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ABSTRACT

Graph representation learning models have demonstrated great
capability in many real-world applications. Nevertheless, prior re-
search indicates that these models can learn biased representations
leading to discriminatory outcomes. A few works have been pro-
posed to mitigate the bias in graph representations. However, most
existing works require exceptional time and computing resources
for training and fine-tuning. To this end, we study the problem of
efficient fair graph representation learning and propose a novel
framework FairMILE. FairMILE is a multi-level paradigm that can
efficiently learn graph representations while enforcing fairness
and preserving utility. It can work in conjunction with any unsu-
pervised embedding approach and accommodate various fairness
constraints. Extensive experiments across different downstream
tasks demonstrate that FairMILE significantly outperforms state-
of-the-art baselines in terms of running time while achieving a
superior trade-off between fairness and utility.
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1 INTRODUCTION

A critical task in graph learning is to learn the hidden represen-
tations of the graph, also known as graph embedding. The goal of
graph embedding is to preserve both structure properties and node
features in the graph. Such embeddings can be used to characterize
individual users (e.g. Amazon and Netflix) and to promote new con-
nections (e.g. LinkedIn). Various methods have been developed for
this purpose [17, 19, 40, 42], including those based on graph neural
networks (GNNs) [20, 29, 52]. Such models have been effective in
many real-world applications, such as crime forecasting [24], fraud
detection [50], and recommendation [14, 18].

Given the high-stake decision-making scenarios that such mod-
els are typically deployed in, it is critical to ensure that the decisions
made by these models are fair. Prior studies [1, 10, 43] reveal that
graph representation learning models may inherit the bias from
the underpinning graph data. A common source of bias is node
features which may contain historical bias in sensitive attributes
or other correlated attributes [13]. Another cause of bias is the
homophily effect - promoting links that may lead to increased segre-
gation. Such bias can lead to a biased distribution in the embedding
space [12] and cause unfair treatment towards particular sensitive
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attributes such as gender and ethnicity [13]. There is a clear need
to alleviate such bias, ideally without impacting the bottom line of
model performance.

Recent efforts to address this problem seek to enhance fairness by
adapting existing GNN models [1, 9, 10, 25, 34]. However, such adap-
tions often add to the models’ complexity — on large-scale graphs,
these models either cannot finish execution in a reasonable amount
of time or often result in an out-of-memory error. These concerns
are amplified by recent articles that suggest that the training time
for many Al models is simply becoming unsustainable [36, 47] with
respect to both compute and emission costs. To tackle this issue, a
naive solution is to apply scalability improvement techniques such
as the multi-level framework [21, 26, 35]. However, these solutions
lack fairness considerations. Figure 1 evaluates these approaches
in terms of efficiency, fairness, and utility. The results demonstrate
that: (1) Prior fairness-aware models are time-consuming for fair
graph representation learning; (2) Scalable approaches like MILE
[35] cannot enhance the fairness in embeddings. These observa-
tions highlight the challenges of balancing efficiency, fairness, and
utility in the problem of fair graph representation learning.

In addition to inefficiency, there are some other challenges with
existing work. First, some works adapt existing unsupervised graph
embedding approaches for fairness [27, 43], but it is challenging to
accommodate all such models. Second, many fair representation
learning methods only consider a single, binary sensitive attribute,
while real-world graphs usually have multiple multi-class sensitive
attributes - limiting their applicability.

To address the above-mentioned issues, we present Fair Multl
Level Embedding framework (FairMILE). FairMILE is a general
framework for fair and efficient graph representation learning. It
adopts a multi-level framework used by recent scalable embedding
methods [2, 6, 21, 22, 35]. However, unlike other multi-level frame-
works, our framework incorporates fairness as a first-class citizen.
Our framework is method agnostic in that it can accommodate any
unsupervised graph embedding method treating it as a black box.
Moreover, unlike a majority of fair graph representation learning
models, FairMILE can learn fair embeddings with respect to multi-
ple multi-class sensitive attributes simultaneously. To summarize,
our main contributions are:

e Novelty: To the best of our knowledge, this is the first work
that seeks to improve the efficiency issue present in fair
graph representation learning. To that end, we develop a
general-purpose framework called FairMILE.

e Model-agnostic: FairMILE can easily accommodate any
unsupervised graph embedding methods and improve their
fairness while preserving the utility.
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Figure 1: Evaluation of fairness-aware methods, graph em-
bedding methods, MILE, and this work (FairMILE) in terms of
efficiency, fairness, and utility. The top right corner of each
plot corresponds to the best performance. This demonstrates
that existing fair representation learning works are ineffi-
cient and scalable embedding methods are unable to enforce
fairness, which highlights our novelty and contributions.

e Efficiency and versatility: Compared with existing ap-
proaches, FairMILE successfully improves the efficiency of
fair graph representation learning. In addition, FairMILE can
achieve fairness towards multiple and non-binary sensitive
attributes, which most prior works fail to consider.

o Evaluation: We demonstrate both the efficacy and efficiency
of FairMILE across both node classification and link predic-
tion settings. Our results show that FairMILE can improve
efficiency by up to two orders of magnitude and fairness
by several factors while realizing comparable accuracy to
competitive strawman.

2 PRELIMINARIES

2.1 Notations

Let G = (V,&) be an undirected graph, where V is the set of
nodes, and & € V X V is the set of edges. Let A be the graph
adjacency matrix, where A, , denotes the weight of edge (u,v).
Ay, = 0 means u, v are not connected. §(u) denotes the degree of
node u. The graph also contains a set of sensitive attributes ¥ (e.g.,
gender and race). Each attribute may have a binary or multi-class
value associated with a particular demographic group.

2.2 Fairness Metrics

In this paper, we focus on group fairness and use two metrics
for evaluation. These metrics have been widely adopted in prior
works [1, 10, 11, 13, 43]. Without loss of generality, we first intro-
duce them in a binary prediction scenario with a binary sensitive
attribute, and then we extend them to a general multi-class case.

Definition 1. Demographic Parity (also known as statistical
parity) [13] requires that each demographic group should receive
an advantaged outcome (i.e., ¥ > 0) at the same rate, which is
formulated as P(Y = 1|S = 0) = P(Y = 1|S = 1), where Y is the
predicted label and S € F is a binary sensitive attribute. To quantify
how demographic parity is achieved, prior works [1, 10, 32] define

ADP,binalry as
Apppinary = IP(Y = 1|S = 0) = P(Y = 1|S = 1)|

To extend demographic parity for multi-class sensitive attributes,
Rahman et al. [43] measure the variance of positive rates among all
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groups. Here, we further extend it to a multi-class predicted label
scenario by averaging the standard deviations (denoted as o) across
all advantaged classes. The formulation is given as

App = ﬁ Zy o ({P(F = yls =) : vs}
ye

where Y* denotes a set of advantaged classes.

Definition 2. Equality of Opportunity requires that each de-
mographic group has an identical probability to receive a specific
advantaged outcome for its members with this advantaged ground-
truth label. In binary classification tasks with respect to a binary
sensitive attribute, existing works [1, 10, 11] compute the difference
of true positive rates across two groups to measure the equality of
opportunity, which is formulated as

Apopinary = IP(Y =1]Y =1,S=0) - P(Y = 1]Y = 1,S = 1)]|

where Y is the ground truth label. Similarly, we define a new metric
AEo to extend equality of opportunity to a general scenario with
multi-class labels and attributes:

AHFﬁ > a({P(?=y|Y=y,5=s):vs})
yey+

Note that the previously adopted metrics for binary predicted
labels and binary sensitive attributes are a special case of our pro-
. 1 1
posed measures, i.e., App = 5App binary and AE0 = 3AEO binary-

2.3 Problem Statement

Problem 1. Given a graph G = (V, &), the embedding dimen-
sionality d, and a set of sensitive attributes ¥, the problem of Fair
Graph Representation Learning aims to learn a fair embedding
model f: V — R4 with less inherent bias towards attributes in 7
where the present bias is measured with App and Agp.

3 RELATED WORK

3.1 Fairness in Machine Learning

Since machine learning techniques are deployed to make decisions
that have societal or ethical implications [7, 50, 51], serious concerns
over their fairness are raised. There have been various definitions
of fairness in machine learning. In this paper, we focus on the
most popular definition group fairness [13], which requires that
an algorithm should treat each demographic group equally. The
groups are associated with a single or multiple sensitive attributes,
such as gender and race. There are also other definitions of fairness
including individual fairness [13] and counterfactual fairness [31].

Unfair outcomes are mostly caused by data bias and algorithmic
bias [38]. There exists a wide range of biases in data. For example,
features like home address can be associated with specific races and
lead to unfair decisions indirectly [12]. The design of machine learn-
ing algorithms may also unintentionally amplify the bias in data. To
address this concern, several fair machine learning algorithms have
been proposed in recent years [3, 4, 16, 45, 53]. A comprehensive
survey on fair machine learning is given in [38].
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Table 1: Summary of fair graph representation learning meth-
ods.

Method Method-agnostic ~ Multiple Sensitive =~ Non-binary
Attributes Attributes
FairGNN [10] X X X
NIFTY [1] X X X
FairAdj [34] X % v
FairWalk [43] X X Vv
CFGE [5] X Vv Vv
EDITS [11] vV X vV
FairMILE (This work) Vv Vv Vv

3.2 Fair Graph Representation Learning

In the graph context, models trained to realize representations ac-
counting for the connectivity and topology inherent to the network
(e.g. homophily bias) can lead to biased representations. Down-
stream tasks that operate on such representations can lead to unfair
recommendations [49], and even biased and unjust outcomes [37].
However, the incorporation of fairness with graph-based learning
is challenging because of the non-i.i.d nature of the data and the
homophily effect of graph data [10, 12, 23].

Recently, several methods have been proposed to learn fair graph
representations. FairGNN [10] leverages adversarial learning to
train fair GNNs for node classification. NIFTY [1] adds a fairness loss
to the GNN objective as regularization. FairAdj [34] accommodates
the VGAE [28] model for fair link prediction. For task-agnostic
embedding, FairWalk [43] learns fair embeddings by adapting an
embedding algorithm node2vec [17]. Specifically, it modifies the
random walk process and adjusts the probability of selecting nodes
in each sensitive group for fairness. To consider multiple sensitive
attributes, CFGE [5] employs a set of adversaries with the encoder
for compositional fairness constraints. Unlike these approaches,
EDITS [11] is a pre-processing solution that reduces the bias in
graph structure and node attributes, then trains vanilla GNNs on
the debiased graph. However, since most methods are GNN-based,
they require exceptional time for training and fine-tuning.

In addition to inefficiency, there are three other major drawbacks
of existing works. First, some of them are not method-agnostic which
means they require non-trivial modifications to the base model for
adaption. Second, most existing works are unable to incorporate
fairness constraints towards multiple sensitive attributes. Third,
some methods cannot handle non-binary sensitive attributes. Ta-
ble 1 summarizes these approaches together with our proposed
work FairMILE. Compared with these approaches, our work can
simultaneously (1) accommodate the base model easily while (2)
achieve fairness towards multiple non-binary sensitive attributes.
Most importantly, we will demonstrate that (3) FairMILE signifi-
cantly outperforms these baselines in terms of efficiency.

3.3 Scalable Graph Embedding

Many methods for graph embedding have been proposed in recent
years, including NetMF [42], DeepWalk [40], and node2vec [17].
Despite their excellent performance on various machine learning
tasks, their lack of scalability prohibits them from processing large
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Algorithm 1 Graph coarsening for fair embedding

Input: Graph G; = (V}, &)

Output: Coarsened graph Gii1
1: Sort V; in an increasing order of node degrees
2: for unmatched u € V; do
3. if All neighbors of u are matched then

4 u — {u}
5. else
6 Find unmatched v s.t. (u,v) € &; maximizing Equation (3),

then let u” « {u,v}
7. Add supernode u’ to Vi1
8: Connect supernodes in V;1; based on &;
9: Build Gj+1 from Vji1 and Ej41

datasets. Recent research addressed the scalability issue of graph em-
bedding using different methodologies. Some studies leverage high-
performance computing techniques [33, 41, 54]. Another group of
studies adopts the multi-level framework for better scalability. This
framework is widely used for various graph problems [6, 26, 35] and
the essential idea is to solve the problem from a smaller coarsened
graph. However, none of these methods are fairness-aware. We are
the first study that considers fairness based on this framework.

4 METHODOLOGY

We propose a fairness-aware graph embedding framework Fair-
MILE (shown in Figure 2a), which consists of three modules: graph
coarsening, base embedding, and refinement. The idea is to first
coarsen the original graph into a smaller one, then learn the embed-
dings of the coarsened graph using the base model, and eventually
refine them into the embeddings of the original graph.

There exist several definitions of fairness [13, 31] - all with the
shared principle that all subgroups should receive the positive out-
come at the same level in a given measure (e.g., positive rate for
App, true positive rate for Agp). Since this paper studies unsu-
pervised representation learning, our key idea is to minimize the
variance among the representations of different groups. Intuitively,
the downstream models trained with such representations (or em-
beddings) will lead to a decrease in bias. Next, we introduce the
functionality of each module and explain how FairMILE enforces
fairness in the graph representations while improving efficiency
and versatility.

4.1 Graph Coarsening

We develop a new fairness-aware graph coarsening algorithm (shown
in Algorithm 1). Given the initial graph Gy = G, it shrinks the graph
size by collapsing a group of nodes into a supernode in the output
graph G;. If two nodes are connected in Gy, there exists an edge
between their supernodes in Gj. As a result, the numbers of nodes
and edges are reduced in G;. After repeating this process c times,
we can finally get the coarsened graph G..

The key challenges in graph coarsening are two-fold: retaining
the structural information for better utility while incorporating
fairness toward the sensitive attributes. For utility, we adopt a
high-utility coarsening approach Normalized Heavy-Edge Match-
ing (NHEM) [26], which merges two nodes if their normalized
edge weight is maximum. Formally, given a node u € V, NHEM
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Figure 2: Overview of FairMILE

computes the normalized weight of the edge (u,v) € & defined as:

w(u,0) = _Auo (1)
Vo (u)d(v)

Intuitively, it encourages nodes with fewer connections to match
other nodes and penalizes the hub nodes. Node matching allows
a supernode to have structural properties from different nodes.
However, due to the homophily in many real-world networks, the
bias in graph structure can be reinforced if two nodes from the
same group are merged.

In light of this, we add a new term in the node matching function
to reflect the divergence of the sensitive attribute distributions of
two nodes for fairness consideration. In FairMILE, we use a matrix
§ € RNXM 4 denote the sensitive attribute values, where each row
sy is the attribute value distribution vector for node u, and M is the
dimensionality of sensitive attribute values. We use these attribute
distribution vectors to quantify the divergence between nodes.

Initially, each node in the original graph Gy has a concatena-
tion of one-hot vectors for the attributes. For example, ¥ has
two attributes: ‘gender’ (female, male) and ‘race’ (African, Asian,
white). The attributes of a female African u can be modeled as
su = [1,0,1,0,0]. For a node v in a coarser graph G;(i > 0), we
use s, to denote the distribution of all nodes in Go merged into it.
For example, s, = [1,1,1,1,0] in G; indicates that the supernode v
contains one female and one male on attribute ‘gender’, and one
African and one Asian on ‘race’. To measure the difference between
the sensitive attribute distributions of two nodes, we define the
following function based on Kullback-Leibler divergence [30]:

M . )
¢(u,U)=]— 1+Z”Ssﬂlog(w) (2)
Jj=1

ull su,j/”sv”

It essentially maps the divergence of two normalized attribute dis-
tributions to [0, 1]. The higher the score is, the more different their
sensitive attributes are. Finally, given a node u of G;, we formulate

the node matching policy as follows:
max (1 —Ac)w(u,0) + Acp(u,0) 3)

0:(u,0)€&;

where A, is the weight of fairness in node matching. The objec-
tive here is to find the neighbor of node u that maximizes the edge
weight and attribute divergence together. Intuitively, a large value

of Ac generates more inter-group matching in graph coarsening.
Section 5 will empirically show that Algorithm 1 can improve the
fairness in graph representations.

4.2 Base Embedding

Like other multi-level frameworks [26, 35], FairMILE applies the
base model on the coarsest graph in an agnostic manner. Since the
input is the coarsened graph and the output is its node embeddings,
itis straightforward that FairMILE accommodates any unsupervised
graph embedding method such as DeepWalk [40] or node2vec [17]
with no modification required. This step generates the embeddings
E; on the coarsened graph.

4.3 Refinement

In the last phase of FairMILE, we seek to learn the representations
of graph Gy from the embeddings of the coarsest graph G.. Gener-
ally, we train a fairness-aware refinement model based on graph
convolution networks (GCN) [29] to infer the embeddings E.—; of
Ge-1 from E.. Then we iteratively apply it until we get Eo.

4.3.1 Model Architecture. Figure 2b shows the architecture of our
refinement model. Without loss of generality, the refinement model
has a projection layer followed by I GNN layers where the input
and output of layer i € [1,!] are denoted as H;_1 and H;. Given two
graphs G and Gj.1, we initialize Hy by projecting the embeddings
of supernodes in G;41 to its associated nodes in G;. Note that if
two nodes that have different sensitive attribute values are merged
into Gj+1, they share the same initial embeddings in G;, which
mitigates the potential bias in learned representations.

In each layer, we use a normalized adjacency matrix D~ 2AD":
for message passing. Here we drop the notation referring to a
specific graph for clarity. To take the sensitive attributes into con-
sideration, we concatenate the input of each layer with the row-
normalized sensitive attribute matrix S. Formally, the i-th convolu-
tion layer in our refinement model can be formulated as

H; = tanh (D—%AD—% (Hi-1 || §) @l-) @)

where ©; is the trainable linear transformation matrix of layer i.
Finally, we can infer G;’s node representations E; = H;/||Hj]|2.
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4.3.2  Training objectives. To achieve a trade-off between utility
and fairness, we have two distinct objectives for each of them. For
utility, we expect the refined representations to be close to the
input so that matched nodes are still close to each other in the
embedding space after refinement. Therefore, we minimize the
difference between the projected embeddings and the predicted
ones generated by the refinement model, which is defined as

1
[Vel

Ly is the utility loss in our framework. To improve fairness,
we encourage nodes with different sensitive attribute values to be
closer in the embedding space. Specifically, we create a subset of
edges &/ that consists of links between two nodes with significantly
different sensitive attributes, which can be formulated as

& ={(w0): (w0) € Ec A dp(w.0) 2 v}

where y is a threshold parameter for attribute divergence. Then
we use the learned representations to reconstruct an adjacency
matrix that represents the node distances in the embedding space.
To reward the links between diverse attribute groups, we use the
Hadamard product of the reconstruction matrix and the adjacency
matrix of &/ (denoted as A,) as our fairness objective. As a result,
the trained model generates similar embeddings for inter-group
nodes. The fairness loss (L) is formally defined as

Ly |l Ho — Hy|® ©)

Ly = —ﬁ [sigmoid(H;H; ") © A, (6)
(4

The multiplication of the embedding matrix with a sigmoid acti-
vation (denoted by sigmoid(H;H; ")) reconstructs the entire N X N
matrix. Its element-wise product with A/, performs the masking
operation to select the node pairs with diverse sensitive attributes.
The negative minimization of Ly ensures that the similarity of the
selected node pairs — measured by the dot products of their embed-
dings - is increased. This loss ensures that the embeddings learned
by the refinement model of the node pairs with diverse sensitive
attributes are proximal to each other.

Combining the utility and fairness loss functions, the overall
training objective of our refinement model is

i 1-A)L, + AL 7
{@i’vr?elr[ll’”}( r)Ly +ArLf (7)

where A, € [0, 1] controls the weight of fairness objective.

4.4 Theoretical analysis

Time complexity: The time complexity of FairMILE depends on
the selected embedding approach. Note that such approaches typi-
cally have a time complexity of at least O(d|V}y|) [8], for example,
the time complexity of DeepWalk is O(d|Vy|log [Vp]). Consider-
ing that the number of nodes can be reduced by up to half after
each time of coarsening (observed in Section 5.4), the efficiency is
significantly improved by embedding the coarsened graph. Apart
from embedding the coarsened graph, FairMILE spends additional
O (cl(d + M) (|Eo| + d|Vy])) time on coarsening and refinement.
Given that d, M < |V}|, the additional time of these two phases
is typically much less than the reduced time of base embedding -
empirically verified in Section 5.4. Additional details on complexity
analysis are included in our supplement.
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Fairness: We prove that the difference between the mean repre-
sentations of different demographic groups is bounded depending
on the network topology.

Theorem 1. When Ly is minimized, the 2-norm of the difference be-
tween the mean embeddings of any two demographic groups regarding
a given sensitive attribute is bounded by

lltp = gll, < 2(1 = min(Bp, Bg))

where p, q are any two different values of the given sensitive attribute.
Fori € {p,q}, ui denotes the mean embedding values of nodes from
group i, and f; denotes the ratio of nodes from group i that have at
least one inter-group edge.

Theorem 1 shows that the difference between the mean embed-
dings of two groups depends on the ratio of inter-group connected
nodes in each group, which is typically large. For example, among
the datasets used in our experiments, the minimum f is 0.676 in
Credit and 0.958 in German, respectively. When the mean embed-
dings of different demographic groups are close to each other, they
have similar representations and therefore with a high likelihood,
they will receive similar outcomes in the downstream task. The full
proof of Theorem 1 is provided in our supplement.

5 EXPERIMENTS
5.1 Experiment Setup

Datasets: We examine the performance of FairMILE on both node
classification and link prediction tasks. Our experiments are con-
ducted on seven real-world datasets from different application sce-
narios widely used in the fairness literature [1, 10, 11, 34, 46]. Sta-
tistics of the datasets are shown in Table 2, where | Y| denotes the
number of predicted labels, and |S| denotes the number of sensitive
attribute values. For details, please refer to our supplement.
Metrics: To quantify the prediction performance in node classifi-
cation, we use AUROC, F1-score (for binary class problems), and
Micro-F1 (for multi-class problems) as our utility metric. To mea-
sure the group fairness, we use App and Ago described in Section
3 as our fairness metrics. We also report the end-to-end running
time in seconds to show the efficiency of all methods.

For link prediction, following prior works [34, 46], we use AU-
ROC, Average Precision (AP), and accuracy as the utility metrics,
and compute the disparity in expected prediction scores between
intra-group and inter-group links. Specifically, the fairness metrics
are formulated as:

App,1p = [E(uo)~vxv [YIS(w) = S(0)]
= B(uo)~vxv [YISw) # S]]
Apo, 1p = [E(yo)~vxv [YI(,0) € & S(u) = $(0v)]
= E(uo)~vxv[¥I(10) € 85w # 5(0)]|
where Y € [0, 1] is the link prediction score.
Baselines: Our baselines include 1) Specialized approaches: For node
classification, we use the vanilla GCN [29] and three state-of-the-art
fair node classification methods (NIFTY [1], FairGNN [10], and ED-
ITS [11]) with GCN as their base model. For link prediction, we use

VGAE [28] and FairAdj [34] with VGAE as the base predictor in our
comparative experiments. In addition, we adapt CFGE [5] for both
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Table 2: Statistics of datasets (NC denotes Node Classification, and LP denotes Link Prediction).

# Features

Dataset ‘ Task #Nodes # Edges

German NC 1,000 22,242 27
Recidivism | NC 18,876 321,308 18
Credit NC 30,000 1,436,858 13
Pokec-n NC 66,569 729,129 59
Cora LP 2,708 5,278 1433
Citeseer LP 3,312 4,660 3703

Pubmed LP 19,717 44,338 500

Label (|Y]) Sensitive Attributes (|S])
credit risk (2) gender (2)

crime (2) race (2)

payment default (2) age (2)

field of work (4) region (2), gender (2)
citation (2) paper category (7)
citation (2) paper category (6)
citation (2) paper category (3)

tasks which is the only baseline that accommodates multiple sensi-
tive attributes. 2) Graph embedding approaches: We choose three
popular unsupervised graph embedding techniques: NetMF [42],
DeepWalk [40], and Node2vec [17]. We also include FairWalk [43],
which is essentially a fairness-aware adaption of Node2vec. Note
that these approaches can be used in both downstream tasks. 3)
Our framework: We let FairMILE run with the three embedding
approaches above for evaluation.

Parameters and environments: All hyperparameters of special-
ized approaches are set following the authors’ instructions. In par-
ticular, unless otherwise specified, we set A = 50 in CFGE for a
better tradeoff between fairness and utility. The dimensionality d
of representations for graph embedding approaches and our work
is set to 128. In FairMILE, we set A, = 0.5 for graph coarsening.
For refinement, We train a two-layer model for 200 epochs with
Ar = 0.5,y = 0.5, and the learning rate of 1 X 107> on all datasets.
To evaluate unsupervised approaches for node classification and
all approaches for link prediction, we train a linear classifier on
the learned embeddings (for node classification) or the Hadamard
products of embeddings of sampled node pairs (for link predictions).
For the task of link prediction, we randomly sample 10% of edges
to build test sets and remove them from the training data, then
we add the same number of negative samples as positive edges in
the training and test sets, respectively. All methods are evaluated
on the same test sets and trained on CPUs for fair comparisons.
Experiments are conducted on a Linux machine with a 28-core Intel
Xeon E5-2680 CPU and 128GB RAM. We report the average results
of 5 runs with different data splits. For reproducibility, our codes
and data are available!.

5.2 Results for Node Classification

We first compare our work with specialized GNN-based approaches
and unsupervised graph embedding baselines on three datasets
with a single binary sensitive attribute. Specifically, we address the
following questions: Q1: Does FairMILE improve the fairness of a
base embedding method? How is the fairness of FairMILE compared
with specialized approaches? Q2: Does FairMILE outperform other
baselines in terms of efficiency? Q3: Does FairMILE retain the
embedding’s utility while improving its fairness and efficiency?
Table 3 only presents the results on two datasets (German and
Credit). The results on Recidivism are included in our supplement.
Methods are categorized into different groups by their base models,
and the optimal performance in each group is highlighted in bold.

Ihttps://github.com/heyuntian/FairMILE

A1: FairMILE achieves better fairness scores. Compared with
graph embedding approaches without fairness consideration (i.e.,
NetMF, DeepWalk, and Node2vec), FairMILE on top of them al-
ways has lower App and Ago. In German, FairMILE decreases the
App scores of Node2vec and DeepWalk by 83.7% and 90.7%, respec-
tively. In terms of Ago, FairMILE improves the fairness of Node2vec
and DeepWalk by 84.0% and 96.6%. When choosing NetMF as the
base model, FairMILE is optimal (zero) on both fairness metrics,
which indicates that the learned representations lead to a perfectly
fair classification. Compared with FairWalk (the fair adoption of
Node2vec), FairMILE-Node2vec improves App by 49.7% on Credit
while FairWalk only improves by 4.8%. Similar results are also ob-
served on other datasets, which reveals that FairMILE successfully
mitigates the bias in general-purpose graph embedding baselines.
We also evaluate specialized methods (i.e., FairGNN, NIFTY, ED-
ITS, and CFGE) and observe that FairMILE achieves comparable
or better fairness with respect to these approaches. FairGNN out-
performs the other specialized methods on all datasets by gaining
the largest improvements on both App and Agp with respect to
Vanilla GCN. It means that their methodology of adversarial train-
ing is more effective than the regularization adopted by NIFTY,
and EDITS suffers from its task agnosticity. On German and Credit,
the best fairness metrics of FairMILE are comparable to or bet-
ter than FairGNN and other specialized techniques. These results
demonstrate that FairMILE is effective in reducing the bias in graph
representations compared to the state-of-the-art models.
A2: FairMILE is more efficient than other baselines. First, Fair-
MILE outperforms the GNN-based specialized approaches on all
datasets in terms of efficiency. In German, they take up to 2 minutes
for training, while FairMILE can finish in only 6 seconds. The dif-
ference becomes more significant on larger datasets. When CFGE
needs more than 3 hours on Credit, FairMILE finishes within 2 min-
utes which is 110.6-137.7x faster. On the other hand, FairMILE also
improves the efficiency of all base embedding methods. In Credit,
FairMILE on top of NetMF saves up to 80% of the running time of
vanilla NetMF. The improvement in German is sometimes invisi-
ble because German is a small graph. But FairMILE can still finish
within seconds. Compared with FairWalk, FairMILE-Node2vec is
always faster.
A3: FairMILE learns quality graph representations. We ob-
serve the quality of learned representations through the AUROC
and F1 scores. With respect to the base embedding methods, Fair-
MILE has a similar performance on both utility metrics which is
fairly remarkable given that FairMILE significantly improves fair-
ness. An interesting observation is that while Vanilla GCN, graph
embedding approaches, and FairMILE have a similar performance


https://github.com/heyuntian/FairMILE

FairMILE: Towards an Efficient Framework for Fair Graph Representation Learning

Table 3: Comparison on utility, fairness, and efficiency metrics in node classification between FairMILE and other baselines.
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Dataset | Method | AUROC (1) F1(N) | App () Ago (1) | Time (1)
NetMF 65.16 + 2.45 80.63 + 1.10 5.71 £ 2.89 3.66 £ 2.11 2.48
FairMILE-NetMF 61.93 + 3.38 82.35 + 0.00 0.00 £ 0.00 0.00 +=0.00 6.31
DeepWalk 58.54 + 4.43 75.78 + 1.49 7.22 +£3.86 7.69 £ 3.26 16.99
FairMILE-DeepWalk 63.31+3.63 82.40 +0.33 0.67 £0.88 0.26 + 0.39 7.84

German | Node2vec 63.37 +£3.77  78.69 + 1.25 3.69 +£2.60 275+ 1.34 12.76
Fairwalk 63.98 + 2.07 77.64 £ 1.62 3.67 £ 2.74 3.28 £ 2.50 11.93
FairMILE-Node2vec 62.00 + 2.59 82.32 £ 0.20 | 0.60 £0.96 0.44 + 0.41 8.29
Vanilla GCN 64.75 = 7.20 77.93 + 3.53 16.27 £ 5.86 13.28 + 5.06 23.75
FairGNN 53.12 £ 5.73 82.35 +£0.00 | 0.00 £ 0.00 0.00 £+ 0.00 136.29
NIFTY 56.65 + 6.84 81.35 + 1.54 1.20 £ 1.45 0.83 £ 1.20 91.05
EDITS 64.93 £ 2.90 79.64 +2.27 5.00 + 3.38 2.76 £ 2.26 84.24
CFGE 64.38 + 0.77 81.59 + 0.33 4.54 £ 291 430 + 1.84 3900.11
NetMF 74.93 £ 0.43 88.36 + 0.08 2.66 £ 0.55 1.34 £ 0.93 240.38
FairMILE-NetMF 74.69 + 0.43 88.31 + 0.08 0.68 £ 0.50 0.68 + 0.66 90.28
DeepWalk 75.09 £ 0.39 88.36 + 0.15 2.50 £ 0.54 1.81 £ 0.71 570.35
FaierLE-DeepWalk 74.60 = 0.53 88.31 £ 0.11 1.34 + 0.57 1.05 + 0.70 112.39

Credit | Node2vec 74.95 + 0.36 88.26 +0.18 | 292+ 041  1.93+0.87 249.92
Fairwalk 74.88 + 0.49 88.25 + 0.15 2.78 £ 0.47 1.58 +£ 0.81 261.23
FairMILE-Node2vec 74.01 £ 0.47 87.99 + 0.16 1.47 £ 0.74 1.33 £ 0.64 105.43
Vanilla GCN 72.83 + 2.83 82.79 + 1.76 5.77 £ 0.32 4.36 £ 0.59 2265.58
FairGNN 71.14 + 4.58 83.29 + 3.27 1.40 £ 0.97 1.21 +0.50 3201.72
NIFTY 72.43 + 0.68 81.80 = 0.37 5.52 £0.33 4.35 £ 0.68 7735.00
EDITS 73.22 £ 0.77 81.55 £ 0.30 5.36 +£ 0.42 4.17 £ 0.65 9078.12
CFGE 70.51 + 1.31 87.85 + 0.13 2.99 +£ 047 1.47 £0.18 12430.37

in terms of utility, the supervised GCN-based fair approaches have
lower AUROC or F1 scores on one or both datasets, which reveals
that these approaches require fine-tuning to perform well in terms
of utility while enforcing fairness.

In summary, FairMILE in conjunction with popular base embed-
ding approaches can compete or improve on the fairness criteria
with various specialized methods while outperforming them signif-
icantly in terms of efficiency and retaining comparable utility.

5.3 Fairness towards Multiple Sensitive
Attributes

To explore how FairMILE learns fair representations towards multi-
ple sensitive attributes, we conduct an experiment on the Pokec-n
dataset. Pokec-n has a multi-class predicted label and two sensitive
attributes. Most baselines cannot process such datasets since they
restrictively only cater to the case of a single binary label or sen-
sitive attribute. CFGE [5] is the only baseline that accommodates
multiple sensitive attributes. Therefore we compare FairMILE with
CFGE [5] and graph embedding methods, and we set ¢ = 4 for our
work. Note that FairWalk can consider only one sensitive attribute
at a time, thus we run it with each one of the two sensitive attributes
and show the results of both runs. In Table 4, we show the results of
all methods on Pokec-n in terms of utility, efficiency, and fairness
with respect to two sensitive attributes. First of all, with respect
to standard embedding methods, FairMILE improves the efficiency
and the fairness towards both sensitive attributes while the util-
ity remains competitive. For example, FairMILE reduces the App

of DeepWalk by 65.8% on ‘region’ and 51.1% on ‘gender’, respec-
tively. Second, although FairWalk also fulfills the fairness towards
the assigned attribute, FairMILE-Node2vec has a better fairness
score on both attributes. Third, FairMILE significantly outperforms
CFGE on efficiency given that they have comparable utility and
fairness performance. To study the performance of CFGE, we tune
the hyperparameter A which controls the strength of fairness. We
pick A from 1 to 100. Going beyond 100 we find the drop in utility
exceeds 20% which is often unacceptable. When the constraint is
strict (A = 100), CFGE has better fairness outcomes at a significant
cost to the utility. For A = 1,10 and 50, CFGE and FairMILE have
competitive performance in terms of fairness and utility tradeoff.
However, while CFGE takes around 9500 seconds, FairMILE finishes
in only 200-300 seconds, which is up to 46X faster.

5.4 Ablation Study

In the ablation study, we showcase the impact of coarsen level ¢
on FairMILE’s performance and the effectiveness of its modules
in the fairness of learned representations. In our supplement, we
also play with hyperparameters A; and A, to study the trade-off
between fairness and effectiveness.

5.4.1 Impact of coarsening. We vary the coarsen level c to observe
its impact on graph sizes and model performance. Table 5 shows the
results with NetMF on the Credit dataset. Other results are similar
and can be found in our supplement. Specifically, we study:

P1: How the graph changes after each time of coarsening.
We observe that increasing ¢ exponentially reduces the numbers of
nodes and edges, which corroborates the analysis in Section 4.4.
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Table 4: Case study on Pokec-n consisting of multiple sensitive attributes.

Region Gender .
Method AUROC Micro-F1 Time

M D 2r M Aeo @ | Bor () Ao ) W
NetMF 73.12 £ 046  62.18 £ 0.37 0.26 = 0.15 1.82 £ 0.48 0.39 +0.24 1.04 £ 0.58 1542.78
FairMILE-NetMF 68.86 + 0.91 5596 +0.67 | 0.17 £ 0.07 1.18 £0.29 | 0.31+0.06 0.56 + 0.30 204.99
DeepWalk 72.58 £ 0.67 61.44 £ 0.68 0.38 £ 0.07 1.49 + 0.63 0.45 + 0.22 1.61 £ 047 1139.30
FairMILE—DeepWalk 67.43 + 1.16 54.98 + 0.88 0.13+£0.11 0.70+£0.33 | 0.22 +0.12 0.59 +0.24 352.38
Node2vec 72.71 £ 046  61.71 £ 0.32 0.36 £ 0.05 2.06 £ 0.51 0.44 + 0.09 1.20 £ 0.49 798.01
Fairwalk (Region) 72.78 £ 0.44  61.99 £+ 0.40 0.32 £ 0.09 1.61 + 0.64 0.40 £ 0.15 1.61 + 0.49 829.41
Fairwalk (Gender) 72.63 £ 049 61.79 £ 0.46 0.34 £0.12 1.50 + 0.67 0.42 +£0.13 0.98 + 0.47 784.69
FairMILE-Node2vec 70.10 + 0.61 57.77 £ 0.92 0.23 £0.06 1.22+0.38 | 0.14 £+ 0.08 0.87 + 0.48 230.85
CFGE - 71.09 £ 0.76  60.21 £ 1.03 0.28 £ 0.18 0.96 + 0.49 0.26 £ 0.14 0.68 + 0.28 9572.75
CFGE 1-1¢ 68.93 + 0.95 58.98 + 0.59 0.26 £ 0.19 1.11 £ 0.59 0.31 +£0.13 0.50 £ 0.51 9447.50
CFGE =50 58.49 £ 1.25 52.08 £ 0.77 0.17 £ 0.10 0.54 £ 0.31 0.29 +£ 0.21 0.40 £ 0.28 9521.35
CFGE 3 -190 56.01 = 0.59 51.04 £ 0.31 0.16 £ 0.06 0.29 £ 0.25 0.14 £+ 0.06 0.23 £ 0.13 9391.33

P2: How FairMILE improves the efficiency by coarsening.
Generally, the efficiency is significantly improved when ¢ increases.
A small ¢ (e.g., ¢ = 1) may make FairMILE slower because the time
of coarsening and refinement outweighs the saved time of learning
embeddings when the coarsened graph is not small enough.

P3: How the fairness evolves with varying c. In terms of fairness
in the downstream task, we observe that increasing ¢ can visibly
improve the fairness of representations. For example, vanilla NetMF
has App = 2.66 and Agp = 1.34, which is improved to App = 0.68
and Agp = 0.68 by FairMILE (c = 4).

P4: How the utility is impacted by the information loss. We
find increasing c leads to a slight decrease in AUROC and F1 scores.
The AUROC score only decreases by 0.3% after FairMILE coarsens
the graph 4 times. In some cases, FairMILE achieves a better utility
than the base embedding method (i.e., with ¢ = 1). Given the little
cost of utility, we suggest using a large c¢ for the sake of fairness
and efficiency.

5.4.2  Effectiveness of fairness-aware modules. To evaluate the ef-
fectiveness of our fairness-aware modules for graph coarsening and
refinement, we observe the change in performance when we remove
the fairness-aware designs. Additionally, we choose MILE [35] as a
baseline of scalable embedding methods without fairness consid-
erations. Table 6 reports the results on three datasets. The result
shows that FairMILE outperforms MILE in terms of fairness, which
demonstrates our effectiveness in fairness improvement. We also
notice that the fairness scores decline on all datasets when
removing either fairness-aware design in FairMILE, indicat-
ing that these designs effectively mitigate the bias in the learned
embeddings. Furthermore, the little differences between the util-
ity scores of these methods demonstrate that FairMILE is able to
improve fairness without impacting utility when compared with
MILE. However, this improved fairness does come at some cost to
efficiency w.r.t MILE (which is always faster than FairMILE).

5.5 Results for Link Prediction

We next evaluate FairMILE in the context of link prediction. Table 7
only shows the results on Cora and Citeseer. Full results and detailed
analysis are in our supplement. First, FairMILE effectively mitigates
the bias in link prediction. Our framework has lower App, p and

Afo, 1p than the specialized approaches and graph embedding
approaches. On the other hand, FairMILE is more efficient than
other baselines, especially the fairness-aware competitors FairAdj
and CFGE. Finally, FairMILE has a similar or slightly better utility
compared with other approaches. This demonstrates that FairMILE
consistently achieves the tradeoff between fairness, efficiency, and
utility in a different downstream task.

6 CONCLUSION

In this paper, we study the problem of fair graph representation
learning and propose a general framework FairMILE, which can
incorporate fairness considerations with any unsupervised graph
embedding algorithms and learn fair embeddings towards one or
multiple sensitive attributes. We conduct comprehensive experi-
ments to demonstrate that with respect to state-of-the-art tech-
niques for fair graph representation learning, our work achieves
similar or better performance in terms of utility and fairness, while
FairMILE can significantly outperform them on the axis of effi-
ciency (up to two orders of magnitude faster). Planned future work
includes evaluating the use of FairMILE for real-world graph-based
model auditing [37] in deployed online settings.

ACKNOWLEDGMENTS

This material is supported by the National Science Foundation (NSF)
under grants OAC-2018627, CCF-2028944, SES-1949037, and CNS-
2112471. Any opinions, findings, and conclusions in this material
are those of the author(s) and may not reflect the views of the
respective funding agency.

REFERENCES

[1] Chirag Agarwal, Himabindu Lakkaraju, and Marinka Zitnik. 2021. Towards a uni-
fied framework for fair and stable graph representation learning. In Uncertainty
in Artificial Intelligence. PMLR, 2114-2124.

[2] Taha Atahan Akyildiz, Amro Alabsi Aljundi, and Kamer Kaya. 2020. GOSH:
Embedding big graphs on small hardware. In ICPP. 1-11.

[3] Abolfazl Asudeh, HV Jagadish, Julia Stoyanovich, and Gautam Das. 2019. De-
signing fair ranking schemes. In SIGMOD. 1259-1276.

[4] Tolga Bolukbasi, Kai-Wei Chang, James Y Zou, Venkatesh Saligrama, and
Adam Tauman Kalai. 2016. Man is to Computer Programmer as Woman is
to Homemaker? Debiasing Word Embeddings. In NeurIPS, Vol. 29.

[5] Avishek Bose and William Hamilton. 2019. Compositional fairness constraints
for graph embeddings. In International Conference on Machine Learning. PMLR,



FairMILE: Towards an Efficient Framework for Fair Graph Representation Learning Conference’17, July 2017, Washington, DC, USA

Table 5: Impact of coarsen level on graph sizes and FairMILE’s performance.

Metric ‘ Vanilla NetMF ‘ c=1 c=2 c=3 c=4

# Nodes 30000 15033 7544 3789 1899

# Edges 1.44M 550K 256K 138K 83K
Time (]) | 24038 | 487.60 208.75 139.79 90.28
App (1) 2.66 + 0.55 2234038  207+022 1.88+037 0.68 + 0.50
Ako (1) 134 +0.93 1.22 + 0.80 1.14+0.76  1.09+0.69 0.68 + 0.66
AUROC (1) 7493 +0.43 | 75.12 £ 0.52  74.95 £ 0.40 74.80 £ 0.41 74.69 + 0.43
F1(7) 88.36 +0.08 | 88.34+0.11 88.41+0.11 88.34+0.11 88.31 +0.08

Table 6: Ablation study of each module’s effectiveness in fairness (with NetMF).

Dataset | Method | AUROC (1) F1(1) | App (1) Apo (1) | Time (])
FairMILE 61.93 £3.38 82.35+0.00 | 0.00+0.00 0.00+0.00 6.31

German FairMILE w/o fair coarsening | 63.61 +2.91 8227 £0.58 | 220+0.98 147 +1.54 5.98
FairMILE w/o fair refinement | 63.37 +2.91 81.08 £0.60 | 2.94+1.58  2.02 =+ 1.06 5.64

MILE 63.02 £2.76 82.04 £ 0.76 3.28 +2.10 2.01 +0.97 5.06

FairMILE 89.52 +0.50 77.65+0.47 | 2.81+0.50 0.75 + 0.55 29.66

Recidivism FairMILE w/o fair coarsening | 90.23 +0.43  79.62+0.64 | 3.18 £0.33  1.34+0.61 22.36
FairMILE w/o fair refinement | 90.25 +0.23 79.94+0.50 | 3.27 £0.36  1.30 + 0.66 26.01

MILE 90.75 + 0.30  80.46 + 0.64 3.29 £ 0.32 1.43 + 0.65 18.42

FairMILE 74.69 £ 0.43 88.31+0.08 | 0.68 +£0.50 0.68 + 0.66 90.28

Credit FairMILE w/o fair coarsening | 74.65 + 0.34 8830 +0.12 | 1.50+0.52  0.92 +0.74 57.21
FairMILE w/o fair refinement | 74.42 +0.33 88.25+0.15 | 3.15+049 1.71+0.68 82.01

MILE 74.65+0.41 8833 +0.12 | 254048 1.38+0.81 49.98

Table 7: Comparison on utility, fairness, and efficiency metrics in link prediction between FairMILE and other baselines.

Dataset | Method | AUROC (1) AP (1) Accuracy (1) | App,ip (1) Ago, 1 (1) | Time (])
VGAE 90.86 = 0.79 92.81+0.89 82.68+1.19 | 47.51+247  24.12 +3.29 15.17
FairAdjry—; 89.56 + 1.06 9131+ 1.21 8157+1.22 | 4547252  20.44 + 3.48 56.76
FairAdjrs=s 8849+ 1.30 9034+ 136 8097 +0.83 | 42.39+295 1675+ 3.26 70.37
FairAdjra=a0 85.97 £ 0.62 87.84+0.53  77.68+054 | 3567 +145 11.26 = 3.07 145.01
CFGE 90.76 + 1.27 9259+ 130  82.35+1.26 | 32.06 + 1.33  13.73 + 1.63 531.79

Cora | NetMF 9133+ 135 9296+ 1.16 86.41+1.10 | 42.03+257 17.24 + 2.48 22.80
FairMILE-NetMF 9251+ 0.74 93.56 +1.03 84.42+087 | 41.19+ 1.47 16.09 + 1.46 8.16
DeepWalk 8852+ 1.01 89.84+0.77 77.78+099 | 42.53+155 2158 +2.19 47.30
FairMILE-DeepWalk | 92.00 + 1.27 93.67 + 0.93 82.26 + 0.64 | 33.17 + 1.02 14.31+ 1.40 19.40
Node2vec 90.87 + 1.03  92.03+0.77  80.15+0.55 | 4562+1.80  23.37 % 3.09 21.30
Fairwalk 89.49 +1.24  91.00 £ 0.88  78.92+0.99 | 42.21+228  18.68 + 2.68 22.71
FairMILE-Node2vec | 91.77 + 0.89 93.13 = 1.03 85.16 + 0.74 | 28.99 + 0.98 11.65 = 0.81 13.71
VGAE 88.24 = 1.83 90.53 +2.78 81.67 +3.39 | 24.82+267  7.13+3.32 20.33
FairAdjro=s 87.90 + 1.81  89.99 +2.81  81.61+3.02 | 24.17+265  6.49 +3.34 84.10
FairAdjrs=s 8747 £ 174  89.48 +2.67 8150 +£3.01 | 23.65+272  6.47 +3.47 109.07
FairAdjra=a0 86.90 £2.23  88.61+3.23 80.41+335 | 2274+3.23 647 +338 240.16
CFGE 8736 +3.29  90.45+3.11 71.12+13.42 | 13.60 + 4.86  3.00 = 1.39 478.18

Citeseer | NetMF 87.62+£0.73 9120 +046 8453+030 | 2332+148  4.66+ 1.72 19.35
FairMILE-NetMF 89.22 +0.34 91.71+0.69 85.30+0.58 | 20.96 + 1.65  2.79 + 1.45 7.57
DeepWalk 88.83+0.26  90.96 031 81.59+1.54 | 23.99+1.88 555 3.14 48.10
FairMILE-DeepWalk | 89.50 + 1.02 92.55+0.70 86.39 + 0.37 | 17.67 + 1.18  2.62 + 1.31 21.20
Node2vec 89.00 £ 0.65 9177 £0.35  83.88+0.81 | 22.85+157 352217 16.88
Fairwalk 88.86+0.85 9171 =033  83.52+0.61 | 23.59+138  4.13 + 2.43 16.78
FairMILE-Node2vec | 89.54 +0.95 92.31+0.52 86.91+0.78 | 12.49+0.91  2.08 + 1.08 11.72




Conference’17, July 2017, Washington, DC, USA

(6

=

[10

[11

[12]

[13

[14]

(15

[16

[17]

[18

=
o

[20

[21]

[22]

[23

[24]

[25]

[26

[27]

[28]

[29

[30

715-724.

Haochen Chen, Bryan Perozzi, Yifan Hu, and Steven Skiena. 2018. HARP: hier-
archical representation learning for networks. In Proceedings of the 32nd AAAI
Conference on Artificial Intelligence. 2127-2134.

Lee Cohen, Zachary C. Lipton, and Yishay Mansour. 2020. Efficient Candidate
Screening Under Multiple Tests and Implications for Fairness. In 1st Symposium
on Foundations of Responsible Computing, FORC 2020, Vol. 156. 1:1-1:20.

Peng Cui, Xiao Wang, Jian Pei, and Wenwu Zhu. 2018. A survey on network
embedding. IEEE Transactions on Knowledge and Data Engineering 31, 5 (2018),
833-852.

Sean Current, Yuntian He, Saket Gurukar, and Srinivasan Parthasarathy. 2022.
FairEGM: Fair Link Prediction and Recommendation via Emulated Graph Mod-
ification. In Equity and Access in Algorithms, Mechanisms, and Optimization.
1-14.

Enyan Dai and Suhang Wang. 2021. Say no to the discrimination: Learning fair
graph neural networks with limited sensitive attribute information. In WSDM.
680-688.

Yushun Dong, Ninghao Liu, Brian Jalaian, and Jundong Li. 2022. EDITS: Modeling
and mitigating data bias for graph neural networks. In Proceedings of the ACM
Web Conference 2022. 1259-1269.

Yushun Dong, Jing Ma, Chen Chen, and Jundong Li. 2022. Fairness in Graph
Mining: A Survey. arXiv preprint arXiv:2204.09888 (2022).

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard
Zemel. 2012. Fairness through awareness. In Proceedings of the 3rd Innovations in
Theoretical Computer Science Conference. 214-226.

Wengi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.
2019. Graph neural networks for social recommendation. In The World Wide Web
Conference. 417-426.

Danilo Franco, Nicold Navarin, Michele Donini, Davide Anguita, and Luca Oneto.
2022. Deep fair models for complex data: Graphs labeling and explainable face
recognition. Neurocomputing 470 (2022), 318-334.

Zuohui Fu, Yikun Xian, Ruoyuan Gao, Jieyu Zhao, Qiaoying Huang, Yingqiang
Ge, Shuyuan Xu, Shijie Geng, Chirag Shah, Yongfeng Zhang, et al. 2020. Fairness-
aware explainable recommendation over knowledge graphs. In SIGIR. 69-78.
Aditya Grover and Jure Leskovec. 2016. Node2vec: Scalable Feature Learning for
Networks. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining. 855-864.

Saket Gurukar, Nikil Pancha, Andrew Zhai, Eric Kim, Samson Hu, Srinivasan
Parthasarathy, Charles Rosenberg, and Jure Leskovec. 2022. MultiBiSage: A
Web-Scale Recommendation System Using Multiple Bipartite Graphs at Pinterest.
Proceedings of the VLDB Endowment 16, 4 (2022), 781-789.

Saket Gurukar, Priyesh Vijayan, Balaraman Ravindran, Aakash Srinivasan, Goon-
meet Bajaj, Chen Cai, Moniba Keymanesh, Saravana Kumar, Pranav Maneriker,
Anasua Mitra, et al. 2022. Benchmarking and Analyzing Unsupervised Network
Representation Learning and the Illusion of Progress. Transactions on Machine
Learning Research (2022).

William L. Hamilton, Rex Ying, and Jure Leskovec. 2017. Inductive Representation
Learning on Large Graphs. In Proceedings of the 31st International Conference on
Neural Information Processing Systems (Long Beach, California, USA) (NIPS’17).
Curran Associates Inc., Red Hook, NY, USA, 1025-1035.

Yuntian He, Saket Gurukar, Pouya Kousha, Hari Subramoni, Dhabaleswar K
Panda, and Srinivasan Parthasarathy. 2021. DistMILE: A Distributed Multi-Level
Framework for Scalable Graph Embedding. In HiPC. IEEE, 282-291.

Yuntian He, Yue Zhang, Saket Gurukar, and Srinivasan Parthasarathy. 2022.
WebMILE: democratizing network representation learning at scale. Proceedings
of the VLDB Endowment 15, 12 (2022), 3718-3721.

Zeinab S Jalali, Weixiang Wang, Myunghwan Kim, Hema Raghavan, and Sucheta
Soundarajan. 2020. On the information unfairness of social networks. In Proceed-
ings of the 2020 SIAM International Conference on Data Mining. SIAM, 613-521.
Guangyin Jin, Qi Wang, Cunchao Zhu, Yanghe Feng, Jincai Huang, and Jiangping
Zhou. 2020. Addressing crime situation forecasting task with temporal graph
convolutional neural network approach. In 2020 12th International Conference on
Measuring Technology and Mechatronics Automation (ICMTMA). IEEE, 474-478.
Jian Kang, Jingrui He, Ross Maciejewski, and Hanghang Tong. 2020. Inform:
Individual fairness on graph mining. In Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining. 379-389.
George Karypis and Vipin Kumar. 1998. Multilevel k-way partitioning scheme
for irregular graphs. Journal of Parallel and Distributed computing 48, 1 (1998),
96-129.

Ahmad Khajehnejad, Moein Khajehnejad, Mahmoudreza Babaei, Krishna P Gum-
madi, Adrian Weller, and Baharan Mirzasoleiman. 2021. CrossWalk: Fairness-
enhanced Node Representation Learning. arXiv preprint arXiv:2105.02725 (2021).
Thomas N. Kipf and Max Welling. 2016. Variational graph auto-encoders. arXiv
preprint arXiv:1611.07308 (2016).

Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In ICLR.

Solomon Kullback and Richard A Leibler. 1951. On information and sufficiency.
The annals of mathematical statistics 22, 1 (1951), 79-86.

(31

[32

(33]

[34

@
2

[36

[37

[38

@
20,

[40

[41]

[42

[43

(44

=
i)

[46

[47

[48

[49

[50

[51]

(52

(53]

[54

He et al.

Matt J Kusner, Joshua Loftus, Chris Russell, and Ricardo Silva. 2017. Counterfac-
tual fairness. Advances in Neural Information Processing Systems 30 (2017).
Preethi Lahoti, Krishna P Gummadi, and Gerhard Weikum. 2020. Operationalizing
Individual Fairness with Pairwise Fair Representations. Proceedings of the VLDB
Endowment 13, 4 (2020).

Adam Lerer, Ledell Wu, Jiajun Shen, Timothee Lacroix, Luca Wehrstedt, Abhijit
Bose, and Alex Peysakhovich. 2019. Pytorch-biggraph: A large scale graph
embedding system. Proceedings of Machine Learning and Systems 1 (2019), 120—
131.

Peizhao Li, Yifei Wang, Han Zhao, Pengyu Hong, and Hongfu Liu. 2021. On
Dyadic Fairness: Exploring and Mitigating Bias in Graph Connections. In 9th
International Conference on Learning Representations, ICLR 2021.

Jiongqgian Liang, Saket Gurukar, and Srinivasan Parthasarathy. 2021. MILE:
A Multi-Level Framework for Scalable Graph Embedding. Proceedings of the
International AAAI Conference on Web and Social Media 15, 1 (2021), 361-372.
Andrew Lohn and Micah Musser. 2022. Al and Compute: How Much Longer Can
Computing Power Drive Artificial Intelligence Progress. Center for Security and
Emerging Technology (CSET) (2022).

Pranav Maneriker, Codi Burley, and Srinivasan Parthasarathy. 2023. Online
Fairness Auditing through Iterative Refinement. In Proceedings of the 29th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining. 1665-1676.
Ninareh Mehrabi, Fred Morstatter, Nripsuta Saxena, Kristina Lerman, and Aram
Galstyan. 2021. A survey on bias and fairness in machine learning. ACM Com-
puting Surveys (CSUR) 54, 6 (2021), 1-35.

Galileo Namata, Ben London, Lise Getoor, Bert Huang, and U Edu. 2012. Query-
driven active surveying for collective classification. In 10th International Workshop
on Mining and Learning with Graphs, Vol. 8. 1.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online Learn-
ing of Social Representations. In Proceedings of the 20th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining. 701-710.

Jiezhong Qiu, Laxman Dhulipala, Jie Tang, Richard Peng, and Chi Wang. 2021.
LightNE: A Lightweight Graph Processing System for Network Embedding. In
SIGMOD.

Jiezhong Qiu, Yuxiao Dong, Hao Ma, Jian Li, Kuansan Wang, and Jie Tang. 2018.
Network embedding as matrix factorization: Unifying Deepwalk, LINE, PTE, and
Node2vec. In WSDM. 459-467.

Tahleen Rahman, Bartlomiej Surma, Michael Backes, and Yang Zhang. 2019.
Fairwalk: Towards Fair Graph Embedding. In IJCAL AAAI Press, 3289-3295.
Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and
Tina Eliassi-Rad. 2008. Collective classification in network data. AI magazine 29,
3 (2008), 93-93.

Ashudeep Singh and Thorsten Joachims. 2018. Fairness of exposure in rankings.
In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 2219-2228.

Indro Spinelli, Simone Scardapane, Amir Hussain, and Aurelio Uncini. 2021.
FairDrop: Biased Edge Dropout for Enhancing Fairness in Graph Representation
Learning. IEEE Transactions on Artificial Intelligence (2021).

Emma Strubell, Ananya Ganesh, and Andrew McCallum. 2019. Energy and policy
considerations for deep learning in NLP. arXiv preprint arXiv:1906.02243 (2019).
Lubos Takac and Michal Zabovsky. 2012. Data analysis in public social networks.
In International Scientific Conference and International Workshop Present Day
Trends of Innovations, Vol. 1.

Sheridan Wall and Hilke Schellmann. 2021. LinkedIn’s job-matching Al was
biased. The company’s solution? More Al https://www.technologyreview.
com/2021/06/23/1026825/linkedin- ai-bias-ziprecruiter-monster-artificial-
intelligence/.

Daixin Wang, Jianbin Lin, Peng Cui, Quanhui Jia, Zhen Wang, Yanming Fang,
Quan Yu, Jun Zhou, Shuang Yang, and Yuan Qi. 2019. A semi-supervised graph
attentive network for financial fraud detection. In ICDM. IEEE, 598-607.

Jizhe Wang, Pipei Huang, Huan Zhao, Zhibo Zhang, Bingiang Zhao, and Dik Lun
Lee. 2018. Billion-scale commodity embedding for e-commerce recommendation
in alibaba. In KDD. 839-848.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2019. How Powerful
are Graph Neural Networks?. In The 7th International Conference on Learning
Representations.

Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rogriguez, and Krishna P
Gummadi. 2017. Fairness constraints: Mechanisms for fair classification. In
Artificial Intelligence and Statistics. PMLR, 962-970.

Zhaocheng Zhu, Shizhen Xu, Jian Tang, and Meng Qu. 2019. Graphvite: A high-
performance CPU-GPU hybrid system for node embedding. In The World Wide
Web Conference. 2494-2504.


https://www.technologyreview.com/2021/06/23/1026825/linkedin-ai-bias-ziprecruiter-monster-artificial-intelligence/
https://www.technologyreview.com/2021/06/23/1026825/linkedin-ai-bias-ziprecruiter-monster-artificial-intelligence/
https://www.technologyreview.com/2021/06/23/1026825/linkedin-ai-bias-ziprecruiter-monster-artificial-intelligence/

FairMILE: Towards an Efficient Framework for Fair Graph Representation Learning

A FULL THEORETICAL ANALYSIS

Corollary 1. Algorithm 1 coarsens a graph Gi = (V;, &;) into a
smaller graph Giy1 = (Vis1, Eir1) such that %|(V,| < | Vig| < |V
and |Ei41] < |&il.

Proor. In the optimal case, all nodes in G; get matched and
therefore |Vjt1| = %|(Vi|. The worst case is that all nodes are iso-
lated so the number of nodes does not decrease.

Our coarsening algorithm adds an edge (u,v) in Gi41 if and only
if there exists at least one edge in G; that connects one of u’s child
nodes and one of v’s child nodes. Therefore |E;41] < |E4]. O

Lemma 1. In the phase of graph coarsening, FairMILE consumes

0 (M (Zf;ol(l%l + |8i|>)) time.

Proor. Without loss of generality, we assume the input graph is
G; (i < c). For each edge, Algorithm 1 computes the fairness-aware
edge weight in O(M) time. Hence it takes O (M(|&;| + [V;])) time
to match and merge nodes. The time of creating a coarsened graph
after node matching is also O (M(|&;| + [V;])), which is mainly
used for computing the attribute distribution of new nodes and
the weights of new edges in the coarsened graph. Summing up the
c coarsen levels, the total time complexity of graph coarsening is

O (M (& (il + 1)) o

Corollary 2. FairMILE can reduce the time of graph embedding
exponentially in the optimal case since |'V| > 27¢|V}|.

Proor. In Corollary 1, we analyze that the number of nodes
can be reduced by up to half at each coarsen level. Thus the time
complexity of base embedding can also be reduced exponentially
when c increases. O

Lemma 2. If the refinement model has [ layers, the time complexity
dnﬁwmwﬁBO(Kd+AD[Zggﬂ8ﬂ+dMHﬂ)

Proor. We again assume the input graph is Giy1 (i > 0) without
loss of generality. Before applying the model, FairMILE projects
the embeddings from the supernodes to the child nodes of G; in
O(d|V;]) time. In each layer of the model, FairMILE needs O((d +
M)|V;]) to concatenate the input with the sensitive attributes. The
following message passing process and the matrix multiplication
take O((d+M)|E;|) and O(d(d + M)|V;|) time, respectively. There-
fore the time complexity of each layer is O ((d + M)(|&;| + d|Vi])).
Finally, the total time complexity of applying the refinement model

isO(l(d+M) [Ty (|8,~|+d|(Vi|)]). o

Theorem 1. When Lf is minimized, the 2-norm of the difference
between the mean embeddings of any two demographic groups
regarding a given sensitive attribute is bounded by

llp = pqll, < 2(1 = min(Bp, Bg)) ®)

where p, g are any two different values of the given sensitive at-
tribute (e.g., gender or race). For i € {p, q}, pi denotes the mean
embedding values of nodes from group i, and f; denotes the ratio
of nodes from group i that have at least one inter-group edge.
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Proor. Our fairness loss Ly in Equation (6) is the average neg-
ative cosine similarity of embeddings of all connected node pairs
(u,v) € &, with diverse sensitive attributes, which means ¢ (v, v) >
y- To reach the global minimum of Ly, the parameters {G)i}g:l are
optimized to completely focus on sensitive attributes and gener-
ate identical embeddings for the nodes, i.e., the similarity is 1. In
general, using a smaller y will have more edges impacted by the
fairness objective. y = 0 is the strictest value that always leads to
all nodes with inter-group connections having the same represen-
tations (denoted as k). A special case is when ¢ = 1, ¢(u,0) = 1
holds for any u,v € V} such that s;, # s,. Therefore any y enforces
fairness in the same strength.

Recall that p, g are any two different values of the given sensitive
attribute (e.g., gender). For i € {p, q}, let U; be the set of nodes with
attribute value i (e.g., all nodes in U; share the same gender i), Then
let U;; be the subset of U; in which the nodes are only connected to
nodes in U;. Note that f; = 1 — |U;;|/|U;|. The learned embedding
of node u is denoted as hy,. When Ly is minimized with y = 0, we
have

llp ~ mqll,
_1-p 1.8
=WBph+ gt D hu= fgh= =t D holla
pp ue Uy 99 vEUyq
_ 1 1
< |ﬁp‘ﬂq|||h||2+(1—,3p)||m Z hu||2+(1—ﬁq)||m
Pp ue Uy 9 veUyq

Note that the output embeddings of our refinement model are
L2-normalized, hence we finally have

1o = glly < 1Bp = Bql + (1= Bp) + (1= Bg) = 2(1 — min(Bp, fg))

Therefore Equation (8) holds when L . is minimized. O

B DATASET DESCRIPTION

In German [1], each node is a client in a German bank, and two
nodes are linked if their attributes are similar. The task is to classify
a client’s credit risk as good or bad, and the sensitive attribute is
the client’s gender.

Recidivism [1] is a graph created from a set of bail outcomes from
US state courts between 1990-2009, where nodes are defendants and
edges connect two nodes if they have similar past criminal records
and demographic attributes. The task is to predict if a defendant
will commit a violent crime or not, while the sensitive attribute is
race.

Credit [1] consists of credit card applicants with their demo-
graphic features and payment patterns. Each node is an individual,
and two nodes are connected based on feature similarity. In this
dataset, age is used as the sensitive attribute, and the predicted label
is whether the applicant will default on an upcoming payment.

Pokec-n [48] is collected from a Slovakia social network. We
use both region and gender as the sensitive attributes, and choose
each user’s field of work as the predicted label. Note that Pokec-n
has multiple sensitive attributes and a multi-class target, which
FairMILE can handle by design. However, existing research [10,
11, 15] has only evaluated the use of this data with one sensitive
attribute at-a-time with the target label binarized - a key limitation.
We discuss how FairMILE can redress this limitation in Section 5.3.



Table 8: Comparison in node classification between FairMILE and other baselines on Recidivism dataset.
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Dataset | Method | AUROC (1) F1() | App () Apo (1) | Time ()
NetMF 94.63 + 0.17 85.46 + 0.29 3.41 £0.21 1.62 + 0.78 141.90
FairMILE-NetMF 89.52 + 0.50 77.65 + 0.47 2.81+0.50 0.75 £ 0.55 29.66
DeepWalk 93.33 £ 0.35 83.62 + 0.42 3.47 £ 0.37 1.28 + 0.60 303.68
FairMILE-DeepWalk 86.93 + 0.74 73.50 = 0.99 2.71+£0.58 1.08 +£0.77 45.93

Recidivism | Node2vec 92.56 + 0.26 83.31+0.36 | 3.61+056 157 +0.97 136.33
Fairwalk 92.43 + 0.43 82.99 + 0.51 3.32 £0.24 1.48 + 0.66 133.62
FairMILE-Node2vec 87.00 + 0.50 71.34 + 0.86 2.75+0.35 1.15 £ 0.65 38.67
Vanilla GCN 88.16 + 1.72 77.68 + 1.63 3.83 £ 0.59 1.46 = 0.71 474.57
FairGNN 67.26 + 7.80 44.63 + 14.87 | 0.67 = 0.45 1.24 + 0.40 1071.39
NIFTY 77.89 + 4.21 64.44 + 6.11 1.34 £ 1.01 0.63 £ 0.42 1651.09
EDITS 79.48 £ 13.26  69.66 + 13.28 439 + 2.10 2.52 £ 2.04 1311.42
CFGE 60.92 + 1.88 25.58 + 6.45 0.81 £ 0.58 1.45 + 0.88 2498.52
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The remaining three datasets (namely, Cora [44], Citeseer [44],
and Pubmed [39]) are citation networks widely evaluated in the
graph representation learning literature [9, 34, 46]. In these data,
each node denotes a paper, and each edge links two nodes if one
paper cites the other. As in prior work [9, 34, 46], we treat the
category of a paper as its sensitive attribute. The task is to predict
whether a paper is cited by the other (or vice versa).

C NODE CLASSIFICATION ON RECIDIVISM

We conduct the experiments of node classification on another
dataset Recidivism and revisit the questions in Section 5.2. Results
are shown in Table 8.

A1) Fairness: FairMILE improves the fairness of all unsuper-
vised graph embedding approaches. In Recidivism, FairMILE de-
creases the App scores of NetMF and DeepWalk by 17.6% and 21.9%,
respectively. In terms of Agp, FairMILE improves the fairness of
NetMF and DeepWalk by 53.7% and 15.6%. On top of Node2vec,
FairMILE outperforms FairWalk in terms of both App and Ago.
Among the specialized methods, FairGNN has the lowest App score
and NIFTY has the best Agp score which is slightly better than
FairMILE-NetMF (0.63% v.s. 0.75%). However, this is because these
models trade too much utility for fairness (For example, in terms of
AUROC, NIFTY 77.89% v.s. FairMILE-NetMF 89.52%).

A2) Efficiency: FairMILE is more efficient than other baselines.
While GNN-based approaches take up to 2498.5 seconds, FairMILE
on top of NetMF finishes in only 29.7 seconds, which is 84.2x faster.
Compared with the unsupervised graph embedding approaches,
FairMILE still improves the efficiency of graph embedding.

A3) Utility: Compared with the base embedding methods, the
utility scores of FairMILE slightly drop which is fairly remarkable
given that FairMILE significantly improves fairness and efficiency.
Among the specialized approaches, all approaches except the vanilla
GCN are outperformed by FairMILE in terms of AUROC and F1.
This demonstrates that FairMILE achieves a better tradeoff between
utility and fairness than these GNN-based approaches.

In summary, FairMILE on top of graph embedding approaches
can compete or improve on fairness and utility with various spe-
cialized methods while outperforming them significantly in terms
of efficiency.

D FULL ABLATION STUDY
D.1 Tuning the Coarsen Level

We vary the coarsen level ¢ to observe its impact on utility, fairness,
and efficiency. Results are shown in Figure 3. Note that when ¢ = 0,
FairMILE is performing the base embedding method on the original
graph. Generally, increasing c leads to a slight decrease in AUROC
and F1 scores. For example, the AUROC score of DeepWalk only de-
creases by 0.6% after FairMILE coarsens the graph 4 times. In some
cases, FairMILE achieves a better utility than the base embedding
method (e.g., FairMILE-Node2vec with ¢ = 1 on German). While
the decrease of utility is negligible, increasing ¢ can visibly improve
the fairness of representations. For example, vanilla DeepWalk has
App = 7.22 and Agp = 7.69 on German, which is improved to
App = 0.67 and Agp = 0.26 by FairMILE (c = 2). Last of all, increas-
ing the coarsen level significantly improves the efficiency. Using a
small ¢ may make FairMILE slower because the time of coarsening
and refinement outweighs the saved time of learning embedding
when the coarsened graph is not small enough. Examples include
¢ = 1 on Credit. Given the little cost of utility, we suggest using a
large c for the sake of fairness and efficiency.

D.2 Trade-off between Utility and Fairness

To further explore the trade-off of FairMILE between utility and fair-
ness, we choose the values of A. and A, from {0.1,0.3,0.5,0.7,0.9}
respectively to observe the impact on performance. Figure 4 shows
the results of FairMILE-NetMF on Recidivism with ¢ = 4 (We only
report these results for one dataset since results on other datasets
are similar). We use AUROC and App as the metrics for utility and
fairness. It is clear that there is a trade-off between the utility scores
and the fairness of learned embeddings on this dataset. Increasing
fairness (represented by lower App) often causes a decrease in
utility scores. We also observe that A, has a larger impact on this
tradeoff than A.. We also find in general that our choice of A =
Ar = 0.5 achieves a reasonable trade-off (applies to this dataset and
the other datasets and tasks in our study). We do note of course
that for different scenarios the designer may prefer to choose these
parameters appropriately.
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Figure 3: Impact of coarsen level c on FairMILE’s utility, fairness, and efficiency.
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Figure 4: Impact of varying A; and A, on utility and fairness on Recidivism dataset.

E FULL RESULTS FOR LINK PREDICTIONS

We evaluate FairMILE in the context of link prediction on three
datasets. For FairMILE, we set ¢ = 2 on smaller datasets (Cora and
Citeseer) and ¢ = 4 on Pubmed. Table 9 shows the results on Pubmed.
For the results on other datasets, please refer to Table 7 in Section
5.5. First, FairMILE makes fair predictions on all datasets. Our frame-
work has an improvement of up to 45.3% on App, 1p compared with
the base embedding approaches. In terms of Agp, 1p, while the per-
formance of FairMILE declines on Pubmed very slightly (2.70%
v.s. 2.04% in NetMF), it greatly reduces the unfair predictions on
Cora and Citeseer. Combining the observations on both metrics,

FairMILE successfully enforces fairness in the task of link predic-
tion. When compared with FairWalk, FairMILE-Node2vec always
has a better fairness score (e.g., 12.49% v.s. 23.59% on Citeseer). In
addition, we notice that FairAdj is less biased than VGAE, which
demonstrates its effectiveness in debiasing. However, its best per-
formance with T2 = 20 is still outperformed by FairMILE on all
datasets. For example, the App, 1p score of FairMILE-Node2vec on
Citeseer is 45.1% lower than that of FairAdj (T2 = 20). Compared
with CFGE, FairMILE on top of Node2vec has a better performance
in terms of fairness.
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Table 9: Comparison in link prediction between FairMILE and other baselines on Pubmed dataset.

Dataset ‘ Method ‘ AUROC (1) AP (1) Accuracy (1) ‘ App,1r (1) Aro,1p (1) ‘ Time ()

VGAE 95.03+0.18 94.96+0.19 87.48+021 | 3937+088 1028+ 158 | 347.80

FairAdjra—2 94.29 + 0.17 94.07 + 0.14 86.63 £ 0.27 37.12 £ 0.89 7.57 £ 1.56 2218.41

FairAdjrs-s5 93.57 £ 0.19 93.21 £ 0.13 85.69 £ 0.16 35.06 + 1.01 5.60 + 1.55 2480.66

FairAdjra=20 91.78 £ 0.12 91.27 £ 0.24 83.20 £ 0.22 30.41+0.89 2.41+1.28 4532.99

CFGE 91.25 +5.32 92.08 + 5.22 82.78 £5.79 33.03 £ 6.19 9.55 + 2.35 4237.43

Pubmed "o ivp 98.43 £ 0.07 98.26 +0.05 93.86+0.19 | 3859+0.14 2.04+0.15 281.35

FairMILE-NetMF 98.11 + 0.12 97.29 + 0.20 94.84 + 0.31 | 31.97 + 0.68 2.70 £ 0.22 126.17

DeepWalk 98.35+0.14 98.05 + 0.17 91.77 £ 0.29 35.02 £ 0.43 0.40 = 0.12 354.27

FairMILE-DeepWalk | 99.57 + 0.04 99.32 + 0.08 97.61+0.06 | 27.30 = 0.23  0.37 + 0.11 201.03

Node2vec 99.52 £ 0.04 99.44 +0.04 93.11 £0.21 40.28 +0.41  0.21 + 0.13 249.52

Fairwalk 99.50 + 0.05 99.43 + 0.05 92.86 + 0.24 38.58 + 0.35 0.65 + 0.12 225.99

FairMILE-Node2vec 99.23 + 0.07 98.68 + 0.14 96.43 + 0.06 | 26.51 + 0.35 0.59 + 0.05 143.01
On the other hand, FairMILE also performs well in terms of util- Finally, FairMILE is more efficient than other baselines. For exam-
ity. In comparison to the standard embedding approaches, FairMILE ple, on the largest dataset Pubmed, FairMILE-NetMF takes around
achieves a similar or better utility performance. For example, Fair- 2 minutes, while NetMF needs around 5 minutes, and FairAdj with
MILE actually enhances the accuracy of DeepWalk from 91.77% T2 = 20 even requires more than one hour to finish. In summary,
to 97.61% on Pubmed. Similar results can also be observed on the FairMILE can flexibly generalize to the link prediction task improv-
other metrics and datasets. Compared with VGAE-based methods, ing over the state of the art on both counts of fairness and efficiency

FairMILE outperforms them again on utility. Examples include that at a marginal cost to utility.

AUROC scores of VGAE and FairMILE-DeepWalk on Pubmed are
95.03% v.s. 99.57%, respectively.
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