms. The idea of understanding the overall structure of
the underlying data through key points is closely related to archetypal analysis [8], which
involves finding representative points (archetypes) in a dataset and using a convex combi-
nation of these archetypes to represent other points. See also [40] for a recent work on the
consistency of archetypal analysis.

Incidentally, [16] also employs the concept of rays in conjunction with spherical volume
to approximate the convex hull. Our method can also capture vertices of the convex hull
when the rays are sufficiently long, as it will effectively sample points on the portions of
the boundary that have relatively large positive curvature.

Farthest Point Sampling (FPS) is a widely-used sampling method in computational
geometry and machine learning for selecting a subset of points from a larger dataset with
the goal of maximizing their spread; see e.g., [14]. The process begins by randomly pick-
ing a point from the dataset, followed by iterative selection of the point farthest from those
already chosen, until a desired number of points are selected. This technique is useful for
reducing the size of large datasets while preserving their overall structure. However, it can
be computationally expensive and may not always yield the optimal solution. In two and
three dimensions, assuming that the data distribution is supported in a bounded convex set
with a smooth boundary, FPS tends to oversample areas with high curvature.

2 Methods

The essential elements of the proposed sampling strategy include (i) the data set I C R; (ii)
the nearest neighbor (closest point) projection, P, to T; (iii) a distribution of lines in R<.

The data set is given by a discrete set of N points, each in R%

I cRY, r={x}Y, X, e R? 1)

(later for certain results we will place more assumptions, for example that I" might be sam-
pled from a density).

Let £ denote a distribution of lines, parameterized by 6 € S%1and b € R4, let r(s)
denote a line in £ parameterized by its length

r(s) = b + s6.

The parameterization gives an orientation to the line, and thereby we refer to r as a ray.
Along r(s), we sample from the data set I" using the nearest neighbor projection

@ Springer

Communications on Applied Mathematics and Computation

Prr(s) € arg min||r(s) —yl|,. @)

yer

In cases of non-uniqueness, we choose arbitrarily.

Using the nearest neighbors, we define various RaySense sampling operators denoted
with § which sample from the point cloud I' into some “feature space” X C R¢. The
simplest choice is the feature space of closest points defined next.

Definition 1 The closest point feature space is sampled by
S[I':R¢ - RY, S[T1(r(s)) = Pr(s), r~CL. (3)

One might also be interested in the value of a scalar or vector function (e.g., color or
temperature data at each point in the point cloud).

Definition 2 The RaySense sampling operator of a function g: I' — R is
SIT,gl:R! > RS, SIT,gl(r(s)) = g(Prr(s)), r~L)
Note for the identity function we have S[I',id] = S[I'].

We will further present examples involving the use of multiple nearest neighbors,
where the 7th nearest neighbor is
Pr(s) := arg min |Ir(s) = yll,
ver)
PLr(s), P r(s)

with Plr := P. We can then capture the nth nearest neighbor in our sampling.

Definition 3 The RaySense sampling operator of the nth nearest neighbor is denoted by
SIFn:RYXN - RY, SIT, n](r(s)) = Pr(s), r~L. (6)

The distance and direction from r(s) to P r(s) is sometimes useful: we sample that
information using the vector from r(s) to Ppr(s).

Definition 4 The RaySense sampling operator of the vector between a point on the ray and
the nearest neighbor in I is

SII,11:RYx N - R, S 11 (s)) = Prr(s) —r(s), r~=L, (7a)
and more generally
S[I,#]1:RYx N - RY, S[I,71(r(s)) = Plr(s) — r(s), r~L. (7b)

We can augment the feature space by combining these various operators, concatenat-
ing the output into a vector X’ € R°. We indicate this “stacking” with a list notation in S,
for example the first three closest points could be denoted

@ Springer

Communications on Applied Mathematics and Computation

fP;r(s)
S[I,[1,2,3]|((s) = | Prr(s) |, r~L, 8)
Plr(s)

or the closest point, its vector from the ray, and the value of a function g could all be
denoted

. Prr(s)
S[I,[1,1,8]|(r(s)) = | Prr(s) —r(s)|, r~ L.)
g(Prr(s))

These stacked feature spaces are used in the line integral approximation Sect. 3.1.3 and in
our neural network Sect. 4.5.

In summary, a RaySense sketch S[I, ---] depends on nearest neighbors in the data set I',
and operates on a ray from the distribution £. It maps a ray r(-) to a piecewise curve in the
chosen feature space X.

2.1 Discretization

We propose to work with a discretized version of the operator, which we shall call a Ray-
Sense sketch tensor. First, we take m i.i.d. samples from the distribution £ and define m
rays correspondingly. We consider n, uniformly-spaced points along each ray, with cor-
responding spacing 6r. We then work with a finite segment of each line (for example,
0 < s < 1). Appendix A shows some different distributions of lines, and details for choos-
ing segments from them. With r;; denoting the jth point on the ith ray, we define the dis-
crete RaySense sketch of I' in the closest point feature space as

S Er[ra E]l,/ = Pfrl,/’ (103)

m,

or the discrete RaySense sketch of a function g:
Sporlls 85 L1 2= g(Prrij) (10b)

(and similarly for the various more-general feature spaces mentioned earlier).

Thus, S, 5, is an array with m entries, where each entry is an array of n, vectors in R¢;
an m X n, X ¢ tensor. We will also denote these tensors as “S(I")” and “S(I’, g)” when m
and ér are not the focus of the discussion. In any case, we regard S(I') as a “sketch” of the
point cloud I in a chosen feature space X.

2.2 Operations on RaySense Sketches

In this paper, we will analyze the outcomes of the following operations performed on the
RaySense sketches. After discretization, each operation can be expressed as one or more
summations performed on the sketches.

2.2.1 Histograms

One simple operation is to aggregate the sampled values for the feature space and count
their corresponding sampling frequencies, which results in a histogram demonstrating the

@ Springer

Communications on Applied Mathematics and Computation

discrete distribution of the corresponding features. For example, when considering the
closest point feature space S[I'], the value of a bin in the histogram, denoted by H,, repre-
sents the number of times x; € I" being sampled by RaySense:

Sualll) = ZZxxk (SIT1;,). (11

i=1 j=1

H, 1= H(x;;

where Xx, denotes the indicator function for the coordinates of x,. The histograms discard
locality information in the sketch, treating it essentially as a weighted subsampling of I,
as the aggregation process involves combining the values without considering the spe-
cific rays from which they originated. Section 3.2.2 further discusses the properties of the
histogram.

2.2.2 LineIntegrals

In many applications, it is useful to maintain some “locality”. One such operation is the line
integral along each ray fo g(r(s))ds. However, for point cloud data, exact information of g
along the ray r(s) i 1s not accessible, we instead consider the integral along the associated path
in feature space, /0 [I°, g]l(r(s))ds, which we call a RaySense integral. We investigate the
relationship between the two in Sect. 3.1.3.

In the discrete setting, we can use a simple Riemann sum quadrature scheme to approxi-
mate the RaySense integral along the ith ray:

1 n,
/ SIT, gl(ri(s))ds ~ Y ST, gl;; 7. (12a)
0

j=1

Or in most of our examples, we approximate using the Trapezoidal Rule:

1 n,
. . 1 1
[} S[r, ¢l (ri(s))ds I~ Zl w; S[F,g]i}j ér with weights w = <§’ 1,--,1, 5>,
=

(12b)

and thus quadrature errors, typically O(6r2), are incurred [57]. Unpacking the notation, we
can rewrite this as

D wig(Prr(s)or. (12¢)
j=1

2.2.3 Convolutions

Similar to line integrals, we will compute convolutions along the rays

(o]

(K % ST, 1)) (1) = / K($)SLL, -+ 1(r(t —))ds,

(oo}

where K is some compactly-supported kernel function and S[I, ---] is one of the Ray-
Sense sampling operators. In the discrete setting, this can be written as weighted sums of

@ Springer

Communications on Applied Mathematics and Computation

S[T, ---], or as band-limited matrix multiplication. In Sect. 4.5, the discrete weights associ-
ated with discrete convolutions are the parameters of a neural network model.

Note unlike the previous cases, for non-symmetric kernels the orientation of the rays
matters.

2.3 Comparing Data Sets

Since the sketch for any point set is a fixed-size tensor storing useful feature information,
one might compare two point sets (of potentially different cardinalities) via comparing the
RaySense sketches.

A natural idea is to choose a suitable metric to define the distances between the Ray-
Sense sketch tensors.

The Frobenius norm of the sketch tensor is suitable if the sketches contain the dis-
tance and the closest point coordinates. For data sampled from smooth objects, such infor-
mation along each ray is piecewise continuous. Thus, if the sketches are generated using
the same set of sampling rays, one may compare the RaySense sketches of different data
sets using the Frobenius norm.

Wasserstein distances are more appropriate for comparison of histograms of the Ray-
Sense data, especially when the sketches are generated by different sets of random rays.
The normalized histograms can be regarded as probability distributions. In particular,
notice (Fig. 2) that RaySense histograms tend to have “spikes” that correspond to the sali-
ent points in the data set; #2 distances are not adequate for comparing distributions with
such features.

Here we briefly describe the Wasserstein-1 distance, or Earth mover’s distance, that we
used in this paper. Let (X, u,) and (X, u,) be two probability spaces and F and G be the
cumulative distribution functions of y; and p,, respectively. The Wasserstein-1 distance is
defined as

Wi (py, m2) :=/|F(t)—G(t)|dt.
R

Ray set 1 Ray set 2 Entire point cloud Ray set 1 Ray set 2 Entire point cloud

ka
JL

Diamond

2l al
A3
dldls
b
~ 1k E

=

-1 0 1 -1 0 1 -1 0 1 -1 0 1 -1 0

Fig.2 Histogram of coordinates from two point sets. Columns 1 and 2 correspond to two different sets of
rays, each containing 256 rays and 64 samples per ray. These histograms are similar for the same object and
different for different objects. Column 3 corresponds to the entire point cloud; these differ from the Ray-
Sense histograms especially for the airplane which is not as regular as the diamond

@ Springer

Communications on Applied Mathematics and Computation

Neural networks One can consider using a properly designed and trained neural network.
In Sect. 4.5, we present a neural network model, RayNN, for comparing point clouds in
three dimensions based on RaySense sketches.

3 Properties of RaySense

In this section, we introduce several notable properties associated with our proposed
method. Specifically, we begin by analyzing the characteristics of the method when uti-
lizing a single ray, i.e., m = 1. We subsequently proceeded to discuss how the RaySense
sketch, resulting from using multiple rays, effectively utilizes and inherits the identified
traits. Through these analyses, we aim to provide a more rigorous and comprehensive
understanding of the properties and potential applications of our proposed method.

Assumptions and notations for this section.

A1l The point set I, is a realization of a collection of N i.i.d. random vectors {Xi}f; " with
each X; € R%

A2 The probability space induced by the random vector X, is (R?, F, u), where F is the
Borel o-algebra on R? and is a probability measure.

A3 The induced probability measure y is also known as the distribution of X, with com-
pactly supported Lipschitz density p.

A4 The RaySense sketch uses the closest points feature space (3).

A5 In the case that r(s), for some s, has more than one nearest neighbor, we will randomly
assign one.

A6 A ray, denoted by r(s), 0 < s < 1, generated by the method introduced in Appendix A,
is given in the embedding space R? of I, and the support of p is centered.

A7 We assume supp(p) can be covered by a finite union of hypercubes {£2;}; in R, each of

non-zero probability measure, i.e., supp(p) C Uj 2, with PQi = fxeg. p(x)dx > 0, and

{£2;}; overlap with each other only on sets of measure zero.

Note that by A2—-A3, we may regard p as representing the density of a solid body in R?. In
other words, I" does not consist of samples from a lower dimensional set. (RaySense can
sample much more general sets, but the line integral analysis (Sect. 3.1.3) and the argu-
ment of sampling convex hull (Sect. 3.2.1) of this section may not hold.)

Much of our analysis is based on the Voronoi cells associated with each point in the
point cloud.

Definition 5 The Voronoi cell of x € I is defined as
V(x) :={y € R": P,y =x}. (13)

In practice, we often sample rays r ~ L of finite length as in Fig. 3, i.e., {r;}!., C Bg(0) for
some R. Correspondingly, we define the truncated Voronoi cell:

VR@): = {y € Bx(0): P,y = x}. (14)

@ Springer

Communications on Applied Mathematics and Computation

Fig.3 A simple 2D point set (gray). Two rays (black) sense nearest neighbors of the point set (blue). Sin-
gular points, such as the tip of the tail, have larger Voronoi cells (dashed lines) and are more likely to be
sampled. Closest point pairings are shown in green and red

3.1 Properties of Sampling with a Single Ray
3.1.1 Sampling Points with Larger Voronoi Cells

For discrete point sets, the likelihood that a ray senses a particular point is closely linked
to the size of the Voronoi cell of the point. This relationship arises from the practice of
utilizing closest-point sampling, which governs the selection of points by a given ray. In
this regard, the Voronoi cell of a point in the point clouds is a fundamental geometric
construct that plays a key role in determining the probability of detection. This observa-
tion is visually depicted in Fig. 3, which demonstrates that points having larger Voronoi
cells are more likely to be detected by a given ray.

We refer to points with relatively large Voronoi cells as the “salient points” of I'.
When the probability density for I" is compactly supported, the salient points of I" tend
to be situated in close proximity to geometric singularities present on the boundary of
the support of the density; see Fig. 4 for a demonstration. This saliency characteristic
will be further elaborated on in Sect. 3.2.1, where we will demonstrate how it manifests
as the biased subsampling property of the RaySense method.

Furthermore, connections between the probability of a point € I' being sam-
pled and the size of its Voronoi cell can be made explicit in the following derivation.

d=2 d=4 d=5
—n,=10 N — 2 5 — 25
—n,=20 10 (In(N)/N) 10 (In(N)/NY
=40
—n,=80
—n,=160
=320 3
’ 1
— 1, =640 0
—n,=1280
— n,=2560
— - quadrature R N ,\,V -
—N' 10 N
— 05
— NN PR R NI
== (n(y/m)'?
5

100 s o
102 10° 10* 10° 10° 10 10% 10° 10* 10° 10° 107 10 10° 10* 10° 10° 107
N N N

Fig.4 Convergence studies for line integrals approximating from the RaySense sketch on point clouds sam-
pled from a uniform density, in dimensions d = 2, 3,4, 5. Horizontal dashed lines indicate error inherent to
the trapezoidal rule quadrature schemes. Diagonal dashed lines indicate different convergence rates

@ Springer

Communications on Applied Mathematics and Computation

Let Bg(0) € R? be a solid d-dimensional ball of radius R containing all the rays, and
I' € BR(0) the finite point set containing N distinct points. Let V, := V(x;) denote the
Voronoi cell for the kth point, x, in I" as in Definition 5. Let £,(r) denote the length of
the segment of a ray, r, that lies in the truncated Voronoi cell V]f. If r does not inter-
sect V,, £,(r) := 0, then £, (r) is a random variable indicating how much a ray r senses
x, € I', and we denote its expectation by E[Z,]; in other words,

E[£,] := / (@) (@) =E, | / v, (r(s))ds], (15)

where y . is the probability measure corresponding to the distribution of lines £ introduced
in Sect. 2, and xv, is the indicator function of the Voronoi cell V. Consequently, the fre-
quency of a ray r sampling a point x, € I is proportional to the d-dimensional Lebesgue
measure of its Voronoi cell V, = V(x,).

3.1.2 Sampling Consistency

The Voronoi cell perspective provides a framework to analyze certain properties of Ray-
Sense. We will show in Theorem 1 that the sampling from a specific ray is consistent
when the number of points N in the point clouds is large enough. We begin with some
lemmas, with proofs appearing in Appendix C.

Our first lemma tells us how large N must be to have at least one sample in any
region achieving a certain probability measure.

Lemma 1 Suppose that supp(p) satisfies assumption A7. Let I' be a set of N i.i.d. random
samples drawn from p, and p, € (0, 1). If the number of sample points N > V(P) where
v:(0,1] » R* is defined by

\/m(l_zpo)(ln(ﬁ)u]ﬂ)+P+1n(1_2p0) o

2 ’

v(P) =

then, with the probability greater than p,, at least one of the samples lies in every £; with
PQ/ > P. Additionally, we note bounds for v(P):

21n<i)+P 21n(i>+3p
1-p, 1-p, (1 7)
— < v(P) < —

We notice that for any fixed p, >0, v(P) ~ O(1/P?) as P — 0 indicating v(P) is
inversely proportional to P? asymptotically. This matches with the intuition that more
points are needed to ensure sampling in regions with a smaller probability measure.

The next two lemmas reveal that the volume of the Voronoi cell for a sample point
amongst the others in the point cloud I" decreases to zero with high probability as the num-
ber of sampled points tends to co.

Lemma 2 Suppose p is L-Lipschitz and supp(p) satisfies assumption A7. Given I a set of
N i.i.d. random samples drawn from u, for N large enough, the size of the Voronoi cell of a

@ Springer

Communications on Applied Mathematics and Computation

sample point x € I in the interior of supp(p) is inversely proportional to its local density
p(x), and with probability at least py its diameter has the following upper bound:

1

d

i 21+7<9+8N1n<1_2p0)>2

diam(V(x)) < 3 6p(x)N

When the underlying distribution y is uniform, p(x) is the same everywhere inside
supp(p), therefore the Voronoi diameter for every x in the interior should shrink uniformly.
However, a better bound can be obtained for this case, as shown in the following lemma.

Lemma 3 If u is a uniform distribution, then given I" with N large enough, with probabil-
ity at least p,, the diameter of the Voronoi cell of any sample point in the interior has the
bound

diam(V) < 3\/E< {;1 N J>

n —
c(N)N 1-p,
with some c¢(N) such that c(N) - 1as N — oo.

Theorem 1 (Consistency of sampling) Under A1-A7, suppose I'y and Iy are two point
clouds sampled from the same distribution, with N and N, points respectively, where in
general N| # N,. Assume further that supp(p) is convex. For a ray r(s) using n, uniformly-
spaced discrete points to sample, for N = min(N|,N,) sufficiently large, the RaySense
sketches in the closest point feature space S|I'}] and S|T,] satisfy

ISTT31 = Sl < €(N), (18)

wheree > 0ande - 0as N — oo.

Remark 1 The assumption that supp(p) is convex is stronger than needed in many cases; it
excludes the situation where some point r;; in the discretized ray set is equidistant to two
or more points on the non-convex supp(p) that are widely separated, which could lead to an
unstable assignment of nearest neighbors. However, in practical scenarios where a ray is
chosen randomly, this situation is unlikely to occur. Further details can be found at the end
of Appendix C.

The consistency of sampling ensures the RaySense data on a specific ray would be close

when sampling the same object, therefore one can expect a similar property for the Ray-
Sense sketch tensor where multiple rays are used, which will be discussed in Sect. 3.2.1.

3.1.3 Approximate Line Integrals
We demonstrate that the RaySense approach enables the computation of line integrals of

functions defined on the points in a point cloud. Suppose we have a point cloud I" repre-
senting an object in R?. As N increases, the point cloud becomes denser, and for any r(s)

@ Springer

Communications on Applied Mathematics and Computation

lies inside supp(p), Prr(s) = r(s) as the Voronoi cells shrink around each point in I". If we

have a smooth function g:R? — R evaluated on the point cloud, then g(Prr(s)) = g(r(s))
and we expect that integrals of g along lines can be approximated by integrals of the Ray-
Sense sketch S[I, g] introduced in Sect. 2.2.2 (and quadrature of the discrete RaySense
sketch S, 5,[T, g)).

The following shows that the RaySense integral is an approximation to the line integral
along r(s) provided the point cloud is dense enough.

Theorem 2 Suppose that g € C(R?; R) is J-Lipschitz, ray r(s) € supp(p) for 0 < s < 1, and
I is a set of N i.i.d. random samples drawn from u, with corresponding RaySense sketch

SII, gl, then the difference between the RaySense integral of g and the line integral of g
has the following bound:

1 1
/ g(r(s))ds — / g (Prr(s))ds
0 0

where Xv(x) is the indicator function of the Voronoi cell V(x) for x € T.

1
<J Z/ v () Ir(s) = Prr(s)llds, (19)
0

xerl’

Proof For a fixed number of sampling points N, the approximation error is given by

1
</ |g(r(s)) — g(Prr(s))|ds
0

1
= Z/O v (r(s))|g(r(s)) - g(Prr(s))|ds

xel’

1 1
/ g (r(s))ds - / g (Prr(s))ds
0 0

1
<Y / v (r9)) lr(s) = Ppr(s)|lds.
0

xel’

In scattered data interpolation, the nearest neighbor interpolation would have an error of
O(h) where h = max; diam(V}). Integration of the interpolated data would result in an error
of O(h?), consistent with Theorem 2.

Intuitively, we expect the RaySense line integral to converge in the limit of N — oo.
Here we show the corresponding convergence result for the case of uniform density from
the perspective of a Poisson point process [9]. Details of the proof are given in Appendix D.

Theorem 3 Suppose g € C(R?; R) is J-Lipschitz, p is uniform and satisfies assumption A7,
and the ray r(s) € supp(p) for 0 < s < 1, then given I' a set of N i.i.d. random samples as a
realization of a Poisson point process with the corresponding RaySense sketch S[T, g] for
the ray, the probability that the following holds tends to 1 as N — oo

1
’/ g(r(s))ds—/ g(PFr(s))ds
0

<cd. J)N—§+e(d+1)

1
0
for any small € > 0.

1

1
@ the line integral error converges to 0 as N — oo in a rate O(N™ @).

When € <

@ Springer

Communications on Applied Mathematics and Computation

We first confirm this rate with numerical experiments. We return to explore applications
of integral transforms in Sect. 4.3. Figure 4 shows convergence studies of the RaySense
integrals for the uniform density case from Theorem 3. The 5-dimensional (5D) example

\4

uses an integrand of g(x,x,,X3, X4, X5) = c0s(x;X,) — XX Sin(x;) and a line r(s) = TR

+% with v =(2,3,4,5,6). In four, three, and two dimensions, we use
8(x;, Xy, x3,%4, 1), g(x, ¥, z, 1, 1), and g(x, y, 0, 0, 0), respectively, and drop unneeded com-
ponents from the line. The exact line integrals were computed with the Octave Symbolic
package [34] which uses SymPy [37] and mpmath [56]. Each experiment is averaged over
50 runs.

In Fig. 4, we see that for each fixed number of sample points 7, along the ray, the error
decreases at the rate discussed above. From the factor of two in the distance between the
results of each fixed n,, infer a first-order decrease in n,, and taken together an overall faster

rate of convergence if both N and n, are increased. In all cases in Fig. 4, the experimental
1

convergence rate is bounded by O(%} InN) * which is asymptotically close to the predicted

rate given in Theorem 3 since € can be taken arbitrarily small. However, when n, is large,
2

we appear to achieve a faster rate of (’)(% InN) ‘ This suggests a tighter analysis may be

possible in the future.

3.1.4 Ray not Fully Contained in supp(p)

For any portion of r(s) that lies outside of supp(p) such portion should take no values when
computing the line integral if g is only defined on supp(p). Thus, the post-processing pro-
cedure involves eliminating sampling points on r(s) that are outside of supp(p). When N is
large, this can be accomplished by augmenting the RaySense feature space with vectors to
the closest point as in (9) rather than using A4, and redefining g(P-r(s)) = 0 if the distance
to the closest point of r(s) is beyond some small threshold.

3.2 Properties of Sampling with Multiple Rays

When applying RaySense to the point set I' € R? with m rays and n, points on each ray, the
RaySense sketch S(I") is an m X n, X d tensor defined in (10a). In the following sections,
we investigate properties of the RaySense sketch as an extension of the properties of Ray-
Sense using a single ray previously discussed.

3.2.1 Biased Samplings Toward Salient Points

A direct consequence from Sect. 3.1.1 is that the RaySense sketch S(I") tends to repeatedly
sample points with larger Voronoi cells, indicating a bias toward these salient points. Fig-
ure 5 demonstrates this property by visually presenting the frequency of the sampled points
by the size of the plotted blue dots.

Another notable feature from Fig. 5 is that the biased subsample generated by RaySense
also depicts the outline of the object. This is because points with larger Voronoi cells usu-
ally situate near the boundary and regions with positive curvatures. The following proposi-
tion gives a sufficient condition to identify such points.

@ Springer

Communications on Applied Mathematics and Computation

50 Rays 100 Rays
1
o, " : -: .‘ i
v A e ety :
e ke L 9 e e
. ‘e 4 »
'y .o .b
@ L L]
®
. 5 ¢ e
oond on®
S e .

Fig.5 Points sampled by RaySense using different numbers of rays are indicated as blue dots. The larger
blue dots correspond to points that are more frequently sampled. The effect of sampling saliency becomes
more apparent as the number of rays increases. Each ray contains 30 sample points

Proposition 1 Vertices of the convex hull of the point cloud I" will be frequently sampled by
RaySense, when using sufficiently long rays.

Proof Because supp(p) is compact, the Voronoi cell for vertices on the convex hull is
unbounded. Therefore, one can make the volumes of their truncated Voronoi cell (14), as
large as desired using rays with suitable length. And recall from Sect. 3.1.1 that the fre-
quency of being sampled is closely related to the measures of the Voronoi cell.

Remark 2 The arguments in the proof also imply when the length of the line segment — oo,
with a high probability RaySense is sampling mostly the convex hull of the point sets when
supp(p) is compact. This can be viewed as a different approach to approximate convex hulls
using rays and curvatures from [16].

Proposition 1 applies to abstract datasets as well; we consider the MNIST dataset [29],
treating each image as a point in d = 784 dimensions. Here I" is the point set consisting of
all images of the same digit. Figure 6 shows the average digits over the whole dataset, ver-
sus the average of those sampled by RaySense.

In the context of MNIST, salient points are digits that are drawn using less typical
strokes (according to the data). These are the data points that may be harder to classify,
since they appear less frequently in the data. RaySense may be used to determine the most
useful data points to label, as in active learning [51]. RaySense also provides a special
notion of importance sampling based on the notion of saliency described above. An appli-
cation of such a property is further discussed in Sect. 4.2.

Fig. 6 Each digit averaged over the entire data set (top) versus those sampled by RaySense (bottom)

@ Springer

Communications on Applied Mathematics and Computation

3.2.2 Invariant Histogram

The relationship between the frequency of a point in I" being sampled and the measure of
its Voronoi cell derived in Sect. 3.1.1 also provides a crucial guarantee. It ensures the Ray-
Sense histogram introduced in (11) possesses a well-defined limit as the number of rays
m — oo. This convergence can be better elucidated using an alternative formulation of H,
from (11), which incorporates the concept of Voronoi cell.

Draw m rays, r|,r,, -+ ,r,,, from the distribution £ that are contained in some B(0) of
suitable R. Enumerate thls set of points by r, ;, and the spacing between two adjacent points
is given by 6r. The closest point of r;; is x; if r;; € V). := V(x,). Therefore, the bin value
of the RaySense histogram can also be given as

Hy = H(x; S,50(D)) Z >
i=1r;;€Vy

where S, 5,(I') denotes the closest point sketch tensor using m rays and 6r spacing. The
following theorem shows that under proper normalization, H, can be thought as a hybrid
Monte-Carlo approximation to E[£,] defined in (15).

Theorem 4 The normalized bin values H, with the normalized constant 5&, ie.,
~ . or
i, := —H(xk, o)) = Z > or
i=1r;;€eV,
have the limit

lim. H(S,.5.(I) = E[£].

6r—0
Proof L&
lim Hk(S #(D) = lim — Z Z 6r = lim rE,Nﬂ[Z ér]
§r—>0 6r—>0 =1 r,;€Vy 1 €Vy
=E,c[lim D or] = [E,[Nﬁ[/;(vk (r(s))ds| = E[£,],
r €Yk T

where yy, is the indicator function of V,. Interchanging order of the limit and the expecta-
tion follows from the dominated convergence theorem since z’u ev, O < v, (r(s)) + 26r.

Monte-Carlo approximations of integrals converge with a rate independent of the
dimension [4]. Consequently, for sufficiently many randomly selected rays, the histogram
is essentially independent of the rays that are actually used.

Similar arguments show that the sampling of any function of the data set will be inde-
pendent of the actual ray set, since the histograms are identical in the limit. More precisely,
suppose g:x € I' = R is some finite function, then

@ Springer

Communications on Applied Mathematics and Computation

CP1 CP2 CP3 CP4 CP5
o .| | _.l-‘.i__.. _ _.h.h_ _.l.‘.i.___ i_
CP1 CP2 CP3 CP4 CP5

i

CP5

b

e

.

-1 0 1 -1 0 -1 0 1 -1 0 1 -1 0

Fig. 7 Histogram of the # = 5 nearest neighbors sampled by RaySense, where the underlying point cloud
is polluted by 50 outliers uniformly sampled from the unit ball. Rows correspond to different coordinates
while columns correspond to different closest points. Outliers introduce extreme values on coordinates of
CP1 but these effects are significantly mitigated on CP5

m

. 1
lim =) g(x)or = Elglx)t,]
r(;tr_)og = 7€V

In Fig. 2, we show the histograms of the coordinates of the RaySensed points of I".

The integral E[Z,] (or E[g(x;)Z,] for continuous g) depends smoothly on I', and is there-
fore stable against perturbation to the coordinates of the points in I". However, the effect
of introducing new members to I', such as outliers, will be non-negligible. One possible
way to overcome this is to use multiple nearest neighbors for points on the rays. In Fig. 7,
we show coordinates of the # = 5 nearest neighbors sampled by RaySense under the pres-
ence of outliers. It is observed that the features of the xth nearest neighbor for # large is
more robust against outliers while also maintaining the desired histogram information. In
Sect. 4.5, we will also demonstrate the effectiveness of this idea in dealing with outliers in
practical tasks.

By considering a similar argument as in the proof of Theorem 1, we can provide a sim-
ple and intuitive explanation for the robustness of outliers when using more nearest neigh-
bors: when the underlying point cloud is dense enough, if an outlier disrupts the nearest
neighbor search, excluding the outlier and finding the next few nearest neighbors would
mitigate the impact caused by the outlier; if an outlier does not dominate the nearest neigh-
bor search, then the next few nearest neighbors with high probability would also originate
from a small neighborhood centered around the first nearest neighbor. Therefore, increas-
ing the number of nearest neighbors enhances the stability of RaySense.

4 Examples of Applications
4.1 Comparison of Histograms of RaySense Samples
We experiment by comparing I" drawn from 16 384 objects of 16 categories from the

ShapeNet dataset [5]. Let #' be the label for object I';. We compute the histograms A/, h;, K
of the x, y, z coordinates, respectively, for points sampled by 50 rays with n, = 10 samples

@ Springer

Communications on Applied Mathematics and Computation

Euclidean Wasserstein

0 5 10 15 0 5 10 15

Fig.8 Comparison of histograms of the x, y, z coordinates of points sampled by RaySense, using #2 and the
Wasserstein distance W,. Rows and columns correspond to object labels. Red X indicates the location of the
argmin along each row

per ray. We compare the histograms against those corresponding to other objects in the
dataset, using

D;; = d(h, W) + d(h, 1) + d(h, i),

where d(:, -) is either the £, or Wasserstein-1 distance. We sum D according to the respec-
tive labels

My Y Y Dy ab=1-16
iipi=a j:pi=b

and normalize by the number of occurrences for each a, b pair. Figure 8 shows the matrix
of pairwise distances M between the 16 object categories.

Ideally, intra-object distances would be small, while inter-object distances would be
large. As expected, Wasserstein-1 is a better metric for comparing histograms. Still, not all
objects are correctly classified. When comparing histograms is not sufficient, we consider
using neural networks to learn more complex mappings, such as in Sect. 4.5.

4.2 Salient Points in the MNIST Data

From previous discussion and simulation in Sects. 3.1.1 and 3.2.1, we know RaySense has
the ability to detect salient points or boundary points. Here we provide further visualization
of RaySense salient points on the MNIST dataset.

By vectorizing the MNIST image, each image is a vector in with pixel value from
0 to 255. We generate the random ray set in this ambient space using Method R1 in Appen-
dix A, where each ray has the fixed-length 1, with centers uniformly shifted in the half
cube [—%, %]784. Each ray set has m = 256 random rays, with n, = 64 equi-spaced points on
each ray. To ensure a good coverage over the data manifold, we rescale the MNIST image
by entry-wise dividing so that each data point is constrained in an £ ball of a certain
radius as introduced below; we also shift the dataset to have a mean 0.

R784

@ Springer

Communications on Applied Mathematics and Computation

REANAEREREAE EEREOQENDNED
NOUNANEEREA
ABEHERDENER BREEEHEDORNEE
BHEHASESHERl BEAREBBOEBEBR
EOCAEREAGNAR FEEEE QR0
SNEEEAGERAHERE HEHEHEQOEEHBSA
(cfliclelelclCislblc I elGICIblGlolclcialo]
ARAGLDAERONZ DOERGEEREER
BAEHEEHERE BOBGEERASHE
aEnanLEnnn DeReaafRERER
(a) Normalized to 0.1 cube (b) Normalized to 0.05 cube
SOanEaNpReEl0 [DREAEREEERAEE
NWORAREEEHERERE DAnDnononoonn
BEEBECQODHEE
SBHRHEBEHOBCOE BHEEEBBRRE0
NAEEZIEARCO0 CORAfCnnRonGn
RAEEHBEEASE66NH HEESEEBGEER
AEREAARAEAENA DOEEHOBAEN
NHABRREARGRD WHHANHAGAAARER
REHBRCOEEHEN HEBAOEHBEBA
EQEDRDEEREE RAGAOOAAESA

(¢) Normalized to 0.01 cube

(d) Uniformly random

Fig.9 MNIST digit images with the highest RaySense sampling frequencies for each class. Three different
normalizations are shown in (a)—(c). Compared to a uniformly random subsample (d), we see a wider vari-
ety of hand-writing styles in the RaySense output

As mentioned, the RaySense salient points are those in I" sampled most frequently
by points from the rays. We record the sampling frequency for each MNIST image,
and in Fig. 9 we plot the top-10 images with highest frequency for each class. From
the figure, we see that the salient points often correspond to digits with untypical
strokes and writing styles, similar to the conclusion obtained from Fig. 6. Figure 9 fur-
ther shows that different normalizations of the data (by using scaling values 2 550, 5
100, and 25 500) also affect the sampling. This phenomenon can be better understood
from the perspective of truncated Voronoi cell (14): when the scale of the point clouds
shrinks while the length of rays remains constant, it has a similar effect as increasing
the length of the rays while keeping the point clouds unchanged, causing the truncated
Voronoi cells to grow. Specifically, the truncated Voronoi cells associated with sali-
ent points exhibit a larger growth rate, as their Voronoi cells are typically unbounded,
e.g., Proposition 1, making the subsampling even more biased when normalized to a
smaller cube.

4.3 RaySense and Integral Transforms

A line r in R? in the direction of @ € S$%! has parameterization r(s) = b + 50, s € (—co0,),
with b € R? a reference point on the line. Without loss of generality, let b be in 6+, which is a

@ Springer

Communications on Applied Mathematics and Computation

hyperplane orthogonal to 6 passing through the origin. The X-ray transform for a non-negative
continuous function g with compact support [39] is defined on the set of all lines in R by

[Se]

Xgl®,0) := / g(b + s0)ds. (20)

—00

The spectrum of g can be obtained via the Fourier slice theorem [55]:

F1Xg1(6, &) = Flgl(&), &€ 6™

When we restrict £ to be only on a line in 8%, we are effectively collecting information on a
2D slice of g parallel to 6.

However, when the function g only has a sampling representation, e.g., a point cloud,
it is non-trivial to compute such integrals. In Sect. 3.1.3, we showed that if r is a member
of the sampling ray set, one can compute an approximation of (20) from the RaySense
sketch obtained from {x,, g(xk)}ivzl, where {x, } are i.i.d. samples from a known probability
density p. Thus, RaySense provides a convenient alternative in obtaining (or, in a sense,
defining) the Fourier slices of the discrete data set {x,, g(xk)}szl. Since (20) is defined for
any dimension, one can approximate the X-ray transform from a RaySense sketch using
suitable ray sets, or, in the random case, RaySense integrals can be regarded as randomized
approximations of X-ray transforms.

In Fig. 10 we show an example of using RaySense sampling with prescribed (rather
than random) rays to approximate the Radon transform. In this experiment, a point cloud
I' (Fig. 10a top) with 15 010 points, is sampled from density p = % — 3xe~ox' =9 (Fig. 10a
bottom)—note denser (darker) region on left and sparser (lighter) region on right. I has
data shown in Fig. 10b evaluated from the piecewise constant function g, shown by the
solid colours (for visualization only; g is only known at the discrete points in I"). Blue
lines show the locations of the RaySense sketch for one particular angle (illustrated with
21 rays but the computation uses 100). We note increasingly jagged lines to the right where
the point cloud is sparser. Figure 10c shows that approximate Radon transform computed
over 180° in steps of one degree by integrating the RaySense sketch using trapezoidal rule
at n, = 64 points per ray. Figure 10d shows the filtered back projection computed by the
Octave Image package [12]. Note a more jagged reconstruction on the right where the point
cloud is sparsest. If we instead used random rays, we could generate samples at scattered
points in the sinogram (Fig. 10c) which could then be used for an approximate inverse
transform.

(d)

Fig. 10 Approximate Radon transform computed with RaySense from point cloud data (a—c) and filtered
back projection reconstruction (d)

@ Springer

Communications on Applied Mathematics and Computation

4.4 Point Cloud Registration

In this section, we explore the application of RaySense to the point cloud registration prob-
lem. Given two point sets I" and I” in three dimensions consisting of distinct points, reg-
istration aims to find the 3D rotation matrix U and translation vector b to minimize the
Euclidean norm of points in correspondence. When the correspondence is known, this is
the orthogonal Procrustes problem and the solution can be obtained explicitly via the sin-
gular value decomposition. When the correspondence is unknown, one can formulate an
optimization problem and solve it with various carefully-designed algorithms. Here we
choose to use the Iterative Closest Point (ICP) [3] due to its simplicity, which minimizes
point-wise Euclidean distance iteratively from the optimization problem

. . 2
pesmin) min [|UG; +) = y3.
x,el’

We set up the problem using the Stanford Dragon [7] as a point cloud I with 100 000
points. We artificially generate the target point cloud to register by rotating by = in one
direction. We compare the performance of ICP in three scenarios: (i) the original dense
point clouds, (ii) a uniformly random subsampling (in index) of the point clouds, (iii) Ray-
Sense closest point samples using S[I'] (without repetition of sampled points) of each point
cloud. Specifically, we use m = 512 rays, each with n, = 64 sample points, to subsample
the original point cloud in RaySense, which usually generates a set of around 800 unique
points. We then sample the second point cloud with a different set of rays. For fair com-
parison, we also subsample 800 points in the case of uniformly random subsampling. We
use the root mean square error (RMSE) as our metric, and we also record the convergence
time, where the convergence criteria is a threshold of the relative RMSE. We summarize
the performance results in Table 1, and we provide some visualization to compare the three
different settings in Fig. 11.

From Table 1, it is clear that both the sampling schemes accelerate the registration pro-
cess drastically by considering only a portion of the original dense point cloud. It also sug-
gests that RaySense sample has a slight advantage over the uniform random sample, in
both accuracy and convergence time. However, generating the RaySense samples on the fly
needs around 0.65 s on average, while generating a random subsample requires only 0.01 s.

Figure 11c again shows that RaySense is sampling salient features. Thus a possible
improvement is to use the repetition information from RaySense sampling to perform a
weighted registration, for example with the (autodetected) salient features receiving higher
weights. This is left for future investigation.

Table 1 Sample point cloud registration result. Performances are evaluated by registration accuracy (meas-
ured by root mean squared error (RMSE)) and computation times. The statistics reported are averaged over
5 runs. “RMSE?” is evaluated over the subsampled points while “RMSE(full)” is evaluated over the original
point cloud

Number of points RMSE RMSE (full) Convergence
time (s)
Vanilla ICP 100 000 4.544E-06 4.544E—06 6.319
ICP + random 800 4.509E-02 3.053E-03 0.0192
ICP + RaySense 804.6 2.601E—02 1.077E-03 0.0116

@ Springer

Communications on Applied Mathematics and Computation

(a) Original dense data (b)Random sample (c) RaySense sample

(d) Original dense data (e) Random sample (f) RaySense sample

Fig. 11 Registration simulation on a rotated Stanford dragon. Top row: initial pose and sparse samples; bot-
tom row: registration results. Note that the visualizations (e) and (f) are obtained by applying the transfor-
mation computed from the sparse samples in (b) and (c) to the original dense point clouds

4.5 Point Cloud Classification Using Neural Networks

We use the RaySense sketch to classify objects from the ModelNet dataset [62], using a
neural network, which we call RayNN. RayNN can use features from different sampling
operators S introduced in Sect. 2 as inputs. When using multiple nearest neighbors:
S [F 1,2, -, n]], we denote our models by RayNN-cpy. For our implementation, while

Table 2 ModelNet classification results. Here we report our best accuracy results over all experiments. For
reference, the test scores for RayNN-cp5 (m = 32) has mean around 90.31% and standard deviation around
0.25% over 600 tests. The best score for each dataset is in bold

ModelNet10 ModelNet40
PointNet [44] - 89.2
PointNet++ [45] - 90.7
ECC [53] 90.8 87.4
kd-net [27] 93.3 90.6
PointCNN [31] - 92.5
PCNN [1] 94.9 92.3
DGCNN [61] - 92.9
RayNN-cpl (m = 16) 94.05 90.84
RayNN-cp5 (m = 32) 95.04 90.96

@ Springer

Communications on Applied Mathematics and Computation

@
o

Accuracy (%)
[*2]
o

N
o

—-#-DGCNN

—4-PointNet
RayNN-cp1 A=1

—+—RayNN-cp5 \=8

64 128 256 512
Number of points used for inference

Fig. 12 Testing DGCNN [61], PointNet [44] and RayNN on ModelNet40 with missing data

Table 3 Accuracy when testing with a reduced ray set. RayNN-cpl was trained using m = 32 rays. Results
averaged over 5 runs

ModelNet40

m 32 (%) 16 (%) 8 (%) 4 (%)
A=1 88.50 86.13 74.64 43.28
A= 89.77 88.94 82.97 55.24

Table 4 Outliers sampled uniformly from the unit sphere are introduced during testing. The networks are
trained without any outliers. Results averaged over 5 runs. Best scores for each dataset are in bold

No outliers (%) 5 outliers (%) 10 outliers (%)

ModelNet10

RayNN-cpl 93.26 79.76 53.94
RayNN-cp5 93.85 92.66 90.90
PointNet.pytorch 91.08 48.57 25.55
ModelNet40

RayNN-cpl 89.77 54.66 20.95
RayNN-cp5 90.38 88.49 78.06
PointNet.pytorch 87.15 34.05 17.48

we might use different numbers of nearest neighbors, we always include the closest point
coordinates and the vector to closest points in our feature space R¢ (¢ > 6 fixed). Details of
the implementation can be found in Appendix B.

We compare with some well-known methods for 3D point cloud classification tasks.
In addition to the results reported by [44], we also compare against PointNet.pytorch, a
PyTorch re-implementation [63] of PointNet. In all our experiments, we report overall
accuracy. Table 2 shows RayNN is competitive. To investigate the robustness of our net-
work, we performed several more experiments.

@ Springer

Communications on Applied Mathematics and Computation

Table 5 Top: storage and timings for RayNN-cpl and PointNet.pytorch on ModelNet40 using one Nvidia
1 080-Ti GPU and batch size 32. The preprocessing and forward time are both measured per batch. Bottom:
data from [61] is included only for reference; no proper basis for direct comparison

Model size (MB) Forward time (ms) Preprocessing time Time per
(ms) epoch (s)
PointNet.pytorch 14 12 3.6 14
RayNN-cpl 4.5 2 7.5 22
PointNet [44] 40 16.6 - -
PCNN [1] 94 117 - -
DGCNN [61] 21 27.2 - -

Robustness to sample size We repeat the experiments in [44, 61] whereby, after train-
ing, data is randomly removed prior to testing on the remaining points. The results in
Fig. 12 show that RayNN performs very well with significant missing data.

Using fewer rays We experiment with training using a full set of m = 32 rays but test
using smaller number 77 of rays. Table 3 shows that RayNN can achieve a reasonable score
even if only 1 = 4 rays are used for inference.

Robustness to outliers This experiment simulates situations where noise severely
perturbs the original data during testing. We compare the performance of RayNN-cpl,
RayNN-cp5, and PointNet.pytorch in Table 4. The comparison reveals RaySense’s capabil-
ity in handling unexpected outliers, especially when additional nearest neighbors are used.
Note the experiment here is different from that in [44] where the outliers are fixed and
included in the training set.

Comparison of model complexity

Table 5 shows that our network has an advantage in model size and feed-forward time
even against the simple and efficient PointNet. In both training and testing, there is some
overhead in data preprocessing to build a kd-tree, generate rays, and perform the nearest-
neighbor queries to form the RaySense sketch. For point clouds of around N = 1 024, these
costs are not too onerous in practice as shown in Table 5.

The convolution layers have 48c + 840 016 parameters, where ¢ is the dimension of
input feature space. The fully-connected layers have 64K + 278 528 parameters, where K
is the number of output classes. In total, our network has 1.1 X 106 +48c+ 64K ~ 1.1 M
parameters. In comparison, PointNet [44] contains 3.5 M parameters.

5 Summary

RaySense is a sampling technique based on projecting random rays onto a data set. This
projection involves finding the nearest neighbors in the data for points on the rays. These
nearest neighbors collectively form the basic “RaySense sketch”, which can be employed
for various data processing tasks.

RaySense does not merely produce narrowly interpreted subsamples of given datasets.
Instead, it prioritizes the sampling of salient features of the dataset, such as corners or
edges, with a higher probability. Consequently, points near these salient features may be
recorded in the sketch tensor multiple times.

@ Springer

Communications on Applied Mathematics and Computation

From the RaySense sketch, one can further extract snapshots of integral or local (dif-
ferential) information about the data set. Relevant operations are defined on the rays ran-
domly sampled from a chosen distribution. Since rays are 1D objects, the formal complex-
ity of RaySense does not increase exponentially with the dimensions of the embedding
space. We provide theoretical analysis showing that the statistics of a sampled point cloud
depends solely on the distribution of the rays, and not on any particular ray set. Addition-
ally, we also demonstrated that by appropriately post-processing the RaySense sketch ten-
sor obtained from a given point cloud, one can compute approximations of line integrals.
Thus, and by way of the Fourier Slice Theorem, we argue that RaySense provides spectral
information about the sampled point cloud.

We showed that RaySense sketches could be used to register and classify point clouds
of different cardinality. For the classification of point clouds in three dimensions, we pre-
sented a neural network classifier called “RayNN”, which takes the RaySense sketches as
input. Nearest-neighbor information can be sensitive to outliers. For finite point sets, we
advocated augmentation of the sketch tensor by including multiple nearest neighbors to
enhance RaySense’s capability to capture persistent features in the data set, thereby improv-
ing the robustness. We compared the performance of RayNN to several other prominent
models, highlighting its lightweight, flexible, and efficient nature. Importantly, RayNN also
differs from conventional models, as it allows for multiple tests with different ray sets on
the same dataset.

Appendix A Examples of Ray Distributions

We assume all points are properly calibrated by a common preprocessing step. This could
also be learned. In fact, one can use RaySense to train such a preprocessor to register the
dataset, for example, using Sect. 4.4 or similar. However, for simplicity, in our experiments,
we generally normalize each point set to be in the unit #2 ball, with a center of mass at the
origin, unless otherwise indicated.

We present two ways to generate random rays. There is no right way to generate
rays, although it is conceivable that one may find optimal ray distributions for specific
applications.

Method R1 One simple approach is generating rays of the fixed-length L, whose direc-
tion v is uniformly sampled from the unit sphere. We add a shift b sampled uniformly from
[—%, %]d to avoid a bias for the origin. The n, sample points are distributed evenly along the
ray:

r,.=b+L< i —1>v, i= 0, n —1.

L

The spacing between adjacent points on each ray is denoted by ér, which is
L=2.

Method R2 Another natural way to generate random rays is by random endpoints selec-
tion: choose two random points p, g on a sphere and connect them to form a ray. Then we
evenly sample 7, points between p, g on the ray. To avoid overly short rays where informa-
tion would be redundant, we use a minimum ray-length threshold 7 to discard rays. Note
that the distance between n, sample points is different on different rays:

T We use

nr

@ Springer

Communications on Applied Mathematics and Computation

Fig. 13 Density of rays from
method R1 (left) and R2 (right). 14 14
Red circle indicates the #2 ball
-1 —1
T T T T
~1 i -1 1
mx16@c mx8@16 mx4@64 mx2@256 mx1@1024 1x1024
| E—
| —
‘ —
| E—
. ‘ | — [
Inputs 9 - . L A = mIp(256,64,K) = p;
s(r) —
‘ ! = e ——
— [[
| —]
| — e
. " . . Max operator
Convolution Convolution Convolution Convolution
3x1 kernel 3x1 kernel 3x1 kernel 3x1 kernel
+ + + +
Max-pooling Max-pooling Max-pooling Max-pooling
2x1 kernel 2x1 kernel 2x1 kernel 2x1 kernel

Fig. 14 The RayNN architecture for m rays and n, samples per ray. The input is ¢ feature matrices from
S(I') with suitable operations. With n, = 16, each matrix is downsized to an m-vector by 4 layers of
1D convolution and max-pooling. The max operator is then applied to each of the 1 024 m-vectors. The
length-1 024 feature vector is fed into a multi-layer perceptron (mlp) which outputs a vector of probabilities,
one for each of the K classes in the classification task. Note the number of intermediate layers (blue) can be
increased based on n, and ¢

r

The spacing of points on each ray varies, depending on the length of the ray.

Figure 13 shows the density of rays from the ray generation methods. In this paper, we
use Method R1; a fixed 6r seems to help maintain spatial consistency along the rays, which
increases RayNN’s classification accuracy in Sect. 4.5.

Appendix B Implementation Details of RayNN

Our implementation uses PyTorch [41].
Architecture RayNN takes the m X k X ¢ RaySense sketch tensor S(I') as input, and out-
puts a K-vector of probabilities, where K is the number of object classes.

The first few layers of the network are blocks of 1D convolution followed by max-pool-
ing to encode the sketch into a single vector per ray. Convolution and max-pooling are
applied along the ray. After this downsizing, we implemented a max operation across rays.
Figure 14 includes some details. The output of the max pooling layer is fed into fully con-
nected layers with output sizes 256, 64, and K to produce the desired vector of probabilities

@ Springer

Communications on Applied Mathematics and Computation

p; € RX. Batchnorm [20] along with ReLU [38] is used for every fully-connected and con-
volution layer.

Note that our network uses convolution along rays to capture local information while
the fully connected layers aggregate global information. Between the two, the max opera-
tion across rays ensures invariance to the ordering of the rays. It also allows for an arbi-
trary number of rays to be used during inference. These invariance properties are similar to
PointNet’s input-order invariance [44].

Data We apply RayNN on the standard ModelNet10 and ModelNet40 benchmarks
[62] for 3D object classification. ModelNet40 consists of 12 311 orientation-aligned [50]
meshed 3D CAD models, divided into 9 843 training and 2 468 test objects. ModelNet10
contains 3 991 training and 908 test objects. Following the experiment setup in [44], we
sample N = 1 024 points from each of these models and rescale them to be bounded by the
unit sphere to form point sets.! Our results do not appear to be sensitive to N.

Training During training, we use dropout with ratio 0.5 on the penultimate fully-con-
nected layer. We also augment our training dataset on-the-fly by adding A(0, 0.000 4) noise
to the coordinates. For the optimizer, we use Adam [25] with momentum 0.9 and batch
size 16. The learning rate starts at 0.002 and is halved every 100 epochs.

Inference Our algorithm uses random rays, so it is natural to consider strategies to
reduce the variance in the prediction. We consider one simple approach during inference
by making an ensemble of predictions from A different ray sets. The ensemble prediction is
based on the average over the A different probability vectors p; € RX, i.e.,

!
.. 1
Prediction(4) = 2 ; p;.

The assigned label then corresponds to the entry with the largest probability. We denote the
number of rays used during training by m, while the number of rays used for inference is 7.
Unless otherwise specified, we use A = 8, m = 32 rays, and 1 = m.

Appendix C Details of the Proof of Theorem 1
This appendix contains the proofs of Lemmas 1, 2, and 3, and Theorem 1.

Proof of Lemma 1 The probability measure of £2; is

Py = / PO > 0,
/ xXEQ;

7

which represents the probability of sampling €2, when drawing i.i.d. random samples from
. For a fixed set of such hypercubes, any x € supp(p) will fall in one of the £2;’s. Then one
can define a mapping 4:supp(p) C R? - R by

! RaySense does not require point clouds for inputs: we could apply RaySense directly to surface meshes,
implicit surfaces, or even—given an fast nearest neighbor calculator—the CAD models directly.

@ Springer

Communications on Applied Mathematics and Computation

s=hx)=j—-1, wherexe @, j=1,2, -, M.

By applying the mapping to the random vector X, we obtain a new discrete random vari-
able S with the discrete probability distribution y,, on R and the corresponding density p,,.
The random variable S lives in a discrete space S € {0, 1, -+, M — 1} and p,, is given as a
sum of delta spikes as

M
Pu(s) =) P 8,(s).
j=1

As a result, sampling from the distribution y,, is equivalent to sampling the hypercubes
according to the distribution u in R, but one cares only about the sample being in a spe-
cific hypercube £2;, not the precise location of the sample. Let F,(s) denote the cumulative
density function related to the density function p,,(s).

Now, given a set of N independent samples of X : {X Z-}fi e R9, we have a correspond-
ing set of N independent sample points of S: {si}f; , such that X; € Q. From there, we
can regard the histogram of {si}ﬁi , as an empirical density of the true density p),. Denote

the empirical density by ,5% which is given by

| N
ﬁfl\\flzj_v;&&'

One can therefore also obtain an empirical cumulative density function F: Z(s) using the
indicator function y:

N
= 1
Fy(s) = N Z Xisi<s)
i=1
By Dvoretzky-Kiefer-Wolfowitz inequality [13, 36] we have
Pr0b<sup |Fy(s) = Y (s)] > e) <2e™¢ foralle > 0.
seR

Therefore, for a desired fixed probability p,, the above indicates the approximating error
given by the empirical F° A]\/’,(s) is at most

- 1 1-po\\2
Fu(s)—FN@$)| ey = — —1
sup |Fu(s) = Fiy(®)] < e < 2N n< 2

with probability at least Po. Then note that the true probability measure PQf of €, being

sampled by random drawings from yu is equivalent to the true probability of j — 1 being
drawn from py,, i.e.,

Py = Py(GG—1) :=p,G-1),
therefore, PQ/ = P,(j — 1) can be computed from F,, by

Pﬂj=FM(i_])_FM(j_2)
=FyG-D=FNG-D+FNG-D=FyGi—-2)+FyG—2)—FyG-2).

@ Springer

Communications on Applied Mathematics and Computation

Taking absolute value and using the triangle inequality, with the fixed p,,
Pg <2ey+Py(i -

where PV U — 1) denotes the empirical probability at j — 1. Applying the same argument to
M(} 1), one has

P = PG = DI<2ey forallj=1,2,, M

For a set of N sample points, PV U — 1) is computed by -, where N; is the number of times

Jj — 1 got sampled by {s; } _» Or equivalently £2; got sampled by {X;} i.» Which indicates that
in practice, with probablhty at least p,, the number of sampling points N; in €2, satisfies the
following bound:

1

PQ, —2ey < oN; < PQ’ +2ey = PQfN —2eyN <N; < PQiN+ 2eyN.

=z

By taking N large enough such that P_Q,_N —2eyN=1= N; 2 L

\/ln(l_zpo)(ln(]_po) _2PQ/> +Pg —ln<%).

2
P,

= N =

The above quantity is clearly a function with respect to the probability measure PQJ, and
any £2; with PQ:‘ > PQf would have N; > Nj > 1. Using v to denote such a function and
0 < P < 1 as the threshold measure completes the first part of the proof:

Yo () (n()) v i)

P2

= v(P) =

To establish the bounds on the expression, we note

2 2 2 2
\/1n<1_p0>ln<l_p0>+P+1n<l_p0> 21“(1—p0>+P

v(P) > 7 = > s
2
2 2
<ln<m>+2P> +P+ID<T%> 21n<1_2p0>+3p
v(P) < 7 = 2 .

ProofofLemma2 Consideralocal hypercube centeredaty, 2, 1= {x +y € R ||x|l, = é}
of length / to be determined. We shall just say “cube”. The probability of cube £, being

sampled is given by ng = fﬂy p(x)dx. Now for the set of standard basis vector {e<}‘.1_1, let

v, denote the sum of all the basis: v; 1= Z ;- Without loss of generality, the probability

i= l

of a diagonal cube, defined by £, ={x+y+v, € RY: (1%l } being sampled
(unconditional to £2, being sampled) has the following bound by Llpschltz continuity of p:

@ Springer

Communications on Applied Mathematics and Computation

|Po —Po| </ o + vy) — p(o)ldx < LVd 112, = Po, > Pg — L\ 1,
Vd y ‘Qy Y y

Furthermore, PQy has the following lower bound also by Lipschitz continuity of p. For any
X E .Qy, we have

d d
1p(x) — p)| <L\/5% — p(x)zp(v)—ng = Py > (p@)—L%z)zd.

@
Combining with the previous bound for ng , we further have
d

Py > (p(y) - Lﬁl>l‘l — LI = py) - #Ll"“.

2

By setting p(y) > %ELI we can ensure PQy > 0, but this extreme lower bound is based on
'd

on Lipschitz continuity. To obtain a more useful bound, we will show below that by pick-
ing [:= [y judiciously, p(y) > 3\/5L1N > 0, any surrounding cube has non-zero probabil-

ity to be sampled. Therefore, with p(y) > 3\/ELIN, for any diagonal cube €, :

3v/d

1 1
p(y)ld _ 5p(y)ld > Tle+1 - P‘de > Ep(y)l;dv

Since the diagonal cube is the furthest to y among all the surrounding cubes, we have for
every surrounding cube of £2,, their probability measure is at least PQy .
d

According to Lemma 1, for N sampling points, with probability at least p,, if a region
has probability measure > Py, then there is at least one point sampled in that region, where
Py, is the threshold probability depending on N obtained by solving the equation below:

2 2 2
(Py)? '
By the bounds for N in (17) of Lemma 1, we know there is some constant ¢ € (1, 3) s.z.:

2 +
21n<1_—po> +CPN

2
N= = NP? —cPy 21 =0
P, VTN n(l—Po>

Solving the above quadratic equation and realize that Py, > 0, we have

c+ <cz+8N1n (L>)
1-p,

2N

-

Py =

Therefore, for a fixed N, by requiring

@ Springer

Communications on Applied Mathematics and Computation

c+ <02 + 8N In <L>>
1—p,

p(Y)N

[SIE

rQ)
Po, > 5 Iy 2Py = Iy

\%

we have with probability p, that at every surrounding cube of €, of side length /y, there is
at least one point. This lower bound for /,, ensures the surrounding cube has enough prob-
ability measure to be sampled. Since 1 < ¢ < 3, we can just take [, to be

d

1
2
3+<9+8N1n(i>> c+(c2+8N1n<L)>
1=p, 1=py

Iy := >
PN PN

21—

From above we see that for a fixed p(y), [y decreases as N increases. Therefore, by choosing
N large enough, we can always satisfy the prescribed assumption p(y) > 3\/2Ll -

Furthermore, when N is so large such that p(y) > 31/dLIy is always satisfied, we see
that [, is a decreasing function of p, meaning that with a higher local density p(y), the [,
can be taken smaller while the sampling statement still holds, meaning the local region is
more compact.

Finally, since there is a point in every surrounding cube of £2,, the diameter of the Voro-
noi cell of y has the following upper-bound with the desired probability p:

34+ <9+8N1n(2))
1-py

PN

1
d

(ST

diam(V(y)) < 31Vd = 3V/d|

Now, for a sample point x, in the interior of supp(p), given a cover of cubes as in
Lemma 1, x, must belong to one of the cubes with center also denoted by y with
a slight abuse of notation. Then note that the diameter of V(x;) also has the same
upper bound as shown above. To go from p(y) to p(x,), by Lipschitz continuity:

p(y) = p(xy) — LT‘/‘}IN = pxy) < p(y) + %EZN. Since we require p(y) > 3\/;ILIN, we
have p(x,) < "?@) +py) = %p(y). Therefore,

N

i 21 +7<9+8N1n<ﬁ)>

6 .
pO) > Zplxy) = diam(V(x) < 3Vd 6PN

Proof of Lemma 3 Without loss of generality, we assume that |supp(p)| = 1, then p = 1eve-
rywhere within its support. We partition supp(p) into M regions such that each region has
probability measure Al4 This partition can be constructed in the following way: for most of

@ Springer

Communications on Applied Mathematics and Computation

the interior of supp(p), subdivide into hypercubes £2;’s of the same size such that P_Qj = Ai/l
and €2;’s are contained completely inside supp(p). Then the length of the hypercube, /, is

X d .. .
determined by E_ -1 — /=(-L) For the remaining uncovered regions of
[supp(p)| M Ma

supp(p), cover with some small cubes of appropriate sizes and combine them together to
obtain a region with measure L

Then, following a similar idea from Lemma 2, one has a discrete sampling problem with
equal probability for each candidate, which resembles the coupon collector problem. The
probability p(N, d, M) that each of the M region contains at least one sample point has a
well-known lower bound [11]:

PN, d, M) > 1 — Me .

With the probability p(N, d, M) given above, for an interior hypercube we again have there
is at least one sample in each of its surrounding hypercube, since now there is at least one
sample in each of the M region. Then the Voronoi diameter for each point is at most 3/ \/E .
Fixing a desired probability p,, we want to determine the number of regions M to get a
control on /. We need to have a bound as follows:

pe1—Me i 2p, = 0<Me i <1—p (22)

By rearranging, the above equality holds only when

N x~ N
—eu :
M 1 =p,

The above equation is solvable by using the Lambert W function:
M=—>
Wo(iZo)
where W, is the principal branch of the Lambert W function. Note that the Lambert W
function satisfies

Wy(x)e"® = x = =MW,

Wo(x)
Pluging in the above identity, one has

M _ N
L=pPo (1 =peWy(2-)

— M= (1 —pye"(FR).

Also note that the function Me‘% is monotonically increasing in M (for M > 0), so for the
bound in (22) to hold we require

M < (1 - pye™(),

By taking the largest possible integer M satisfying the above inequality, we then have

@ Springer

Communications on Applied Mathematics and Computation

1= () = (10 -poe ()

for every hypercube contained in supp(p). Then this yields a uniform bound for the Voro-
noi diameter of any point that is in an interior hypercube surrounded by other interior
hypercubes:

diam(V) < 3\/;1<L(1 _po)ew(J(&))J)

In terms of the limiting behavior, for large x, the Lambert W function is asymptotic to the
following [6, 10]:

W) = Inx — Inlnx + o(1) => " = c(x)li
nx

with ¢(x) - 1as x - oo. Therefore, for sufficiently large (1—[\;), we have
~Fo

l

diam(v) <3V || = ppe—N || = 3\/_<[—1n J)d
(1-p,

1—=p)1In 2
p()) n 1-py

Proof of Theorem 1 Note that when using one ray: S[I'](1,/) = xy; and S[I,](1,)) = x5
for j=1,2,:,n,. The main idea is to bound the difference between each pair of points
using the results introduced in the previous lemmas. Consider a fixed sampling point
ry; € r(s) whose corresponding closest points are x;; and x,;) in I'; and I, respectively.
We consider two cases: first when ry ; is interior to supp(p), in which case from Lemmas 2
and 3, with probability p, we have a bound for the diameter of the Voronoi cell of any inte-
rior x, denote it by D(x) where p, p,,, N, and d are assumed to be fixed. Therefore,

ey =1l < DOy ey =7l < Do)

Then by the triangle inequality: [|lx;;; — X5;1l> < D(xy;;) + D(xyy;;), which applies for all
sampling points r, ;’s in the interior of supp(p), and as N — oo we have D — () in a rate
derived in Lemma 2.

In the case where sampling point r, ; € r(s) is outside of supp(p), since supp(p) is con-
vex, the closest point to r; ; from supp(p) is always unique, denoted by x,,. Then, choose R,

depending on N;, N, such that the probability measure P, = P(BR, (x,)N supp(p)) achieves
the threshold introduced in Lemma 1 so that there is at least x,; € I} and x,, € I, that
lies in BR] (x,) N supp(p). For sufficiently large N, x;; and x,;; would be points inside
BRl (x,) N supp(p) since supp(p) is convex. Then we have

ey — X201l < 2Ry,
and we can pick N, N, large to make R, as small as desired. Therefore, we have
llx 1) — %ap1lla = O as Ny, Ny — o0,

in probability for both interior sampling points and outer sampling points r; ;, and the con-
vergence starts when N, N, get sufficiently large. Consequently, for the RaySense matrices
S[I',]and S[I], we can always find N sufficiently large such that

@ Springer

Communications on Applied Mathematics and Computation

ISLI] = SUG e = Z”xl[j]_xZ[j]”§<5
i=1

for arbitrarily small € depending on N, n,, d, and the geometry of supp(p).

Remark 3 In case of non-convex supp(p) and the sampling point r;; € r(s) is outside of
supp(p), if the ray r is drawn from some distribution £, with probability one, r|; is not
equidistant to two or more points on supp(p), so the closest point is uniquely determined
and we only need to worry about the case that r,; find the closest point x,; from I, that
would be far away from x, ;.

Let x, be the closest point of r; ; from supp(p), similarly, choose R, depending on Ny, N,
such that for balls BRl(x ».1)» the probability measure P, = P(BRl(x)N supp(p)) achieves
the threshold introduced in Lemma 1 so that there is at least x,; € I} and x,, € I, that
lies in By (x,,) N supp(p). Now, consider the case where the closest point X, of r, ; from the
partial support supp(p) \ Bg, (x,,) is far from x , due to the non-convex geometry, and denote

6=1r; =%, —Illr;—x,ll, >0.
We pick N so large that
lry;—x, I < ey —x 1 + Ry < lryj— 2,0l +6 < ey ; — x5l

implying we can find x,,,x,, from I'| and I, closer than x,, from the continuum. There-
fore, for sufficiently large N, and N,, we can find both closest points x,;;, X,;; of r, ; inside
B (x,1) Nnsupp(p) from I'y and I, = [lx,;; — X551, < 2R,. The rest follows identically
as in the previous proof.

Appendix D Details of the Proof of Theorem 3

Before deriving the result, we first take a detour to investigate the problem under the set-
ting of the Poisson point process, as a means of generating points in a uniform distribution.

Appendix D.1 Poisson Point Process

A Poisson point process [9] on €2 is a collection of random points such that the number of
points N in any bounded measurable subsets £2; with measure p(£2;) is a Poisson random
variable with rate 4|€2;| such that N; ~ Poi(4|€2;]). In other words, we take N, instead of
being fixed, to be a random Poisson variable: N ~ Poi(1), where the rate parameter A is a
constant. Therefore, the underlying Poisson process is homogeneous and it also enjoys the
complete independence property, i.e., the number of points in each disjoint and bounded
subregion will be completely independent of all the others.

What follows naturally from these properties is that the spatial locations of points gen-
erated by the Poisson process is uniformly distributed. As a result, each realization of the
homogeneous Poisson process is a uniform sampling of the underlying space with number
of points N ~ Poi(A).

@ Springer

Communications on Applied Mathematics and Computation

Below we state a series of useful statistical properties and concentration inequality for
the Poisson random variable.

e The Poisson random variable N ~ Poi(4) has mean and variance both A:
E(N) = Var(N) = A.
e The corresponding probability density function is

e Ak
k!

PN =k) =

e A useful concentration inequality [43] (N scales linearly with 1):
2

Ez (3
PN A—g)<e %o or P(N—A| > ¢) < 2e Mo, (23)

Furthermore, one can also derive a Markov-type inequality for the event a Poisson random
variable N ~ Poi(4) is larger than some a > A4 that is independent of A, different from (23).

Proposition 2 For Poisson random variable N ~ Poi(4), it satisfies the following bound for
any constant a > A

e(a—/l) yE e(a—/l)/la
PN > a) < p = PWN<a)=21- prad 24)
Proof By Markov’s inequality:
0o _gx AeH
Ee™) 2o et
PW 2= a) = Pe™ >) < inf =inf :
(N> @) =PE" >) <inf == = inf ==
a0 (€A
ety > 2 —Ane'd (e-1)A
. k=1 . e '€ . €
= inf K —inf = inf
>0 ela >0 eld >0 ela

To get a tighter bound, we want to minimize the R.H.S.. Let { = ¢’ > 1. Then we minimize
the R.H.S. over ¢:

_ele-Da
min

nin =7 = rg?(g’ — 1A —alog(d).
A simple derivative test yields the global minimizer { = % > 1 since we require a > A.
Thus,

(a=A) ja (a—2) 3a
N o PN <a) 1 - A ©5)

aa

PWN > a) <

A direct consequence of (23) is that one can identify N with A with high probability
when A is large, or equivalently the other way around.

Lemma 4 (Identify N with A) A point set of cardinality N* drawn from a uniform distribu-

tion, with high probability, can be regarded as a realization of a Poisson point process with
rate A such that

@ Springer

Communications on Applied Mathematics and Computation

P<213V' <is 2N*> >1-c s —en,
Proof If N ~ Poi(4), by taking € = %, from (23) we have

P<|N—A|<§>>1—2e—fz PR [P’<; <N<%>>1—2e—fz.

Let A, = 2N* as a potential upper bound for A, while 4, = % the potential lower bound.
Then for N, ~ Poi(4,) and N, ~ Poi(4,): ’

P(N, < N*) = P(Nu < —> <ei,
% 321 _A
[FD(N[ZN)=P N[?T Le 12,

Therefore, if we have some other Poisson processes with rate 4, > 4,, and A, < 4, the
probabilities of the corresponding Poisson variables N; ~ Poi(4,), N, ~ Poi(4,) to achieve
at most (or at least) N* is bounded by

Au
PN, K N)<PW,<N)<e 2=¢es,
PN, > N*) <P(N, > N*) <e i =¢ .
Note that both of the events have a probability decaying to, 0 as the observation N * > o0,

therefore we have a confidence interval of left margin ¢~ and right margin e~ s to con-
clude that the Poisson parameter A behind the observation N * has the bound

2N*
3

< A< 2N

Since the margins shrink to 0 as N* — oo, we can identify A as ¢N with some constant ¢
around 1 with high probability.

By Lemma 4, for the remaining, we will approach the proof to Theorem 3 from a Pois-
son process perspective and derive results with the Poisson parameter A.

Appendix D.2 Main Ideas of the Proof of Theorem 3

Consider a Poisson process with parameter A in supp(p) and a corresponding point cloud I
with cardinality N ~ Poi(4). Based on previous discussion from Sect. 3.1.3, we assume the
ray r(s) is given entirely in the interior of supp(p). From Theorem 2, by denoting 1 < k; < N
such that {x; }f‘i , C I" are points in I" sensed by the ray and V, := V(x,), equivalently the
line integral error is

1 1
‘/ g(r(s))ds—/ 8 (%)) ds
0 0

Mo
<JZ/ x({r(s) € Vi })lIr(s) = x; llds. (26)
i=1 70

@ Springer

Communications on Applied Mathematics and Computation

To bound the above quantity, one needs to bound M the number of Voronoi cells a line
goes through, the length of r(s) staying inside Vi, and the distance to the corresponding Xy
for each r(s) altogether. Our key intuition is stated as follows.

Divide the ray r(s) of length 1 into segments each of length 4, and consider a hyper-
cylinder of height & and radius / centering around each segment. If there is at least one
point from I" in each of the hypercylinders, then no point along r(s) will have its nearest
neighbor further than distance H = /2h away from r(s). Therefore, we restrict our focus to
£2, a tubular neighborhood of distance H around r(s)-that is, a “baguette-like” region with
spherical end caps. N, the number of points of I" that are inside £, will serve as an upper
bound for M (the total number of unique nearest neighbors of r(s) in I') while the control
of the other two quantities (intersecting length and distances to closest points) comes up
naturally.

Undoubtedly M depends on the size of £2, which is controlled by 4. The magnitude of &
therefore becomes the crucial factor we need to determine. The following lemma motivates
the choice of h = A" 4** for some small 1 > £ > 0.

Lemma5 Under A1-A7, for a point cloud of cardinality N ~ Poi(A) generated from a Pois-
son point process, and a ray r(s) given entirely in supp(p), the number of points N, in the
tubular neighborhood of radius H = \/Eh around r(s) will be bounded when

b= iite

Sfor some small1 > ¢ > 0, with probability — 1as A — oo.

Proof Note that the baguette region €2 has outer radius H, and hypercylinders of radius &
are contained inside . For simplicity we prescribe 4 such that Q = i is an integer, then
the baguette region €2 consists of Q number of hypercylinders, denoted by {£2; }jQ=1 and the
remaining region, denoted by €2, consisting of an annulus of outer radius H, inner radius
h, and two half spheres of radius H on each side. Since each region is disjoint, according
to Appendix D.1 the Poisson process with rate A in supp(p) will have Poisson sub-process
in each of the regions in a rate related to their Lesbegue measure, and all the sub-processes
are independent.
Now, let P, denote the probability of having at least one point in each £2; in {£2 }Q

while the number of points in each £, is also uniformly bounded by some constant NQ
Since each £2; has the same measure, thelr corresponding Poisson processes have the iden-

i
tical rate 4, = [£2,]A. Let N; denote the Poisson random variable for £2;. Then,

P(]VJZ 1)=1—|F’(]Vj=0)=l—e_/1q,
Combined with (24) by requiring Ny, > 4,, this implies
eMNo—2y) AQIQ

Ny

Q

PNg>N; 2 1) =PW; >) =P(N; > Np) > 1 —e™h —

and hence

@ Springer

Communications on Applied Mathematics and Computation

0
eWo—%) /ILVQ eMo—4y) j’]:Q

Po>|1—e - >1-0feh+

NYe Nge '

27)
0

The measure of the remaining region 2, is |2, | = o, H¢ + w,_,(H*' — h*1), where w, is
the volume of the unit d-sphere. Therefore the Poisson process on €2, has rate 4, = |£2,|4.
Let N, denote the corresponding Poisson random variable, again by (24) with N’ > A,:

eW'=3,) /VVVI

!
PO, <N > 1= —5

(28)
Since Q, and | J {© }].Q=1 are disjoint, by independence, the combined probability p,., that all
these events happen:

(i) the number of points N, in each hypercylinder £2; is at least 1,
(i) N, is uniformly bounded above by some constant N,
(iii) the number of points N, in the remaining regions £2, = £ — Uj{.Qj} is also bounded
above by some constant N/,

would have the lower bound:

eV'-4,) /11rv’ y eMo=2y) A;VQ
Pt Z 1_W 1—Qe"+T
Q
o(N'=2,) 4N’ eMo=2y) A;VQ
>1- = ofeh

e f
0
Then with probability p,,, we have an upper bound for N, the total number of points in £2:
Ng <N+ ON,,. (29)

Apparently N, and p,, are inter-dependent: as we restrict the R.H.S. bound in (29) by
choosing a smaller N’ or Ny, the bound for p,,, will be loosened. From Lemma 4, we set
N' =ai,, NQ = ﬁ/lq for some a, f > 1. Therefore, the next step is to determine the param-
eter set {h, a, f} to give a more balanced bound to the R.H.S. in (29) while still ensuring
the probability of undesired events will have exponential decay.

For that purpose we need some optimization. We know

A = 19,14 = @H + 0, (H = 1A = (025K + 0, (25 = 101)

Ay = 12,14 = (0, h* 7' WA = 0, k4. (30)

We need to investigate how £ should scale with A, so we assume & ~ A7 for some constant
p to be determined. The following optimization procedure provides some motivations for
choosing p. On the one hand, for the constraints we need to ensure that the probability of
each of the three events above not occurring decays to 0 as 4 — o

@ Springer

Communications on Applied Mathematics and Computation

&'~ jV

N/N’
Qe - 0 < log(Q) - 4, - —oo,

-0 < (N —41,)+N'log(4,) — N'log(N') —» —oo,

e(NQ—Aq)ﬁg]Q
¢ NYe
0

and representing all the quantities in terms of A, p, «, f and simplifying

-0 = log(Q) + Ny — 4,) + Ny log(4,) — Ny log(Ng) — —co,

(@ — DA, —ailog@) > —0 = a(l—log@)) <1 = a>1,

plogd) —w,_ A7 5 —0 = p(1-log(®)) <1 = p>1,

1

log(Q) + (f — D4, — pA,log(f) > —0 = —pd+1>0 = p< 7

On the other hand, for the objective, note that

N, N,
N + TQ < 2max <N’, TQ>

= 2max <a<(a)d2?h" ro,. (27 - 1>h"‘1)/1), gwd_lhd,1>
4.4 1l -1, B d
< 3max (aw25hia, awd,l(z ;- 1)h A Loy).

since a, f§ are just some constants > 1, fixing @ and f§ so that 7 = A7? and we want to mini-
mize & to obtain an upper bound for the total number of points in £2:

argminmax(adeghdﬂ, occod_l(f%l - l)hd_l/l, gwd_lhd/l>
h

< arg min max (c2 + (1 —pd+p)log(4), c;+ (1 —pd +p) log(ﬁ))
P

< arg min max <(1 —pd +p) log(i)).
P

Combined with bounds derived from the constraints, to minimize (1 — (d — 1)p), we need
to maximize p, therefore we take p = :11 — ¢ for an infinitesimal € > 0.

Appendix D.3 Proof of Theorem 3

Proof of Theorem 3 Consider a Poisson process with rate A on the supp(p). As in Appen-
dix D.2, let Q = L be an integer for simplicity (or take ceiling if desired), and consider Q
hypercylinders of radius & centered along r(s). Again as in Appendix D.2, let Q2 be the

tubular neighborhood of distance H = \/Eh around r(s). Motivated by Appendix D.2, we
set

b= iite

@ Springer

Communications on Applied Mathematics and Computation

for some small constants 1 > £ > 0 to be determined.
Divide the tubular neighborhood £2 into two parts, one consists of the set of hypercylin-
ders U]Q=1 .Qj around r(s), the other is the remainder ,. From the setting of Lemma 5, let

N’ = a4, be the number of points in 2, while N, = 4, is for £;, and we seta = f =e > 1
(also satisfying the constraints in Lemma 5) to simplify the calculations so that we have
NQ = e/lq,N,. = e4,, and equation (27) becomes

Pled, > N; >) =PW; > 1) = P(N; > ed,) > 1 — 2™,

0
= P,> <1 —2e—*«> >1-20e %, 3D

So the total number in U £2; is bounded by Qe4, while there is still at least one point in
every £2; with the above probablhty On the other hand for (28),

PN, <el,)>1—e*.

Again by the same independence argument, the total probability that all the events happen
has the following lower bound:

Por 2 (1 —e™)(1 =2Qe™) > 1 —2Qe™ —e™.
And the total number of points inside £ is bounded by
Ngo < ed, + Qed, =e(d, + 04,) =elg.

Finally, when there is at least one point in each of £2;, the maximum distance from any

point on r(s) to its nearest neighbor is given by H = \/zh as we have argued. Furthermore,
under this setting, for any of the potential nearest neighbors, the maximum length that r(s)
intersect its Voronoi cell has an upper bound of 3A. Therefore, the line integral error (26) is
bounded by

1 I
/ g(r(s))ds — / 8 (%))ds| <
0 0

< 36\2/§Jh (

Nw2ih! +wy 25 h-!),1 < old, YH™ + Y2 < e(d, J)a™ i+ @D,

ZHXBh NQXHXBh—3\/_h2e/IQ

Finally, for the total probability p,.:
Prot >1- 2Qe_/14 — e_}*r =1- %e_a’d—lhdf1 _ e—|9rM’
and recall from (30): 4, = [£2,]4 = @y h"hi = w,_h?A = w,_ A% Then

20e % = 2(A)i e~ 5 0 as A — .

The above convergence can be shown by taking the natural log:

In <2(/1)i‘fe—wdlﬂ‘> =In2+ <é - £> InA—w,; ;A - —00 as A — oo,

@ Springer

Communications on Applied Mathematics and Computation

since In A grows slower than A¢ for any € > 0. As for the last term e~1<%14;

d-1 1 1
-5 d—1 L 7 He(d=1) N Vi
e 1A L @7 @127 —DhTIA o medd e DA 0 a5 A - oo.

Thus, the probability p,,, — 1 as 41— o0, and we have our line integral error

1
< o(d, HA"a @D 5 0 as long as & < (d+11)2

actual number of points N in the point cloud, we invoke Lemma 4 and set N = cA to con-
clude the proof.

. To obtain the convergence in terms of the

Acknowledgements Part of this research was performed while Macdonald and Tsai were visiting the Insti-
tute for Pure and Applied Mathematics (IPAM), which is supported by the National Science Foundation
(Grant No. DMS-1440415). This work was partially supported by a grant from the Simons Foundation, NSF
Grants DMS-1720171 and DMS-2110895, and a Discovery Grant from Natural Sciences and Engineering
Research Council of Canada. The authors thank the Texas Advanced Computing Center (TACC) and UBC
Math Dept Cloud Computing for providing computing resources.

Data Availability All the datasets used in this paper are well-known public datasets, and they are available
through a simple search.

Compliance with Ethical Standards

Conflict of Interest The authors have no competing interests to declare that are relevant to the content of this
article.

References

1. Atzmon, M., Maron, H., Lipman, Y.: Point convolutional neural networks by extension operators.
arXiv:1803.10091 (2018)

2. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM
18(9), 509-517 (1975)

3. Besl, PJ., McKay, N.D.: Method for registration of 3-D shapes. In: Sensor Fusion IV: Control Para-
digms and Data Structures, vol. 1611 (1992)

4. Caflisch, R.E.: Monte Carlo and quasi-Monte Carlo methods. Acta Numer. 7, 1-49 (1998)

5. Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese, S., Savva, M.,
Song, S., Su, H., Xiao, J.X., Yi, L., Yu, F.: ShapNet: an information-rich 3D model repository. arXiv:
1512.03012 (2015)

6. Corless, R.M., Gonnet, G.H., Hare, D.E., Jeffrey, D.J., Knuth, D.E.: On the LambertW function. Adv.
Comput. Math. 5(1), 329-359 (1996)

7. Curless, B., Levoy, M.: A volumetric method for building complex models from range images com-
puter graphics. In: SIGGRAPH 1996 Proceedings (1996)

8. Cutler, A., Breiman, L.: Archetypal analysis. Technometrics 36(4), 338-347 (1994)

9. Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Volume I: Elementary
Theory and Methods. Springer, New York (2003)

10. De Bruijn, N.G.: Asymptotic Methods in Analysis, vol. 4. Courier Corporation, USA (1981)

11. Doerr, B.: Probabilistic tools for the analysis of randomized optimization heuristics. In: Theory of
Evolutionary Computation, pp. 1-87. Springer, Cham, Switzerland (2020)

12. Draug, C., Gimpel, H., Kalma, A.: The Octave Image package (version 2.14.0) (2022). https://gnu-
octave.github.io/packages/image

13. Dvoretzky, A., Kiefer, J., Wolfowitz, J.: Asymptotic minimax character of the sample distribution func-
tion and of the classical multinomial estimator. Ann. Math. Stat. 27(3), 642—-669 (1956)

14. Eldar, Y., Lindenbaum, M., Porat, M., Zeevi, Y.Y.: The farthest point strategy for progressive image
sampling. IEEE Trans. Image Process. 6(9), 1305-1315 (1997)

15. Fang, Y., Xie, J., Dai, G., Wang, M., Zhu, F., Xu, T., Wong, E.: 3D deep shape descriptor. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2319-2328 (2015)

@ Springer

http://arxiv.org/abs/1803.10091
http://arxiv.org/abs/1512.03012
http://arxiv.org/abs/1512.03012
https://gnu-octave.github.io/packages/image
https://gnu-octave.github.io/packages/image

Communications on Applied Mathematics and Computation

16.
17.
18.
19.
20.
21.
22.
23.

24.

25.
26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

37.

38.

39.

40.

41.

42.

43.

Graham, R., Oberman, A.M.: Approximate convex hulls: sketching the convex hull using curvature.
arXiv:1703.01350 (2017)

Hadwiger, H.: Vorlesungen Uber Inhalt, Oberfliche und Isoperimetrie, vol. 93. Springer, Berlin (1957)
Helgason, S., Helgason, S.: The Radon Transform, vol. 2. Springer, New York (1980)

Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensional-
ity. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, pp. 604613
(1998)

Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal
covariate shift. arXiv:1502.03167 (2015)

Jiménez, P., Thomas, F., Torras, C.: 3D collision detection: a survey. Comput. Gr. 25(2), 269-285
(2001)

Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with GPUs. IEEE Trans. Big Data
7(3), 535-547 (2019)

Jones, P.W., Osipov, A., Rokhlin, V.: A randomized approximate nearest neighbors algorithm. Applied
and Computational Harmonic Analysis 34(3), 415-444 (2013)

Kazmi, LK., You, L., Zhang, J.J.: A survey of 2D and 3D shape descriptors. In: 2013 10th Interna-
tional Conference Computer Graphics, Imaging and Visualization, pp. 1-10. IEEE (2013)

Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980 (2014)

Klain, D.A., Rota, G.-C.: Introduction to Geometric Probability. Cambridge University Press, Cam-
bridge (1997)

Klokov, R., Lempitsky, V.: Escape from cells: deep KD-networks for the recognition of 3D point cloud
models. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 863-872
(2017)

Krig, S.: Interest point detector and feature descriptor survey. In: Computer Vision Metrics, pp. 187—
246. Springer, Cham (2016)

LeCun, Y.: The MNIST database of handwritten digits (1998). http://yann.lecun.com/exdb/mnist/

Li, J.X., Chen, B.M., Lee, H.: SO-Net: self-organizing network for point cloud analysis. In: Proceed-
ings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9397-9406
(2018)

Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: PointCNN: convolution on X-transformed points. In:
Advances in Neural Information Processing Systems, pp. 820-830 (2018)

Lin, M., Gottschalk, S.: Collision detection between geometric models: a survey. Proc. IMA Conf.
Math. Surf. 1, 602-608 (1998)

Macdonald, C.B., Merriman, B., Ruuth, S.J.: Simple computation of reaction-diffusion processes on
point clouds. Proc. Natl. Acad. Sci. 110(23), 9209-9214 (2013)

Macdonald, C.B., Miller, M., Vong, A., et al.: The Octave Symbolic package (version 3.0.1) (2022).
https://gnu-octave.github.io/packages/symbolic

Mahalanobis, P.C.: On the generalised distance in statistics. Proc. Natl. Inst. Sci. India 2, 49-55 (1936)
Massart, P.: The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Ann. Prob. 1990, 1269—
1283 (1990)

Meurer, A., Smith, C.P., Paprocki, M., Certﬂ(, 0., Kirpichev, S.B., Rocklin, M., Kumar, A., Ivanov, S.,
Moore, J.K., Singh, S., Rathnayake, T., Vig, S., Granger, B.E., Muller, R.P., Bonazzi, F., Gupta, H.,
Vats, S., Johansson, F., Pedregosa, F., Curry, M.J., Terrel, A.R., Roucka, é., Saboo, A., Fernando, I.,
Kulal, S., Cimrman, R., Scopatz, A.: SymPy: symbolic computing in Python. Peer] Comput. Sci. 3,
€103 (2017). https://doi.org/10.7717/peerj-cs.103

Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings
of the 27th International Conference on Machine Learning (ICML-10), pp. 807-814 (2010)

Natterer, F.: The Mathematics of Computerized Tomography. Society for Industrial and Applied Math-
ematics, USA (2001)

Osting, B., Wang, D., Xu, Y., Zosso, D.: Consistency of archetypal analysis. SITAM J. Math. Data Sci.
3(1), 1-30 (2021).

Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga,
L., Lerer, A.: Automatic differentiation in PyTorch. In: NIPS Autodiff Workshop (2017)

Peyré, G., Cuturi, M., et al.: Computational optimal transport: with applications to data science. Found.
Trends® Mach. Learn. 11(5-6), 355-607 (2019)

Pollard, D.: Convergence of Stochastic Processes. Springer, New York (1984)

Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3D classification and
segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(2017)

@ Springer

http://arxiv.org/abs/1703.01350
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1412.6980
http://yann.lecun.com/exdb/mnist/
https://gnu-octave.github.io/packages/symbolic
https://doi.org/10.7717/peerj-cs.103

Communications on Applied Mathematics and Computation

45. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a
metric space. In: Advances in Neural Information Processing Systems, pp. 5099-5108 (2017)

46. Radon, J.: iiber die bestimmung von funktionen durch ihre integralwerte lings gewisser mannigfaltig-
keiten. Class. Pap. Mod. Diagn. Radiol. 5(21), 124 (2005)

47. Rostami, R., Bashiri, F.S., Rostami, B., Yu, Z.: A survey on data-driven 3D shape descriptors. Comput.
Graph. Forum 38(1), 356-393 (2019)

48. Ruuth, S.J., Merriman, B.: A simple embedding method for solving partial differential equations on
surfaces. J. Comput. Phys. 227(3), 1943-1961 (2008)

49. Santal6, L.A.: Integral Geometry and Geometric Probability. Cambridge University Press, New York
(2004)

50. Sedaghat, N., Zolfaghari, M., Amiri, E., Brox, T.: Orientation-boosted voxel nets for 3D object recog-
nition. arXiv:1604.03351 (2016)

51. Settles, B.: Active learning literature survey. Technical report, University of Wisconsin-Madison
Department of Computer Sciences (2009)

52. Shen, Y., Feng, C., Yang, Y., Tian, D.: Mining point cloud local structures by kernel correlation and
graph pooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) (2018)

53. Simonovsky, M., Komodakis, N.: Dynamic edge-conditioned filters in convolutional neural networks
on graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
3693-3702 (2017)

54. Sinha, A., Bai, J., Ramani, K.: Deep learning 3D shape surfaces using geometry images. In: European
Conference on Computer Vision. Springer, Berlin (2016)

55. Solmon, D.C.: The X-ray transform. J. Math. Anal. Appl. 56(1), 61-83 (1976)

56. The mpmath development team: mpmath: a Python library for arbitrary-precision floating-point arith-
metic (version 1.2.1). (2021). https://mpmath.org/

57. Trefethen, L.N., Weideman, J.A.C.: The exponentially convergent trapezoidal rule. SIAM Rev. 56(3),
385-458 (2014)

58. Tsai, Y.-H.R.: Rapid and accurate computation of the distance function using grids. J. Comput. Phys.
178(1), 175-195 (2002)

59. Villani, C.: Optimal Transport: Old and New, vol. 338. Springer, Berlin (2009)

60. Wang, P.-S., Liu, Y., Guo, Y.-X., Sun, C.-Y., Tong, X.: O-CNN: Octree-based convolutional neural
networks for 3D shape analysis. ACM Trans. Gr. (TOG) 36(4), 72 (2017)

61. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for
learning on point clouds. ACM Trans. Gr. (TOG) 38(5), 146 (2019)

62. Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3D shapenets: a deep representation
for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Rec-
ognition (CVPR), pp. 1912-1920 (2015)

63. Xia, F., et al.: PointNet.pytorch Git repository. https://github.com/fxia22/pointnet.pytorch

64. Xie,J., Dai, G., Zhu, F., Wong, E.K., Fang, Y.: Deepshape: deep-learned shape descriptor for 3D shape
retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 39(7), 1335-1345 (2016)

65. Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3D object detection. In: Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4490-
4499 (2018)

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

@ Springer

http://arxiv.org/abs/1604.03351
https://mpmath.org/
https://github.com/fxia22/pointnet.pytorch

	Nearest Neighbor Sampling of Point Sets Using Rays
	Abstract
	1 Introduction
	1.1 Related Work

	2 Methods
	2.1 Discretization
	2.2 Operations on RaySense Sketches
	2.2.1 Histograms
	2.2.2 Line Integrals
	2.2.3 Convolutions

	2.3 Comparing Data Sets

	3 Properties of RaySense
	3.1 Properties of Sampling with a Single Ray
	3.1.1 Sampling Points with Larger Voronoi Cells
	3.1.2 Sampling Consistency
	3.1.3 Approximate Line Integrals
	3.1.4 Ray not Fully Contained in

	3.2 Properties of Sampling with Multiple Rays
	3.2.1 Biased Samplings Toward Salient Points
	3.2.2 Invariant Histogram

	4 Examples of Applications
	4.1 Comparison of Histograms of RaySense Samples
	4.2 Salient Points in the MNIST Data
	4.3 RaySense and Integral Transforms
	4.4 Point Cloud Registration
	4.5 Point Cloud Classification Using Neural Networks

	5 Summary
	Appendix A Examples of Ray Distributions
	Appendix B Implementation Details of RayNN
	Appendix C Details of the Proof of Theorem 1
	Appendix D Details of the Proof of Theorem 3
	Appendix D.1 Poisson Point Process
	Appendix D.2 Main Ideas of the Proof of Theorem 3
	Appendix D.3 Proof of Theorem 3

	Acknowledgements
	References

