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Abstract

We introduce an analytical model that describes the vertical structure of Ek-
man boundary layer flows coupled to the MOST surface layer representation,
which is valid for conventionally neutral (CNBL) and stable (SBL) atmospheric
conditions. The model is based on a self-similar profile of horizontal stress for
both CNBL and SBL flows that merges the classic 3/2 power law profile with
a MOST-consistent stress profile in the surface layer. The velocity profiles are
then obtained from the Ekman momentum balance equation. The same stress
model is used to derive a new self-consistent Geostrophic Drag Law (GDL).
We determine the ABL height h using an equilibrium boundary layer height
model and parameterize the surface heat flux for quasi-steady SBL flows as
a function of a prescribed surface temperature cooling rate. The ABL height
and GDL equations can then be solved together to obtain the friction velocity
(us) and the cross-isobaric angle («g) as a function of known input parame-
ters such as the Geostrophic wind speed and surface roughness zy. We show
that the model predictions agree well with predictions from the literature and
newly generated Large Eddy Simulations (LES). These results indicate that
the proposed model provides an efficient and relatively accurate self-consistent
approach for predicting the mean wind velocity distribution in CNBL and SBL
flows.

Keywords Atmospheric boundary layer - Geostrophic drag law - Large eddy
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2 Ghanesh Narasimhan et al.

1 Introduction

The atmospheric boundary layer (ABL) refers to the lower part of the at-
mosphere, which interacts with processes on the Earth’s surface, involving
exchanges of heat, moisture, and momentum. In this region, Coriolis and fric-
tional forces influence the vertical variation of the wind. The resulting wind
veers across heights leading to an Ekman-like spiral (Ekman, 1905). Under-
standing the wind veering under realistic atmospheric conditions is essential for
applications such as wind energy, pollutant transport modeling, and boundary
layer parameterizations for climate models. An example of this importance is
highlighted in a study by Walcek (2002), which demonstrated that the pres-
ence of an Ekman spiral flow leads to a skewed structure in pollution puffs,
challenging the traditional assumption of a simple shape for pollutant plumes.
Wind veering in the ABL has similarly been shown to change the shape of
wind turbine wake regions to be more sheared in the lateral direction, (e.g.,
Abkar et al. (2018) and Narasimhan et al. (2022)), versus the symmetric wakes
assumed when neglecting the effect of veer. This lateral extension of the wake
due to wind veer can significantly impact the performance of downstream tur-
bines. These and other findings underscore the importance of accounting for
properties of ABL that influence wind farm flow physics and pollutant trans-
port.

A number of studies have addressed the classical problem of modeling wind
velocity distributions in the ABL. These velocities are typically obtained by
solving the steady-state Ekman mean momentum equations. The traditional
approach to solving these equations involves invoking the Boussinesq eddy-
viscosity hypothesis to model turbulent shear stresses. Ekman (1905) solved
these equations assuming a constant eddy-viscosity and obtained the classical
solution involving a spiraling flow velocity profile based on trigonometric and
exponential functions. However, in the turbulent ABL, the eddy-viscosity ac-
tually varies with height. In particular, the atmospheric surface layer (ASL),
located close to the surface, exhibits a linear dependence of eddy-viscosity with
height, assuming that the mixing length varies linearly with distance to the
ground (Tennekes and Lumley, 1972). This layer, in which the constant tur-
bulent shear stress is proportional to the square of the friction velocity (u.),
is often referred to as the constant flux layer (Horst, 1997; Wyngaard, 2010).
Within the ASL, wind veering is negligible, and the streamwise velocity follows
a logarithmic profile (if the effects of thermal stratification are neglected).

Above the ASL lies the Ekman layer, which has flow scales that are large
enough to be influenced by Coriolis effects leading to wind veering. Here,
the logarithmic velocity profile that is valid in the ASL does not satisfy the
Geostrophic wind condition approaching the top boundary. Ellison (1955) ad-
dressed this issue by solving the Ekman momentum equations with a linearly
varying eddy-viscosity throughout the layer and obtained analytical solutions
for velocities involving Kelvin or modified Bessel functions (Krishna, 1980;
Kelly and van der Laan, 2023). These analytical relations show that solu-
tions depend on z/h., where h, = u./f. (Rossby and Montgomery, 1935) and
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Analytical coupled Ekman and surface layer model for ABL flows 3

fc is the Coriolis parameter. However, the assumption of linearly increasing
eddy-viscosity in Ellison (1955) is inaccurate outside of the surface layer. In-
stead the eddy-viscosity decays as it approaches the Geostrophic region, where
turbulent stresses are negligible. Blackadar (1962) addressed this problem by
invoking Prandtl’s mixing length theory to propose an eddy-viscosity profile
that increases linearly within the ASL and decays within the Ekman layer.
Blackadar (1962) solved the associated equations numerically to obtain ABL
velocities that exhibit a logarithmic profile within the ASL and form an Ek-
man spiral structure further away from the surface, eventually merging with
the Geostrophic wind. However, the form of these equations did not allow for
analytical solutions.

In a recent study, Constantin and Johnson (2019) showed that Ekman’s
mean momentum equations predict a spiraling velocity profile for any assumed
form of eddy-viscosity that is bounded and reaches a constant value at larger
heights. They explicitly showed that assuming a linearly varying eddy-viscosity
closer to the surface and a constant value at greater heights leads to Bessel-type
solutions for the mean velocity components. Similarly, assuming exponential
eddy-viscosity variation closer to the surface that tends to a constant further
above results in solutions given by hypergeometric functions. Although these
explicit analytical solutions are instructive, evaluating such special functions
becomes cumbersome and the complexity is often similar to having to solve the
eddy-viscosity momentum (1D ordinary differential) equations numerically.

The effects of ground temperature add to the challenges of analytically
describing the velocity profile in the ABL. Heating of the ground leads to
the formation of an unstable Convective Boundary Layer (CBL), while cool-
ing the ground results in a Stable Atmospheric Boundary Layer (SBL). The
Geostrophic free-stream region is stably stratified and separated from the ABL
by a capping inversion layer, which typically forms at a height around 1 km - 2
km (Stull, 1988; Liu and Liang, 2010). When a neutral ABL exists beneath the
stably stratified inversion layer and the free-stream flow, a type of boundary
layer called the Conventionally Neutral Boundary Layer (CNBL) is formed.
The strength of the wind veer in the Ekman layer depends on the atmospheric
thermal stability. In particular, the wind veer is most pronounced in an SBL,
while a more substantial vertical mixing resulting from convection in the CBL
leads to weaker wind veering (Deardorff, 1972; Wyngaard, 2010; Berg et al.,
2013; Liu and Stevens, 2021).

Within the lower part of the ABL, the ASL, analytical expressions for the
velocity profiles including the effects of thermal stratification, can be obtained
using Monin-Obukhov Similarity Theory (MOST) (Monin and Obukhov, 1954;
Dyer, 1974). MOST incorporates stability correction terms to account for the
deviation from the logarithmic law behavior within the ASL due to the heating
or cooling of the surface. Although the boundary layer region is neutrally strat-
ified in CNBL flows, the stratification in the Geostrophic free-stream region
influences the velocity profile in the surface layer. Studies such as Zilitinkevich
et al. (2002), Taylor and Sarkar (2008), Abkar and Porté-Agel (2013), and
Kelly et al. (2019) derived additional correction terms to the log law profile
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4 Ghanesh Narasimhan et al.

that incorporate the effect of free-stream stratification. However, these cor-
rections do not address the flow within the Ekman outer layer, where wind
veering is significant.Gryning et al. (2007) used a mixing length approach to
obtain the mean speed profile above the surface layer in cases including strat-
ification. An additional layer was introduced where the mixing length decayed
to zero around the ABL height. Moreover the friction velocity was assumed
to decay linearly with height within the ABL. Although the velocity profiles
were constructed to match the Geostrophic wind, the emphasis was on pre-
diction of velocity magnitude within the first few hundred meters of the ABL
and the model did not provide analytical predictions of the separate velocity
components. In Kelly and Gryning (2010), the MOST and the Gryning model
(Gryning et al., 2007) were extended to derive a long-term wind profile, us-
ing the probability distribution of the Obukhov length. Zilitinkevich and Esau
(2005) also proposed analytical expressions for velocity components within
the ASL based on an eddy-viscosity approach where ABL height and mixing
lengths were modeled using an inverse interpolation function for different at-
mospheric conditions. The model constants pertaining to these interpolation
functions were obtained using LES data. In this study, the effect of baroclinic-
ity is also included by adding a linear baroclinic shear term to the wind shear.
Recently, Ghannam and Bou-Zeid (2021) also derived an analytical model for
the ABL velocity magnitude which captures the deviation of the velocity from
the log law profile caused due to Baroclinic effects. We note that, in this study,
we neglect baroclinic effects in the flow and focus on Geostrophic wind driven
ABL flows.

Kadantsev et al. (2021) reformulated the Ekman mean momentum equa-
tions in terms of the turbulent stresses and derived analytical expressions for
the stresses. The analytical velocity profiles were then obtained by integrating
the model stresses divided by constant eddy-viscosity, which was modeled as
the product of the friction velocity and a mixing length scale. Within the ASL,
the mixing length was assumed to increase linearly with height until reaching
a constant value in the Ekman layer. The constant value was determined based
on an LES-tuned inverse quadratic expression for the turbulent length, which
accounted for different atmospheric conditions. However, this assumption of
a constant eddy-viscosity within the Ekman layer leads to inaccurate velocity
predictions, particularly in the region approaching the top of the ABL.

In addition to modeling the shape of the velocity profile as a function of
height, means to predict the friction velocity as a function of known Geostrophic
velocity and surface roughness are also required. This is accomplished using
what is often termed a Geostrophic Drag Law (GDL). Kadantsev et al. (2021)
utilized LES to develop a GDL model capable of predicting Geostrophic wind
and friction velocities across a range of stability conditions, including CNBL
and SBL flows. In a recent study, Liu and Stevens (2022) proposed analytical
expressions to predict both the streamwise and spanwise mean velocity compo-
nents throughout the boundary layer height in CNBL flows. This study utilized
a separate LES-based GDL model (Liu et al., 2021a) to obtain the magnitudes
of the Geostrophic wind and friction velocity for different CNBL flow condi-
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Analytical coupled Ekman and surface layer model for ABL flows 5

tions that are not directly based on the modeled velocity profile. Separately
from their proposed GDL model, Liu and Stevens (2022) provided stability
correction functions to predict the structure of the velocity components in the
CNBL flows. Although its prediction of the vector velocity profile improves
upon previous models that predicted CNBL wind speeds (Kelly et al., 2019;
Liu et al., 2021b), the Liu and Stevens (2022) model was tailored to CNBL
conditions. The extension of its applicability to SBL flows requires further
development.

Motivated by the limitations of existing models, specifically the need for
more efficient and accurate velocity predictions in CNBL and SBL flows, and
a GDL that is self-consistently derived from the model of the velocity profile,
we propose a two-layer approach. In an outer (Ekman) layer, we assume a
self-similarity of turbulent stresses across stability conditions and a Nieuw-
stadt (1984) 3/2 power law profile. The second layer is an inner layer for the
ASL that is consistent with the MOST description. Based on this descrip-
tion, we develop a self-consistent GDL to estimate the friction velocity and
cross-isobaric angle by requiring continuity of mean velocities between the two
layers. By incorporating the GDL into the model, we obtain the complete ve-
locity profiles within the ABL for a variety of stability conditions (CNBL and
a range of SBL). We validate our GDL and ABL wind model using data from
the literature as well as from newly generated large-eddy simulations (LES).
The proposed analytical velocity profile and GDL model are introduced in
section §2. The LES datasets for model validation are described in section
§3, while results and discussions are presented in section §4. Finally, overall
conclusions are summarized in section §5.

2 Analytical model for ABL wind velocity profiles

We employ a Cartesian coordinate system, with the z, y, and z axes aligned
with the streamwise (near the ground), spanwise, and wall-normal directions,
respectively. Assuming a steady and horizontally homogeneous flow, we con-
struct the model based on the streamwise and spanwise mean Ekman momen-
tum equations (Ekman, 1905; Kadantsev et al., 2021):

0= £V vyl + T, 0
0= —flu() - vy + TrelE) 2)

In these equations, f. represents the Coriolis frequency, while U(z) and V (z)
correspond to the streamwise and spanwise components of the mean velocity,
respectively. Additionally, T5.(z) and T,,(z) denote the turbulent stresses in
the streamwise and spanwise directions, respectively. For simplicity, we derive
the model assuming f. > 0, which corresponds to the northern hemisphere.
A simple change in the sign of the spanwise components of the velocity and
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turbulent stress can be employed to model velocity profiles in the southern
hemisphere.

The bottom boundary of the ABL is characterized by a surface roughness
height zg, where the velocities adhere to the no-slip velocity condition, U(zp) =
V(20) = 0. In the region near the surface as z approaches zy, a constant flux
zone exists, where the turbulent stresses are predominantly aligned in the
streamwise direction at the surface. Since the streamwise direction near the
surface is defined here as the x direction, T,,(z0) = u?, where u, is the
friction velocity. Since T,,(z9) = 0, and the resultant total surface stress
is T(z9) = \/ng(zo) + T2 (2) = Ts.(20) = uZ (It is straightforward to
recast any results in an arbitrarily chosen coordinate system, as long as the
Geostrophic wind direction is adjusted accordingly).

The ABL extends to a height of h. Above h, the flow transitions into a
region under Geostrophic balance, characterized by stable stratification and
the absence of turbulent stresses. From (1) and (2), the velocity components
in this Geostrophic region can be simplified to V(z > h) =V, and U(z > h) =
U,. Assuming a Geostrophic wind with a magnitude of G oriented at an angle
ag relative to the streamwise (x) direction, the velocity components can be
expressed as Uy = G cosag and V; = G'sin ayg.

The dimensionless form of equations (1) and (2) utilize the friction velocity
u, and the Rossby-Montgomery length scale (Rossby and Montgomery, 1935)
ux/ fe as the characteristic velocity and length scales of the flow. The model
to be developed in this paper is based on the dimensionless form of the mean
momentum equations (1) and (2). For known values of Uy, V;, u., and given the

profiles of the non-dimensional form of turbulent stresses T, (€) = Ta.(2)/u2,
and Ty, (§) = Ty.(2)/u?, we can obtain the ABL wind velocity profiles as:

Uy aé u*’

Uz) _ 019 , Uy
we 0 u,

: (4)

where é = zf./u. represents the dimensionless vertical coordinate. Corre-
spondingly, h=h fe/us represents the dimensionless ABL height and éo =
20fe/us defines the dimensionless surface roughness length.

In the following sections, we will describe the proposed model for the turbu-
lent stresses (Tm and Tyz) This model will be used to self-consistently derive
a new GDL to determine Uy, Vy, and u, from the resulting velocity profiles.
A classic form of the GDL to obtain the friction velocity and cross-isobaric
angle for given Geostrophic velocity G and roughness length zy can be written
as (Rossby and Montgomery, 1935; Tennekes and Lumley, 1972; Zilitinkevich
and Esau, 2005; Liu et al., 2021a)

RGCOSA0 _ 1 (po) — 4, (5)

U
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Analytical coupled Ekman and surface layer model for ABL flows 7

kG sin a _ B, (6)
U

where Ro = u./(f.20) is the friction Rossby number, « is the Von-Kdrmén

constant (often taken to be k & 0.41), and A, B are dimensionless parameters.

Note that the resistive laws in equations (5),(6) are written here for the north-

ern hemisphere, where V; < 0. For the southern hemisphere, V; > 0 which is

prescribed by having a positive sign before the coefficient B in (6).

Previous studies have shown that the constants A and B depend on the
atmosphere’s stability conditions (Zilitinkevich and Esau, 2005; Kadantsev
et al., 2021). In our current study, we develop new functional forms for the
dimensionless constants A and B that can be used to self-consistently deter-
mine u, and og (and thus U, and V;) across neutral and stable atmospheric
conditions.

2.1 Assumed turbulent stress distributions

Previous studies Nieuwstadt (1984), Zilitinkevich and Esau (2005), Liu et al.
(2021b) have investigated the vertical profiles of the total stress T within the
CNBL and SBL flows. They proposed the following representation for the total

stress T = /T2, + Tizz

T=(1-2/h)*? = (1-¢/h)*. (7)

Figure 1(a) confirms good agreement of this proposed self-similar profile with
data from Large Eddy Simulations (LES) of CNBL and SBL flows (details
about the LES are provided in §3). Here results for various stability condi-
tions are plotted as solid lines in normalized form and the analytical Nieuw-
stadt (1984) model for total stress is denoted using yellow right-pointing tri-
angle markers on a solid yellow line. (Relevant details about the data, and
the u, and h values used in the normalization are provided in section 3.2.)
Figures 1(b,c) show results for the individual stress components, also showing
reasonably good self-similar collapse in the ABL region when using the fitted
boundary layer height h to normalize the é axis. In order to develop an analyti-
cal expression for the velocity profiles from Eqs. (3) & (4), an additional model
is needed for the spanwise turbulent stress component Tyz. The streamwise
one can then be obtained by ensuring the total stress is given by Eq. (7).

As discussed in the introduction, two distinct layers can be identified in
the ABL: the outer or Ekman layer, and the inner or surface (ASL) layer.
The outer layer is characterized by Coriolis effects and the gradual decay of
turbulent stresses to zero as the ABL height h is approached. Motivated by
the LES observations in Figure 1(b) we propose the following model of the
spanwise turbulent stress in this outer region

Toer — () (1-é/h)”" 0
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Fig. 1 Profiles of normalized turbulent stresses (a) T, (b)&(d) Ty, (c)&(e) Tx» from the
LES (Table 2) of CNBL (—), SBL-1 (—), SBL-2 (—), SBL-3 (—), SBL-4 (—),
SBL-5 (—), SBL-6 (——) compared with analytical profiles of T ( , Eq. 7), Tguter
( , Eq. 8), TL"Z“” ( , Eq. 17), Tz ( , Eq. 20) generated using the parameters of
the CNBL case in Table 2. Plot (f) shows analytical profiles of Tos (-8-,-8-,-8-, -8-,

, —B-, -E-)7 Tyz (Tanner W, W, =, -, , "W, =W, ngter =6, -G,
-G, -0, , =0, =G) generated using the LES parameters in Table 2 following the
same color code as the LES plots in panels (a)-(e).

where,
9(€) = e (1 -4/ (9)

It is constructed assuming TZ‘Z‘W decays to zero both at the ABL height and at
the surface, while aiming to preserve the 3/2 power law trend that is valid for
the total stress magnitude over much of the domain. Closer to the surface, g(é)
becomes proportional to 5 and hence Tg‘;ter vanishes at the surface as desired.
An exponential form is chosen (instead of assuming that is simply linear in ) in
order to better match the data and ensure that the other component T (to
be discussed later) remains realistic. In Eq. 9 ¢y = 1.43 is a fitting parameter
obtained by calibrating the model with the results of the LES, see Figure 1(b).
The constant ¢, determines the magnitude of the turbulent spanwise stress and
I" = 0.83 is chosen to reproduce the decay and diminishing contribution of the

outer layer as é approaches &y also ensuring that g(é) <1as f approaches h.
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Analytical coupled Ekman and surface layer model for ABL flows 9

In addition, Eq. (9) effectively models the peak magnitude of the normalized
spanwise shear stress, approximating it to be around 0.25—the mean value of
the maximum magnitude of Tyz observed in Figure 1(b) from LES. Similarly,
the mean of the peak value of the dimensional (un-normalized) spanwise shear
stress, Ty.(z), from LES is 0.058. For Tyz, the percentage difference relative
to the mean value 0.25 remains consistently below 8% across the LES cases
considered in this study, indicating a good collapse. In contrast, for the un-
normalized stress T,.(z), the corresponding percentage differences relative to
0.058 as the mean value, reach as high as 50%. Modeling the normalized stress
in the outer layer as a function independent of thermal stability conditions,
offers a reliable representation of the observed behavior. The outer layer is
assumed to be valid for f > ém, i.e. above a certain transition height ém to
be specified later but that is typically expected to be 10-20% of the boundary
layer height h.

For é < ém, the inner layer of the ABL consists of the log layer and the
z-independent stratification layer (Zilitinkevich and Esau, 2005). Within this
region, the wind veer is negligible, and the streamwise velocity for SBL (and
CNBL) flows is governed by the Monin-Obukhov Similarity Theory (MOST)
(Monin and Obukhov, 1954), which can be expressed as:

v —1<1n2+52_20). (10)

Use 20 Ly

Here L, is the Obukhov length scale defined as

u3

K(9/00)Q0 ()
where )y denotes the surface cooling flux and @y represents the reference
potential temperature scale. Eq. (10) indicates that for the SBL flows, the
velocity profile approximates the log layer very close to the ground since the log
term becomes dominant as z approaches zg. Similarly, as we move further away
from zg, the stability correction term becomes dominant. The ABL velocity
follows the z-independent stratification behavior in which the velocity gradient
is independent of z (U™ /92 ~ bu,/kL,) as the mixing length (£) of the
turbulent eddies is proportional to the Obukhov length. The pure logarithmic
law for the truly neutral ABL (TNBL) flows without any thermal stratification
effects is recovered for 1/L; — 0. Using the dimensionless wall-normal distance
£= zfe/us, Eq. (10) can be expressed as

Ly =

Uinner 7 1 é R R
= Rl o=, (12)

where p is the Monin-Kazanski stability parameter (Arya, 1975; Smith, 1979;
Tagliazucca and Nanni, 1983; Kitaigorodskii and Joffre, 1988) defined as

— U
- kfeLs )

I (13)
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In the context of a CNBL flow, Kitaigorodskii and Joffre (1988) proposed
that thermal stratification in the free stream Geostrophic region constrains the
mixing length scale of turbulent eddies to u. /N, termed the Kitaigorodskii
length scale. Here, No, = 1/(9/60)70 represents the Brunt-Vaisild frequency
linked to the potential temperature with a lapse rate of 7o (K/m) in the free
stream region. Consequently, to characterize U'™*" for both SBL and CNBL
flows, we introduce a mixing length ¢(z) defined by

1 1 5 Na
—_— = 0.3 . 14
Uz) Kz * KL + Uy (14)

In Eq. (14), the mixing length of the eddies exhibits a linear variation closer
to the ground. However, far from the surface, the equation defines ¢(z) in
a way that physically limits the size of the eddies to the minimum value be-
tween Lg or u, /Nso. Similar formulations of £(z) can be found in prior studies,
including Zilitinkevich and Esau (2005), Gryning et al. (2007), and Kadant-
sev et al. (2021). While Gryning et al. (2007) employed a linear reciprocal-
interpolation form similar to Eq. (14), Zilitinkevich and Esau (2005) and
Kadantsev et al. (2021) utilized a quadratic form of the reciprocal interpo-
lation (1/¢% =1/(kz)? +--+).

Assuming QU™ /9z ~ u, /¢(z) within the ASL, we incorporate Eq. (14)
into this velocity gradient expression and integrate it vertically from z to zg,
providing an analytical expression for U™" applicable to both CNBL and
SBL flows. Following normalization, the dimensionless model expression for
Uinner [y, is expressed as

Uinner 1 3 > 2

where py is the Zilitinkevich number defined as

fe

In strongly stably stratified ABL flows, we anticipate 1/Lg > 1/(u4/Nso)
(i > pn), leading to the recovery of the MOST expression for U™ner /u, as
given by Eq. (12). Conversely, as 1/Ls — 0 (u = 0) in CNBL flows, we obtain
Uinver 1y, with only the CNBL stability correction term, consistent with prior
studies such as Taylor and Sarkar (2008); Abkar and Porté-Agel (2013). In Eq.
(15), the model constant 0.3 in the CNBL correction term is obtained from the
LES study conducted in Abkar and Porté-Agel (2013). We also note that Kelly
et al. (2019) derived a different functional form of U™ /y, for CNBL flows
using the Buckingham Pi theorem. This formulation was derived based on the
vertical profiles of heat flux obtained from LES of CNBL flows, resulting in a
quadratic expression for the stability correction term.

To determine associated inner layer stress, we substitute Eq. (15) into the
y-momentum Eq. (4) and integrate along f to obtain the transverse stress

KN (16)
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profile
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Then combining equations (8) and (17), the spanwise turbulent stress Ty, is
modeled as:

~\ 3/2
e <1f;> Esén

U, 1 sop E_ ¢
ST (ot 03— )| €<

*

H >
|

Yyz —

(18)

Note that in this equation, the value of Uy is not yet determined and will be
found self-consistently later by enforcing continuity of velocities at the match-
ing height ém. Based on LES results and consistent with usual expectations
that the inner solution is valid in the lower 10-20% of the boundary layer
height, we find that setting ém = ¢ph with ¢, = 0.20 leads to good results.
The outer layer stress T;’I‘Zmr from Eq. (8) and the inner layer stress T;“z“er from
Eq. (17) are plotted in Figure 1(b) using yellow circle and downward-pointing
triangle markers on a solid yellow line, respectively. Both plots demonstrate
good agreement with the LES data, though slight differences occur near the
ABL height. While we assume Tyz = 0 above the ABL height in the analyt-
ical model, Figure 1(b) shows stresses that are not zero in this region. The
LES experiences an initial transient phase marked by the growth in turbulent
boundary layer height, later quenched by the influence of stable stratification.
This leads to a quasi-steady flow with stronger turbulence within the ABL,
decaying to some non-zero residual stresses above the ABL height. Figures
1(d,e) use semilogarithmic axes to highlight the behavior of the inner portion
near the ground.

In these comparisons, we have used the value of U, /u, determined from the
proposed Geostrophic drag law (Eq. 5 with Eq. 33 to be developed in section
§2.5). The model is evaluated for the same zp = 0.1 m as the LES and the
cases shown correspond to p = [0,5.62,20.59,39.84,59.25, 78.35, 148.49] and
un = 61 (see Table 2). Note that the analytical stress profiles in Figure 1(a)-
(e) are plotted using the CNBL LES parameters u = 0, and uy = 61. Figure
1(f) shows the analytical profiles of the turbulent stresses generated using all
the LES parameters covering both the CNBL and SBL flows. We observe that
these analytical turbulent stress components from the various LES cases lie on
top of each other in Figure 1(f) with negligible differences occurring near the
matching height &,,. More detailed comparisons between the model and LES
will be shown later in terms of velocity distributions.
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The distribution of the normalized streamwise turbulent stress T, is ob-
tained directly from the definition of the total stress as follows:

To. = /T2 -T2, (19)

We can then use the model expressions for T from Eq. (7), and Tyz from Eq.
(18) in (19) to obtain T,.. For this component, an inner portion is not required:
From Eq. (17), we observe that T)(¢) tends to zero as & approaches &.
This shows that Terzner < T within the surface (inner) layer. In addition, since
T‘;‘Zner(fo) = 0, we model T, by using only Tg‘;ter in Eq. (19):

A\ 3/2
Tp. = \/T2 — (Tguter)2 = Jl —g(£)? (1 - 2) : (20)

This analytical profile of Tm is plotted as yellow square markers on a yellow
solid line in Figures 1(c)&(e), again showing good agreement with the LES.
Using these turbulent stress models in the Ekman mean momentum equations,
we obtain the ABL wind velocity profiles in the following section.

2.2 ABL velocity profiles

We obtain the analytical expressions for the ABL velocity profiles using the
modeled stresses from (20) and (18) in (3) and (4), respectively and evaluating
their derivatives analytically. The result is:

llng—|—(5;H—0.3ALN)(§C—§:0) , €< ém
ko o

Vi) g@d@ (1_ §>3/2+; R <1_§>1/2+Vg, (22)
5 h

o 1—-g(é) h 2h

where ¢/(€) is the derivative of g(£)

i g —€/rh

€= 23)
The streamwise velocity in (21) can be applied to both the northern and
southern hemispheres. For the spanwise velocity in the southern hemisphere,

a sign change is required for the first two terms on the right-hand side of (22) .
The sign of the Geostrophic velocity component V; is set by the GDL Eq. (6).
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In summary, note that the approach followed here is based on the empirical
observation that fitting the scaled stress profiles based on the Nieuwstadt 3/2
profile (in outer region), seems relatively easier than fitting the velocities given
the more complex shape of these profiles. In the inner (MOST) part, where
we know how to model the profiles (~ logz), it is trivial to find the stress
trends (~ xlogz + ..) that give that inner velocity. We merge the two stress
parts together and then take derivatives to find the velocity self-consistently.
(As an aside, we note that recently Kelly and van der Laan (2023) derived
analytical expressions linking directional shear to the shear and the vertical
gradient of cross-wind stress components, for arbitrary stress profiles.)

In order for the model equations (21) and (22) to be complete, we still
need to specify the ABL height h, friction velocity u., Geostrophic velocity
components Uy /u. and V,/u,, and stability parameter p. The latter requires
L, which needs specification of the surface cooling flux Qg.

2.3 Model for surface cooling flux

In this section, we aim to relate Qy to the imposed cooling rate C, = 960,/0t
of the surface potential temperature (Og). The governing equation for the
evolution of the mean potential temperature (@) for the SBL flows is given by

15/C) o0 {(w'e’
I *%’ (24)

where (w'6’) represents the turbulent heat flux.

When the SBL reaches a quasi-stationary state, the difference between the
potential temperature within the boundary layer and the surface temperature,
O(t) — O4(t) is steady (Wyngaard, 1975; Brost and Wyngaard, 1978). Using
this quasi-steady assumption, Eq. (24) can be written as

) 90,  (w'e) a(w'e)
A e S 2)

Integrating Eq. (25) across the SBL height assuming h >> zg, we get an ana-
lytical estimate for the surface cooling flux Qq:

h 1p! h
/ % dz = _/ Crdz, = Qo= (w'0), = C.h. (26)
z z 20

0
In obtaining Eq. (26), we have used (w’#");, = 0, the top boundary condition
for the heat flux. Also, note that we are assuming that the height for the heat
flux profile is the same as that for the momentum fluxes. This assumption may
not be exactly correct, but it appears to be a reasonable approximation and is
consistent with prior studies Wyngaard (1975); Brost and Wyngaard (1978).
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Using (26) in (11), the Monin-Obukhov length scale L, for the SBL flows
can be expressed as
u“:’@o

L= g Con @)

As a result, we model the Monin-Kazanski stability parameter u (Eq. 13) as
follows:

U 9(_Cr) hfe _ 9(_Cr)ﬁ
KfeLs — usf2600 ux  u«f260q

In our current study, we perform the LES of SBL flows using cooling rates
C, =[0,-0.03,—-0.125,—-0.25, —0.375, —0.5, —1] K/hr (see Table 2). The cor-
responding stability parameter p ranges between 0 to 148.49. The comparison
of the model estimates for Qo (26) and stability parameter p (28) with the
LES values are discussed in detail in section §4.1. This expression to calculate
w is used in the evaluation of the entire velocity profile U(z) from Eq. (21)
(it does not directly affect the profile V(z) although indirectly it affects the
profile via its dependence on u., which is affected by the value of p).

The model expressions for g and velocity profiles depend on the non-
dimensional ABL height h. In the following section, we discuss the model
expression for determining the ABL height for a given atmospheric stability
condition.

m (28)

2.4 ABL height model

We utilize a well-established equilibrium ABL height model, which has been
extensively studied in previous works such as Zilitinkevich et al. (2007) and
Liu et al. (2021a), to determine the non-dimensional ABL height. This model
is expressed as follows:

1 1 KN 15
- = b} 2 + 2
2 Ciy  Céy  Cis

(29)

where p is the stability parameter and ppy is the Zilitinkevich number given
by equations (13) and (16), respectively.

This expression represents a smooth merging of dimensionless height mod-
els corresponding separately to the TNBL, CNBL, and SBL flows. Liu et al.
(2021a) performed a suite of LES of the CNBL flows and obtained Cry = 0.5
and Coy = 1.6 by fitting to LES data, and we adopt those values as well.
Similarly, we determine the model parameter C'yg = 0.78 via fitting results
from the LES of the SBL flows performed as part of our current study. The
LES data used to obtain the model constants are discussed in Section 3.

Incorporating the model for u from Eq. (28), we can re-write the expression
for h as

b

+ + .
CTQ‘N C%N:| C]2vs u. f2600
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Using Eq. (30) with these empirically determined model parameters along
with specifying the parameters py and C,., we can compute the non-dimensional
ABL height h spanning different conventionally neutral and stable atmospheric
stability conditions. The cubic Eq. (30) can be solved e.g., iteratively (more
details provided below). However, it is evident from Eq. (30) that we also
require knowledge of the friction velocity u.. We estimate u, from the new
Geostrophic drag law model discussed in the following section.

2.5 New Geostrophic Drag Law

Completing the analytical model requires a method to determine u, and the
flow angle ag for given flow conditions and surface roughness zy. We follow the
classical approach of matching the inner (MOST) solution to outer conditions.
In our context, we match the streamwise velocity profiles in Eq. (21) at the
matching height ém = cmﬁ, which enables us to determine Uy /u, as follows:

U, 1. cmh PO

—=—-—In—+( 0.3 mh —

= I G+ 0.3 e — &)

e 3/2 N
+ 9 (&m) [1 — ] —g(Em)ﬁvl — Cm- (31)

For V(2) no inner layer was required and thus the matching can be done by
evaluating the spanwise velocity at the surface roughness height £ = &,. The
result is

Vi 3
== (32)

Us 2h
Since Uy = G cos o and V; = G'sin oy, comparing equations (31) and (32)
with the classical GDL expressions from Egs. (5) and (6) for the northern
hemisphere we get the following new expressions for the coefficients A and B:

A=—Inemh—k|(Bp+0.3un)(cmh — &) + ¢ (€m) (1 — cm)>/?

—9(ém) 23&\/1 - cm] : (33)
3K
B=" (34)

The equations (5), (6), (33), (34) together constitute the new Geostrophic
drag law model. Note that the coefficients A and B depend on h and the sta-
bility parameters, py, and p. Similar dependence of B on h were discussed in
previous studies such as Liu et al. (2021a), Ghannam and Bou-Zeid (2021),
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Kadantsev et al. (2021). The presence of these stability parameters allows for
the estimation of u, and oy for both the CNBL and SBL flows. However,
obtaining these estimates is challenging due to the non-linear and interdepen-
dent nature of the GDL equations when coupled with the model expressions
for h Eq. (30) and p = g (—Cy)h/(us f200) Eq. (28). As a result, obtaining
entirely closed-form analytical solutions is not possible. One must solve the set
of equations numerically and we propose a simple iterative approach to obtain
h, Uy, ag.

We implement this iterative solution using a two-step process. Starting
from an initial guess for h and u,, we first solve for h and u, from the ABL
height model Eq. (30) and the GDL equations Egs. (5), (6), (33), (34). Elimi-
nating ag from the GDL equations, one obtains (Tennekes and Lumley, 1972):

kG

T /In(Ro) — AP 1 B® (35)

Here A and B are from Egs. (33), (34). The model for p from Eq. (28) is
also utilized by the expression for A. We obtain dimensional values of h, u, by
iteratively solving equations (30) and (35).

From the dimensional estimates of h, u, found in the previous step, we
can evaluate h = hfo/us, &0 = zofe/us and p = g(—Cp)h/(u. f2600). Us-
ing these results, we can obtain the GDL coefficients A and B. Given these
coefficients, we evaluate U, and V, from Egs. (5) and (6), respectively. Fi-
nally, from the Geostrophic velocities, we find the cross-isobaric angle using
oo = tan=!(V,/U,). This iterative process of evaluating h, u., ap is explained
in more detail in Appendix A.

3 Description of Large Eddy Simulation data for model validation

Large Eddy Simulations have played a major role in improving our under-
standing of the ABL under various stability conditions (Saiki et al., 2000;
Beare et al., 2006; Kumar et al., 2006). This section describes the various LES
datasets used to validate our analytical model. Prior LES-based research has
investigated several parameterizations of resistive laws and wind profiles for a
CNBL flow, see e.g., Abkar and Porté-Agel (2013), Liu et al. (2021a), Liu et al.
(2021b), and Liu and Stevens (2022). We describe the CNBL data from this
existing literature in section §3.1. We perform additional LES runs including
SBL flows in this study, which we describe in section §3.2. We utilize the ABL
height (h), friction velocity (u.), and cross-isobaric angle () values obtained
in the prior studies and these new LES to validate our GDL model.

3.1 LES data of CNBL flows from existing literature

In these previous studies, the LES of the CNBL was set with a linear initial po-
tential temperature profile, given by ©(z) = Oy +~e2. Here, vo represents the
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lapse rate of potential temperature in the free-stream Geostrophic region, and
Oy is a reference potential temperature. For the initial velocity profiles, Abkar
and Porté-Agel (2013) employed a laminar flow with random perturbations
added near the surface within the first 100 m to initiate turbulence. Similarly,
Liu et al. (2021a), Liu et al. (2021b), and Liu and Stevens (2022) utilized a
uniform velocity profile with a Geostrophic wind magnitude G, along with
random perturbations within the first 100 m from the surface. By imposing
a thermally insulating boundary condition at the bottom wall, a quasi-steady
CNBL flow is established, characterized by a mean potential temperature ex-
hibiting a capping inversion layer that separates the neutral boundary layer
region from the Geostrophic free-stream region. In these earlier studies, the
height of the CNBL (h) was determined using a criterion where h corresponds
to the height at which the total shear stress decreases to 5% of the wall stress.

In Abkar and Porté-Agel (2013), the CNBL flow was examined with a
Geostrophic wind magnitude of G = 10 m/s. Two surface roughness heights,
namely zg = 0.01 m and 2y = 0.1 m, were considered while the Coriolis
frequency was fixed to f, = 10™* 1/s. Two free-stream stratification strengths
were chosen to yield Zilitinkevich numbers of puny = 58 and uny = 180. A total
of four LES cases were performed in that study. The specific values for the
CNBL height, friction velocity, and cross-isobaric angle corresponding to these
cases are listed in Table 1. The study’s findings demonstrated that, for a given
surface roughness height, an increase in the stratification strength of the free
stream resulted in a reduction in the height of the CNBL. Conversely, for a
fixed free-stream stratification strength, an increase in the surface roughness
height led to an increase in the CNBL height.

In Liu et al. (2021a), the LES of CNBL flows were studied with a Geostrophic
wind of magnitude G = 12 m/s. In their study, the surface roughness height
was fixed to zp = 10~* m while the Coriolis frequencies were varied rep-
resenting the ABL flows in low and high-latitude regions. Three free-stream
stratification strengths were considered such that the parameter py ranged be-
tween 42 to 1350. In summary, Liu et al. (2021a) performed twenty-four LES
simulations of the CNBL flow. Table 1 lists the values of the non-dimensional
numbers py, Ro and the dimensional estimates of h, u., agy for these twenty-
four cases. Liu et al. (2021a) revisited the GDL model proposed in Zilitinkevich
and Esau (2005) and provided updated model coefficients for predicting ., cg
for the CNBL flows. Consistent with the findings of Abkar and Porté-Agel
(2013), their results demonstrated that for a given surface roughness height,
the CNBL depth gets shallower as the free stream stratification strength is in-
creased. Liu et al. (2021a) also showed that the CNBL height becomes smaller
in high latitude regions characterized by an increase in the magnitude of the
Coriolis frequency.

For our model validation, we also consider another six sets of LES per-
formed in Liu et al. (2021b) and Liu and Stevens (2022). These studies per-
formed the LES to predict the structure of the CNBL flows driven by a
Geostrophic wind of magnitude G = 12 m/s. Liu et al. (2021b) proposed
an analytical model for the resultant wind velocity profile while in Liu and



574

575

576

577

578

579

18

Ghanesh Narasimhan et al.

Stevens (2022), both the streamwise and spanwise components of the velocity
profiles were obtained. Although the dimensional values of h, u., cg for these
cases are not explicitly reported in the references, we estimate these quantities
using the GDL model described in Liu and Stevens (2022) for the given values
of ux and Ro. The corresponding values of upy, Ro, us, h and «ag for these six

simulations are listed in Table 1.

Description  pn Ro h(m) u.(m/s) ao(®)
Data 1 58  4.33 x10* 793 0.4332  18.49
58  3.61 x 10° 661 0.3606  14.88
180  4.11 x 10* 433  0.4105  27.75
180 3.48 x 10° 375  0.3477 23
Data 2 42 2.3x107 482  0.3084 11.88
72 23x107 396  0.3084  13.02
125 2.3 x107 312  0.3096  14.98
45 2.4 %107 507  0.3072 11.93
78 24 %107 413 0.3072  13.12
136 2.4x107 326  0.3072 15.16
51 2.8 %107 552  0.3048  11.92
89 2.8 %107 438  0.3048  13.45
154  28x107 350  0.3048 15.41
61 3.3x 107 602 0.3024 12.13
106  3.3x107 477  0.3036  13.79
183  3.3x107 375  0.3024 16.20
78 4.0x 10" 692 0.2988  12.46
136 4.0x107 533  0.3000 14.64
235  4.0x107 417  0.2988  17.38
115 59x107 835 0.2940  13.31
199  59x107 636  0.2928  16.02
344  5.7x107 485  0.2868  19.26
226  1.1x10% 1109 0.2820 16.12
391 1.1x10% 826  0.2736  20.02
678 1.0x10% 613 0.2604  24.88
557  1.5x 108 942  0.2628  22.89
965 1.4x10% 698 0.2472  28.02
1350 1.8 x10%° 778  0.2328  31.31
Data 3 51.2 270107 573  0.3135 11.96
88.7 4.50x10* 744  0.5166  22.26
88.7 3.70x10° 616  0.4278  18.28
88.7 3.20x10% 522 0.3626  15.42
88.7  2.70x107 453  0.3147 13.34
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153.6 2.70x107 351 0.3135  15.67

Table 1: Table lists the CNBL LES data from Abkar and Porté-
Agel (2013) (Data 1), Liu et al. (2021a) (Data 2), Liu et al. (2021b)
(Data 3).

3.2 Additional LES data including SBL flows

The LES data in Table 1 consists only of CNBL cases. We perform additional
LES simulations including SBL flows. We use the LESGO solver that has seen
many applications for ABL simulations (Albertson and Parlange, 1999; Bou-
Zeid et al.; 2005; Kumar et al., 2006; Sescu and Meneveau, 2015; Calaf et al.,
2010; Stevens et al., 2014b,a; Sescu and Meneveau, 2014; Abkar et al., 2018;
Shapiro et al., 2020).

We discuss the governing equations and numerical methodology of the
LESGO solver in Section 3.2.1. We then present the simulation setup in Section
3.2.2.

3.2.1 Governing equations and numerical method

LESGO solves the filtered Navier-Stokes equations with a buoyancy force term
approximated using the Boussinesq approximation and the scalar potential
temperature transport equation:

ot

. = (36)
@ ~ 8711 _ 8ﬁj - 7i8poo _ 813 i i j o aTij
ot i <8$J 6:61) o Po 83@, 6@ + 0~0 (0 00)5@3 6$J‘
— fcﬂ 512 + fcf) 51’1; (37)
0 _ 00 oIl
EJrujach__aTj’ (38)

where the tilde (%) represents a spatial filtering operation such that @; =
(@, D, w) are the filtered velocity components in the streamwise, lateral and ver-
tical directions, respectively, and 6 is the filtered potential temperature. The
term 7;; = 045 — (1/3)0kk0;; is the deviatoric part of the Sub-Grid Scale (SGS)
stress tensor o;; = w;u; —U;u,. The quantity p = p./po+(1/3)okx + (1/2)0;,
is the modified pressure, where the actual pressure p, divided by the ambient
density pg is augmented with the trace of the SGS stress tensor and the kine-
matic pressure arising from writing the non-linear terms in rotational form.
The ¢;; in the momentum Eq. (37) is the Kronecker delta function determin-
ing the direction of the buoyancy and Coriolis forces. In the buoyancy term,
g = 9.81 m/s? is the gravitational acceleration, 6 is the reference potential
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temperature scale. The Coriolis frequency in the Coriolis force term is defined
as f. = 2(2sin ¢, where ¢ is the latitude arlgl/e of a given region. In the poten-
tial temperature Eq. (38), the term IT; = u;6 — ﬂjé is the SGS heat flux. The
SGS terms 7;; and II; are modeled as

Tij = _QV;GSSij7 Hj = —K%«Gsaé/axj, (39)

where S;; = (1/2)(0@;/dx; + diij/0x;) is the symmetric part of the velocity
gradient tensor, v5%5 and £5%° are the SGS momentum and heat diffusivities,
respectively. The SGS Prandtl number (Prsgg) relates the two diffusivities,

which are evaluated as
V39S = (C,A)%\/Si; S84, K55 = Probera®s. (40)

Here, C, is the Smagorinsky model coefficient, and A = (AzAyAz)'/? is the
effective grid spacing or filter width. The model coefficient Cs is evaluated
using the Lagrangian dynamic scale-dependent model (Bou-Zeid et al., 2005).

To represent an ABL that is driven by a Geostrophic wind, we apply a mean
pressure gradient —(1/p0)0pe/02; in Eq. (37), which is determined from the
Geostrophic balance:

pO_lapoo/ax = fc‘/ga pO_lapoo/ay = _chg' (41)

Here, we set the Geostrophic wind magnitude G' = | /U2 + V2 while the direc-

tion of the wind « (such that U; = Gcosca, V, = Gsina) is controlled by a
Proportional-Integral (PI) controller designed to impose a desired mean veloc-
ity orientation at a particular height (Sescu and Meneveau, 2014; Narasimhan
et al., 2022). For future wind energy applications, we selected that the mean
velocity is aligned in the streamwise direction at a height of 100 m, but sim-
ulation results are rotated in order to obtain zero spanwise mean velocity at
the ground after the simulation is completed to be consistent with the model
formulation.

The code employs a pseudo-spectral technique to discretize the stream-
wise and spanwise directions. For discretizing the wall-normal direction, a
second-order central finite difference method is utilized. To advance in time,
the code employs the second-order accurate Adams-Bashforth scheme. In or-
der to reduce the effects of streamwise periodicity, a shifted periodic boundary
condition is employed (Munters et al., 2016).

The effect of atmospheric stability is incorporated in the boundary condi-
tion by evaluating the surface momentum fluxes utilizing the MOST expression
for the mean velocity. Assuming the first grid point is within the ASL region,
the corresponding surface momentum flux 7, is given by

UrK

2
=T (hl(zl/ZO) - Wm(zl/Ls) + WII](ZO/LS)> ’

(42)
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where @, = /2 + 02 is the resultant horizontal velocity at the first grid point
z =2 = Az/2, k = 041 is the Von Karman constant, and zq is the surface
roughness height, while Ly is the Monin-Obukhov length. From Eq. (42), the
surface momentum flux components are evaluated as:

Ti 3w = Tw X (Ui/Ur), i =1,2. (43)

These are applied as a boundary condition at the bottom boundary, while a
stress-free boundary condition is imposed on the top boundary.
The L, in Eq. (42) is evaluated in LES as follows

Ly = u260, /(kgT,), (44)

where the friction velocity is evaluated as u, = +/|7Twl, 6, is the potential
temperature at the first grid point and T, = —Qqo/u+ is a temperature scale
that represents the ratio of the surface heat flux and the friction velocity. For
the SBL flows, Qg < 0 and correspondingly 7T, > 0 resulting in Ly > 0. The
model for the potential temperature provides T according to

Qo k[0 — 6]

- (45)

T = T (/200 — Ta(ea/L) £ Tn(e0/Ln)

Here 6 is the surface potential temperature and zps is the surface roughness
height for the potential temperature which is taken to be zps = 0.1z9 (Brut-
saert, 2005). To simulate an SBL flow, we decrease the surface temperature
by specifying a constant cooling rate C, (C, < 0). We use this C; to evaluate
04(t) at a given time step using 0,(t) = 0,(t — At) + C,. At.

The stability functions ¥, (¢ = z/Ls) and ¥,(¢ = z/L;) in equations (42)
and (45), respectively, are obtained from Chenge and Brutsaert (2005) given
by

me/h(( = Z/LS) = —am/h hl |:C + (1 + Cbm/h)b;]/h , (46)

where the constants are a,, = 6.1, b,, = 2.5, a, = 5.3, b, = 1.1.

In order to dampen the gravity waves in the computational domain, a
sponge (or Rayleigh damping) layer is used at the top boundary. This is a
wave-absorbing layer spanning 500 meters from the top boundary. Within this
layer, a body force with a cosine profile for its damping coefficient is employed
to mitigate the reflection of gravity waves.(Allaerts and Meyers, 2017; Durran
and Klemp, 1983).

3.2.2 Simulation setup

The LES for the current study is performed in a computational domain of
size Ly X Ly x L, = 3.75 km x 1.5 km x 2 km. The streamwise, spanwise,
and wall-normal directions are discretized using N, x N, x N, = 360 x 144 x
432 grid points. The resulting grid resolution is Ax x Ay x Az = 10.4 m x
10.4 mx4.6 m. We set the Geostrophic wind magnitude as G = 15 m/s, Coriolis
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frequency f. = 10~* s~!, surface roughness height zg = 0.1 m, SGS Prandtl
number PrSGS = 1. According to Basu and Lacser (2017), for MOST-based
wall-modeled LES studies, it is recommended to employ a criterion where the
initial point on the grid is at a distance of at least 50zg from the surface.
Accordingly, for zg = 0.1 m, we opt for Az &~ 5 m in this study. In addition,
Gadde and Stevens (2021) found that the turbulence statistics of SBL flows
remain invariant when altering the streamwise domain size or horizontal grid
resolution. They employed a 9 m grid resolution in the horizontal direction.
In our study, we adopt a comparable grid resolution.

For both the CNBL and SBL simulations, the velocity fields are initialized
with a log-law velocity profile superimposed with a zero-mean white noise
within the first 100 m from the surface to initiate turbulence. A description of
the respective setups of the initial potential temperature profile for the CNBL
and SBL simulations is as follows.

We first perform the LES of a CNBL flow using an initial linear poten-
tial temperature profile O(z) = Oy + y9z with Oy = 265 K, and ¢ = 0.001
K/m. The simulation reaches a quasi-stationary state where the boundary
layer height grows to 1157 m. The resulting temperature profile has a cap-
ping inversion layer at the ABL height which separates the neutral boundary
layer region from the stably stratified Geostrophic region. Under quasi-steady
conditions, the potential temperature within the CNBL region stayed around
265.58 K.

For the LES of SBL flows, we initialize potential temperature using the
CNBL’s quasi-steady potential temperature profile. We then decrease the
magnitude of the surface potential temperature 0, by applying different cool-
ing rates C, = [—0.03,—0.125, —0.25, —0.375, —0.5, —1] K/hr to induce sta-
ble stratification. The simulations are run until reaching a quasi-steady state.
We then perform time and planar averaging to obtain the vertical profiles
of the turbulent stresses and mean wind velocities. Time averaging is done
over a 10-12 hour window, which we observe to be long enough for the flow
to be quasi-steady with no appreciable effects from inertial oscillations. The
dimensional ABL height & is determined by a least-square-error minimiza-
tion method for the root mean square difference between the normalized LES
stress T = T(z)/u2 and the model expression (1 — z/h)3/2, in a range between
0 < z < h. The resultant values of h,u., g are listed in Table 2. Since the
PI controller maintains a streamwise aligned mean flow at z = 100 m, the ag
values reported in Table 2 are obtained by geometrically rotating the mean
velocity profiles such that wind veer is zero at the first grid point. This is done
to be consistent with the GDL model derivation using a coordinate system in
which there is no wind veer within the ASL region.

Case ] Ro C, (K/hr) h (m) 1w, (m/s) o

CNBL 0 6.02 x 10* 0 1157 0.60 21
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SBL-1 5.62  5.93 x 10% -0.03 1032 0.59 24
SBL-2 20.59 5.25 x 10% -0.125 662 0.53 28
SBL-3 39.84 4.58 x 10* -0.25 463 0.46 32
SBL-4 59.25 4.12 x 10* -0.375 361 0.41 35
SBL-5 78.35 3.84 x 10* -0.5 306 0.38 38
SBL-6 148.49 3.39 x 10% -1 218 0.34 41

Table 2: Description of LES of CNBL and SBL cases with corre-
sponding values of stability parameter u, friction Rossby number
Ro, Cooling rate C). (K/hr), ABL height h (m), friction velocity u.
(m/s), and cross-isobaric angle af. For all simulations, G = 15 m/s,
2o = 0.1 m, Oy = 265 K. The Coriolis frequency is f. = 1074 s7!
and the free-stream Brunt-Vaiisild frequency is Noo = 6.1 x 1073
s~! which gives the Zilitinkevich number puy = 61.

In the following section, we use these forty-one LES cases covering a range
of atmospheric conditions for validation of the comprehensive ABL wind model
discussed in section §2.

4 Results and discussion

In this section, we validate the ABL wind model by comparing the model
predictions with the corresponding LES cases. We first compare our new GDL
approach in section §4.1. We then compare the ABL wind velocity profile
predictions with the LES in section §4.2.

4.1 GDL: LES vs Model

We determined the ABL height h, friction velocity u., and the cross-isobaric
angle g from the new GDL model described in §2 using the iterative procedure
described in the Appendix A. For each of the forty-one LES cases described in
83, we use the inputs (G, 2o, f¢, Cr, No) that are known from the LES and
predict the unknown values h, u,, and «q using the new GDL model.

The GDL model predictions are compared with the LES in Figures 2(a),
(b), and (c). The colored markers represent the forty-one LES cases. The
markers (») and («) represent the CNBL and SBL cases, respectively, from
the LES cases in Table 2 while the rest of the markers represent the CNBL
data from previous studies (Table 1). The GDL predictions for h,u.,aq lie
close to the solid black line signifying excellent agreement with the LES. By
choosing the matching height at ém — 0.2h, the relative root mean square
error between the GDL model predictions and LES for h,u,, ag is found to
be 7%. We consider this percentage error to be well within acceptable limits
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Fig. 2 GDL predictions of (a) ABL height h (in meters), (b) friction velocity u« (m/s), (c)
cross-isobaric angle ag (in degrees), (d) surface cooling flux magnitude Qo = Cr-h (Eq. 26)
in (K m/s), (e) stability parameter p (Eq. 28) compared against the LES of CNBL cases
from Liu et al. (2021a) (@), Abkar and Porté-Agel (2013) (¥), Liu and Stevens (2022) (M),
CNBL LES (») & LES of SBL («) from current work.

demonstrating good agreement of the model with the data. In addition, the
maximum absolute differences between model vs LES for U, = G cos g and
Vy = Gsingy are 0.64 m/s and 0.87 m/s. We consider these differences to be
within agreeable limits as well. The comparison of the model estimates for the
surface cooling flux Qp = C,h (Eq. 26) and the stability parameter p (Eq. 28)
are shown in Figure 2(d) and (e). While Qg = p = 0 for the CNBL cases, the
non-zero values corresponding to the SBL cases show good agreement with the
LES. The slight discrepancies observed between the model predictions for Qg
and p compared to LES are attributed to variations in the heights at which
momentum and scalar heat fluxes decay to zero.

These results suggest that the newly proposed GDL formulation is able to
predict ABL height h, friction velocity u,, and cross-isobaric angle aq correctly
for the different flow and thermal stability conditions for the data in Tables 1
and 2.
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Fig. 3 Plot comparing model predictions of U(z) (-¥-, Eq. 21) and V(z) (—@—, Eq. 22)
with the log-law profile (k™ ux In[z/z0] - ===+ ), the MOST model (--, Eq. 15), and LES
(U(z) - —, V(2) - =) from (a) CNBL, (b) SBL-1, (c) SBL-2, (d) SBL-3, (e) SBL-4, (f)
SBL-5, (g) SBL-6. The vertical z-axis is presented in a semi-logarithmic scale.

4.2 Velocity profiles: LES vs Model

In this section, we compare the ABL wind velocity profiles from the model
with the LES for the cases described in Table 2. We show the comparison of
the vertical variation of the streamwise and spanwise velocity components in
Figures 3(a)-(g) and Figures 4(a)-(h). The plots in Figure 3 use a logarithmic
scale for the vertical direction while for Figure 4, the vertical axis is scaled in
linear units. Plots 3(a) and 4(a) correspond to the CNBL case while the Figures
3 & 4 (b)-(g) are from the SBL cases where the cooling rate is progressively
increased from -0.03 K/hr to -1 K/hr. The solid red and blue lines in these
plots are U(z) and V' (z) profiles from the LES, respectively. The black dashed
lines with a triangle marker and magenta lines with circle marker are the
model predictions from Eq. (21) and Eq. (22), respectively. The blue dashed
line in Figure 3 represents the log-law profile. The green dash-dotted line in
both figures represent the MOST prediction including the CNBL correction
given by Eq. (15). Both Figures 3 and 4 are plotted by applying the model
with zero veer at 100 m height, as in the LES. The semi-logarithmic plot in
Figures 3(a)-(g) clearly show that V(z = 100 m) = 0. The horizontal line just
above the origin in Figures 4(a)-(h) also represents this 100 m height where
we see that V(z = 100 m) = 0 in all these figures.

In Figure 3, all the streamwise velocity curves follow the log law close to
the ground within the constant flux region of the ASL. Upon increasing the
cooling rate, the stable stratification causes deviation of the velocity profile
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from the log law behavior. This stability-affected region is in the z-independent
stratification layer as it matches the shape from the MOST with the CNBL
correction. The wind veer is also negligible within the ASL. Above the ASL lies
the Ekman layer, where the wind veer is stronger, and the MOST predictions
deviate significantly from the LES and also do not satisfy the Geostrophic
condition. Whereas the ABL wind model Eq. (21) for U(z) captures the low-
level jet profile for different stability conditions where it reaches a peak velocity
at some height and then decreases to the Geostrophic wind velocity at the ABL
height as shown in Figures 3 and 4. Most importantly, the model also predicts
the wind veer profiles from Eq. (22) while theories like the MOST do not model
the wind direction.

The wind veer velocity profiles within the ABL region for all the cases are
plotted together in Figure 4(h). The plot clearly shows the effect of increasing
the cooling rate. Under strong stable stratification, the SBL height decreases,
and the wind veer strength is intensified closer to the ground causing a sig-
nificant cross-wind flow. The ABL wind model is able to capture the decrease
in the ABL height as well as the intense wind veer profiles. Another impor-
tant aspect of the model is the accurate prediction of w, and Geostrophic
velocities Uy, V;; from the self-consistent GDL model. The flow velocity in the
Geostrophic region is set to these predicted values of U, and V,, again in good
agreement with the LES asymptotically far above z = h.

The analytical velocity profiles from Eqs. (21) & (22) show good overall
agreement with the LES for most of the domain. More specifically, the CNBL
prediction is in excellent agreement with the LES, while deviations exist for
the SBL cases near the ABL height where the model assumes a sharp change
in slope while the LES profile is more smeared out. We attribute the larger
discrepancies near at ABL height to non-zero turbulent stresses above the SBL
region. In developing the analytical model, we assumed the turbulent stresses
were zero above the ABL height. However, from the LES, we see non-zero
residual stresses exist above the boundary layer (See Fig. 1(b).) which we
have explained in detail under section 2.1.

In summary, the above comparisons demonstrate the capability of the new
ABL wind model. The model can successfully predict the ABL wind velocity
profiles for the entire domain across both conventionally neutral and stable
atmospheric conditions. These analytical predictions can be used as an input
in Gaussian models for modeling wind turbine wakes (Bastankhah and Porté-
Agel, 2014) or pollution puffs (Zannetti, 1990) in the ABL.

5 Conclusions

In this study, we developed an analytical model to predict the steady-state
mean velocity profiles for thermally stratified and conventionally neutral ABL
flows. We showed the turbulent stress components are approximately self-
similar for the CNBL and SBL flows. We directly model these turbulent
stresses using analytical formulations representing the self-similarity in the
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(a) CNBL  (b) SBL-1  (c)SBL-2  (d) SBL-3
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Fig. 4 Model predictions of U(z) (-¥-, Eq. 21) and V(z2) (—@—, Eq. 22) compared against
the MOST model (- -, Eq. 15) and LES (U(z) - —, V(z) - =) from (a) CNBL, (b) SBL-
1, (¢) SBL-2, (d) SBL-3, (e) SBL-4, (f) SBL-5, (g) SBL-6. The veer plot in (h) shows how
stronger stable stratification (increasing p) causes a decrease in the ABL height, resulting
in a strong wind veer flow. Figure (h) consists of the analytical wind veer estimates that
are represented by a circle marker on a thin solid line and different colors represent CNBL
(—e—), SBL-1 (—e—), SBL-2 (—e—), SBL-3 (—@—), SBL-4 ( ), SBL-5 (—@—), SBL-6 (—@—).
The corresponding LES estimates of V' (z) in (h) are plotted as solid lines without the circle
marker using the same color as analytical estimates.

stresses using Nieuwstadt (1984)’s 3/2 power law, and an inner layer consis-
tent with MOST-based modeling. These stress profiles were incorporated into
the Ekman mean momentum equations to predict the ABL velocity compo-
nents. Furthermore, we derived a self-consistent Geostrophic drag law model
by matching the streamwise velocity in the inner and outer layer regions at a
specific height and evaluating the spanwise velocity at the surface roughness
height. We used an LES-based equilibrium ABL height model which predicts
the ABL height for the different types of boundary layer spanning neutral and
stable boundary layer flows.

The effects of thermal stratification are characterized by the stability pa-
rameters py and g which influenced the model expressions for turbulent
stresses, velocity components, and the GDL. We assumed the parameter Zil-
itinkevich number py is known and modeled the stability parameter p by
representing the surface cooling flux as the product of the cooling rate and
ABL height. We used this modeled p in the analytical expressions for the
velocities, turbulent stresses, and the GDL.

To validate our model, we compared our predictions with corresponding
values obtained from LES from literature and new cases run specifically for
SBL flows, and demonstrated a good agreement between them. The new model
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can predict ABL mean velocity profiles under different atmospheric stability
conditions, showing maximum absolute differences of 2 m/s within the ABL
and Geostrophic regions, and 4 m/s around the ABL height when compared to
LES data. In conclusion, the new analytical model provides reliable predictions
of ABL velocity profiles, capturing the MOST velocity profiles within the
surface layer and the Ekman spiral structure within the Ekman layer, which
eventually merges with the Geostrophic wind above the ABL.

Future work aims to extend the approach to also describe convective bound-
ary layers and perhaps allow to capture unsteady effects such as during a daily
cycle. Development of further model refinements including other effects such
as momentum exchanges due to canopies (Patton et al., 2016) or wind farms
(Calaf et al., 2010) is also of significant interest.
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Appendix A : Summary of ABL model and iterative solution

method

In this Appendix section, we summarize the iterative method to solve the coupled equations
for the proposed ABL model discussed in section §2.
1. Input values: No, fc, G, z0, Cr (assuming f. > 0, northern hemisphere).
2. Tterative calculation of h,u«, ag:

(a) Assume initial values for A%, 42 and set h™ = h0 u? = u?
(b) Compute uj

glemh™) =

0.

, where (47)

7+l using Eq. (35):
uf+1 _ kG
V/[In (Ro™) — A"]2 + (B")?
A" = —Inepnh™ — k| (5™ 4 0.3un) (cmh™ — £F)

3. Then evaluate:

and obtain ag = tan—! (%)

5. Evaluate U(z

N A 3
+ g (emh™) (1 — cm)3/2 — g(cmh")ﬁ\/l —cm |,
B™ = :{i, and
2h"
cg [1 — e_C’”/F] , g (emh™) = ‘o e~em/T ¢, =143, I' = 0.83,
I'hn
—C) - R R 130
Uy Je * *
(c) Compute h™T1 using u*Jr from Eq. (47) in Eq. (30):
—1/2
it _ w1 LN 1 (g9/60)(—=Cr)h™
fe |Cin  Cin  CRs wrtfe 7
Cry =05, Cony = 1.6, Cns =0.78, un = Noo/ fe-
(d) Iterate till convergence to get final values of ux, h.
- hfe o z20fec _9(=Cr); _ Ux
h - K 60 - I - T 0 A b 0 =
Use Use ux f2 O 20 fe
as well as the converged values of A and B.
4. Evaluate Uy, Vy using the GDL equations (Egs. 5, 6, 33, 34):
Uy =" (In(Ro) — A), Vg=—""B,
K K
9
) and V(z) with £ = 2fe/ux:
é 3/2 =
5) 1 Fg@ oy [1-5) vu, L Exé
+9 o /tL g > & 2Sm
1 f PN 2 2
= + (5p+0.3un) (€ — &) ; E€<&m
0

9(§)g' (&)

1-g(§)

SOl
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