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Abstract

Water temperatures in mountain streams are likely to rise under future climate

change, with negative impacts on ecosystems and water quality. However, it is diffi-

cult to predict which streams are most vulnerable due to sparse historical records of

mountain stream temperatures as well as complex interactions between snowpack,

groundwater, streamflow and water temperature. Minimum flow volumes are a

potentially useful proxy for stream temperature, since daily streamflow records are

much more common. We confirmed that there is a strong inverse relationship

between annual low flows and peak water temperature using observed data from

unimpaired streams throughout the montane regions of the United States' west

coast. We then used linear models to explore the relationships between snowpack,

potential evapotranspiration and other climate-related variables with annual low flow

volumes and peak water temperatures. We also incorporated previous years' flow

volumes into these models to account for groundwater carryover from year to year.

We found that annual peak snowpack water storage is a strong predictor of summer

low flows in the more arid watersheds studied. This relationship is mediated by atmo-

spheric water demand and carryover subsurface water storage from previous years,

such that multi-year droughts with high evapotranspiration lead to especially low

flow volumes. We conclude that watershed management to help retain snow and

increase baseflows may help counteract some of the streamflow temperature rises

expected from a warming climate, especially in arid watersheds.
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1 | INTRODUCTION

In mountain watersheds of the Western United States, summer

streamflow can be highly variable from year to year. While

summer flows represent a small proportion of a basin's overall water

resources, they can represent an important limiting factor for ecologi-

cal processes (Poff et al., 1997). Summer stream temperatures are also

important for many biotic processes, including the life cycles of

salmonid fish (Isaak et al., 2012; Webb et al., 2008). In California's

Sierra Nevada, stream temperatures are predicted to increase by

approximately 1.6�C for each 2�C rise in air temperature, leading to a

reduction in habitat for cold-water fish species (Null et al., 2013).

Summer water temperatures in unregulated streams of the North-

western USA have been found to be warming in recent decades, a

trend attributed both to changing air temperature and discharge vol-

umes (Isaak et al., 2012, 2018). While rising water temperatures and
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lower streamflows may be inevitable in a future climate, mitigation

and preparation for these changes will rely on a strong understanding

of climate change's impacts on summer streamflows.

While this work is motivated by rising water temperatures, there

are very few long-term datasets of water temperature in unregulated

streams of the western USA (Arismendi et al., 2012). However,

streamflow measurements are much more abundant, and streamflow

volume is an important driver of summer water temperatures (Isaak

et al., 2012; Webb et al., 2008). This has important management impli-

cations, since streamflows can be modified by human efforts

(e.g., river and wetland restoration; Ohara et al., 2013; Tague

et al., 2008) and this could complement other management efforts to

reduce stream temperature (e.g., by shading through restoring or

maintaining riparian vegetation; Fuller et al., 2022; LeBlanc &

Brown, 2000). Therefore, much of this study's focus is on summer low

flows (which we refer to as Qmin).

Our study focuses on the Sierra Nevada and Cascade mountain

regions, where most precipitation falls in the winter. Summer water

availability is therefore limited both by a lack of rainfall and seasonal

increases in potential evaporation. Snowpack water storage has

declined throughout the western United States in recent decades

due largely to warmer temperatures (Knowles et al., 2006; Mote

et al., 2005, 2018). Climate change is expected to cause even greater

evaporative demand, lower peak snowpacks and less streamflow and

aquifer recharge originating as snowmelt (Hatchett et al., 2022b; Li

et al., 2017; McEvoy et al., 2020; Meixner et al., 2016). Under a

lower snow future, even if total precipitation remains unchanged the

amount of water contributing to summer flows may be reduced due

to changes in the timing and rate of water inputs to the system

and/or increased water vapour losses (Gordon et al., 2022;

Huntington & Niswonger, 2012). Previous work has shown that the

fraction of a watershed's precipitation falling as snow and the

amount of time that snow persists on the ground are both positively

correlated with the relative magnitude of its summer baseflow

(Gordon et al., 2022; Jenicek et al., 2016). This suggests that reduc-

tions in snow fraction or earlier snowmelt would reduce the magni-

tude of summer low flows.

Cooper et al. (2018) explored the variation of annual Qmin in rela-

tion to annual variations to peak snow water equivalent (SWE), winter

precipitation (Winter P) and summer potential evapotranspiration

(PET) in the maritime Western US mountains. They found that in

snow-dominated catchments, Qmin increased 0.43% for every 1%

increase in Peak SWE, increased 0.50% for every 1% increase in win-

ter P and decreased 2.1% for every 1% increase in PET. Qmin was

more sensitive to these climatic variables in the more arid Sierra

Nevadas compared with the Cascades. Cooper et al. (2018) pointed

out that although low flows were least sensitive to SWE, SWE might

have a disproportionate impact on stream temperatures. While infor-

mative, these analyses only evaluated each driving variable indepen-

dently, and did not account for their combined effects. They also did

not address ‘memory’ in the hydrologic system (e.g., storage carryover

from previous years) which can have a strong influence on baseflows

(Wolf et al., 2023). For example, Godsey et al. (2014) found that Qmin

values in California's Sierra Nevada were sensitive to the previous

year's snowpack, and decreased 9%–22% for every 10% decrease in

peak SWE. Summer precipitation may also be the main driver of low

flows in more humid catchments, making it another important variable

to consider (Kinnard et al., 2022).

In this study, we aim to better understand the sensitivity of water

temperature to climatic variability. We start with an exploration of

water temperature's sensitivity to climate variables directly

(e.g., precipitation and air temperature) and sensitivity to mediating

variables that also respond to climate (e.g., streamflow). We then fur-

ther investigate streamflow volume, an important predictor of water

temperature, by expanding on the climate sensitivity analysis of Coo-

per et al. (2018) using catchments with long records of both stream-

flow and snowpack. Our objectives are to better understand the

sensitivity of Qmin volume and timing to both climate and antecedent

water storage. Our analyses examine the importance of each variable

both independently and as an ensemble of co-occurring drivers using

multiple linear regression. This information will help to better under-

stand how climate change may impact the aquatic ecosystems of

mountain watersheds in future summers, and how these impacts may

vary geographically.

2 | DATA AND METHODS

2.1 | Study area

We selected mountain watersheds in California, Western Nevada,

Oregon and Washington with over 30 years of both streamflow and

SWE data and at least 30% of annual precipitation falling as snow on

average (Figure 1, Tables 1 and A1). We only considered streams with

minimal human disturbance (as described by Newman et al., [2015]) in

order to study the climate sensitivity of streamflow without compli-

cating factors such as reservoir management. All watersheds selected

have their dry season in June–August (Addor et al., 2017), with most

precipitation falling in winter (Table 1). Most of the watersheds are at

least 50% forest-covered, with the exception of Donner und Blitzen

which is dominated by grasslands (Table 1).

2.2 | Streamflow and water temperature data

Daily streamflow and water temperature data (where available) were

obtained from USGS gaging stations (USGS, 2022). Specific stations

are listed in Table 1. Streamflow analyses were limited to May

15 through October 31 of each year, a period which encompasses the

snowmelt recession and summer baseflow of all watersheds studied

(Figure 2) as well as the highest water temperatures. We defined

annual minimum summer flow (Qmin) as the smallest 15-day median

streamflow during this period, following Godsey et al. (2014) and Coo-

per et al. (2018). All flows are reported in millimetres per day, the flow

volume divided by basin area, in order to provide a more direct com-

parison between watersheds of varying sizes (Table 1). All chosen
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watersheds have minimum flows that remain above zero every

summer.

2.3 | Snowpack and climate data

SWE data were obtained from the SNOTEL network (daily values) and

snow course measurements (monthly values) available from the

United States Department of Agriculture (USDA, 2022) using their

report generator tool (https://wcc.sc.egov.usda.gov/reportGenerator/).

Specific snow measurement sites are given in Table A1.

For sites where monthly snow course data were available for a

longer period than daily snow records, we combined both monthly

and daily data in order to have the longest period of record possible

as well as most complete time series. In years when daily SWE data

were available, peak SWE was calculated directly as the maximum of

all daily SWE data. In years when only monthly snow course data

were available, we calculated peak SWE as a + bSmonthly. Smonthly is

annual peak SWE from monthly snow course data, and a and b are

model coefficients fit via linear regression using peak daily SWE (the

target variable) and Smonthly (the predictor variable) from years when

both monthly and daily snow data were available.

Gridded monthly climate data (precipitation, PET, etc.) at 4 km

resolution from TerraClimate were downloaded from climateengine.

org (Huntington et al., 2017). The TerraClimate dataset provides esti-

mates of climatic variables from 1958 through the present

(Abatzoglou et al., 2018). We chose to use this gridded dataset since

continuous measurements of all climate variables were not always

available at weather stations near our study watersheds for the

desired time period. For those streams where we analysed stream

temperature, we also obtained daily air temperature from nearby

weather stations (details in Table A1).

F IGURE 1 Map of USGS gages used
for flow data (white dots) and locations of
snowpack measurements (purple
asterisks). Black outlines show the HUC10
or HUC12 watersheds draining into each
gage. Colours denote mean annual
potential water deficit given by
precipitation (PPT) minus potential
evapotranspiration (PET). PPT-PET is

calculated from PRISM data for water
years 1992–2021 using
climateengine.com.
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2.4 | Statistical analyses

We tested two different linear models for predicting daily mean water

temperature during the hottest months of July and August. These

models were designed to test the relative sensitivity of water temper-

ature to streamflow and snowmelt versus air temperatures:

1. Median 15-day streamflow and daily mean air temperature are the

only predictors.

2. Streamflow, daily mean air temperature and preceding winter's

peak snowpack are all predictors (the snowpack value is the same

for each day within a given year, while the other two predictors

vary daily).

We also explored the annual patterns of water temperature by

calculating the correlation of peak water temperature (defined as the

maximum 7-day average water temperature for a given year) with the

following annual-scale predictors:

• Qmin—Lowest 15-day median flow for May 15–October 31 for a

given year

• Air T—Mean air temperature for either the day of peak water tem-

perature, previous week or previous 2 weeks.

• Peak SWE—Greatest SWE measured in the prior winter. A primary

goal of this study is to expand on previous studies showing base-

flow sensitivity to SWE.

• Qmin Prior—Magnitude of Qmin from the previous summer. This

variable is selected as a proxy for subsurface water storage.

This assumes that summer low flows are dominated by baseflow

conditions, baseflow rates decrease as groundwater storage is

depleted (Brutsaert, 2005), and total subsurface water storage is

highly correlated with groundwater (saturated zone) storage. We

TABLE 1 List of watersheds used in this study.

Gage name

Merced R at

Happy Isles
bridge,
Yosemite
CA

Galena

Creek at
Galena
Creek State
Park NV

Sagehen
C near
Truckee
CA

Donner und

Blitzen River
near
Frenchglen
OR

Sandy
River near
marmot
OR

American
R near
Nile WA

Cedar R
near
Cedar
Falls WA

Stehekin
R at
Stehekin
WA

Thunder ck
near
Newhalem
WA

USGS Gage # 11264500 10348850 10343500 10396000 14137000 12488500 12115000 12451000 12175500

Years Flow

and Snow

Data

91 31 68 42 43 61 40 90 73

Years Water

Temp.

Data

36 None 25 11 None 5 24 None None

Gage Lon.

(W)

119.56 119.86 120.24 118.87 122.14 121.17 121.62 120.69 121.07

Gage Lat. (N) 37.73 39.35 39.43 42.79 45.4 46.98 47.37 48.33 48.67

Mean Elev.

(m)

2633 2042 2157 1613 1055 1453 900 1510 1539

Mean Slope

(m/km)

131 136 81 58 111 144 130 227 246

Area (km2) 472 22 27 518 676 206 111 830 274

Forest

Fraction

0.58 0.51 0.9 0.01 0.99 0.99 0.99 0.82 0.79

Mean Snow

Fraction

0.91 0.83 0.71 0.47 0.32 0.64 0.34 0.72 0.69

Aridity

(PET/P)

1.15 1.18 1.1 2.18 0.32 0.46 0.27 0.48 0.4

Median Q50

Date

22-May 9-May 23-Apr 4-May 2-Mar 9-May 9-Mar 30-May 13-Jun

Median

Summer

P/Winter P

0.09 0.1 0.07 0.26 0.06 0.14 0.14 0.21 0.28

Note: Rows give the USGS gage number, number of years when both streamflow and snowpack data are available, years when water temperature data are

available, stream gage longitude and latitude, watershed area, fraction of the watershed that is forested, mean fraction of annual precipitation falling as

snow, mean aridity (total potential evapotranspiration divided by total precipitation for each water year), median day when 50% of the water year's

streamflow has passed the gauge (Q50) and median summer precipitation (P) divided by median winter P. Catchment attributes (mean elevation through

aridity) are from Addor et al. (2017).
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also tested alternative indices related to carryover storage, such as

P-PET-Q, which had weaker relationships to Qmin and stream tem-

perature on average (See SI section on Alternative Storage

Metrics).

• Water Year P–Total precipitation falling during the current water

year. If the volume of water added to the system is more important

than volume of water stored as snowpack, then P is expected to

be a stronger predictor than Peak SWE.

• Summer P—Total precipitation from May 15 through the date of

Qmin in each water year. This captures water added to the system

after snowfall has generally ended.

• Winter P—Total precipitation from October 1 to May 14 of each

water year. This variable allows us to test whether snowpack stor-

age (i.e., Peak SWE) or the volume of winter P is more important.

• SWE Fraction—The ratio of peak SWE to water year P. This metric

gives a relative measure of the proportion of precipitation falling as

rain without relying on uncertain estimates of snowfall.

• Prior X weeks P—Total precipitation in the X = 2, 4 or 8 weeks lead-

ing up to the first day Qmin is reached each year. The purpose of this

variable is to capture short term impacts of precipitation on Qmin.

• Aridity—Ratio of water year's total PET to precipitation (PET/P).

This variable captures the amount of atmospheric demand relative

to water availability.

• Summer PET—Total PET from June 1 through August 31. This tests

the sensitivity of Qmin to water demand separate from supply,

focusing on the period of peak demand.

• Runoff Ratio—Ratio of water year total streamflow to precipitation

(Q/P). This variable is included to test whether Qmin volumes are

strongly related to the watershed's streamflow generation effi-

ciency at the annual scale.

• Peak Flow—Maximum 15-day median streamflow for the

water year.

• Q50—Date when 50% of total water year flows have passed

through the gage. Earlier flow timing may lead to lower peak flows

as snowmelt recession would start earlier. This is a commonly-used

metric of streamflow timing shifts (Gordon et al., 2022).

• P80—Date when 80% of total water year precipitation have fallen.

For our study area, this percentage should encompass the majority

of winter P. If this variable is strongly related to Qmin volumes, it

indicates that the timing of precipitation is important to low flows.

• DOY Q Rise—Date when 15-day median streamflow first rises at

least 0.1 mm above Qmin again (following the last day when flow

is at Qmin level). This metric is meant to capture the onset of sig-

nificant late summer or early fall rainfall that puts an end to the

summer streamflow recession, and is capped at November 1.

We used stepwise linear regression to further explore these hydro-

climatic factors' effects on water temperatures. Using the stepwiselm

function in MATLAB R2018b, different candidate predictor variables

from the list above were added to or removed from linear models pre-

dicting peak water temperature depending on whether they improved or

diminished model performance according to the sum of squared error,

Akaike Information Criterion (AIC), Bayesian Information Criterion and R2

(https://www.mathworks.com/help/stats/stepwiselm.html).

Once the linear modelling and correlation analyses confirmed that

summer streamflow volume (and Qmin in particular) were strongly

related to water temperatures, we explored the relationships between

climate variability and Qmin. This approach allowed us to better under-

stand the mechanisms by which climate change could affect water tem-

peratures, as well as increase our sample size since flow data are more

readily available than water temperature data. We calculated the correla-

tion between each of the predictor variables in the bullet list above with

Qmin and Qmin timing (the day of year when Qmin is first reached).

These correlation analyses provide a first order insight into the relation-

ships between different variables, and help to identify which variables

may be more important in some watersheds compared with others.

We then explored combined impacts of multiple variables using

two separate linear models for predicting Qmin volume and timing:

1. Storage model: Peak SWE (representing snowpack storage) and

previous year's Qmin (a proxy for groundwater storage carryover

from the previous year) are the only predictors.

05/01 06/01 07/01 08/01 09/01 10/01 11/01 12/01
Date

0

2

4

6

8

10

12

14

M
ed

ia
n 

Fl
ow

 (m
m

/d
ay

)

Thunder Creek
Stehekin River
Cedar River
American River
Sandy River
Donner und Blitzen
Sagehen Creek
Galena Creek
Merced River

F IGURE 2 Median streamflow for May 15–
November 1 at each gage (normalized by
watershed area). The four most southern
watersheds, all with aridity index >1, are shown in
solid lines while less arid watersheds are shown in
dashed lines.
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2. Storage + Demand model: Includes the above storage terms as

well as measures of atmospheric demand (Aridity and Summer

PET) and summer water inputs.

For the Storage + Demand model, many of the predictor vari-

ables had high correlations with other predictors, which could impede

our ability to draw useful interpretations from the model coefficients

(Heinze et al., 2018). We therefore selected a Storage + Demand

model for each watershed by first testing every possible combination

of the following variables: Peak SWE, Qmin Prior, Aridity, Summer

PET and Summer P. For each watershed, we then selected the vari-

able combination that resulted in the lowest AIC value while still hav-

ing all correlations between predictor variables <0.6. When two AIC

values were similar, we selected the model with the highest R2 value.

We also used stepwise linear regression to explore the full range of

potential predictors listed above.

All multiple linear regression models described above take

the form:

y tð Þ¼ c0þ c1 x̂1 tð Þþ :::þcn x̂n tð Þ, ð1Þ

where y is the dependent variable (e.g., Qmin), c represents model

coefficients, t represents a given year (or day for the daily tempera-

ture model) and x̂1… x̂n represent n separate normalized predictor var-

iables (e.g., Peak SWE). All predictor variables were mean-subtracted

and normalized by their standard deviation to create predictors that

have a mean of zero and standard deviation of one (x̂¼ x�x
σx
, where x is

the mean and σx is the standard deviation of x). This normalization

allows for more meaningful comparison of the model coefficients

between watersheds and between different predictor variables (i.e., a

coefficient of 1 means that increasing the predictor variable by 1 stan-

dard deviation will increase Qmin by 1mm).

We also calculate the relative sensitivity of Qmin or temperature

to certain predictors. We define relative sensitivity as the ratio of

changes relative to the mean:

Relative Sensitivity¼ Δy=y
Δxi=xi

� �
¼ cixi
σxi y

, ð2Þ

where y and y represent the independent variable (Qmin or tempera-

ture) and its mean over all years; xi , xi and σxi represent a single predic-

tor variable and its mean and standard deviation, respectively; and ci

represents the linear model coefficient of the normalized version of x

from Equation (1). If relative sensitivity is greater than 1, then a given

percent change in x will lead to a higher percent change in y.

3 | RESULTS

3.1 | Daily water temperature

In linear models predicting daily mean summer (July and August) water

temperature, smoothed daily streamflow always had a negative

coefficient. Therefore, higher flows generally indicate colder water

temperatures. Mean daily air temperature was a more important pre-

dictor (larger magnitude model coefficient) than streamflow volume

for Merced and Sagehen, but streamflow was more important in the

more northern Cedar River (Figure 3a, Table S5). A 1�C increase in air

temperature was associated with a smaller increase in stream temper-

ature in Cedar River compared with the more southern watersheds

(Figure B3). Streamflow and air temperature only explained approxi-

mately 40%–70% of the variance in water temperature (as shown by

the R2 values in Figure 3d and Table S5). For all streams except Mer-

ced, adding the previous winter's peak SWE as a predictor led to slight

improvements in model fit (increases in R2 and decrease in AICc), with

negative coefficients indicating that a higher peak SWE was associ-

ated with lower summer stream temperatures (Figure 3b,d, Table S5).

Accounting for peak SWE in this manner decreased the sensitivity of

water temperature to flow volume in all watersheds except Merced

(Figures 3 and B3). Qmin Prior was also tested as a potential predictor,

but including this variable did not substantially change any coeffi-

cients shown in Figure 3 and Table S5 and did not improve model fit.

3.2 | Annual peak water temperature

Peak water temperature nearly always occurred earlier than the

annual Qmin, since the date of Qmin often came after air tempera-

tures had begun dropping in late summer/fall. Even so, annual maxi-

mum water temperature was more closely linked with that year's

Qmin (correlation ranging from �0.48 to �0.87) than with mean

streamflow in the week leading up to the peak temperature (correla-

tion ranging from �0.20 to �0.77). Air temperature in the week lead-

ing up to peak water temperature had a significant positive

correlation with peak water temperature for all streams except Mer-

ced River (Table 2).

Mean streamflow and air temperature were tested as predictors

across periods of 1 day to 4 weeks prior to and including the day of

peak water temperature, and 1 week was found to give the highest

correlation in all streams except Sagehen.

We set the stepwise linear model algorithm to initiate with a

model using Qmin and the previous week's mean air temperature as

predictors (the two variables that most consistently had significant

and large correlations with peak water temperature). The stepwise

algorithm then added or removed variables from this initial model

depending on multiple measures of fit (as described in Section 2.4).

Using this method, we retained both Qmin and air temperature as pre-

dictors only for Sagehen, whereas Qmin alone was retained as a

predictor of peak temperature in the Merced River, and only air tem-

perature for Cedar River (Figure 3c; Table S6). For Donner und Blit-

zen, this method added aridity to the model, but aridity and low flows

are highly negatively correlated (r = �0.6); removing aridity as a can-

didate variable led the algorithm to select a model with only Qmin as

a predictor for Donner und Blitzen's peak water temperature (includ-

ing air temperature slightly reduced the R2 value). According to these

models, a 1�C increase in air temperature was associated with a 0.3–
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0.4�C increase in peak water temperature for Sagehen and Cedar,

while a given percent decrease in Qmin had the strongest influence

on peak water temperatures at Donner und Blitzen (Figure B3).

Since higher Qmin values were associated with lower water tem-

peratures for all streams studied (according to correlation analyses,

linear models or both) we study drivers of Qmin to expand our sample

size by using streamflow data instead of relying on sites with long

water temperature records. Higher streamflow being associated with

decreased water temperature is consistent with a larger mass of water

for incoming energy to warm.

3.3 | Qmin volume relationship to precipitation,
water storage and demand

For all locations, peak SWE was positively correlated with Qmin

(Table 3) and had a positive linear regression coefficient in the sim-

plest linear models (Figure 4a; Table S2), showing that higher peak

SWE is generally associated with greater Qmins. Qmin Prior had

either positive or very weakly negative relationship with Qmin for all

locations in all models (Figure 4, Tables 3 and S1–S3). Mean correla-

tion between peak SWE and Qmin Prior across all watersheds was

only 0.06, with a maximum of 0.18, suggesting these predictors are

sufficiently independent for a meaningful multiple linear regression.

Linear model coefficients and relative sensitivity values were usually

larger for Peak SWE than Qmin Prior (Figures 4a and B1).

Higher Aridity or PET predicted lower Qmin volumes in models

which included these variables (Figure 4c, Tables S1 and S3), consis-

tent with these variables' negative correlation with Qmin (Table 3;

Figure S1). The only exception was Thunder Creek, where Summer

PET had a small but positive coefficient (Figure 4c). The Storage +

Demand model had a higher R2 value than the Storage model for most

watersheds and a lower AIC for all watersheds (Figure 4b; Tables S2

and S3). These measures of fit indicate that including demand terms

leads to more accurate prediction of Qmin, even when using AIC to

account for the fact that the Supply + Demand models include a

greater number of predictors. Relative sensitivity had a greater magni-

tude for PET than for Peak SWE or Qmin Prior (Figure B1).

Qmin values in the southern, more arid watersheds were fit much

better using linear models compared with the more northern water-

sheds (Figure 4b, Tables S1–S3). Qualitatively, Figure 5 also shows

that the lowest flows usually occur in years with lower peak SWE and

smaller previous year Qmin for more southern sites (a–d) but this rela-

tionship is weaker or non-existent in the more northern sites (g–i).

The relationship between SWE and Qmin appears slightly non-linear

in some watersheds (e.g., Figure 5c), but fitting models to the log or

F IGURE 3 Coefficients for water temperature models, as described in Equation (1). Watersheds are ordered from more southern on the left
to more northern on the right (same order as Table 2). The three most arid watersheds (Merced, Sagehen, Donner und Blitzen) are shown in
yellow while Cedar River is shown in blue. Circle size is proportional to the R2 value for each model (also shown in Panel d). The three models
shown include models of daily water temperature either with (b) or without (a) peak SWE as a predictor, and a model of peak annual 7-day mean
water temperature (c).
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square root of flows led to only very small improvements in model fit

and did not change our interpretation of variable importance (results

not shown) so we chose to maintain purely linear models for ease of

interpretation.

The stepwise linear model tested all variables defined in

Section 2.4 as candidate predictors. Previous years' Qmin was

selected by the stepwise linear regression algorithm for 4/9 water-

sheds (the 4 with mean annual aridity index >1). These same four

watersheds all either had Peak SWE or Water Year P selected. Aridity

(PET/P) was selected as a predictor for three of the more northern

watersheds. Summer precipitation or the 8 weeks of precipitation

leading up to Qmin were selected for four watersheds, suggesting that

recent summer rains have a noticeable impact on these streams' low

flows. (Table S1).

3.4 | Qmin timing

Higher peak SWE and summer precipitation values were always posi-

tively correlated with later Qmin timing. In contrast, high summer PET

was associated with earlier Qmin dates, especially in the four most

southern watersheds (Table 4).

Linear models were not able to predict Qmin timing as well as vol-

ume (R2 < 0.7 for all models tested). While these low model fits sug-

gest that linear modelling is not able to adequately capture the factors

driving low flow timing, in general model coefficients mirrored the

correlation analysis results in that Peak SWE was a more important

predictor than Qmin Prior, and higher Summer P was associated with

later minimum flows (results not shown). Part of the poor model fit

may be due to the strong correlation between DOY Q Rise and Qmin

timing in most watersheds (Table 4), which suggests that the timing of

minimum flows are often dictated by the onset of late summer and fall

rains.

4 | DISCUSSION

4.1 | Water temperature

Unsurprisingly, high air temperatures were strong predictors of high

summer water temperatures. Water temperatures are therefore

expected to rise in response to the increased air temperatures that

are predicted across our entire study region in coming decades

(Figure C1). However, Qmin was also strongly correlated with peak

water temperature (especially in Donner und Blitzen, the most eastern

watershed; Table 2). For two of our study watersheds (Merced and

Donner und Blitzen), a linear model with Qmin gave the most accurate

prediction of peak annual water temperature of all linear models

tested (Figure 3; Table S6). This shows that despite peak water tem-

peratures nearly always occurring before Qmin is reached, years with

TABLE 2 Correlation coefficients of annual peak 7-day mean water temperature with multiple variables describing snow water equivalent
(SWE), streamflow (Q), precipitation (P) and air temperature (T).

Merced River Sagehen Creek Donner und Blitzen Cedar River

Qmin �0.84 �0.51 �0.87 �0.48

Air T (same day) �0.40 0.53 0.33 0.40

Air T (previous week mean) 0.10 0.60 0.74 0.66

Air T (previous 2 weeks mean) �0.11 0.70 0.63 0.53

Peak SWE �0.68 �0.65 �0.67 0.07

Qmin Prior 0.55 �0.15 �0.05 0.48

Summer PET 0.00 0.31 0.50 0.36

Aridity 0.62 0.47 0.20 �0.06

Runoff Ratio �0.53 �0.55 �0.92 0.07

Peak Flow �0.74 �0.53 �0.68 �0.20

Q50 �0.54 �0.55 �0.65 �0.16

P80 0.86 0.21 0.02 �0.17

SWE Fraction �0.31 �0.44 �0.50 0.12

Winter P �0.76 �0.49 �0.32 0.00

Summer P �0.70 0.11 0.18 �0.38

Water Year P �0.77 �0.50 �0.42 �0.13

Previous 2 weeks' P �0.47 0.37 0.42 �0.10

Previous 4 weeks' P �0.50 0.08 0.57 �0.36

Previous Week's Mean Flow �0.77 �0.27 �0.56 �0.19

Note: Blue colours indicate that a higher value of that variable leads to lower peak water temperatures (negative correlation) while red indicates a variable

associated with higher peak water temperatures. Bold numbers indicate a statistically significant correlation (p < 0.05).
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low baseflows are generally associated with warmer water tempera-

tures. This relationship could be attributable to various causes such as

shallower streams warming more quickly than deep water and/or

higher Qmin values indicating more contribution from cold groundwa-

ter flowpaths (Tague et al., 2007). Although part of this correlation

may simply be due to the fact that warmer air temperatures lead to

higher evaporative demand and thus lower streamflows, the impor-

tance of Qmin in addition to air temperature in our models for most

watersheds suggests that flow itself contributes to stream

temperatures.

Peak SWE only had a significant correlation (p < 0.05) with peak

temperature for Sagehen, although the p value was still <0.15 for the

three other streams. For Sagehen, the correlation of water tempera-

ture with peak SWE was stronger than the correlation with Qmin,

suggesting that snowpack variation may play an important role in the

variability of water temperature. Previous work has shown that

the timing of snowmelt recession has a strong impact on the amount

of time that water temperatures remain elevated, and only a small

impact on peak water temperatures (Null et al., 2013). Although we

focused on magnitude of stream temperature correlations with flow

volume, future work should explore temporal patterns in more detail

as well.

Air temperature in the week prior was significantly correlated

with peak water temperature in every stream except the Merced

River (Table 2), and air temperature was not selected as a predictor in

the linear model of peak water temperature for Merced (Table S6). It

may be that Merced River temperature is less sensitive to air tempera-

ture since it has the highest maximum elevation of the watersheds

analysed for temperature, and therefore much of its water comes

directly from cold snowmelt for more of the year. This is consistent

with other studies showing colder summer water temperatures in

streams that are more snow-dominated compared with rain-

dominated (McGill et al., 2023; Siegel et al., 2022) and suggests that

snowpack (which is highly sensitive to climate change) may be an

important regulator of stream temperatures.

Increased peak SWE and increased daily streamflows were both

associated with colder daily water temperatures (Table 2). Disaggre-

gating the individual effects of these two related values would require

a process-based model, which is beyond the scope of the current

study.

TABLE 3 Correlation coefficient of each variable with the given river's annual Qmin.

Merced

R., CA

Galena

Crk., NV

Sagehen

Creek, CA

Donner und

Blitzen, OR

Sandy

R., OR

American

R., WA

Cedar

R., WA

Stehekin

R., WA

Thunder

Creek, WA

Peak SWE 0.57 0.83 0.66 0.80 0.38 0.54 0.14 0.38 0.21

Winter P 0.59 0.82 0.69 0.69 0.22 0.54 0.14 0.29 0.09

Water Year P 0.63 0.85 0.72 0.73 0.20 0.55 0.21 0.31 0.23

SWE fraction 0.29 0.35 0.10 0.31 0.15 0.29 0.07 0.18 0.08

Qmin Prior 0.28 0.48 0.48 0.45 �0.01 0.15 0.16 0.05 0.04

Qmin Prev.

2 Years Mean

0.29 0.48 0.45 0.44 �0.03 0.17 0.13 0.04 0.00

Qmin Prev.

3 Years Mean

0.25 0.34 0.36 0.34 �0.01 0.18 0.14 0.10 �0.01

Summer PET �0.57 �0.35 �0.51 �0.58 �0.27 �0.24 �0.44 �0.25 �0.04

Aridity (PET/P) �0.59 �0.76 �0.68 �0.67 �0.28 �0.59 �0.49 �0.37 �0.21

Runoff Ratio (Q/P) 0.51 0.41 0.83 0.79 0.05 0.56 0.12 0.17 �0.04

Peak Flow 0.58 0.60 0.81 0.81 0.31 0.47 0.33 0.16 0.10

Q50 (Date of 50%

annual flow)

0.44 0.44 0.53 0.35 0.13 0.40 0.20 0.23 0.05

P80 (Date of 80%

annual P)

�0.11 �0.23 �0.24 0.12 �0.45 �0.13 0.34 �0.04 �0.02

Summer P 0.41 0.62 0.61 0.47 �0.10 0.11 0.20 0.09 0.35

Prev. 2 weeks P 0.03 �0.17 0.18 �0.06 �0.17 �0.11 �0.09 �0.10 0.06

Prev. 4 weeks P 0.06 0.10 0.31 �0.02 �0.22 �0.03 �0.06 0.09 0.25

Prev. 8 weeks P 0.30 0.23 0.27 0.12 �0.17 0.04 0.02 0.05 0.34

Qmin timing 0.03 0.63 0.59 0.60 �0.40 0.03 �0.36 �0.35 �0.28

DOY Q Rise �0.06 0.52 �0.32 �0.04 �0.48 �0.08 �0.44 �0.33 �0.35

Note: Numbers in bold indicate statistically significant correlations (p < 0.05). Numbers in grey indicate highly non-significant correlations (p > 0.50).

Watersheds are ordered from most southern on the left to most northern on the right. Blue indicates a positive correlation, red a negative correlation and

white a near-zero correlation.
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4.2 | Qmin volume

Deeper peak snowpack and greater precipitation were associated with

higher Qmin values and lower stream water temperatures under most

of our statistical analyses. In the drier southern watersheds, a positive

relationship between Qmin and the prior years' low flows indicates

that subsurface water storage may provide a buffer to interannual

SWE variations (which could also make these watersheds more sensi-

tive to multi-year drought). The importance of prior years' Qmin in

predicting the current year's low flow in Sagehen is consistent with

Godsey et al. (2014) finding that annual low flows in this watershed

were highly sensitive to the previous year's snowpack. While some

watersheds were modelled well using only storage metrics, adding

evapotranspiration increased model accuracy. The influence of water

year P, Peak SWE and Summer PET are illustrated in Figures S2 and

S3, demonstrating that higher Qmin values happen in years with lower

PET, but that low PET years also often have high P and SWE which

makes attribution of causality difficult. In Sagehen, Qmin is generally

lower in more recent years regardless of SWE (Figure 5C). This can

partly be explained by a trend towards higher summer PET over time

(Figure S4).

While peak SWE generally had the greatest magnitude coefficient

in our linear models (indicating that the interannual variability of peak

SWE had a proportionally larger impact on the interannual variability

of Qmin) it should be noted that the relative sensitivity was generally

largest for summer PET (Figures 4a,c and B1). While a 10% increase in

peak SWE or Winter P was found to increase Qmin by up to 8% or

9%, respectively (depending on the watershed and model chosen), a

10% increase in summer PET would decrease Qmin by up to 50%

(Figures B1 and B2). Cooper et al. (2018) used a larger number of

watersheds but only considered each variable independently; they

found 10% increases in SWE or Winter P to raise Qmin 4% or 5%

(respectively) and a 10% PET increase to reduce Qmin 21%.

The stepwise linear regression algorithm for Qmin selected Peak

SWE as a predictor variable for three of the watersheds (Merced,

Donner und Blitzen and Sandy) and Water Year (WY) P (which is cor-

related with peak SWE) was selected for three of the remaining seven

watersheds (Table S1). Winter P was not selected by the algorithm for

any watersheds and had a slightly smaller correlation with Qmin than

Peak SWE for most watersheds (Table 2). In contrast, Cooper et al.

(2018) found that Qmin was slightly more responsive to Winter P

compared with Peak SWE. A variation on the storage-only model

using Winter P instead of Peak SWE to predict Qmin gave slightly

better model fits for 4/9 of our study watersheds, but usually SWE

was a better or equal predictor (Table S2). The positive correlation of

SWE Fraction (the ratio of Peak SWE to Water Year P) with Qmin in

F IGURE 4 Coefficients for the Storage-Only model (a) and Storage+Demand model (c) for Qmin in each watershed, as described in

Equation (1). Watersheds are ordered from more southern on the left to more northern on the right (same order as Table 1). The four most arid
watersheds are shown in yellow while the remainder are shown in blue. Circle size is proportional to the R2 value for each model (also shown in
Panel b).
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all watersheds also suggests that snowpack storage is important for

summer low flows independently of precipitation volumes (Table 3).

Figure S5 demonstrates that Winter P does not explain much of the

variation in Qmin that is not predictable by peak SWE and carryover

storage (years with low peak SWE but relatively high Qmin do not

regularly have high winter P). Nonetheless Peak SWE, Winter P and

WY P are highly correlated with each other and it is likely that P alone,

whether rain or snow, is a significant control on Qmin. Our analyses

do suggest that total annual precipitation and the amount stored as

snowpack are slightly more important to determining low flow than

the volume of precipitation during winter months. Watersheds such

as Donner und Blitzen where Peak SWE is a more important predictor

than WY P (Table S1) may be more hydrologically sensitive to a

warmer future when precipitation is more likely to fall as rain.

Future climates are likely to increase factors associated with

lower minimum flows. According to downscaled global climate models

(GCMs) from the Coupled Model Inter-Comparison Project 5 (CMIP5;

Pierce et al., 2014, 2015; Taylor et al., 2012), across the entire region

of study water storage in soils and snow are expected to decrease,

summer PET to increase and mean annual precipitation is projected to

either remain the same or increase slightly (Figures C1–C3). All of

these changes, except for precipitation, are likely to decrease low

flows. Looking more closely at our four most southern watersheds,

individual GCMs' projections are mixed in terms of whether annual

precipitation or the 20th percentile of annual precipitation

(an indicator of drought severity) are likely to increase or decrease by

the end of the century (Figures C3 and C4), but most models predict

that peak SWE will decrease (Figure C5). It is possible that higher

annual precipitation might help increase Qmin even if SWE decreases.

However, simulations from a continent-wide application of the Vari-

able Infiltration Capacity (VIC) model (Vano et al., 2020) predict future

decreases in August and September streamflow for all of the southern

study watersheds using forcings from most climate models

(Figures C6 and C7). Donner und Blitzen shows the most models

F IGURE 5 Relationship between 15-day low flow (Qmin), snow and storage. Plots give annual minimum 15-day flow plotted against the
previous winter's peak SWE. Colours denote water year, and size of circle is proportional to the previous year's Qmin (a surrogate for subsurface
water storage). For the more southern sites, the lowest flows appear to occur in years with lower peak SWE and smaller previous year Qmin (a–d)
but this relationship is weaker or nonexistent in the more northern sites (g–i). An ‘X’ denotes data from 2021, the lowest Qmin in our study
period for Merced and Sagehen. A ‘+’ denotes data from 2015, which had the lowest peak SWE since year 2000 for most watersheds.

BOISRAM�E ET AL. 11 of 27

 10991085, 2024, 5, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/hyp.15157, W

iley O
nline Library on [20/05/2024]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License



predicting higher August and September flows in the future, which

may be due to its relatively low projected increases in summer PET

(Figure C2), relatively low Qmin sensitivity to PET (Figure B1), and

slight increase in projected precipitation even during relatively dry

years (Figure C4).

4.2.1 | Regional variations

The more southern watersheds in our study had the highest R2 values

for models predicting Qmin using the annual-scale climate variables

tested in this study (Figure 4). Cooper et al. (2018) also found that low

flows in southern watersheds were more sensitive to annual sums of

precipitation and PET compared with northern watersheds. These

southern watersheds also had the highest mean elevations, and obser-

vations in Switzerland found that low flows in late summer were more

directly affected by snowpack in watersheds above 2000 m elevation

(Jenicek et al., 2016). The four northern-most catchments in this study

(American, Cedar, Stehekin and Thunder) are all relatively slow-

draining and storage-dominated with long baseflow recessions

(Cooper et al., 2018). Previous work has shown that low flows in

slower-draining watersheds with later snowmelt dates (such as the

more northern sites in our study) may actually be more sensitive to

changing snowpack than faster draining watersheds (Tague &

Grant, 2009). This sensitivity may be difficult to observe with the

methods used here due to multiple factors, however. One such factor

is demonstrated by the fact that in Cedar, Stehekin, Sandy and

Thunder Creek Qmin volume is negatively correlated with both Qmin

date and DOY Q Rise (Table 2). In these watersheds streamflow

would likely keep decreasing throughout the summer until fall rains

began raising water levels (see hydrographs with a dashed line in

Figure 2), so a later Qmin date means more time for flow to recede

before the wet season and thus a greater chance of a small Qmin

value regardless of other variables. This is supported by the fact that

streamflow in these watersheds generally begins to rise within a few

days of Qmin being reached (Figure S6), suggesting that Qmin gener-

ally occurs just before late summer or fall rains cause an end to sum-

mer recession. In the faster-draining basins, on the other hand,

streamflow levels bottom out at a relatively constant level earlier in

the summer (solid lines in Figure 2), and earlier Qmin dates would

reflect drier conditions and thus a lower summer baseflow (positive

correlation between Qmin timing and volume; Table 2). Geological dif-

ferences such as these are important to keep in mind when assessing

watersheds' sensitivities to future climate, as both Qmin timing and

magnitude have strong impacts on aquatic ecology.

The Thunder Creek watershed contains glaciers, which likely have

a strong influence on summer low flows since warmer temperatures

can lead to greater glacier melt and therefore increase summer

streamflows compared with what would be expected in response to

lower precipitation and higher temperatures in an unglaciated basin

(Pelto, 2008). These glacial impacts may contribute to the poor ability

of our simple linear models to predict low flows in Thunder Creek.

Stehekin has a very small amount of glacier coverage, and none of the

other watersheds contain any glaciers (CEC, 2010).

TABLE 4 Correlation of various climate and flow metrics with the date of annual Qmin.

Merced

R., CA

Galena

Crk., NV

Sagehen

Creek, CA

Donner und

Blitzen, OR

Sandy

R., OR

American

R., WA

Cedar

R., WA

Stehekin

R., WA

Thunder

Creek, WA

Peak SWE 0.28 0.64 0.70 0.62 0.05 0.31 0.36 0.15 0.03

Winter P 0.40 0.63 0.64 0.40 �0.19 0.32 �0.03 0.08 0.18

WY P 0.40 0.66 0.67 0.59 �0.15 0.41 0.13 0.19 0.22

SWE

Fraction

�0.11 0.29 0.28 0.24 0.17 0.18 0.32 0.06 �0.06

Low Flow

Prior

�0.06 0.24 0.14 0.02 0.05 0.00 0.11 �0.04 0.13

Summer PET �0.31 �0.31 �0.36 �0.59 �0.02 �0.06 �0.06 �0.10 0.02

Aridity �0.22 �0.43 �0.58 �0.40 0.23 �0.32 0.13 �0.08 �0.14

Runoff Ratio 0.22 0.25 0.61 0.53 0.18 0.16 0.16 0.02 0.17

Peak Flow 0.39 0.36 0.72 0.64 �0.13 0.32 0.05 0.31 0.13

Q50 0.32 0.48 0.71 0.53 0.09 0.18 0.24 0.19 0.02

P80 �0.11 �0.29 �0.16 0.08 0.24 �0.38 �0.06 �0.19 �0.15

Summer P 0.11 0.54 0.56 0.66 0.23 0.36 0.42 0.30 0.13

P2w �0.08 �0.25 0.07 0.22 0.26 0.05 0.19 �0.07 �0.08

P4w �0.07 0.09 0.19 0.30 0.33 0.01 0.26 0.08 �0.04

P8w 0.03 0.14 0.26 0.47 0.38 0.12 0.32 0.17 0.17

DOY Q Rise 0.77 0.58 �0.08 �0.13 0.95 0.79 0.96 0.96 0.96

Note: Numbers in bold indicate statistically significant correlations (p < 0.05). Watersheds are ordered from most southern on the left to most northern on

the right. Blue indicates a positive correlation, red a negative correlation and white a near-zero correlation.
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Relatively low snow fractions for Sandy River (0.32) and Cedar

River (0.34) may be part of the reason that peak SWE was a poor pre-

dictor of Qmin in those catchments. Both of these watersheds did

have significant positive correlations between Q50 and Qmin, how-

ever, suggesting that the timing of snowmelt may still be an important

driver of summer flow volumes. Sandy River had a negative relation-

ship between P80 and Qmin, whereas American River had positive

relationships between these variables (Table 3, Table S1). This sug-

gests that spring and summer rainstorms (including rain on snow

events) may be strongly influencing summer flows in these water-

sheds with opposite effects.

4.2.2 | Importance of multi-year droughts

Our analyses demonstrate the importance of considering flow drivers

at multi-year timescales. The proportion of precipitation allocated to

streamflow is reduced during extended droughts since partitioning of

local precipitation to streamflow is minor until subsurface saturation is

reached, and extensive droughts leave a large subsurface storage defi-

cit that needs to be met in order to reach saturation (Bales

et al., 2018; Flint et al., 2018; Hahm et al., 2022). This impact of multi-

year drought is reflected in the fact that the four most arid water-

sheds in our study had positive relationships between previous years'

Qmin (up to 3 years prior) and summer low flows in every linear model

tested (Tables 3, S1 and S2). In wetter watersheds, such as the more

northern watersheds in our study, soils might be less likely to remain

unsaturated and therefore the impact of previous year's level of

drought would be lower. This is supported by the poor ability of previ-

ous year's Qmin to predict Qmin for the more northern watersheds

(Figure 4) and low correlation (Table 3).

The summer of 2021 provided a good example of multiple dry

years in a row causing exceptionally low flows due to an accumulated

deficit in subsurface water storage (Lapides et al., 2022). Water Year

(WY) 2021 (denoted with an X in Figure 5) had the lowest Qmin in

our study period for Sagehen and Merced. The storage-only model

(Figure 4A) predicted 2021 Qmin almost perfectly in both of those

watersheds (overpredicted by <0.01 mm/day). High model accuracy

for 2021 suggests that the record low flows were due to exceptional

multi-year drought conditions (and the resulting storage deficits, as

suggested by Lapides et al., [2022]) rather than by a new emerging

behaviour. Peak SWE and total precipitation for WY 2021 were low

in these watersheds (bottom 25th and 10th percentiles for SWE and

WY P, respectively), but not the lowest on record. The previous year's

minimum flows were also low (bottom 10th percentile for Merced

and 20th percentile for Sagehen). WY 2021 also had summer PET in

the top 95th percentile for both Sagehen and Merced, and was the

second year in a row with PET/P >1. In the other study watersheds,

behaviour in 2021 was mixed. In Thunder Creek and Stehekin, 2021

had near-average SWE and Qmin, and the storage-only model fit it

well (error <0.1 mm/day and <3%). For comparison, WY 2015

(denoted with a + in Figure 5) had the lowest peak SWE since the

year 2000 for most of our study watersheds, and followed three

previous dry years (including WY 2014 which had Qmin in the bottom

10th percentile for both Merced and Sagehen) but observed 2015

Qmin was slightly higher than 2021 for Sagehen and Merced, and the

storage-only model underpredicted 2015 Qmin by �0.03 mm/day in

both watersheds. This is possibly due to slightly lower summer PET

and higher WY P in 2015 compared with 2021 for those watersheds.

A widespread spring heat wave also led to record-breaking snowmelt

rates in April of 2021 across the Western United States which may

have further exacerbated drought conditions (McEvoy &

Hatchett, 2023). A linear model using Water Year P was better able to

predict 2015 low flows than a model using Peak SWE (which under-

predicted 2015 Qmin), suggesting that the 2015 summer water bal-

ance was more controlled by total precipitation rather than snowpack

storage (results not shown). This could indicate that during excep-

tional drought periods—when snow melts too early to fully perform its

usual function as a reservoir slowly releasing water during the dry sea-

son, and subsurface storage is sufficiently depleted that it has the

capacity to hold much of the precipitation inputs even if they come as

winter rain—the total amount of precipitation is more important than

snowpack levels for replenishing subsurface storage and maintaining

baseflows.

4.3 | Qmin timing

Interestingly the timing of Qmin is more challenging to predict from

the simple climate metrics used in our study. Timing of Qmin can be

ecologically very important, and we found some evidence that Peak

SWE affected this timing. Peak SWE was positively correlated with

the date of Qmin for all watersheds, and this correlation was statisti-

cally significant (p < 0.05) for 6/9 watersheds (Table 4). Godsey et al.

(2014) also found that greater peak SWE generally led to later onset

of low flows. Summer precipitation may also be important in delaying

the timing of minimum flows, as summer P was significantly positively

correlated with Qmin date for 6/9 watersheds, while higher summer

PET can advance the timing (Table 4). Since summers with higher PET

generally have lower P, however, it is hard to disentangle the indepen-

dent impacts of these two drivers. Prior years' Qmin was not signifi-

cantly correlated with date of Qmin in any watersheds, suggesting

that carryover storage is more important for summer flow volume

than it is for timing.

4.4 | Study limitations and opportunities for
further work

Our water temperature analyses are limited by the fact that we only

had sufficient data at four locations, and these sites only represent

temperature in the main stem of their respective rivers. Individual

stream reaches within each of these watersheds may show varying

sensitivities to snowpack, groundwater storage and so on, depending

on local geologic variations (Tague et al., 2007). Other watersheds

may also exhibit very different relationships between air temperature
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and water temperature depending on local non-climatic factors

(Arismendi et al., 2012). Our analyses did not account for potential

impacts of changing vegetation cover on low flows or water tempera-

ture, which could be an important mechanism especially if a multi-year

drought causes increased tree mortality from water stress and wildfire

(Bales et al., 2018; Chen & Chang, 2023) or warming climates lead to

vegetation expansion into higher elevations (Goulden & Bales, 2014).

However, since satellite data are not available for the entire period of

record for all watersheds such an analysis would involve high levels

of uncertainty. It is possible that reduced vegetation cover could

increase annual minimum flow volumes, especially in less water-

limited catchments, by reducing losses to evapotranspiration and/or

increasing snowpack storage (Goeking & Tarboton, 2020; Roche

et al., 2018). However, reduced vegetation cover in riparian areas can

lead to higher stream temperatures (Arismendi et al., 2012;

Caissie, 2006; LeBlanc & Brown, 2000; Webb et al., 2008) as well as

greater evaporation losses. Understanding these trade-offs will be

vital to future climate mitigation efforts.

While the linear models and correlations shown here provide

valuable insights into the sensitivity of flow volumes and stream

temperatures to variations in climate and precipitation, such statis-

tical methods cannot identify direct causal explanations for these

sensitivities. The collinearity of many different predictor variables

shows the danger of implying that any of our variables is directly

causing changes in flows. Figure 4 shows that the relative impor-

tance of different variables can depend greatly on the chosen linear

model. For example, in Cedar River peak SWE either had a slightly

positive coefficient (0.02) or slightly negative (�0.01) depending on

whether demand-related variables were included in the model. It

should be noted, however, that these coefficients only represent a

0.06% to �0.02% change in Qmin for a 1% change in peak SWE. In

general, the influence of Peak SWE on Qmin was more sensitive to

the model structure than previous year's Qmin or summer PET

(Figure B1). While stepwise linear regression provides a useful way

to examine the parameter space, this method can give potentially

misleading results and does not necessarily separate predictors

with a causal relationship from those that are only related coinci-

dentally (Smith, 2018). The stepwise regression's variable selection

was very sensitive to which other variables were supplied and what

starting model was chosen. Therefore, while the results of our step-

wise regressions can provide helpful insights into the relationships

between different variables, these results should not be interpreted

as the one ‘best’ model.

Our findings are limited by the fact that precipitation, snowpack

and air temperature in mountain environments can be highly spatially

variable and sparsely measured. It is therefore possible that the mea-

surements available to us do not always represent the mean condi-

tions upstream of the stream gage (Hatchett et al., 2022a). In low

snow years, it might be especially hard to capture representative

snowpack measurements if most snowpack is in the highest water-

shed elevations which are also the least likely to be measured. New

methods such as lidar measurements of snowpack can help address

this issue for recent years, but do not cover long enough time periods

for the present study.

One of the central findings of our work is that year to year carry-

over subsurface storage may be important for low flows and conse-

quently summer stream temperature, particularly for the more arid

watersheds. Our chosen proxy for storage, Qmin Prior, does have limi-

tations. For example, it gives little information about storage deficits

in the unsaturated zone, since this water does not directly produce

streamflow. However, assuming that groundwater (saturated) storage

makes up the majority of subsurface water storage, that Qmin is a

monotonically increasing function of the saturated storage at the end

of that year's dry season, and that storage does not continue to

deplete significantly after Qmin is reached, we expect Qmin to be

highly correlated with subsurface water storage. If actual ET data

were available, a simple water balance approximation using P-ET-Q

might be a better indicator of storage carryover. Although models

could provide estimates of ET, in this study we chose not to use rea-

nalysis products but focused on observed data.

Future climates with less snowpack may not continue to follow

trends observed from historical data. Less data from low elevation

snow observation stations, as well as changes to streamflow genera-

tion efficiency, could lead to future relationships between snowpack

and streamflow that are very different from what has been observed

to date (Livneh & Badger, 2020). Studies such as ours can help inform

which areas are already sensitive to variations in snowpack (and thus

are clearly at high risk), but may not identify locations that will

become more sensitive in the future.

4.5 | Implications for watershed management

For Sierra Nevada watersheds, our linear models show that increasing

peak SWE by 1% relative to the mean would increase that summer's

minimum flow volume by approximately 0.7%–0.8% relative to the

mean (Figure B1). In turn, each 10% increase in Qmin would be

expected to decrease peak stream temperature by up to 0.4�C

depending on the watershed (Figure B3). Each 1� increase in air tem-

perature would lead to a 0.3�–0.4� increase in peak water tempera-

ture for Sagehen Creek and Cedar River (Figure B3). These results

suggest that forest management actions to promote deeper snowpack

may increase summer flow volumes in arid mountain watersheds of

California, Nevada and Oregon, and these streamflow increases may

partly counteract the water temperature increases from warming air

temperatures. In the Pacific Northwest, the relationship between

snowpack and low flows is more complex and the potential impacts of

increasing snowpack water storage are unclear.

The strong relationship between previous years' low flows and

current year's low flow in our more arid watersheds demonstrates the

role of carryover water storage from year to year. Efforts to increase

subsurface water storage—such as wetland restoration (Melesse

et al., 2007; Ohara et al., 2013; Tague et al., 2008), creation of infiltra-

tion basins and/or vegetation management to reduce transpiration
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losses—may help reduce the drought sensitivity of low flows. This

analysis also shows the importance of including metrics of subsurface

water storage when predicting streamflow behaviour in arid water-

sheds. Managers may overpredict summer streamflows (and thus

underestimate summer water temperatures) if they rely only on his-

torical relationships between a given year's precipitation and stream-

flow volume.

5 | CONCLUSIONS

This study presents an empirical analysis of the predictability of sum-

mer stream temperature from multiple climate and streamflow metrics

for a range of watersheds in the mountain western US. Reductions in

summer low flows generally translated into higher summer stream

temperatures. While we did not find strong correlations between peak

snowpack and summer stream temperatures, the links between snow-

pack (and other storage metrics) and summer flow volumes suggest at

least an indirect effect of these storage terms on summer stream tem-

peratures through low flow volumes. Annual peak summer stream

temperatures were also highly correlated with summer air tempera-

tures, generally within the week of the maximum temperature. Thus,

warmer summer air temperatures and lower future flow volumes may

combine to create much warmer summer water temperatures.

Our study also focused on predictors of minimum flow volumes

as a useful proxy for stream temperature since daily streamflow

records are much more common and because we find that minimum

flow volumes are often an important predictor of summer stream tem-

perature (meaning that manipulating flow volumes may be a useful

management tool for lowering water temperatures). Our goal was to

assess the extent to which both short term storage of water as snow-

packs and multi-year carryover storage as groundwater influence

streams during the summer. Our results show a mix of controls on low

flows and associated water temperature. Snowpack depth is a strong

predictor of summer low flows in the more arid mountain regions of

the western states, but less so for more northern sites. Although much

of this effect is related to the total precipitation and the strong corre-

lation between snowpack depth and precipitation, there is some evi-

dence that snowpack depth is a slightly stronger predictor for the

more arid watersheds. One exception may be during multi-year

droughts, when precipitation in any form is valuable for refilling

depleted subsurface water stores and therefore snowpack levels may

be less important than overall precipitation in predicting summer low

flows. The importance of year to year carryover of subsurface water

storage also varies across watersheds, but was clearly important for

the more arid watersheds in our set. These relationships are also

mediated by atmospheric water demand. Taken together our results

suggest that a warmer future with lower snow water storage, greater

PET and longer droughts is likely to lead to lower summer stream-

flows and earlier dates of minimum flow with warmer water tempera-

tures. This effect will likely be stronger in more arid watersheds,

whereas wetter watersheds may not see as much impact of snowpack

change on their minimum flows.

Our results suggest that climate (e.g., changes in precipitation and

air temperature) and geology (e.g., groundwater drainage rates) will

determine much of future streams' characteristics during the summer

months that can be ecologically stressful. However, land management

activities that increase water storage as snow and groundwater while

decreasing evapotranspiration may help mitigate some of the effects

of climate change, especially in more arid watersheds.
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APPENDIX A: ADDITIONAL DETAILS REGARDING DATA

SOURCES

TABLE A1 Site details.

Gage
number Site name

Gage
longitude

Gage
latitude

In
Cooper
et al?

SNOTEL
ID (s)

Snow course
name (s) Air T data source

10343500 Sagehen C near Truckee

CA

�120.238 39.43157 Yes 539-541 Independence

Creek

wrcc.dri.edu/cgi-bin/

rawMAIN.pl?casagh

12175500 Thunder Ck near

Newhalem WA

�121.0717 48.67278 Yes 711, 817 Thunder Basin PRISM Daily Data

12451000 Stehekin River AT

Stehekin, WA

�120.6906 48.32972 Yes 681,

606,

711

Rainy Pass PRISM Daily Data

12115000 Cedar R near Cedar Falls

WA

�121.6239 47.37028 Yes 420 N/A NOAA, Fire Training

Academy

(USR0000WFTA)

12488500 American R near Nile WA �121.1675 46.97778 Yes 642 Bumping Lake PRISM Daily Data

10348850 Galena Creek at Galena

Creek State Park, NV

�119.8575 39.35444 No 652 Mount Rose PRISM Daily Data

14137000 Sandy River near Marmot,

OR

�122.1361 45.39972 No 655 N/A PRISM Daily Data

10396000 Donner und Blitzen River

near Frenchglen OR

�118.8675 42.79083 No 477 N/A PRISM Daily Data

11264500 Merced R A Happy Isles

Bridge, Yosemite CA

�119.5591 37.73131 No N/A Gin Flat,

Peregoy

Meadows

NOAA, Yosemite Park HQ

Note: List of USGS streamflow gages used along with their locations, SNOTEL sites and snow courses used for peak snow water equivalent, and source of

air temperature (T) data. We also note whether the site was included in Cooper et al. (2018) to assist with comparisons between our findings.
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APPENDIX B: RELATIVE SENSITIVITY

We define relative sensitivity as the ratio of changes relative to the

mean:

Relative Sensitivity¼ Δy=y
Δxi=xi

� �
¼ cixi
σxi y

,

where y and y represent the independent variable (Qmin or tempera-

ture) and its mean overall years; xi, xi and σxi represent a single predic-

tor variable and its mean and standard deviation, respectively; and ci

represents the linear model coefficient of the normalized version of xi

from Equation (1). If relative sensitivity is greater than 1, then a given

percent change in x will lead to a higher percent change in y.
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F IGURE B1 Relative sensitivity of Qmin to Previous year's Qmin (a), Summer PET (b) and Peak SWE (c) using linear models with different
predictor variables. The storage-only model includes only Peak SWE and prior year's Qmin as predictors. The other three models are variations on
the Storage+Demand model which use Peak SWE, Qmin Prior, Summer (Smmr.) PET, Summer Precipitation (P) and/or Aridity as predictors. Note
that high correlations between predictor variables may cause misleading values for some models.
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F IGURE B3 (a, b) Increases in daily peak water temperature for every 10% decrease in daily streamflow (Q), 1�C increase in daily air
temperature, or 10% decrease in peak SWE. (c): Increase in annual peak water temperature for every 10% decrease in Qmin or 1�C increase in
mean daily air temperature for the week preceding peak water temperature. Values are calculated from the linear models described in Figure 3.

F IGURE B2 Relative sensitivity of
Qmin to Peak SWE according to the
original Storage Model (Qmin as a linear
combination of Peak SWE and Qmin
Prior) and relative sensitivity to Winter P
according to a variation of the Storage
Model using Winter P and Qmin Prior as
predictor variables. A relative sensitivity
of 1 would mean that a 1% increase in the

given variable would cause a 1% increase
in Qmin.
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APPENDIX C: CLIMATE CHANGE CONTEXT

We explored projections of climate and hydrology from other studies

in order to provide context for our analyses in terms of projected

changes. Mountain areas are especially likely to experience future

warming as well as decreases in snowpack and soil water storage

(Figure C1).

While the mean projected changes were similar across our study

watersheds, we also wanted to know the levels of uncertainty in cli-

mate projections at our four most sensitive watersheds. We therefore

downloaded projections at each of the more southern watersheds for

32 different GCMs. These projections were downscaled using the

Localized Constructed Analogs (LOCA) methodology (Pierce

et al., 2014, 2015), and hydrologic variables were then calculated

using the Variable Infiltration Capacity (VIC) model (Vano et al., 2020).

We chose to look only at changes for the end of the century (2070–

2099) under the RCP 8.5 scenario. Proportional changes are calcu-

lated as the difference between the median values for 2070–2099

and the median values for a historical reference period (1971–2000),

divided by the mean historical value. All climate projections and their

associated hydrologic model outputs were downloaded from the

‘Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections’
archive at http://gdo-dcp.ucllnl.org/downscaled_cmip_projections/

using the tributary area selection method. These data are summarized

in Figures C2–C7.

We acknowledge the World Climate Research Programme's

Working Group on Coupled Modelling, which is responsible for CMIP,

and we thank the climate modelling groups for producing and making

available their model output. For CMIP the US Department of

Energy's Program for Climate Model Diagnosis and Intercomparison

provides coordinating support and led development of software infra-

structure in partnership with the Global Organization for Earth System

Science Portals.

F IGURE C1 Maps of projected
changes in snow, soil water storage,
mean air temperature and annual
precipitation for the 2075–2099 period
compared with a 1981–2010 reference.
Values are an average over 20 GCM from
the CMIP5 Project. Source: https://apps.
usgs.gov/nccv/maca2/.
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F IGURE C2 Projected change in median summer potential evapotranspiration (PET) across 32 GCMs (2070–2099 versus 1971–2000).
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F IGURE C3 Projected proportional changes in median annual precipitation across 32 GCMs (2070–2099 versus 1971–2000).
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F IGURE C4 Projected proportional changes in the 20th percentile of annual precipitation (2070–2099 versus 1971–2000). A negative
number indicates that drought years may be more extreme in future periods.
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F IGURE C5 Change in maximum annual peak snow water equivalent (SWE). A positive value means that at least 1 year in the projection had
a higher peak SWE than was seen during the historic period; median peak SWE may still decline in those models. (Changes are for 2070–2099
versus 1971–2000).
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F IGURE C6 Modelled change in August streamflow (2070–2099 versus 1971–2000). Streamflow is calculated as baseflow plus runoff from
the VIC model across the entire watershed. Note that this estimate of streamflow does not account for any flow routing, and comes from a model
that is not specifically calibrated for the local watersheds studied here.
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F IGURE C7 Modelled changes in September streamflow (2070–2099 versus 1971–2000). Streamflow is calculated as baseflow plus runoff
from the VIC model across the entire watershed. Note that this estimate of streamflow does not account for any flow routing, and comes from a
model that is not specifically calibrated for the local watersheds studied here.
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