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Equitable Top-𝑘 Results for Long Tail Data
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For datasets exhibiting long tail phenomenon, we identify a fairness concern in existing top-𝑘 algorithms, that

return a “fixed” set of 𝑘 results for a given query. This causes a handful of popular records (products, items, etc)

getting overexposed and always be returned to the user query, whereas, there exists a long tail of niche records
that may be equally desirable (have similar utility). To alleviate this, we propose 𝜃-Equiv-top-𝑘-MMSP

inside existing top-𝑘 algorithms - instead of returning a fixed top-𝑘 set, it generates all (or many) top-𝑘

sets that are equivalent in utility and creates a probability distribution over those sets. The end user will be

returned one of these sets during the query time proportional to its associated probability, such that, after

many draws from many end users, each record will have as equal exposure as possible (governed by uniform

selection probability). 𝜃-Equiv-top-𝑘-MMSP is formalized with two sub-problems. (a) 𝜃-Equiv-top-𝑘-Sets

to produce a set 𝑆 of sets, each set has 𝑘 records, where the sets are equivalent in utility with the top-𝑘 set;

(b) MaxMinFair to produce a probability distribution over 𝑆 , that is, 𝑃𝐷𝐹 (𝑆), such that the records in 𝑆

have uniform selection probability. We formally study the hardness of 𝜃-Equiv-top-𝑘-MMSP. We present

multiple algorithmic results - (a) An exact solution for 𝜃-Equiv-top-𝑘-Sets, and MaxMinFair. (b) We design

highly scalable algorithms that solve 𝜃-Equiv-top-𝑘-Sets through a random walk and is backed by probability

theory, as well as a greedy solution designed for MaxMinFair. (c) We finally present an adaptive random

walk based algorithm that solves 𝜃-Equiv-top-𝑘-Sets andMaxMinFair at the same time. We empirically

study how 𝜃-Equiv-top-𝑘-MMSP can alleviate a equitable exposure concerns that group fairness suffers

from. We run extensive experiments using 6 datasets and design intuitive baseline algorithms that corroborate

our theoretical analysis.
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1 INTRODUCTION
The proliferation of e-commerce platforms such as Amazon.com, Netflix, and Spotify.com has given

rise to the so-called “infinite-inventory”, which offer an order of magnitude more records (products,

movies, songs) than their brick-and-mortar counter-parts [5]. This results in a long-tail market,

where a handful of records get heavily exposed to the end users and a long tail of “niche” records

remain relatively unknown. As a concrete example, the top-1000 highest rated movies in IMDB [31]
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follow a long tail distribution in terms of number of views (refer to Y-axis in Figure 1), even though

they all have highly similar (average rating between 8.34 and 7.9)“utility” (IMDB ratings).

In Section 2.1 we describe the current process with a running example on the aforementioned

IMDB-1000 datasets, how it leads to inequitable exposure of movies, and how we intend to redesign

existing top-𝑘 algorithms to circumvent that. Our proposed solution advocates to return one of the

equivalent top-𝑘 sets to the end users in a probabilistic manner, such that, after many such draws

by many end users, the exposure of the records are as equitable as possible. The same static answer

could still be returned if the application warrants - but when users pose generic queries [37] (e.g.,

top-3 movies, books) on long tail data, this will unveil interesting movies, songs, and products, that

the users will not experience otherwise. To the best of our knowledge, we are the first to study this
aspect of unequal exposure inside top-𝑘 algorithms that is agnostic to any specific scoring functions.
Problem Motivation and Models. We adapt a political theory, namely, the Sortition Act [15, 45]
and redesign existing top-𝑘 algorithms to have them compute a set 𝑆 of multiple top-𝑘 sets that are
equivalent in utility as opposed to a fixed top-𝑘 set. Given 𝑆 , an end user still draws one of the sets

at random. Hence, the goal is to assign a probability distribution over 𝑆 , i.e., 𝑃𝐷𝐹 (𝑆), such that after

many such draws from many end users, the records returned inside the top-𝑘 sets have as uniform

selection probability as possible. We formalize 𝜃-Equiv-top-𝑘-MMSP that produces 𝑃𝐷𝐹 (𝑆) for
a given query and a scoring function F . Each set 𝑠 ∈ 𝑆 contains 𝑘 number of records whose

score is at most 𝜃% (a tunable application dependent input parameter) smaller than the optimum

top-𝑘 score, and the 𝑃𝐷𝐹 (𝑆) is computed such that the selection probabilities of the records in it

are as uniform as possible. Enabling equal selection probabilities promotes equal exposure of the

records. 𝜃-Equiv-top-𝑘-MMSP is rooted on maxmin fairness theory that maximizes the minimum

exposure. We are aware of a few related works that we borrow inspirations from. [7] studies how

to enable equal exposure in similarity search by returning points within distance 𝑟 from the given

query with the same probability. The bulk of the algorithmic fairness literature deals with group

fairness along the lines of demographic parity[32, 48]: this is typically expressed by means of some

fairness constraint requiring that the top-𝑘 results (for any k) to contain enough records from some

groups that are protected from discrimination based on sex, race, age, etc. In practice these group

fairness constraints hurt equitable exposure [9, 21, 25] owing to differential participation rates

across sub population. Both [21, 25] study how group fairness alone can hurt equitable exposure of

the records and thus define computational frameworks to promote equal selection probability in

group fairness. These existing works do not have any easy extension to top-𝑘 algorithms. We study

how 𝜃-Equiv-top-𝑘-MMSP alleviates exposure based fairness concerns that demographic parity

based group fairness (e.g., top-𝑘 parity [32], proportionate fairness [48]) give rise to.

Technical Contributions.We formalize key definitions, such as, 𝜃 -equivalent top-𝑘 sets, selection

probability of records, and present 𝜃-Equiv-top-𝑘-MMSP that has two steps (Section 2). (A)

𝜃-Equiv-top-𝑘-Sets generates 𝑆 , the set of 𝜃 equivalent top-k sets (where 𝜃 is a tunable parameter

that can control how much change is desirable across different top-𝑘 sets for different applications),

(B) MaxMinFair computes 𝑃𝐷𝐹 (𝑆) such that the minimum selection probability of a record is

maximized. We prove that the counting problem involved in 𝜃-Equiv-top-𝑘-Sets is #P-hard, which

makes 𝜃-Equiv-top-𝑘-MMSP an NP-Complete problem.

In Section 3, we first present an exact algorithm OptTop-k-𝜃 that produces 𝑆 , all 𝜃 -equivalent

top-𝑘 sets and is exact in nature. We also study efficient alternatives later, which only computes a

few 𝜃 equivalent top-k sets (as opposed to all). The exact algorithm is inspired by the celebrated

NRA algorithm [19] but not an easy adaptation, because of the exponential nature of 𝜃-Equiv-top-𝑘-
Sets. At the heart of the process, OptTop-k-𝜃 intends to maintain a set of candidate top-𝑘 sets,

efficiently compute and maintain their best and worst possible scores through upper and lower

bounds, and decide if it is safe to terminate and produce the exact 𝑆 without having to read any more
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Fig. 1. Viewership distribution of top-1000 IMDB movies

records. However, because the number of possible size-𝑘 sets increases exponentially with new

records being read, OptTop-k-𝜃 leverages an efficient data structure based on the concept of item

lattice that allows efficient computation of the possible size-𝑘 sets and incremental updates of their

score bounds by reusing previously calculated scores. For producing 𝑃𝐷𝐹 (𝑆), we present a linear
programming-based exact solution Opt-SP. For OptTop-k-𝜃 , the storage space and computational

cost of this lattice is O(
(
𝑁
𝑘

)
), which is the theoretical lower bound, but the same structure could be

made significantly lightweight, if approximation is allowed, as we discuss in Section 4.

In Section 4.1, we presentRWalkTop-k-𝜃 that is highly scalable to solve both 𝜃-Equiv-top-𝑘-Sets

andMaxMinFair. It makes use of the same item lattice structure described above, but builds it only

partially on the go, making it significantly lightweight. RWalkTop-k-𝜃 is a probabilistic algorithm
based on random walk on the lattice that is backed by the Good Turing Test [24]. Good Turing Test

is often used in population studies to estimate the number of unique species in a large unknown

population [24], which we use to determine when RWalkTop-k-𝜃 could stop and still discover

all 𝜃 -equivalent top-𝑘 sets with high probability. Given 𝑆 , RWalkTop-k-𝜃 calls a highly efficient

greedy solution Gr-SP to produce a probability distribution over it.

In Section 4.2, we finally design ARWalkTop-k-𝜃 , an adaptive random walk based approach

that solves 𝜃-Equiv-top-𝑘-Sets and MaxMinFair at the same time. The intuition comes from

the fact (that we formally prove in the paper) that if 𝑆 contains records that only appears in one

and exactly one set 𝑠 ∈ 𝑆 , then 𝑃𝐷𝐹 (𝑆) is a uniform probability distribution which ensures equal

selection probabilities for all records. ARWalkTop-k-𝜃 is similar to the random walk described

in RWalkTop-k-𝜃 , except it performs the random walk adaptively, by lowering the probability

of the records that are already part of some valid 𝑠 , and boosting the probability of the remaining

records that have not been part of any valid 𝑠 yet. After that, 𝑃𝐷𝐹 (𝑆) becomes a uniform probability

distribution over the sets produced during the adaptive random walk.

Experimental Evaluations (Section 5). Our final contributions are empirical. As discussed above,

equal exposure is orthogonal to demographic parity based group fairness, such as, top-𝑘-parity

or proportionate fairness [32, 48], but we show it can further alleviate biases that group fairness

alone gives rise to. Our results corroborate that when 𝜃-Equiv-top-𝑘-MMSP is integrated inside

top-𝑘-parity, the returned results satisfy both equitable exposure as well as group fairness criteria,

which top-𝑘 parity alone is unable to promote. We use 4 different large scale real world datasets

and two large synthetic datasets to extensively evaluate our designed solutions and compare them

against several intuitive baseline algorithms. Our experimental evaluations also corroborate our

theoretical analysis, it terms of the quality and the scalability of the designed solutions.

Section 6 contains the related work andwe conclude in Section 7, giving future research directions.
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2 DATA MODEL & PROBLEM DEFINITION
In this section, we present a running example, introduce key notations used throughout the paper

(Table 1), describe our data model, present key definitions, formalize 𝜃-Equiv-top-𝑘-MMSP, and

study its hardness.

2.1 Running Example
Consider the IMDB-1000 datbase 𝐷 . The attributes are movie name, IMDB rating, year, genre, and

director. Assume that a user writes a query (𝑞) to search for top-3 movies (𝑘 = 3) released in year

2022.

Imagine only 5 movies as described in Table 2 are released in 2022 and they have highly similar

IMDB ratings. Let the scoring/utility function F be the weighted relevance and max sum diversity

(WRMSD in short), as proposed below (with 𝜆 = 0.5). Let IMDB ratings reflect the relevance scores

of the records and diversity be computed considering genre and director values. The sorted pairwise

diversity is given in Table 3.

In the set 𝑠1 = {𝑟2, 𝑟3, 𝑟5}, the utility score of 𝑟2, 𝑟3, 𝑟5 are 6.75, 6.65, 6.45, leading to the maximum

utility score of top-3 movies to be 19.85, as shown in 4. Static top-𝑘 algorithms will always return

{𝑟2, 𝑟3, 𝑟5}, whereas, 𝑠2 = {𝑟1, 𝑟2, 𝑟3}, 𝑠3 = {𝑟2, 𝑟3, 𝑟4}, 𝑠4 = {𝑟1, 𝑟3, 𝑟5}, may also be equally desirable

(all have items with high utility, leading to high set score above 19). However, if only 𝑠1 is always

returned, this leads to little to no exposure of movies 𝑟1, 𝑟4.

We advocate for an alternative process, where, there exists a tunable parameter 𝜃 , which will

empower the application designer to introduce variability in the top-𝑘 results to the end users (if

the application warrants the same static answer, 𝜃 could be set to 0). For long tail data with generic

queries [37], this process may bring forth additional interesting movies, products, songs to the end

users. If 𝜃 = 0.03, the goal is to create a set 𝑆 of top-𝑘 sets, such that each 𝑠 ∈ 𝑆 has utility score

≥ (19.85 − [0.03 × 19.85]) = 19.25. It is easy to notice that even with only 5 records, there are three

additional sets {𝑠2, 𝑠3, 𝑠4} that satisfy this condition (Table 4).

The top-𝑘 interface however still allows users to see only one set of 𝑘 results. Thus, given 𝑆 , our

goal is to create a probability distribution over it, 𝑃𝐷𝐹 (𝑆). A user draws one 𝑠 from 𝑆 corresponding

to its associated probability, such that, after many draws from many end users, the movies in 𝑆 have

as uniform selection probabilities as possible. Creating 𝑃𝐷𝐹 (𝑆) is non-trivial - if one associates
uniform probability (0.25) to each of the 4 sets, then, 𝑟3 will always be over exposed (quantified

by its selection probability, which is also formalized in this section), as it will always be returned

to the end users, leading to 1 selection probability, whereas, 𝑟4 will be heavily underexposed. The

selection probabilities of 𝑟1 = 0.5, 𝑟2 = 0.75, 𝑟5 = 0.5, and that of 𝑟4 is only 0.25, as 𝑟4 is present in

only 𝑠3 out of the 4 sets. Our effort here is thus to produce 𝑃𝐷𝐹 (𝑆) such that the movies in 𝑆 have

as uniform selection probabilities as possible.

2.2 Data Model
Database. A database 𝐷 contains 𝑁 records, where each record is represented as 𝑟 .

Top-𝑘 Query. A top-𝑘 query 𝑞 intends to return 𝑘 answers from 𝐷 . We are especially interested in

generic queries (e.g., top vacation spots, top movies, good books, etc).

2.2.1 Utility Based Scoring Functions. Given a query 𝑞 and 𝐷 , a utility based scoring function F
scores each record with utility value F (𝑟, 𝑞) and produces F (𝑠, 𝑞), 𝑟 ∈ 𝑠, |𝑠 | = 𝑘 , which is the the

aggregated utility score of set 𝑠 with 𝑘 records.

• Relevance: F (𝑟, 𝑞) = 𝑅𝑒𝑙 (𝑟, 𝑞), where 𝑅𝑒𝑙 is the relevance between record 𝑟 and query 𝑞.

• Diversity: Diversity is the dissimilarity between any two records, 𝐷𝑖𝑣 (𝑟𝑖 , 𝑟 𝑗 ) that is used to

capture results that are representative of the population.
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The attributes of the records could be used to calculate these values. Tables 2, 3 have some of those

for Example 2.1.

Representative F . Some representative utility functions appear as follows.

• Sum-relevance. F (𝑠, 𝑞) = Σ𝑟 ∈𝑠𝑅𝑒𝑙 (𝑟, 𝑞)
• Weighted relevance and max sum diversity (WRMSD).

F (𝑠, 𝑞) = 𝜆 × Σ𝑟 ∈𝑠𝑅𝑒𝑙 (𝑟, 𝑞) + (1 − 𝜆) × Σ𝑟 ∈𝑠𝑀𝑎𝑥𝑟,𝑟 𝑗 ∈{𝑠−𝑟 }
𝐷𝑖𝑣 (𝑟, 𝑟 𝑗 ), where 𝜆 is a weight between [0, 1].
• Maximalmarginal relevance [12] orMMR.F (𝑠, 𝑞) = 𝜆×Σ𝑟 ∈𝑠𝑅𝑒𝑙 (𝑟, 𝑞)+(1−𝜆)×Σ𝑟 ∈𝑠𝑀𝑖𝑛𝑟,𝑟 𝑗 ∈{𝑠−𝑟 }𝐷𝑖𝑣 (𝑟, 𝑟 𝑗 )

The proposed framework is generic and extensible to any utility function, however, as we shall

see later that the exact solution 𝜃-Equiv-top-𝑘-Sets requires the function to be monotonic.

2.2.2 Top-𝑘 Algorithms. Given 𝐷 , 𝑞, and an integer 𝑘 , return a set 𝑠 of 𝑘 records from 𝐷 that has

the highest F (𝑠, 𝑞), i.e.,
• |𝑠 | = 𝑘 ;

• 𝑠 has the highest utility score, i.e., for any other set of 𝑘 records 𝑠′, F (𝑠, 𝑞) ≥ F (𝑠′, 𝑞).

2.2.3 Promoting Fairness inside Top-k Algorithms. It is easy to see that there could be more than

one set of k-records that have highly similar utility score. To that end, we define the notion of

equivalent size-𝑘 sets.

Definition 2.1. Equivalent size 𝑘 sets. Given a threshold 𝜃 , a query 𝑞 and size 𝑘 , two sets 𝑠𝑖 and

𝑠 𝑗 each with 𝑘 records are equivalent if the score of the set with lower score is not smaller than a
predefined threshold 𝜃% of that with the higher score, i.e.,

𝑠𝑖 ≡ 𝑠 𝑗 if F (𝑠𝑖 , 𝑞) ≥ (1 − 𝜃 ) × F (𝑠 𝑗 , 𝑞), when F (𝑠𝑖 , 𝑞) < F (𝑠 𝑗 , 𝑞)
Running Example. In the context of example 2.1, when WRMSD is considered as the scoring

function and 𝜃 = 0.03, two equivalent size 𝑘 sets with scores 19.85 and 19.7 are 𝑠1 = {𝑟2, 𝑟3, 𝑟5},
𝑠2 = {𝑟1, 𝑟2, 𝑟3}, respectively.

Definition 2.2. Probability Distribution over size 𝑘 sets. Given a set 𝑆 of sets, each with

𝑘 records, a probability distribution 𝑃𝐷𝐹 (𝑆) assigns a probability 𝑃 (𝑠) to each 𝑠 ∈ 𝑆 , such that∑
𝑠∈𝑆

𝑃 (𝑠) = 1.

Definition 2.3. Selection probability of a record. Given a probability distribution 𝑃𝐷𝐹 (𝑆)
of a set 𝑆 containing many size 𝑘 sets, the selection probability [21] of a record 𝑟 is the sum of

probability values of all the sets that contain 𝑟 .

P(𝑟 ) =
∑︁

𝑟 ∈𝑠,𝑠∈𝑆
𝑃 (𝑠) (1)

Running Example. Considering the running example, uniform probability distribution 𝑃 (𝑠1) =
𝑃 (𝑠2) = 𝑃 (𝑠3) = 𝑃 (𝑠4) = 1/4, leads to selection probability P(𝑟4) = 𝑃 (𝑠3) = 1/4, whereas, P(𝑟3) =
𝑃 (𝑠1) + 𝑃 (𝑠2) + 𝑃 (𝑠3) + 𝑃 (𝑠4) = 1. Indeed, no matter which set the end users draw, 𝑟3 will always

be returned, whereas, 𝑟4 will be returned only 1/4 of the time.

2.3 Problem Definition & Hardness
Our overarching goal is to produce top-𝑘 set of sets that are “equivalent” in utility w.r.t. the set

with the highest utility (i.e., the optimum top-𝑘 set), and ensure that all records present in any of

the equivalent top-𝑘 sets have an equal selection probability. Generally speaking, we adapt the

Egalitarian Social Welfare notion [17], which maximizes the lowest selection probability of a record

present in any top-𝑘 sets.
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ProblemDefinition 1. (𝜃-Equiv-top-𝑘-MMSP )MaximizeMinimumSelection Probability

in 𝜃-Equivalent Top-𝑘 Sets.

Given a database 𝐷 with 𝑁 records, scoring function F , threshold 𝜃 , query 𝑞, and integer 𝑘 , produce a
set 𝑆 of equivalent top-𝑘 sets and a probability distribution 𝑃𝐷𝐹 (𝑆) over 𝑆 , such that, the minimum
selection probability of a record present in any 𝑠 ∈ 𝑆 is maximized. Specifically, we define the following
two sub-problems.
• 𝜃-Equiv-top-𝑘-Sets. Produce a set 𝑆 of all 𝜃 -equivalent top-𝑘 sets, such that, 𝑠 ∈ 𝑆 satisfies:
F (𝑠, 𝑞) ≥ (1 − 𝜃 ) × 𝑎𝑟𝑔𝑚𝑎𝑥𝑠′∈𝑆F (𝑠′, 𝑞)
• MaxMinFair. Compute probability distributions 𝑆 such that the smallest selection probability
P(𝑟 ) of a record 𝑟 ∈ 𝑠, 𝑠 ∈ 𝑆 is maximized. That is:

Maximize Min P(𝑟 ), 𝑟 ∈ 𝑠, 𝑠 ∈ 𝑆, (2)

In general, our proposed framework can accommodate any scoring function. However, when the

scoring function is non-monotone, such as, MMR [12], the designed solutions become approxima-

tion.

Theorem 2.4. The problem of finding the number of 𝜃-Equiv-top-𝑘-Sets is #P-hard.

Proof. We show a polynomial time reduction from the problem of computing all maximal

frequent itemsets of size at most 𝑡 [27, 49] to the problem of computing all 𝜃 -equivalent top-𝑘 sets,

that has a simple mapping between the number of solutions. This suffices since the problem of

finding the number of 𝜎-frequent maximal itemsets (threshold 𝜎 ∈ [0, 1]) with at most 𝑡 items of a

given 0-1 database 𝐷 is known to be #P-hard [49].

We take an instance of such 0-1 database with𝑚 transactions over 𝑁 items. The 𝜎 is set to be 1/𝑚.

Given one such instance of a 0-1 database, we create an instance of our problem as follows: each item

becomes a unique record 𝑟 , such that F (𝑟, 𝑞) = 1, for an arbitrary query 𝑞. F (𝑠, 𝑞) = Σ∀𝑟 ∈𝑠F (𝑟, 𝑞).
𝜃 is set to be any number between [0, 1]. A set of items is 𝜎-frequent maximal itemset of size at

most 𝑘 , iff the set of records corresponding to the itemset forms a set 𝑠 with score F (𝑠, 𝑞) = 𝑘 .

Therefore, the number of 𝜃 -equivalent top-𝑘 sets is at least as many as the number of 𝜎 frequent

maximal itemsets of size at most 𝑘 . This completes the reduction. □

Theorem 2.5. The 𝜃-Equiv-top-𝑘-MMSP problem is NP-Complete.

Proof. (sketch) We omit the details for brevity. Intuitively, the hardness comes from the fact

that 𝜃-Equiv-top-𝑘-MMSP needs to enumerate all 𝜃 -equivalent top-𝑘 sets, which is at least as

hard as counting all such sets that is proved to be #P-hard. □

Symbol Definition

𝑁 # records in 𝐷

𝑘 , 𝑞 size of result sets, query

𝜃 ,𝑠 , 𝑆 equivalence threshold, a top-k set, 𝜃 -equivalent top-𝑘 sets

C, L, F candidate set, sorted input lists, scoring function

P(𝑟 ) selection probability of record 𝑟

Table 1. Table of notations

3 EXACT ALGORITHMS
We first describe an exact solution that solves both the sub-problems 𝜃-Equiv-top-𝑘-Sets and

MaxMinFair exactly, thereby ensuring exact solution for 𝜃-Equiv-top-𝑘-MMSP.

The framework is described in Algorithm 1. To solve 𝜃-Equiv-top-𝑘-Sets, it runs in a loop

and finds the 𝑖-th best top-k set in the 𝑖-th iteration - that is, F (𝑠, 𝑞) = TopkSets(𝑖) ≥ F (𝑠′, 𝑞) =
TopkSets( 𝑗), where 𝑖 < 𝑗 . It maintains all records that are seen throughout. This process continues
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Record Movie Name IMDB Score

r1 Top Gun: Maverick 8.6

r2 K.G.F: Chapter 2 8.5

r3 Everything Everywhere All at Once 8.3

r4 RRR 8.1

r5 The Batman 7.9

Table 2. Records with sorted relevance (Example 2.1)

Pair of records (r2,r3) (r3,r5) (r1,r3) (r3,r4) (r1,r4) (r4,r5) (r1,r2) (r2,r4) (r2,r5) (r1,r5)

Diversity Score 5 5 4 4 2 2 2 2 1 1

Table 3. Sorted diversity list based on Example 2.1

sets s2:{r1,r2, r3} {r1,r2, r4} {r1,r2,r5} {r1,r3,r4} s4:{r1,r3,r5} {r1,r4,r5} s3:{r2,r3,r4} s1:{r2,r3,r5} {r2,r4,r5} {r3,r4,r5}

Utility Score 19.7 15.6 14.5 18.5 19.4 15.3 19.45 19.85 15.25 19.15

Table 4. WRMSD scores of all set of sets, each with 3 movies

Algorithm 1 Generic Framework for 𝜃-Equiv-top-𝑘-MMSP

Inputs: 𝑞, 𝑘 , 𝜃 , database 𝐷 , F
Outputs: 𝑃𝐷𝐹 (𝑆): probability distribution over a set 𝑆 of top-k sets

1: 𝑓 𝑙𝑎𝑔 = 0

2: 𝑂𝑝𝑡 = ∞
3: 𝑠 = TopkSets(1) (F , 𝐷, 𝑘)
4: 𝑂𝑝𝑡 = 𝑠 .𝑠𝑐𝑜𝑟𝑒 , 𝑆𝑐𝑜𝑟𝑒 = 𝑂𝑝𝑡

5: 𝑆 ← {𝑠}
6: i← 2

7: while (𝑆𝑐𝑜𝑟𝑒 ≥ (1-𝜃 ) ×𝑂𝑝𝑡)𝑎𝑛𝑑 (𝑓 𝑙𝑎𝑔 ≠ 1) do
8: 𝑠 = TopkSets(𝑖) (F , 𝐷, 𝑘)
9: 𝑆 ← 𝑆

⋃
𝑠

10: 𝑆𝑐𝑜𝑟𝑒 = 𝑠 .𝑠𝑐𝑜𝑟𝑒 , 𝑖 ← 𝑖 + 1
11: end while

12: 𝑃𝐷𝐹 (𝑆) ← MaxMinFair(𝑆)

until the utility score of a top-𝑘 set falls 𝜃% below from the optimum top-𝑘 . After that, it calls the

MaxMinFair 𝑆 to produce 𝑃𝐷𝐹 (𝑆).
In Section 4.2, we will show how these two steps could be combined to design a highly scalable

solution.

3.1 Algorithm for 𝜃 -Equiv-top-𝑘-Sets
Our proposed algorithm OptTop-k-𝜃 runs in a loop by performing sorted accesses over the input

lists through a cursor movement by calling getNext, gradually produces TopkSets(𝑖) sets whose
scores monotonically decreases, and finally terminates when all 𝜃 equivalent top-k sets are found.

𝜃-Equiv-top-𝑘-Sets requires the scoring functions to be monotonic, we demonstrate OptTop-k-𝜃

using one of the representative function WRMSD described in Section 2.2.1.

(1) Generates and maintains a candidate set (C, 𝑖, 𝑗) of top-𝑘 sets as it reads 𝑗-th records from

the cursors. (C, 𝑖, 𝑗) is needed for deciding TopkSets(𝑖).
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(2) Local stopping: if the TopkSets(𝑖) is present in (C, 𝑖, 𝑗).
(3) Global stopping: if all 𝜃 Equivalent top-k Sets are found.

OptTop-k-𝜃 borrows inspiration from the celebrated NRA (No Random Access) algorithm [19].

However, it is an not an easy adaptation of NRA, because of the exponential nature of 𝜃-Equiv-top-
𝑘-Sets. The algorithm leverages an efficient data structure based on the concept of item lattice

that allows efficient computation of the possible size-𝑘 sets and incremental updates of their score

bounds by reusing previously calculated scores, as described in Sections 3.1.2 and 3.1.3, respectively.

3.1.1 Generate 𝑖-th best top-𝑘 set. The first two operations are done inside Algorithm TopkSets(𝑖),
whose pseudo-code is presented in Algorithm 2. TopkSets(𝑖) is responsible for generating the 𝑖-th

best top-𝑘 set. For the ease of exposition, we assume there exists only one unique top-𝑘 set in each

round, although ties could be handled seamlessly in the framework. Given the set L of sorted input

lists, the algorithm sets a cursor on each list, and fetches the next record from those lists through

L getNext calls. As an example, if the input lists consist of both relevance and diversity, then

getNext fetches the next record from 𝑠𝑜𝑟𝑡𝑒𝑑𝑅𝑒𝑙𝐿𝑖𝑠𝑡 list as well as that from the 𝑠𝑜𝑟𝑡𝑒𝑑𝐷𝑖𝑣𝐿𝑖𝑠𝑡 list

and their corresponding scores. The cursor points to the current position in the lists (let us assume

that position to be 𝑗 ). It keeps track of the all seen records upto 𝑗-th position. Then createNewSets

creates all possible size-𝑘 sets (lines 1-4).

In order to accomplish (2), the other challenge involves score computations of size-𝑘 sets that are

encountered so far. Since, OptTop-k-𝜃 performs only sorted accesses, it may not be able to produce

the exact score of a set of 𝑘 records immediately - rather has to consider upper and lower bounds

of score to argue if this set is a possible candidate for TopkSets(𝑖). Upper bound score of a set 𝑠 ,

𝑢𝑏 (𝑠) (similarly lower bound score 𝑙𝑏 (𝑠)) is the maximum possible (similarly the smallest) possible

score 𝑠 can get. Moreover, when more records are being read, these bounds are to be updated as

well. Section 3.1.2 describes how that could be done efficiently.

Lower and upper bound score of a set. Clearly, the lower bound (upper bound) score of a set 𝑠 ,

𝑙𝑏 (𝑠) (similarly 𝑢𝑏 (𝑠)) is the minimum (similarly maximum) possible score of 𝑠 that LowerBound

and UpperBound calculate. LowerBound(𝑠) is calculated based on an objective function F and

using the scores of any unseen component of F (𝑠) by the smallest possible value. UpperBound(𝑠)
is done analogously, except the unseen component is replaced by the cursor reading at the 𝑗-th

position. Lines 5-7 do that task.

Illustration using WRMSD. Imagine F is (weighted rel, max div). In that case L consists of

two lists - a sorted relevance list 𝑠𝑜𝑟𝑡𝑒𝑑𝑅𝑒𝑙𝐿𝑖𝑠𝑡 and a sorted pairwise diversity lists 𝑠𝑜𝑟𝑡𝑒𝑑𝐷𝑖𝑣𝐿𝑖𝑠𝑡

in decreasing order of relevance and diversity values, respectively. Imagine the cursor is at the

2nd position of both these lists (i.e., 𝑗 = 2)- therefore, so far it has seen 𝑟𝑒𝑙 (𝑟1), 𝑟𝑒𝑙 (𝑟2), 𝑑𝑖𝑣 (𝑟2, 𝑟3),
𝑑𝑖𝑣 (𝑟3, 𝑟5). Clearly, 4 records are seen so far, but all of their scores are not known - 4 different size-𝑘

(𝑘 = 3) sets could be produced. But, because of sorted access, the score of none of these sets could

be calculated exactly. As an example, 𝑢𝑏 (𝑟1, 𝑟2, 𝑟3) = 8.6 + 8.5 + 8.5 + 5 + 5 + 5 if the weight 𝜆 is

ignored. However, when the cursor reads another record, either from the relevance or from the

diversity list, the 𝑢𝑏 of all sets need to be updated.

Deciding the 𝑖-th top-𝑘 set. Line 8 of TopkSets(𝑖) produces and maintains a threshold and lines

9-12 decide if it needs to continue the computation any further or it is safe to terminate.

Definition 3.1. Threshold is the maximum utility score of any unseen top-𝑘 set. 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 [ 𝑗] =
𝑀𝑎𝑥 [𝑢𝑏 (C, 𝑖, 𝑗)]

Given the cursor is at the 𝑗-th position of the input lists, if 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 [ 𝑗] falls below 𝑂𝑝𝑡 × (1-𝜃 ),
there is no point of looking any further,TopkSets(𝑖) can terminate by returning the best set present

in (C, 𝑖, 𝑗).
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Algorithm 2 TopkSets (i)

Inputs: a set L of input lists, 𝑖 , F , 𝑘 , TopkSets(𝑖 − 1).𝑠𝑐𝑜𝑟𝑒 , 𝜃 , 𝑂𝑝𝑡
Outputs: 𝑛𝑒𝑥𝑡𝐵𝑒𝑠𝑡 : 𝑖-th best set

1: 𝑐𝑢𝑟𝑠𝑜𝑟 ← 0, 𝑠𝑒𝑒𝑛𝑅 ← ∅
2: for 𝑗 = 𝑐𝑢𝑟𝑠𝑜𝑟 to𝑀𝑎𝑥𝑙∈L𝐿𝑒𝑛(𝑙) do
3: 𝑠𝑒𝑒𝑛𝑅 = {𝑠𝑒𝑒𝑛𝑅⋃

getNext(𝑙1 ( 𝑗)),getNext(𝑙 | L | ( 𝑗))}
4: (C, 𝑖, 𝑗) ← createNewSets(seenR[j])

5: for s in (C, 𝑖, 𝑗) do
6: lb(s), ub(s)← LowerBound(𝑠), UpperBound(𝑠)

7: end for

8: threshold[j]← max(ub)

9: if 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 [ 𝑗] < 𝑂𝑝𝑡 × (1 − 𝜃 ) then
10: 𝑛𝑒𝑥𝑡𝐵𝑒𝑠𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥 (C, 𝑖, 𝑗), 𝑓 𝑙𝑎𝑔 = 1

11: return 𝑛𝑒𝑥𝑡𝐵𝑒𝑠𝑡

12: end if

13: for s in (C, 𝑖, 𝑗) do
14: if lb[s] ≥ max(ub((C, 𝑖, 𝑗) − 𝑠)) then
15: 𝑛𝑒𝑥𝑡𝐵𝑒𝑠𝑡 ← 𝑠

16: return 𝑛𝑒𝑥𝑡𝐵𝑒𝑠𝑡

17: end if

18: if ub[(C, 𝑖, 𝑗)] <max(lb((C, 𝑖, 𝑗) − 𝑠)) then
19: Prune {(C, 𝑖, 𝑗) − 𝑠}
20: end if

21: end for

22: if max(lb[(C, 𝑖, 𝑗) ≥ min(threshold[j], TopkSets(𝑖 − 1).𝑠𝑐𝑜𝑟𝑒 then
23: 𝑛𝑒𝑥𝑡𝐵𝑒𝑠𝑡 ← argmax(lb(C, 𝑖, 𝑗))
24: Break

25: end if

26: 𝑐𝑢𝑟𝑠𝑜𝑟 ← 𝑗 + 1
27: end for

28: return 𝑛𝑒𝑥𝑡𝐵𝑒𝑠𝑡

Lemma 3.2. 𝑠 = TopkSets(𝑖), if 𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑙𝑏 (C, 𝑖, 𝑗)) and 𝑙𝑏 (𝑠) ≥ 𝑚𝑎𝑥 (𝑢𝑏 (C, 𝑖, 𝑗) − 𝑠))

Lines 13-17 make another key calculation based on Lemma 3.2. It checks if there exists a set 𝑠 in

(C, 𝑖, 𝑗) with the maximum lower bound, such that the 𝑙𝑏 (𝑠) is not smaller than the upper bound

scores of all other remaining sets in (C, 𝑖, 𝑗). In that case, 𝑠 is the 𝑖-th best set and TopkSets(𝑖)
terminates upon returning that set and its values. Indeed, when F is monotonic, no other unseen

sets can have higher score than 𝑠 .

Lemma 3.3. 𝑠 = TopkSets(𝑖), if 𝑠 = 𝑎𝑟𝑔𝑚𝑎𝑥 (𝑙𝑏 (C, 𝑖, 𝑗)) and 𝑙𝑏 (𝑠) ≥ min(𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 [ 𝑗],TopkSets (𝑖−
1).𝑠𝑐𝑜𝑟𝑒)

Similarly, based on Lemma 3.3, the algorithm makes another important decision in Lines 22-27.

If the maximum 𝑙𝑏 (𝑠) of 𝑠 is not smaller than the minimum of 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 [ 𝑗] and the score of the

top-𝑘 set seen in the 𝑖 − 1-th iteration, then 𝑙𝑏 (𝑠) is the top-𝑘 set in the 𝑖-th iteration. This lemma

holds good, since the scores of the returned top-𝑘 sets decrease monotonically over iterations.
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r1 r2 r3 r4 r5

{r1,r2} {r1,r3} {r1,r4} {r1,r5} {r2,r3} {r2,r4} {r2,r5} {r4,r5}{r3,r4} {r3,r5}

{r1,r2,r3} {r1,r2,r4} {r1,r2,r5} {r1,r3,r4} {r1,r3,r5} {r1,r4,r5} {r2,r3,r4} {r2,r3,r5} {r2,r4,r5} {r3,r4,r5}

{r1,r2,r3,r4} {r1,r2,r3,r5} {r1,r3,r4,r5} {r2,r3,r4,r5}{r1,r2,r4,r5}

{r1,r2,r3,r4,r5}

Fig. 2. A complete lattice based on Example 2.1

Pruning sets. EvenwhenTopkSets(𝑖) can not terminate, it checks if all sets in (C, 𝑖, 𝑗) are potential
candidates to be the 𝑖-th best set - clearly, if the upper bound score of a set 𝑠 in (C, 𝑖, 𝑗) is not larger
than the lower bound scores of all other sets in C, 𝑠 could be pruned.

3.1.2 Subroutine createNewSets. Given 𝑁 ′ < 𝑁 number of items that are encountered by

TopkSets(𝑖) already, when a new item 𝑟 is read through a getNext call, OptTop-k-𝜃 has to

perform some hefty tasks.

• It needs to update (C, 𝑖, 𝑗) by adding additional size 𝑘 sets that involve 𝑟 .

• More importantly, it needs to update the lower and upper bound scores of the sets in (C, 𝑖, 𝑗)
- or see if the score could be calculated exactly, if all required scores are read.

A naive idea is to regenerate all size

( (𝑁 ′+1)
𝑘

)
sets from scratch, which is computationally wasteful

and exponential. To that end, we abstract the representation of the size 𝑘 sets over a hierarchically

ordered space as a lattice, and store 𝑢𝑏 and 𝑙𝑏 scores of the record sets there. This data structure

offers a great benefit for doing both of these aforementioned tasks efficiently enabling incremental

computation.

Data Structure. Given 𝑁 ′ seen records, the lattice data structure maintains all

(
𝑁 ′

1

)
,
(
𝑁 ′

2

)
, . . .

(
𝑁 ′

𝑘

)
sets, as well as their utility score. A node in the lattice represents a possible set, singletons, pairs,

triples, ..., size 𝑘 sets, and so on. An edge represents the membership between two size 𝑙 and 𝑙 +1 sets.
In order to solve 𝜃-Equiv-top-𝑘-Sets exactly, this space requirement is indeed the lower bound.

We also note the lattice structure could be made significantly lightweight (both computationally

and storage-wise), if approximate solutions are acceptable, as we discuss in Section 4. A complete

lattice for our running example is shown in Figure 2 given 𝑁 = 5, although the data structure only

stores information upto size 𝑘 sets. The set {𝑟1, 𝑟2, 𝑟3} at level three is created by union of three

sets in level two, which are {𝑟1, 𝑟2}, {𝑟1, 𝑟3}, {𝑟2, 𝑟3}. Hence the edges represent the connection
between these sets in level 𝑙 and 𝑙 + 1.
Maintaining the structure. This data structure is updated incrementally as new records are read

by OptTop-k-𝜃 . Take the running example again and imagine 𝑟𝑒𝑙 (𝑟1), and 𝑑𝑖𝑣 (𝑟2, 𝑟3) is read. So
far, the data structure have the following nodes 𝑟1, 𝑟2, 𝑟3, {𝑟1, 𝑟2}, {𝑟2, 𝑟3}, {𝑟1, 𝑟3}, and {𝑟1, 𝑟2, 𝑟3}.
Next, imagine it reads 𝑑𝑖𝑣 (𝑟3, 𝑟5), thus a new record 𝑟5 is encountered. This creates a singleton, 3

new pairs, and 3 additional size-3 sets. Clearly, 𝑟5 will include the following three additional size-𝑘

sets in (C, 𝑖, 𝑗), {𝑟1, 𝑟2, 𝑟5}, {𝑟2, 𝑟3, 𝑟5}, {𝑟1, 𝑟3, 𝑟5}.

3.1.3 Efficient bound computation and maintenance. Imagine the cursor on the diversity list now

moves to the third position and reads 𝑑𝑖𝑣 (𝑟1, 𝑟3) = 4. The upper bound scores of all of these
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following sets {𝑟1, 𝑟2, 𝑟3}, {𝑟1, 𝑟2, 𝑟5}, {𝑟2, 𝑟3, 𝑟5}, {𝑟1, 𝑟3, 𝑟5} are to be updated now. One can naively

calculate these bounds from the scratch - but there exists an opportunity of reusing previously

done computation that is clearly more efficient.

After reading 𝑑𝑖𝑣 (𝑟1, 𝑟3) = 4, our representation updates the score of the node {𝑟1, 𝑟3} in the

lattice. All nodes that have a direct or indirect edge to {𝑟1, 𝑟3}, their scores are also updated.

Similar situation occurs, when a new record 𝑟 is encountered - the lattice representation allows

us to quickly identify the new nodes that now contains 𝑟 , as well as how to efficiently reuse the

previously computed score of a set 𝑠′ of size smaller than 𝑘 to compute score of set {𝑠′⋃ 𝑟 }.

F (𝑠′
⋃

𝑟, 𝑞) = F (𝑠′, 𝑞) + F (𝑟, 𝑞) (3)

Formally, our effort is to study score update as an incremental process and reuse sub-computations

that are done before. We express the score (lb, ub, or exact) of a set as a summation of scores over

the subsets and retrieve the previously computed scores and reuse it, as opposed to calculating the

scores from scratch every time. Indeed, the lattice representation over the seen records allows us to

decompose the score of a set as an aggregation over the sub-sets and reuse what has been done

before.

Score reuse for WRMSD. Imagine an instance of OptTop-k-𝜃 and the getNext call has just

returned the second row in the diversity list, namely 𝑑𝑖𝑣 (𝑟3, 𝑟5) = 4 and the goal is to produce top-𝑘

sets, where 𝑘 = 4. A brand new record 𝑟5 is just seen and this will add three additional size-3 sets

{𝑟1, 𝑟2, 𝑟5}, {𝑟2, 𝑟3, 𝑟5}, {𝑟1, 𝑟3, 𝑟5}, three size-2 sets {𝑟1, 𝑟5}, {𝑟2, 𝑟5}, {𝑟3, 𝑟5}, and one singleton 𝑟5 on

the lattice. The lattice structure facilitates score calculation of𝑊𝑅𝑀𝑆𝐷 ({𝑟1, 𝑟2, 𝑟3, 𝑟5}) by reusing

the scores that are calculated before. For the purpose of illustration, lets just consider the diversity

component of the WRMSD calculation𝑊𝑅𝑀𝑆𝐷 − 𝐷𝑖𝑣 ({𝑟1, 𝑟2, 𝑟3, 𝑟5}) and see how upper bound of

scores could be calculated incrementally.

𝑢𝑏 − 𝑑𝑖𝑣 ({𝑟1, 𝑟2, 𝑟3, 𝑟5}) = 𝑀𝑎𝑥𝑑𝑖𝑣 [(𝑟1, {𝑟2, 𝑟3, 𝑟5})]
+𝑀𝑎𝑥𝑑𝑖𝑣 [(𝑟2, {𝑟1, 𝑟3, 𝑟5})]
+𝑀𝑎𝑥𝑑𝑖𝑣 [(𝑟3, {𝑟1, 𝑟2, 𝑟5})]
+𝑀𝑎𝑥𝑑𝑖𝑣 [(𝑟5, {𝑟1, 𝑟2, 𝑟3})] .

Now consider𝑀𝑎𝑥𝑑𝑖𝑣 [(𝑟3, {𝑟1, 𝑟2, 𝑟5})] and note that this could simply be expressed as follows:

𝑀𝑎𝑥𝑑𝑖𝑣 [(𝑟3, {𝑟1, 𝑟2, 𝑟5})] = 𝑀𝑎𝑥 (𝑑𝑖𝑣 (𝑟3, 𝑟5), 𝑀𝑎𝑥𝑑𝑖𝑣 [(𝑟3, {𝑟1, 𝑟2})] (4)

𝑀𝑎𝑥𝑑𝑖𝑣 [(𝑟3, {𝑟1, 𝑟2})] is pre-calculated, hence Equation 4 could be efficiently computed by taking a

maximum over𝑀𝑎𝑥𝑑𝑖𝑣 [(𝑟3, {𝑟1, 𝑟2})] score and 𝑑𝑖𝑣 (𝑟3, 𝑟5). This allows sharing computation across

sets.

3.1.4 Global stopping. OptTop-k-𝜃 halts when all 𝜃 -equivalent top-𝑘 sets are produced. This is

checked by when one of the following two conditions is satisfied; (i). the last score received from

TopkSets(𝑖) is smaller than (1 − 𝜃 ) × 𝑂𝑝𝑡 , or (ii). the latest threshold fell below (1 − 𝜃 ) × 𝑂𝑝𝑡
(which sets a flag to 1). It is guaranteed that there is no future unseen sets with score at most 𝜃%

smaller than the best top-𝑘 sets. At that point, OptTop-k-𝜃 safely terminates and produces the

exact solution.

Theorem 3.4. OptTop-k-𝜃 is an exact solution for 𝜃-Equiv-top-𝑘-Sets .

Proof. (sketch). Given a monotonic scoring function, it is easy to see that TopkSets(𝑖) produces
the 𝑖-th best top-𝑘 set in the 𝑖-th iteration. OptTop-k-𝜃 maintains all records across iteration,

forms all potential top-𝑘 sets. Finally, when OptTop-k-𝜃 terminates, the global stopping condition

guarantees that no unseen set of 𝑘 records will be 𝜃 -equivalent of the top-𝑘 set. Hence the proof. □
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Running time of OptTop-k-𝜃 . In Section 2, we prove that the counting problem involved in

𝜃-Equiv-top-𝑘-Sets is #P-hard. In reality, the running time is dominated by the number of records

OptTop-k-𝜃 reads before termination and is dominated by the factor

(
# seen records

𝑘

)
, which is purely

instance dependent. It could be proved that OptTop-k-𝜃 is instance optimal.

3.2 Algorithm for MaxMinFair
The last line of Algorithm 1 calls AlgorithmMaxMinFair, which maximizes the minimum selection

probability of the records present in 𝑆 . We propose a linear programming based optimum solution

Opt-SP that takes the set of sets 𝑆 as input, and produces 𝑃𝐷𝐹 (𝑆), such thatMaxMinFair optimizes.

The problem is formally defined as,

Maximize: 𝑥

subject to:

P(𝑟𝑖 ) =
∑︁

∀𝑟𝑖 ∈𝑠,𝑠∈𝑆
𝑃 (𝑠)

P(𝑟𝑖 ) ≥ 𝑥, 𝑟𝑖 ∈ 𝑠, 𝑠 ∈ 𝑆∑︁
∀𝑠∈𝑆

𝑃 (𝑠) = 1

Given the linear objective function and constraints this could be solved using an off-the-shelf linear

programming solver using Simplex or Ellipsoid method.

Running Time. Opt-SP involves solving a linear program using Simplex or Ellipsoid method.

Since the feasible region of the objective function is a polytope, these algorithms take polynomial

time to the input size 𝑁 and |𝑆 |.
Running Example. Using Example 2.1, 𝑃𝐷𝐹 (𝑆) is produced as follows: 𝑃 (𝑠1) = 0, 𝑃 (𝑠2) =

0, 𝑃 (𝑠3) = 0.5, 𝑃 (𝑠4) = 0.5, leading to selection probability of 𝑟3 = 1, and the remaining all 4 records

each will have 0.5 selection probability.

4 APPROXIMATION ALGORITHMS
We present two approximate solutions in this section. The first one is RWalkTop-k-𝜃 . To solve

𝜃-Equiv-top-𝑘-Sets, instead of designing a deterministic exact solution that could be exponential,

it leverages a random walk based approach on the item lattice that is highly efficient and is backed

by probability theory. To solveMaxMinFair, it presents a highly efficient greedy solution Gr-SP.

ARWalkTop-k-𝜃 solves both 𝜃-Equiv-top-𝑘-Sets andMaxMinFair at the same time through

an adaptive random walk. Both RWalkTop-k-𝜃and ARWalkTop-k-𝜃 make use of the lattice

structure described in Section 3, but it is computed only partially on the fly, making it significantly

lightweight computationally and storage-wise.

4.1 Algorithm RWalkTop-k-𝜃
Algorithm 3 leverages probabilistic computation for producing 𝜃-Equiv-top-𝑘-Sets by making

random walks on the item lattice. Following that, it solves MaxMinFair using a greedy technique.

Inputs to the algorithm are the query, 𝑘 , objective function F , 𝜃 , and the items in 𝐷 . Additionally,

it takes the optimum top-𝑘 set and its corresponding score from TopkSets 1. It starts by assigning

each record a uniform probability of 1/𝑁 . At each step it does uniform random sampling without

replacement to select a record and repeats the process until a set has 𝑘 records. This completes a

single random walk on the item lattice, where the walk consists of the edges that are traversed.

After it retrieves a size 𝑘 set 𝑠 , it computes F (𝑠, 𝑞) and retains 𝑠 , if F (𝑠, 𝑞) ≥ 𝑂𝑝𝑡 − 𝜃 . It keeps
repeating the process and stops when each retained 𝑠 is visited atleast twice in the process.
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Algorithm 3 RWalkTop-k-𝜃

Inputs: query 𝑞, 𝐷 , 𝑘 , F , 𝜃
Outputs: 𝑃𝐷𝐹 (𝑆)

1: while true do

2: 𝑠 = {}, 𝑆 = {}
3: while |𝑠 | ≤ 𝑘 do

4: pick a uniform random 𝑟 ∈ {𝐷 − 𝑠},
5: 𝑠 ← {𝑠⋃ 𝑟 }
6: end while

7: if F (𝑠, 𝑞) ≥ (1 − 𝜃 ) ×𝑂𝑝𝑡 then
8: 𝑆 ← 𝑆

⋃{𝑠}
9: end if

10: 𝑣𝑖𝑠𝑖𝑡 .𝑠 ← 𝑣𝑖𝑠𝑖𝑡 .𝑠 + 1
11: if 𝑣𝑖𝑠𝑖𝑡 .𝑠 ≥ 2,∀𝑠 ∈ 𝑆 then

12: break

13: end if

14: end while

15: 𝑃𝐷𝐹 (𝑆) ← Gr-SP(𝑆)

4.1.1 Termination Condition of the Random Walk. The termination condition used for random

walk is inspired by the Good Turing Test that is often used in population studies to determine

the number of unique species in a large unknown population [24]. Consider a large population of

individuals drawn from an unknown number of species with diverse frequencies, including a few

common species, some with intermediate frequencies, and many rare species. Let us draw a random

sample of 𝑁𝑠𝑎𝑚𝑝 individuals from this population, which results in 𝑛1 individuals that are the

lone representatives of their species, and the remaining individuals belong to species that contain

multiple representatives in the sample population. Then, 𝑃0, which represents the frequency of all

unseen species in the original population can be estimated as follows:

Lemma 4.1. Lemma 1 (Good Turing Test). 𝑃0 = 𝑛1/𝑁𝑠𝑎𝑚𝑝 .

The assumption here is that the overall probability of hitting one rare species is high while the

probability of hitting the same rare species is low. Therefore, the more the sample hits the rare

species multiple times, the less likely there are unseen species in the original population. We apply

Lemma 4.1 to the 𝜃 -equivalent top-𝑘 sets construction, where a valid 𝜃 -equivalent top-𝑘 sets maps

to the species and the probabilities of finding each such set in RWalkTop-k-𝜃 are the frequencies.

The set of 𝜃 -equivalent top-𝑘 sets discovered during RWalkTop-k-𝜃 is the sample population. By

ensuring this process visits each constructed set at least twice, we are essentially ensuring that 𝑛1
is 0. Thus, using Lemma 4.1, 𝑃0 can be estimated to be 0, which means it is highly likely that all

𝜃 -equivalent top-𝑘 sets are discovered.

Illustrative Example. Figure 2 shows the complete lattice involving Example 2.1. To solve 𝜃-

Equiv-top-𝑘-Sets, the algorithm uniform randomly adds a record and continues the process until

a size-3 is obtained. This way the set 𝑠1:{𝑟1, 𝑟2, 𝑟3} is formed. If 𝑠1 is a valid answer, it is retained.

The process continues until all valid sets are discovered at least twice.

4.1.2 Subroutine Gr-SP. Subroutine Gr-SP is designed by leveraging the following lemma.

Lemma 4.2. If every record 𝑟 in 𝑆 appears in only one set 𝑠 ∈ 𝑆 , the 𝑃𝐷𝐹 (𝑆) is a uniform distribution
that guarantees equal selection probability of the records.
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Proof. Lemma 4.2 demonstrates an ideal scenario, where a record 𝑟 ∈ 𝑠 , 𝑠 ∈ 𝑆 appears in only

one 𝑠 . If the 𝑃𝐷𝐹 (𝑆) is a uniform distribution, that is, 𝑃 (𝑠) = 1/|𝑆 |,∀𝑠 ∈ 𝑆 , by leveraging the

definition of selection probability of a record (Definition 2.3), then, P(𝑟 ) = 1/|𝑆 |. Clearly, this
guarantees that each records 𝑟 to have the same selection probability. □
Basically, the greedy algorithm is iterative and attempts to select a subset of sets from 𝑆 that

contains different records. Those subset of sets become part of 𝑂 and gets a non-zero probability

value. Specifically, It selects a set 𝑠 from 𝑆 in each iteration and adds to 𝑂 , which includes the

highest number of records that are not yet present in 𝑂 but present in 𝑆 . The process terminates

when 𝑂 contains all records in 𝑆 . After that, each set that is present in 𝑂 gets uniform probability

of
1

|𝑂 | . Any set 𝑠 ∈ {𝑆 −𝑂}, gets probability 0. We conjecture that this simple yet highly efficient

algorithm accepts a 2-approximation factor, the formal proof is left to be explored in the future.

Illustrative Example. Imagine 𝑆 contains the following 5 sets (𝑘 = 2), 𝑠1: {𝑟1, 𝑟2}, 𝑠2: {𝑟3, 𝑟4}, 𝑠3:
{𝑟1, 𝑟5}, 𝑠4: {𝑟3, 𝑟5}, 𝑠5: {𝑟1, 𝑟3}. If Gr-SP first adds 𝑠1 to 𝑂 , then, in the next iteration it will add

𝑠2, and finally 𝑠3/𝑠4. One possible solution will be 𝑂 = {𝑠1, 𝑠2, 𝑠3}. Each of these sets will get a

probability of 1/3 and the remaining two sets will have probability 0. The minimum selection

probability of the records will be 1/3.
Running time.With an appropriate data structure, such as bucket queue, Gr-SP takes O(𝑁 × |𝑆 |)
to run.

4.2 Algorithm ARWalkTop-k-𝜃
The last algorithm ARWalkTop-k-𝜃 we discuss does not separately compute 𝜃-Equiv-top-𝑘-Sets,

and then,MaxMinFair - instead, solves these two problems together. It makes use of Lemma 4.2

to design an adaptive random walk.

The adaptive random walk based algorithm ARWalkTop-k-𝜃 is similar to the random walk part

of RWalkTop-k-𝜃 , except it performs the random walk adaptively, by lowering the probability

of the records that are already part of some valid 𝑠 , and boosting the probability of the remaining

records that have not been part of any valid 𝑠 yet. The goal is to discover 𝜃 -equivalent top-𝑘 sets

where the same record 𝑟 repeats as few times as possible across the sets - ideally appears in one

and only one 𝑠 . The stopping condition is still guided by the Good Turing Test as described above.

Once the process terminates, each set 𝑠 in 𝑆 gets uniform probability, and accordingly the selection

probability of the records are calculated.

For each record 𝑟 ∈ 𝑁 , the algorithm keeps track of the sets in 𝑆 that contain 𝑟 (𝑟 .𝑠𝑒𝑒𝑛𝐶𝑛𝑡 ).

Instead of picking a record uniformly at random, it then, selects 𝑟 with a probability that is inversely

proportional to 𝑟 .𝑠𝑒𝑒𝑛𝐶𝑛𝑡 . The intuition is that if a record 𝑟 has already appeared in many 𝑠 ∈ 𝑆 ,
picking it again will hurt the minimum selection probability of other records 𝑟 ′ that did not appear

as frequently. Therefore, in the 𝑖-th iteration of the random walk, it is likely to discover a set of 𝑘

records that contains new records that are not present in 𝑆 yet.

Illustrative Example. Imagine Example 2.1 again and assume that 𝑠1: {𝑟1, 𝑟2, 𝑟3} is discovered.
After that, the 𝑟1 .𝑠𝑒𝑒𝑛𝐶𝑛𝑡 , 𝑟2 .𝑠𝑒𝑒𝑛𝐶𝑛𝑡 , 𝑟3 .𝑠𝑒𝑒𝑛𝐶𝑛𝑡 are increased to 1, and the probabilities of these

records are readjusted proportional to their 1/𝑟 .𝑠𝑒𝑒𝑛𝐶𝑛𝑡 . Consequently 𝑟1, 𝑟2, 𝑟3 now have smaller

probabilities, whereas, 𝑟4, 𝑟5 have higher probability. Then the random walk is repeated again and

the process terminates based on the Good Turing Test. Once 𝑆 is obtained, each 𝑠 ∈ 𝑆 is assigned

uniform probability to produce 𝑃𝐷𝐹 (𝑆).

5 EXPERIMENTAL EVALUATIONS
Our experimental evaluations have three primary goals.

Goal (1) (Section 5.1). How 𝜃-Equiv-top-𝑘-MMSP alleviates a limitation that demographic parity

based group fairness, such as, top-𝑘 parity, or proportional fairness [32, 48] has. We measure how
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Dataset Size Used Attributes

Yelp 112,686 latitude, longitude, review count

IMDB-top 1000 1,000 numVotes, genre,rating

IMDB 10,000 numVotes

Airbnb 39,882 price

Synthetic 10,000 random samples from uniform distribution

Makeblobs 1,000,000 random samples from guassian distribution

Table 5. Dataset statistics
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Fig. 3. 𝜃 -Equiv-top-𝑘-MMSP alleviates exposure concerns inherent in demographic parity

Fig. 4. Recall of RWalkTop-k-𝜃
varying 𝜃

Fig. 5. Recall of ARWalkTop-k-𝜃
varying 𝜃 Fig. 6. Record pruning percentage

OptTop-k-𝜃

top-𝑘 parity alone leads to inequitable exposure, but when 𝜃-Equiv-top-𝑘-MMSP is integrated

inside top-𝑘 parity, they together promote both equal exposure while satisfying group fairness

constraints. For that, we present (max-min normalized) exposure, which counts the number of

times each record is returned in top-𝑘 .

Goal (2) (Section 5.2). Examine quality. For 𝜃-Equiv-top-𝑘-Sets , we present recall [28] of

the efficient alternatives RWalkTop-k-𝜃 and ARWalkTop-k-𝜃 compared to OptTop-k-𝜃 . For

MaxMinFair, we present approximation factors (objective function of approximate solution/ ob-

jective function of exact solution) of Gr-SP and H-SP wrt Opt-SP.

Goal (3) (Section 5.3). Investigate scalability. For 𝜃-Equiv-top-𝑘-Sets, we present pruning capa-

bilities of OptTop-k-𝜃 , as well as study the scalability of the different algorithms designed for

𝜃-Equiv-top-𝑘-Sets andMaxMinFair varying pertinent parameters.

1. Experimental setup. All algorithms are implemented in Python 3.8. All experiments are

conducted on a server machine with 128GB RAM memory, OS: windows server 2019 datacenter,

version: 1809, CPU: Processor 11th Gen Intel(R) Core(TM) i9-11900K @ 3.50GHz, 3504 Mhz, 8

Core(s), 16 Logical Processor(s). Obtained results are the average of three separate runs. Github has

further details [14].

2. Datasets. Experiments are conducted on six datasets, four real and two synthetic data. For

real datasets, we use Yelp [51], IMDB-top 1000 [31], IMDB [29], and Airbnb [4]. For one of
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the synthetic data, we generate random samples for relevance and diversity scores from uniform

distributions. The other synthetic data is MakeBlobs [36] from the sklearn package that produces

data points from a normal distribution. Table 5 has an overview.

3. Implemented Algorithms.

Wenote that existing works [7, 21, 25] do not have an easy extension to solve 𝜃-Equiv-top-𝑘-MMSP

because the solution frameworks do not adapt to solve 𝜃-Equiv-top-𝑘-Sets.

• 𝜃-Equiv-top-𝑘-Sets.We compare the exact algorithmOptTop-k-𝜃 with the two approximate

solutions RWalkTop-k-𝜃 and ARWalkTop-k-𝜃 .

• MaxMinFair.We implement a simple baseline H-SP first. It goes over the sets in 𝑆 one by

one and checks if all records in a set 𝑠 are present in other sets in {𝑆 − 𝑠}. If yes, 𝑠 is deleted
from 𝑆 . After that, the remaining sets are returned, each associated with uniform probability.

We compare the LP-based exact solutions Opt-SP, with approximate solutions Gr-SP and

H-SP.

4. Representative utility functions.

(1) Maximize relevance. Σ∀𝑟 ∈𝑠𝑅𝑒𝑙 (𝑟, 𝑞)
(2) Weighted relevance and max sum diversity (WRMSD)

Maximize 𝜆×Σ𝑟 ∈𝑠𝑅𝑒𝑙 (𝑟, 𝑞)+(1−𝜆)×Σ𝑟 ∈𝑠𝑀𝑎𝑥𝑟,𝑟 𝑗 ∈{𝑠−𝑟 }𝐷𝑖𝑣 (𝑟, 𝑟 𝑗 ), where 𝜆 is a weight between
[0, 1].

(3) Maximize diversity. Maximize Σ𝑟 ∈𝑠𝑀𝑎𝑥𝑟,𝑟 𝑗 ∈{𝑠−𝑟 }𝐷𝑖𝑣 (𝑟, 𝑟 𝑗 )
5. Query & Parameters. Queries are selected randomly. Unless specified, the default parameters

are 𝑁 = 10𝑘 , 𝑘 = 5, F = WRMSD with 𝜆 = 0.99, 𝜃 = 0.01.

5.1 Goal 1: 𝜃 -Equiv-top-𝑘-MMSP and Top-𝑘 Parity
Figures 3 show (max-min normalized) exposure of IMDB-1000movies considering group-fairness [43]

top-𝑘 parity [32] alone and that of when 𝜃-Equiv-top-𝑘-MMSP is implemented along with top-𝑘

parity [32]. Group fairness considering top-𝑘 parity [32] is imposed using the genre attribute. It is

clear when the top-𝑘 records are returned based on 𝜃-Equiv-top-𝑘-MMSP, while satisfying group-

fairness [43], the exposure of the records remain unchanged (Figure 3(b)), whereas, records get

inequitable exposure when only group-fairness is ensured. Thus, 𝜃-Equiv-top-𝑘-MMSP alleviates

a shortcoming that group fairness suffers from.

5.2 Goal 2: Quality analysis
We first present the quality study related to the algorithms designed for 𝜃-Equiv-top-𝑘-Sets ,

following which, we present those results for the algorithms designed forMaxMinFair .

5.2.1 Quality Analysis of 𝜃 -Equiv-top-𝑘-Sets . We study the algorithms designed for 𝜃-Equiv-

top-𝑘-Sets from the quality standpoint. We present the 𝑅𝑒𝑐𝑎𝑙𝑙 percentage [28], which is the

percentage of equivalent top-𝑘 sets returned by the underlying algorithm w.r.t. the exact solution

OptTop-k-𝜃 (ground truth).

A. Recall of RWalkTop-k-𝜃 .Wemeasure the quality of RWalkTop-k-𝜃 by presenting the 𝑅𝑒𝑐𝑎𝑙𝑙

value as described above, which produces the ratio of the top-𝑘 sets returned by RWalkTop-k-𝜃

compared to that of the exact solution OptTop-k-𝜃 by varying 𝜃 . Figure 4 shows that the recall of

RWalkTop-k-𝜃 stays steady mostly (close to 80% for almost all real datasets) or increases with

increasing 𝜃 . At some point it becomes as high as 91%. When data distribution is uniform (synthetic

data), clearly RWalkTop-k-𝜃 becomes more effective with increasing 𝜃 , which is unsurprising.

These results also validate the applicability of the Good Turing Test for our studied problem,

informing that for almost all of the datasets, the random walk is returning around 80% of the 𝜃

equivalent top-𝑘 sets, while being significantly computationally efficient.
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(a) Airbnb (b) MakeBlobs

(c) Yelp (d) IMDB

Fig. 7. RWalkTop-k-𝜃 vs ARWalkTop-k-𝜃 vs OptTop-k-𝜃 scalability by varying dataset size 𝑁

(a) Airbnb (b) MakeBlobs

(c) Yelp (d) IMDB

Fig. 8. RWalkTop-k-𝜃 vs ARWalkTop-k-𝜃 vs OptTop-k-𝜃 scalability by varying 𝑘

B. Recall of ARWalkTop-k-𝜃 . Figure 5 shows the𝑅𝑒𝑐𝑎𝑙𝑙 value for theARWalkTop-k-𝜃 algorithm.
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(a) Airbnb (b) MakeBlobs

(c) Yelp (d) IMDB

Fig. 9. RWalkTop-k-𝜃 vs ARWalkTop-k-𝜃 vs OptTop-k-𝜃 scalability by varying 𝜃

(a) Varying dataset size 𝑁 (b) Varying 𝜃

(c) Varying 𝑘

Fig. 10. RWalkTop-k-𝜃 scalability for different utility functions
As expected, ARWalkTop-k-𝜃 is inferior to solve 𝜃-Equiv-top-𝑘-Sets compared to RWalkTop-

k-𝜃 , as it only produces sets that are highly different from each other, giving rise to fewer number
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(a) Approx factor varying |𝑆 | (b) Approx factor varying 𝑘

(c) Scalability by varying |𝑆 | (d) Scalability by varying 𝑘

Fig. 11. MaxMinFair approx factor and scalability

of sets. ARWalkTop-k-𝜃 reaches up to 60% recall for Airbnb dataset. 𝑅𝑒𝑐𝑎𝑙𝑙 decreases with

increasing 𝜃 here, since more top-𝑘 sets with common items become eligible with increasing 𝜃 ,

which ARWalkTop-k-𝜃 does not return.

5.2.2 Quality analysis of MaxMinFair . A. Approximation Factor.We calculate the approx-

imation factor by dividing the minimum selection probability of the records returned by Gr-SP

with that of Opt-SP. Since MaxMinFair is a maximization problem, hence the approximation

factor is always ≤ 1. Similarly, the approximation factor of H-SP is also computed. As we shall

demonstrate in Section 5.3.2, despite being an exact solution, Opt-SP is not highly scalable, since it

involves a linear program. Figure 11 (a) shows the approximation factor using the sets returned by

RWalkTop-k-𝜃 algorithm for Gr-SP and H-SP. Since minimum selection probability for Gr-SP is

higher than H-SP, its approximation factor is larger. The approximation factors demonstrate an

encouraging facts. the minimum approximation factor value for Gr-SP is 0.74 and that of H-SP is

0.68, where as the maximum is 0.84 and 0.75, respectively. Figure 11 (b) present the approximation

factor by varying 𝑘 on 1000 sets returned by RWalkTop-k-𝜃 algorithm for Gr-SP and H-SP. The

minimum value of approximation factor of Gr-SP is 0.77, and for H-SP is 0.60, and the maximum

values are 0.81 and 0.74, respectively.

5.3 Goal 3: Scalability Analysis
We first present the scalability study related to the algorithms designed for 𝜃-Equiv-top-𝑘-Sets ,

following which, we present those results for the algorithms designed forMaxMinFair .

5.3.1 Scalability Analysis for 𝜃 -Equiv-top-𝑘-Sets . We compare the scalability aspects of the three

designed algorithms by varying pertinent parameters.

A. Pruning Effectiveness. We show that OptTop-k-𝜃 solves 𝜃-Equiv-top-𝑘-Sets by accessing a

very few records in the sorted lists. Figure 6 shows effective record pruning of OptTop-k-𝜃 varying

𝜃 . Record pruning percentage is =

(𝑁 − number of seen records)
𝑁

. OptTop-k-𝜃 is able to prune
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99% of the dataset to exactly solve 𝜃-Equiv-top-𝑘-Sets. Also with 𝜃 , more equivalent sets are to be

found, OptTop-k-𝜃 needs to read more records, thereby pruning percentage slightly decreased by

increasing 𝜃 .

B. Running time varying 𝑁 . Figure 7 shows the scalability of the three proposed algorithms

for 𝜃-Equiv-top-𝑘-Sets by increasing 𝑁 . As expected, due to the exponential nature of 𝜃-Equiv-

top-𝑘-Sets , OptTop-k-𝜃 is not scalable over large value of 𝑁 . In contrast, the other two proposed

algorithms are scalable. ARWalkTop-k-𝜃 is more scalable than RWalkTop-k-𝜃 since it finds

less number of sets because of its adaptiveness, it stops earlier. With 1M records in MakeBlobs,

ARWalkTop-k-𝜃 takes only a few minutes to finish.

C. Running time varying 𝑘 . Figure 8 demonstrates the scalability of the three proposed algorithms

by varying 𝑘 . As expected, OptTop-k-𝜃 does not scale well. Consider Figure 8(c) using Yelp dataset.

When 𝑘 = 5, OptTop-k-𝜃 takes 34.02 seconds to run, and the number of seen records is 28.

(
28

5

)
=

98280 sets are generated and examined only to produce 12 final top-𝑘 sets. Now consider that it is

increased to 𝑘 = 10. This may end up producing

(
28

10

)
= 13123110 sets even with only 28 seen records,

which is 133× larger than before. This exponential increase is expected due to the computational

nature of 𝜃-Equiv-top-𝑘-Sets . On the other hand, RWalkTop-k-𝜃 and ARWalkTop-k-𝜃 are

highly scalable, and not very sensitive to increasing 𝑘 .

D. Running time varying 𝜃 . Figure 9 demonstrates the scalability of the three proposed algorithms

by varying 𝜃 . Increasing 𝜃 increases the size of |𝑆 |. As expected, OptTop-k-𝜃 is highly sensitive

to this parameter and does not scale well. In comparison, the random walk based algorithms

RWalkTop-k-𝜃 and ARWalkTop-k-𝜃 are less sensitive and scale reasonably well with increasing

𝜃 .

E. Running time varying F . In Figure 10 we present the running time of RWalkTop-k-𝜃 using

the three representative utility functions, described at the beginning of the Section 5: Figure 10(a),

Figure 10(b), Figure 10(c) demonstrate the scalability by varying parameters 𝑁 , 𝜃 and 𝑘 . As we

can see, the running times of all three objective functions increase by increasing 𝑁 , 𝑘 , 𝜃 . However,

the nature of the underlying objective function does not as such impact the running time. Similar

observation holds for ARWalkTop-k-𝜃 (the graphs are not presented for brevity). This is highly

encouraging, as it demonstrates the effectiveness of our designed solutions across different objective

functions.

5.3.2 Scalability Analysis of MaxMinFair . In this section, we present the scalability analysis of

the three algorithms designed forMaxMinFair. We evaluate the scalability varying |𝑆 |, 𝑁 , 𝑘 .

A. Running time varying |𝑆 |. Figure 11 (c) shows running time of the Opt-SP, Gr-SP,H-SP with

𝑘 = 5. The heuristic H-SP exhibits the highest scalability among all and the linear programming

based exact algorithm Opt-SP has the least scalability, as expected. Similar observation holds when

𝑁 is varied. Nevertheless, both Gr-SP and H-SP are highly scalable and the results corroborate

their theoretical running time.

B. Running time varying 𝑘 . Figure 11 (d) shows the scalability with varying 𝑘 and |𝑆 | = 1000.

Similar observation holds as before that agorithmsGr-SP andH-SP are highly scalable to increasing

𝑘 . This observation is also consistent to their theoretical analysis.

5.4 Summary of Results
(a) Our first observation is 𝜃-Equiv-top-𝑘-MMSP alleviates a fairness limitation inherent to

demographic parity based group-fairness [43]. (b) Our second observation demonstrates the compu-

tational effectiveness of OptTop-k-𝜃 - despite the fact 𝜃-Equiv-top-𝑘-MMSP is computationally
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intractable, our designed solution OptTop-k-𝜃 is highly effective in pruning the vast majority of

the records from the input database to produce the exact solution for 𝜃-Equiv-top-𝑘-Sets. The

pruning effectiveness is at times as high as 99%. (c) We experimentally observe thatRWalkTop-k-𝜃

is a highly scalable algorithm that is several order of magnitude faster than the exact solutions

OptTop-k-𝜃 and Opt-SP, yet the produced results are highly comparable qualitatively. This so-

lution achieves high recall, sometime, as high as 91% recall value, while taking a few seconds to

run. These results demonstrate the efficiency as well as effectiveness of RWalkTop-k-𝜃 to be used

and deployed inside real world applications. (d) Our final observation is that ARWalkTop-k-𝜃 is

a highly efficient solution that can easily scale to a very large 𝑁 with millions of records, and is

suitable for applications that can accommodate modest inaccuracy.

6 RELATEDWORK
Group Fairness. Most approaches to algorithmic fairness interpret fairness as lack of discrim-

ination [23] seeking that an algorithm should not discriminate against its input entities based on
attributes that are not relevant to the task at hand. Such attributes are called protected, or sensitive,

and often include among others gender, religion, age, sexual orientation and race. So far, most work

on defining, detecting and removing unfairness has focused on classification algorithms [52, 54]

used in decision making. W.r.t ranking and top-𝑘 results, the algorithmic fairness literature deals

with group fairness along the lines of demographic parity this is typically expressed by means of

some fairness constraint requiring that the 𝑡𝑜𝑝 − 𝑘 results (for any k) to contain enough records

from some groups that are protected [6, 21, 26, 30, 34, 40, 44, 48, 50, 53, 55]. A good survey on this

could be found in [39].

Individual Fairness. Individual fairness, on the other hand, as proposed by Dwork et al [16],

intends to ensure “similar individuals are treated similarly”. Dwork et al. explain that a classifier is

individually fair if the distance between probability distributions mapped by the classifier is not

greater than the actual distance between the records [16]. Biega et al. propose measures that identify

unfairness at the level of individual subjects considering position bias in ranking [8]. Mahabadi et al.

study the individual fairness in 𝑘-clustering. Their goal is to develop a clustering algorithm of the

records so that all records are treated (approximately) equally[35]. Patro et al. [38] investigate the

fair allocation problem and study individual fairness in two-sided platforms consisting of producers

and customers on opposite sides. Fish et al. study individual fairness in social network [20] to

maximize the minimum probability of receiving the information for poorly connected users.

It has been recognized that group fairness alone has its deficiencies [22]. In two independent efforts,

Flanigan et. al. [21] and Garcia-Soriano et. al. [25] study how to enable equitable selection probability

of the records under group fairness constraints and propose maxmin-fair distributions of ranking.

Zemel et al. develop a learning algorithm for fair classification that ensures both group fairness

and individual fairness [54]. [7] studies individual fairness in similarity search to ensure points

within distance 𝑟 from the given query have the same probability to be returned.

In [13], the authors propose a new ranking function for search engines called “page quality” by

estimating the intrinsic quality of a page. This solution deals with web pages with hyperlinks and

alleviates the unequal exposure problem. Due to this specific nature, the solution does not extend

to 𝜃-Equiv-top-𝑘-MMSP .

Top-𝑘 Algorithms. Given a user query, a top-𝑘 result contains 𝑘 records that have the highest

scores [41]. Scores are computed based on relevance, diversity, newness, serendipity, etc. Designing

effective scoring functions as well as efficient algorithms [1, 2] lend to numerous applications in

recommendation and search [3, 10, 11, 18, 33, 46, 47] and is an active area of research. The authors

in [42] present a model-based approach to studying result diversity in search engines, exploring

the interplay between diversity and quality and improving upon Google’s performance on both
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random and selective queries. We, on the other hand, do not propose any new scoring function or

a new top-𝑘 algorithm, but study how to alleviate the unequal exposure problem in the existing

algorithms.

𝜃-Equiv-top-𝑘-MMSP borrows inspiration from existing works, yet it is unique - we study existing
top-𝑘 algorithms and redesign them to address a fairness concern that is prevalent in long tail data.

7 CONCLUSION
We formalize 𝜃-Equiv-top-𝑘-MMSP to redesign existing top-𝑘 algorithms for long tail data to en-

sure fairness. Given a query, 𝜃-Equiv-top-𝑘-MMSP computes a set of top-𝑘 sets that are equivalent
and assigns a probability distribution over these sets, such that, after many users draw a set from

these sets according to its assigned probability, the selection probabilities of the records present

in these sets are as uniform as possible. We present multiple algorithmic results with theoretical

guarantees as well as present extensive experimental evaluation. We demonstrate how our proposed

notion of fairness positively impacts compelling downstream applications, and complements group

fairness.

One of the directions that we are currently exploring lies in understanding pre-processing

techniques that can speed up the computation of 𝜃-Equiv-top-𝑘-Sets.
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