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ABSTRACT
Graph representation learning models have demonstrated great

capability in many real-world applications. Nevertheless, prior re-

search indicates that these models can learn biased representations

leading to discriminatory outcomes. A few works have been pro-

posed to mitigate the bias in graph representations. However, most

existing works require exceptional time and computing resources

for training and fine-tuning. To this end, we study the problem of

efficient fair graph representation learning and propose a novel

framework FairMILE. FairMILE is a multi-level paradigm that can

efficiently learn graph representations while enforcing fairness

and preserving utility. It can work in conjunction with any unsu-

pervised embedding approach and accommodate various fairness

constraints. Extensive experiments across different downstream

tasks demonstrate that FairMILE significantly outperforms state-

of-the-art baselines in terms of running time while achieving a

superior trade-off between fairness and utility.

CCS CONCEPTS
• Computing methodologies→Machine learning.
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1 INTRODUCTION
A critical task in graph learning is to learn the hidden represen-

tations of the graph, also known as graph embedding. The goal of
graph embedding is to preserve both structure properties and node

features in the graph. Such embeddings can be used to characterize

individual users (e.g. Amazon and Netflix) and to promote new con-

nections (e.g. LinkedIn). Various methods have been developed for

this purpose [17, 19, 40, 42], including those based on graph neural

networks (GNNs) [20, 29, 52]. Such models have been effective in

many real-world applications, such as crime forecasting [24], fraud

detection [50], and recommendation [14, 18].

Given the high-stake decision-making scenarios that such mod-

els are typically deployed in, it is critical to ensure that the decisions

made by these models are fair. Prior studies [1, 10, 43] reveal that

graph representation learning models may inherit the bias from

the underpinning graph data. A common source of bias is node

features which may contain historical bias in sensitive attributes

or other correlated attributes [13]. Another cause of bias is the

homophily effect - promoting links that may lead to increased segre-

gation. Such bias can lead to a biased distribution in the embedding

space [12] and cause unfair treatment towards particular sensitive
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attributes such as gender and ethnicity [13]. There is a clear need

to alleviate such bias, ideally without impacting the bottom line of

model performance.

Recent efforts to address this problem seek to enhance fairness by

adapting existing GNNmodels [1, 9, 10, 25, 34]. However, such adap-

tions often add to the models’ complexity – on large-scale graphs,

these models either cannot finish execution in a reasonable amount

of time or often result in an out-of-memory error. These concerns

are amplified by recent articles that suggest that the training time

for many AI models is simply becoming unsustainable [36, 47] with

respect to both compute and emission costs. To tackle this issue, a

naive solution is to apply scalability improvement techniques such

as the multi-level framework [21, 26, 35]. However, these solutions

lack fairness considerations. Figure 1 evaluates these approaches

in terms of efficiency, fairness, and utility. The results demonstrate

that: (1) Prior fairness-aware models are time-consuming for fair

graph representation learning; (2) Scalable approaches like MILE

[35] cannot enhance the fairness in embeddings. These observa-

tions highlight the challenges of balancing efficiency, fairness, and

utility in the problem of fair graph representation learning.

In addition to inefficiency, there are some other challenges with

existing work. First, some works adapt existing unsupervised graph

embedding approaches for fairness [27, 43], but it is challenging to

accommodate all such models. Second, many fair representation

learning methods only consider a single, binary sensitive attribute,

while real-world graphs usually have multiple multi-class sensitive

attributes - limiting their applicability.

To address the above-mentioned issues, we present Fair MultI
Level Embedding framework (FairMILE). FairMILE is a general

framework for fair and efficient graph representation learning. It

adopts a multi-level framework used by recent scalable embedding

methods [2, 6, 21, 22, 35]. However, unlike other multi-level frame-

works, our framework incorporates fairness as a first-class citizen.

Our framework is method agnostic in that it can accommodate any

unsupervised graph embedding method treating it as a black box.

Moreover, unlike a majority of fair graph representation learning

models, FairMILE can learn fair embeddings with respect to multi-

ple multi-class sensitive attributes simultaneously. To summarize,

our main contributions are:

• Novelty: To the best of our knowledge, this is the first work
that seeks to improve the efficiency issue present in fair

graph representation learning. To that end, we develop a

general-purpose framework called FairMILE.

• Model-agnostic: FairMILE can easily accommodate any

unsupervised graph embedding methods and improve their

fairness while preserving the utility.
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Figure 1: Evaluation of fairness-aware methods, graph em-
beddingmethods, MILE, and this work (FairMILE) in terms of
efficiency, fairness, and utility. The top right corner of each
plot corresponds to the best performance. This demonstrates
that existing fair representation learning works are ineffi-
cient and scalable embedding methods are unable to enforce
fairness, which highlights our novelty and contributions.

• Efficiency and versatility: Compared with existing ap-

proaches, FairMILE successfully improves the efficiency of

fair graph representation learning. In addition, FairMILE can

achieve fairness towards multiple and non-binary sensitive

attributes, which most prior works fail to consider.

• Evaluation: We demonstrate both the efficacy and efficiency

of FairMILE across both node classification and link predic-

tion settings. Our results show that FairMILE can improve

efficiency by up to two orders of magnitude and fairness

by several factors while realizing comparable accuracy to

competitive strawman.

2 PRELIMINARIES
2.1 Notations
Let G = (V, E) be an undirected graph, where V is the set of

nodes, and E ⊆ V × V is the set of edges. Let 𝑨 be the graph

adjacency matrix, where 𝑨𝑢,𝑣 denotes the weight of edge (𝑢, 𝑣).
𝑨𝑢,𝑣 = 0 means 𝑢, 𝑣 are not connected. 𝛿 (𝑢) denotes the degree of
node 𝑢. The graph also contains a set of sensitive attributes F (e.g.,

gender and race). Each attribute may have a binary or multi-class

value associated with a particular demographic group.

2.2 Fairness Metrics
In this paper, we focus on group fairness and use two metrics

for evaluation. These metrics have been widely adopted in prior

works [1, 10, 11, 13, 43]. Without loss of generality, we first intro-

duce them in a binary prediction scenario with a binary sensitive

attribute, and then we extend them to a general multi-class case.

Definition 1. Demographic Parity (also known as statistical
parity) [13] requires that each demographic group should receive

an advantaged outcome (i.e., 𝑌 > 0) at the same rate, which is

formulated as 𝑃 (𝑌 = 1|𝑆 = 0) = 𝑃 (𝑌 = 1|𝑆 = 1), where 𝑌 is the

predicted label and 𝑆 ∈ F is a binary sensitive attribute. To quantify

how demographic parity is achieved, prior works [1, 10, 32] define

Δ𝐷𝑃,binary as

Δ𝐷𝑃,binary = |𝑃 (𝑌 = 1|𝑆 = 0) − 𝑃 (𝑌 = 1|𝑆 = 1) |

To extend demographic parity for multi-class sensitive attributes,

Rahman et al. [43] measure the variance of positive rates among all

groups. Here, we further extend it to a multi-class predicted label

scenario by averaging the standard deviations (denoted as 𝜎) across

all advantaged classes. The formulation is given as

Δ𝐷𝑃 =
1

|Y+ |
∑︁

𝑦∈Y+
𝜎

(
{𝑃 (𝑌 = 𝑦 |𝑆 = 𝑠) : ∀𝑠}

)
where Y+ denotes a set of advantaged classes.

Definition 2. Equality of Opportunity requires that each de-

mographic group has an identical probability to receive a specific

advantaged outcome for its members with this advantaged ground-

truth label. In binary classification tasks with respect to a binary

sensitive attribute, existing works [1, 10, 11] compute the difference

of true positive rates across two groups to measure the equality of

opportunity, which is formulated as

Δ𝐸𝑂,binary = |𝑃 (𝑌 = 1|𝑌 = 1, 𝑆 = 0) − 𝑃 (𝑌 = 1|𝑌 = 1, 𝑆 = 1) |

where 𝑌 is the ground truth label. Similarly, we define a new metric

Δ𝐸𝑂 to extend equality of opportunity to a general scenario with

multi-class labels and attributes:

Δ𝐸𝑂 =
1

|Y+ |
∑︁

𝑦∈Y+
𝜎

(
{𝑃 (𝑌 = 𝑦 |𝑌 = 𝑦, 𝑆 = 𝑠) : ∀𝑠}

)
Note that the previously adopted metrics for binary predicted

labels and binary sensitive attributes are a special case of our pro-

posed measures, i.e., Δ𝐷𝑃 = 1

2
Δ𝐷𝑃,binary and Δ𝐸𝑂 = 1

2
Δ𝐸𝑂,binary.

2.3 Problem Statement
Problem 1. Given a graph G = (V, E), the embedding dimen-

sionality 𝑑 , and a set of sensitive attributes F , the problem of Fair
Graph Representation Learning aims to learn a fair embedding

model 𝑓 : V → R𝑑 with less inherent bias towards attributes in F
where the present bias is measured with Δ𝐷𝑃 and Δ𝐸𝑂 .

3 RELATED WORK
3.1 Fairness in Machine Learning
Since machine learning techniques are deployed to make decisions

that have societal or ethical implications [7, 50, 51], serious concerns

over their fairness are raised. There have been various definitions

of fairness in machine learning. In this paper, we focus on the

most popular definition group fairness [13], which requires that

an algorithm should treat each demographic group equally. The

groups are associated with a single or multiple sensitive attributes,
such as gender and race. There are also other definitions of fairness

including individual fairness [13] and counterfactual fairness [31].
Unfair outcomes are mostly caused by data bias and algorithmic

bias [38]. There exists a wide range of biases in data. For example,

features like home address can be associated with specific races and

lead to unfair decisions indirectly [12]. The design of machine learn-

ing algorithms may also unintentionally amplify the bias in data. To

address this concern, several fair machine learning algorithms have

been proposed in recent years [3, 4, 16, 45, 53]. A comprehensive

survey on fair machine learning is given in [38].



FairMILE: Towards an Efficient Framework for Fair Graph Representation Learning Conference’17, July 2017, Washington, DC, USA

Table 1: Summary of fair graph representation learningmeth-
ods.

Method Method-agnostic Multiple Sensitive Non-binary

Attributes Attributes

FairGNN [10] × × ×
NIFTY [1] × × ×
FairAdj [34] × × √

FairWalk [43] × × √

CFGE [5] × √ √

EDITS [11]

√ × √

FairMILE (This work)

√ √ √

3.2 Fair Graph Representation Learning
In the graph context, models trained to realize representations ac-

counting for the connectivity and topology inherent to the network

(e.g. homophily bias) can lead to biased representations. Down-

stream tasks that operate on such representations can lead to unfair

recommendations [49], and even biased and unjust outcomes [37].

However, the incorporation of fairness with graph-based learning

is challenging because of the non-i.i.d nature of the data and the

homophily effect of graph data [10, 12, 23].

Recently, several methods have been proposed to learn fair graph

representations. FairGNN [10] leverages adversarial learning to

train fair GNNs for node classification. NIFTY [1] adds a fairness loss

to the GNN objective as regularization. FairAdj [34] accommodates

the VGAE [28] model for fair link prediction. For task-agnostic

embedding, FairWalk [43] learns fair embeddings by adapting an

embedding algorithm node2vec [17]. Specifically, it modifies the

random walk process and adjusts the probability of selecting nodes

in each sensitive group for fairness. To consider multiple sensitive

attributes, CFGE [5] employs a set of adversaries with the encoder

for compositional fairness constraints. Unlike these approaches,

EDITS [11] is a pre-processing solution that reduces the bias in

graph structure and node attributes, then trains vanilla GNNs on

the debiased graph. However, since most methods are GNN-based,

they require exceptional time for training and fine-tuning.

In addition to inefficiency, there are three other major drawbacks

of existingworks. First, some of them are notmethod-agnosticwhich
means they require non-trivial modifications to the base model for

adaption. Second, most existing works are unable to incorporate

fairness constraints towards multiple sensitive attributes. Third,

some methods cannot handle non-binary sensitive attributes. Ta-

ble 1 summarizes these approaches together with our proposed

work FairMILE. Compared with these approaches, our work can

simultaneously (1) accommodate the base model easily while (2)

achieve fairness towards multiple non-binary sensitive attributes.

Most importantly, we will demonstrate that (3) FairMILE signifi-

cantly outperforms these baselines in terms of efficiency.

3.3 Scalable Graph Embedding
Many methods for graph embedding have been proposed in recent

years, including NetMF [42], DeepWalk [40], and node2vec [17].

Despite their excellent performance on various machine learning

tasks, their lack of scalability prohibits them from processing large

Algorithm 1 Graph coarsening for fair embedding

Input: Graph G𝑖 = (V𝑖 , E𝑖 )
Output: Coarsened graph G𝑖+1
1: SortV𝑖 in an increasing order of node degrees

2: for unmatched 𝑢 ∈ V𝑖 do
3: if All neighbors of 𝑢 are matched then
4: 𝑢′ ← {𝑢}
5: else
6: Find unmatched 𝑣 s.t. (𝑢, 𝑣) ∈ E𝑖 maximizing Equation (3),

then let 𝑢′ ← {𝑢, 𝑣}
7: Add supernode 𝑢′ toV𝑖+1
8: Connect supernodes inV𝑖+1 based on E𝑖
9: Build G𝑖+1 fromV𝑖+1 and E𝑖+1

datasets. Recent research addressed the scalability issue of graph em-

bedding using different methodologies. Some studies leverage high-

performance computing techniques [33, 41, 54]. Another group of

studies adopts the multi-level framework for better scalability. This

framework is widely used for various graph problems [6, 26, 35] and

the essential idea is to solve the problem from a smaller coarsened

graph. However, none of these methods are fairness-aware. We are

the first study that considers fairness based on this framework.

4 METHODOLOGY
We propose a fairness-aware graph embedding framework Fair-

MILE (shown in Figure 2a), which consists of three modules: graph

coarsening, base embedding, and refinement. The idea is to first

coarsen the original graph into a smaller one, then learn the embed-

dings of the coarsened graph using the base model, and eventually

refine them into the embeddings of the original graph.

There exist several definitions of fairness [13, 31] - all with the

shared principle that all subgroups should receive the positive out-

come at the same level in a given measure (e.g., positive rate for

Δ𝐷𝑃 , true positive rate for Δ𝐸𝑂 ). Since this paper studies unsu-

pervised representation learning, our key idea is to minimize the

variance among the representations of different groups. Intuitively,

the downstream models trained with such representations (or em-

beddings) will lead to a decrease in bias. Next, we introduce the

functionality of each module and explain how FairMILE enforces

fairness in the graph representations while improving efficiency

and versatility.

4.1 Graph Coarsening
Wedevelop a new fairness-aware graph coarsening algorithm (shown

in Algorithm 1). Given the initial graph G0 = G, it shrinks the graph
size by collapsing a group of nodes into a supernode in the output

graph G1. If two nodes are connected in G0, there exists an edge

between their supernodes in G1. As a result, the numbers of nodes

and edges are reduced in G1. After repeating this process 𝑐 times,

we can finally get the coarsened graph G𝑐 .
The key challenges in graph coarsening are two-fold: retaining

the structural information for better utility while incorporating

fairness toward the sensitive attributes. For utility, we adopt a

high-utility coarsening approach Normalized Heavy-Edge Match-

ing (NHEM) [26], which merges two nodes if their normalized

edge weight is maximum. Formally, given a node 𝑢 ∈ V , NHEM
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Figure 2: Overview of FairMILE

computes the normalized weight of the edge (𝑢, 𝑣) ∈ E defined as:

𝑤 (𝑢, 𝑣) =
𝑨𝑢,𝑣√︁

𝛿 (𝑢)𝛿 (𝑣)
(1)

Intuitively, it encourages nodes with fewer connections to match

other nodes and penalizes the hub nodes. Node matching allows

a supernode to have structural properties from different nodes.

However, due to the homophily in many real-world networks, the

bias in graph structure can be reinforced if two nodes from the

same group are merged.

In light of this, we add a new term in the node matching function

to reflect the divergence of the sensitive attribute distributions of

two nodes for fairness consideration. In FairMILE, we use a matrix

𝑺 ∈ R𝑁×𝑀 to denote the sensitive attribute values, where each row

𝑠𝑢 is the attribute value distribution vector for node 𝑢, and𝑀 is the

dimensionality of sensitive attribute values. We use these attribute

distribution vectors to quantify the divergence between nodes.

Initially, each node in the original graph G0 has a concatena-

tion of one-hot vectors for the attributes. For example, F has

two attributes: ‘gender’ (female, male) and ‘race’ (African, Asian,

white). The attributes of a female African 𝑢 can be modeled as

𝑠𝑢 = [1, 0, 1, 0, 0]. For a node 𝑣 in a coarser graph G𝑖 (𝑖 > 0), we
use 𝑠𝑣 to denote the distribution of all nodes in G0 merged into it.

For example, 𝑠𝑣 = [1, 1, 1, 1, 0] in G1 indicates that the supernode 𝑣
contains one female and one male on attribute ‘gender’, and one

African and one Asian on ‘race’. To measure the difference between

the sensitive attribute distributions of two nodes, we define the

following function based on Kullback–Leibler divergence [30]:

𝜙 (𝑢, 𝑣) = 1 − ©­«1 +
𝑀∑︁
𝑗=1

𝑠𝑢,𝑗

∥𝑠𝑢 ∥
log

(
𝑠𝑢,𝑗/∥𝑠𝑢 ∥
𝑠𝑣,𝑗/∥𝑠𝑣 ∥

)ª®¬
−1

(2)

It essentially maps the divergence of two normalized attribute dis-

tributions to [0, 1]. The higher the score is, the more different their

sensitive attributes are. Finally, given a node 𝑢 of G𝑖 , we formulate

the node matching policy as follows:

max

𝑣:(𝑢,𝑣) ∈E𝑖
(1 − 𝜆𝑐 )𝑤 (𝑢, 𝑣) + 𝜆𝑐𝜙 (𝑢, 𝑣) (3)

where 𝜆𝑐 is the weight of fairness in node matching. The objec-

tive here is to find the neighbor of node 𝑢 that maximizes the edge

weight and attribute divergence together. Intuitively, a large value

of 𝜆𝑐 generates more inter-group matching in graph coarsening.

Section 5 will empirically show that Algorithm 1 can improve the

fairness in graph representations.

4.2 Base Embedding
Like other multi-level frameworks [26, 35], FairMILE applies the

base model on the coarsest graph in an agnostic manner. Since the

input is the coarsened graph and the output is its node embeddings,

it is straightforward that FairMILE accommodates any unsupervised

graph embedding method such as DeepWalk [40] or node2vec [17]

with no modification required. This step generates the embeddings

𝑬𝑐 on the coarsened graph.

4.3 Refinement
In the last phase of FairMILE, we seek to learn the representations

of graph G0 from the embeddings of the coarsest graph G𝑐 . Gener-
ally, we train a fairness-aware refinement model based on graph

convolution networks (GCN) [29] to infer the embeddings 𝑬𝑐−1 of
G𝑐−1 from 𝑬𝑐 . Then we iteratively apply it until we get 𝑬0.

4.3.1 Model Architecture. Figure 2b shows the architecture of our
refinement model. Without loss of generality, the refinement model

has a projection layer followed by 𝑙 GNN layers where the input

and output of layer 𝑖 ∈ [1, 𝑙] are denoted as 𝑯𝑖−1 and 𝑯𝑖 . Given two

graphs G𝑗 and G𝑗+1, we initialize 𝑯0 by projecting the embeddings

of supernodes in G𝑗+1 to its associated nodes in G𝑗 . Note that if
two nodes that have different sensitive attribute values are merged

into G𝑗+1, they share the same initial embeddings in G𝑗 , which
mitigates the potential bias in learned representations.

In each layer, we use a normalized adjacency matrix 𝑫̃−
1

2 ˜𝑨𝑫̃−
1

2

for message passing. Here we drop the notation referring to a

specific graph for clarity. To take the sensitive attributes into con-

sideration, we concatenate the input of each layer with the row-

normalized sensitive attribute matrix
˜𝑺 . Formally, the 𝑖-th convolu-

tion layer in our refinement model can be formulated as

𝑯𝑖 = tanh

(
𝑫̃−

1

2 ˜𝑨𝑫̃−
1

2 (𝑯𝑖−1 ∥ ˜𝑺) Θ𝑖

)
(4)

where Θ𝑖 is the trainable linear transformation matrix of layer 𝑖 .

Finally, we can infer G𝑗 ’s node representations 𝑬 𝑗 = 𝑯𝑙/∥𝑯𝑙 ∥2.
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4.3.2 Training objectives. To achieve a trade-off between utility

and fairness, we have two distinct objectives for each of them. For

utility, we expect the refined representations to be close to the

input so that matched nodes are still close to each other in the

embedding space after refinement. Therefore, we minimize the

difference between the projected embeddings and the predicted

ones generated by the refinement model, which is defined as

𝐿𝑢 =
1

|V𝑐 |
∥𝑯0 − 𝑯𝑙 ∥2 (5)

𝐿𝑢 is the utility loss in our framework. To improve fairness,

we encourage nodes with different sensitive attribute values to be

closer in the embedding space. Specifically, we create a subset of

edges E′𝑐 that consists of links between two nodes with significantly
different sensitive attributes, which can be formulated as

E′𝑐 = {(𝑢, 𝑣) : (𝑢, 𝑣) ∈ E𝑐 ∧ 𝜙 (𝑢, 𝑣) ≥ 𝛾}

where 𝛾 is a threshold parameter for attribute divergence. Then

we use the learned representations to reconstruct an adjacency

matrix that represents the node distances in the embedding space.

To reward the links between diverse attribute groups, we use the

Hadamard product of the reconstruction matrix and the adjacency

matrix of E′𝑐 (denoted as A′𝑐 ) as our fairness objective. As a result,
the trained model generates similar embeddings for inter-group

nodes. The fairness loss (𝐿𝑓 ) is formally defined as

𝐿𝑓 = − 1

|E′𝑐 |
[
sigmoid(𝑯𝑙𝑯𝑙

⊤) ⊙ A′𝑐
]

(6)

The multiplication of the embedding matrix with a sigmoid acti-

vation (denoted by sigmoid(𝑯𝑙𝑯𝑙
⊤)) reconstructs the entire 𝑁 ×𝑁

matrix. Its element-wise product with A′𝑐 performs the masking

operation to select the node pairs with diverse sensitive attributes.

The negative minimization of 𝐿𝑓 ensures that the similarity of the

selected node pairs – measured by the dot products of their embed-

dings – is increased. This loss ensures that the embeddings learned

by the refinement model of the node pairs with diverse sensitive

attributes are proximal to each other.

Combining the utility and fairness loss functions, the overall

training objective of our refinement model is

min

{Θ𝑖 ,∀𝑖∈[1, 𝑙 ] }
(1 − 𝜆𝑟 )𝐿𝑢 + 𝜆𝑟𝐿𝑓 (7)

where 𝜆𝑟 ∈ [0, 1] controls the weight of fairness objective.

4.4 Theoretical analysis
Time complexity: The time complexity of FairMILE depends on

the selected embedding approach. Note that such approaches typi-

cally have a time complexity of at least 𝑂 (𝑑 |V0 |) [8], for example,

the time complexity of DeepWalk is 𝑂 (𝑑 |V0 | log |V0 |). Consider-
ing that the number of nodes can be reduced by up to half after

each time of coarsening (observed in Section 5.4), the efficiency is

significantly improved by embedding the coarsened graph. Apart

from embedding the coarsened graph, FairMILE spends additional

𝑂 (𝑐𝑙 (𝑑 +𝑀) ( |E0 | + 𝑑 |V0 |)) time on coarsening and refinement.

Given that 𝑑,𝑀 ≪ |V0 |, the additional time of these two phases

is typically much less than the reduced time of base embedding -

empirically verified in Section 5.4. Additional details on complexity

analysis are included in our supplement.

Fairness: We prove that the difference between the mean repre-

sentations of different demographic groups is bounded depending

on the network topology.

Theorem 1. When 𝐿𝑓 is minimized, the 2-norm of the difference be-
tween the mean embeddings of any two demographic groups regarding
a given sensitive attribute is bounded by

𝝁𝑝 − 𝝁𝑞



2
≤ 2(1 −min(𝛽𝑝 , 𝛽𝑞))

where 𝑝, 𝑞 are any two different values of the given sensitive attribute.
For 𝑖 ∈ {𝑝, 𝑞}, 𝝁𝑖 denotes the mean embedding values of nodes from
group 𝑖 , and 𝛽𝑖 denotes the ratio of nodes from group 𝑖 that have at
least one inter-group edge.

Theorem 1 shows that the difference between the mean embed-

dings of two groups depends on the ratio of inter-group connected

nodes in each group, which is typically large. For example, among

the datasets used in our experiments, the minimum 𝛽 is 0.676 in

Credit and 0.958 in German, respectively. When the mean embed-

dings of different demographic groups are close to each other, they

have similar representations and therefore with a high likelihood,

they will receive similar outcomes in the downstream task. The full

proof of Theorem 1 is provided in our supplement.

5 EXPERIMENTS
5.1 Experiment Setup
Datasets: We examine the performance of FairMILE on both node

classification and link prediction tasks. Our experiments are con-

ducted on seven real-world datasets from different application sce-

narios widely used in the fairness literature [1, 10, 11, 34, 46]. Sta-

tistics of the datasets are shown in Table 2, where |Y| denotes the
number of predicted labels, and |𝑆 | denotes the number of sensitive

attribute values. For details, please refer to our supplement.

Metrics: To quantify the prediction performance in node classifi-

cation, we use AUROC, F1-score (for binary class problems), and

Micro-F1 (for multi-class problems) as our utility metric. To mea-

sure the group fairness, we use Δ𝐷𝑃 and Δ𝐸𝑂 described in Section

3 as our fairness metrics. We also report the end-to-end running

time in seconds to show the efficiency of all methods.

For link prediction, following prior works [34, 46], we use AU-

ROC, Average Precision (AP), and accuracy as the utility metrics,

and compute the disparity in expected prediction scores between

intra-group and inter-group links. Specifically, the fairness metrics

are formulated as:

Δ𝐷𝑃, LP = |E(𝑢,𝑣)∼V×V [𝑌 |𝑆 (𝑢) = 𝑆 (𝑣)]
− E(𝑢,𝑣)∼V×V [𝑌 |𝑆 (𝑢) ≠ 𝑆 (𝑣)] |

Δ𝐸𝑂, LP = |E(𝑢,𝑣)∼V×V [𝑌 | (𝑢, 𝑣) ∈ E, 𝑆 (𝑢) = 𝑆 (𝑣)]
− E(𝑢,𝑣)∼V×V [𝑌 | (𝑢, 𝑣) ∈ E, 𝑆 (𝑢) ≠ 𝑆 (𝑣)] |

where 𝑌 ∈ [0, 1] is the link prediction score.

Baselines: Our baselines include 1) Specialized approaches: For node
classification, we use the vanilla GCN [29] and three state-of-the-art

fair node classification methods (NIFTY [1], FairGNN [10], and ED-

ITS [11]) with GCN as their base model. For link prediction, we use

VGAE [28] and FairAdj [34] with VGAE as the base predictor in our

comparative experiments. In addition, we adapt CFGE [5] for both
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Table 2: Statistics of datasets (NC denotes Node Classification, and LP denotes Link Prediction).

Dataset Task # Nodes # Edges # Features Label ( |Y |) Sensitive Attributes ( |𝑆 |)

German NC 1,000 22,242 27 credit risk (2) gender (2)

Recidivism NC 18,876 321,308 18 crime (2) race (2)

Credit NC 30,000 1,436,858 13 payment default (2) age (2)

Pokec-n NC 66,569 729,129 59 field of work (4) region (2), gender (2)

Cora LP 2,708 5,278 1433 citation (2) paper category (7)

Citeseer LP 3,312 4,660 3703 citation (2) paper category (6)

Pubmed LP 19,717 44,338 500 citation (2) paper category (3)

tasks which is the only baseline that accommodates multiple sensi-

tive attributes. 2) Graph embedding approaches: We choose three

popular unsupervised graph embedding techniques: NetMF [42],

DeepWalk [40], and Node2vec [17]. We also include FairWalk [43],

which is essentially a fairness-aware adaption of Node2vec. Note

that these approaches can be used in both downstream tasks. 3)

Our framework: We let FairMILE run with the three embedding

approaches above for evaluation.

Parameters and environments: All hyperparameters of special-

ized approaches are set following the authors’ instructions. In par-

ticular, unless otherwise specified, we set 𝜆 = 50 in CFGE for a

better tradeoff between fairness and utility. The dimensionality 𝑑

of representations for graph embedding approaches and our work

is set to 128. In FairMILE, we set 𝜆𝑐 = 0.5 for graph coarsening.

For refinement, We train a two-layer model for 200 epochs with

𝜆𝑟 = 0.5, 𝛾 = 0.5, and the learning rate of 1 × 10−3 on all datasets.

To evaluate unsupervised approaches for node classification and

all approaches for link prediction, we train a linear classifier on

the learned embeddings (for node classification) or the Hadamard

products of embeddings of sampled node pairs (for link predictions).

For the task of link prediction, we randomly sample 10% of edges

to build test sets and remove them from the training data, then

we add the same number of negative samples as positive edges in

the training and test sets, respectively. All methods are evaluated

on the same test sets and trained on CPUs for fair comparisons.

Experiments are conducted on a Linux machine with a 28-core Intel

Xeon E5-2680 CPU and 128GB RAM. We report the average results

of 5 runs with different data splits. For reproducibility, our codes

and data are available
1
.

5.2 Results for Node Classification
We first compare our work with specialized GNN-based approaches

and unsupervised graph embedding baselines on three datasets

with a single binary sensitive attribute. Specifically, we address the

following questions: Q1: Does FairMILE improve the fairness of a

base embedding method? How is the fairness of FairMILE compared

with specialized approaches? Q2: Does FairMILE outperform other

baselines in terms of efficiency? Q3: Does FairMILE retain the

embedding’s utility while improving its fairness and efficiency?

Table 3 only presents the results on two datasets (German and

Credit). The results on Recidivism are included in our supplement.

Methods are categorized into different groups by their base models,

and the optimal performance in each group is highlighted in bold.

1
https://github.com/heyuntian/FairMILE

A1: FairMILE achieves better fairness scores. Compared with

graph embedding approaches without fairness consideration (i.e.,

NetMF, DeepWalk, and Node2vec), FairMILE on top of them al-

ways has lower Δ𝐷𝑃 and Δ𝐸𝑂 . In German, FairMILE decreases the

Δ𝐷𝑃 scores of Node2vec and DeepWalk by 83.7% and 90.7%, respec-

tively. In terms of Δ𝐸𝑂 , FairMILE improves the fairness of Node2vec

and DeepWalk by 84.0% and 96.6%. When choosing NetMF as the

base model, FairMILE is optimal (zero) on both fairness metrics,

which indicates that the learned representations lead to a perfectly

fair classification. Compared with FairWalk (the fair adoption of

Node2vec), FairMILE-Node2vec improves Δ𝐷𝑃 by 49.7% on Credit

while FairWalk only improves by 4.8%. Similar results are also ob-

served on other datasets, which reveals that FairMILE successfully

mitigates the bias in general-purpose graph embedding baselines.

We also evaluate specialized methods (i.e., FairGNN, NIFTY, ED-

ITS, and CFGE) and observe that FairMILE achieves comparable

or better fairness with respect to these approaches. FairGNN out-

performs the other specialized methods on all datasets by gaining

the largest improvements on both Δ𝐷𝑃 and Δ𝐸𝑂 with respect to

Vanilla GCN. It means that their methodology of adversarial train-

ing is more effective than the regularization adopted by NIFTY,

and EDITS suffers from its task agnosticity. On German and Credit,

the best fairness metrics of FairMILE are comparable to or bet-

ter than FairGNN and other specialized techniques. These results

demonstrate that FairMILE is effective in reducing the bias in graph

representations compared to the state-of-the-art models.

A2: FairMILE is more efficient than other baselines. First, Fair-
MILE outperforms the GNN-based specialized approaches on all

datasets in terms of efficiency. In German, they take up to 2 minutes

for training, while FairMILE can finish in only 6 seconds. The dif-

ference becomes more significant on larger datasets. When CFGE

needs more than 3 hours on Credit, FairMILE finishes within 2 min-

utes which is 110.6-137.7× faster. On the other hand, FairMILE also

improves the efficiency of all base embedding methods. In Credit,

FairMILE on top of NetMF saves up to 80% of the running time of

vanilla NetMF. The improvement in German is sometimes invisi-

ble because German is a small graph. But FairMILE can still finish

within seconds. Compared with FairWalk, FairMILE-Node2vec is

always faster.

A3: FairMILE learns quality graph representations. We ob-

serve the quality of learned representations through the AUROC

and F1 scores. With respect to the base embedding methods, Fair-

MILE has a similar performance on both utility metrics which is

fairly remarkable given that FairMILE significantly improves fair-

ness. An interesting observation is that while Vanilla GCN, graph

embedding approaches, and FairMILE have a similar performance

https://github.com/heyuntian/FairMILE
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Table 3: Comparison on utility, fairness, and efficiency metrics in node classification between FairMILE and other baselines.

Dataset Method AUROC (↑) F1 (↑) Δ𝐷𝑃 (↓) Δ𝐸𝑂 (↓) Time (↓)

German

NetMF 65.16 ± 2.45 80.63 ± 1.10 5.71 ± 2.89 3.66 ± 2.11 2.48
FairMILE-NetMF 61.93 ± 3.38 82.35 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 6.31

DeepWalk 58.54 ± 4.43 75.78 ± 1.49 7.22 ± 3.86 7.69 ± 3.26 16.99

FairMILE-DeepWalk 63.31 ± 3.63 82.40 ± 0.33 0.67 ± 0.88 0.26 ± 0.39 7.84

Node2vec 63.37 ± 3.77 78.69 ± 1.25 3.69 ± 2.60 2.75 ± 1.34 12.76

Fairwalk 63.98 ± 2.07 77.64 ± 1.62 3.67 ± 2.74 3.28 ± 2.50 11.93

FairMILE-Node2vec 62.00 ± 2.59 82.32 ± 0.20 0.60 ± 0.96 0.44 ± 0.41 8.29

Vanilla GCN 64.75 ± 7.20 77.93 ± 3.53 16.27 ± 5.86 13.28 ± 5.06 23.75
FairGNN 53.12 ± 5.73 82.35 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 136.29

NIFTY 56.65 ± 6.84 81.35 ± 1.54 1.20 ± 1.45 0.83 ± 1.20 91.05

EDITS 64.93 ± 2.90 79.64 ± 2.27 5.00 ± 3.38 2.76 ± 2.26 84.24

CFGE 64.38 ± 0.77 81.59 ± 0.33 4.54 ± 2.91 4.30 ± 1.84 3900.11

Credit

NetMF 74.93 ± 0.43 88.36 ± 0.08 2.66 ± 0.55 1.34 ± 0.93 240.38

FairMILE-NetMF 74.69 ± 0.43 88.31 ± 0.08 0.68 ± 0.50 0.68 ± 0.66 90.28

DeepWalk 75.09 ± 0.39 88.36 ± 0.15 2.50 ± 0.54 1.81 ± 0.71 570.35

FairMILE-DeepWalk 74.60 ± 0.53 88.31 ± 0.11 1.34 ± 0.57 1.05 ± 0.70 112.39

Node2vec 74.95 ± 0.36 88.26 ± 0.18 2.92 ± 0.41 1.93 ± 0.87 249.92

Fairwalk 74.88 ± 0.49 88.25 ± 0.15 2.78 ± 0.47 1.58 ± 0.81 261.23

FairMILE-Node2vec 74.01 ± 0.47 87.99 ± 0.16 1.47 ± 0.74 1.33 ± 0.64 105.43

Vanilla GCN 72.83 ± 2.83 82.79 ± 1.76 5.77 ± 0.32 4.36 ± 0.59 2265.58
FairGNN 71.14 ± 4.58 83.29 ± 3.27 1.40 ± 0.97 1.21 ± 0.50 3201.72

NIFTY 72.43 ± 0.68 81.80 ± 0.37 5.52 ± 0.33 4.35 ± 0.68 7735.00

EDITS 73.22 ± 0.77 81.55 ± 0.30 5.36 ± 0.42 4.17 ± 0.65 9078.12

CFGE 70.51 ± 1.31 87.85 ± 0.13 2.99 ± 0.47 1.47 ± 0.18 12430.37

in terms of utility, the supervised GCN-based fair approaches have

lower AUROC or F1 scores on one or both datasets, which reveals

that these approaches require fine-tuning to perform well in terms

of utility while enforcing fairness.

In summary, FairMILE in conjunction with popular base embed-

ding approaches can compete or improve on the fairness criteria

with various specialized methods while outperforming them signif-

icantly in terms of efficiency and retaining comparable utility.

5.3 Fairness towards Multiple Sensitive
Attributes

To explore how FairMILE learns fair representations towards multi-

ple sensitive attributes, we conduct an experiment on the Pokec-n

dataset. Pokec-n has a multi-class predicted label and two sensitive

attributes. Most baselines cannot process such datasets since they

restrictively only cater to the case of a single binary label or sen-

sitive attribute. CFGE [5] is the only baseline that accommodates

multiple sensitive attributes. Therefore we compare FairMILE with

CFGE [5] and graph embedding methods, and we set 𝑐 = 4 for our

work. Note that FairWalk can consider only one sensitive attribute

at a time, thus we run it with each one of the two sensitive attributes

and show the results of both runs. In Table 4, we show the results of

all methods on Pokec-n in terms of utility, efficiency, and fairness

with respect to two sensitive attributes. First of all, with respect

to standard embedding methods, FairMILE improves the efficiency

and the fairness towards both sensitive attributes while the util-

ity remains competitive. For example, FairMILE reduces the Δ𝐷𝑃

of DeepWalk by 65.8% on ‘region’ and 51.1% on ‘gender’, respec-

tively. Second, although FairWalk also fulfills the fairness towards

the assigned attribute, FairMILE-Node2vec has a better fairness

score on both attributes. Third, FairMILE significantly outperforms

CFGE on efficiency given that they have comparable utility and

fairness performance. To study the performance of CFGE, we tune

the hyperparameter 𝜆 which controls the strength of fairness. We

pick 𝜆 from 1 to 100. Going beyond 100 we find the drop in utility

exceeds 20% which is often unacceptable. When the constraint is

strict (𝜆 = 100), CFGE has better fairness outcomes at a significant

cost to the utility. For 𝜆 = 1, 10 and 50, CFGE and FairMILE have

competitive performance in terms of fairness and utility tradeoff.

However, while CFGE takes around 9500 seconds, FairMILE finishes

in only 200-300 seconds, which is up to 46× faster.

5.4 Ablation Study
In the ablation study, we showcase the impact of coarsen level 𝑐

on FairMILE’s performance and the effectiveness of its modules

in the fairness of learned representations. In our supplement, we

also play with hyperparameters 𝜆𝑐 and 𝜆𝑟 to study the trade-off

between fairness and effectiveness.

5.4.1 Impact of coarsening. We vary the coarsen level 𝑐 to observe

its impact on graph sizes and model performance. Table 5 shows the

results with NetMF on the Credit dataset. Other results are similar

and can be found in our supplement. Specifically, we study:

P1: How the graph changes after each time of coarsening.
We observe that increasing 𝑐 exponentially reduces the numbers of

nodes and edges, which corroborates the analysis in Section 4.4.
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Table 4: Case study on Pokec-n consisting of multiple sensitive attributes.

Method AUROC (↑) Micro-F1 (↑) Region Gender

Time (↓)
Δ𝐷𝑃 (↓) Δ𝐸𝑂 (↓) Δ𝐷𝑃 (↓) Δ𝐸𝑂 (↓)

NetMF 73.12 ± 0.46 62.18 ± 0.37 0.26 ± 0.15 1.82 ± 0.48 0.39 ± 0.24 1.04 ± 0.58 1542.78

FairMILE-NetMF 68.86 ± 0.91 55.96 ± 0.67 0.17 ± 0.07 1.18 ± 0.29 0.31 ± 0.06 0.56 ± 0.30 204.99

DeepWalk 72.58 ± 0.67 61.44 ± 0.68 0.38 ± 0.07 1.49 ± 0.63 0.45 ± 0.22 1.61 ± 0.47 1139.30

FairMILE-DeepWalk 67.43 ± 1.16 54.98 ± 0.88 0.13 ± 0.11 0.70 ± 0.33 0.22 ± 0.12 0.59 ± 0.24 352.38

Node2vec 72.71 ± 0.46 61.71 ± 0.32 0.36 ± 0.05 2.06 ± 0.51 0.44 ± 0.09 1.20 ± 0.49 798.01

Fairwalk (Region) 72.78 ± 0.44 61.99 ± 0.40 0.32 ± 0.09 1.61 ± 0.64 0.40 ± 0.15 1.61 ± 0.49 829.41

Fairwalk (Gender) 72.63 ± 0.49 61.79 ± 0.46 0.34 ± 0.12 1.50 ± 0.67 0.42 ± 0.13 0.98 ± 0.47 784.69

FairMILE-Node2vec 70.10 ± 0.61 57.77 ± 0.92 0.23 ± 0.06 1.22 ± 0.38 0.14 ± 0.08 0.87 ± 0.48 230.85

CFGE𝜆=1 71.09 ± 0.76 60.21 ± 1.03 0.28 ± 0.18 0.96 ± 0.49 0.26 ± 0.14 0.68 ± 0.28 9572.75

CFGE𝜆=10 68.93 ± 0.95 58.98 ± 0.59 0.26 ± 0.19 1.11 ± 0.59 0.31 ± 0.13 0.50 ± 0.51 9447.50

CFGE𝜆=50 58.49 ± 1.25 52.08 ± 0.77 0.17 ± 0.10 0.54 ± 0.31 0.29 ± 0.21 0.40 ± 0.28 9521.35

CFGE𝜆=100 56.01 ± 0.59 51.04 ± 0.31 0.16 ± 0.06 0.29 ± 0.25 0.14 ± 0.06 0.23 ± 0.13 9391.33

P2: How FairMILE improves the efficiency by coarsening.
Generally, the efficiency is significantly improved when 𝑐 increases.

A small 𝑐 (e.g., 𝑐 = 1) may make FairMILE slower because the time

of coarsening and refinement outweighs the saved time of learning

embeddings when the coarsened graph is not small enough.

P3: How the fairness evolves with varying 𝑐. In terms of fairness

in the downstream task, we observe that increasing 𝑐 can visibly

improve the fairness of representations. For example, vanilla NetMF

has Δ𝐷𝑃 = 2.66 and Δ𝐸𝑂 = 1.34, which is improved to Δ𝐷𝑃 = 0.68

and Δ𝐸𝑂 = 0.68 by FairMILE (𝑐 = 4).

P4: How the utility is impacted by the information loss. We

find increasing 𝑐 leads to a slight decrease in AUROC and F1 scores.

The AUROC score only decreases by 0.3% after FairMILE coarsens

the graph 4 times. In some cases, FairMILE achieves a better utility

than the base embedding method (i.e., with 𝑐 = 1). Given the little

cost of utility, we suggest using a large 𝑐 for the sake of fairness

and efficiency.

5.4.2 Effectiveness of fairness-aware modules. To evaluate the ef-

fectiveness of our fairness-aware modules for graph coarsening and

refinement, we observe the change in performancewhenwe remove

the fairness-aware designs. Additionally, we choose MILE [35] as a

baseline of scalable embedding methods without fairness consid-

erations. Table 6 reports the results on three datasets. The result

shows that FairMILE outperforms MILE in terms of fairness, which

demonstrates our effectiveness in fairness improvement. We also

notice that the fairness scores decline on all datasets when
removing either fairness-aware design in FairMILE, indicat-
ing that these designs effectively mitigate the bias in the learned

embeddings. Furthermore, the little differences between the util-

ity scores of these methods demonstrate that FairMILE is able to

improve fairness without impacting utility when compared with

MILE. However, this improved fairness does come at some cost to

efficiency w.r.t MILE (which is always faster than FairMILE).

5.5 Results for Link Prediction
We next evaluate FairMILE in the context of link prediction. Table 7

only shows the results on Cora and Citeseer. Full results and detailed

analysis are in our supplement. First, FairMILE effectively mitigates

the bias in link prediction. Our framework has lower Δ𝐷𝑃, LP and

Δ𝐸𝑂, LP than the specialized approaches and graph embedding

approaches. On the other hand, FairMILE is more efficient than

other baselines, especially the fairness-aware competitors FairAdj

and CFGE. Finally, FairMILE has a similar or slightly better utility

compared with other approaches. This demonstrates that FairMILE

consistently achieves the tradeoff between fairness, efficiency, and

utility in a different downstream task.

6 CONCLUSION
In this paper, we study the problem of fair graph representation

learning and propose a general framework FairMILE, which can

incorporate fairness considerations with any unsupervised graph

embedding algorithms and learn fair embeddings towards one or

multiple sensitive attributes. We conduct comprehensive experi-

ments to demonstrate that with respect to state-of-the-art tech-

niques for fair graph representation learning, our work achieves

similar or better performance in terms of utility and fairness, while

FairMILE can significantly outperform them on the axis of effi-

ciency (up to two orders of magnitude faster). Planned future work

includes evaluating the use of FairMILE for real-world graph-based

model auditing [37] in deployed online settings.
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Table 5: Impact of coarsen level on graph sizes and FairMILE’s performance.

Metric Vanilla NetMF 𝑐 = 1 𝑐 = 2 𝑐 = 3 𝑐 = 4

# Nodes 30000 15033 7544 3789 1899

# Edges 1.44M 550K 256K 138K 83K

Time (↓) 240.38 487.60 208.75 139.79 90.28

Δ𝐷𝑃 (↓) 2.66 ± 0.55 2.23 ± 0.38 2.07 ± 0.22 1.88 ± 0.37 0.68 ± 0.50
Δ𝐸𝑂 (↓) 1.34 ± 0.93 1.22 ± 0.80 1.14 ± 0.76 1.09 ± 0.69 0.68 ± 0.66

AUROC (↑) 74.93 ± 0.43 75.12 ± 0.52 74.95 ± 0.40 74.80 ± 0.41 74.69 ± 0.43

F1 (↑) 88.36 ± 0.08 88.34 ± 0.11 88.41 ± 0.11 88.34 ± 0.11 88.31 ± 0.08

Table 6: Ablation study of each module’s effectiveness in fairness (with NetMF).

Dataset Method AUROC (↑) F1 (↑) Δ𝐷𝑃 (↓) Δ𝐸𝑂 (↓) Time (↓)

German

FairMILE 61.93 ± 3.38 82.35 ± 0.00 0.00 ± 0.00 0.00 ± 0.00 6.31

FairMILE w/o fair coarsening 63.61 ± 2.91 82.27 ± 0.58 2.20 ± 0.98 1.47 ± 1.54 5.98

FairMILE w/o fair refinement 63.37 ± 2.91 81.08 ± 0.60 2.94 ± 1.58 2.02 ± 1.06 5.64

MILE 63.02 ± 2.76 82.04 ± 0.76 3.28 ± 2.10 2.01 ± 0.97 5.06

Recidivism

FairMILE 89.52 ± 0.50 77.65 ± 0.47 2.81 ± 0.50 0.75 ± 0.55 29.66

FairMILE w/o fair coarsening 90.23 ± 0.43 79.62 ± 0.64 3.18 ± 0.33 1.34 ± 0.61 22.36

FairMILE w/o fair refinement 90.25 ± 0.23 79.94 ± 0.50 3.27 ± 0.36 1.30 ± 0.66 26.01

MILE 90.75 ± 0.30 80.46 ± 0.64 3.29 ± 0.32 1.43 ± 0.65 18.42

Credit

FairMILE 74.69 ± 0.43 88.31 ± 0.08 0.68 ± 0.50 0.68 ± 0.66 90.28

FairMILE w/o fair coarsening 74.65 ± 0.34 88.30 ± 0.12 1.50 ± 0.52 0.92 ± 0.74 57.21

FairMILE w/o fair refinement 74.42 ± 0.33 88.25 ± 0.15 3.15 ± 0.49 1.71 ± 0.68 82.01

MILE 74.65 ± 0.41 88.33 ± 0.12 2.54 ± 0.48 1.38 ± 0.81 49.98

Table 7: Comparison on utility, fairness, and efficiency metrics in link prediction between FairMILE and other baselines.

Dataset Method AUROC (↑) AP (↑) Accuracy (↑) Δ𝐷𝑃, LP (↓) Δ𝐸𝑂, LP (↓) Time (↓)

Cora

VGAE 90.86 ± 0.79 92.81 ± 0.89 82.68 ± 1.19 47.51 ± 2.47 24.12 ± 3.29 15.17
FairAdjT2=2 89.56 ± 1.06 91.31 ± 1.21 81.57 ± 1.22 45.47 ± 2.52 20.44 ± 3.48 56.76

FairAdjT2=5 88.49 ± 1.30 90.34 ± 1.36 80.97 ± 0.83 42.39 ± 2.95 16.75 ± 3.26 70.37

FairAdjT2=20 85.97 ± 0.62 87.84 ± 0.53 77.68 ± 0.54 35.67 ± 1.45 11.26 ± 3.07 145.01

CFGE 90.76 ± 1.27 92.59 ± 1.30 82.35 ± 1.26 32.06 ± 1.33 13.73 ± 1.63 531.79

NetMF 91.33 ± 1.35 92.96 ± 1.16 86.41 ± 1.10 42.03 ± 2.57 17.24 ± 2.48 22.80

FairMILE-NetMF 92.51 ± 0.74 93.56 ± 1.03 84.42 ± 0.87 41.19 ± 1.47 16.09 ± 1.46 8.16

DeepWalk 88.52 ± 1.01 89.84 ± 0.77 77.78 ± 0.99 42.53 ± 1.55 21.58 ± 2.19 47.30

FairMILE-DeepWalk 92.00 ± 1.27 93.67 ± 0.93 82.26 ± 0.64 33.17 ± 1.02 14.31 ± 1.40 19.40

Node2vec 90.87 ± 1.03 92.03 ± 0.77 80.15 ± 0.55 45.62 ± 1.80 23.37 ± 3.09 21.30

Fairwalk 89.49 ± 1.24 91.00 ± 0.88 78.92 ± 0.99 42.21 ± 2.28 18.68 ± 2.68 22.71

FairMILE-Node2vec 91.77 ± 0.89 93.13 ± 1.03 85.16 ± 0.74 28.99 ± 0.98 11.65 ± 0.81 13.71

Citeseer

VGAE 88.24 ± 1.83 90.53 ± 2.78 81.67 ± 3.39 24.82 ± 2.67 7.13 ± 3.32 20.33
FairAdjT2=2 87.90 ± 1.81 89.99 ± 2.81 81.61 ± 3.02 24.17 ± 2.65 6.49 ± 3.34 84.10

FairAdjT2=5 87.47 ± 1.74 89.48 ± 2.67 81.50 ± 3.01 23.65 ± 2.72 6.47 ± 3.47 109.07

FairAdjT2=20 86.90 ± 2.23 88.61 ± 3.23 80.41 ± 3.35 22.74 ± 3.23 6.47 ± 3.38 240.16

CFGE 87.36 ± 3.29 90.45 ± 3.11 71.12 ± 13.42 13.60 ± 4.86 3.00 ± 1.39 478.18

NetMF 87.62 ± 0.73 91.20 ± 0.46 84.53 ± 0.30 23.32 ± 1.48 4.66 ± 1.72 19.35

FairMILE-NetMF 89.22 ± 0.34 91.71 ± 0.69 85.30 ± 0.58 20.96 ± 1.65 2.79 ± 1.45 7.57
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A FULL THEORETICAL ANALYSIS
Corollary 1. Algorithm 1 coarsens a graph G𝑖 = (V𝑖 , E𝑖 ) into a
smaller graph G𝑖+1 = (V𝑖+1, E𝑖+1) such that 1

2
|V𝑖 | ≤ |V𝑖+1 | ≤ |V𝑖 |

and |E𝑖+1 | ≤ |E𝑖 |.

Proof. In the optimal case, all nodes in G𝑖 get matched and

therefore |V𝑖+1 | = 1

2
|V𝑖 |. The worst case is that all nodes are iso-

lated so the number of nodes does not decrease.

Our coarsening algorithm adds an edge (𝑢, 𝑣) in G𝑖+1 if and only
if there exists at least one edge in G𝑖 that connects one of 𝑢’s child
nodes and one of 𝑣 ’s child nodes. Therefore |E𝑖+1 | ≤ |E𝑖 |. □

Lemma 1. In the phase of graph coarsening, FairMILE consumes

𝑂

(
𝑀

(∑𝑐−1
𝑖=0 ( |V𝑖 | + |E𝑖 |)

))
time.

Proof. Without loss of generality, we assume the input graph is

𝐺𝑖 (𝑖 < 𝑐). For each edge, Algorithm 1 computes the fairness-aware

edge weight in 𝑂 (𝑀) time. Hence it takes 𝑂 (𝑀 ( |E𝑖 | + |V𝑖 |)) time

to match and merge nodes. The time of creating a coarsened graph

after node matching is also 𝑂 (𝑀 ( |E𝑖 | + |V𝑖 |)), which is mainly

used for computing the attribute distribution of new nodes and

the weights of new edges in the coarsened graph. Summing up the

𝑐 coarsen levels, the total time complexity of graph coarsening is

𝑂

(
𝑀

(∑𝑐−1
𝑖=0 ( |V𝑖 | + |E𝑖 |)

))
. □

Corollary 2. FairMILE can reduce the time of graph embedding
exponentially in the optimal case since |V𝑐 | ≥ 2

−𝑐 |V0 |.

Proof. In Corollary 1, we analyze that the number of nodes

can be reduced by up to half at each coarsen level. Thus the time

complexity of base embedding can also be reduced exponentially

when 𝑐 increases. □

Lemma 2. If the refinement model has 𝑙 layers, the time complexity

of refinement is 𝑂
(
𝑙 (𝑑 +𝑀)

[∑𝑐−1
𝑖=0 ( |E𝑖 | + 𝑑 |V𝑖 |)

] )
.

Proof. We again assume the input graph is G𝑖+1 (𝑖 > 0) without

loss of generality. Before applying the model, FairMILE projects

the embeddings from the supernodes to the child nodes of G𝑖 in
𝑂 (𝑑 |V𝑖 |) time. In each layer of the model, FairMILE needs 𝑂 ((𝑑 +
𝑀) |V𝑖 |) to concatenate the input with the sensitive attributes. The

following message passing process and the matrix multiplication

take𝑂 ((𝑑 +𝑀) |E𝑖 |) and𝑂 (𝑑 (𝑑 +𝑀) |V𝑖 |) time, respectively. There-

fore the time complexity of each layer is𝑂 ((𝑑 +𝑀) ( |E𝑖 | + 𝑑 |V𝑖 |)).
Finally, the total time complexity of applying the refinement model

is 𝑂

(
𝑙 (𝑑 +𝑀)

[∑𝑐−1
𝑖=0 ( |E𝑖 | + 𝑑 |V𝑖 |)

] )
. □

Theorem 1. When 𝐿𝑓 is minimized, the 2-norm of the difference

between the mean embeddings of any two demographic groups

regarding a given sensitive attribute is bounded by

𝝁𝑝 − 𝝁𝑞


2
≤ 2(1 −min(𝛽𝑝 , 𝛽𝑞)) (8)

where 𝑝, 𝑞 are any two different values of the given sensitive at-

tribute (e.g., gender or race). For 𝑖 ∈ {𝑝, 𝑞}, 𝝁𝑖 denotes the mean

embedding values of nodes from group 𝑖 , and 𝛽𝑖 denotes the ratio

of nodes from group 𝑖 that have at least one inter-group edge.

Proof. Our fairness loss 𝐿𝑓 in Equation (6) is the average neg-

ative cosine similarity of embeddings of all connected node pairs

(𝑢, 𝑣) ∈ E′𝑐 with diverse sensitive attributes, which means 𝜙 (𝑢, 𝑣) ≥
𝛾 . To reach the global minimum of 𝐿𝑓 , the parameters {Θ𝑖 }𝑙𝑖=1 are
optimized to completely focus on sensitive attributes and gener-

ate identical embeddings for the nodes, i.e., the similarity is 1. In

general, using a smaller 𝛾 will have more edges impacted by the

fairness objective. 𝛾 = 0 is the strictest value that always leads to

all nodes with inter-group connections having the same represen-

tations (denoted as 𝒉̄). A special case is when 𝑐 = 1, 𝜙 (𝑢, 𝑣) = 1

holds for any 𝑢, 𝑣 ∈ V0 such that 𝑠𝑢 ≠ 𝑠𝑣 . Therefore any 𝛾 enforces

fairness in the same strength.

Recall that 𝑝, 𝑞 are any two different values of the given sensitive

attribute (e.g., gender). For 𝑖 ∈ {𝑝, 𝑞}, letU𝑖 be the set of nodes with

attribute value 𝑖 (e.g., all nodes inU𝑖 share the same gender 𝑖), Then

letU𝑖𝑖 be the subset ofU𝑖 in which the nodes are only connected to

nodes inU𝑖 . Note that 𝛽𝑖 = 1− |U𝑖𝑖 |/|U𝑖 |. The learned embedding

of node 𝑢 is denoted as 𝒉𝑢 . When 𝐿𝑓 is minimized with 𝛾 = 0, we

have

𝝁𝑝 − 𝝁𝑞


2

= ∥𝛽𝑝 𝒉̄ +
1 − 𝛽𝑝
|U𝑝𝑝 |

∑︁
𝑢∈U𝑝𝑝

𝒉𝑢 − 𝛽𝑞𝒉̄ −
1 − 𝛽𝑞
|U𝑞𝑞 |

∑︁
𝑣∈U𝑞𝑞

𝒉𝑣 ∥2

≤ |𝛽𝑝 − 𝛽𝑞 |∥𝒉̄∥2 + (1 − 𝛽𝑝 )∥
1

|U𝑝𝑝 |
∑︁

𝑢∈U𝑝𝑝

𝒉𝑢 ∥2 + (1 − 𝛽𝑞)∥
1

|U𝑞𝑞 |
∑︁

𝑣∈U𝑞𝑞

𝒉𝑣 ∥2

Note that the output embeddings of our refinement model are

L2-normalized, hence we finally have

𝝁𝑝 − 𝝁𝑞


2
≤ |𝛽𝑝 − 𝛽𝑞 | + (1 − 𝛽𝑝 ) + (1 − 𝛽𝑞) = 2(1 −min(𝛽𝑝 , 𝛽𝑞))

Therefore Equation (8) holds when 𝐿𝑓 is minimized. □

B DATASET DESCRIPTION
In German [1], each node is a client in a German bank, and two

nodes are linked if their attributes are similar. The task is to classify

a client’s credit risk as good or bad, and the sensitive attribute is

the client’s gender.

Recidivism [1] is a graph created from a set of bail outcomes from

US state courts between 1990-2009, where nodes are defendants and

edges connect two nodes if they have similar past criminal records

and demographic attributes. The task is to predict if a defendant

will commit a violent crime or not, while the sensitive attribute is

race.

Credit [1] consists of credit card applicants with their demo-

graphic features and payment patterns. Each node is an individual,

and two nodes are connected based on feature similarity. In this

dataset, age is used as the sensitive attribute, and the predicted label

is whether the applicant will default on an upcoming payment.

Pokec-n [48] is collected from a Slovakia social network. We

use both region and gender as the sensitive attributes, and choose

each user’s field of work as the predicted label. Note that Pokec-n

has multiple sensitive attributes and a multi-class target, which

FairMILE can handle by design. However, existing research [10,

11, 15] has only evaluated the use of this data with one sensitive

attribute at-a-time with the target label binarized - a key limitation.

We discuss how FairMILE can redress this limitation in Section 5.3.



Conference’17, July 2017, Washington, DC, USA He et al.

Table 8: Comparison in node classification between FairMILE and other baselines on Recidivism dataset.

Dataset Method AUROC (↑) F1 (↑) Δ𝐷𝑃 (↓) Δ𝐸𝑂 (↓) Time (↓)

Recidivism

NetMF 94.63 ± 0.17 85.46 ± 0.29 3.41 ± 0.21 1.62 ± 0.78 141.90

FairMILE-NetMF 89.52 ± 0.50 77.65 ± 0.47 2.81 ± 0.50 0.75 ± 0.55 29.66

DeepWalk 93.33 ± 0.35 83.62 ± 0.42 3.47 ± 0.37 1.28 ± 0.60 303.68

FairMILE-DeepWalk 86.93 ± 0.74 73.50 ± 0.99 2.71 ± 0.58 1.08 ± 0.77 45.93

Node2vec 92.56 ± 0.26 83.31 ± 0.36 3.61 ± 0.56 1.57 ± 0.97 136.33

Fairwalk 92.43 ± 0.43 82.99 ± 0.51 3.32 ± 0.24 1.48 ± 0.66 133.62

FairMILE-Node2vec 87.00 ± 0.50 71.34 ± 0.86 2.75 ± 0.35 1.15 ± 0.65 38.67

Vanilla GCN 88.16 ± 1.72 77.68 ± 1.63 3.83 ± 0.59 1.46 ± 0.71 474.57
FairGNN 67.26 ± 7.80 44.63 ± 14.87 0.67 ± 0.45 1.24 ± 0.40 1071.39

NIFTY 77.89 ± 4.21 64.44 ± 6.11 1.34 ± 1.01 0.63 ± 0.42 1651.09

EDITS 79.48 ± 13.26 69.66 ± 13.28 4.39 ± 2.10 2.52 ± 2.04 1311.42

CFGE 60.92 ± 1.88 25.58 ± 6.45 0.81 ± 0.58 1.45 ± 0.88 2498.52

The remaining three datasets (namely, Cora [44], Citeseer [44],
and Pubmed [39]) are citation networks widely evaluated in the

graph representation learning literature [9, 34, 46]. In these data,

each node denotes a paper, and each edge links two nodes if one

paper cites the other. As in prior work [9, 34, 46], we treat the

category of a paper as its sensitive attribute. The task is to predict

whether a paper is cited by the other (or vice versa).

C NODE CLASSIFICATION ON RECIDIVISM
We conduct the experiments of node classification on another

dataset Recidivism and revisit the questions in Section 5.2. Results

are shown in Table 8.

A1) Fairness: FairMILE improves the fairness of all unsuper-

vised graph embedding approaches. In Recidivism, FairMILE de-

creases the Δ𝐷𝑃 scores of NetMF and DeepWalk by 17.6% and 21.9%,

respectively. In terms of Δ𝐸𝑂 , FairMILE improves the fairness of

NetMF and DeepWalk by 53.7% and 15.6%. On top of Node2vec,

FairMILE outperforms FairWalk in terms of both Δ𝐷𝑃 and Δ𝐸𝑂 .

Among the specialized methods, FairGNN has the lowest Δ𝐷𝑃 score

and NIFTY has the best Δ𝐸𝑂 score which is slightly better than

FairMILE-NetMF (0.63% v.s. 0.75%). However, this is because these

models trade too much utility for fairness (For example, in terms of

AUROC, NIFTY 77.89% v.s. FairMILE-NetMF 89.52%).

A2) Efficiency: FairMILE is more efficient than other baselines.

While GNN-based approaches take up to 2498.5 seconds, FairMILE

on top of NetMF finishes in only 29.7 seconds, which is 84.2× faster.
Compared with the unsupervised graph embedding approaches,

FairMILE still improves the efficiency of graph embedding.

A3) Utility: Compared with the base embedding methods, the

utility scores of FairMILE slightly drop which is fairly remarkable

given that FairMILE significantly improves fairness and efficiency.

Among the specialized approaches, all approaches except the vanilla

GCN are outperformed by FairMILE in terms of AUROC and F1.

This demonstrates that FairMILE achieves a better tradeoff between

utility and fairness than these GNN-based approaches.

In summary, FairMILE on top of graph embedding approaches

can compete or improve on fairness and utility with various spe-

cialized methods while outperforming them significantly in terms

of efficiency.

D FULL ABLATION STUDY
D.1 Tuning the Coarsen Level
We vary the coarsen level 𝑐 to observe its impact on utility, fairness,

and efficiency. Results are shown in Figure 3. Note that when 𝑐 = 0,

FairMILE is performing the base embedding method on the original

graph. Generally, increasing 𝑐 leads to a slight decrease in AUROC

and F1 scores. For example, the AUROC score of DeepWalk only de-

creases by 0.6% after FairMILE coarsens the graph 4 times. In some

cases, FairMILE achieves a better utility than the base embedding

method (e.g., FairMILE-Node2vec with 𝑐 = 1 on German). While

the decrease of utility is negligible, increasing 𝑐 can visibly improve

the fairness of representations. For example, vanilla DeepWalk has

Δ𝐷𝑃 = 7.22 and Δ𝐸𝑂 = 7.69 on German, which is improved to

Δ𝐷𝑃 = 0.67 and Δ𝐸𝑂 = 0.26 by FairMILE (𝑐 = 2). Last of all, increas-

ing the coarsen level significantly improves the efficiency. Using a

small 𝑐 may make FairMILE slower because the time of coarsening

and refinement outweighs the saved time of learning embedding

when the coarsened graph is not small enough. Examples include

𝑐 = 1 on Credit. Given the little cost of utility, we suggest using a

large 𝑐 for the sake of fairness and efficiency.

D.2 Trade-off between Utility and Fairness
To further explore the trade-off of FairMILE between utility and fair-

ness, we choose the values of 𝜆𝑐 and 𝜆𝑟 from {0.1, 0.3, 0.5, 0.7, 0.9}
respectively to observe the impact on performance. Figure 4 shows

the results of FairMILE-NetMF on Recidivism with 𝑐 = 4 (We only

report these results for one dataset since results on other datasets

are similar). We use AUROC and Δ𝐷𝑃 as the metrics for utility and

fairness. It is clear that there is a trade-off between the utility scores

and the fairness of learned embeddings on this dataset. Increasing

fairness (represented by lower Δ𝐷𝑃 ) often causes a decrease in

utility scores. We also observe that 𝜆𝑟 has a larger impact on this

tradeoff than 𝜆𝑐 . We also find in general that our choice of 𝜆𝑐 =

𝜆𝑟 = 0.5 achieves a reasonable trade-off (applies to this dataset and

the other datasets and tasks in our study). We do note of course

that for different scenarios the designer may prefer to choose these

parameters appropriately.
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Figure 3: Impact of coarsen level 𝑐 on FairMILE’s utility, fairness, and efficiency.
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Figure 4: Impact of varying 𝜆𝑐 and 𝜆𝑟 on utility and fairness on Recidivism dataset.

E FULL RESULTS FOR LINK PREDICTIONS
We evaluate FairMILE in the context of link prediction on three

datasets. For FairMILE, we set 𝑐 = 2 on smaller datasets (Cora and

Citeseer) and 𝑐 = 4 on Pubmed. Table 9 shows the results on Pubmed.

For the results on other datasets, please refer to Table 7 in Section

5.5. First, FairMILEmakes fair predictions on all datasets. Our frame-

work has an improvement of up to 45.3% on Δ𝐷𝑃, LP compared with

the base embedding approaches. In terms of Δ𝐸𝑂, LP, while the per-

formance of FairMILE declines on Pubmed very slightly (2.70%

v.s. 2.04% in NetMF), it greatly reduces the unfair predictions on

Cora and Citeseer. Combining the observations on both metrics,

FairMILE successfully enforces fairness in the task of link predic-

tion. When compared with FairWalk, FairMILE-Node2vec always

has a better fairness score (e.g., 12.49% v.s. 23.59% on Citeseer). In

addition, we notice that FairAdj is less biased than VGAE, which

demonstrates its effectiveness in debiasing. However, its best per-

formance with 𝑇2 = 20 is still outperformed by FairMILE on all

datasets. For example, the Δ𝐷𝑃, LP score of FairMILE-Node2vec on

Citeseer is 45.1% lower than that of FairAdj (𝑇2 = 20). Compared

with CFGE, FairMILE on top of Node2vec has a better performance

in terms of fairness.
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Table 9: Comparison in link prediction between FairMILE and other baselines on Pubmed dataset.

Dataset Method AUROC (↑) AP (↑) Accuracy (↑) Δ𝐷𝑃, LP (↓) Δ𝐸𝑂, LP (↓) Time (↓)

Pubmed

VGAE 95.03 ± 0.18 94.96 ± 0.19 87.48 ± 0.21 39.37 ± 0.88 10.28 ± 1.58 347.80
FairAdjT2=2 94.29 ± 0.17 94.07 ± 0.14 86.63 ± 0.27 37.12 ± 0.89 7.57 ± 1.56 2218.41

FairAdjT2=5 93.57 ± 0.19 93.21 ± 0.13 85.69 ± 0.16 35.06 ± 1.01 5.60 ± 1.55 2480.66

FairAdjT2=20 91.78 ± 0.12 91.27 ± 0.24 83.20 ± 0.22 30.41 ± 0.89 2.41 ± 1.28 4532.99

CFGE 91.25 ± 5.32 92.08 ± 5.22 82.78 ± 5.79 33.03 ± 6.19 9.55 ± 2.35 4237.43

NetMF 98.43 ± 0.07 98.26 ± 0.05 93.86 ± 0.19 38.59 ± 0.14 2.04 ± 0.15 281.35

FairMILE-NetMF 98.11 ± 0.12 97.29 ± 0.20 94.84 ± 0.31 31.97 ± 0.68 2.70 ± 0.22 126.17

DeepWalk 98.35 ± 0.14 98.05 ± 0.17 91.77 ± 0.29 35.02 ± 0.43 0.40 ± 0.12 354.27

FairMILE-DeepWalk 99.57 ± 0.04 99.32 ± 0.08 97.61 ± 0.06 27.30 ± 0.23 0.37 ± 0.11 201.03

Node2vec 99.52 ± 0.04 99.44 ± 0.04 93.11 ± 0.21 40.28 ± 0.41 0.21 ± 0.13 249.52

Fairwalk 99.50 ± 0.05 99.43 ± 0.05 92.86 ± 0.24 38.58 ± 0.35 0.65 ± 0.12 225.99

FairMILE-Node2vec 99.23 ± 0.07 98.68 ± 0.14 96.43 ± 0.06 26.51 ± 0.35 0.59 ± 0.05 143.01

On the other hand, FairMILE also performs well in terms of util-

ity. In comparison to the standard embedding approaches, FairMILE

achieves a similar or better utility performance. For example, Fair-

MILE actually enhances the accuracy of DeepWalk from 91.77%

to 97.61% on Pubmed. Similar results can also be observed on the

other metrics and datasets. Compared with VGAE-based methods,

FairMILE outperforms them again on utility. Examples include that

AUROC scores of VGAE and FairMILE-DeepWalk on Pubmed are

95.03% v.s. 99.57%, respectively.

Finally, FairMILE is more efficient than other baselines. For exam-

ple, on the largest dataset Pubmed, FairMILE-NetMF takes around

2 minutes, while NetMF needs around 5 minutes, and FairAdj with

𝑇2 = 20 even requires more than one hour to finish. In summary,

FairMILE can flexibly generalize to the link prediction task improv-

ing over the state of the art on both counts of fairness and efficiency

at a marginal cost to utility.
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