
Vol.:(0123456789)

Communications on Applied Mathematics and Computation
https://doi.org/10.1007/s42967-023-00318-1

1 3

ORIGINAL PAPER

Nearest Neighbor Sampling of Point Sets Using Rays

Liangchen Liu1   · Louis Ly2 · Colin B. Macdonald3 · Richard Tsai1,2

Received: 8 November 2022 / Revised: 13 September 2023 / Accepted: 13 September 2023 
© Shanghai University 2023

Abstract
We propose a new framework for the sampling, compression, and analysis of distributions 
of point sets and other geometric objects embedded in Euclidean spaces. Our approach 
involves constructing a tensor called the RaySense sketch, which captures nearest neigh-
bors from the underlying geometry of points along a set of rays. We explore various opera-
tions that can be performed on the RaySense sketch, leading to different properties and 
potential applications. Statistical information about the data set can be extracted from the 
sketch, independent of the ray set. Line integrals on point sets can be efficiently computed 
using the sketch. We also present several examples illustrating applications of the proposed 
strategy in practical scenarios.

Keywords  Point clouds · Sampling · Classification · Registration · Deep learning · Voronoi 
cell analysis

Mathematics Subject Classification  68T09 · 65D19 · 68T07 · 65D40

Liangchen Liu, Colin B. Macdonald, and Richard Tsai contributed equally to this work.

 *	 Liangchen Liu 
	 lcliu@utexas.edu

	 Louis Ly 
	 louisly@utexas.edu

	 Colin B. Macdonald 
	 cbm@math.ubc.ca

	 Richard Tsai 
	 ytsai@math.utexas.edu

1	 Department of Mathematics, The University of Texas at Austin, 2515 Speedway, Austin, 
TX 78712, USA

2	 Oden Institute for Computational Engineering and Sciences, The University of Texas at Austin, 
201 E 24th St, Austin, TX 78712, USA

3	 Department of Mathematics, University of British Columbia, 1984 Mathematics Rd, Vancouver, 
BC V6T 1Z2, Canada

http://crossmark.crossref.org/dialog/?doi=10.1007/s42967-023-00318-1&domain=pdf
http://orcid.org/0000-0002-5102-8842


	 Communications on Applied Mathematics and Computation

1 3

1  Introduction

The comparison and analysis of objects in d-dimensional Euclidean spaces are funda-
mental problems in many areas of science and engineering, such as computer graphics, 
image processing, machine learning, and computational biology, to name a few.

When comparing objects in Euclidean spaces, one usually assumes that the underly-
ing objects are solid or continuous. Typical examples include data manifolds and physi-
cal or probabilistic density representations.

One commonly used approach is the distance-based comparison, which involves 
measuring the distance between two objects using metrics such as the Euclidean dis-
tance, Manhattan distance, or Mahalanobis distance [35]. When the underlying object 
can be viewed as distributions, optimal transport [42, 59], utilizing the Wasserstein dis-
tance, is also a popular choice.

However, in general, distance-based comparisons overlook helpful geometric infor-
mation about the underlying objects, which turns out to be useful in many applications. 
This is because intrinsic geometric features such as curvature and volume are invariant 
to rotations and translations. Shape-based information is also suitable for comparing 
objects of different sizes or resolutions. Therefore, comparison techniques using geo-
metric features are favorable choices in many scenarios, such as the object recognition, 
classification, and segmentation.

One simple example illustrating such an idea is the Monte-Carlo rejection sampling 
technique used to approximate the volume of an object. This technique considers the 
collision of 0-dimensional objects (points) with the target object. This is a specific 
example of a collision detection algorithm [32], which is popular in computer graphics 
and computational geometry communities [21]. The idea of collisions is also considered 
in the field of integral geometry [49], where one investigates the collision probability of 
certain affine subspaces with the target data manifold to deduce information about the 
manifold.

Furthermore, in integral geometry, one considers integral transforms on the underly-
ing objects. Typical examples are the X-ray transform [55] and the Radon transform 
[18, 46]. These transforms can provide a more compact and informative representation 
than the original data. For example, one can recover spectral information from the X-ray 
transform or reconstruct the original object through an inverse Radon transform.

However, the aforementioned techniques generally rely on the assumption that the 
underlying object is solid or continuous. With the prevalence of big data and advance-
ments in sensing technology, such as the LiDAR, the analysis and comparison of the 
point cloud data (which consists of a set of points in some d-dimensional Euclid-
ean spaces) have gained increasing attention, yet they pose challenges to classical 
approaches.

We propose a novel method for sampling, comparing, and analyzing point clouds, 
or other geometric objects, embedded in high-dimensional space. We call our approach 
“RaySense” because it “senses” the structure of the object �  by sending line segments 
through the ambient space occupied by �  and recording some functions of the nearest 
neighbors in �  to points on the line segment. Motivated by the X-ray transform, we will 
refer to the oriented line segments as “rays”. We can then work with this sampled data 
as a “sketch” of the original object �  , which can be a point cloud, triangulated sur-
face, volumetric representation, etc. A visualization of the proposed method applied to 
3-dimensional (3D) point clouds is provided in Fig. 1.



Communications on Applied Mathematics and Computation	

1 3

Our method incorporates several ideas mentioned above as follow.

•	 In the context of integral geometry, we also consider using affine subspaces to detect 
the underlying geometry. To overcome the discontinuity from the object representa-
tion relative to the topology of the ambient space (as is the case with point clouds), we 
search for nearest neighbors within the representation. To prevent the computational 
cost of high-dimensional operations in practice, we work with a low-dimensional affine 
subspace. In this paper, we use 1-dimensional (1D) lines.

•	 In the context of inverse problems, our observed data consist of some points on �  
obtained by the closest point projection of points on the rays. This is somewhat analo-
gous to seismic imaging, where designated points on each ray correspond to geophones 
that record the first arrival time of waves from known sources.

•	 By using a fixed number of rays and sampling a fixed number of points along a ray, 
the resulting tensor from our method, the RaySense sketch, is of fixed size, even for 
point clouds with different cardinalities. Then, metrics suitable for comparing tensors 
are available for use, or one could consider other distance-based approaches to compare 
different RaySense sketches.

In this work, we will focus exclusively on point clouds since it is one of the most challeng-
ing data representations for many algorithms. When the object is a point cloud, finding 
the RaySense samples is straightforward via discrete nearest-neighbor searches. There are 
computationally efficient algorithms for performing nearest-in-Euclidean-distance neigh-
bor searches. Examples include tree-based algorithms [2], grid-based algorithms [58], and 
building an indexing structure [22]. In very high dimensions, one may also consider rand-
omized nearest neighbor search algorithms such as [19, 23], or certain dimension reduction 
approaches.

The remaining paper is organized as follows: in Sect. 2, we provide a detailed descrip-
tion of the RaySense method; in Sect. 3, we present various properties of the RaySense 

Fig. 1   RaySense sketches using 30 sample points per ray. Row 1: visualization of two rays (black) through 
points sampled from various objects (gray). Closest point pairs are shown in green and red. Rows 2–4: the 
x, y , and z coordinates of the closest points to the ray



	 Communications on Applied Mathematics and Computation

1 3

method, along with theoretical analysis, including line integral approximations and salient 
point sampling; finally, in Sect.  4, we demonstrate that the concept of RaySense can be 
applied to many different downstream tasks, including the salient point/outlier detection, 
point cloud registration, and point cloud classification.

1.1 � Related Work

In this section, we provide a more detailed discussion of the existing literature to contextu-
alize our approach.

Integral geometry
In the field of Integral Geometry [49], one uses the probability of the intersection of affine 
subspaces of different dimensions with the target data manifold to deduce information about 
the manifold itself. For example, in the classic problem of Buffon’s needle, one determines the 
length of a dropped needle by investigating the probability of intersections with strips on a floor. 
Similarly, Crofton’s formula connects the length of a 2-dimensional (2D) plane curve with the 
expected number of intersections with random lines. In these cases, the interaction information 
obtained from the “sensing” affine subspaces is binary: yes or no. One thus has a counting prob-
lem: how frequently affine subspaces intersect with the data manifold. From these probabilities, 
geometric information about the manifold can be extracted, relying on a duality between the 
dimensions of the “sensing” subspaces and the Hausdorff dimensions of the data set; see e.g., 
[17, 26]. Nevertheless, such approaches may be inefficient in practical computations.

Our idea of using rays is perhaps most-closely related to the X-ray transform, which 
coincides with the Radon Transform in two dimensions [39]. In an X-ray transform, one 
integrates a given real-valued function defined in ℝd along lines, while in the Radon trans-
form, one integrates the given function restricted on hyperplanes of ℝd.

We advocate using lines (rays) to record information about the underlying data along 
each ray, instead of accumulating a scalar or binary “yes/no” information over each rays. In 
this paper, we collect points in the data set closest to the points on the rays, along with the 
values of some function at those points. With such data, we can compute approximate line 
integrals and relate our method to the X-ray transform.

Computer vision
From the perspective of the computer vision community, our method can be considered as 
a shape descriptor, mapping from 3D point sets to a more informative feature space where 
point sets can be easily compared. Generally, descriptors aim to capture statistics related to 
local and global features. See [24] for a survey. More recently, researchers have combined 
shape descriptors with machine learning [15, 47, 54, 64]. But all these works focus primarily 
for point sets in 3D, RaySense applies more generally to data in arbitrary dimensions.

Some methods use machine learning directly on the point set to learn features for spe-
cific tasks, such as classification [1, 27, 31, 44, 45, 53, 60, 61, 65]. PointNet [44] pioneered 
deep learning on point clouds by applying independent operations on each point and aggre-
gating features using a symmetric function. Building upon that, other architectures [45, 52] 
exploit neighboring information to extract local descriptors. SO-Net [30] uses self-organ-
izing maps to hierarchically group nodes while applying fully-connected layers for feature 
extraction. PCNN [1] defines an extension and pulling operator similar to the closest point 
method [33, 48] to facilitate the implementation of regular convolution. DGCNN [61] and 
PointCNN [31] generalize the convolution operator to point sets.



Communications on Applied Mathematics and Computation	

1 3

In contrast, our approach uses the RaySense sketch as input rather than applying 
machine learning directly to the point set. In Sect. 4.5, we present a deep learning model 
for 3D point cloud classification based on this idea. Our experiments suggest that the 
model is very efficient for classification, and the resulting classifiers can be robust against 
outliers by storing multiple nearest neighbors to points on the ray.

Unsupervised learning methods
Our method, by recording the closest points from the underlying point cloud, can be 
thought of as a sampling scheme. However, the RaySense sampling is biased towards the 
“salient” points in the underlying geometry, as will be discussed in Sect. 3.2.1. By further 
retaining only the most frequently sampled points, RaySense resembles key-point detec-
tors [28] or compression algorithms. The idea of understanding the overall structure of 
the underlying data through key points is closely related to archetypal analysis [8], which 
involves finding representative points (archetypes) in a dataset and using a convex combi-
nation of these archetypes to represent other points. See also [40] for a recent work on the 
consistency of archetypal analysis.

Incidentally, [16] also employs the concept of rays in conjunction with spherical volume 
to approximate the convex hull. Our method can also capture vertices of the convex hull 
when the rays are sufficiently long, as it will effectively sample points on the portions of 
the boundary that have relatively large positive curvature.

Farthest Point Sampling (FPS) is a widely-used sampling method in computational 
geometry and machine learning for selecting a subset of points from a larger dataset with 
the goal of maximizing their spread; see e.g., [14]. The process begins by randomly pick-
ing a point from the dataset, followed by iterative selection of the point farthest from those 
already chosen, until a desired number of points are selected. This technique is useful for 
reducing the size of large datasets while preserving their overall structure. However, it can 
be computationally expensive and may not always yield the optimal solution. In two and 
three dimensions, assuming that the data distribution is supported in a bounded convex set 
with a smooth boundary, FPS tends to oversample areas with high curvature.

2 � Methods

The essential elements of the proposed sampling strategy include (i) the data set 𝛤 ⊂ ℝd ; (ii) 
the nearest neighbor (closest point) projection, P� , to �  ; (iii) a distribution of lines in ℝd.

The data set is given by a discrete set of N points, each in ℝd:

(later for certain results we will place more assumptions, for example that �  might be sam-
pled from a density).

Let L denote a distribution of lines, parameterized by � ∈ �d−1 and b ∈ ℝd , let r(s) 
denote a line in L parameterized by its length

The parameterization gives an orientation to the line, and thereby we refer to r as a ray. 
Along r(s) , we sample from the data set �  using the nearest neighbor projection

(1)𝛤 ⊂ ℝd, 𝛤 = {Xi}
N
i=1

, Xi ∈ ℝd

r(s) = b + s�.



	 Communications on Applied Mathematics and Computation

1 3

In cases of non-uniqueness, we choose arbitrarily.
Using the nearest neighbors, we define various RaySense sampling operators denoted 

with S which sample from the point cloud �  into some “feature space” 𝕏 ⊂ ℝc . The 
simplest choice is the feature space of closest points defined next.

Definition 1  The closest point feature space is sampled by

One might also be interested in the value of a scalar or vector function (e.g., color or 
temperature data at each point in the point cloud).

Definition 2  The RaySense sampling operator of a function g∶� → ℝc is

Note for the identity function we have S[� , id] = S[� ].

We will further present examples involving the use of multiple nearest neighbors, 
where the � th nearest neighbor is

with P1
�
∶= P� . We can then capture the � th nearest neighbor in our sampling.

Definition 3  The RaySense sampling operator of the � th nearest neighbor is denoted by

The distance and direction from r(s) to P� r(s) is sometimes useful: we sample that 
information using the vector from r(s) to P� r(s).

Definition 4  The RaySense sampling operator of the vector between a point on the ray and 
the nearest neighbor in �  is 

and more generally

We can augment the feature space by combining these various operators, concatenat-
ing the output into a vector X ∈ ℝc . We indicate this “stacking” with a list notation in S , 
for example the first three closest points could be denoted

(2)P� r(s) ∈ argmin
y∈�

‖r(s) − y‖2.

(3)S[� ]∶ℝd
→ ℝd, S[� ](r(s)) = P� r(s), r ∼ L.

(4)S[� , g]∶ℝd
→ ℝc, S[� , g](r(s)) = g

(
P� r(s)

)
, r ∼ L.

(5)
P
�

�
(r(s)) ∶= arg min

y∈�

P
1
�
r(s),⋯,P

�−1

�
r(s)

‖r(s) − y‖2

(6)S[� , �]∶ℝd × ℕ → ℝd, S[� , �](r(s)) = P
�

�
r(s), r ∼ L.

(7a)S[𝛤 , 1̂]∶ℝd × ℕ → ℝd, S[𝛤 , 1̂](r(s)) = P𝛤 r(s) − r(s), r ∼ L,

(7b)S[𝛤 , 𝜂̂]∶ℝd × ℕ → ℝd, S[𝛤 , 𝜂̂](r(s)) = P
𝜂

𝛤
r(s) − r(s), r ∼ L.



Communications on Applied Mathematics and Computation	

1 3

or the closest point, its vector from the ray, and the value of a function g could all be 
denoted

These stacked feature spaces are used in the line integral approximation Sect. 3.1.3 and in 
our neural network Sect. 4.5.

In summary, a RaySense sketch S[� ,⋯] depends on nearest neighbors in the data set �  , 
and operates on a ray from the distribution L . It maps a ray r(⋅) to a piecewise curve in the 
chosen feature space �.

2.1 � Discretization

We propose to work with a discretized version of the operator, which we shall call a Ray-
Sense sketch tensor. First, we take m i.i.d. samples from the distribution L and define m 
rays correspondingly. We consider nr uniformly-spaced points along each ray, with cor-
responding spacing �r . We then work with a finite segment of each line (for example, 
0 ⩽ s ⩽ 1 ). Appendix A shows some different distributions of lines, and details for choos-
ing segments from them. With ri,j denoting the jth point on the ith ray, we define the dis-
crete RaySense sketch of �  in the closest point feature space as 

or the discrete RaySense sketch of a function g:

 (and similarly for the various more-general feature spaces mentioned earlier).
Thus, Sm,�r is an array with m entries, where each entry is an array of nr vectors in ℝc ; 

an m × nr × c tensor. We will also denote these tensors as “ S(� ) ” and “ S(� , g) ” when m 
and �r are not the focus of the discussion. In any case, we regard S(� ) as a “sketch” of the 
point cloud �  in a chosen feature space �.

2.2 � Operations on RaySense Sketches

In this paper, we will analyze the outcomes of the following operations performed on the 
RaySense sketches. After discretization, each operation can be expressed as one or more 
summations performed on the sketches.

2.2.1 � Histograms

One simple operation is to aggregate the sampled values for the feature space and count 
their corresponding sampling frequencies, which results in a histogram demonstrating the 

(8)S
�
� , [1, 2, 3]

�
(r(s)) =

⎡
⎢⎢⎢⎣

P
1

�
r(s)

P
2

�
r(s)

P
3

�
r(s)

⎤
⎥⎥⎥⎦
, r ∼ L,

(9)S
�
𝛤 , [1, 1̂, g]

�
(r(s)) =

⎡⎢⎢⎣

P𝛤 r(s)

P𝛤 r(s) − r(s)

g
�
P𝛤 r(s)

�
⎤⎥⎥⎦
, r ∼ L.

(10a)Sm,�r[� ; L]i,j ∶= P� ri,j,

(10b)Sm,�r[� , g; L]i,j ∶= g
(
P� ri,j

)



	 Communications on Applied Mathematics and Computation

1 3

discrete distribution of the corresponding features. For example, when considering the 
closest point feature space S[� ] , the value of a bin in the histogram, denoted by Hk , repre-
sents the number of times xk ∈ �  being sampled by RaySense:

where �xk denotes the indicator function for the coordinates of xk . The histograms discard 
locality information in the sketch, treating it essentially as a weighted subsampling of �  , 
as the aggregation process involves combining the values without considering the spe-
cific rays from which they originated. Section 3.2.2 further discusses the properties of the 
histogram.

2.2.2 � Line Integrals

In many applications, it is useful to maintain some “locality”. One such operation is the line 
integral along each ray ∫ 1

0
g(r(s))ds . However, for point cloud data, exact information of g 

along the ray r(s) is not accessible, we instead consider the integral along the associated path 
in feature space, ∫ 1

0
S[� , g](r(s))ds , which we call a RaySense integral. We investigate the 

relationship between the two in Sect. 3.1.3.
In the discrete setting, we can use a simple Riemann sum quadrature scheme to approxi-

mate the RaySense integral along the ith ray: 

Or in most of our examples, we approximate using the Trapezoidal Rule:

and thus quadrature errors, typically O(�r2) , are incurred [57]. Unpacking the notation, we 
can rewrite this as

2.2.3 � Convolutions

Similar to line integrals, we will compute convolutions along the rays

where K is some compactly-supported kernel function and S[� ,⋯] is one of the Ray-
Sense sampling operators. In the discrete setting, this can be written as weighted sums of 

(11)Hk ∶= H
(
xk; Sm,�r[� ]

)
=

m∑
i=1

nr∑
j=1

�xk

(
S[� ]i,j

)
,

(12a)∫
1

0

S[� , g]
(
ri(s)

)
ds ≈

nr∑
j=1

S[� , g]i,j �r.

(12b)
∫

1

0

S[� , g]
(
ri(s)

)
ds ≈

nr∑
j=1

wj S[� , g]i,j �r with weights w =
⟨

1

2
, 1,⋯ , 1,

1

2

⟩
,

(12c)
nr∑
j=1

wjg(P� ri(sj))�r.

(
K ∗ S[� ,⋯](r)

)
(t) = ∫

∞

−∞

K(s)S[� ,⋯](r(t − s))ds,



Communications on Applied Mathematics and Computation	

1 3

S[� ,⋯] , or as band-limited matrix multiplication. In Sect. 4.5, the discrete weights associ-
ated with discrete convolutions are the parameters of a neural network model.

Note unlike the previous cases, for non-symmetric kernels the orientation of the rays 
matters.

2.3 � Comparing Data Sets

Since the sketch for any point set is a fixed-size tensor storing useful feature information, 
one might compare two point sets (of potentially different cardinalities) via comparing the 
RaySense sketches.

A natural idea is to choose a suitable metric to define the distances between the Ray-
Sense sketch tensors.

The Frobenius norm of the sketch tensor is suitable if the sketches contain the dis-
tance and the closest point coordinates. For data sampled from smooth objects, such infor-
mation along each ray is piecewise continuous. Thus, if the sketches are generated using 
the same set of sampling rays, one may compare the RaySense sketches of different data 
sets using the Frobenius norm.

Wasserstein distances are more appropriate for comparison of histograms of the Ray-
Sense data, especially when the sketches are generated by different sets of random rays. 
The normalized histograms can be regarded as probability distributions. In particular, 
notice (Fig. 2) that RaySense histograms tend to have “spikes” that correspond to the sali-
ent points in the data set; �2 distances are not adequate for comparing distributions with 
such features.

Here we briefly describe the Wasserstein-1 distance, or Earth mover’s distance, that we 
used in this paper. Let (X,�1) and (X̃,𝜇2) be two probability spaces and F and G be the 
cumulative distribution functions of �1 and �2 , respectively. The Wasserstein-1 distance is 
defined as

W1(�1,�2) ∶= ∫
ℝ

|F(t) − G(t)|dt.

Fig. 2   Histogram of coordinates from two point sets. Columns 1 and 2 correspond to two different sets of 
rays, each containing 256 rays and 64 samples per ray. These histograms are similar for the same object and 
different for different objects. Column 3 corresponds to the entire point cloud; these differ from the Ray-
Sense histograms especially for the airplane which is not as regular as the diamond



	 Communications on Applied Mathematics and Computation

1 3

Neural networks One can consider using a properly designed and trained neural network. 
In Sect. 4.5, we present a neural network model, RayNN, for comparing point clouds in 
three dimensions based on RaySense sketches.

3 � Properties of RaySense

In this section, we introduce several notable properties associated with our proposed 
method. Specifically, we begin by analyzing the characteristics of the method when uti-
lizing a single ray, i.e., m = 1 . We subsequently proceeded to discuss how the RaySense 
sketch, resulting from using multiple rays, effectively utilizes and inherits the identified 
traits. Through these analyses, we aim to provide a more rigorous and comprehensive 
understanding of the properties and potential applications of our proposed method.

Assumptions and notations for this section. 

A1	 The point set �  , is a realization of a collection of N i.i.d. random vectors {Xi}
N
i=1

 , with 
each Xi ∈ ℝd.

A2	 The probability space induced by the random vector Xi is (ℝd,F,�) , where F  is the 
Borel �-algebra on ℝd and � is a probability measure.

A3	 The induced probability measure � is also known as the distribution of Xi , with com-
pactly supported Lipschitz density �.

A4	 The RaySense sketch uses the closest points feature space (3).
A5	 In the case that r(s) , for some s, has more than one nearest neighbor, we will randomly 

assign one.
A6	 A ray, denoted by r(s) , 0 ⩽ s ⩽ 1 , generated by the method introduced in Appendix A, 

is given in the embedding space ℝd of �  , and the support of � is centered.
A7	 We assume supp(�) can be covered by a finite union of hypercubes {�j}j in ℝd , each of 

non-zero probability measure, i.e., supp(𝜌) ⊂
⋃

j 𝛺j , with P𝛺j
= ∫

x∈𝛺j
𝜌(x)dx > 0 , and 

{�j}j overlap with each other only on sets of measure zero.

Note that by A2–A3, we may regard � as representing the density of a solid body in ℝd . In 
other words, �  does not consist of samples from a lower dimensional set. (RaySense can 
sample much more general sets, but the line integral analysis (Sect. 3.1.3) and the argu-
ment of sampling convex hull (Sect. 3.2.1) of this section may not hold.)

Much of our analysis is based on the Voronoi cells associated with each point in the 
point cloud.

Definition 5  The Voronoi cell of x ∈ �  is defined as

In practice, we often sample rays r ∼ L of finite length as in Fig. 3, i.e., {ri}mi=1 ⊂ BR(0) for 
some R. Correspondingly, we define the truncated Voronoi cell:

(13)V(x) ∶= {y ∈ ℝd∶P� y = x}.

(14)VR(x)∶ = {y ∈ BR(0)∶P� y = x}.



Communications on Applied Mathematics and Computation	

1 3

3.1 � Properties of Sampling with a Single Ray

3.1.1 � Sampling Points with Larger Voronoi Cells

For discrete point sets, the likelihood that a ray senses a particular point is closely linked 
to the size of the Voronoi cell of the point. This relationship arises from the practice of 
utilizing closest-point sampling, which governs the selection of points by a given ray. In 
this regard, the Voronoi cell of a point in the point clouds is a fundamental geometric 
construct that plays a key role in determining the probability of detection. This observa-
tion is visually depicted in Fig. 3, which demonstrates that points having larger Voronoi 
cells are more likely to be detected by a given ray.

We refer to points with relatively large Voronoi cells as the “salient points” of �  . 
When the probability density for �  is compactly supported, the salient points of �  tend 
to be situated in close proximity to geometric singularities present on the boundary of 
the support of the density; see Fig. 4 for a demonstration. This saliency characteristic 
will be further elaborated on in Sect. 3.2.1, where we will demonstrate how it manifests 
as the biased subsampling property of the RaySense method.

Furthermore, connections between the probability of a point ∈ �  being sam-
pled and the size of its Voronoi cell can be made explicit in the following derivation. 

Fig. 3   A simple 2D point set (gray). Two rays (black) sense nearest neighbors of the point set (blue). Sin-
gular points, such as the tip of the tail, have larger Voronoi cells (dashed lines) and are more likely to be 
sampled. Closest point pairings are shown in green and red

Fig. 4   Convergence studies for line integrals approximating from the RaySense sketch on point clouds sam-
pled from a uniform density, in dimensions d = 2, 3, 4, 5 . Horizontal dashed lines indicate error inherent to 
the trapezoidal rule quadrature schemes. Diagonal dashed lines indicate different convergence rates



	 Communications on Applied Mathematics and Computation

1 3

Let BR(0) ∈ ℝd be a solid d-dimensional ball of radius R containing all the rays, and 
𝛤 ⊊ BR(0) the finite point set containing N distinct points. Let Vk ∶= V(xk) denote the 
Voronoi cell for the kth point, xk in �  as in Definition 5. Let �k(r) denote the length of 
the segment of a ray, r , that lies in the truncated Voronoi cell VR

k
 . If r does not inter-

sect Vk , �k(r) ∶= 0 , then �k(r) is a random variable indicating how much a ray r senses 
xk ∈ � ,  and we denote its expectation by �[�k] ; in other words,

where �L is the probability measure corresponding to the distribution of lines L introduced 
in Sect. 2, and �Vk

 is the indicator function of the Voronoi cell Vk . Consequently, the fre-
quency of a ray r sampling a point xk ∈ �  is proportional to the d-dimensional Lebesgue 
measure of its Voronoi cell Vk = V(xk).

3.1.2 � Sampling Consistency

The Voronoi cell perspective provides a framework to analyze certain properties of Ray-
Sense. We will show in Theorem 1 that the sampling from a specific ray is consistent 
when the number of points N in the point clouds is large enough. We begin with some 
lemmas, with proofs appearing in Appendix C.

Our first lemma tells us how large N must be to have at least one sample in any 
region achieving a certain probability measure.

Lemma 1  Suppose that supp(�) satisfies assumption A7. Let �  be a set of N i.i.d. random 
samples drawn from � , and p0 ∈ (0, 1) . If the number of sample points N > 𝜈

(
P
)
 where 

�∶(0, 1] ↦ ℝ+ is defined by

then, with the probability greater than p0 , at least one of the samples lies in every �j with 
P�j

⩾ P . Additionally, we note bounds for �(P):

We notice that for any fixed p0 > 0 , �(P) ∼ O
(
1∕P2

)
 as P → 0 indicating �(P) is 

inversely proportional to P2 asymptotically. This matches with the intuition that more 
points are needed to ensure sampling in regions with a smaller probability measure.

The next two lemmas reveal that the volume of the Voronoi cell for a sample point 
amongst the others in the point cloud �  decreases to zero with high probability as the num-
ber of sampled points tends to ∞.

Lemma 2  Suppose � is L-Lipschitz and supp(�) satisfies assumption A7. Given �  a set of 
N i.i.d. random samples drawn from � , for N large enough, the size of the Voronoi cell of a 

(15)�[�k] ∶= ∫ �k(�)d�L(�) = �r∼L

[
∫r

�Vk

(
r(s)

)
ds
]
,

(16)
�
(
P
)
∶=

√
ln
(

2

1−p0

)(
ln
(

2

1−p0

)
+ 2P

)
+ P + ln

(
2

1−p0

)

P2
,

(17)
2 ln

(
2

1−p0

)
+ P

P2
< 𝜈

(
P
)
<

2 ln
(

2

1−p0

)
+ 3P

P2
.



Communications on Applied Mathematics and Computation	

1 3

sample point x ∈ �  in the interior of supp(�) is inversely proportional to its local density 
�(x) , and with probability at least p0 its diameter has the following upper bound:

When the underlying distribution � is uniform, �(x) is the same everywhere inside 
supp(�) , therefore the Voronoi diameter for every x in the interior should shrink uniformly. 
However, a better bound can be obtained for this case, as shown in the following lemma.

Lemma 3  If � is a uniform distribution, then given �  with N large enough, with probabil-
ity at least p0 , the diameter of the Voronoi cell of any sample point in the interior has the 
bound

with some c(N) such that c(N) → 1 as N → ∞.

Theorem  1  (Consistency of sampling) Under A1–A7, suppose �1 and �2 are two point 
clouds sampled from the same distribution, with N1 and N2 points respectively, where in 
general N1 ≠ N2 . Assume further that supp(�) is convex. For a ray r(s) using nr uniformly-
spaced discrete points to sample, for N = min(N1,N2) sufficiently large, the RaySense 
sketches in the closest point feature space S[�1] and S[�2] satisfy

where 𝜀 > 0 and � → 0 as N → ∞.

Remark 1  The assumption that supp(�) is convex is stronger than needed in many cases; it 
excludes the situation where some point ri,j in the discretized ray set is equidistant to two 
or more points on the non-convex supp(�) that are widely separated, which could lead to an 
unstable assignment of nearest neighbors. However, in practical scenarios where a ray is 
chosen randomly, this situation is unlikely to occur. Further details can be found at the end 
of Appendix C.

The consistency of sampling ensures the RaySense data on a specific ray would be close 
when sampling the same object, therefore one can expect a similar property for the Ray-
Sense sketch tensor where multiple rays are used, which will be discussed in Sect. 3.2.1.

3.1.3 � Approximate Line Integrals

We demonstrate that the RaySense approach enables the computation of line integrals of 
functions defined on the points in a point cloud. Suppose we have a point cloud �  repre-
senting an object in ℝd . As N increases, the point cloud becomes denser, and for any r(s) 

diam(V(x)) ⩽ 3

√
d

⎛
⎜⎜⎜⎜⎜⎝

21 + 7

�
9 + 8N ln

�
2

1−p
0

�� 1

2

6�(x)N

⎞
⎟⎟⎟⎟⎟⎠

1

d

.

diam(V) ⩽ 3
√
d

��
1

c(N)N
ln

N

1 − p0

��1

d

(18)‖‖S[�1] − S[�2]
‖‖F ⩽ �

(
N
)
,



	 Communications on Applied Mathematics and Computation

1 3

lies inside supp(�) , P� r(s) ≈ r(s) as the Voronoi cells shrink around each point in �  . If we 
have a smooth function g∶ℝd

↦ ℝ evaluated on the point cloud, then g(P� r(s)) ≈ g(r(s)) 
and we expect that integrals of g along lines can be approximated by integrals of the Ray-
Sense sketch S[� , g] introduced in Sect.  2.2.2 (and quadrature of the discrete RaySense 
sketch Sm,�r[� , g]).

The following shows that the RaySense integral is an approximation to the line integral 
along r(s) provided the point cloud is dense enough.

Theorem 2  Suppose that g ∈ C(ℝd; ℝ) is J-Lipschitz, ray r(s) ∈ supp(�) for 0 ⩽ s ⩽ 1 , and 
�  is a set of N i.i.d. random samples drawn from � , with corresponding RaySense sketch 
S[� , g] , then the difference between the RaySense integral of g and the line integral of g 
has the following bound:

where �V(x) is the indicator function of the Voronoi cell V(x) for x ∈ � .

Proof  For a fixed number of sampling points N, the approximation error is given by

In scattered data interpolation, the nearest neighbor interpolation would have an error of 
O(h) where h = maxk diam(Vk) . Integration of the interpolated data would result in an error 
of O(h2) , consistent with Theorem 2.

Intuitively, we expect the RaySense line integral to converge in the limit of N → ∞ . 
Here we show the corresponding convergence result for the case of uniform density from 
the perspective of a Poisson point process [9]. Details of the proof are given in Appendix D.

Theorem 3  Suppose g ∈ C(ℝd; ℝ) is J-Lipschitz, � is uniform and satisfies assumption A7, 
and the ray r(s) ∈ supp(�) for 0 ⩽ s ⩽ 1 , then given �  a set of N i.i.d. random samples as a 
realization of a Poisson point process with the corresponding RaySense sketch S[� , g] for 
the ray, the probability that the following holds tends to 1 as N → ∞∶

for any small 𝜀 > 0.

When 𝜀 <
1

(d+1)2
 , the line integral error converges to 0 as N → ∞ in a rate O(N−

1

d ).

(19)
����∫

1

0

g
�
r(s)

�
ds − ∫

1

0

g
�
P� r(s)

�
ds
���� ⩽ J

�
x∈�

∫
1

0

�V(x)

�
r(s)

�‖r(s) − P� r(s)‖ds,

����∫
1

0

g
�
r(s)

�
ds − ∫

1

0

g
�
P� r(s)

�
ds
���� ⩽ ∫

1

0

��g
�
r(s)

�
− g

�
P� r(s)

���ds

=
�
x∈�

∫
1

0

�V(x)

�
r(s)

���g
�
r(s)

�
− g

�
P� r(s)

���ds

⩽ J
�
x∈�

∫
1

0

�V(x)

�
r(s)

�‖r(s) − P� r(s)‖ds.

||||∫
1

0

g
(
r(s)

)
ds − ∫

1

0

g
(
P� r(s)

)
ds
|||| ⩽ c(d, J)N−

1

d
+�(d+1)



Communications on Applied Mathematics and Computation	

1 3

We first confirm this rate with numerical experiments. We return to explore applications 
of integral transforms in Sect. 4.3. Figure 4 shows convergence studies of the RaySense 
integrals for the uniform density case from Theorem 3. The 5-dimensional (5D) example 
uses an integrand of g(x1, x2, x3, x4, x5) = cos(x1x2) − x4x5 sin(x3) and a line r(s) = v

‖v‖ s
+

⟨1,1,1,1,1⟩
10

 with v = ⟨2, 3, 4, 5, 6⟩ . In four, three, and two dimensions, we use 
g(x1, x2, x3, x4, 1) , g(x, y, z, 1, 1), and g(x, y, 0, 0, 0), respectively, and drop unneeded com-
ponents from the line. The exact line integrals were computed with the Octave Symbolic 
package [34] which uses SymPy [37] and mpmath [56]. Each experiment is averaged over 
50 runs.

In Fig. 4, we see that for each fixed number of sample points nr along the ray, the error 
decreases at the rate discussed above. From the factor of two in the distance between the 
results of each fixed nr , infer a first-order decrease in nr , and taken together an overall faster 
rate of convergence if both N and nr are increased. In all cases in Fig. 4, the experimental 

convergence rate is bounded by O
(

1

N
lnN

) 1

d which is asymptotically close to the predicted 
rate given in Theorem 3 since � can be taken arbitrarily small. However, when nr is large, 

we appear to achieve a faster rate of O
(

1

N
lnN

) 2

d . This suggests a tighter analysis may be 
possible in the future.

3.1.4 � Ray not Fully Contained in supp(�)

For any portion of r(s) that lies outside of supp(�) such portion should take no values when 
computing the line integral if g is only defined on supp(�) . Thus, the post-processing pro-
cedure involves eliminating sampling points on r(s) that are outside of supp(�) . When N is 
large, this can be accomplished by augmenting the RaySense feature space with vectors to 
the closest point as in (9) rather than using A4, and redefining g(P� r(s)) = 0 if the distance 
to the closest point of r(s) is beyond some small threshold.

3.2 � Properties of Sampling with Multiple Rays

When applying RaySense to the point set � ∈ ℝd with m rays and nr points on each ray, the 
RaySense sketch S(� ) is an m × nr × d tensor defined in (10a). In the following sections, 
we investigate properties of the RaySense sketch as an extension of the properties of Ray-
Sense using a single ray previously discussed.

3.2.1 � Biased Samplings Toward Salient Points

A direct consequence from Sect. 3.1.1 is that the RaySense sketch S(� ) tends to repeatedly 
sample points with larger Voronoi cells, indicating a bias toward these salient points. Fig-
ure 5 demonstrates this property by visually presenting the frequency of the sampled points 
by the size of the plotted blue dots.

Another notable feature from Fig. 5 is that the biased subsample generated by RaySense 
also depicts the outline of the object. This is because points with larger Voronoi cells usu-
ally situate near the boundary and regions with positive curvatures. The following proposi-
tion gives a sufficient condition to identify such points.



	 Communications on Applied Mathematics and Computation

1 3

Proposition 1  Vertices of the convex hull of the point cloud �  will be frequently sampled by 
RaySense, when using sufficiently long rays.

Proof  Because supp(�) is compact, the Voronoi cell for vertices on the convex hull is 
unbounded. Therefore, one can make the volumes of their truncated Voronoi cell (14), as 
large as desired using rays with suitable length. And recall from Sect. 3.1.1 that the fre-
quency of being sampled is closely related to the measures of the Voronoi cell.

Remark 2  The arguments in the proof also imply when the length of the line segment → ∞ , 
with a high probability RaySense is sampling mostly the convex hull of the point sets when 
supp(�) is compact. This can be viewed as a different approach to approximate convex hulls 
using rays and curvatures from [16].

Proposition 1 applies to abstract datasets as well; we consider the MNIST dataset [29], 
treating each image as a point in d = 784 dimensions. Here �  is the point set consisting of 
all images of the same digit. Figure 6 shows the average digits over the whole dataset, ver-
sus the average of those sampled by RaySense.

In the context of MNIST, salient points are digits that are drawn using less typical 
strokes (according to the data). These are the data points that may be harder to classify, 
since they appear less frequently in the data. RaySense may be used to determine the most 
useful data points to label, as in active learning [51]. RaySense also provides a special 
notion of importance sampling based on the notion of saliency described above. An appli-
cation of such a property is further discussed in Sect. 4.2.

Fig. 5   Points sampled by RaySense using different numbers of rays are indicated as blue dots. The larger 
blue dots correspond to points that are more frequently sampled. The effect of sampling saliency becomes 
more apparent as the number of rays increases. Each ray contains 30 sample points

Fig. 6   Each digit averaged over the entire data set (top) versus those sampled by RaySense (bottom)



Communications on Applied Mathematics and Computation	

1 3

3.2.2 � Invariant Histogram

The relationship between the frequency of a point in �  being sampled and the measure of 
its Voronoi cell derived in Sect. 3.1.1 also provides a crucial guarantee. It ensures the Ray-
Sense histogram introduced in (11) possesses a well-defined limit as the number of rays 
m → ∞ . This convergence can be better elucidated using an alternative formulation of Hk 
from (11), which incorporates the concept of Voronoi cell.

Draw m rays, r1, r2,⋯ , rm, from the distribution L that are contained in some BR(0) of 
suitable R. Enumerate this set of points by ri,j , and the spacing between two adjacent points 
is given by �r . The closest point of ri,j is xk if ri,j ∈ Vk ∶= V(xk) . Therefore, the bin value 
of the RaySense histogram can also be given as

where Sm,�r(� ) denotes the closest point sketch tensor using m rays and �r spacing. The 
following theorem shows that under proper normalization, Hk can be thought as a hybrid 
Monte-Carlo approximation to �[�k] defined in (15).

Theorem 4  The normalized bin values H̃k with the normalized constant � r

m
 , i.e.,

have the limit

Proof

 

where �Vk
 is the indicator function of Vk . Interchanging order of the limit and the expecta-

tion follows from the dominated convergence theorem since 
∑

ri,j∈Vk
𝛿r < 𝜒Vk

�
r(s)

�
+ 2𝛿r.

Monte-Carlo approximations of integrals converge with a rate independent of the 
dimension [4]. Consequently, for sufficiently many randomly selected rays, the histogram 
is essentially independent of the rays that are actually used.

Similar arguments show that the sampling of any function of the data set will be inde-
pendent of the actual ray set, since the histograms are identical in the limit. More precisely, 
suppose g∶x ∈ � ↦ ℝ is some finite function, then

Hk = H
(
xk; Sm,�r(� )

)
∶=

m∑
i=1

∑
ri,j∈Vk

1,

H̃k ∶=
𝛿r

m
H
(
xk; Sm,𝛿r(𝛤 )

)
=

1

m

m∑
i=1

∑
ri,j∈Vk

𝛿r

lim
m→∞
𝛿r→0

H̃k(Sm,𝛿r(𝛤 )) = �[�k].

lim
m→∞
𝛿r→0

H̃k(Sm,𝛿r(𝛤 )) = lim
m→∞
𝛿r→0

1

m

m∑
i=1

∑
ri,j∈Vk

𝛿r = lim
𝛿r→0

�ri∼L

[ ∑
ri,j∈Vk

𝛿r
]

= �ri∼L

[
lim
𝛿r→0

∑
ri,j∈Vk

𝛿r
]
= �ri∼L

[
∫ri

𝜒Vk

(
r(s)

)
ds
]
= �[�k],



	 Communications on Applied Mathematics and Computation

1 3

In Fig. 2, we show the histograms of the coordinates of the RaySensed points of � .
The integral �[�k] (or �[g(xk)�k] for continuous g) depends smoothly on � , and is there-

fore stable against perturbation to the coordinates of the points in �  . However, the effect 
of introducing new members to �  , such as outliers, will be non-negligible. One possible 
way to overcome this is to use multiple nearest neighbors for points on the rays. In Fig. 7, 
we show coordinates of the � = 5 nearest neighbors sampled by RaySense under the pres-
ence of outliers. It is observed that the features of the � th nearest neighbor for � large is 
more robust against outliers while also maintaining the desired histogram information. In 
Sect. 4.5, we will also demonstrate the effectiveness of this idea in dealing with outliers in 
practical tasks.

By considering a similar argument as in the proof of Theorem 1, we can provide a sim-
ple and intuitive explanation for the robustness of outliers when using more nearest neigh-
bors: when the underlying point cloud is dense enough, if an outlier disrupts the nearest 
neighbor search, excluding the outlier and finding the next few nearest neighbors would 
mitigate the impact caused by the outlier; if an outlier does not dominate the nearest neigh-
bor search, then the next few nearest neighbors with high probability would also originate 
from a small neighborhood centered around the first nearest neighbor. Therefore, increas-
ing the number of nearest neighbors enhances the stability of RaySense.

4 � Examples of Applications

4.1 � Comparison of Histograms of RaySense Samples

We experiment by comparing �  drawn from 16 384 objects of 16 categories from the 
ShapeNet dataset [5]. Let � i be the label for object �i . We compute the histograms hi

x
, hi

y
, hi

z
 

of the x, y, z coordinates, respectively, for points sampled by 50 rays with nr = 10 samples 

lim
m→∞
�r→0

1

m

m∑
i=1

∑
ri,j∈Vk

g(xk)�r = �[g(xk)�k].

Fig. 7   Histogram of the � = 5 nearest neighbors sampled by RaySense, where the underlying point cloud 
is polluted by 50 outliers uniformly sampled from the unit ball. Rows correspond to different coordinates 
while columns correspond to different closest points. Outliers introduce extreme values on coordinates of 
CP1 but these effects are significantly mitigated on CP5



Communications on Applied Mathematics and Computation	

1 3

per ray. We compare the histograms against those corresponding to other objects in the 
dataset, using

where d(⋅, ⋅) is either the �2 or Wasserstein-1 distance. We sum D according to the respec-
tive labels

and normalize by the number of occurrences for each a, b pair. Figure 8 shows the matrix 
of pairwise distances M between the 16 object categories.

Ideally, intra-object distances would be small, while inter-object distances would be 
large. As expected, Wasserstein-1 is a better metric for comparing histograms. Still, not all 
objects are correctly classified. When comparing histograms is not sufficient, we consider 
using neural networks to learn more complex mappings, such as in Sect. 4.5.

4.2 � Salient Points in the MNIST Data

From previous discussion and simulation in Sects. 3.1.1 and 3.2.1, we know RaySense has 
the ability to detect salient points or boundary points. Here we provide further visualization 
of RaySense salient points on the MNIST dataset.

By vectorizing the MNIST image, each image is a vector in ℝ784 with pixel value from 
0 to 255. We generate the random ray set in this ambient space using Method R1 in Appen-
dix  A, where each ray has the fixed-length 1, with centers uniformly shifted in the half 
cube [− 1

2
,
1

2
]784 . Each ray set has m = 256 random rays, with nr = 64 equi-spaced points on 

each ray. To ensure a good coverage over the data manifold, we rescale the MNIST image 
by entry-wise dividing so that each data point is constrained in an �∞ ball of a certain 
radius as introduced below; we also shift the dataset to have a mean 0.

Di,j = d(hi
x
, hj

x
) + d(hi

y
, hj

y
) + d(hi

z
, hj

z
),

Ma,b ∝
∑
i∶� i=a

∑
j∶� j=b

Di,j, a, b = 1,⋯ , 16,

Fig. 8   Comparison of histograms of the x, y, z coordinates of points sampled by RaySense, using �2 and the 
Wasserstein distance W1 . Rows and columns correspond to object labels. Red × indicates the location of the 
argmin along each row



	 Communications on Applied Mathematics and Computation

1 3

As mentioned, the RaySense salient points are those in �  sampled most frequently 
by points from the rays. We record the sampling frequency for each MNIST image, 
and in Fig. 9 we plot the top-10 images with highest frequency for each class. From 
the figure, we see that the salient points often correspond to digits with untypical 
strokes and writing styles, similar to the conclusion obtained from Fig. 6. Figure 9 fur-
ther shows that different normalizations of the data (by using scaling values 2 550, 5 
100, and 25 500) also affect the sampling. This phenomenon can be better understood 
from the perspective of truncated Voronoi cell (14): when the scale of the point clouds 
shrinks while the length of rays remains constant, it has a similar effect as increasing 
the length of the rays while keeping the point clouds unchanged, causing the truncated 
Voronoi cells to grow. Specifically, the truncated Voronoi cells associated with sali-
ent points exhibit a larger growth rate, as their Voronoi cells are typically unbounded, 
e.g., Proposition 1, making the subsampling even more biased when normalized to a 
smaller cube.

4.3 � RaySense and Integral Transforms

A line r in ℝd in the direction of � ∈ �d−1 has parameterization r(s) = b + s� , s ∈ (−∞, ∞) , 
with b ∈ ℝd a reference point on the line. Without loss of generality, let b be in �⟂ , which is a 

Fig. 9   MNIST digit images with the highest RaySense sampling frequencies for each class. Three different 
normalizations are shown in (a)–(c). Compared to a uniformly random subsample (d), we see a wider vari-
ety of hand-writing styles in the RaySense output



Communications on Applied Mathematics and Computation	

1 3

hyperplane orthogonal to � passing through the origin. The X-ray transform for a non-negative 
continuous function g with compact support [39] is defined on the set of all lines in ℝd by

The spectrum of g can be obtained via the Fourier slice theorem [55]:

When we restrict � to be only on a line in �⟂ , we are effectively collecting information on a 
2D slice of g parallel to �⟂.

However, when the function g only has a sampling representation, e.g., a point cloud, 
it is non-trivial to compute such integrals. In Sect. 3.1.3, we showed that if r is a member 
of the sampling ray set, one can compute an approximation of (20) from the RaySense 
sketch obtained from {xk, g(xk)}Nk=1 , where {xk} are i.i.d. samples from a known probability 
density � . Thus, RaySense provides a convenient alternative in obtaining (or, in a sense, 
defining) the Fourier slices of the discrete data set {xk, g(xk)}Nk=1 . Since (20) is defined for 
any dimension, one can approximate the X-ray transform from a RaySense sketch using 
suitable ray sets, or, in the random case, RaySense integrals can be regarded as randomized 
approximations of X-ray transforms.

In Fig.  10 we show an example of using RaySense sampling with prescribed (rather 
than random) rays to approximate the Radon transform. In this experiment, a point cloud 
�  (Fig. 10a top) with 15 010 points, is sampled from density � =

1

2
− 3xe−9x

2−9y2 (Fig. 10a 
bottom)—note denser (darker) region on left and sparser (lighter) region on right. �  has 
data shown in Fig.  10b evaluated from the piecewise constant function g, shown by the 
solid colours (for visualization only; g is only known at the discrete points in �  ). Blue 
lines show the locations of the RaySense sketch for one particular angle (illustrated with 
21 rays but the computation uses 100). We note increasingly jagged lines to the right where 
the point cloud is sparser. Figure 10c shows that approximate Radon transform computed 
over 180◦ in steps of one degree by integrating the RaySense sketch using trapezoidal rule 
at nr = 64 points per ray. Figure 10d shows the filtered back projection computed by the 
Octave Image package [12]. Note a more jagged reconstruction on the right where the point 
cloud is sparsest. If we instead used random rays, we could generate samples at scattered 
points in the sinogram (Fig.  10c) which could then be used for an approximate inverse 
transform.

(20)X[g](b,�) ∶= ∫
∞

−∞

g(b + s�)ds.

F[Xg](�, �) = F[g](�), � ∈ �⟂.

Fig. 10   Approximate Radon transform computed with RaySense from point cloud data (a–c) and filtered 
back projection reconstruction (d)



	 Communications on Applied Mathematics and Computation

1 3

4.4 � Point Cloud Registration

In this section, we explore the application of RaySense to the point cloud registration prob-
lem. Given two point sets �  and 𝛤  in three dimensions consisting of distinct points, reg-
istration aims to find the 3D rotation matrix U and translation vector b to minimize the 
Euclidean norm of points in correspondence. When the correspondence is known, this is 
the orthogonal Procrustes problem and the solution can be obtained explicitly via the sin-
gular value decomposition. When the correspondence is unknown, one can formulate an 
optimization problem and solve it with various carefully-designed algorithms. Here we 
choose to use the Iterative Closest Point (ICP) [3] due to its simplicity, which minimizes 
point-wise Euclidean distance iteratively from the optimization problem

We set up the problem using the Stanford Dragon [7] as a point cloud �  with 100  000 
points. We artificially generate the target point cloud to register by rotating by �

3
 in one 

direction. We compare the performance of ICP in three scenarios: (i) the original dense 
point clouds, (ii) a uniformly random subsampling (in index) of the point clouds, (iii) Ray-
Sense closest point samples using S[� ] (without repetition of sampled points) of each point 
cloud. Specifically, we use m = 512 rays, each with nr = 64 sample points, to subsample 
the original point cloud in RaySense, which usually generates a set of around 800 unique 
points. We then sample the second point cloud with a different set of rays. For fair com-
parison, we also subsample 800 points in the case of uniformly random subsampling. We 
use the root mean square error (RMSE) as our metric, and we also record the convergence 
time, where the convergence criteria is a threshold of the relative RMSE. We summarize 
the performance results in Table 1, and we provide some visualization to compare the three 
different settings in Fig. 11.

From Table 1, it is clear that both the sampling schemes accelerate the registration pro-
cess drastically by considering only a portion of the original dense point cloud. It also sug-
gests that RaySense sample has a slight advantage over the uniform random sample, in 
both accuracy and convergence time. However, generating the RaySense samples on the fly 
needs around 0.65 s on average, while generating a random subsample requires only 0.01 s.

Figure  11c again shows that RaySense is sampling salient features. Thus a possible 
improvement is to use the repetition information from RaySense sampling to perform a 
weighted registration, for example with the (autodetected) salient features receiving higher 
weights. This is left for future investigation.

min
U∈SO(3),b∈ℝ3

�
xj∈𝛤

min
y∈𝛤

‖U(xj + b) − y‖2
2
.

Table 1   Sample point cloud registration result. Performances are evaluated by registration accuracy (meas-
ured by root mean squared error (RMSE)) and computation times. The statistics reported are averaged over 
5 runs. “RMSE” is evaluated over the subsampled points while “RMSE(full)” is evaluated over the original 
point cloud

Number of points RMSE RMSE (full) Convergence 
time (s)

Vanilla ICP 100 000 4.544E−06 4.544E−06 6.319
ICP + random 800 4.509E−02 3.053E−03 0.019 2
ICP + RaySense 804.6 2.601E−02 1.077E−03 0.011 6



Communications on Applied Mathematics and Computation	

1 3

4.5 � Point Cloud Classification Using Neural Networks

We use the RaySense sketch to classify objects from the ModelNet dataset [62], using a 
neural network, which we call RayNN. RayNN can use features from different sampling 
operators S introduced in Sect.  2 as inputs. When using multiple nearest neighbors: 
S
[
� , [1, 2,⋯ , �]

]
 , we denote our models by RayNN-cp� . For our implementation, while 

Fig. 11   Registration simulation on a rotated Stanford dragon. Top row: initial pose and sparse samples; bot-
tom row: registration results. Note that the visualizations (e) and (f) are obtained by applying the transfor-
mation computed from the sparse samples in (b) and (c) to the original dense point clouds

Table 2   ModelNet classification results. Here we report our best accuracy results over all experiments. For 
reference, the test scores for RayNN-cp5 (m = 32) has mean around 90.31% and standard deviation around 
0.25% over 600 tests. The best score for each dataset is in bold

ModelNet10 ModelNet40

PointNet [44] – 89.2
PointNet++ [45] – 90.7
ECC [53] 90.8 87.4
kd-net [27] 93.3 90.6
PointCNN [31] – 92.5
PCNN [1] 94.9 92.3
DGCNN [61] – 92.9
RayNN-cp1 ( m = 16) 94.05 90.84
RayNN-cp5 ( m = 32) 95.04 90.96



	 Communications on Applied Mathematics and Computation

1 3

we might use different numbers of nearest neighbors, we always include the closest point 
coordinates and the vector to closest points in our feature space ℝc ( c ⩾ 6 fixed). Details of 
the implementation can be found in Appendix B.

We compare with some well-known methods for 3D point cloud classification tasks. 
In addition to the results reported by [44], we also compare against PointNet.pytorch, a 
PyTorch re-implementation [63] of PointNet. In all our experiments, we report overall 
accuracy. Table 2 shows RayNN is competitive. To investigate the robustness of our net-
work, we performed several more experiments.

Fig. 12   Testing DGCNN [61], PointNet [44] and RayNN on ModelNet40 with missing data

Table 3   Accuracy when testing with a reduced ray set. RayNN-cp1 was trained using m = 32 rays. Results 
averaged over 5 runs

ModelNet40

m̂ 32 (%) 16 (%) 8 (%) 4 (%)

� = 1 88.50 86.13 74.64 43.28
� = 8 89.77 88.94 82.97 55.24

Table 4   Outliers sampled uniformly from the unit sphere are introduced during testing. The networks are 
trained without any outliers. Results averaged over 5 runs. Best scores for each dataset are in bold

No outliers (%) 5 outliers (%) 10 outliers (%)

ModelNet10
RayNN-cp1 93.26 79.76 53.94
RayNN-cp5 93.85 92.66 90.90
PointNet.pytorch 91.08 48.57 25.55
ModelNet40
RayNN-cp1 89.77 54.66 20.95
RayNN-cp5 90.38 88.49 78.06
PointNet.pytorch 87.15 34.05 17.48



Communications on Applied Mathematics and Computation	

1 3

Robustness to sample size We repeat the experiments in [44, 61] whereby, after train-
ing, data is randomly removed prior to testing on the remaining points. The results in 
Fig. 12 show that RayNN performs very well with significant missing data.

Using fewer rays We experiment with training using a full set of m = 32 rays but test 
using smaller number m̂ of rays. Table 3 shows that RayNN can achieve a reasonable score 
even if only m̂ = 4 rays are used for inference.

Robustness to outliers This experiment simulates situations where noise severely 
perturbs the original data during testing. We compare the performance of RayNN-cp1, 
RayNN-cp5, and PointNet.pytorch in Table 4. The comparison reveals RaySense’s capabil-
ity in handling unexpected outliers, especially when additional nearest neighbors are used. 
Note the experiment here is different from that in [44] where the outliers are fixed and 
included in the training set.

Comparison of model complexity
Table 5 shows that our network has an advantage in model size and feed-forward time 

even against the simple and efficient PointNet. In both training and testing, there is some 
overhead in data preprocessing to build a kd-tree, generate rays, and perform the nearest-
neighbor queries to form the RaySense sketch. For point clouds of around N = 1 024 , these 
costs are not too onerous in practice as shown in Table 5.

The convolution layers have 48c + 840 016 parameters, where c is the dimension of 
input feature space. The fully-connected layers have 64K + 278 528 parameters, where K 
is the number of output classes. In total, our network has 1.1 × 106 + 48c + 64K ≈ 1.1 M 
parameters. In comparison, PointNet [44] contains 3.5 M parameters.

5 � Summary

RaySense is a sampling technique based on projecting random rays onto a data set. This 
projection involves finding the nearest neighbors in the data for points on the rays. These 
nearest neighbors collectively form the basic “RaySense sketch”, which can be employed 
for various data processing tasks.

RaySense does not merely produce narrowly interpreted subsamples of given datasets. 
Instead, it prioritizes the sampling of salient features of the dataset, such as corners or 
edges, with a higher probability. Consequently, points near these salient features may be 
recorded in the sketch tensor multiple times.

Table 5   Top: storage and timings for RayNN-cp1 and PointNet.pytorch on ModelNet40 using one Nvidia  
1 080-Ti GPU and batch size 32. The preprocessing and forward time are both measured per batch. Bottom: 
data from [61] is included only for reference; no proper basis for direct comparison

Model size (MB) Forward time (ms) Preprocessing time 
(ms)

Time per 
epoch (s)

PointNet.pytorch 14 12 3.6 14
RayNN-cp1 4.5 2 7.5 22
PointNet [44] 40 16.6 – –
PCNN [1] 94 117 – –
DGCNN [61] 21 27.2 – –



	 Communications on Applied Mathematics and Computation

1 3

From the RaySense sketch, one can further extract snapshots of integral or local (dif-
ferential) information about the data set. Relevant operations are defined on the rays ran-
domly sampled from a chosen distribution. Since rays are 1D objects, the formal complex-
ity of RaySense does not increase exponentially with the dimensions of the embedding 
space. We provide theoretical analysis showing that the statistics of a sampled point cloud 
depends solely on the distribution of the rays, and not on any particular ray set. Addition-
ally, we also demonstrated that by appropriately post-processing the RaySense sketch ten-
sor obtained from a given point cloud, one can compute approximations of line integrals. 
Thus, and by way of the Fourier Slice Theorem, we argue that RaySense provides spectral 
information about the sampled point cloud.

We showed that RaySense sketches could be used to register and classify point clouds 
of different cardinality. For the classification of point clouds in three dimensions, we pre-
sented a neural network classifier called “RayNN”, which takes the RaySense sketches as 
input. Nearest-neighbor information can be sensitive to outliers. For finite point sets, we 
advocated augmentation of the sketch tensor by including multiple nearest neighbors to 
enhance RaySense’s capability to capture persistent features in the data set, thereby improv-
ing the robustness. We compared the performance of RayNN to several other prominent 
models, highlighting its lightweight, flexible, and efficient nature. Importantly, RayNN also 
differs from conventional models, as it allows for multiple tests with different ray sets on 
the same dataset.

Appendix A Examples of Ray Distributions

We assume all points are properly calibrated by a common preprocessing step. This could 
also be learned. In fact, one can use RaySense to train such a preprocessor to register the 
dataset, for example, using Sect. 4.4 or similar. However, for simplicity, in our experiments, 
we generally normalize each point set to be in the unit �2 ball, with a center of mass at the 
origin, unless otherwise indicated.

We present two ways to generate random rays. There is no right way to generate 
rays, although it is conceivable that one may find optimal ray distributions for specific 
applications.

Method R1 One simple approach is generating rays of the fixed-length L, whose direc-
tion v is uniformly sampled from the unit sphere. We add a shift b sampled uniformly from 
[−

1

2
,
1

2
]d to avoid a bias for the origin. The nr sample points are distributed evenly along the 

ray:

The spacing between adjacent points on each ray is denoted by �r , which is L

nr−1
 . We use 

L = 2.
Method R2 Another natural way to generate random rays is by random endpoints selec-

tion: choose two random points p , q on a sphere and connect them to form a ray. Then we 
evenly sample nr points between p , q on the ray. To avoid overly short rays where informa-
tion would be redundant, we use a minimum ray-length threshold � to discard rays. Note 
that the distance between nr sample points is different on different rays:

ri = b + L

(
i

nr − 1
−

1

2

)
v, i = 0,⋯ , nr − 1.



Communications on Applied Mathematics and Computation	

1 3

The spacing of points on each ray varies, depending on the length of the ray.
Figure 13 shows the density of rays from the ray generation methods. In this paper, we 

use Method R1; a fixed �r seems to help maintain spatial consistency along the rays, which 
increases RayNN’s classification accuracy in Sect. 4.5.

Appendix B Implementation Details of RayNN

Our implementation uses PyTorch [41].
Architecture RayNN takes the m × k × c RaySense sketch tensor S(� ) as input, and out-
puts a K-vector of probabilities, where K is the number of object classes.

The first few layers of the network are blocks of 1D convolution followed by max-pool-
ing to encode the sketch into a single vector per ray. Convolution and max-pooling are 
applied along the ray. After this downsizing, we implemented a max operation across rays. 
Figure 14 includes some details. The output of the max pooling layer is fed into fully con-
nected layers with output sizes 256, 64, and K to produce the desired vector of probabilities 

ri = p +
i

nr − 1
(q − p), i = 0,⋯ , nr − 1.

Fig. 13   Density of rays from 
method R1 (left) and R2 (right). 
Red circle indicates the �2 ball

Fig. 14   The RayNN architecture for m rays and n
r
 samples per ray. The input is c feature matrices from 

S(� ) with suitable operations. With n
r
= 16 , each matrix is downsized to an m-vector by 4 layers of 

1D convolution and max-pooling. The max operator is then applied to each of the 1 024 m-vectors. The 
length-1 024 feature vector is fed into a multi-layer perceptron (mlp) which outputs a vector of probabilities, 
one for each of the K classes in the classification task. Note the number of intermediate layers (blue) can be 
increased based on n

r
 and c 



	 Communications on Applied Mathematics and Computation

1 3

pi ∈ ℝK . Batchnorm [20] along with ReLU [38] is used for every fully-connected and con-
volution layer.

Note that our network uses convolution along rays to capture local information while 
the fully connected layers aggregate global information. Between the two, the max opera-
tion across rays ensures invariance to the ordering of the rays. It also allows for an arbi-
trary number of rays to be used during inference. These invariance properties are similar to 
PointNet’s input-order invariance [44].

Data We apply RayNN on the standard ModelNet10 and ModelNet40 benchmarks 
[62] for 3D object classification. ModelNet40 consists of 12 311 orientation-aligned [50] 
meshed 3D CAD models, divided into 9 843 training and 2 468 test objects. ModelNet10 
contains 3 991 training and 908 test objects. Following the experiment setup in [44], we 
sample N = 1 024 points from each of these models and rescale them to be bounded by the 
unit sphere to form point sets.1 Our results do not appear to be sensitive to N.

Training During training, we use dropout with ratio 0.5 on the penultimate fully-con-
nected layer. We also augment our training dataset on-the-fly by adding N(0, 0.000 4) noise 
to the coordinates. For the optimizer, we use Adam [25] with momentum 0.9 and batch 
size 16. The learning rate starts at 0.002 and is halved every 100 epochs.

Inference Our algorithm uses random rays, so it is natural to consider strategies to 
reduce the variance in the prediction. We consider one simple approach during inference 
by making an ensemble of predictions from � different ray sets. The ensemble prediction is 
based on the average over the � different probability vectors pi ∈ ℝK , i.e.,

The assigned label then corresponds to the entry with the largest probability. We denote the 
number of rays used during training by m, while the number of rays used for inference is m̂ . 
Unless otherwise specified, we use � = 8 , m = 32 rays, and m̂ = m.

Appendix C Details of the Proof of Theorem 1

This appendix contains the proofs of Lemmas 1, 2, and 3, and Theorem 1.

Proof of Lemma 1  The probability measure of �j is

which represents the probability of sampling �j when drawing i.i.d. random samples from 
� . For a fixed set of such hypercubes, any x ∈ supp(�) will fall in one of the �j’s. Then one 
can define a mapping h∶supp(𝜌) ⊂ ℝd

→ ℝ by

Prediction(�) =
1

�

�∑
i=1

pi.

P𝛺j
= ∫x∈𝛺j

𝜌(x)dx > 0,

1  RaySense does not require point clouds for inputs: we could apply RaySense directly to surface meshes, 
implicit surfaces, or even—given an fast nearest neighbor calculator—the CAD models directly.



Communications on Applied Mathematics and Computation	

1 3

By applying the mapping to the random vector X , we obtain a new discrete random vari-
able S with the discrete probability distribution �M on ℝ and the corresponding density �M . 
The random variable S lives in a discrete space S ∈ {0, 1, ⋯ , M − 1} and �M is given as a 
sum of delta spikes as

As a result, sampling from the distribution �M is equivalent to sampling the hypercubes 
according to the distribution � in ℝd , but one cares only about the sample being in a spe-
cific hypercube �j , not the precise location of the sample. Let FM(s) denote the cumulative 
density function related to the density function �M(s).

Now, given a set of N independent samples of X∶ {Xi}
N
i=1

⊂ ℝd , we have a correspond-
ing set of N independent sample points of S: {si}Ni=1 such that Xi ∈ �si+1

 . From there, we 
can regard the histogram of {si}Ni=1 as an empirical density of the true density �M . Denote 
the empirical density by 𝜌̃N

M
 which is given by

One can therefore also obtain an empirical cumulative density function F̃N
M
(s) using the 

indicator function �:

By Dvoretzky-Kiefer-Wolfowitz inequality [13, 36] we have

Therefore, for a desired fixed probability p0 , the above indicates the approximating error 
given by the empirical F̃N

M
(s) is at most

with probability at least p0 . Then note that the true probability measure P�j
 of �j being 

sampled by random drawings from � is equivalent to the true probability of j − 1 being 
drawn from �M , i.e.,

therefore, P�j
= PM(j − 1) can be computed from FM by

s = h(x) = j − 1, where x ∈ �j, j = 1, 2, ⋯ , M.

�M(s) =

M∑
j=1

P�j
�j(s).

𝜌̃N
M
=

1

N

N∑
i=1

𝛿si .

F̃N
M
(s) =

1

N

N∑
i=1

𝜒{si⩽s}
.

Prob

(
sup
s∈ℝ

||FM(s) − F̃N
M
(s)|| > 𝜀

)
⩽ 2e−2N𝜀

2

for all 𝜀 > 0.

sup
s∈ℝ

||FM(s) − F̃N
M
(s)|| ⩽ 𝜀N =

(
−

1

2N
ln

(
1 − p0

2

)) 1

2

P�j
= PM(j − 1) ∶= �M(j − 1),

P𝛺j
= FM(j − 1) − FM(j − 2)

= FM(j − 1) − F̃N
M
(j − 1) + F̃N

M
(j − 1) − F̃N

M
(j − 2) + F̃N

M
(j − 2) − FM(j − 2).



	 Communications on Applied Mathematics and Computation

1 3

Taking absolute value and using the triangle inequality, with the fixed p0

where P̃N
M
(j − 1) denotes the empirical probability at j − 1 . Applying the same argument to 

P̃N
M
(j − 1), one has

For a set of N sample points, P̃N
M
(j − 1) is computed by Nj

N
 , where Nj is the number of times 

j − 1 got sampled by {si}Ni=1 , or equivalently �j got sampled by {Xi}
N
i=1

 , which indicates that 
in practice, with probability at least p0 , the number of sampling points Nj in �j satisfies the 
following bound:

By taking N large enough such that P�j
N − 2�NN = 1 ⟹ Nj ⩾ 1:

The above quantity is clearly a function with respect to the probability measure P�j
 , and 

any �i with P�i
⩾ P�j

 would have Ni ⩾ Nj ⩾ 1 . Using � to denote such a function and 
0 < P ⩽ 1 as the threshold measure completes the first part of the proof:

To establish the bounds on the expression, we note

Proof of Lemma 2  Consider a local hypercube centered at y , �
y
∶= {x + y ∈ ℝd∶‖x‖∞ =

l

2
} 

of length l to be determined. We shall just say “cube”. The probability of cube �y being 

sampled is given by P�y
= ∫

�y
�(x)dx . Now for the set of standard basis vector {ei}di=1 , let 

vd denote the sum of all the basis: vd ∶=
∑d

i=1
ei . Without loss of generality, the probability 

of a diagonal cube, defined by �
yd
∶= {x + y + vd ∈ ℝd∶‖x‖∞ =

l

2
} , being sampled 

(unconditional to �y being sampled) has the following bound by Lipschitz continuity of �:

P𝛺j
⩽ 2𝜀N + P̃N

M
(j − 1),

|P𝛺j
− P̃N

M
(j − 1)| ⩽ 2𝜀N for all j = 1, 2, ⋯ , M.

P�j
− 2�N ⩽

1

N
Nj ⩽ P�j

+ 2�N ⟹ P�j
N − 2�NN ⩽ Nj ⩽ P�j

N + 2�NN.

⟹ N =

√
ln
(

1−p0

2

)(
ln
(

1−p0

2

)
− 2P�j

)
+ P�j

− ln
(

1−p0

2

)

P2
�j

.

⟹ �
(
P
)
=

√
ln
(

2

1−p0

)(
ln
(

2

1−p0

)
+ 2P

)
+ P + ln

(
2

1−p0

)

P2
.

𝜈(P) >

√
ln
(

2

1−p0

)
ln
(

2

1−p0

)
+ P + ln

(
2

1−p0

)

P2
=

2 ln
(

2

1−p0

)
+ P

P2
,

𝜈(P) <

√(
ln
(

2

1−p0

)
+ 2P

)2

+ P + ln
(

2

1−p0

)

P2
=

2 ln
(

2

1−p0

)
+ 3P

P2
.



Communications on Applied Mathematics and Computation	

1 3

Furthermore, P�y
 has the following lower bound also by Lipschitz continuity of � . For any 

x ∈ �y , we have

Combining with the previous bound for P�yd

 , we further have

By setting 𝜌(y) > 3
√
d

2
Ll we can ensure P𝛺yd

> 0 , but this extreme lower bound is based on 
on Lipschitz continuity. To obtain a more useful bound, we will show below that by pick-
ing l ∶= lN judiciously, 𝜌(y) > 3

√
dLlN > 0 , any surrounding cube has non-zero probabil-

ity to be sampled. Therefore, with 𝜌(y) > 3
√
dLlN , for any diagonal cube �yd

:

Since the diagonal cube is the furthest to y among all the surrounding cubes, we have for 
every surrounding cube of �y , their probability measure is at least P�yd

.

According to Lemma 1, for N sampling points, with probability at least p0 , if a region 
has probability measure ⩾ PN , then there is at least one point sampled in that region, where 
PN is the threshold probability depending on N obtained by solving the equation below:

By the bounds for N in (17) of Lemma 1, we know there is some constant c ∈ (1, 3) s.t.:

Solving the above quadratic equation and realize that PN > 0 , we have

Therefore, for a fixed N, by requiring

��P�yd

− P�y

�� ⩽ ∫�y

��(x + lvd) − �(x)�dx ⩽ L
√
d l��y� ⟹ P�yd

⩾ P�y
− L

√
d ld+1.

(21)

��(x) − �(y)� ⩽ L
√
d
l

2
⟹ �(x) ⩾ �(y) − L

√
d

2
l ⟹ P�y

⩾

�
�(y) − L

√
d

2
l

�
ld.

P�yd

⩾

�
�(y) − L

√
d

2
l

�
ld − L

√
dld+1 = �(y)ld −

3
√
d

2
Lld+1.

𝜌(y)ld −
1

2
𝜌(y)ld >

3
√
d

2
Lld+1 ⟹ P𝛺yd

>
1

2
𝜌(y)ld

N
.

N =

√
ln

(
2

1−p0

)(
ln

(
2

1−p0

)
+ 2PN

)
+ PN + ln

(
2

1−p0

)

(PN)
2

.

N =

2 ln

(
2

1−p0

)
+ cPN

P2
N

⟹ NP2
N
− cPN − 2 ln

(
2

1 − p0

)
= 0.

PN =

c +

(
c2 + 8N ln

(
2

1−p0

)) 1

2

2N
.



	 Communications on Applied Mathematics and Computation

1 3

we have with probability p0 that at every surrounding cube of �y of side length lN , there is 
at least one point. This lower bound for lN ensures the surrounding cube has enough prob-
ability measure to be sampled. Since 1 < c < 3 , we can just take lN to be

From above we see that for a fixed �(y) , lN decreases as N increases. Therefore, by choosing 
N large enough, we can always satisfy the prescribed assumption �(y) ⩾ 3

√
dLlN.

Furthermore, when N is so large such that �(y) ⩾ 3
√
dLlN is always satisfied, we see 

that lN is a decreasing function of � , meaning that with a higher local density �(y) , the lN 
can be taken smaller while the sampling statement still holds, meaning the local region is 
more compact.

Finally, since there is a point in every surrounding cube of �y , the diameter of the Voro-
noi cell of y has the following upper-bound with the desired probability p0:

Now, for a sample point x0 in the interior of supp(�) , given a cover of cubes as in 
Lemma  1, x0 must belong to one of the cubes with center also denoted by y with 
a slight abuse of notation. Then note that the diameter of V(x0) also has the same 
upper bound as shown above. To go from �(y) to �(x0) , by Lipschitz continuity: 
�(y) ⩾ �(x0) −

L
√
d

2
lN ⟹ �(x0) ⩽ �(y) +

L
√
d

2
lN . Since we require �(y) ⩾ 3

√
dLlN , we 

have �(x0) ⩽
�(y)

6
+ �(y) =

7

6
�(y) . Therefore,

Proof of Lemma 3  Without loss of generality, we assume that |supp(�)| = 1 , then � = 1 eve-
rywhere within its support. We partition supp(�) into M regions such that each region has 
probability measure 1

M
 . This partition can be constructed in the following way: for most of 

P𝛺
yd

>
𝜌(y)

2
ld
N
⩾ PN ⟹ lN ⩾

⎛
⎜⎜⎜⎜⎜⎝

c +

�
c2 + 8N ln

�
2

1−p0

�� 1

2

𝜌(y)N

⎞
⎟⎟⎟⎟⎟⎠

1

d

,

lN ∶=

⎛⎜⎜⎜⎜⎜⎝

3 +

�
9 + 8N ln

�
2

1−p0

�� 1

2

𝜌(y)N

⎞⎟⎟⎟⎟⎟⎠

1

d

>

⎛⎜⎜⎜⎜⎜⎝

c +

�
c2 + 8N ln

�
2

1−p0

�� 1

2

𝜌(y)N

⎞⎟⎟⎟⎟⎟⎠

1

d

.

diam(V(y)) ⩽ 3l
√
d = 3

√
d

⎛⎜⎜⎜⎜⎜⎝

3 +

�
9 + 8N ln

�
2

1−p0

�� 1

2

�(y)N

⎞⎟⎟⎟⎟⎟⎠

1

d

.

�(y) ⩾
6

7
�(x0) ⟹ diam(V(x0)) ⩽ 3

√
d

⎛⎜⎜⎜⎜⎜⎝

21 + 7

�
9 + 8N ln

�
2

1−p0

�� 1

2

6�(x)N

⎞⎟⎟⎟⎟⎟⎠

1

d

.



Communications on Applied Mathematics and Computation	

1 3

the interior of supp(�) , subdivide into hypercubes �j ’s of the same size such that P�j
=

1

M
 

and �j ’s are contained completely inside supp(�) . Then the length of the hypercube, l, is 

determined by ld

|supp(�)| =
1

M
⟹ l =

(
1

M
1
d

)
 . For the remaining uncovered regions of 

supp(�) , cover with some small cubes of appropriate sizes and combine them together to 
obtain a region with measure 1

M
.

Then, following a similar idea from Lemma 2, one has a discrete sampling problem with 
equal probability for each candidate, which resembles the coupon collector problem. The 
probability p(N, d, M) that each of the M region contains at least one sample point has a 
well-known lower bound [11]:

With the probability p(N, d, M) given above, for an interior hypercube we again have there 
is at least one sample in each of its surrounding hypercube, since now there is at least one 
sample in each of the M region. Then the Voronoi diameter for each point is at most 3l

√
d . 

Fixing a desired probability p0 , we want to determine the number of regions M to get a 
control on l. We need to have a bound as follows:

By rearranging, the above equality holds only when

The above equation is solvable by using the Lambert W function:

where W0 is the principal branch of the Lambert W function. Note that the Lambert W 
function satisfies

Pluging in the above identity, one has

Also note that the function Me−
N

M is monotonically increasing in M (for M > 0 ), so for the 
bound in (22) to hold we require

By taking the largest possible integer M satisfying the above inequality, we then have

p(N, d,M) ⩾ 1 −Me−
N

M .

(22)p ⩾ 1 −Me−
N

M ⩾ p0 ⟹ 0 < Me−
N

M ⩽ 1 − p0.

N

M
e

N

M =
N

1 − p0
.

M =
N

W0

(
N

1−p0

) ,

W0(x)e
W0(x) = x ⟹

x

W0(x)
= eW0(x).

M

1 − p0
=

N

(1 − p0)W0

(
N

1−p0

) ⟹ M = (1 − p0)e
W0

(
N

1−p0

)
.

M ⩽ (1 − p0)e
W0

(
N

1−p0

)
.



	 Communications on Applied Mathematics and Computation

1 3

for every hypercube contained in supp(�) . Then this yields a uniform bound for the Voro-
noi diameter of any point that is in an interior hypercube surrounded by other interior 
hypercubes:

In terms of the limiting behavior, for large x, the Lambert W function is asymptotic to the 
following [6, 10]:

with c(x) → 1 as x → ∞ . Therefore, for sufficiently large N

(1−p0)
 , we have

Proof of Theorem 1  Note that when using one ray: S[�1](1, j) = x1[j] and S[�2](1, j) = x2[j] 
for j = 1, 2,⋯ , nr . The main idea is to bound the difference between each pair of points 
using the results introduced in the previous lemmas. Consider a fixed sampling point 
r1,j ∈ r(s) whose corresponding closest points are x1[j] and x2[j] in �1 and �2 , respectively. 
We consider two cases: first when r1,j is interior to supp(�) , in which case from Lemmas 2 
and 3, with probability p0 we have a bound for the diameter of the Voronoi cell of any inte-
rior x , denote it by D(x) where �, p0, N, and d are assumed to be fixed. Therefore,

Then by the triangle inequality: ‖x1[j] − x2[j]‖2 ⩽ D(x1[j]) + D(x2[j]) , which applies for all 
sampling points r1,j ’s in the interior of supp(�) , and as N → ∞ we have D → 0 in a rate 
derived in Lemma 2.

In the case where sampling point r1,j ∈ r(s) is outside of supp(�) , since supp(�) is con-
vex, the closest point to r1,j from supp(�) is always unique, denoted by x� . Then, choose R1 
depending on N1, N2 such that the probability measure P1 = P

(
BR1

(x�) ∩ supp(�)
)
 achieves 

the threshold introduced in Lemma 1 so that there is at least x�,1 ∈ �1 and x�,2 ∈ �2 that 
lies in BR1

(x�) ∩ supp(�) . For sufficiently large N, x1[j] and x2[j] would be points inside 
BR1

(x�) ∩ supp(�) since supp(�) is convex. Then we have

and we can pick N1,N2 large to make R1 as small as desired. Therefore, we have

in probability for both interior sampling points and outer sampling points r1,j , and the con-
vergence starts when N1,N2 get sufficiently large. Consequently, for the RaySense matrices 
S[�1] and S[�2] , we can always find N sufficiently large such that

l =
�
1

M

� 1

d

=

�
⌊(1 − p0)e

W0

�
N

1−p0

�
⌋
� 1

d

diam(V) ⩽ 3
√
d

�
⌊(1 − p0)e

W0

�
N

1−p0

�
⌋
�−

1

d

.

W0(x) = ln x − ln ln x + o(1) ⟹ eW0(x) = c(x)
x

ln x

diam(V) ⩽ 3
√

d
⎛

⎜

⎜

⎝

⎢

⎢

⎢

⎣

(1 − p0)c
N

(1 − p0) ln
N

1−p0

⎥

⎥

⎥

⎦

⎞

⎟

⎟

⎠

− 1
d

= 3
√

d
(⌊

1
cN

ln N
1 − p0

⌋)
1
d

.

‖x1[j] − r1,j‖2 ⩽ D(x1[j]); ‖x2[j] − r1,j‖2 ⩽ D(x2[j]).

‖x1[j] − x2[j]‖2 ⩽ 2R1,

‖x1[j] − x2[j]‖2 → 0 as N1,N2 → ∞,



Communications on Applied Mathematics and Computation	

1 3

for arbitrarily small � depending on N, nr , d, and the geometry of supp(�).

Remark 3  In case of non-convex supp(�) and the sampling point r1,j ∈ r(s) is outside of 
supp(�) , if the ray r is drawn from some distribution L , with probability one, r1,j is not 
equidistant to two or more points on supp(�) , so the closest point is uniquely determined 
and we only need to worry about the case that r1,j find the closest point x2[j] from �2 that 
would be far away from x1[j].

Let x� be the closest point of r1,j from supp(�) , similarly, choose R1 depending on N1,N2 
such that for balls BR1

(x�,1) , the probability measure P1 = P
(
BR1

(x�) ∩ supp(�)
)
 achieves 

the threshold introduced in Lemma 1 so that there is at least x�,1 ∈ �1 and x�,2 ∈ �2 that 
lies in BR1

(x�) ∩ supp(�) . Now, consider the case where the closest point x̃𝜌 of r1,j from the 
partial support supp(�) ⧵ BR1

(x�) is far from x� due to the non-convex geometry, and denote

We pick N so large that

implying we can find x�,1, x�,2 from �1 and �2 closer than x�,2 from the continuum. There-
fore, for sufficiently large N1 and N2 , we can find both closest points x1[j] , x2[j] of r1,j inside 
BR1

(x�,1) ∩ supp(�) from �1 and �2 , ⟹ ‖x1[j] − x2[j]‖2 ⩽ 2R1 . The rest follows identically 
as in the previous proof.

Appendix D Details of the Proof of Theorem 3

Before deriving the result, we first take a detour to investigate the problem under the set-
ting of the Poisson point process, as a means of generating points in a uniform distribution.

Appendix D.1 Poisson Point Process

A Poisson point process [9] on � is a collection of random points such that the number of 
points N�′ in any bounded measurable subsets �j with measure �(�j) is a Poisson random 
variable with rate �|�j| such that Nj ∼ Poi(�|�j|) . In other words, we take N, instead of 
being fixed, to be a random Poisson variable: N ∼ Poi(�) , where the rate parameter � is a 
constant. Therefore, the underlying Poisson process is homogeneous and it also enjoys the 
complete independence property, i.e., the number of points in each disjoint and bounded 
subregion will be completely independent of all the others.

What follows naturally from these properties is that the spatial locations of points gen-
erated by the Poisson process is uniformly distributed. As a result, each realization of the 
homogeneous Poisson process is a uniform sampling of the underlying space with number 
of points N ∼ Poi(�).

‖S[�1] − S[�2]‖F =

���� nr�
i=1

‖x1[j] − x2[j]‖22 ⩽ �

𝛿 = ‖r1,j − x̃𝜌‖2 − ‖r1,j − x𝜌‖2 > 0.

‖r1,j − x�,1‖ ⩽ ‖r1,j − x�‖ + R1 ⩽ ‖r1,j − x�,1‖ + � ⩽ ‖r1,j − x�,2‖,



	 Communications on Applied Mathematics and Computation

1 3

Below we state a series of useful statistical properties and concentration inequality for 
the Poisson random variable.

•	 The Poisson random variable N ∼ Poi(�) has mean and variance both � : 

•	 The corresponding probability density function is 

•	 A useful concentration inequality [43] (N scales linearly with � ): 

Furthermore, one can also derive a Markov-type inequality for the event a Poisson random 
variable N ∼ Poi(�) is larger than some a > 𝜆 that is independent of � , different from (23).

Proposition 2  For Poisson random variable N ∼ Poi(�) , it satisfies the following bound for 
any constant a > 𝜆:

Proof  By Markov’s inequality:

To get a tighter bound, we want to minimize the R.H.S.. Let 𝜁 = et > 1 . Then we minimize 
the R.H.S. over �:

A simple derivative test yields the global minimizer 𝜁 =
a

𝜆
> 1 since we require a > 𝜆 . 

Thus,

A direct consequence of (23) is that one can identify N with � with high probability 
when � is large, or equivalently the other way around.

Lemma 4  (Identify N with � ) A point set of cardinality N∗ drawn from a uniform distribu-
tion, with high probability, can be regarded as a realization of a Poisson point process with 
rate � such that

�(N) = Var(N) = �.

ℙ(N = k) =
e−��k

k!
.

(23)ℙ(N ⩽ � − �) ⩽ e
−

�2

2(�+�) or ℙ(|N − �| ⩾ �) ⩽ 2e
−

�2

2(�+�) .

(24)ℙ(N ⩾ a) ⩽
e(a−𝜆)𝜆a

aa
⟺ ℙ(N < a) ⩾ 1 −

e(a−𝜆)𝜆a

aa
.

ℙ(N ⩾ a) = ℙ(etN ⩾ eta) ⩽ inf
t>0

𝔼(etN)

eta
= inf

t>0

∑∞

k=1
etk

𝜆ke−𝜆

k!

eta

= inf
t>0

e−𝜆
∑∞

k=1

(et𝜆)k

k!

eta
= inf

t>0

e−𝜆ee
t𝜆

eta
= inf

t>0

e(e
t−1)𝜆

eta
.

min
𝜁>1

e(𝜁−1)𝜆

𝜁a
⟺ min

𝜁>1
(𝜁 − 1)𝜆 − a log(𝜁 ).

(25)ℙ(N ⩾ a) ⩽
e(a−𝜆)𝜆a

aa
⟺ ℙ(N < a) ⩾ 1 −

e(a−𝜆)𝜆a

aa
.



Communications on Applied Mathematics and Computation	

1 3

Proof  If N ∼ Poi(�) , by taking � =
�

2
 , from (23) we have

Let �u = 2N∗ as a potential upper bound for � , while �l =
2N∗

3
 the potential lower bound. 

Then for Nu ∼ Poi(�u) and Nl ∼ Poi(�l):

Therefore, if we have some other Poisson processes with rate 𝜆1 > 𝜆u , and 𝜆2 < 𝜆l the 
probabilities of the corresponding Poisson variables N1 ∼ Poi(�1),N2 ∼ Poi(�2) to achieve 
at most (or at least) N∗ is bounded by

Note that both of the events have a probability decaying to 0 as the observation N∗
→ ∞ , 

therefore we have a confidence interval of left margin e−
N∗

6  and right margin e−
N∗

18  to con-
clude that the Poisson parameter � behind the observation N∗ has the bound

Since the margins shrink to 0 as N∗
→ ∞ , we can identify � as cN with some constant c 

around 1 with high probability.

By Lemma 4, for the remaining, we will approach the proof to Theorem 3 from a Pois-
son process perspective and derive results with the Poisson parameter �.

Appendix D.2 Main Ideas of the Proof of Theorem 3

Consider a Poisson process with parameter � in supp(�) and a corresponding point cloud �  
with cardinality N ∼ Poi(�) . Based on previous discussion from Sect. 3.1.3, we assume the 
ray r(s) is given entirely in the interior of supp(�) . From Theorem 2, by denoting 1 ⩽ ki ⩽ N 
such that {xki}

M
i=1

⊂ 𝛤  are points in �  sensed by the ray and Vki
∶= V(xki ) , equivalently the 

line integral error is

ℙ

(
2N∗

3
⩽ � ⩽ 2N∗

)
⩾ 1 − e

−
N∗

6 − e
−

N∗

18 .

ℙ

(
|N − 𝜆| < 𝜆

2

)
⩾ 1 − 2e−

𝜆

12 ⟺ ℙ

(
𝜆

2
< N <

3𝜆

2

)
⩾ 1 − 2e−

𝜆

12 .

ℙ(Nu ⩽ N∗) = ℙ

(
Nu ⩽

�

2

)
⩽ e−

�u

12 ,

ℙ(Nl ⩾ N∗) = ℙ

(
Nl ⩾

3�l

2

)
⩽ e−

�l

12 .

ℙ(N
1
⩽ N∗) < ℙ(Nu ⩽ N∗) ⩽ e

−
𝜆u

12 = e
−

N∗

6 ,

ℙ(N
2
⩾ N∗) < ℙ(Nl ⩾ N∗) ⩽ e

−
𝜆l

12 = e
−

N∗

18 .

2N∗

3
⩽ � ⩽ 2N∗.

(26)
����∫

1

0

g
�
r(s)

�
ds − ∫

1

0

g
�
xk(s)

�
ds
���� ⩽ J

M�
i=1

∫
1

0

�
�
{r(s) ∈ Vki

}
�‖r(s) − xki

‖ds.



	 Communications on Applied Mathematics and Computation

1 3

To bound the above quantity, one needs to bound M the number of Voronoi cells a line 
goes through, the length of r(s) staying inside Vki

 and the distance to the corresponding xki 
for each r(s) altogether. Our key intuition is stated as follows.

Divide the ray r(s) of length 1 into segments each of length h, and consider a hyper-
cylinder of height h and radius h centering around each segment. If there is at least one 
point from �  in each of the hypercylinders, then no point along r(s) will have its nearest 
neighbor further than distance H =

√
2h away from r(s) . Therefore, we restrict our focus to 

� , a tubular neighborhood of distance H around r(s)-that is, a “baguette-like” region with 
spherical end caps. N� , the number of points of �  that are inside � , will serve as an upper 
bound for M (the total number of unique nearest neighbors of r(s) in �  ) while the control 
of the other two quantities (intersecting length and distances to closest points) comes up 
naturally.

Undoubtedly M depends on the size of � , which is controlled by h. The magnitude of h 
therefore becomes the crucial factor we need to determine. The following lemma motivates 
the choice of h = �

−
1

d
+� for some small 1 ≫ 𝜀 > 0.

Lemma 5  Under A1–A7, for a point cloud of cardinality N ∼ Poi(�) generated from a Pois-
son point process, and a ray r(s) given entirely in supp(�) , the number of points N� in the 
tubular neighborhood of radius H =

√
2h around r(s) will be bounded when

for some small 1 ≫ 𝜀 > 0 , with probability → 1 as � → ∞.

Proof  Note that the baguette region � has outer radius H, and hypercylinders of radius h 
are contained inside � . For simplicity we prescribe h such that Q =

1

h
 is an integer, then 

the baguette region � consists of Q number of hypercylinders, denoted by {�j}
Q

j=1
 and the 

remaining region, denoted by �r consisting of an annulus of outer radius H, inner radius 
h, and two half spheres of radius H on each side. Since each region is disjoint, according 
to Appendix D.1 the Poisson process with rate � in supp(�) will have Poisson sub-process 
in each of the regions in a rate related to their Lesbegue measure, and all the sub-processes 
are independent.

Now, let ℙQ denote the probability of having at least one point in each �j in {�j}
Q

j=1
 

while the number of points in each �j is also uniformly bounded by some constant NQ . 
Since each �j has the same measure, their corresponding Poisson processes have the iden-
tical rate �q = |�1|� . Let Nj denote the Poisson random variable for �j. Then,

Combined with (24) by requiring NQ > 𝜆q , this implies

and hence

h = �
−

1

d
+�

ℙ(Nj ⩾ 1) = 1 − ℙ(Nj = 0) = 1 − e−�q .

ℙ(NQ > Nj ⩾ 1) = ℙ(Nj ⩾ 1) − ℙ(Nj ⩾ NQ) ⩾ 1 − e−𝜆q −
e(NQ−𝜆q)𝜆

NQ

q

N
NQ

Q

,



Communications on Applied Mathematics and Computation	

1 3

The measure of the remaining region �r is |�r| = �dH
d + �d−1(H

d−1 − hd−1) , where �d is 
the volume of the unit d-sphere. Therefore the Poisson process on �r has rate �r = |�r|� . 
Let Nr denote the corresponding Poisson random variable, again by (24) with N′ > 𝜆r:

Since �r and 
⋃
{�j}

Q

j=1
 are disjoint, by independence, the combined probability ptot that all 

these events happen: 

	 (i)	 the number of points Nj in each hypercylinder �j is at least 1,
	 (ii)	 Nj is uniformly bounded above by some constant NQ,

	 (iii)	 the number of points Nr in the remaining regions �r = � − ∪j{�j} is also bounded 
above by some constant N′,

would have the lower bound:

Then with probability ptot , we have an upper bound for N� , the total number of points in �:

Apparently N� and ptot are inter-dependent: as we restrict the R.H.S. bound in  (29) by 
choosing a smaller N′ or NQ , the bound for ptot will be loosened. From Lemma 4, we set 
N� = ��r , NQ = ��q for some 𝛼, 𝛽 > 1 . Therefore, the next step is to determine the param-
eter set {h, �, �} to give a more balanced bound to the R.H.S. in (29) while still ensuring 
the probability of undesired events will have exponential decay.

For that purpose we need some optimization. We know

We need to investigate how h should scale with � , so we assume h ∼ �−p for some constant 
p to be determined. The following optimization procedure provides some motivations for 
choosing p. On the one hand, for the constraints we need to ensure that the probability of 
each of the three events above not occurring decays to 0 as � → ∞

(27)ℙQ ⩾

⎛⎜⎜⎝
1 − e−�q −

e(NQ−�q)�
NQ

q

N
NQ

Q

⎞⎟⎟⎠

Q

⩾ 1 − Q

⎛⎜⎜⎝
e−�q +

e(NQ−�q)�
NQ

q

N
NQ

Q

⎞⎟⎟⎠
.

(28)ℙ(Nr < N�) ⩾ 1 −
e(N

�−𝜆r)𝜆N
�

r

N�N�
.

ptot ⩾

�
1 −

e(N
�−�r)�N

�

r

N�N�

�⎛⎜⎜⎝
1 − Q

⎛
⎜⎜⎝
e−�q +

e(NQ−�q)�
NQ

q

N
NQ

Q

⎞
⎟⎟⎠

⎞⎟⎟⎠

⩾ 1 −
e(N

�−�r)�N
�

r

N�N�
− Q

⎛⎜⎜⎝
e−�q +

e(NQ−�q)�
NQ

q

N
NQ

Q

⎞⎟⎟⎠
.

(29)N� ⩽ N� + QNQ.

�r = |�r|� = (�dH
d + �d−1(H

d−1 − hd−1))� =
(
�d2

d

2 hd + �d−1

(
2

d−1

2 − 1
)
hd−1

)
�;

(30)�q = |�1|� = (�d−1h
d−1h)� = �d−1h

d�.



	 Communications on Applied Mathematics and Computation

1 3

and representing all the quantities in terms of �, p, �, � and simplifying

On the other hand, for the objective, note that

since �, � are just some constants > 1 , fixing � and � so that h = �−p and we want to mini-
mize h to obtain an upper bound for the total number of points in �:

Combined with bounds derived from the constraints, to minimize (1 − (d − 1)p) , we need 
to maximize p, therefore we take p =

1

d
− � for an infinitesimal 𝜀 > 0.

Appendix D.3 Proof of Theorem 3

Proof of Theorem 3  Consider a Poisson process with rate � on the supp(�) . As in Appen-
dix D.2, let Q =

1

h
 be an integer for simplicity (or take ceiling if desired), and consider Q 

hypercylinders of radius h centered along r(s) . Again as in Appendix  D.2, let � be the 
tubular neighborhood of distance H =

√
2h around r(s) . Motivated by Appendix D.2, we 

set

e(N
�−�r)�N

�

r

N�N�
→ 0 ⟺ (N� − �r) + N� log(�r) − N� log(N�) → −∞,

Qe−�q → 0 ⟺ log(Q) − �q → −∞,

Q
e(NQ−�q)�

NQ

q

N
NQ

Q

→ 0 ⟺ log(Q) + (NQ − �q) + NQ log(�q) − NQ log(NQ) → −∞,

(𝛼 − 1)𝜆r − 𝛼𝜆r log(𝛼) → −∞ ⟹ 𝛼
(
1 − log(𝛼)

)
< 1 ⟹ 𝛼 > 1,

p log(𝜆) − 𝜔d−1𝜆
−pd+1

→ −∞ ⟹ 𝛽
(
1 − log(𝛽)

)
< 1 ⟹ 𝛽 > 1,

log(Q) + (𝛽 − 1)𝜆q − 𝛽𝜆q log(𝛽) → −∞ ⟹ −pd + 1 > 0 ⟹ p <
1

d
.

N� +
NQ

h
⩽ 2max

(
N�,

NQ

h

)

= 2max

(
�
((

�d2
d

2 hd + �d−1

(
2

d−1

2 − 1
)
hd−1

)
�
)
,
�

h
�d−1h

d�

)

⩽ 3max

(
��d2

d

2 hd�, ��d−1

(
2

d−1

2 − 1
)
hd−1�,

�

h
�d−1h

d�

)
,

argminmax
h

(
��d2

d

2 hd�, ��d−1

(
2

d−1

2 − 1
)
hd−1�,

�

h
�d−1h

d�

)

⟺ argminmax
p

(
c2 + (1 − pd + p) log(�), c3 + (1 − pd + p) log(�)

)

⟺ argminmax
p

(
(1 − pd + p) log(�)

)
.

h = �
−

1

d
+�



Communications on Applied Mathematics and Computation	

1 3

for some small constants 1 ≫ 𝜀 > 0 to be determined.
Divide the tubular neighborhood � into two parts, one consists of the set of hypercylin-

ders 
⋃Q

j=1
�j around r(s) , the other is the remainder �r . From the setting of Lemma 5, let 

N� = ��r be the number of points in �r while NQ = ��q is for �j , and we set 𝛼 = 𝛽 = e > 1 
(also satisfying the constraints in Lemma 5) to simplify the calculations so that we have 
NQ = e�q,Nr = e�r , and equation (27) becomes

So the total number in 
⋃Q

j=1
�j is bounded by Qe�q while there is still at least one point in 

every �j with the above probability. On the other hand for (28),

Again by the same independence argument, the total probability that all the events happen 
has the following lower bound:

And the total number of points inside � is bounded by

Finally, when there is at least one point in each of �j , the maximum distance from any 
point on r(s) to its nearest neighbor is given by H =

√
2h as we have argued. Furthermore, 

under this setting, for any of the potential nearest neighbors, the maximum length that r(s) 
intersect its Voronoi cell has an upper bound of 3h. Therefore, the line integral error (26) is 
bounded by

Finally, for the total probability ptot:

and recall from (30): �q = |�1|� = �d−1h
d−1h� = �d−1h

d� = �d−1�
�d . Then

The above convergence can be shown by taking the natural log:

ℙ(e𝜆q > Nj ⩾ 1) = ℙ(Nj ⩾ 1) − ℙ(Nj ⩾ e𝜆q) ⩾ 1 − 2e−𝜆q ,

(31)⟹ ℙQ ⩾

(
1 − 2e−�q

)Q

⩾ 1 − 2Qe−�q .

ℙ(Nr < e𝜆r) ⩾ 1 − e−𝜆r .

ptot ⩾ (1 − e−�r )(1 − 2Qe−�q ) ⩾ 1 − 2Qe−�q − e−�r .

N� ⩽ e�r + Qe�q = e(�r + Q�q) = e��.

����∫
1

0

g
�
r(s)

�
ds − ∫

1

0

g
�
xk(s)

�
ds
���� ⩽

J

2

M�
i=1

H × 3h ⩽
J

2
N� × H × 3h = 3

√
2h2e��

⩽
3e

√
2J

2
h2
�
�d2

d

2 hd + �d−12
d−1

2 hd−1
�
� ⩽ c(d, J)(hd+2 + hd+1)� ⩽ c(d, J)�−

1

d
+�(d+1)

.

ptot ⩾ 1 − 2Qe−�q − e−�r = 1 −
2

h
e−�d−1h

d� − e−|�r|�,

2Qe−�q = 2(�)
1

d
−�
e−�d−1�

�d

→ 0 as � → ∞.

ln

(
2(�)

1

d
−�e−�d−1�

�

)
= ln 2 +

(
1

d
− �

)
ln � − �d−1�

�
→ −∞ as � → ∞,



	 Communications on Applied Mathematics and Computation

1 3

since ln � grows slower than �� for any 𝜀 > 0 . As for the last term e−|�r|�:

Thus, the probability ptot → 1 as � → ∞ , and we have our line integral error 
⩽ c(d, J)�−

1

d
+�(d+1)

→ 0 as long as 𝜀 <
1

(d+1)2
 . To obtain the convergence in terms of the 

actual number of points N in the point cloud, we invoke Lemma 4 and set N = c� to con-
clude the proof.

Acknowledgements  Part of this research was performed while Macdonald and Tsai were visiting the Insti-
tute for Pure and Applied Mathematics (IPAM), which is supported by the National Science Foundation 
(Grant No. DMS-1440415). This work was partially supported by a grant from the Simons Foundation, NSF 
Grants DMS-1720171 and DMS-2110895, and a Discovery Grant from Natural Sciences and Engineering 
Research Council of Canada. The authors thank the Texas Advanced Computing Center (TACC) and UBC 
Math Dept Cloud Computing for providing computing resources.

Data Availability  All the datasets used in this paper are well-known public datasets, and they are available 
through a simple search.

Compliance with Ethical Standards 

Conflict of Interest  The authors have no competing interests to declare that are relevant to the content of this 
article.

References

	 1.	 Atzmon, M., Maron, H., Lipman, Y.: Point convolutional neural networks by extension operators. 
arXiv:​1803.​10091 (2018)

	 2.	 Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 
18(9), 509–517 (1975)

	 3.	 Besl, P.J., McKay, N.D.: Method for registration of 3-D shapes. In: Sensor Fusion IV: Control Para-
digms and Data Structures, vol. 1611 (1992)

	 4.	 Caflisch, R.E.: Monte Carlo and quasi-Monte Carlo methods. Acta Numer. 7, 1–49 (1998)
	 5.	 Chang, A.X., Funkhouser, T., Guibas, L., Hanrahan, P., Huang, Q., Li, Z., Savarese, S., Savva, M., 

Song, S., Su, H., Xiao, J.X., Yi, L., Yu, F.: ShapNet: an information-rich 3D model repository. arXiv:​
1512.​03012 (2015)

	 6.	 Corless, R.M., Gonnet, G.H., Hare, D.E., Jeffrey, D.J., Knuth, D.E.: On the LambertW function. Adv. 
Comput. Math. 5(1), 329–359 (1996)

	 7.	 Curless, B., Levoy, M.: A volumetric method for building complex models from range images com-
puter graphics. In: SIGGRAPH 1996 Proceedings (1996)

	 8.	 Cutler, A., Breiman, L.: Archetypal analysis. Technometrics 36(4), 338–347 (1994)
	 9.	 Daley, D.J., Vere-Jones, D.: An Introduction to the Theory of Point Processes. Volume I: Elementary 

Theory and Methods. Springer, New York (2003)
	10.	 De Bruijn, N.G.: Asymptotic Methods in Analysis, vol. 4. Courier Corporation, USA (1981)
	11.	 Doerr, B.: Probabilistic tools for the analysis of randomized optimization heuristics. In: Theory of 

Evolutionary Computation, pp. 1–87. Springer, Cham, Switzerland (2020)
	12.	 Draug, C., Gimpel, H., Kalma, A.: The Octave Image package (version 2.14.0) (2022). https://​gnu-​

octave.​github.​io/​packa​ges/​image
	13.	 Dvoretzky, A., Kiefer, J., Wolfowitz, J.: Asymptotic minimax character of the sample distribution func-

tion and of the classical multinomial estimator. Ann. Math. Stat. 27(3), 642–669 (1956)
	14.	 Eldar, Y., Lindenbaum, M., Porat, M., Zeevi, Y.Y.: The farthest point strategy for progressive image 

sampling. IEEE Trans. Image Process. 6(9), 1305–1315 (1997)
	15.	 Fang, Y., Xie, J., Dai, G., Wang, M., Zhu, F., Xu, T., Wong, E.: 3D deep shape descriptor. In: Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2319–2328 (2015)

e−|�r|� ⩽ e−�d−1(2
d−1
2 −1)hd−1� ⩽ e−c�

1
d
+�(d−1)

⩽ e−c(d)�
1
d
→ 0 as � → ∞.

http://arxiv.org/abs/1803.10091
http://arxiv.org/abs/1512.03012
http://arxiv.org/abs/1512.03012
https://gnu-octave.github.io/packages/image
https://gnu-octave.github.io/packages/image


Communications on Applied Mathematics and Computation	

1 3

	16.	 Graham, R., Oberman, A.M.: Approximate convex hulls: sketching the convex hull using curvature. 
arXiv:​1703.​01350 (2017)

	17.	 Hadwiger, H.: Vorlesungen Über Inhalt, Oberfläche und Isoperimetrie, vol. 93. Springer, Berlin (1957)
	18.	 Helgason, S., Helgason, S.: The Radon Transform, vol. 2. Springer, New York (1980)
	19.	 Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of dimensional-

ity. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, pp. 604–613 
(1998)

	20.	 Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal 
covariate shift. arXiv:​1502.​03167 (2015)

	21.	 Jiménez, P., Thomas, F., Torras, C.: 3D collision detection: a survey. Comput. Gr. 25(2), 269–285 
(2001)

	22.	 Johnson, J., Douze, M., Jégou, H.: Billion-scale similarity search with GPUs. IEEE Trans. Big Data 
7(3), 535–547 (2019)

	23.	 Jones, P.W., Osipov, A., Rokhlin, V.: A randomized approximate nearest neighbors algorithm. Applied 
and Computational Harmonic Analysis 34(3), 415–444 (2013)

	24.	 Kazmi, I.K., You, L., Zhang, J.J.: A survey of 2D and 3D shape descriptors. In: 2013 10th Interna-
tional Conference Computer Graphics, Imaging and Visualization, pp. 1–10. IEEE (2013)

	25.	 Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv:​1412.​6980 (2014)
	26.	 Klain, D.A., Rota, G.-C.: Introduction to Geometric Probability. Cambridge University Press, Cam-

bridge (1997)
	27.	 Klokov, R., Lempitsky, V.: Escape from cells: deep KD-networks for the recognition of 3D point cloud 

models. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 863–872 
(2017)

	28.	 Krig, S.: Interest point detector and feature descriptor survey. In: Computer Vision Metrics, pp. 187–
246. Springer, Cham (2016)

	29.	 LeCun, Y.: The MNIST database of handwritten digits (1998). http://​yann.​lecun.​com/​exdb/​mnist/
	30.	 Li, J.X., Chen, B.M., Lee, H.: SO-Net: self-organizing network for point cloud analysis. In: Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9397–9406 
(2018)

	31.	 Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: PointCNN: convolution on X-transformed points. In: 
Advances in Neural Information Processing Systems, pp. 820–830 (2018)

	32.	 Lin, M., Gottschalk, S.: Collision detection between geometric models: a survey. Proc. IMA Conf. 
Math. Surf. 1, 602–608 (1998)

	33.	 Macdonald, C.B., Merriman, B., Ruuth, S.J.: Simple computation of reaction-diffusion processes on 
point clouds. Proc. Natl. Acad. Sci. 110(23), 9209–9214 (2013)

	34.	 Macdonald, C.B., Miller, M., Vong, A., et al.: The Octave Symbolic package (version 3.0.1) (2022). 
https://​gnu-​octave.​github.​io/​packa​ges/​symbo​lic

	35.	 Mahalanobis, P.C.: On the generalised distance in statistics. Proc. Natl. Inst. Sci. India 2, 49–55 (1936)
	36.	 Massart, P.: The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality. Ann. Prob. 1990, 1269–

1283 (1990)
	37.	 Meurer, A., Smith, C.P., Paprocki, M., Čertík, O., Kirpichev, S.B., Rocklin, M., Kumar, A., Ivanov, S., 

Moore, J.K., Singh, S., Rathnayake, T., Vig, S., Granger, B.E., Muller, R.P., Bonazzi, F., Gupta, H., 
Vats, S., Johansson, F., Pedregosa, F., Curry, M.J., Terrel, A.R., Roučka,  Š., Saboo, A., Fernando, I., 
Kulal, S., Cimrman, R., Scopatz, A.: SymPy: symbolic computing in Python. PeerJ Comput. Sci. 3, 
e103 (2017). https://​doi.​org/​10.​7717/​peerj-​cs.​103

	38.	 Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings 
of the 27th International Conference on Machine Learning (ICML-10), pp. 807–814 (2010)

	39.	 Natterer, F.: The Mathematics of Computerized Tomography. Society for Industrial and Applied Math-
ematics, USA (2001)

	40.	 Osting, B., Wang, D., Xu, Y., Zosso, D.: Consistency of archetypal analysis. SIAM J. Math. Data Sci. 
3(1), 1–30 (2021).

	41.	 Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A., Antiga, 
L., Lerer, A.: Automatic differentiation in PyTorch. In: NIPS Autodiff Workshop (2017)

	42.	 Peyré, G., Cuturi, M., et al.: Computational optimal transport: with applications to data science. Found. 
Trends® Mach. Learn. 11(5–6), 355–607 (2019)

	43.	 Pollard, D.: Convergence of Stochastic Processes. Springer, New York (1984)
	44.	 Qi, C.R., Su, H., Mo, K., Guibas, L.J.: Pointnet: deep learning on point sets for 3D classification and 

segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 
(2017)

http://arxiv.org/abs/1703.01350
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1412.6980
http://yann.lecun.com/exdb/mnist/
https://gnu-octave.github.io/packages/symbolic
https://doi.org/10.7717/peerj-cs.103


	 Communications on Applied Mathematics and Computation

1 3

	45.	 Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a 
metric space. In: Advances in Neural Information Processing Systems, pp. 5099–5108 (2017)

	46.	 Radon, J.: über die bestimmung von funktionen durch ihre integralwerte längs gewisser mannigfaltig-
keiten. Class. Pap. Mod. Diagn. Radiol. 5(21), 124 (2005)

	47.	 Rostami, R., Bashiri, F.S., Rostami, B., Yu, Z.: A survey on data-driven 3D shape descriptors. Comput. 
Graph. Forum 38(1), 356–393 (2019)

	48.	 Ruuth, S.J., Merriman, B.: A simple embedding method for solving partial differential equations on 
surfaces. J. Comput. Phys. 227(3), 1943–1961 (2008)

	49.	 Santaló, L.A.: Integral Geometry and Geometric Probability. Cambridge University Press, New York 
(2004)

	50.	 Sedaghat, N., Zolfaghari, M., Amiri, E., Brox, T.: Orientation-boosted voxel nets for 3D object recog-
nition. arXiv:​1604.​03351  (2016)

	51.	 Settles, B.: Active learning literature survey. Technical report, University of Wisconsin-Madison 
Department of Computer Sciences (2009)

	52.	 Shen, Y., Feng, C., Yang, Y., Tian, D.: Mining point cloud local structures by kernel correlation and 
graph pooling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 
(CVPR) (2018)

	53.	 Simonovsky, M., Komodakis, N.: Dynamic edge-conditioned filters in convolutional neural networks 
on graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 
3693–3702 (2017)

	54.	 Sinha, A., Bai, J., Ramani, K.: Deep learning 3D shape surfaces using geometry images. In: European 
Conference on Computer Vision. Springer, Berlin (2016)

	55.	 Solmon, D.C.: The X-ray transform. J. Math. Anal. Appl. 56(1), 61–83 (1976)
	56.	 The mpmath development team: mpmath: a Python library for arbitrary-precision floating-point arith-

metic (version 1.2.1). (2021). https://​mpmath.​org/
	57.	 Trefethen, L.N., Weideman, J.A.C.: The exponentially convergent trapezoidal rule. SIAM Rev. 56(3), 

385–458 (2014)
	58.	 Tsai, Y.-H.R.: Rapid and accurate computation of the distance function using grids. J. Comput. Phys. 

178(1), 175–195 (2002)
	59.	 Villani, C.: Optimal Transport: Old and New, vol. 338. Springer, Berlin (2009)
	60.	 Wang, P.-S., Liu, Y., Guo, Y.-X., Sun, C.-Y., Tong, X.: O-CNN: Octree-based convolutional neural 

networks for 3D shape analysis. ACM Trans. Gr. (TOG) 36(4), 72 (2017)
	61.	 Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for 

learning on point clouds. ACM Trans. Gr. (TOG) 38(5), 146 (2019)
	62.	 Wu, Z., Song, S., Khosla, A., Yu, F., Zhang, L., Tang, X., Xiao, J.: 3D shapenets: a deep representation 

for volumetric shapes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Rec-
ognition (CVPR), pp. 1912–1920 (2015)

	63.	 Xia, F., et al.: PointNet.pytorch Git repository. https://​github.​com/​fxia22/​point​net.​pytor​ch
	64.	 Xie, J., Dai, G., Zhu, F., Wong, E.K., Fang, Y.: Deepshape: deep-learned shape descriptor for 3D shape 

retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 39(7), 1335–1345 (2016)
	65.	 Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3D object detection. In: Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4490–
4499 (2018)

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable 
law.

http://arxiv.org/abs/1604.03351
https://mpmath.org/
https://github.com/fxia22/pointnet.pytorch

	Nearest Neighbor Sampling of Point Sets Using Rays
	Abstract
	1 Introduction
	1.1 Related Work

	2 Methods
	2.1 Discretization
	2.2 Operations on RaySense Sketches
	2.2.1 Histograms
	2.2.2 Line Integrals
	2.2.3 Convolutions

	2.3 Comparing Data Sets

	3 Properties of RaySense
	3.1 Properties of Sampling with a Single Ray
	3.1.1 Sampling Points with Larger Voronoi Cells
	3.1.2 Sampling Consistency
	3.1.3 Approximate Line Integrals
	3.1.4 Ray not Fully Contained in 

	3.2 Properties of Sampling with Multiple Rays
	3.2.1 Biased Samplings Toward Salient Points
	3.2.2 Invariant Histogram


	4 Examples of Applications
	4.1 Comparison of Histograms of RaySense Samples
	4.2 Salient Points in the MNIST Data
	4.3 RaySense and Integral Transforms
	4.4 Point Cloud Registration
	4.5 Point Cloud Classification Using Neural Networks

	5 Summary
	Appendix A Examples of Ray Distributions
	Appendix B Implementation Details of RayNN
	Appendix C Details of the Proof of Theorem 1
	Appendix D Details of the Proof of Theorem 3
	Appendix D.1 Poisson Point Process
	Appendix D.2 Main Ideas of the Proof of Theorem 3
	Appendix D.3 Proof of Theorem 3

	Acknowledgements 
	References


