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Abstract: Classical prolate spheroidal functions play an important role in the study of
time-band limiting, scaling limits of random matrices, and the distribution of the zeros
of the Riemann zeta function. We establish an intrinsic relationship between discrete–
continuous bispectral functions and the prolate spheroidal phenomenon. The former
functions form a vast class, parametrized by an infinite dimensional manifold, and are
constructed by Darboux transformations from classical bispectral functions associated to
orthogonal polynomials. Special cases include spherical functions. We prove that all such
Darboux transformations which are self-adjoint in a certain sense give rise to integral
operators possessing commuting differential operators and to discrete integral operators
possessing commuting shift operators. One particularly striking implication of this is
the correspondence between discrete and continuous pairs of commuting operators.
Moreover, all results are proved in the setting of matrix valued functions, which provides
further advantages for applications. Our methods rely on the use of noncommutative
matrix valued Fourier algebras associated to discrete–continuous bispectral functions.
We produce the commuting differential and shift operators in a constructive way with
explicit upper bounds on their orders and bandwidths, which is illustrated with many
concrete examples.

1. Introduction

1.1. Matrix valued discrete–continuous bispectrality. A real, N × N matrix valued
function �(k, x) defined on Z × V for some open interval V ⊆ R is called a discrete–
continuous bispectral function if it simultaneously satisfies a difference equation

m∑

j=−m

A j (k)�(k + j, x) = �(k, x)�(x)
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with matrix valued coefficients, as well as a matrix valued differential equation

n∑

j=0

∂ j�(k, x)

∂x j
B j (x) = �(k)�(k, x)

for some real, N × N matrix valued functions B j (x) and �(x) defined on V , as well as
�(k) and A j (k) defined on Z. This version of bispectrality is analogous to the idea of
bispectrality introduced in [13] wherein the concept was introduced, based on observa-
tions inspired by computerized tomography and signal processing. In its original form,
bispectral functions were bivariate meromorphic functions ψ(z, x) which were families
of eigenfunctions of a differential operator in the spatial variable x , while simultaneously
being eigenfunctions of a second differential operator in the spectral variable z. The natu-
ral generalization considered in this paper, discrete–continuous bispectrality, is designed
to encompass many other families of bispectral functions, including classical orthogonal
polynomials, exceptional orthogonal polynomials, and matrix valued orthogonal poly-
nomials. As such, it constitutes a case of substantial importance with a wide variety of
applications, including spectral theory, special functions, random matrices, integrable
systems, and representation theory. Note that, due to the noncommutativity of matrix
multiplication, our choice of the order of products in this generalization is a significant
detail: we may view �(k, x) as a family of eigenfunctions for a left-acting shift operator
and a right-acting differential operator. We could likewise define continuous-discrete bis-
pectral functions by making the left variable continuous and the right variable discrete,
leading to left-acting differential operators and right-acting difference operators.

Continuous–continuous bispectral functions have played a central role in recent re-
sults on commuting integral and differential operators [4–7]. Scalar valued discrete–
continuous bispectrality has been explored in the scalar case in various specific situa-
tions, starting with the work of Reach in his 1987 dissertation and the subsequent papers
[26,27]. Later exploration of discrete–continuous bispectral functions in the context of
orthogonal polynomials can be found in [16–18]. A class of scalar valued discrete–
continuous bispectral functions was described in terms of an adelic flag manifold by
Haine and Iliev [21]. The study of the matrix valued continuous–continuous bispectral
functions was initiated by Zubelli in [33] and in his 1989 dissertation. Noncommutative
discrete–continuous bispectrality in the context of matrix valued orthogonal polynomials
is explored in detail in [8] where the matrix Bochner problem was resolved. Construc-
tions of matrix valued discrete–continuous bispectral functions using spherical functions
were given in [19], see also [14,20].

1.2. The prolate spheroidal property. As a primary motivation for bispectrality, we have
the prolate spheroidal property, which is the property that certain naturally appearing
integral operators admit commuting differential operators. This property first played a
key role in the analysis of Landau, Pollak and Slepian of time-band limiting [24,28,29] in
the 60’s and then in the works of Mehta [25] and Tracy–Widom [30,31] on scaling limits
of random matrices in the 90’s. Connes, Consani, Moscovici [10–12] found fundamental
applications of the prolate spheroidal property of a completely different nature. They
proved that the asymptotics of the zeros of the Riemann zeta function in two different
regimes can be both modelled using classical prolate spheroidal functions.
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All integral operators with the prolate spheroidal property that were used in the above
works have kernels of the form

K (w, z) =
∫

�

ψ(w, x)ψ(z, x)dx

for a scalar valued continuous–continuous bispectral function ψ(z, x) and a contour
� ⊂ R. This observation raises the following natural questions:

(1) What is the matrix valued discrete–continuous analog of the classical scalar valued
prolate spheroidal property?

(2) Can one prove a general theorem stating that matrix valued discrete–continuous
bispectral functions give rise to integral operators and discrete integral operators
(i.e. matrices) that posses the prolate spheroidal property?

It is natural to expect that the operators obtained in the solutions of these two problems
will play an equally fundamental role as the one played by their continuous–continuous
counterparts in time-band limiting, random matrices and in connection with the Riemann
zeta function. These questions were raised in [20] where some examples of commuting
differential operators were constructed. There are two key components of this setting:

(i) Considering (noncommutative) matrix valued functions as opposed to scalar valued
ones and

(ii) Transitioning from the continuous–continuous setting to the much less well under-
stood one of discrete–continuous ones, where we have a close relation to orthogonal
polynomials.

We believe that both new features will be useful in a wide range of concrete applications.
The goal of this paper is to address both problems (1) and (2). The upshot of our

results is the construction of infinite-dimensional families of operators satisfying the
matrix valued discrete–continuous analog of the prolate spheroidal property.

Compared to [4–7], we overcome a number of difficulties in the present paper:

• All functions considered here are matrix valued, and as a consequence, all alge-
braic arguments need to deal with a noncommutative setting instead of the simpler
commutative one.

• Since one of the arguments is discrete and ranges over a subset of Z, we can no
longer resort on functions �(x, k) that are analytic on a subdomain of C

2.

Firstly, to each matrix valued discrete–continuous bispectral function � we associate
the integral operator

T� : F(y) �→
∫ x1

x0

F(x)K (x, y)dx, K (x, y) =
∑

k∈I

�(k, x)∗�(k, y) (1.1)

where here I ⊆ Z is a finite set, (x0, x1) ⊆ V , and ∗ is the matrix transposition. Under
natural assumptions on I and (x0, x1), the operator T� defines an integral operator on a
Hilbert space with a basis consisting of smooth functions on [x0, x1]. In contrast to the
continuous–continuous situation, we can also form a discrete integral operator

S� : F(m) �→
∑

k∈I

J (m, k)F(k), J (m, n) =
∫ x1

x0

�(m, y)�(k, y)∗dy. (1.2)
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Alternatively, S� may be expressed as an |I | × |I | matrix operator whose entries are
N × N matrices. Our main theorem will establish that in wide generality the operators
T� and S� commute with matrix valued differential and shift operators, respectively.
Again, the non-commutativity of matrix multiplication makes the order of the products
in the above expressions an important aspect of the construction.

The prototypical example of this is the projection operator defined by the Christoffel-
Darboux kernel of a sequence of orthogonal matrix polynomials Pn(x) for a weight
matrix W (x) supported on a real interval V and given by

T ( f ) =
∫ x1

x0

f (x)K (x, y)dy, K (x, y) :=
�∑

k=0

U (x)∗ Pk(x)∗(Hk H∗
k )−1 Pk(y)U (y),

where

Hk H∗
k =

∫

V
Pk(x)W (x)Pk(x)∗dx, W (x) = U (x)U (x)∗

are the respective Cholesky decompositions and (x0, x1) ⊆ V . This is exactly the integral
operator defined by (1.1) for the discrete–continuous bispectral function �(k, x) =
H−1

k Pk(x)U (x), with I = {0, 1, . . . , �}.

1.3. Results. Our main tool to build a bridge between matrix valued discrete–continuous
bispectral functions and the prolate spheroidal property is the notion of Fourier algebras.
The left and right Fourier algebras of such a bispectral function �(k, x) are the alge-
bras consisting of MN (R)-valued shift operators P(k,Sk) and differential operators
D(x, ∂x ), respectively, such that

P(k,Sk) · �(k, x) = �(k, x) · D(x, ∂x ).

Here, the shift operator acts by
(∑�

n=−� An(k)S n
k

)
F(k) := ∑�

n=−� An(k)F(k + n) for
arbitrary functions An : Z → MN (R); the differential operator acts by the right action
(2.4). The right action is needed in order for the two actions to commute with each other,
so, algebraically, we deal with a bimodule for two algebras consisting of shift operators
and differential operators, respectively.

When the function �(k, x) has trivial left and right annihilators (which holds in broad
generality), the assignment P(k,Sk) �→ D(x, ∂x ) defines an isomorphism between the
left and right Fourier algebras of �), which will be called the generalized Fourier
map. The two Fourier algebras and the isomorphism between them is a far reaching
generalization of the Fourier transform adapted to the setting of arbitrary bispectral
functions; the Fourier transform arises from the simplest scalar valued continuous–
continuous bispectral function exp(xz).

The classical orthogonal polynomials of Hermite, Laguerre, and Jacobi give rise to
instances of discrete–continuous bispectral functions, which we refer to as classical
discrete–continuous bispectral functions; they are eigenfunctions of a second order dif-
ferential operator and a shift operator of bandwidth two, and are defined in the table
in Fig. 2. For an arbitrary positive integer N , we consider the matrix valued analogs of
these functions by multiplying by the identity matrix IN . A Darboux transformations
of such a function �(k, x) is given by

�(k, x) �→ �̃(k, x) = (
F(k)−1 P(k,Sk)

) · �(k, x)G(x)−1
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for some matrix valued shift operator P in k and matrix valued functions F(k) on Z and
G̃(x) on V , respectively, with the property that they define a factorization of a matrix
valued shift operator for which �(k, x) is a generalized eigenfunction:

(
P̃(k,Sk)F̃(k)−1 F(k)−1 P(k,Sk)

) · �(k, x) = �(k, x)G̃(x)G(x)

for some matrix valued shift operator P̃(k,Sk) and matrix valued functions F̃(k) on Z

and G̃(x) on V , respectively. For more details, see Sect. 2.
Of particular importance are the bispectral Darboux transformations: those satisfying

the property that the shift operators P̃(k,Sk) and P(k,Sk) and the functions F(k)F̃(k),
G(x)G̃(x) are in the left and right Fourier algebras of �(k, x), respectively. By the main
theorem of [15], all bispectral Darboux transformations are also matrix valued discrete–
continuous bispectral functions.

These Darboux transformations present a method for constructing bispectral func-
tions which vastly generalizes the method of Duistermaat and Grünbaum [13] by recur-
sive factorizations of second order differential operators and switching their orders, and
Wilson’s algebro-geometric method based on involutions of the adelic Grassmannian
[32]; we refer the reader to Sect. 2.2 for a detailed discussion. Here, we note that all
known bispectral functions are bispectral Darboux transformations in the above sense
from basic bispectral functions.

The assumption that P(k,Sk) and P̃(k,Sk) are in the left Fourier algebra means
that there exist right-acting matrix valued differential operators D(x, ∂x ) and D̃(x, ∂x )

satisfying

P(k,Sk) · �(k, x) = �(k, x) · D(x, ∂x ) and P̃(k,Sk) · �(k, x) = �(k, x) · D̃(x, ∂x ).

The differential operators D and D̃ are the images of the shift operators P and P̃ under the
generalized Fourier isomorphism of the bispectral function �(k, x). We call a bispectral
Darboux transformation � �→ �̃ self-adjoint when

P(k,Sk)
∗ = P̃(k,Sk), D(x, ∂x )

∗ = D̃(x, ∂x ) and F(k)∗ = F̃(k), G(x)∗ = G̃(x),

where star denotes the formal adjoint of matrix valued differential and shift operators
(extending transposition of matrices).

We define the degree of the Darboux transformation �̃ to be the pair (d1, d2) where
d1 is the bandwidth of the shift operator P(k,Sk) and d2 is the order of the image
of P(k,Sk) under the generalized Fourier map (which is a matrix valued differential
operator in x).

Our main theorem resolves problems (1) and (2) in Sect. 1.2 and provides an effective
upper bound on the orders and bandwidths of commuting differential and shift operators:

Main Theorem. Let �̃(k, x) be a self-adjoint bispectral Darboux transformation of a
classical discrete–continuous bispectral function �(k, x) of degree (d1, d2) with the
property that the leading terms of the operators P(k,Sk) and D(x, ∂x ) are nondegen-
erate. Then for I = {0, 1, . . . , n} or I = {−1,−2, . . . ,−n} and (x0, x1) a suitably
chosen interval in the domain of � the following hold:

(1) The continuous integral operator T�̃ defined by (1.1) commutes with a matrix valued
differential operator of positive order ≤ 2d1d2 which belongs to the right Fourier
algebra of �̃.
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(2) The discrete integral operator S�̃ defined by (1.2) commutes with a matrix valued
shift operator of positive order ≤ 2d1d2 which belongs to the left Fourier algebra
of �̃. This shift operator is the inverse image under the generalized Fourier map of
the differential operator in part (1) of the theorem.

For the bounds, we take: x0 = −∞ or x1 = ∞ if � is of Hermite type; x0 = 0 or
x1 = ∞ if � is of Laguerre type; and either x0 = −1 or x1 = 1 if � is of Jacobi type.

We note the following:

(1) The actual theorem proved in Sect. 6 is stronger and deals with a robustness assump-
tion that relaxes the assumption that the operators P(k,Sk) and D(x, ∂x ) defining
the Darboux transformation �(k, x) �→ �̃(k, x) have nondegenerate leading terms.
The robustness is only a genericity assumption and is always satisfied if the size N
equals 1.

(2) Although the original bispectral functions � are scalar multiples of the identity
matrix IN , the Darboux transformations �̃(k, x) are very general matrix valued
functions that are not in any way scalar multiples of the identity matrix (except in the
cases of very special Darboux transformations). We refer the reader to Sect. 7.3 for
an example about how Darboux transformations produce complicated (full matrix)
bispectral functions.

Remark. By using the methods of [7, Theorems 6.8 and 6.10], one can prove that the
self-adjoint bispectral Darboux transformations of classical discrete–continuous bispec-
tral functions are parametrized by the points of infinite dimensional Grassmannians
generalizing Wilson’s adelic Grassmannain [32].

(3) The theorem provides an effective way of constructing commuting differential and
shift operators for the integral and discrete integral operators in question. This is done
in two steps. The first one is describing the corresponding right and left Fourier alge-
bras of the discrete–continuous bispectral function �̃(k, x) of degrees/bandwidths
≤ 2d1d2. The second is solving linear equations coming from bilinear concomitants.

Correspondence A striking feature of the main theorem is that it creates a correspon-
dence between pairs of discrete commuting operators (1.2) on the one side, and pairs of
continuous commuting operators (1.1) on the other:

(
T�̃ , R(x, ∂x )

) ←→ (
S�̃ , (b−1

�̃
R)(k,Sk)

)
.

These pairs are parametrized by the self-adjoint bispectral Darboux transformations
�̃(k, x) of classical discrete–continuous bispectral functions (forming infinite dimen-
sional manifolds). On the left side we have a commuting pair of an integral operator and
an operator in the right Fourier algebra of �̃(k, x). On the right side we have a discrete
integral operator and the inverse image of the differential operator in the first pair under
the generalized Fourier map associated to �̃(k, x).

The utility of the main theorem is demonstrated in Sect. 7, where we first provide
a simple and brief derivation of the main results of [16] based on intrinsic arguments
with Fourier algebras. Following this, we provide a brand new example of a commut-
ing family of integral and differential operators associated to a self-adjoint bispectral
Darboux transformation of the Laguerre polynomials. Next, we obtain a matrix val-
ued example, associated to a noncommutative bispectral Darboux transformation of the
Hermite polynomials. Lastly, we conclude with an example of discrete–continuous bis-
pectral functions which are derived from soliton solutions of the KdV equation, instead
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of coming from classical orthogonal polynomials. We show again that the the associated
integral operator commutes with a differential operator. One can produce many addi-
tional matrix valued examples but their complexity grows rapidly and they cannot be
easily displayed on paper.

The paper is organized as follows. Section 2 contain background material on ma-
trix valued discrete–continuous bispectrality and Fourier algebras attached to bispectral
functions. Section 3 describes the Hermite, Laguerre, and Jacobi orthogonal polyno-
mial which we use and their treatment in the setting of discrete–continuous bispectral
functions. In Sect. 4 we establish sharp upper bounds on the sizes of certain canonical
bifiltrations of the Fourier algebras of all bispectral Darboux transformations from clas-
sical discrete–continuous bispectral functions. Section 5 proves results on the bilinear
concomitants of matrix valued differential and shift operators that are in turn used to
construct commuting differential and shift operators for integral and discrete integral op-
erators, respectively. The main theorem is proved in Sect. 6. Section 7 contains examples
illustrating the broad applications of the main theorem.

Notation and conventions All vector spaces in the paper will be over the real numbers
and dim will denote dimR. By a smooth function we mean a C∞-function.

2. Bispectrality and Fourier Algebras

The classical bispectral functions explored by Duistermaat and Grünbaum [13] were
bivariate functions ψ(k, x) which were simultaneously families of eigenfunctions for
differential operators in each variable, i.e.

L(x, ∂x ) · ψ(k, x) = λ(k)ψ(k, x), (2.1)

B(k, ∂k) · ψ(k, x) = θ(x)ψ(k, x). (2.2)

The associated differential operators L(x, ∂x ) and B(k, ∂k) are called bispectral opera-
tors. As a key insight toward classifying all rank one bispectral fuctions, Wilson initiated
the study of the algebras of all bispectral operators associated to ψ(k, x), which form
the so called bispectral algebras [32]. As a further insight, [1,15] considered the Fourier
algebras consisting of differential operators P(k, ∂k) and B(x, ∂x ) satisfying

P(k, ∂k) · ψ(k, x) = D(x, ∂x ) · ψ(k, x),

using them to study Darboux transformations in greater generality [15]. Further study of
bispectral and Fourier algebras has led to many recent important advances in the study
of bispectrality, prolate spheroidal operators and special functions [4,5,7,8].

This section provides a general abstract approach to bispectrality via bimodules for
noncommutative algebras. Each such function gives rise to an associated pair of Fourier
algebras and a canonical isomorphism between them. Fourier algebras are in turn at the
heart of a construction of new bispectral functions from old ones. While we will provide
definitions in complete generality, we will soon specify to matrix valued differential and
shift operators. However, many of the results in this paper will apply to more general
operator algebras, such as differential or shift operators taking values in a more general
finite-dimensional real algebra.
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2.1. Basic definitions. Bispectrality arises in the context of operator algebras, such as
algebras of differential or shift operators, acting on certain function spaces. For our
purposes, we adopt the following definition of an operator algebra.

Definition 2.1. By an operator algebra, we mean a real algebra D with an R-linear
anti-involution ∗ and with a distinguished subalgebra K of multiplicative operators. The
operation ∗ is referred to as the formal adjoint of D.

This differs slightly from the usual definition of an operator algebra, in that we
are avoiding explicit mention of a topological vector space on which our operators act
linearly. We call the operators in K multiplicative because in all important examples
K will consist of multiplication operators by functions, which will be used for writing
spectral equations. Following [1, §2] and [15, §2.1], we define the abstract notion of a
bispectral function:

Definition 2.2. A bispectral context is a triple (Dk,Dx ,M) with Dk and Dx operator
algebras and M a (Dk,Dx )-bimodule. A bispectral context is called commutative if
the associated subalgebras Kk,Kx of multiplicative operators are commutative, and is
called noncommutative otherwise. A bispectral triple for this bispectral context is a
triple (Bk, Lx , �) with Bk ∈ Dk\R, Lx ∈ Dx\R and � ∈ M with trivial left and right
annihilators satisfying

Bk · � = � · Gx and � · Lx = Fk · �

for some Fk ∈ Kk\R and Gx ∈ Kx\R. In this case � ∈ M is called a bispectral function.
A bispectral triple (Bk, Lx , �) is called self-adjoint if Bk = B∗

k , Lx = L∗
x , G∗

x = Gx ,
and F∗

k = Fk , in which case the bispectral function � is also called self-adjoint.

Definition 2.3. Suppose that (Dk,Dx ,M) is a bispectral context and � ∈ M is a
bispectral function. The left and right Fourier algebras of � are the R-subalgebras of
Dk and Dx defined by

Fk(�) := {Pk ∈ Dk : Pk · � = � · Dx for some Dx ∈ Dx },
Fx (�) := {Dx ∈ Dx : Pk · � = � · Dx for some Dk ∈ Dk}.

These subalgebras are further refined into the left and right bispectral algebras of �,
defined by

Bk(�) := {Pk ∈ Dk : Pk · � = � · Dx for some Dx ∈ Kx },
Bx (�) := {Dx ∈ Dx : Pk · � = � · Dx for some Dk ∈ Kk}.

The left and right annihilators of � are trivial by definition, and as a consequence
the left and right Fourier algebras of � are isomorphic via

b� : Fk(�) → Fx (�), b�(Pk) := Dx with Pk · � = � · Dx .

Definition 2.4. The algebra isomorphism b� is called the generalized Fourier map.

We do no assume any compatibility conditions on b� with respect to the ∗ anti-
involutions of Dx and Dk . In an important situation such compatibility holds, see Re-
mark 4.1 below.
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Remark 2.5. The name generalized Fourier map comes from the simplest classical case
of bispectrality, when Dk is the algebra of differential operators in variable k, Dx is the
opposite algebra of differential operators in variable x and � = ekx . ThenFk = R[k, ∂k]
and Fx = R[x, ∂x ]op, where the latter is the opposite algebra to the first Weyl algebra
R[x, ∂x ], i.e. the algebra generated by ∂x and x subject to the relation ∂x x − x∂x = −1.
The isomorphism b� is the Fourier transform which sends k �→ ∂x , ∂k �→ x .

In this paper, a key role will be played by the subspaces of Fk(�) and Fx (�)

consisting of formally bisymmetric operators, defined byFx,sym(�) := b�(Fk,sym(�))

and

Fk,sym(�) := {Pk ∈ Fk(�) : P∗
k = Pk and b�(Pk)

∗ = b�(Pk)}.
Note that they are R-subspaces, but generally not R-subalgebras, because ∗ is an anti-
involution of Dx and Dk .

2.2. Bispectral Darboux transformations. New bispectral functions can be obtained
from old ones by means of bispectral Darboux transformations. This procedure was first
used in [13] were scalar valued second order differential operators were obtained by
recursive Darboux transformations from the Bessel operators

L0(x, ∂x ) := ∂2
x + ν(ν + 1)/x2

� L1(x, ∂x ) � . . . � Ln(x, ∂x ).

The Darboux process amounted to a factorization into first order differential operators
and then interchanging their order

L j (x, ∂x ) = Pj (x, ∂x )Q j (x, ∂x ) � L j+1(x, ∂x ) := Q j (x, ∂x )Pj (x, ∂x ).

On the level of bispectral functions, the eigenfunctions of these operators are related by

ψ j (x, k) � ψ j+1(x, k) := Pj (x, ∂x )ψ j (x, k).

There were two key problems here:

(1) It is a highly nontrivial fact that each ψ j (x, k) is an eigenfunction in the variable k
as in (2.2).

(2) In order for this to hold, the Darboux transformations require for the operators
Pj (x, ∂x ) and Q j (x, ∂x ) to have rational coefficients in the KdV case ν ∈ Z and
to have rational coefficients and to be invariant under the transformation x �→ −x in
the even case ν ∈ 1/2 + Z.

The Darboux transformation process, as a tool of constructing bispectral functions,
took on a new and much more general form in the works [2,22] where all operators of
the spectral algebra of a bispectral function �0(x, k) were used for factorization. This
allowed all Darboux transformations to be obtained in one single step and much more
general bispectral functions to be obtained in this fashion. Furthermore, the algebro-
geometric method of Wilson [32], based on involutions of the adelic Grassmannian
to handle problem (1) above (in the much more general case of rank 1 continuous–
continuous bispectral functions) was fully phrased in terms of Darboux transfomations
from the whole spectral algebra.

Eventually, problems (1) and (2) were fully resolved in [1,15] through the method of
factorizations in localizations of Fourier algebras. The different nature of the factoriza-
tions in problem (2) are simply the shadow of the different nature of the Fourier algebras
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in the two cases (KdV vs even case) and the dual bispectral equation in problem (1) is the
result of the application of the Fourier isomorphism between the left and right Fourier
algebras. The noncommutative algebra arguments needed to pass from the scalar valued
situation to the matrix valued one were carried out in [15].

We next review the fundamentals of this method:

Definition 2.6. Let � be a bispectral function in a bispectral context (Dk,Dx ,M), i.e.,
Dk and Dx operator algebras and M a (Dk,Dx )-bimodule.

(1) A bispectral Darboux transformation �̃ of � is an element of M satisfying

�̃ = F−1 Pk · �G−1 and � = P̃k F̃−1 · �̃G̃−1

for some Pk, P̃k ∈ Fk(�) ⊂ Dk , and some multiplicative operators F, F̃ ∈ K×
k and

G, G̃ ∈ K×
x with Dx G−1G̃−1 D̃x ∈ Fx (�) and that P̃k is not a left zero divisor of

Dk , where Dx = b�(Pk) and D̃x = b�(P̃k).
(2) A bispectral Darboux transformation is called self-adjoint if F(k)∗ = F̃(k), G(x)∗ =

G̃(x), P∗
k = P̃k , and b�(Pk)

∗ = b�(P̃k).

Here and below, for a (noncommutative) R-algebra K, we denote by K× its multi-
plicative group of invertible elements. We have:

Theorem 2.7. Let �̃ be a bispectral Darboux transformation of a bispectral function
�. Then:

(1) �̃ is a bispectral and, more precisely,
⎧
⎪⎪⎨

⎪⎪⎩

P̃k F̃−1 F−1 Pk · � = �G̃G
� · Dx G−1G̃−1 D̃x = F F̃�

F−1 Pk P̃k F̃−1 · �̃ = �̃GG̃
�̃ · G̃−1 D̃x Dx G−1 = F̃ F�̃

where Dx := b�(Pk) and D̃x := b�(P̃k).
(2) If the bispectral Darboux transformation is self-adjoint, then both � and �̃ are

self-adjoint.

Proof. The first and third identities in the statement of the theorem follow easily from the
definition of a bispectral Darboux transformation. The fourth identity is easily derived
from the second and the statements about self-adjointness follow immediately. The above
identities also guarantee that �̃ has trivial left and right annihilators.

To prove the second identity, we start with first identity and multiply both sides on the
right by G−1G̃−1 D̃x . Then we use the fact that both Pk ·� = � · Dx and P̃k ·� = � · D̃x
to obtain

(P̃k F̃−1 F−1 · �) · Dx G−1G̃−1 D̃x = P̃k�.

Therefore

(P̃k F̃−1 F−1)(b−1
� (Dx G−1G̃−1 D̃x ) − F F̃) · � = 0.

Since � has trivial annihilators, this gives the identity,

(P̃k F̃−1 F−1)(b−1
� (Dx G−1G̃−1 D̃x ) − F F̃) = 0.

Then since P̃k is not a left zero divisor, this proves our second identity. ��
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Remark 2.8. The notion of a bispectral Darboux transformations is self dual in the sense
that it can be phrased both in terms of factorizations in the algebra Dk and Dx . More
precisely, Definition 2.6 is equivalent to saying that

�̃ = F−1� · Dx G−1 and � = F̃−1�̃ · G̃−1 D̃x (2.3)

for some Dk, D̃x ∈ Fx (�), F, F̃ ∈ K×
k and G, G̃ ∈ K×

x .
Due to the symmetric nature of these identities vs those in Definition 2.6, we only have

to show that the identities in Definition 2.6 imply (2.3). In the setting of Definition 2.6,
denote Dx := b�(Pk) and D̃x := b�(P̃k). Then

�̃ = F−1 Pk · �G−1 = F−1� · Dx G−1.

Using this identity and then the second identity in Theorem 2.7(1) gives

F̃−1�̃ · G̃−1 D̃x = F̃−1 F−1� · Dx G−1G̃−1 D̃x = F̃−1 F−1 F F̃� = �,

which proves that that the identities in Definition 2.6 are equivalent to those in (2.3).

2.3. Shift and differential operators. In this paper, we will be concerned only with the
single bispectral context (�(Z),�(V ), MN (C∞(Z × V ))), which we now define.

Definition 2.9. A difference operator or shift operator is an operator of the form L(k,

Sk) := ∑�
n=−� An(k)S n

k for some functions An : Z → MN (R). It acts on MN (R)-
valued functions F : Z → MN (R) by

L(k,Sk) · F(k) :=
�∑

n=−�

An(k)F(k + n).

In other words, S j
k is the basic k-shift operator, acting on matrix valued functions

F : Z → MN (R) by S
j

k · F(k) := F(k + j).
The collection of all shift operators forms an R-algebra �(Z) with a product satisfying

the fundamental relation S n
k A(k) = A(k + n)S n

k for all n ∈ Z and functions A : Z →
MN (R). Consider the anti-involution ∗ on �(Z) given by

(
�∑

n=−�

An(k)S n
k

)∗
:=

�∑

n=−�

An(k − n)∗S −n
k ,

where in the right hand side ∗ denotes the matrix transpose. This anti-involution makes
�(Z) an operator algebra whose subalgebra of multiplicative operators consists of matrix
valued functions on Z.

Next, let V ⊆ R be an open interval and �(V ) be the opposite algebra of the algebra
of differential operators (see Remark 2.5) with MN (R)-valued smooth coefficients on
V . It has a canonical right action on the algebra of MN (R)-valued smooth functions
on V . An operator of the form D(x, ∂x ) = ∑�

n=0 ∂n
x Bn(x) acts on a smooth function

F : V → MN (R) by

F · D(x, ∂x ) :=
�∑

n=0

dn F(x)

dxn
Bn(x). (2.4)
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The anti-involution ∗ of MN (R) extends to an anti-involution of �(V ) defined by

(
m∑

n=0

∂n
x Bn(x)

)∗
:=

m∑

n=0

(−1)n Bn(x)∗∂n
x

for ∗ the matrix transpose in the right hand side. This makes �(V ) an operator algebra
whose subalgebra of multiplicative operators consists of matrix valued smooth functions
on V .

The collection MN (C∞(Z × V )) of MN (R)-valued functions on Z × V smooth in
the second variable is a (�(Z),�(V ))-bimodule with the natural action defined above,
and (�(Z),�(V ), MN (C∞(Z × V ))) forms a bispectral context.

Definition 2.10. We call the bispectral context (�(Z),�(V ), MN (C∞(Z × V ))) the
matrix valued discrete–continuous bispectral context. We call a bispectral function

�(k, x) ∈ MN (C∞(Z × V ))

for this context a matrix valued discrete–continuous bispectral function.

This bispectral context is noncommutative in the terminology of Definition 2.2 if
and only if the dimension of our matrices N is greater than 1. We use capitalization to
emphasize the fact that �(k, x) takes its values in the noncommutative algebra MN (R)

and write �(k, x) in place of � to emphasize the fact that it is a function.
The following is the simplest example of a discrete–continuous bispectral function:

Example 2.11. Let V := (0, +∞) and �(k, x) := xk IN . Recall that IN denotes the
identity matrix of size N × N . Then �(k, x) is smooth on Z × V , has trivial left and
right annihilators, and satisfies

Sk · �(k, x) = �(k, x)x and �(k, x) · ∂x x = k�(k, x),

so that �(k, x) is a discrete–continuous bispectral function. The associated bispectral
and Fourier algebras are

Bk(�) = MN (R)[S ±1
k ], Bx (�) = MN (R)[∂x x], (2.5)

Fk(�) = MN (R)[k,S ±1
k ], Fx (�) = MN (R)[∂x , x±1]. (2.6)

The generalized Fourier map b� : Fk(�) → Fx (�) is the algebra isomorphism given
by

b�(k) := ∂x x, b�(Sk) := x, and b�(A) := A, ∀A ∈ MN (R). (2.7)

As a slightly more complicated example of a bispectral function, we can consider
the classical discrete–continuous bispectral function associated with the Hermite poly-
nomials.

Example 2.12. Let V := (0, +∞) and

�(k, x) :=
√

2k

�(k + 1)
2 F0(−k/2; (1 − k)/2;−1/x2)xke−x2/2 IN .



Matrix Discrete–Continuous Prolate Spheroidal Property Page 13 of 36    69 

Then �(k, x) is smooth on Z × V , has trivial left and right annihilators, and satisfies

1√
2
(
√

k + 1Sk +
√

kS −1
k ) · �(k, x) = �(k, x)x,

�(k, x) · (∂2
x − x2 + 1) = − 2k�(k, x),

so that �(k, x) is a discrete–continuous bispectral function. The associated bispectral
and Fourier algebras are

Bk(�) = MN (R)[√k + 1Sk +
√

kS −1
k ], Bx (�) = MN (R)[∂2

x + x2],
Fk(�) = MN (R)[√k + 1Sk,

√
kS −1

k ], Fx (�) = [∂x , x].
The generalized Fourier map b� : Fk(�) → Fx (�) is the algebra isomorphism given
by

b�(
√

k + 1Sk) = 1√
2
(x − ∂x ), b�(

√
kS −1

k ) = 1√
2
(x + ∂x ),

b�(A) = A, ∀A ∈ MN (R).

2.4. Bifiltration. For the discrete–continuous bispectral context in Definition 2.10, the
algebras �(Z) and �(V ) are filtered by the order and bandwidth of operators. We can
leverage this to obtain finite bi-filtrations of the left and right Fourier algebras.

For D(x, ∂x ) ∈ �(V ), denote by ord(D(x, ∂x )) its order.

Definition 2.13. Let L(k,Sk) = ∑n
j=−n A j (k)S

j
k ∈ �(Z) be a shift operator for

some integer n > 0. The bandwidth of L(k,Sk) is the value

bw(L(k,Sk)) := 2 max{ j ≥ 0 : A− j (k) �= 0 or A j (k) �= 0}.
If � is a discrete–continuous bispectral function and L ∈ Fk(�) then the order of the
differential operator b�(L) is called the co-order of L , denoted cord(L). Similarly we
can define the co-bandwidth cbw(D) of D ∈ Fx (�) to be the bandwidth of b−1

� (D).

The bandwidth and co-order of shift operators and differential operators determine
bi-filtrations of Fk(�) and Fx (�)

F�,m
k (�) := {L ∈ Fk(�) : bw(L) ≤ �, cord(L) ≤ m},

F�,m
x (�) := {D ∈ Fx (�) : ord(D) ≤ �, cbw(D) ≤ m}

(which are R-subspaces of Fk(�) and Fx (�), respectively) and the generalized Fourier
map restricts to an R-linear isomorphism

b� : F�,m
k (�)

∼=−→ Fm,�
x (�). (2.8)

Example 2.14. Assume the setting of Example 2.11. Applying Eqs. (2.6) and (2.7), one
obtains that the bifiltrations of the associated Fourier algebras is

F2�,2m
k (�) = Span{k jS i

k A : 0 ≤ j ≤ 2m, |i | ≤ �, A ∈ MN (R)}, (2.9)

F2m,2�
x (�) = Span{(∂x x) j x i A : 0 ≤ j ≤ 2m, |i | ≤ �, A ∈ MN (R)}, (2.10)

and in particular, dim F2�,2 m
k (�) = (2� + 1)(2 m + 1)N 2. Furthermore, the linear iso-

morphism (2.8) is given by

b�(k jS i
k A) = (∂x x) j x i A (2.11)

for all 0 ≤ j ≤ 2 m, |i | ≤ �, and A ∈ MN (R).
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3. Orthogonal Polynomials

In this section we focus on classical discrete–continuous bispectral functions which are
those that are eigenfunctions of a second order differential operator and a shift operator of
bandwidth two. We describe a construction for obtaining those from classical orthogonal
polynomials on the real line.

3.1. Basic definitions

Definition 3.1. Let (x0, x1) ⊆ R be an open interval which can be possibly infinite. A
weight of size N on (x0, x1) is a MN (R)-valued smooth function W : (x0, x1) → MN (R)

with W (x) a positive definite almost everywhere N × N matrix, with finite moments∫ x1
x0

|x |nW (x)dx for all n ≥ 0. The interval (x0, x1) is called the support of W .

A weight function defines an inner product on the space of MN (R)-valued polyno-
mials defined by

〈P(x), Q(x)〉W :=
∫ x1

x0

P(x)W (x)Q(x)∗|dx |.
By Gram–Schmidt, the above inner product defines a sequence of pairwise orthogonal
polynomials.

Definition 3.2. A sequence of orthogonal polynomials for a weight function W (x) with
support (x0, x1) is a sequence of MN (R)-valued polynomials {Pn(x)}∞n=0 which are
pairwise-orthogonal with respect to 〈·, ·〉W with Pn(x) of degree n for each n.

A sequence of polynomials is unique up to a choice of normalization. The sequence
is unique if we impose an additional condition, such as Pn(x) is monic for all n. The
sequences that satisfy 〈Pn(x), Pn(x)〉W = I for all n are called orthonormal.

It is easy to see that a sequence of orthogonal polynomials automatically satisfies a
three-term recurrence relation.

Proposition 3.3. [23] Let {Pn(x)}∞n=0 be a sequence of MN (R)-valued orthogonal poly-
nomials for a weight function W (x) supported on (x0, x1). Then there exist sequences
{An}, {Bn} and {Cn} in MN (R) satisfying

x Pn(x) = An Pn(x) + Bn Pn(x) + Cn Pn−1(x), ∀n ≥ 1.

We are interested in special sequences of orthogonal polynomials which are eigen-
functions of a second-order differential operator

Definition 3.4. A sequence of MN (R)-valued orthogonal polynomials for a weight func-
tion W (x) supported on (x0, x1) are eigenfunctions of a second-order differential equa-
tion if for every n

Pn(x)′′ A2(x) + Pn(x)′ A1(x) + Pn(x)A0(x) = �n Pn(x)

for some sequence of matrices {�n}. In the special case that N = 1, the sequence is
called a sequence of classical orthogonal polynomials on the real line.

In other words, classical orthogonal polynomials are polynomials that are simulta-
neously eigenfunctions of a second-order differential operator and a shift operator of
bandwidth 2. The classical orthogonal polynomials for an interval (x0, x1) ⊆ R were
classified by Bochner [3] and are up to affine transformation given by the Hermite, La-
guerre, and Jacobi polynomials. These examples of orthogonal polynomials, described
in terms of hypergeometric functions, along with their weights, supports, and differential
operators are listed in the table in Fig. 1.

Note that for Laguerre b > −1 and for Jacobi both a > −1 and b > −1.
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Fig. 1. The classical orthogonal polynomials on R

3.2. Classical discrete–continuous bispectral functions. We are interested in matrix
valued discrete–continuous bispectral functions, so we define classical orthogonal poly-
nomials in this context.

Definition 3.5. Let V ⊆ R be an open interval. We define a classical discrete–continuous
bispectral function to be a discrete–continuous bispectral function � : Z×V → MN (R)

taking values in RIN (i.e. the scalars in MN (R)) which has nonconstant elements L ∈
F2,0

k,sym(�) and D ∈ F0,2
x,sym(�) with RIN -valued (scalar) coefficients, and nonsingular

leading coefficients, and which satisfies the orthonormality condition

�(k, x) ∈ L2(V ) for k ≥ 0 and
∫

V
�(n, x)�(m, x)∗dx = δm,n for m, n ≥ 0.

Classical discrete–continuous bispectral functions are intimately linked with classical
orthogonal polynomials. In particular, if �(k, x)�(0, x)−1 is a polynomial of degree
k for all integers k ≥ 0, then these polynomials will be orthogonal with respect to the
weight W (x) = �(0, x)�(0, x)∗ and will satisfy a second-order differential equation.
By Bochner’s classification theorem [3], the sequence �(k, x)�(0, x)−1 will be an
affine transformation of the Hermite, Laguerre, or Jacobi polynomials listed in the table
above (up to a choice of normalization). The associated shift operator then specializes
to the three-term recurrence relation for the orthogonal polynomials.

Conversely, given any of the classical orthogonal polynomials from the table, the
associated hypergeometric function ψ(k, x) defines a classical discrete–continuous bis-
pectral function �(k, x) on V for V the support of the associated weight W (x) and

�(k, x) = θ(k)ψ(k, x)ρ(x)

for well-chosen normalizating functions θ(k) and ρ(x) which symmetrizes the shift
operator associated to the three-term recurrence relation of the given specialization of a
hypergeometric function.

The values of these discrete–continuous bispectral functions, along with their asso-
ciated shift and differential operators, are provided in the table in Fig. 2.
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Fig. 2. Classical discrete–continuous bispectral functions

4. Behaviour of Fourier Algebras Under Bispectral Darboux Transformations

In this section we prove sharp estimates on the sizes of the bifiltrarions of the Fourier
algebras of all bispectral Darboux transformations from classical discrete–continuous
bispectral functions.

4.1. Estimates in the classical case. For a matrix valued discrete–continuous bispectral
function �(k, x) define the subspaces

F�,m
k,sym(�) := Span{L ∈ F�,m

k (�) : L∗ = L , b�(L)∗ = b�(L)},
Fm,�

x,sym(�) := Span{D ∈ Fm,�
x (�) : D∗ = D, b−1

� (D)∗ = b�(D)}.

It follows from (2.8) that the generalized Fourier map b� maps F�,m
k,sym(�) bijectively

onto Fm,�
x,sym(�).

Remark 4.1. Note that when � is a self-adjoint bispectral Darboux transformation of a
classical discrete–continuous bispectral function, the generalized Fourier map b� satis-
fies

b�(L∗) = b�(L)∗ for all L ∈ F�,m
k (�).

Lemma 4.2. Let �(k, x) be a classical matrix valued discrete–continuous bispectral
function. Then

dim F2�,2m
k,sym (�) = dim F2m,2�

x,sym (�) ≥ (� + 1)(m + 1)N 2.

Proof. Recall (2.8). We will show the inequality for dim Fm,�
x,sym . By definition, there

exist D ∈ F2,0
x,sym(�) and L ∈ F2,0

k,sym(�) with

�(k, x) · D = �(k)�(k, x) for D = (∂2
x d2(x) + ∂x d1(x) + d0(x))I and

L · �(k, x) = �(k, x)F(x) for L = (c(k)S −1
k + b(k) + a(k)Sk)I.
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Since �(k, x) takes its values in RIN , the spacesF2m,2�
x,sym (�) are also (MN (R), MN (R))-

bimodules. Consequently we see that

F2m,2�
x,sym (�) ⊇ Span{ADi F(x) j + F(x) j Di A∗ : 0 ≤ i ≤ m, 0 ≤ j ≤ �, A ∈ MN (R)}.

By comparing orders and leading coefficients, we see that the right hand side is an
R-vector space of dimension at least (� + 1)(m + 1)N 2. ��

The lower bound in Lemma 4.2 is sharp as shown in next example.

Example 4.3. Consider the setting of Examples 2.11 and 2.14 with the classical discrete–
continuous bispectral function �(k, x) = xk IN . Using Eqs. (2.9) and (2.11), one easily
shows that

F2m,2�
x,sym (�) = Span{A(∂x x2∂x )

i x j + x j (∂x x2∂x )
i A∗ :

0 ≤ i ≤ m, 0 ≤ j ≤ �, A ∈ MN (R)}.
Therefore, in this case, dim F2�,2 m

k,sym (�) = (� + 1)(m + 1)N 2.

4.2. Estimates for all bispectral Darboux transformations

Definition 4.4. Let �̃(k, x) be a bispectral Darboux transformation of a discrete–
continuous bispectral function �(k, x) ∈ MN (C∞(Z × V )) with

�̃(k, x) = F(k)−1 P(k,Sk) · �(k, x)Q(x)−1

�(k, x) = P̃(k,Sk)F̃(k)−1 · �̃(k, x)Q̃(x)−1

for some shift operators P(k,Sk), P̃(k,Sk) ∈ Fk(�) and functions F(k), F̃(k) : Z →
MN (R)×, Q(x), Q̃(x) ∈ MN (C∞(V ))×, cf. Definition 2.6.

We say that the bispectral Darboux transformation is robust if the right annihilator
of P in �(Z) is trivial, the left annihilator of P̃ in �(Z) is trivial, the left annihilator of
b�(P) in �(V ) is trivial, and the right annihilator of b�(P̃) in �(V ) is trivial (recall
the notation for the discrete–continuous bispectral context in Definition 2.10).

Note that in the case N = 1 every bispectral Darboux transformation is robust.
Recall that the bispectral Darboux transformation is self-adjoint if F(k)∗ = F̃(k),

Q(x)∗ = Q̃(x), P∗ = P̃ and b�(P)∗ = b�(P̃). We call (d1, d2) the degree of the
self-adjoint bispectral Darboux transformation where

d1 = bw(P) and d2 = ord(b�(P)).

Our next result gives a crucial sharp estimate on the behaviour of the growth of
Fourier algebras under Darboux transformations. This theorem is at the heart of linking
matrix valued discrete–continuous bispectrality to the prolate spheroidal property.

Theorem 4.5. Let �̃(k, x) be a robust, self-adjoint bispectral Darboux transformation
of degree (d1, d2) of a discrete–continuous bispectral function �(k, x) with values in
MN (R). Assume moreover that F∗,0

x (�) contains a self-adjoint differential operator
C(x, ∂x ) of order 2d whose leading coefficient is scalar valued. Then

dim F2�,2m
x (�̃) ≥ dim F2�,2m−2d2

x (�) + dim F2�−2d1,2d2−2d
x (�) + 1,

dim F2�,2m
x,sym (�̃) ≥ dim F2�,2m−2d2

x,sym (�) + dim F2�−2d1,2d2−2d
x,sym (�) + 1.
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Proof. By assumption,

�̃(k, x) = F(k)−1 P · �(k, x)Q(x)−1 and �(k, x) = P∗(F(k)−1)∗ · �̃(k, x)(Q(x)−1)∗

for some P ∈ Fk,sym(�), F(k) : Z → MN (R)× and Q(x) ∈ MN (C∞(V ))× with

d1 = bw(P) and d2 = ord(b�(P)).

Let T (x, ∂x ) := b�(P) and consider the vector space

V�,m := F(k)Fk(�)F(k)∗ ∩ F�,m
k (�̃)

= {F(k)L(x,Sx )F(k)∗ : L ∈ Fk(�), bw(L) ≤ �, ord(T b�(L)T ∗) ≤ m}.
Since our bispectral Darboux transformation is robust, T has no nonzero right annihilator
and T ∗ has no nonzero left annihilator. Therefore V�,m is finite dimensional.

The left Fourier algebra of �̃ satisfies

F2�,2m
k (�̃) ⊇ V2�,2m + (F(k)−1 P)F2�−2d1,2d2−2d

k (�)(F(k)−1 P)∗ + RI.

The sum on the right hand side may not be direct. However, we have

V�,m ∩ (F(k)−1 P)F2�−2d1,2d2−2d
k (�)(F(k)−1 P)∗ + RI ⊆ F2�,2d2−2d

k (�).

Therefore,

dim(F�,m
k (�̃)) ≥ dim(V�,m) + dim F2�−2d1,2d2−2d

k (�) + 1 − dim(F2�,2d2−2d
k (�)).

For a fixed �, the algebra F∗,2�
x (�) is a finitely generated, torsion-free R[C]-module.

Hence it is a free module and we can choose a basis to write

F∗,2�
x (�) =

⊕

i

R[C(x, ∂x )]Ai (x, ∂x ).

Since the leading coefficient of C(x, ∂x ) is scalar valued,

ord(T Cm Ai T
∗) = ord(T Ai T

∗) + md.

In fact, we have for all m > maxi ord(T Ai T ∗),

dim(V2�,2m) =
∑

i

(1 + �(2m − ord(T Ai T
∗))/2d�).

Likewise, for all 2m > maxi {ord(Ai )},
dim(F2�,2m

k (�)) =
∑

i

(1 + �(2m − ord(Ai ))/2d�).

Let εi = (2d2 + ord(Ai ) − ord(T AT ∗))/2d and note that εi ≥ 0 for all i . Then we have

dim(V2�,2m) =
∑

i

(1 + �(2m − 2d2 − ord(Ai ))/2d + εi�)

≥
∑

i

(1 + �(2m − 2d2 − ord(Ai ))/2d�) +
∑

i

�εi�

≥ dim F2�,2m−2d2
k (�) + dim F2�,2d2−2d

k (�).
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Therefore,

dim(F2�,2m
k (�̃)) ≥ dim(F2�,2m−2d2

k ) + dim F2�−2d1,2d2−2d
k (�) + 1.

The same argument, replacing Fk with Fk,sym provides the second estimate. ��
Corollary 4.6. Let �̃(k, x) be a robust, self-adjoint bispectral Darboux transformation
of degree (d1, d2) of a classical discrete–continuous bispectral function �(x, y). Then

dim F2�,2m
k,sym (�̃) ≥ 1 +

(
(� + 1)(m + 1) − d1d2

)
N 2.

Proof. Since �(x, y) is a classical discrete–continuous bispectral function, there exists
C(x, ∂x ) ∈ F2,0

x (�). The estimate now follows from Lemma 4.2 and Theorem 4.5. ��
We note that the lower bound in the general case treated in Corollary 4.6 differs by

a constant from the lower bound in the classical case treated in Lemma 4.2. This will
play a fundamental role in our approach to obtaining commutativity between integral
and differential operators, and the discrete analog of this result.

5. Adjoints and Bilinear Concomitants

In this section we treat bilinear concomitants of differential and difference operators
which are used to construct self-adjoint operators in the Fourier algebras of matrix valued
discrete–continuous bispectral functions. For a general reference of adjointability and
formal adjoints of differential operators, see [9].

In this section, as in Definition 2.10, for a connected open interval V ⊆ R, we will
denote by �(V ) the opposite algebra of the algebra of MN (R)-valued smooth differential
operators on V .

5.1. Adjoints of differential operators. Differential operators have two possible notions
of an adjoint, namely their adjoint as an unbounded linear operator on an inner product
space and their formal adjoint, a natural anti-involution of the algebra of differential
operators. In general, these two adjoints may not be the same: the operator adjoint
depends on the vector space of functions on which we act, which in turn depends on
choices such as the domain. When the linear operator acts as a differential operator on
a dense subspace of its domain, the associated differential operator must be the formal
adjoint.

Definition 5.1. A differential operator D ∈ �(V ) is called formally symmetric if D∗ =
D. We say D ∈ �(V ) is adjointable with respect to an interval (x0, x1) ⊆ V if the
coefficients of D are smooth on (x0, x1) and

∫ x1
x0

(F(x) · D)G(x)∗dx = ∫ x1
x0

F(x)(G(x) ·
D)∗dx for all smooth, matrix valued functions F(x), G(x) on (x0, x1) with compact
support. If D is formally symmetric and adjointable with respect to (x0, x1), then D is
called self-adjoint with respect to (x0, x1).

There is a nice algebraic description of the formally symmetric differential operators.
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Lemma 5.2. Let D ∈ �(V ) be a differential operator of order 2 m with D∗ = D.
Then there exist ∗-symmetric matrix valued smooth functions A0(x), . . . , Am(x) and
∗-skewsymmetric matrix valued smooth functions B1(x), . . . , Bm(x) on V satisfying

D =
m∑

i=0

∂ i
x Ai (x)∂ i

x +
m∑

i=1

{∂2i−1
x , Bm(x)},

where here {R, S} = RS + S R denotes the anticommutator of operators R and S.

The scalar case of this lemma can be traced back to [9, Ch. 11].

Proof. This follows from a simple inductive argument on the order of D. ��
The difference between the formal adjoint and the operator adjoint is captured by its

bilinear concomitant.

Definition 5.3. Consider an MN (R)-valued differential operator with smooth coeffi-
cients:

D =
m∑

j=0

∂
j
x A j (x) ∈ �(V ).

The bilinear concomitant of D is the bilinear form CD(·, ·; p) defined on smooth func-
tions F, G ∈ MN (C∞(V )) by

CD(F, G; x) :=
m∑

j=1

j−1∑

i=0

(−1)i F ( j−1−i)(x)(G(x)A j (x)∗)(i)∗

=
m∑

j=1

j−1∑

i=0

i∑

�=0

(
i

�

)
(−1)i F ( j−1−i)(x)A(i−�)

j (x)G(x)(�)∗.

Equivalently, for the smooth matrix valued function CD(x) ∈ Mm(C∞(V )) whose
n, �-th entry is given by

CD(x)n,� :=
m∑

j=�+n+1

(
j − n

� − 1

)
(−1) j−n A j (x)( j+1−n−�), (5.1)

the bilinear concomitant may be expressed as

CD(F, G; x) = [F(x) F ′(x) . . . F (m)(x)]CD(x)[G(x) G ′(x) . . . G(m)(x)]∗.
The concomitant CD is MN (R)-sesquilinear in the sense that it is R-bilinear and

CD(C F, G; z) = CCD(F, G; z) and CD(F, CG; z) = CD(F, G; z)C∗, ∀ C ∈ MN (R).

As the next proposition shows, the operator adjoint is linked with the formal adjoint
via this concomitant. Its proof is standard and is left to the reader. The scalar case of the
proposition appears in [9, Ch. 11].

Proposition 5.4. Suppose (x0, x1) ⊆ V is a possibly infinite open interval. Let D ∈
�(V ) and let F(x), G(x) be two smooth, matrix valued functions on (x0, x1) with
compact support. Then
∫ x1

x0

[
(F(x) · D)G(x)∗ − F(x)(G(x) · D∗)∗

]
dx = CD(F, G; x1) − CD(F, G; x0),

with the convention that CD(F, G;±∞) = 0.
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5.2. Adjoints of shift operators. The connection between adjoints of differential opera-
tors and concomitants is paralleled in the setting of difference operators.

Definition 5.5. A shift operator L(k,Sk) ∈ �(Z) is called formally symmetric if

L(k,Sk)
∗ = L(k,Sk).

We say L ∈ �(Z) is adjointable with respect to a set I ⊆ Z if
∑

k∈I

(L(k,Sk) · F(k))∗G(k)∗ =
∑

k∈I

F(k)∗(L(k,Sk) · G(k))∗

for all MN (R)-valued functions F(k), G(k) on Z, vanishing at all but finitely many
points of I . If L(k,Sk) is formally symmetric and adjointable with respect to I , then
L(k,Sk) is called self-adjoint with respect to I .

In other words, a shift operator is self-adjoint if and only if it is self-adjoint as a
linear operator. Conversely, being formally symmetric is an algebraic condition which
is characterized by the following lemma.

Lemma 5.6. Let L(k,Sk) ∈ �(Z)be a shift operator with bandwidth�and L(k,Sk)
∗ =

L(k,Sk). Then there exist ∗-symmetric matrix valued functions A0(k), . . . , A�(k) on Z

and ∗-skewsymmetric matrix valued functions B1(k), . . . , B�(k) on Z satisfying

L(k,Sk) = A0(k) +
�∑

i=1

(Ai (k − i)S −i
k + Ai (k)S i

k ) +
�∑

j=1

(B j (k − j)S − j
k − B j (k)S

j
k ).

All shift operators of this form are formally symmetric.

Proof. This follows from a simple inductive argument on the bandwidth of L(k,Sk). ��
The connection between the operator adjoint and the formal adjoint is captured by a

discrete analog of the continuous bilinear concomitant defined in the previous subsection.
For any integer � > 0 and functions F, G : Z → MN (R) define an MN (R)-valued
smooth function on Z by

CS � (F, G; z) :=
�∑

i=1

F(z + i)∗G(z + i − �).

More generally, for an arbitrary shift operator L(k,Sk) = ∑�
n=−� An(k)S n

k ∈ �(Z)

define

BL(F, G; z) :=
�∑

n=1

(CS n (F, A∗
nG; z) − CS n (A∗−nG, F; z)∗

)
. (5.2)

Then BL defines a map which is R-bilinear and MN (R)-sesquilinear in the sense that

CL(F A, G; z) = A∗CL(F, G; z) and CL(F, G A; z) = CL(F, G; z)A, ∀ A ∈ MN (R).

Definition 5.7. For each L(k,Sk) ∈ �(Z), the MN (R)-sesquilinear map CL defined
above is called the bilinear concomitant of L(k,Sk).

The bilinear concomitant of shift operators captures the boundary behavior of ad-
junction of differential operators in a way similar to Proposition 5.4 as stated in the next
proposition. Its proof is simple and is left to the reader.
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Proposition 5.8. Let L(k,Sk) ∈ �(Z) and let F, G : Z → MN (R) be zero at all but
finitely many values of Z. Then

n∑

k=m

[
(L · F)(k)∗G(k) − F(k)∗(L∗ · G)(k)

] = CL(F, G; n) − CL(F, G; m − 1),

with the convention that CL(F, G;±∞) = 0.

5.3. Bi-self-adjoint operators. The generalized Fourier map associated with a discrete–
continuous bispectral function �(k, x) directly connects an algebra of difference op-
erators with an algebra of differential operators. In the next section, we will show that
differential operators commuting with integral operators will emerge from self-adjoint
difference operators whose images under the generalized Fourier map are self-adjoint
differential operators.

Definition 5.9. Fix an MN (R)-valued discrete–continuous bispectral function �(k, x),
and let (x0, x1) ⊆ V be a subinterval and I ⊆ Z.

(1) We call a shift operator L ∈ Fk(�) formally bisymmetric if L∗ = L and b�(L)∗ =
b�(L).

(2) We say that L ∈ Fk(�) is bi-self-adjoint with respect to the pair (I, (x0, x1)) if L is
self-adjoint with respect to I and b�(L) is self-adjoint with respect to (x0, x1).

When�(k, x) is self-adjoint bispectral Darboux transformation of a classical discrete–
continuous bispectral function, the generalized Fourier map preserves adjoints. In this
situation, a difference operator being formally bisymmetric is no different than being
formally symmetric, or from the associated differential operator being formally symmet-
ric. However, the existence of bi-self-adjoint operators is more subtle, since it requires
the simultaneous vanishing of both discrete and continuous bilinear concomitants. The
next theorem provides a sufficient condition for the existence of these operators.

Theorem 5.10. Suppose that � ∈ MN (C∞(Z×V )) is a discrete–continuous bispectral
function and that

dim F�,m
x,sym(�) ≥ (� + 1)(m + 1)N 2 − c

for some c ∈ Z. Let I = {k0, k0 +1, . . . , k1} ⊆ Z and (x0, x1) ⊆ V , and assume that the
concomitant of every operator inFk(�) vanishes at k0, and the concomitant of every op-
erator in Fx (�) vanishes at x0. Then there exists a nonconstant L(k,Sk) ∈ Fk,sym(�)

such that L(k,Sk) is bi-self-adjoint with respect to (I, (x0, x1)). Furthermore, L(k,Sk)

may be taken to be in F2�,2�
k,sym(�) for �N 2 > c.

Proof. The subspace of F2�,2�
k,sym(�) consisting of difference operators which are self-

adjoint with respect to I is

U = {L ∈ Fk(�) : CL(F, G; k1) = 0} .

Using Lemma 5.6, a formally symmetric difference operator

L = A0(k) +
�∑

i=1

(Ai (k − i)S −i
k + Ai (k)S i

k ) +
�∑

j=1

(B j (k − j)S − j
k − B j (k)S

j
k )
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has concomitant vanishing at k1 if and only if Ai (k1 + j) = 0 and Bi (k1 + j) = 0 for
all 1 ≤ j ≤ i . Using the fact that Ai (k) ∈ MN (R) is symmetric and Bi (k1) ∈ MN (R)

is skewsymmetric, we see that U is a subspace of codimension at most N 2�(� + 1)/2.
The subspace of F2�,2�

x,sym(�) consisting of difference operators which are self-adjoint
with respect to (x0, x1) is

V = {D ∈ Fx (�) : CD(F, G; x1) = 0} .

Using Lemma 5.2, a formally symmetric differential operator

D =
m∑

i=0

∂ i
x Ai (x)∂ i

x +
m∑

i=1

{∂2i−1
x , Bm(x)},

has concomitant vanishing at x1 if and only if A( j)
i (x1) = 0 and A( j)

i (x1) = 0 for all

0 ≤ j < i , and likewise for B( j)
i (x). Using the fact that Ai (x) is symmetric and Bi (x) is

skew-symmetric, we see that V is also a subspace of codimension at most N 2�(�+ 1)/2.
Choose � such that N 2� > c. The bi-self-adjoint operators lie in the intersectionU∩V ,

which has codimension at most N 2�(� + 1). Since dim F2�,2�
x,sym(�) ≥ N 2(� + 1)2 − c,

we see that U ∩ V has dimension at least N 2(� + 1) − c, which is greater than N 2.
Consequently it must contain a nonconstant bi-self-adjoint operator. ��

6. Main Theorem

In this section, we prove a generalization of the Main Theorem stated in the introduction.
Throughout this section, �̃ will be a discrete–continuous bispectral function �̃ : Z ×
V → MN (R). Using it, we define the integral operator

T�̃ : F(y) �→
∫ x1

x0

F(x)K (x, y)dx, K (x, y) :=
k1∑

k=k0

�̃(k, x)∗�̃(k, y), (6.1)

and the discrete integral operator

S�̃ : F(m) �→
k1∑

k=k0

J (m, k)F(k), J (m, n) :=
∫ x1

x0

�̃(m, y)�̃(k, y)∗dy, (6.2)

where here (x0, x1) ⊆ V , and ∗ is the matrix transposition.

6.1. General statement. The connection between bi-self-adjoint differential or differ-
ence operators and operators commuting with T�̃ or S�̃ is established in the following
theorem.

Theorem 6.1. Suppose L(k,Sk) ∈ Fk(�̃) is bi-self-adjoint with respect to (I, �), and
let R(x, ∂x ) = b�̃ (L). Then for any smooth, compactly supported function F : V →
MN (R),

T�̃ (F · R(x, ∂x ))(x) = (T�̃ (F) · R)(x). (6.3)

Likewise, for every function G : Z → MN (R),

S�̃ (L(k, ∂k) · G)(k) = (L(k, ∂k) · S�̃ (G) · R)(k). (6.4)
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Proof. Let F be a smooth function on � with compact support. Then we have

T�̃ (F · R(x, ∂x ))(y) =
∫

�

(F · R) (x) K (x, y)dx

=
∫

�

(F · R) (x)

k1∑

k=k0

�̃(k, x)∗�̃(k, y)dx

I=
∫

�

F(x)

k1∑

k=k0

(
�̃(k, x) · R

)∗
�̃(k, y)dx

II=
∫

�

F(x)

k1∑

k=k0

(
L · �̃(k, x)

)∗
�̃(k, y)dx

I=
∫

�

F(x)

k1∑

k=k0

�̃(k, x)∗
(
L · �̃(k, y)

)
dx

II=
∫

�

F(x)

k1∑

k=k0

�̃(k, x)∗
(
�̃(k, y) · R

)
dx

= (T�̃ (F) · R)(y),

where in this chain of equalities, we used in (I) that L is bi-self-adjoint and in (II) that
L ∈ Fx (�̃). This proves (6.3).

A similar argument proves that L commutes with S�̃ in the sense of Eq. (6.4). ��
As a direct consequence of Corollary 4.6, and Theorems 5.10 and 6.1, we have the

following result.

Theorem 6.2. Let �̃(x, y) be a robust, self-adjoint bispectral Darboux transformation
of a classical discrete–continuous bispectral function �(x, y) of degree (d1, d2) sup-
ported on V . Let k0 = 0 and x0 be the left endpoint of the interval V . Then the following
hold:

(1) There exists a differential operator R(x, ∂x ) ∈ F2d1d2,2d1d2
x,sym (�̃) commuting with the

continuous integral operator T�̃ .

(2) The shift operator L(k,Sk) := b−1
�̃

(R) ∈ F2d1d2,2d1d2
k,sym (�̃) commutes with the dis-

crete integral operator S�̃ ;

The differential operator in part (1) of the theorem is obtained by imposing con-
comitant constraints on the operators of F2d1d2,2d1d2

x,sym (�̃) and solving the linear system
of equations on its coefficients. Theorems 4.5 and 5.10 guarantee that this system will
have a nontrivial solution. The shift operator in part (2) of the theorem is obtained by
applying the generalized Fourier map to the first operator.

7. Examples

This section contains examples illustrating the different features of the Theorem 6.2
and the power of its applications. We focus on part (1) of the theorem constructing
a commuting differential operator for the integral operator T� . In all cases, one can
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construct a commuting shift operator for the corresponding discrete integral operator
T�̃ by applying the (inverse) of the generalized Fourier map for �. We leave the details
of part (2) to the reader.

7.1. Classical examples. To begin, we will derive differential operators commuting with
integral operators whose kernels are defined in terms of Christoffel–Darboux kernels of
classical orthogonal polynomials. Up to conjugation, these are precisely the differential
operators obtained in [16]. However, even in this special case, the commuting operators
are obtained in an intrinsic fashion using the generalzied Fourier algebras of discrete–
continuous bispectral functions.

Let �(k, x) be a classical discrete–continuous bispectral function with

L(k,Sk) · �(k, x) = �(k, x)x and �(k, x) · D(x, ∂x ) = λ(k)�(k, x)

for some polynomial λ(k) and operators

L(k,Sk) = A(k)S −1
k + B(k) + A(k + 1)Sk

and

D(x, ∂x ) = ∂x p(x)∂x + q(x).

Thus the generalized bispectral map satisfies b�(L) = x and b�(λ(k)) = D.
Now let (x0, x1) be the (possibly infinite) subinterval of R of the support of the

sequence of classical orthogonal polynomials corresponding to �. Based on the theory
developed in the previous sections, we define an integral operator T� by

T� : f (z) �→
∫ t

x0

f (x)K (x, z)dx, K (x, z) :=
n∑

k=0

�(k, x)�(k, z).

To find a differential operator commuting with T� , our theory prompts us to try to
find the symmetric elements of the left and right Fourier algebra of � of low order.
Already, the calculations above show that D(x, ∂x ) and x are both in Fx,sym(�), while
L(k,Sk) and λ(k) are in Fk,sym(�).

The anticommutator of a pair of symmetric operators is also symmetric, so we can
use it to obtain more symmetric elements. In particular,

{D, x} = 2∂x xp(x)∂x + p′(x) + 2xq(x)

is another element of Fx,sym(�) and

{L , λ(k)} = A(k)(λ(k) + λ(k − 1))S −1
k + 2λ(k)B(k) + A(k + 1)(λ(k) + λ(k + 1))Sk

is another element of Fk,sym(�). Note, since b� is an algebra isomorphism, it must
preserve the anticommutator, i.e. b�({L , λ(k)}) = {D, y}. As a consequence, the order
two component of the symmetric portion of the Fourier algebraF2,2

k,sym(�) has dimension

at least 8. By Theorem 5.10 combined with Theorem 6.1, it follows that F2,2
x,sym(�) will

contain a non-constant differential operator commuting with T� .
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Fig. 3. Differential operators commuting with integral operators for the classical discrete–continuous bispec-
tral functions

To find the commuting operator, we start with a generic linear combination of the
non-constant elements in F2,2

x,sym(�) we have described so far

L(k,Sk) = A(k)(λ(k) + λ(k − 1) + β)S −1
k + (β + 2λ(k))B(k) + αλ(k)

+ A(k + 1)(λ(k) + λ(k + 1) + β)Sk

Bx linearity, its image R(x, ∂x ) = b�(L) is

R(x, ∂x ) = ∂x (2x + α)p(x)∂x + p′(x) + (α + 2x)q(x) + βx .

The operator that we are searching for is exactly the one where the discrete concomi-
tant (5.2) of L(k,Sk) vanishes at n and where the continuous concomitant of D(x, ∂x )

vanishes at t . The vanishing condition of the concomitants results in the equations
λ(n) + λ(n + 1) + β = 0 and 2t + α = 0. Therefore the differential operator

R(x, ∂x ) = ∂x 2(x − t)p(x)∂x + p′(x) + 2(x − t)q(x) − (λ(n) + λ(n + 1))x

commutes with the continuous integral operator T� . The table in Fig. 3 gives explicit
expressions for the commuting operators in each of the basic cases.

The integral operator we have defined only makes sense for integer values of n > 0.
Similar integral operators can be define for n < 0, for which one can obtain commuting
differential operators.

7.2. A Darboux transformation example. Self-adjoint bispectral Darboux transforma-
tions of classical discrete–continuous bispectral functions provide more complicated
examples of integral operators commuting with differential operators, at the cost of the
associated operators being of higher order. To demonstrate this, we consider a specific
bispectral Darboux transformation of the Laguerre-type discrete–continuous bispectral
function.

Let �(k, x) be the classical discrete–continuous bispectral function of Laguerre type
defined above and

D(x, ∂x ) = ∂x x∂x − (a − x)2

4x
+

1

2
, and

L(k,Sk) = −√
k(k + a)S −1

k + (2k + a + 1) − √
(k + 1)(k + a + 1)Sk,

be the associated formally symmetric differential and shift operators.
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Bispectral Darboux transformations come from rational factorizations of polynomials
in the operator D(x, ∂x ). For one explicit example, the differential operator

Q(x, ∂x ) := ∂2
x xq(x) + ∂x q(0) −

(
x

4
− 2λ + a

2
+

a2

4x

)
q(x),

for q(x) = 2λ + 2a +
√

λ+a
λ

(2λ + a − x) defines a symmetric factorization of a quadratic
polynomial in the Laguerre operator, via

Q(x, ∂x )
1

q(x)2 Q(x, ∂x )
∗ = (D(x, ∂x ) + λ)(D(x, ∂x ) + λ − 1).

Moreover, Q(x, ∂x ) is an element of the right Fourier algebra of �(k, x), i.e. there
exists a shift operator P(k,Sk) satisfying P(k,Sk) · �(k, x) = �(k, x) · Q(x, ∂x ).
The explicit value of P(k,Sk) is obtained from leveraging the fact that the generalized
Fourier map is an algebra isomorphism. In particular, we find

P(k,Sk) = b−1
� (Q(x, ∂x ))

= −β(k − λ)
√

(k + 1)(k + a + 1)Sk − β(k + 1 − λ)
√

k(k + a)S −1
k

+ 2βk(k + 1) − 2λβ(β + 2)k − λβ(β + 2) + 2λβa/(β − 1),

for β = √
(λ + a)/λ. The shift operators P(k,Sk) define the factorizations

P(k,Sk)
∗ 1

p(k)2 P(k,Sk) = q(L(k,Sk))
2.

for p(k) = √
(λ − k)(λ − k − 1). Thus the functions

�̃(k, x) := �(k, x) · Q(x, ∂x )
1

p(k)q(x)

are self-adjoint bispectral Darboux transformations of �(k, x).
A self-adjoint bispectral Darboux transformation always leads to another self-adjoint

bispectral function (see Definition 2.2). In our situation, �̃(k, x) are discrete–continuous
bispectral functions and satisfy the differential equation

�̃(k, x) · 1

q(x)
Q(x, ∂x )

∗Q(x, ∂x )
1

q(x)
= p(k)2�̃(k, x)

along with the difference equation

1

p(k)
P(k,Sk)P(k,Sk)

∗ 1

p(k)
· �̃(k, x) = �̃(k, x)q(x)2.

Note that both the shift and differential operators above are formally symmetric.
Just as we have done previously, we use �̃(k, x) to define an integral operator

T�̃ : f (y) �→
∫ t

0
f (x)K (x, y)dx, K (x, y) :=

n∑

k=0

�̃(k, x)�̃(k, y).
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We will construct a differential operator which commutes with this integral operator. In
order to do so, we must construct more examples of formally symmetric operators in
the left and right Fourier algebras.

Our main tools for constructing more formally symmetric operators in the Fourier
algebra is the pair of reciprocal relations

�̃(k, x) · 1

q(x)
Q(x, ∂x )

∗B(x, ∂x )Q(x, ∂x )
1

q(x)
= p(k)A(k,Sk)p(k) · �̃(k, x),

1

p(k)
P(k,Sk)

∗ A(k,Sk)P(k,Sk)
1

p(k)
· �̃(k, x) = �̃(k, x) · q(x)B(x, ∂x )q(x),

for all A(k,Sk) ∈ Fk(�) and B(x, ∂x ) ∈ Fx (�) with b�(A) = B. These allow us to
build operators in Fk(�̃) and Fx (�̃) from operators in Fk(�) and Fx (�). In particular,
formal symmetricity is preserved by the construction.

To obtain our commuting differential operator, we use the previous paragraph to con-
struct formally symmetric differential operators in Fx (�̃) of order ≤ 4, whose preim-
ages in Fk(�̃) under the generalized Fourier map have bandwidth ≤ 4. By showing
that F4,4

x,sym(�̃) has sufficiently high dimension, we can guarantee that it contains a
differential operator commuting with our integral operator.

For starters, we can take A(k,Sk) = L(k,Sk)
j and B(x, ∂x ) = x j . This gives us

three linearly independent operators

R j+1(x, ∂x ) = 1

q(x)
Q(x, ∂x )

∗x j Q(x, ∂x )
1

q(x)
, for j = 0, 1, 2.

Analogously, we can take A(k,Sk) = (−k) j and B(x, ∂x ) = D(x, ∂x )
j . This gives us

two more linearly independent operators

R j+4(x, ∂x ) = q(x)D(x, ∂x )
j q(x), for j = 0, 1,

where here linear independence is clear from comparing bandwidths and orders of op-
erators.

In order to complete the construction of a commuting differential operator, we need
to find two more non-constant differential operators which are linearly independent from
the others we have found so far. To do so, we will use the pair of reciprocal relations

�̃(k, x) · q(x)B(x, ∂x )Q(x, ∂x )
1

q(x)
= 1

p(k)
P(k,Sk)A(k,Sk)p(k) · �̃(k, x),

�̃(k, x) · 1

q(x)
Q(x, ∂x )

∗ B(x, ∂x )
∗q(x) = p(k)A(k,Sk)

∗ P(k,Sk)
∗ 1

p(k)
· �̃(k, x),

for all A(k,Sk) ∈ Fk(�) and B(x, ∂x ) ∈ Fx (�) with b�(A) = B. Note that these
relations do not preserve formal symmetricity, but if we combine the two we can obtain
new formally symmetric operators. In particular, if A(k,Sk) and B(x, ∂x ) are formally
skew-symmetric, then for any j we have the formally symmetric difference operator

1

p(k)
P(k,Sk)A(k,Sk)

j p(k) + (−1) j p(k)A(k,Sk)
j∗ P(k,Sk)

∗ 1

p(k)
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which is in the Fourier algebra and which the generalized Fourier map sends to the
formally symmetric differential operator

q(x)B(x, ∂x )
j Q(x, ∂x )

1

q(x)
+ (−1) j 1

q(x)
Q(x, ∂x )

∗ B(x, ∂x )
j∗q(x).

Taking B(x, ∂x );= x∂x − ∂x x , this gives us two more operators

R j+6(x, ∂x ) = q±(x)(x∂x − ∂x x) j Q±(x, ∂x )
1

q±(x)

+ (−1) j 1

q±(x)
Q±(x, ∂x )

∗(x∂x − ∂x x) j q±(x)

for j = 0, 1. The linear independence of these new operators from the previous ones
is not immediately clear, but can be verified via computer. Consequently the symmetric
component of the right Fourier algebra of order and co-order 4, F4,4

x,sym(�̃) is at least 8
dimensional, containing the constant operator as well as all linear combinations of the
seven linearly independent operators R1, . . . , R7.

The vanishing condition of the discrete and continuous concomitants imposes 6 con-
ditions, implying the existence of a two dimensional subspace of F4,4

x,sym(�̃) satisfying
the condition. Excluding the constants, there must be at least one non-constant operator
with this property. Solving the vanishing condition on the concomitants, we find that the
continuous integral operator T�̃ defined by Eq. (1.1) will commute with a non-constant
differential operator formed by a linear combination of the above seven operators. Specif-
ically, by solving the associated system via computer, we get that T�̃ commutes with
the differential operator of order 4 defined by

R(x, ∂x ) =
7∑

j=1

c j R j (x, ∂x ),

where

c1 = t2, c2 = −2t, c3 = 1, c7 = 0,

c4 = −λ(λ − n)(λ + n − 1)

λ + a
,

c5 = −2λ(λ − n)

λ + a
,

c6 = λ − n

β

(
a

β + 1

β − 1
− t

)
.

7.3. A non-scalar example. Noncommutative bispectral Darboux transformations lead
to interesting examples of matrix valued discrete–continuous bispectral functions, and
thereby examples of matrix valued integral operators commuting with matrix valued
differential operators. As a specific example of this, consider the case when �(k, x) =
ψ(k, x)I is the classical discrete–continuous bispectral function of Hermite type and
let

D(x, ∂x ) := ∂2
x − x2 + 1 and

L(k,Sk) := √
k/2S −1

k +
√

(k + 1)/2Sk
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be the associated formally symmetric differential and shift bispectral operators.
Fix an r × r symmetric matrix A and consider the 2r × 2r matrix valued differential

operator

U (x, ∂x ) :=
(

(∂x + x)I −A
−A (∂x − x)I

)
,

where I is the r × r identity matrix. The operator U (x, ∂x ) gives rise to a factorization

U (x, ∂x )U (x, ∂x )
∗ =

(−D(x, ∂x )I + A2 0
0 −D(x, ∂x )I + A2 + 2I

)
.

One can feel Dirac lurking in the background.
The right Fourier algebra of � is exactly the algebra of right-acting differential

operators with matrix-valued polynomial coefficients. In fact, the generalized Fourier
map satisfies

b�(L) = x, b�(−2k) = D(x, ∂x )

and also

b�(
√

k/2S −1
k − √

(k + 1)/2Sk) = ∂x .

Therefore the operator U (x, ∂x ) belongs to the right Fourier algebra Fx (�). The asso-
ciated operator in the left Fourier algebra is

P(k,Sk) = b−1
� (U (x, ∂x )) =

(√
2kS −1

k I −A
−A −√

2k + 2Sk I

)

The discrete operator P yeilds the remarkable factorization

P(k,Sk)
∗(F(k)∗)−1 F(k)−1 P(k,Sk) =

(
I 0
0 I

)

for the sequence of 2r × 2r matrices

F(k) =
(

0 Bk
Bk+1 0

)
.

Here Bk B∗
k = 2k I + A2 is a fixed Cholesky factorization for each k, making

F(k)F(k)∗ =
(

2k I + A2 0
0 (2k + 2)I + A2

)
.

This factorization is significant, being of a form appearing in Theorem 2.7.
Thus,

�̃(k, x) = F(k)−1�(k, x) · U (x, ∂x )

=
( −B−1

k+1 Aψ(k, x) −B−1
k+1

√
2k + 2ψ(k + 1, x)

B−1
k

√
2kψ(k − 1, x) −B−1

k Aψ(k, x)

)
.
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defines a self-adjoint noncommutative bispectral Darboux transformation of �(k, x) =
ψ(k, x)I satisfying the orthonormality relation

∫ ∞

−∞
�̃( j, x)�̃(k, x)∗dx = δ jk

(
I 0
0 I

)
.

As a consequence, Theorem 6.2 implies that the continuous integral operator T�̃
defined by Eq. (1.1)

T�̃ : F(y) �→
∫ t

−∞
F(x)K (x, y)dx, K (x, y) =

n∑

k=0

�̃(k, x)∗�̃(k, y)

which acts on matrix-valued functions will commute with a matrix valued differential
operator of positive order.

The bispectral function �̃(x, y) satisfies a three-term recursion relation, allowing us
to obtain an explicit expression for K (x, y). In particular,

x�̃(k, x) = H1(k)�̃(k + 1, x) + H0(k)�̃(k, x) + H1(k − 1)∗�̃(k − 1, x)

for the matrices

H1(k) = √
(k + 1)/2 · F(k)−1

(
A2 + 2k I 0

0 A2 + (2k + 4)I

)
(F(k + 1)∗)−1

= √
(k + 1)/2

(
B−1

k+1 Bk+2 0
0 B∗

k (B∗
k+1)

−1

)

H0(k) = F(k)−1
(

0 A
A 0

)
(F(k)∗)−1 =

(
0 B−1

k+1 A(B∗
k )−1

B−1
k A(B∗

k+1)
−1 0

)
.

Therefore the kernel K (x, y) may be expressed as

K (x, y) = 1

x − y

(
�̃(n + 1, x)∗ H1(n)�̃(n, y) − �̃(n, x)∗ H1(n)�̃(n + 1, y)

)
.

To determine the commuting operator, we must explore the Fourier algebras and the
generalized bispectral map of �̃. The right Fourier algebra of �̃ contains every matrix-
valued differential operator with polynomial coefficients. In fact, if R(x, ∂x ) is such an
operator then its preimage under the generalized Fourier map is

b−1
�̃

(R(x, ∂x )) = F(k)−1 P(k,Sk)b
−1
� (R(x, ∂x ))P(k,Sk)

∗(F(k)∗)−1.

On the other hand for the left Fourier algebra, if M(k,Sk) ∈ Fk(�) then

b�̃ (F(k)∗M(k,Sk)F(k)) = U (x, ∂x )
∗b�(M(k,Sk))U (x, ∂x ).

We can get an estimate of the dimension of F4,4
sym,x (�̃) by first obtaining appro-

priate estimates of the vector spaces of scalar operators F2,4
x (ψ) and F1,4

x (ψ). Direct
computation shows that the symmetric components of these spaces are

F1,4
x,sym(ψ) = Span{1, x, x2}
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and

F2,4
x,sym(ψ) = Span{1, x, x2, D(x, ∂x ), {x, D(x, ∂x )}, {x2, D(x, ∂x )}}.

The skew-symmetric component of each space is the same, given by

F2,4
x,skew(ψ) = F1,4

x,skew(ψ) = Span{[x, D(x, ∂x )], [x2, D(x, ∂x )]}.
Here {·, ·} denotes the anticommutator and [·, ·] denotes the commutator.

Therefore the symmetric componentF4,4
x,sym(�̃)of the right Fourier algebra of �̃(k, x)

contains any operator of the form

R(x, ∂x ) = U (x, ∂x )
∗
⎛

⎝
2∑

j=0

1∑

k=0

A j,k{x j , D(x, ∂x )
k} +

2∑

j=1

B j [x j , D(x, ∂x )]
⎞

⎠ U (x, ∂x )

+ V0 + V1x + V2x2 + W1[x, D(x, ∂x )] + W2[x2, D(x, ∂x )]
for symmetric matrices A j , Vj and skew-symmetric matrices B j , W j , where V2 and W2

satisfy a certain set of N = 2r conditions to force b−1(R) to have bandwidth ≤ 4. In
particular, this gives us the dimension estimate

dim F4,4
x,sym(�̃) ≥ 9

N (N + 1)

2
+ 4

(N − 1)N

2
= 13N 2/2 + 3N/2.

The vanishing condition on the left and right concomitants imposes 6N 2 conditions.
Consequently, there exist at least N 2/2 + 3N/2 operators commuting with the integral
operator T�̃ defined above. By Theorem 5.10, this implies the existence of a differential
operator of order no greater than four commuting with T�̃ . At most N (N + 1)/2 of these
operators are constant, so this implies that the vector space F4,4

x,sym(�̃) contains at least
N non-constant operators commuting with T�̃ . An exact expression for a commuting
operator can be found by solving for the vanishing condition of the concomitants. Solving
for this condition, we find that in fact the operator T�̃ commutes with the second-order
differential operator

R(x, ∂x ) = U (x, ∂x )
∗(t − x)U (x, ∂x ) + x(A2 + (2n + 2)I )IN

= ∂x (x − t)∂x IN + (t A2 + (2n + 2)x + t x2 − x3)IN +

(
t − 2x A

A −t + 2x

)
,

where IN =
(

I 0
0 I

)
is the N × N identity matrix.

7.4. An example not coming from orthogonal polynomials. From the examples depicted
so far, it is tempting to conclude that all examples are obtainable from bispectral Dar-
boux transformations of the classical discrete–continuous bispectral functions. As the
following example shows, this is not the case. In particular there are examples of a
discrete–continuous bispectral functions arising form “pure soliton” solutions of the
KdV equation.
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Let N > 0 be a positive integer and choose positive constanst k1, . . . , kN and
c1, . . . , cN and define matrices

Mi j (x) := δi j +
c j

ki + k j
e(ki +k j )x ,

M̃i j (k, x) := δi j +
c j

ki + k j

k − k j

k + k j
e(ki +k j )x .

Then the functions τ(x) := det M(x) and τ(k, x) := det M̃(k, x) define the wave
function

�(k, x) := ekx τ(k, x)

τ (x)

satisfying the Schrödinger equation

�(k, x) · D(x, ∂x ) = k2�(k, x), for D(x, ∂x ) := ∂2
x + V (x),

where the potential V (x) is given by V (x) := 2(log τ(x))′′.
Now if we specifically choose k j := j for all j = 1, . . . , N and

c j := 2 j (−1) j−1
∏

i �= j

i + j

i − j
,

then V (k) = N (N + 1)sech2(k) and a solution of the above Schrödinger equation can
be expressed in terms of the hypergeometric function

�(k, x) = μ(k)ekx
2 F1

(
−N , N + 1, 1 + k; ex

ex − e−x

)
,

where here for sake of normalization we define μ(k) recursively by

μ(1) := 1 and μ(k + 1)/μ(k) := A(k) for A(k) :=
(

(N − k)(k + N + 1)

k(k + 1)

)1/2

.

This function satisfies the difference equation

L(k,Sk) · �(k, x) = 2 sinh(x)�(k, x)

for

L(k,Sk) = A(k)Sk + A(k − 1)S −1
k .

For k = 1, 2, . . . , N , the function �(k, x) is square-integrable on R, and by the
choice of μ(k) above has norm 1. The integral operator

T�(F)(z) =
∫ ∞

t
F(x)K (x, z)dx

with kernel

K (x, z) =
N∑

j=p

�( j, x)�( j, z)
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can be viewed as an integral operator on L2(R).
To obtain a differential operator commuting with this integral operator, we wish to get

a better sense of the operators in the symmetric part of the Fourier algebras Fk,sym(�)

and Fz,sym(�). We showed above that

L(k,Sk) · �(k, x) = �(k, x)2 sinh(x) and �(k, x) · D(x, ∂x ) = k2�(k, x),

and therefore,

k2, L(k, ∂k) ∈ Fk,sym(�) and 2 sinh(x), D(x, ∂x ) ∈ Fx,sym(�).

More generally, the anticommutator of symmetric operators is also symmetric, so

{k2, L} = k2L(k,Sk) + L(k,Sk)k
2

= A(k)(2k2 + 2k + 1)Sk + A(k − 1)(2k2 − 2k + 1)S −1
k

is an element of Fk,sym(�) and

{2 sinh(x), D(x, ∂x )} = 2 sinh(x)D(x, ∂x ) + 2D(x, ∂x ) sinh(x)

= 4∂x (sinh(x))∂x + 2 sinh(x) + 4 sinh(x)N (N + 1)sech2(x)

is an element of Fx,sym(�).
Since the generalized Fourier map is an algebra isomorphism, it must map anticom-

mutators to anticommutators, and thus,

b� :
L(k,Sk) �→ 2 sinh(x),

k2 �→ D(x, ∂x ),

{k2, L} �→ {2 sinh(x), D(x, ∂x )}.
More explicitly, b� satisfies

A(k)Sk + A(k − 1)S −1
k �→ 2 sinh(x),

k2 �→ ∂2
x + N (N + 1)sech2(k),

(
A(k)(2k2 + 2k + 1)Sk

+A(k − 1)(2k2 − 2k + 1)S −1
k

)
�→

(
4∂x (sinh(x))∂x + 2 sinh(x)

+4 sinh(x)N (N + 1)sech2(x)

)
,

It follows that for ∗ the anti-involution,F2,2
k,sym(�) has dimension 8 as a real vector space

(including the constants).
By Theorem 5.10 combined with Theorem 6.1, there must exist a nonconstant dif-

ferential operator in F2,2
y,sym(�) commuting with the integral operator T� . To find it, we

can take a general linear combination of the non-constant operators in F2,2
k,sym(�):

P(k,Sk) := A(k)(2k2 + 2k + 1 + β)Sk + γ k2 + A(k − 1)(2k2 − 2k + 1 + β)S −1
k .

By linearity, the image R(x, ∂x ) := b�(P) satisfies

R(x, ∂x ) = ∂x (4 sinh(x) + γ )∂x + 2 sinh(x)(β + 1)

+ 4 sinh(x)N (N + 1)sech2(x) + γ N (N + 1)sech2(x).
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The general bi-self-adjoint operator we are looking for is exactly the difference operator
L whose discrete concomitant (5.2) vanishes at p−1, and whose continuous concomitant
vanishes at t . The first condition implies that β = −2(p − 1)2 − 2(p − 1) − 1, while
the second condition gives γ = −4 sinh(t). Inserting these values and rescaling the
expression by a factor of 4, we find that the differential operator

R(x, ∂x ) = ∂x (sinh(x) − sinh(t))∂x − p(p − 1) sinh(x)

+ N (N + 1)(sinh(x) − sinh(t))sech2(x)

commutes with the integral operator T� .
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