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Abstract

Uncovering relationships between neuroanatomy, behavior, and evolution is
important for understanding the factors that control brain function. Voluntary exercise is
one key behavior that both affects, and may be affected by, neuroanatomical variation.
Moreover, recent studies suggest an important role for physical activity in brain evolution.
We used a unique and ongoing artificial selection model in which mice are bred for high
voluntary wheel-running behavior, yielding four replicate lines of High Runner (HR) mice
that run ~3-fold more revolutions per day than four replicate non-selected Control (C)
lines. Previous studies reported that, with body mass as a covariate, HR mice had
heavier whole brains, non-cerebellar brains, and larger midbrains than C mice. We
sampled mice from generation 66 and used high-resolution microscopy to test the
hypothesis that HR mice have greater volumes and/or cell densities in nine key regions
from either the midbrain or limbic system. In addition, half of the mice were given 10
weeks of wheel access from weaning, and we predicted that chronic exercise would
increase the volumes of the examined brain regions via phenotypic plasticity. We
replicated findings that both selective breeding and wheel access increased total brain
mass, with no significant interaction between the two factors. In HR compared to C mice,
adjusting for body mass, both the red nucleus (RN) of the midbrain and the hippocampus
(HPC) were significantly larger, and the whole midbrain (WM) tended to be larger, with no
effect of wheel access nor any interactions. Linetype and wheel access had an
interactive effect on the volume of the periaqueductal gray (PAG), such that wheel
access increased PAG volume in C mice but decreased volume in HR mice. Neither

linetype nor wheel access affected volumes of the substantia nigra (SN), ventral



tegmental area (VTA), nucleus accumbens (NAc), ventral pallidum (VP) or basolateral
amygdala (BLA). We found no main effect of either linetype or wheel access on neuronal
densities (humbers of cells per unit area) for any of the regions examined. Taken
together, our results suggest that the increased exercise phenotype of HR mice is related
to increased red nucleus and hippocampal volumes, but that chronic exercise alone does

not produce such phenotypes.



Introduction

The vertebrate brain is a complex organ, comprised of structures and areas with
discrete functional specializations. Various studies comparing species have found that
brain size or neuroanatomical structural volume correlates with behavioral ecology [Krebs
et al. 1989; Hutcheon et al. 2002; Gonzalez-Voyer and Kolm 2010; Swanson et al. 2012;
Liao et al. 2015; DeCasien and Higham 2019; Muller and Montgomery 2019]. For
example, Raichlen and Gordon [2011] found a positive correlation between relative
mammalian brain size and maximum aerobic metabolic rate (VO2max), which they
viewed as "a proxy for exercise frequency and capacity" [see also Albuquerque et al.
2015]. Species of insectivorous bats that rely on echolocation when pursuing prey have
larger auditory nuclei than phytophagous bats [Hutcheon et al. 2002] and, among species
of Carnivora, the relative volume of the cerebrum anterior to the cruciate sulcus is
negatively related to both forelimb use in food processing and home range size [Swanson
et al. 2012]. Brain-behavior relationships also exist in non-mammals; for example,
species of food-storing birds that use long-lasting spatial memories for food retrieval have
a larger hippocampal complex relative to their body size as compared with species that
do not store food [Krebs et al. 1989] and food-caching birds have larger hippocampi
relative to telencephalon size (or body size) [Sherry et al. 1989]. In lizards, the medial
and dorsal cortices appear to be homologs of the mammalian hippocampus, and within
the side-blotched lizard Uta stansburiana, dorsal cortical volume relative to the remainder
of the telencephalon covaries with territory size [LaDage et al. 2009]. As another
example, in chondrichthyans, relative sizes of major brain regions vary in relation to both

ecological lifestyle and maternal investment [Mull et al. 2020].



Although neuroanatomical features can evolve in concert with behavior and
ecology, they can also be affected by experiences and exposures throughout the lifetime.
Interestingly, regional volumetric changes occur in the brains of rodents provided varying
durations of voluntary exercise. For example, rats with just 7 days of wheel running
showed significant increases in volumes of motor, somatosensory, association, and
visual cortices [Sumiyoshi et al. 2014]. In another study, mice with 4 weeks of exercise
had a significantly increased volume of the hippocampus [Cahill et al. 2015]. After a
period of 6-8 weeks of housing with wheels, Biedermann et al. [2012] found increases in
hippocampal volumes in the brains of these mice. These examples of phenotypic
plasticity are consistent with an emerging view that the human brain may have coadapted
with relatively high levels of aerobic activity [Raichlen and Alexander 2020]. Rodent
wheel running is viewed as a model for some forms of human voluntary exercise
[Eikelboom 1999; Garland, Jr. et al. 2011b]. Importantly, Meijer and Robbers [2014]
showed that wild rodents will run on wheels placed in nature, indicating that wheel
running is a motivated and elective behavior, not solely a lab artefact [see also Sherwin
1998; Novak et al. 2012; Greenwood and Fleshner 2019].

Our unique High Runner mouse model, which includes four replicate selectively
bred High Runner (HR) lines and four non-selected Control (C) lines [Swallow et al.
1998], is well-poised to help answer questions about neuroanatomical responses to
selection that acts on behavior, as well as phenotypic plasticity induced by physical
activity. Since reaching selection limits around generation 17-27 (depending on line and
sex), mice from the HR lines have run ~2.5-3 times as many revolutions per day as those

from C lines [Keeney et al. 2008; Careau et al. 2013; Acosta et al. 2017; Hiramatsu et al.



2017; Kelly et al. 2017], primarily due to increased average (and maximum) running
speeds [Garland et al. 2011a]. HR mice also run more intermittently on wheels [Girard et
al. 2001] and are more active in home cages when wheels are not available [Malisch et
al. 2009a; Copes et al. 2015]. Not surprisingly, both endurance capacity and maximal
oxygen consumption (VO2max) measured during forced treadmill exercise are enhanced
in HR mice [Rezende et al. 2006; Meek et al. 2009; Kolb et al. 2010]. Various behavioral
phenotypes differ between HR and C mice. Compared with C mice, HR mice build
smaller nests when housed either with or without wheels [Carter et al. 2000]; HR mice
make fewer turns in an open-field test [Bronikowski et al. 2001]; HR males have lower
latencies to attack crickets in a test of predatory aggression [Gammie et al. 2003]; HR
mice have reduced responsiveness to wheel-running rewards of shorter duration [Belke
and Garland 2007]; HR males spend more time immobile in the forced-swim test when
wheel deprived, suggesting a predisposition for depression-like behavior or increased
fear responsivity [Malisch et al. 2009a]; finally, HR males spent more time in the closed
arms of an elevated plus maze, suggesting increased anxiety, increased fear responsivity
or decreased risk-taking [Singleton and Garland 2019]. The genetic and epigenetic basis
for differences between the HR and C lines are an area of active investigation [Saul et al.
2017; Hillis et al. 2020; Nguyen et al. 2020; Latchney et al. 2022; Hillis and Garland
2023].

Additional neurobiological phenotypes have occurred from selective breeding. For
example, HR mice have an altered dopaminergic system [Rhodes et al. 2001, 2005;
Rhodes and Garland 2003; Mathes et al. 2010; Waters et al. 2013], unusual hippocampal

neurogenesis with long-term wheel access [Rhodes et al., 2003], an altered



endocannabinoid system [Keeney et al., 2008, 2012; Thompson et al., 2017], and HR
mice show increased brain-derived neurotrophic factor (BDNF) acutely after running
[Johnson et al., 2003]. We are interested in identifying neuroanatomical correlates of the
HR behavioral phenotypes, as few studies have examined the neuroanatomy of HR mice.
Kolb et al. [2013c] found that non-cerebellar brain mass of both sexes was significantly
increased (as much as 7.0% for dry mass in males) when compared to C mice (with body
mass as a covariate). These authors additionally used ex-vivo MRI to reveal that HR
mice had a significantly larger midbrain volume than C mice (~13% with body mass as a
covariate). Hiramatsu et al. [2017] reported that whole brain mass tended to be larger in
HR mice and Cadney et al. [2021] found the brain to be statistically significantly larger in
HR mice (both analyses with body mass as a covariate).

In the present study, we investigate midbrain and limbic regions associated with
motor control, motivation, and/or reward. Although changes in brain region size do not
necessarily show that a larger region is responsible for increased exercise behavior, it
does provide evidence of a correlated response — i.e., these things have evolved
together. In addition, with our experimental setup, we are able to tell if chronic exercise
alone is responsible for an increase in brain region size. Our nine ROIs include the
whole midbrain (WM) and, within the midbrain, the substantia nigra (SN), ventral
tegmental area (VTA), red nucleus (RN), and periaqueductal gray (PAG). Within the
limbic system, we assess the hippocampus (HPC), nucleus accumbens (NAc), ventral
pallidum (VP), and basolateral amygdala (BLA). Our rationale for examining these
regions follows (see also the Discussion).

Several previous studies of the HR mice have found changes in the dopaminergic



system [Rhodes et al. 2001; Rhodes and Garland 2003], which is involved in both the
processing of rewards and motivation for behavior, as well as movement itself [Schultz
1998; Roeper 2013]. For example, HR mice have decreased activity levels when
administered the dopamine transporter blocker methylphenidate (Ritalin) and decreased
sensitivity to D1-type receptor antagonist SCH 23390 [Rhodes and Garland 2003;
Rhodes et al. 2005]. As an important part of both dopamine pathways, the SN might be
expected to be involved whether the HR mice had evolved changes in their locomotor
abilities or the way in which they process rewards [e.g., see Belke and Garland 2007].
The VTA is another critical region involved in the processing of rewards [Mercuri et al.
1992; llango et al. 2014]. In addition, a recent study has specifically implicated this
region in the motivation for voluntary wheel running via the endocannabinoid system
[Dubreucq et al. 2013], and four studies have shown that the endocannabinoid system is
altered in the HR mice [Keeney et al. 2008, 2012; Thompson et al. 2017; Schmill et al.
2022].

The RN is a midbrain region that plays a prominent role in locomotion. Within the
RN, the rubrospinal tract originates and projects axons to the brain stem, cerebellum, and
spinal cord to function in the control of muscle tone and limb movement. The rubrospinal
system receives somatosensory inputs with information processed by the cerebellum and
the basal ganglia, and from cortical motor areas [Schieber and Baker 2013]. To our
knowledge, no previous study has examined the size of the RN in relation to any specific
behavior, either among or within species.

The PAG plays a major role in both ascending and descending pain transmission

[Behbehani 1995]. A previous study [Li et al. 2004] found no statistical difference in the



response of HR and C mice to opioid antagonists (naloxone, naltrexone); specifically,
they showed an equal decrease in tail-flick latency and a proportionally equal decrease in
running. However, it is possible that changes in the periaqueductal gray have occurred
without a change in opioid-mediated pain sensitivity (other neurotransmitters are found in
the PAG, including gamma-aminobutyric acid and glutamate). Although much of pain
sensitivity is modulated by opioids, many of the neurons in the PAG release gamma-
amino-butyric-acid (GABA), glutamate and aspartic acid, all of which can be involved in
pain neurotransmission [Behbehani 1995].

We also chose to analyze regions associated with the limbic system, because of
their functions in reward-processing, motivation, and learning & memory. Size
differences related to behavior or genetic factors have been reported for various limbic
structures. For example, Makris et al. [2008] showed a decrease in volume in reward-
related areas in alcoholic men, Gilman et al. [2014] found greater gray matter density in
the nucleus accumbens of young adult marijuana users, and Seifert et al. [2015]
observed a decrease in nucleus accumbens volume in heroin-dependent users
undergoing treatment [see also Discussion as well as Rapuano et al. 2017]. Importantly,
some evidence suggests the possibility of exercise addiction in the HR lines of mice
[Malisch et al. 2009b; Kolb et al. 2013a]. These regions are also among those that
respond to chronic exercise [Biedermann et al. 2012; Cahill et al. 2015; Yamamoto et al.
2017]. The additional regions studied here (HPC, BLA, NAc, and VP) have been
implicated in not only affective behaviors, but also goal-directed and reward-seeking
motivated behavior [Ambroggi et al. 2008; Stuber et al. 2011; Lee et al. 2016; Yang and

Wang 2017; LeGates et al. 2018]. Moreover, previous studies of HR mice that examined



the HPC found evolved differences in gene expression [Bronikowski et al. 2004],
increased hippocampal brain-derived neurotrophic factor (BDNF) following a week of
wheel running compared to C mice [Johnson et al. 2003], and wheel-running activation of
dentate gyrus cells by Fos-IR that reached a plateau for HR but not C mice [Rhodes et al.
2003a].

The purposes of the present study were to uncover evolved differences in regional
brain volume in relation to physical activity levels and to examine whether the regions of
interest respond to chronic aerobic exercise experienced during a critical developmental
window. Overall, this study contributes to our understanding of both brain evolution in

response to selection and neuroplasticity.

Materials & Methods

Ethical approval

All experimental procedures were approved by the UC Riverside Institutional

Animal Care and Use Committee (20080018).

Experimental Animals

Mice came from an artificial selection experiment with four replicate lines of High
Runner (HR) mice selected for high voluntary wheel running and four replicate non-
selected Control (C) lines [Swallow et al. 1998]. The original progenitors were 224
outbred, genetically variable laboratory house mice (Mus domesticus) of the Hsd:ICR
strain. After two generations of random mating, mice were randomly paired and assigned

to the 8 closed lines. Each generation, beginning at six weeks of age, mice are housed

10



individually with access to a running wheel for six days. In the HR lines, the highest-
running male and female from each family are selected as breeders based on the total
number of revolutions run on days five and six of the six-day test. In C lines, breeders
are chosen without regard to wheel running.

One hundred females from generation 66, half HR and half C, were weaned at 3
weeks of age and placed directly into individual cages. For the next 10 weeks, half of the
mice from each linetype were provided 24/7 access to running wheels [1.12 m in
diameter, as in the routine selection experiment: Swallow et al. 1998] and the other half
had no access to wheels. Passive infrared sensors mounted within each cage measured
home-cage activity (HCA) [Copes et al. 2015]. During the final week of wheel access (or
lack thereof) and into the 13™ week, brains were removed following transcardial perfusion
and subsequently preserved. Age at the time of perfusion ranged from 84 to 113 days,

and averaged 99.0 days (SD =7.48 days, N = 100).

Tissue Processing and Imaging

Following removal, the brains were stored in 30% sucrose in 4%
paraformaldehyde (PFA) for a minimum of 48 hours. Tissue was sectioned coronally at
40 micrometers thickness on a Leica CM1850 cryostat, with alternating slices placed on a
slide designated for this experiment or a slide for future testing. Following sectioning,
tissue was stained for Nissl substance using Cresyl Violet and digital images were taken
for each region using a Zeiss Discovery V.12 stereo microscope and an attached Zeiss
AxioCam. Magnification for each brain region was chosen for the best differentiation of

region borders and for clarity. Sample sizes are <100 due to various artefacts of slicing
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and staining, e.g., tears or damage that made it impossible to demarcate regions

accurately.

Regional Area Measurements

ImagedJ software (NIH) was used to import each photograph and the polygon-
selection tool provided the means to free-hand outline each region of interest. The
Franklin and Paxinos mouse brain atlas [Franklin and Paxinos 1997, 2008] and online
Allen Mouse Brain Atlas [Allen Institute for Brain Science 2021] were used as guides. A
digital micrometer for each magnification was used to set the scale of pixels/um, which
was used to calculate the area of the outlined brain region in each image. For the whole
midbrain (WM), periaqueductal gray (PAG) and nucleus accumbens (NAc), some images
centrally contained the cerebral aqueduct (WM and PAG) or anterior commissure (NAc),
which was also traced, then later subtracted from the area, volume, and cell count
measurements. Images of the tracing details for individual regions are presented in the

Online Supplementary Material.

Regional Cell Density Measurements

The Image-based Tool for Counting Nuclei (ITCN) was used in ImagedJ to measure
the number of cells within each photographed and outlined brain ROI [Byun et al. 2006].
Settings within the ITCN for each region included the average pixel width of cells, the
minimum distance between cells, and dark peaks to be detected. The total number of
cells was then summed and divided by the total cross-sectional area, generating the

measure of average cell count per unit area. For the WM, PAG and NAc, the total cell

12



number and area of their inner component (cerebral aqueduct or anterior commissure)

were subtracted before calculating the cell count per unit area.

Volume Calculations

Brain region volumes were calculated using the area (um?) output (from the ITCN)
multiplied by 80pm (the distance between each section). Values for missing or damaged
tissue sections were replaced by taking the average of the previous and next section, or
as follows for multiple sections: e.g., if sections 8, 9 & 10 were missing, the volume of
section 7 was subtracted from section 11 to get number x, and then x was divided by 4 to
get number y, which was added to the volume of section 7 to get the volume of section 8,
then added to the volume of section 8 to get the area of section 9, etc. The volumes from
each section in each ROl were then summed to get an overall estimate of the region
volume for each mouse.

Except for WM and PAG, the volumes were multiplied by two because images
were taken unilaterally to produce higher magnified photographs for accurate cell counts.
Mice that were judged to be missing sections at the anterior or posterior end(s) of a
region, as well as mice with lost or particularly damaged tissue (sometimes region
specific) from the slicing and staining processes, were excluded from the analyses.

Thus, some final sample sizes were considerably smaller than the starting number of

100.

Statistical Analyses
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Following numerous previous studies using mice from the selection experiment,
mixed models were implemented in SAS Procedure Mixed, with wheel access and
linetype as main effects, and replicate line nested within linetype (HR vs. C) as a random
effect. The interaction between wheel access and linetype was tested relative to the
wheel*line(linetype) random effect term. Additionally, a subset of HR mice have a “mini-
muscle” phenotype caused by a recessive allele which reduces hindlimb muscle mass by
about half, and pleiotropically affects a variety of other traits [Garland et al. 2002; Kelly et
al. 2013]. Mini-muscle mice were discerned at dissection by examination of the triceps
surae muscles, then included as an additional main effect in all analyses. Body mass,
age, the amount of time brains spent in paraformaldehyde prior to sectioning, and how
long the sections spent in a freezer (log1o transformed) before Nissl staining were
included as covariates for all volume analyses. Aside from body mass, all of these are
viewed as nuisance variables, so they are not presented in the text or discussed. All
analyses were then repeated with brain mass, rather than body mass, as a covariate.
Neither body nor brain mass was used as a covariate for the cell density analyses. When
needed, dependent variables were transformed to improve normality of residuals. Mice
that had residual values greater than approximately three standard deviations from the
mean were excluded from the final analyses. P-values < 0.05 were treated as
statistically significant. For interactions, P-values < 0.1 were treated as significant, as the
power to detect interactions is considerably lower than that for detecting main effects

[Wahlsten 1990, 1991].
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Results

Wheel Running

As expected, HR always ran more than C mice (Fig. 1), with the
difference reaching statistical significance in weeks 2-10 (Table 1). The
average ratio of wheel running over all 10 weeks for HR/C was 3.27 (LS Means
from SAS). The effect of mini-muscle status was significant only in week 2 (Table 1), and

this may represent a Type | error.

Home-cage Activity

The linetype-by-wheel access interaction was significant for home-cage activity
during all weeks (Table 1). HR mice without wheel access always had the highest HCA,
and wheel access decreased HCA in both HR and C mice, with a much larger decrease

for HR mice (Fig. 2). Mini-muscle status did not significantly affect HCA.

Body Mass and Whole-brain Mass

Mice from the HR lines tended to weigh less than C mice (25.1 vs. 27.8 grams, P =
0.0912, Fig. 3A), but wheel access did not significantly affect body mass (P = 0.1533),
and the linetype-by-wheel access interaction was not significant (P = 0.2825). Body
mass was positively related to age (P = 0.0447), but was not related to mini-muscle
status (P = 0.6895).

With body mass as a covariate (P = 0.0056), HR mice tended to have heavier

brains than C mice (LS means: 0.494 grams vs. 0.471 grams, P = 0.0676, Table 2, Fig.
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3B), and mice with wheel access for 10 weeks had heavier brains than those without
wheels (0.492 grams vs. 0.473 grams, P = 0.0127), with no interaction and no effect of
mini-muscle status. Without body mass as a covariate, only the positive effect of wheel

access remained (P = 0.0267).

Brain Region Volumes and Densities in Relation to Mini-muscle Status

The effect of the mini-muscle phenotype was never statistically significant (see
Tables 2 and 3), regardless of whether body mass or brain mass was used as a

covariate, and so is not mentioned further in the Results or in the Discussion.

Whole Midbrain

With body mass as a covariate, the total volume of the midbrain tended to be
larger in the HR mice (P = 0.0713, Table 2, Fig. 4), an effect that was not apparent with
brain mass as a covariate or with no covariate. The number of cells per unit area in the
whole midbrain was not significantly affected by linetype, wheel access or their

interaction (Table 3).

Substantia Nigra

Neither linetype nor wheel access affected the volume of the substantia nigra, with
no interaction, regardless of the covariate used. Neither linetype nor wheel access
affected the number of cells per unit area in the SN, with no significant interaction (Table

3).
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Ventral Tegmental Area

Without body or brain mass as a covariate, HR mice tended to have a larger
ventral tegmental area (P = 0.0820, Fig. 5A), with no effect of wheel access (P = 0.4180)
and no interaction (P = 0.8184). Neither linetype (Table 3) nor wheel access had a
significant effect on the number of cells per unit area in the VTA, with no significant

interaction.

Red Nucleus

With body mass as a covariate, the total volume of the red nucleus was
significantly larger in HR compared to C mice (P = 0.0151, Fig. 5B, Table 2), with no
statistical effect of wheel access or the interaction between linetype and wheel access.
Similar results were obtained without body mass as a covariate, although the linetype
effect became statistically non-significant (P = 0.0988) when brain mass was used as a
covariate. The number of cells per unit area in the RN was not significantly affected by

linetype, wheel access or their interaction (Table 3).

Periaqueductal Gray

Linetype and wheel access had an interactive effect on the volume of the
periaqueductal grey (interaction P = 0.0253, Fig. 5C): wheel access increased the
volume of the PAG in C mice, while decreasing it in HR mice. This significant interaction
was robust to using brain mass as the covariate or having no covariate. Neither linetype

(Table 3) nor wheel access affected cells per unit area in the PAG, with no interaction.
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Hippocampus

With body mass as a covariate, the total volume of the hippocampus was
significantly larger in HR mice (P = 0.0134, Fig. 5D, Table 2), with no effect of wheel
access nor an interaction. Results were similar with brain mass as a covariate (linetype
P = 0.0876) or no covariate (linetype P = 0.0273). The number of cells per unit area in
the HPC was not significantly affected by linetype, wheel access or the interaction (Table

3).

Basolateral Amygdala

The total volume of the basolateral amygdala was not significantly affected by
linetype (P = 0.1416), wheel access or their interaction (Table 2), regardless of the
covariate used. Brain mass was a significant positive predictor of basolateral amygdala
volume (P = 0.0227). No effects on the number of cells per unit area were observed

(Table 3).

Nucleus Accumbens

Nucleus accumbens total volume was not statistically affected by linetype, wheel
access or their interaction (Table 2). The number of cells per unit area (excluding the
anterior commissure) was also not significantly affected by linetype, wheel access or
body mass, but the linetype-by-wheel access interaction (P = 0.0935) (Table 3) indicated
that wheel access slightly decreased counts in C mice (-1%) but increased them in HR

mice (+3%).
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Ventral Pallidum

The total volume of the ventral pallidum was not statistically affected by linetype (P
= 0.1546), wheel access or their interaction (Table 2), regardless of the covariate used,
but brain mass was a positive predictor. No effect on the number of cells per unit area

was observed (Table 3).

Discussion

Our primary goal was to test for differences in the size of key brain regions
between four replicate lines of mice that have been bred for voluntary exercise since
1993 (66 generations in the present study) and their four non-selected control lines. In
addition, we tested for effects of 10 weeks of wheel access, beginning at weaning, on the
same brain regions. We also compared neuronal densities for each region. Our main
findings were that mice with wheel access for 10 weeks had significantly heavier brains
than those without wheels (regardless of whether body mass was used as a covariate),
and that HR mice also tended to have relatively heavier brains than C mice (P = 0.0676
with body mass as a covariate). In addition, the volumes of some regions were either
significantly larger (red nucleus, hippocampus: whether or not body mass was a
covariate) or tended to be relatively larger (whole midbrain: P = 0.0713 with body mass
was a covariate) in the HR mice. We also found one region with a significant interactive
effect — wheel access increased the volume of the PAG in C mice but decreased it in HR

mice (both with and without body mass or brain mass as a covariate).

Wheel Running and Home-cage Activity
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Wheel-running (Fig. 1) and home-cage activity results were largely as previously
reported [e.g., Malisch et al. 2009a; Garland et al. 2011b; Careau et al. 2013; Copes et
al. 2015], with HR mice running ~3-fold more than C over the course of the experiment.
When housed with wheels, mice from the HR and C lines have similar activity levels in
their home cages, but without wheels HCA is increased in both linetypes, and the
increase is much greater for HR mice (Fig. 2). Thus, HR mice appear to "transfer" their
elevated wheel activity to cage activity when deprived of wheels [Rhodes et al. 2005;

Copes et al. 2015; Acosta et al. 2017].

Body Mass and Whole-brain Mass

As expected from previous studies, HR mice tended to weigh less than C mice at
the conclusion of the experiment (Fig. 3A, Table 2). However, 10 weeks of wheel access
did not significantly affect body mass, with no interaction between linetype and wheel
access. Female mice from these lines do tend to have smaller changes in body mass
than males when given chronic access to a wheel, as has generally been reported for
females versus males in laboratory mice and rats [Swallow et al. 1999, 2005; references
therein; but see Hiramatsu and Garland 2018 regarding 6 days of wheel access]. In any
case, the use of body mass as a covariate in analyses of brain size [see also Fig. 3 in
Martin and Harvey 1985] is important to consider because linetype differences are
somewhat confounded with body size differences in the HR and C mice [Kolb et al.
2013c].

With body mass as a covariate, total brain mass (wet) tended to be larger in

female HR mice (+5%, P = 0.0676), consistent with results of a previous study [Kolb et al.
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2013c], which found that HR females from generation 34 had larger whole brains than C
mice (wet mass +11%, P = 0.0768; dry mass +11%, P = 0.0650). However, the
magnitude of the difference we measured was reduced to non-significance without body
mass as a covariate (Table 2). Wheel access for 10 weeks increased total brain mass in
both HR and C mice (+4%), a result seen previously in these lines, even with only 3
weeks of juvenile exercise [Cadney et al. 2021]. This result was robust to not using body
mass as a covariate. Chronic exercise upregulates growth factors in the brain, including
brain-derived neurotrophic factor and nerve growth factor [Dishman et al. 2006;
Sumiyoshi et al. 2014]. Difference in brain-derived neurotrophic factor have been
implicated previously in comparisons of the HR and C mice [Johnson et al. 2003;

Latchney et al. Unpublished results].

Relationships of Whole Brain Mass to Regional Brain Volumes

The "mosaic" model of brain evolution posits that the size of individual structures is
related to particular behaviors [Barton and Harvey 2000; DeCasien and Higham 2019]
and contrasts with a model of coordinated structural evolution, in which the size of the
whole brain evolves with little change in the relative size of individual regions [Finlay and
Darlington 1995]. We observed both patterns in our comparisons [see also Kolb et al.
2013c]. Brain mass was a statistically significant positive predictor of RN, PAG, HPC,
BLA, and VP volume, but not of whole midbrain, SN, VTA, or NAc volume (Table 2).
Thus, the former structures generally covary with whole brain size, whereas the latter

show somewhat independent variation in these lines of mice.

21



Midbrain: Whole Midbrain

We also supported another major result of Kolb et al. [2013c], who found that HR
mice had larger midbrains than C mice (only with body mass as a covariate), though our
result here (P = 0.0713) did not reach statistical significance. Although our sample size
was double that in the previous study, we tested an additional factor (wheel access) and
used a different method of estimating volume. Wheel access did not have a significant
effect on midbrain volume in the present study, which suggests that the increase seen in
HR mice is due primarily to their selective breeding (i.e., a direct genetic effect), rather
than an effect of their higher physical activity acting as an intermediate phenotype (Fig.
6). However, HR mice have increased home-cage activity when they do not have access
to wheels (Fig. 2), and it is possible that this increased activity, though not at the same
level as the voluntary wheel running, has a positive effect on midbrain volume through

phenotypic plasticity.

Midbrain: Ventral Tegmental Area

In absolute terms, the volume of the VTA tended to be larger in HR mice, with no
effect of wheel access. The VTA is involved in reward processing and has also been
specifically implicated in the control of voluntary wheel running via the endocannabinoid
system [Dubreucq et al. 2013], which is altered in HR mice [Keeney et al. 2008, 2012;

Thompson et al. 2017; Schmill et al. 2022].

Midbrain: Red Nucleus

Given that the RN plays an important role in locomotion and that a previous study
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found HR midbrains to be enlarged [Kolb et al. 2013c], we predicted larger red nuclei in
HR mice. Plastic changes in response to exercise often improve organ function (adaptive
plasticity) [e.g., see Garland and Kelly 2006; Swallow et al. 2010; Anderson et al. 2014;
Kelly et al. 2017]; therefore, we also expected that chronic locomotion on wheels might
enlarge the RN, perhaps especially in HR mice because they run much more than C
mice. Although the RN was significantly larger in HR mice (Table 2), its volume was not
affected by wheel running.

In support of its role in locomotor behavior, Kolpakwar et al. [2021] found that
patients with early-onset Parkinson’s disease (PD) had significantly larger RN volumes
compared to patients in a late-onset disease group [see also Colpan and Slavin 2010].
Whether this difference is related to the genetic basis of PD is unknown; however,
literature suggests the existence of genetic effects that are unique to either early- or late-
onset PD [Hicks et al. 2002; Billingsley et al. 2018; Blauwendraat et al. 2020].
Environmental risk factors for PD have also been identified [Kieburtz and Wunderle 2013;
Delamarre and Meissner 2017], but only one study has shown that physically active
individuals have a decreased risk of PD [Thacker et al. 2008]. Given that PD is
characterized by the loss of midbrain dopamine, the presence of dopamine and
dopamine receptor mRNA in the RN is noteworthy [Jellinger et al. 1981; Hurd et al.
2001]. [For a review of evidence pertaining to the role of dopaminergic pathways in
regulating voluntary activity, see Ruiz-Tejada et al. 2022.]

The evolution and differentiation of the RN was primarily driven by quadrupedal
locomotion, and its primary function involves the execution of voluntary movements by

forelimbs and hindlimbs [Basile et al. 2021]. Hence, a larger red nucleus in HR mice may
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indicate enhanced control of limb movement. Furthermore, the RN contains sensory
neurons that respond to painful stimulation, and connectivity suggests that the RN may
contribute to the body’s analgesic response via the descending antinociceptive system
[Prado et al. 1984, Basile et al. 2021]. Interestingly, the PAG (see next section) is part of
the same system, and PAG volume was influenced by a linetype-by-wheel access
interaction.

In addition, a recent study [He et al. 2022] identified a pathway from the RN to the
VTA that is involved specifically in exercise reward. Glutamatergic neurons in the
magnocellular region of the RN had increased c-fos expression after a wheel-running
program that stretched over 10 days, synapse onto dopaminergic VTA neurons, and are
rewarding when activated. Given this information and the VTA results noted above, it is
perhaps not surprising that we also found an increase in RN volume. He et al. [2022]
also showed that there is a reciprocal pathway from the dopaminergic VTA neurons to
the RN.

We hypothesize that volume differences in the RN & VTA contribute to the
previously reported alterations in dopamine signaling in the HR mice [Rhodes and
Garland 2003; Bronikowski et al. 2004; Rhodes et al. 2005; Mathes et al. 2010; Garland
et al. 2011b]. These changes in HR dopamine function may be a basis for increased
motivation to exercise.

Various lines of evidence suggest that HR mice are more highly motivated to run
on wheels compared to C mice [Rhodes et al. 2005; Belke and Garland 2007]. Exercise
is a rewarding behavior [Sher 1998; Ekkekakis et al. 2005; Dishman et al. 2006; Brené et

al. 2007; Garland et al. 2011; Novak et al. 2012] and one possible reason for HR
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increased motivation could be a modified sensitivity to exercise reward, an idea
supported by research showing HR mice have altered D1-type receptor signaling
[Rhodes and Garland 2003]. Interestingly, a study using an operant conditioning
paradigm, where mice were trained to lever-press in order to gain access to running
wheels, found that a short (90 second) amount of running time was sufficient in C mice,
but HR mice only learned the paradigm when the amount of running time allowed was 30
minutes [Belke and Garland 2007]. This suggests that the motivational system may have
been altered in a way that reduces the value of short running durations. These results
match one theory of attention deficit hyperactivity disorder — that those with ADHD have
an elevated reward threshold — and ADHD likely also involves changes in dopamine

signaling [Sharma and Couture 2014; Klein et al. 2019].

Midbrain: Periaqueductal Gray

The PAG is involved in ascending and descending pain transmission.
Interestingly, wheel access increased the size of the PAG in C mice, but
decreased it in HR mice (Fig. 5C), suggesting that pain sensitivity may have changed
differentially. One possibility is that the decrease in PAG volume in HR mice
reduces any pain they may feel during “excessive” wheel running and hence
helps permit those high amounts of running. Although HR mice had decreased
pain sensitivity while exercising in a previous study [Li et al. 2004], C mice showed the
same response.
The PAG has other functions besides pain transmission, such as the processing of

fear and anxiety, and the production of vocalizations [Behbehani 1995]. Adult male HR
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mice from generation 68 spent more time in the closed arms of an elevated plus maze,
suggesting increased anxiety [Singleton and Garland 2019] [see also test Jonas et al.
2010], although this result was not obtained for males at generation 72 [Hiramatsu et al.
2017]. In any case, our results suggest that either pain sensitivity, fear processing or

vocalizations may be altered in the HR mice.

Limbic Regions: Hippocampus

We might expect both evolutionary history and exercise during ontogeny to impact
hippocampal volume. In general, hippocampal volume in mammals increases as a
function of brain volume [e.g., see Finlay and Darlington 1995; Patzke et al. 2015]. As
mentioned in the Introduction, Biedermann et al. [2012] and Cahill et al. [2015] found
increased hippocampal volumes in mice provided 4-8 weeks of wheel access.
Additionally, two studies by Scholz et al. [2015a, 2015b] found an increase in whole HPC
volume following environmental enrichment that included a running wheel for either 24 h
(1.4% increase) or three weeks (3.8% increase) and a larger HPC after 80 5-min trials of
rotarod training compared to mice that went without. In addition, both a review and a
meta-analysis have noted that aerobic exercise often increases whole or partial
hippocampal volumes in both mice and humans [Li et al. 2017; Rendeiro and Rhodes
2018].

In the current study, we found that HR mice had larger hippocampal volumes than
C mice, but 10 weeks of wheel access did not affect the volume of the whole HPC (Table
2:all P >0.7). This is different from the effects observed for the dentate gyrus by

Rhodes et al. [2003b], who found that wheel access for 40 days (beginning at 4 weeks of
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age) significantly increased the volume of the dentate gyrus (a part of the hippocampal
formation) in both HR and C mice, in association with increased neurogenesis and BDNF
concentration. Interestingly, in a mouse model of Alzheimer’s disease, four months of
wheel access can protect against myelin sheath degeneration within mouse CA1, which
is associated with increased CA1 volume [Chao et al. 2018]. Therefore, understanding
the subregional differences for HR mice could provide important insights for some

neurobiological diseases.

Limbic Regions: Basolateral Amygdala, Nucleus Accumbens, and Ventral
Pallidum

The BLA plays an integral role in anxiety, and excitatory projections from BLA to
ventral HPC are sufficient to mediate anxiety [Yang and Wang 2017]. HR mice of both
sexes have resting corticosterone levels approximately twice those of C mice [Malisch et
al. 2007] and males have increased anxiety-like behavior in an elevated plus maze
[Singleton and Garland 2019]. The BLA, as well as the NAc and VP, are crucial to
reward behaviors [Schultz 1998; Ambroggi et al. 2008; Smith et al. 2009; Stuber et al.
2011; Berridge and Kringelbach 2015; Lee et al. 2016; Yang and Wang 2017] and,
therefore, make prime targets for study because of the alterations in dopamine signaling
in the HR lines noted above.

To our knowledge, no studies have correlated volume differences in the BLA or VP
with variations in either general or exercise-related reward. However, one study showed
that children who are genetically at risk for obesity showed elevated reward-related

responses to food cues in the NAc, and this area was also larger in these children
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[Rapuano et al. 2017]. LIn addition, in a study of elderly males (without cognitive
impairment), self-reported exercise habits were associated with greater volume of the
bilateral NAc [Yamamoto et al. 2017]. In this context, it is worth noting that the HR mice
show some evidence for exercise addiction [Kolb et al. 2013b].

We did not observe statistically significant volumetric differences in BLA, NAc or
VP in HR as compared with C mice, which suggests that changes in the HR brain reward
and motivational systems either do not involve these regions, or are restricted to lower
levels, e.g., neurotransmitter release and reception. However, the HR ventral tegmental
area tended to be larger in absolute size as compared with C mice (P = 0.0820), and
dopaminergic connections from this region may be influencing BLA, NAc, and VP in a
downstream fashion. Furthermore, mice with wheel access did not differ from sedentary
mice for volumes of these regions (Table 2). However, underlying effects of exercise on
brain plasticity may be contributing to HR motivation in ways that do not affect volume but

rather circuits and/or neuromodulation.

Cell Densities
Aside from a linetype-by-wheel access interaction in the nucleus accumbens

(Table 3), we did not observe any significant differences in the number of

cells per unit area in any of the regions investigated. Because our measurements were
total number of cells per unit area, we may not have been able to see more subtle
changes — such as those of increased cell proliferation and hippocampal neurogenesis,
which have previously been shown with wheel running [van Praag et al. 1999], including
in these lines of mice [Rhodes et al. 2003b]. Correlates of brain plasticity can also

include changes in dendritic structure [Hickmott and Steen 2005]. Lin et al. [2012] found
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that both treadmill exercise and wheel running increased the size of the dendritic field
and increased dendritic spine density in the hippocampus. These alterations may be a
more common consequence of aerobic exercise, rather than an increase in total cell

number or cell density.

Concluding Remarks and Future Directions
In this study, our goal was to determine whether selection for increased wheel-

running behavior has produced changes in either brain structure size or cell density, and
whether either of these would change with chronic exercise. Our primary results were
that the red nucleus and hippocampus were significantly larger in HR mice. We also
found that chronic wheel running increased brain mass in both HR and C mice
(regardless of the covariate used), and that HR mice tended to have increased total brain
mass compared to C mice (with body mass as a covariate).

Our experimental system provides a unique way to relate increased exercise
behavior to the evolution of particular brain regions. Artificial selection provides a means
to breed for a behavior of interest and use the resultant evolved organisms to test
hypotheses about correlated evolution of other traits, including the brain and its function
[Roderick et al. 1976; Rhodes and Kawecki 2009; Garland et al. 2016]. Uncovering
correlated responses to selection on behavior in real time (i.e., across generations) in a
“top-down” fashion, from an altered behavior to potentially altered organs to tissues to
proteins to DNA [Saul et al. 2017; Hillis et al. 2020; Nguyen et al. 2020; Latchney et al.
2022], may ultimately provide insights about specific genetic and epigenetic mechanisms
that underlie individual and species differences in brain morphology and function,

including the possibility of "multiple solutions" in response to selection [Garland et al.
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2011a; Hillis and Garland 2023]. For example, results of the present study support the
idea that the human brain may have coadapted with the evolution of aerobically
supported physical activity [Raichlen and Alexander 2020] and that it indeed needs
aerobic exercise to function optimally [Raichlen and Alexander 2020]. They also support
the positive correlation between relative mammalian brain size and VO2max [Raichlen
and Gordon 2011]. The present results also provide new insights to brain evolution, in
particular the finding that the red nucleus (RN) of the midbrain is associated with inherent
propensity and/or ability for sustained, endurance-type physical activity. Although these
results do not provide direct evidence of a cause-effect relationship, they do help
generate hypotheses that could be tested with direct manipulation of a particular brain
region.

Overall, no changes in regional neuronal density were uncovered. Therefore,
neither wheel running nor selective breeding appear to be driving neurogenesis in the
nine investigated brain regions [with the exception of dentate gyrus: see Rhodes et al.
2003b]. Rather, the volumetric changes observed may be caused by hypertrophic (or
hypotrophic in the case of HR PAG) effects on the neurons and/or glial cells of these
regions. Future studies should test for differences in neuronal growth, glial activity,
dendritic spines, and microstructural changes in the HR brain, particularly in the red
nucleus and hippocampus [see also Roth et al. 2010].

One limitation of the present study is that it did not include males. Given that a
number of sex differences in both the direct (i.e., wheel running itself) and correlated
responses to selection have been documented [e.g., Carter et al. 2000; Bronikowski et al.

2001, 2002; Garland et al. 2011a; Keeney et al. 2012; Acosta et al. 2017; Latchney et al.
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2022], it will be important to include both sexes in any future studies of brain regional
volumes.

Finally, we note that the present study included only one cohort of mice, whereas
wheel-running behavior shows strong seasonal variation [Careau et al. 2013]. Given that
at least one species of bird shows seasonal changes in the size of the hippocampus that
have been argued to be causally related to seasonal changes in food caching [Sherry
and Hoshooley 2010], it would be of interest to test for seasonal changes in the size of

the hippocampus in the HR and C lines of mice.
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Table 1. Significance levels for wheel running and home-cage activity during each

week. P values < 0.05 are in bold. Degrees of freedom for testing the linetype, wheel
access, and interaction effects were all 1 and 6. Signs after P values indicate direction of
effect: linetype + indicates HR higher; mini-muscle + indicates mice with the mini-muscle
phenotype higher. Signs are not shown for HCA because the interaction was always

significant (see Fig. 2).

Trait N Plinetype Pwheelaccess | Pinteraction | Pmini

Week 1 wheel running 50 | 0.0509+ 0.2614+
Week 2 wheel running 49 | 0.0120+ 0.0427+
Week 3 wheel running 50 | 0.0002+ 0.6905+
Week 4 wheel running 49 | <0.0001+ 0.2229-
Week 5 wheel running 49 | <0.0001+ 0.4946-
Week 6 wheel running 49 | 0.0001+ 0.1441-
Week 7 wheel running 49 | 0.0030+ 0.7025+
Week 8 wheel running 50 | 0.0002+ 0.4917-
Week 9 wheel running 50 | 0.0004+ 0.5998-
Week 10 wheel running 50 | 0.0010+ 0.5076-
Week 1 home-cage activity 97 | 0.0097 0.0010 0.0399 0.9658+
Week 2 home-cage activity 96 | 0.0130 <0.0001 0.0009 0.9551-
Week 3 home-cage activity 95 | 0.0786 0.0005 0.0218 0.3143-
Week 4 home-cage activity 95 | 0.0670 0.0008 0.0580 0.4333-
Week 5 home-cage activity 95 | 0.0675 0.0002 0.0213 0.8137+
Week 6 home-cage activity 97 | 0.0248 <0.0001 0.0128 0.8799-
Week 7 home-cage activity 97 | 0.0373 0.0002 0.0313 0.8401-
Week 8 home-cage activity 98 | 0.0295 <0.0001 0.0092 0.7243+
Week 9 home-cage activity 98 | 0.0500 <0.0001 0.0090 0.4947+
Week 10 home-cage activity 96 | 0.0963 0.0001 0.0075 0.5825+
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Table 2. statistical analyses for body mass, whole brain mass, and brain region

volumes. Values for mixed models comparing linetype (HR vs. C lines), groups with or
without 10-13 weeks of wheel access (WhlAcc), and their interaction. Mini-muscle mice
were identified at dissection (see Methods). Age was included as a covariate in all
analyses (results not shown). For brain regional volumes, time spent in PFA prior to
sectioning and log1o time spent in the freezer before Nissl staining were included as
covariates in all analyses (results not shown). Analyses were also conducted with body
mass as a covariate (top row), brain mass as a covariate (middle row) or neither
(bottom row). For main effects, P values < 0.05 are considered statistically significant,
whereas for interactions P < 0.1 are considered significant (see Methods), and both are
in bold. Signs after main effects and covariates indicate direction of effect: +
indicates HR lines > C; + indicates wheel access > sedentary; + indicates mini-
muscle > normal. See Figures 3-5 for graphical representations of least squares means

(adjusted for covariates).
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Body Mass Brain Mass Whole Midbrain
(n =100) (n=93) (n=64)
Effect df. F P d.f. F P df. F P
Linetype 1,6 | 4.04 0.0912- | 1,6 496 | 0.0676+ | 1,6 |4.79 | 0.0713+
1.92 | 0.2150+
210 | 0.1973+ 3.21 | 0.1235+
1,6 | 267 0.1533- | 1,6 12.33 | 0.0127+ | 1,6 | 0.29 | 0.6070+
Wheel Access
0.11 | 0.7512+
8.51 0.0267+ 0.34 | 0.5828+
1,6 | 1.39 0.2825 | 1,6 0.64 | 04535 |1,6 | 0.07 | 0.8002
Linetype*WhlAcc
0.07 | 0.8068
1.24 | 0.3086 0.12 | 0.7444
1,82 | 0.16 0.6895+ | 1,47 | 1.40 | 0.2410+ | 1,43 | 0.31 | 0.5785-
Mini-muscle
1,43 | 0.25 | 0.6163-
1,48 | 1.78 | 0.1861+ | 1,44 | 0.20 | 0.6531-
Body Mass 1,47 | 8.16 | 0.0056+ | 1,43 | 0.87 | 0.3561+
Brain Mass 1,43 | 0.97 | 0.3314+
Substantia Nigra Ventral Tegmental Area Red Nucleus Periaqueductal Gray
(n=78) (n=72) (n = 68) (n = 76)
Effect d.f. F P df. F P df. F P d.f. F P
1,6 | 0.01 09321+ |16 | 092 | 0.3743+| 16 | 11.34 | 0.0151+ | 1,6 | 0.08 | 0.7860+
Linetype 0.02 | 0.8935- 1.71 0.2381+ 3.81 | 0.0988+ 0.69 | 0.4388-
0.00 | 0.9839+ 4.35 | 0.0820+ 8.65 | 0.0259+ 0.09 | 0.7737+
16 | 0.06 |0.8080- |16 | 1.28 | 0.3012- | 1,6 0.71 | 0.4324- | 1,6 | 0.14 | 0.7243+
0.19 | 0.6775- 146 | 0.2725- 2.44 | 0.1692- 0.08 | 0.7894-
Wheel Access
0.07 | 0.7865- 0.76 | 0.4180- 1.33 | 0.2935- 0.13 | 0.7264+
16 |1.00 |0.3563 |1,6 |0.02 |0.9002 |16 0.02 | 0.8930 | 1,6 | 8.75 | 0.0253
Linetype*WhlAcc
0.92 | 0.3742 0.26 | 0.6265 0.08 | 0.7837 6.63 | 0.0421
1.15 | 0.3251 0.06 | 0.8184 0.00 | 0.9823 9.12 | 0.0234
Mini-muscle 1,57 | 0.21 0.6506- | 1,51 | 0.57 | 0.4533- | 1,46 | 0.05 | 0.8276- | 1,55 | 1.97 | 0.1658-
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1,57 | 0.21 0.6457- | 1,51 | 1.42 | 0.2390- | 1,46 | 0.00 | 0.9474- | 1,55 | 2.44 | 0.1237-
1,58 | 0.20 | 0.6575- | 1,52 | 1.13 | 0.2919- | 1,47 | 0.00 | 0.9815+ | 1,56 | 2.00 | 0.1630-
1,57 | 0.08 | 0.7765+ | 1,51 | 3.05 | 0.0866- | 1,46 | 2.49 | 0.1212+ | 1,55 | 0.00 | 0.9880+
2:1 I\I\::ZZ 1,57 | 0.52 | 0.4734+ ] 1,51 | 3.81 0.0564+ | 1,46 | 4.76 | 0.0343+ | 1,55 | 9.32 | 0.0035+
Hippocampus Basolateral Amygdala Nucleus Accumbens Ventral Pallidum
(n =68) (n =68) (n=57) (n=63)
Effect df. F P df. F P df. F P df. F P
Linetype 1,6 | 1199 | 0.0134+ |16 | 286 |0.1417+]|1,6 | 0.91 0.3773+ | 1,6 | 2.65 | 0.1546+
4.16 | 0.0876+ 0.28 | 0.6165+ 0.39 | 0.5567+ 1.00 | 0.3548+
8.42 | 0.0273+ 143 | 0.2773 0.81 0.4015+ 4.00 | 0.0924+
Wheel Access 1,6 0.01 | 0.9318+ | 1,6 | 0.07 | 0.8072+ | 1,6 | 2.67 | 0.1535- | 1,6 | 0.68 | 0.4398-
0.12 | 0.7386- 0.37 | 0.5638- 3.30 | 0.1990- 1.53 | 0.2617-
0.00 | 0.9966- 0.00 | 0.9564 2.87 | 0.1412- 0.56 | 0.4843-
Linetype*WhiAcc 1,6 0.34 | 0.5811 1,6 | 0.85 | 0.3921 16 | 0.30 | 0.6054 | 1,6 | 0.09 | 0.7699
0.53 | 0.4925 0.33 | 0.5871 0.20 | 0.6723 0.40 | 0.5495
0.17 | 0.6952 1.17 | 0.3212 0.29 | 0.6126 0.14 | 0.7170
. 1,47 | 0.05 | 0.8305- | 1,47 | 0.78 | 0.3819+ | 1,36 | 0.38 | 0.5402- | 1,42 | 0.16 | 0.6902-
Mini-muscle 1,47 | 0.02 | 0.8964- | 1,48 | 0.70 | 0.4062+ | 1,36 | 0.33 | 0.5720- | 1,42 | 0.44 | 0.5103-
1,48 | 0.01 | 0.9290- 0.94 |0.3365 |1,37 | 0.41 0.5236- | 1,43 | 0.23 | 0.6349-
Body Mass 1,47 | 1.29 | 0.2623+ | 1,47 | 2.91 0.0946+ | 1,36 | 0.09 | 0.7604+ | 1,42 | 0.44 | 0.5087-
Brain Mass 1,47 | 5.49 | 0.0235+ | 1,47 | 555 | 0.0227+ | 1,36 | 0.90 | 0.3503+ | 1.42 | 4.38 | 0.0425+
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Table 3. statistical analyses for brain region cell densities. Values for mixed models

comparing linetype (HR vs. C lines), groups with or without 10-13 weeks of wheel access
(WhIAcc), and their interaction. Mini-muscle mice were identified at dissection (see
Methods). Age, time spent in PFA prior to sectioning, and log1o time spent in the freezer
before Nissl staining were included as covariates in all analyses (results not shown). For
main effects, P values < 0.05 are considered statistically significant, whereas for
interactions P < 0.1 are considered significant (see Methods), and both are in bold.
Signs after main effects and covariates indicate direction of effect: + indicates HR

lines > C; + indicates wheel access > sedentary; + indicates mini-muscle > normal.
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Whole Midbrain

(n =80)
Effect d.f. F P
Linetype 1,6 | 0.15 | 0.7122+
Wheel Access 1,6 1.19 | 0.3165+
Linetype*WhlAcc | 1,6 0.67 | 0.4454
Mini-muscle 1,60 | 1.29 | 0.2613+
Substantia Nigra Ventral Tegmental Area Red Nucleus Periaqueductal Gray
(n = 83) (n=83) (n = 68) (n=81)
Effect d.f. F P d.f. F B d.f. F P d.f. F P
Linetype 16 | 0.05|0.8270+ | 1,6 | 0.04 | 0.8525+ | 1,6 211 | 0.1963+ | 1,6 0.26 | 0.6278-
Wheel Access 1,6 0.82 | 0.3997+ | 1,6 0.68 | 0.4421+ | 1,6 1.13 | 0.3293+ | 1,6 3.45 | 0.1127+
Linetype*WhlAcc | 1,6 1.37 | 0.2868 | 1,6 | 0.16 | 0.7056 | 1,6 1.00 | 0.3549 | 1,6 0.72 | 0.4282
Mini-muscle 1,63 | 0.12 | 0.7323+ | 1,63 | 0.00 | 0.9590- | 1,48 | 0.64 | 0.4265- | 1,61 0.64 | 0.4281+
Hippocampus Basolateral Amygdala Nucleus Accumbens Ventral Pallidum
(n =68) (n =68) (n =54) (n =63)
Effect d.f. F P d.f. F P d.f. F P d.f. F P
Linetype 1,6 | 0.07 | 0.7950- | 1,6 0.06 | 0.8124- 11,6 0.09 | 0.7694+ | 1,6 | 0.02 | 0.8806-
Wheel Access 1,6 | 0.22 | 0.6589+ | 1,6 0.27 | 0.6188-] 1,6 0.34 | 0.5802+ | 1,6 | 0.00 | 0.9538+
Linetype*WhlAcc | 1,6 1.45 | 0.2736 1,6 1.73 | 0.2369 1,6 3.97 | 0.0935 1,6 2.21 | 0.1878
Mini-muscle 1,48 | 0.72 | 0.3988- | 1,48 | 1.14 | 0.2912+ | 1,34 | 0.48 | 0.4912- | 1,43 | 0.80 | 0.3756-
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Figure Legends

Fig 1. Average wheel revolutions run per week (simple means) during the course of the
experiment. Significance levels from comparisons of the HR and C lines are presented in

Table 1.

Fig. 2. Average home-cage activity per week (LS Means from SAS Procedure Mixed)
over the course of the experiment. Mini-muscle status was included in the model, but

never had a significant effect (Table 1).

Fig. 3. Body mass (A), whole brain mass (B), and whole brain mass, analyzed with body
mass as a covariate (C). Value are LS means and SEs from SAS Procedure Mixed. HR
mice tended to be smaller (A, linetype F = 4.04, d.f. = 1,6, P = 0.0912), but have relatively
heavier brains than C mice (C, linetype F = 4.96, d.f. = 1,6, P = 0.0676), and mice with
wheel access for 10-13 weeks had relatively heavier brains than those without wheels (F
=12.33, d.f. = 1,6, P = 0.0127), with no interaction (F = 0.64, d.f. = 1,6, P = 0.4535)

(Table 2).

Fig. 4. Whole midbrain total volume in cubic millimeters (LS means and SEs from SAS
Procedure Mixed), with mini-muscle status, body mass, and age included in the model

(Table 2). The volume of the midbrain tended to be larger in HR mice (F = 4.79, d.f. =

1,6, P = 0.0713), with no effect of wheel access, no interaction, and no mini-muscle

effect.
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Fig. 5. Regional brain volumes in cubic millimeters. Values are LS means and SEs from
SAS Procedure Mixed. Body mass (except for VTA), age, time spent in PFA prior to
sectioning, and log1o time spent in the freezer before Nissl staining were included as
covariates in all analyses (results not shown). See Table 2 for full statistical results.

(A) Ventral tegmental area. HR mice tended to have a larger VTAs (P = 0.0820), with no
statistical effect of wheel access and no interaction or mini-muscle effect.

(B) Red nucleus. HR mice had a significantly larger red nucleus (P = 0.0151), with no
significant effect of wheel access, no interaction, and no mini-muscle effect.

(C) Periaqueductal grey. Linetype and wheel access interacted in their effect on the
volume of the periaqueductal grey (P = 0.0513): wheel access increased the volume of
the PAG in C mice, while decreasing it in HR mice, with no effect of mini-muscle.

(D) Hippocampus. HR mice had a significantly larger hippocampus (P = 0.0138), with no

significant effect of wheel access, no interaction, and no mini-muscle effect.

Fig. 6. lllustration of direct versus indirect genetic effects on brain size. The larger
brain size (or differences in brain region volumes) of HR mice as compared with

C mice may be attributable to direct genetic effects and/or indirect genetic effects
mediated through the intermediate phenotype of higher physical activity by HR mice
(Figures 1 and 2). Body size also "affects" brain size, or at least is correlated with it in
some cases, and body size can be affected by physical activity acting across

development and ontogeny.
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