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For datasets exhibiting long tail phenomenon, we identify a fairness concern in existing top-k algorithms, that
return a “fixed” set of k results for a given query. This causes a handful of popular records (products, items, etc)
getting overexposed and always be returned to the user query, whereas, there exists a long tail of niche records
that may be equally desirable (have similar utility). To alleviate this, we propose 0-Equiv-top-k-MMSP
inside existing top-k algorithms - instead of returning a fixed top-k set, it generates all (or many) top-k
sets that are equivalent in utility and creates a probability distribution over those sets. The end user will be
returned one of these sets during the query time proportional to its associated probability, such that, after
many draws from many end users, each record will have as equal exposure as possible (governed by uniform
selection probability). O-Equiv-top-k-MMSP is formalized with two sub-problems. (a) §-Equiv-top-k-Sets
to produce a set S of sets, each set has k records, where the sets are equivalent in utility with the top-k set;
(b) MaxMinFair to produce a probability distribution over S, that is, PDF(S), such that the records in S
have uniform selection probability. We formally study the hardness of §-Equiv-top-k-MMSP. We present
multiple algorithmic results - (a) An exact solution for §-Equiv-top-k-Sets, and MaxMinFair. (b) We design
highly scalable algorithms that solve 6-Equiv-top-k-Sets through a random walk and is backed by probability
theory, as well as a greedy solution designed for MaxMinFair. (c) We finally present an adaptive random
walk based algorithm that solves 6-Equiv-top-k-Sets and MaxMinFair at the same time. We empirically
study how 6-Equiv-top-k-MMSP can alleviate a equitable exposure concerns that group fairness suffers
from. We run extensive experiments using 6 datasets and design intuitive baseline algorithms that corroborate
our theoretical analysis.
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1 INTRODUCTION

The proliferation of e-commerce platforms such as Amazon.com, Netflix, and Spotify.com has given
rise to the so-called “infinite-inventory”, which offer an order of magnitude more records (products,
movies, songs) than their brick-and-mortar counter-parts [5]. This results in a long-tail market,
where a handful of records get heavily exposed to the end users and a long tail of “niche” records
remain relatively unknown. As a concrete example, the top-1000 highest rated movies in IMDB [31]
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follow a long tail distribution in terms of number of views (refer to Y-axis in Figure 1), even though
they all have highly similar (average rating between 8.34 and 7.9)“utility” (IMDB ratings).

In Section 2.1 we describe the current process with a running example on the aforementioned
IMDB-1000 datasets, how it leads to inequitable exposure of movies, and how we intend to redesign
existing top-k algorithms to circumvent that. Our proposed solution advocates to return one of the
equivalent top-k sets to the end users in a probabilistic manner, such that, after many such draws
by many end users, the exposure of the records are as equitable as possible. The same static answer
could still be returned if the application warrants - but when users pose generic queries [37] (e.g.,
top-3 movies, books) on long tail data, this will unveil interesting movies, songs, and products, that
the users will not experience otherwise. To the best of our knowledge, we are the first to study this
aspect of unequal exposure inside top-k algorithms that is agnostic to any specific scoring functions.
Problem Motivation and Models. We adapt a political theory, namely, the Sortition Act [15, 45]
and redesign existing top-k algorithms to have them compute a set S of multiple top-k sets that are
equivalent in utility as opposed to a fixed top-k set. Given S, an end user still draws one of the sets
at random. Hence, the goal is to assign a probability distribution over S, i.e., PDF(S), such that after
many such draws from many end users, the records returned inside the top-k sets have as uniform
selection probability as possible. We formalize 8-Equiv-top-k-MMSP that produces PDF(S) for
a given query and a scoring function ¥ . Each set s € S contains k number of records whose
score is at most 6% (a tunable application dependent input parameter) smaller than the optimum
top-k score, and the PDF(S) is computed such that the selection probabilities of the records in it
are as uniform as possible. Enabling equal selection probabilities promotes equal exposure of the
records. -Equiv-top-k-MMSP is rooted on maxmin fairness theory that maximizes the minimum
exposure. We are aware of a few related works that we borrow inspirations from. [7] studies how
to enable equal exposure in similarity search by returning points within distance r from the given
query with the same probability. The bulk of the algorithmic fairness literature deals with group
fairness along the lines of demographic parity[32, 48]: this is typically expressed by means of some
fairness constraint requiring that the top-k results (for any k) to contain enough records from some
groups that are protected from discrimination based on sex, race, age, etc. In practice these group
fairness constraints hurt equitable exposure [9, 21, 25] owing to differential participation rates
across sub population. Both [21, 25] study how group fairness alone can hurt equitable exposure of
the records and thus define computational frameworks to promote equal selection probability in
group fairness. These existing works do not have any easy extension to top-k algorithms. We study
how 0-Equiv-top-k-MMSP alleviates exposure based fairness concerns that demographic parity
based group fairness (e.g., top-k parity [32], proportionate fairness [48]) give rise to.

Technical Contributions. We formalize key definitions, such as, 8-equivalent top-k sets, selection
probability of records, and present 6-Equiv-top-k-MMSP that has two steps (Section 2). (A)
0-Equiv-top-k-Sets generates S, the set of 6 equivalent top-k sets (where 6 is a tunable parameter
that can control how much change is desirable across different top-k sets for different applications),
(B) MaxMinFair computes PDF(S) such that the minimum selection probability of a record is
maximized. We prove that the counting problem involved in §-Equiv-top-k-Sets is #P-hard, which
makes 0-Equiv-top-k-MMSP an NP-Complete problem.

In Section 3, we first present an exact algorithm OptTop-k-6 that produces S, all §-equivalent
top-k sets and is exact in nature. We also study efficient alternatives later, which only computes a
few 0 equivalent top-k sets (as opposed to all). The exact algorithm is inspired by the celebrated
NRA algorithm [19] but not an easy adaptation, because of the exponential nature of 0-Equiv-top-k-
Sets. At the heart of the process, OptTop-k-6 intends to maintain a set of candidate top-k sets,
efficiently compute and maintain their best and worst possible scores through upper and lower
bounds, and decide if it is safe to terminate and produce the exact S without having to read any more
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Fig. 1. Viewership distribution of top-1000 IMDB movies

records. However, because the number of possible size-k sets increases exponentially with new
records being read, OptTop-k-0 leverages an efficient data structure based on the concept of item
lattice that allows efficient computation of the possible size-k sets and incremental updates of their
score bounds by reusing previously calculated scores. For producing PDF(S), we present a linear
programming-based exact solution Opt-SP. For OptTop-k-0 , the storage space and computational
cost of this lattice is O( (1,\!)) which is the theoretical lower bound, but the same structure could be
made significantly lightweight, if approximation is allowed, as we discuss in Section 4.
In Section 4.1, we present RWalkTop-k-0 that is highly scalable to solve both 8-Equiv-top-k-Sets
and MaxMinFair. It makes use of the same item lattice structure described above, but builds it only
partially on the go, making it significantly lightweight. RWalkTop-k-0 is a probabilistic algorithm
based on random walk on the lattice that is backed by the Good Turing Test [24]. Good Turing Test
is often used in population studies to estimate the number of unique species in a large unknown
population [24], which we use to determine when RWalkTop-k-6 could stop and still discover
all f-equivalent top-k sets with high probability. Given S, RWalkTop-k-0 calls a highly efficient
greedy solution Gr-SP to produce a probability distribution over it.
In Section 4.2, we finally design ARWalkTop-k-0, an adaptive random walk based approach
that solves 8-Equiv-top-k-Sets and MaxMinFair at the same time. The intuition comes from
the fact (that we formally prove in the paper) that if S contains records that only appears in one
and exactly one set s € S, then PDF(S) is a uniform probability distribution which ensures equal
selection probabilities for all records. ARWalkTop-k-0 is similar to the random walk described
in RWalkTop-k-6, except it performs the random walk adaptively, by lowering the probability
of the records that are already part of some valid s, and boosting the probability of the remaining
records that have not been part of any valid s yet. After that, PDF(S) becomes a uniform probability
distribution over the sets produced during the adaptive random walk.
Experimental Evaluations (Section 5). Our final contributions are empirical. As discussed above,
equal exposure is orthogonal to demographic parity based group fairness, such as, top-k-parity
or proportionate fairness [32, 48], but we show it can further alleviate biases that group fairness
alone gives rise to. Our results corroborate that when §-Equiv-top-k-MMSP is integrated inside
top-k-parity, the returned results satisfy both equitable exposure as well as group fairness criteria,
which top-k parity alone is unable to promote. We use 4 different large scale real world datasets
and two large synthetic datasets to extensively evaluate our designed solutions and compare them
against several intuitive baseline algorithms. Our experimental evaluations also corroborate our
theoretical analysis, it terms of the quality and the scalability of the designed solutions.

Section 6 contains the related work and we conclude in Section 7, giving future research directions.
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2 DATA MODEL & PROBLEM DEFINITION

In this section, we present a running example, introduce key notations used throughout the paper
(Table 1), describe our data model, present key definitions, formalize 6-Equiv-top-k-MMSP, and
study its hardness.

2.1 Running Example

Consider the IMDB-1000 datbase D. The attributes are movie name, IMDB rating, year, genre, and
director. Assume that a user writes a query (q) to search for top-3 movies (k = 3) released in year
2022.

Imagine only 5 movies as described in Table 2 are released in 2022 and they have highly similar
IMDB ratings. Let the scoring/utility function ¥ be the weighted relevance and max sum diversity
(WRMSD in short), as proposed below (with A = 0.5). Let IMDB ratings reflect the relevance scores
of the records and diversity be computed considering genre and director values. The sorted pairwise
diversity is given in Table 3.

In the set s1 = {ry, r3, rs}, the utility score of ry, r3, r5 are 6.75, 6.65, 6.45, leading to the maximum
utility score of top-3 movies to be 19.85, as shown in 4. Static top-k algorithms will always return
{ra, r3,rs}, whereas, s2 = {ry,ro, r3}, s3 = {ro, r3, 4}, s4 = {ry, r3, rs}, may also be equally desirable
(all have items with high utility, leading to high set score above 19). However, if only s1 is always
returned, this leads to little to no exposure of movies ry, r4.

We advocate for an alternative process, where, there exists a tunable parameter 6, which will
empower the application designer to introduce variability in the top-k results to the end users (if
the application warrants the same static answer, 8 could be set to 0). For long tail data with generic
queries [37], this process may bring forth additional interesting movies, products, songs to the end
users. If § = 0.03, the goal is to create a set S of top-k sets, such that each s € S has utility score
> (19.85 - [0.03 X 19.85]) = 19.25. It is easy to notice that even with only 5 records, there are three
additional sets {s2, s3, s4} that satisfy this condition (Table 4).

The top-k interface however still allows users to see only one set of k results. Thus, given S, our
goal is to create a probability distribution over it, PDF(S). A user draws one s from S corresponding
to its associated probability, such that, after many draws from many end users, the movies in S have
as uniform selection probabilities as possible. Creating PDF(S) is non-trivial - if one associates
uniform probability (0.25) to each of the 4 sets, then, r; will always be over exposed (quantified
by its selection probability, which is also formalized in this section), as it will always be returned
to the end users, leading to 1 selection probability, whereas, r, will be heavily underexposed. The
selection probabilities of r; = 0.5, r, = 0.75, r5 = 0.5, and that of r4 is only 0.25, as ry4 is present in
only s3 out of the 4 sets. Our effort here is thus to produce PDF(S) such that the movies in S have
as uniform selection probabilities as possible.

2.2 Data Model

Database. A database D contains N records, where each record is represented as r.
Top-k Query. A top-k query g intends to return k answers from D. We are especially interested in
generic queries (e.g., top vacation spots, top movies, good books, etc).

2.2.1 Utility Based Scoring Functions. Given a query g and D, a utility based scoring function
scores each record with utility value ¥ (r, q) and produces 7 (s, q),r € s, |s| = k, which is the the
aggregated utility score of set s with k records.

o Relevance: 7 (r, q) = Rel(r, q), where Rel is the relevance between record r and query q.
e Diversity: Diversity is the dissimilarity between any two records, Dio(r;, r;) that is used to
capture results that are representative of the population.
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The attributes of the records could be used to calculate these values. Tables 2, 3 have some of those
for Example 2.1.
Representative . Some representative utility functions appear as follows.

e Sum-relevance. 7 (s, q) = Z,esRel(r, q)
e Weighted relevance and max sum diversity (WRMSD).
F(s,q) = A X ZpesRel(r,q) + (1 - 1) X 2resl\/laxr,rje{s—r}
Div(r,r;), where A is a weight between [0, 1].
e Maximal marginal relevance [12] or MMR. ¥ (s, q) = AXZ,esRel(r, @) +(1-A)XZ,esMin, r;e (s—ryDiv(r, )
The proposed framework is generic and extensible to any utility function, however, as we shall
see later that the exact solution 0-Equiv-top-k-Sets requires the function to be monotonic.

2.2.2 Top-k Algorithms. Given D, g, and an integer k, return a set s of k records from D that has
the highest ¥ (s, ), i.e.,

o |s| =k;

o s has the highest utility score, i.e., for any other set of k records s’, F (s,q) = F(s’, q).

2.2.3  Promoting Fairness inside Top-k Algorithms. It is easy to see that there could be more than
one set of k-records that have highly similar utility score. To that end, we define the notion of
equivalent size-k sets.

Definition 2.1. Equivalent size k sets. Given a threshold 6, a query ¢ and size k, two sets s; and
sj each with k records are equivalent if the score of the set with lower score is not smaller than a
predefined threshold 6% of that with the higher score, i.e.,

si=sjif F(si,q) = (1-6) X F(sj,q), when F(s;,q) < F(s,q)

Running Example. In the context of example 2.1, when WRMSD is considered as the scoring
function and 6 = 0.03, two equivalent size k sets with scores 19.85 and 19.7 are s1 = {r;, r3, 75},
s2 = {r1,r, 13}, respectively.

Definition 2.2. Probability Distribution over size k sets. Given a set S of sets, each with
k records, a probability distribution PDF(S) assigns a probability P(s) to each s € S, such that

3 P(s) = 1.

seS

Definition 2.3. Selection probability of a record. Given a probability distribution PDF(S)
of a set S containing many size k sets, the selection probability [21] of a record r is the sum of
probability values of all the sets that contain r.

P(r)= > P(s) (1)

res,seS
Running Example. Considering the running example, uniform probability distribution P(s;) =
P(sy) = P(s3) = P(s4) = 1/4, leads to selection probability P (ry) = P(s3) = 1/4, whereas, P(r3) =
P(s1) + P(s2) + P(s3) + P(s4) = 1. Indeed, no matter which set the end users draw, r; will always
be returned, whereas, r4 will be returned only 1/4 of the time.

2.3 Problem Definition & Hardness

Our overarching goal is to produce top-k set of sets that are “equivalent” in utility w.r.t. the set
with the highest utility (i.e., the optimum top-k set), and ensure that all records present in any of
the equivalent top-k sets have an equal selection probability. Generally speaking, we adapt the
Egalitarian Social Welfare notion [17], which maximizes the lowest selection probability of a record
present in any top-k sets.
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Problem Definition 1. (6-Equiv-top-k-MMSP ) Maximize Minimum Selection Probability
in 6-Equivalent Top-k Sets.
Given a database D with N records, scoring function ¥, threshold 0, query q, and integer k, produce a
set S of equivalent top-k sets and a probability distribution PDF(S) over S, such that, the minimum
selection probability of a record present in any s € S is maximized. Specifically, we define the following
two sub-problems.
e 0-Equiv-top-k-Sets. Produce a set S of all 0-equivalent top-k sets, such that, s € S satisfies:
F(s,q) = (1-0) xargmaxyesF (s, q)
e MaxMinFair. Compute probability distributions S such that the smallest selection probability
P(r) of arecordr € s,s € S is maximized. That is:

Maximize Min P(r),r € s,s € S, (2)

In general, our proposed framework can accommodate any scoring function. However, when the
scoring function is non-monotone, such as, MMR [12], the designed solutions become approxima-
tion.

THEOREM 2.4. The problem of finding the number of 0-Equiv-top-k-Sets is #P-hard.

Proor. We show a polynomial time reduction from the problem of computing all maximal
frequent itemsets of size at most t [27, 49] to the problem of computing all §-equivalent top-k sets,
that has a simple mapping between the number of solutions. This suffices since the problem of
finding the number of o-frequent maximal itemsets (threshold o € [0, 1]) with at most ¢ items of a
given 0-1 database D is known to be #P-hard [49].

We take an instance of such 0-1 database with m transactions over N items. The o is set to be 1/m.
Given one such instance of a 0-1 database, we create an instance of our problem as follows: each item
becomes a unique record r, such that 7 (r, q) = 1, for an arbitrary query q. (s, q) = ZvresF (7, q).
0 is set to be any number between [0, 1]. A set of items is o-frequent maximal itemset of size at
most k, iff the set of records corresponding to the itemset forms a set s with score ¥ (s, q) = k.
Therefore, the number of f-equivalent top-k sets is at least as many as the number of ¢ frequent
maximal itemsets of size at most k. This completes the reduction. O

THEOREM 2.5. The 0-Equiv-top-k-MMSP problem is NP-Complete.

Proor. (sketch) We omit the details for brevity. Intuitively, the hardness comes from the fact
that 0-Equiv-top-k-MMSP needs to enumerate all #-equivalent top-k sets, which is at least as

hard as counting all such sets that is proved to be #P-hard. O
Symbol Definition
N # records in D
k, q size of result sets, query
0s,S equivalence threshold, a top-k set, §-equivalent top-k sets
C, L F candidate set, sorted input lists, scoring function
P(r) selection probability of record r

Table 1. Table of notations

3 EXACT ALGORITHMS

We first describe an exact solution that solves both the sub-problems 8-Equiv-top-k-Sets and
MaxMinFair exactly, thereby ensuring exact solution for 6-Equiv-top-k-MMSP.

The framework is described in Algorithm 1. To solve 8-Equiv-top-k-Sets, it runs in a loop
and finds the i-th best top-k set in the i-th iteration - that is, F (s, ¢) = TopkSets(i) > ¥ (s’,q) =
TopkSets(j), where i < j. It maintains all records that are seen throughout. This process continues
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Record Movie Name IMDB Score
rl Top Gun: Maverick 8.6
r2 K.G.F: Chapter 2 8.5
r3 Everything Everywhere All at Once 8.3
r4 RRR 8.1
r5 The Batman 7.9

Table 2. Records with sorted relevance (Example 2.1)

Pair of records | (r2,r3) | (r3,r5) | (r1,r3) | (r3,x4) | (r1,rd) | (r4,r5) | (r1,r2) | (r2,r4) | (r2,r5) | (r1,r5)
Diversity Score | 5 5 4 4 2 2 2 2 1 1
Table 3. Sorted diversity list based on Example 2.1

‘ sets ‘ s2:{r1,r2, r3} ‘ {r1,r2, r4} ‘ {r1,r2,r5} ‘ {r1,r3,r4} ‘ s4:{r1,r3,r5} ‘ {r1,r4,r5} ‘ s3:{r2,r3,r4} ‘ s1:{r2,r3,r5} ‘ {r2,r4,r5} ‘ {r3,r4,r5} ‘
| Utility Score | 19.7 | 156 | 145 | 185 | 194 [ 153 [ 1945 | 1985 | 1525 | 1915 |

Table 4. WRMSD scores of all set of sets, each with 3 movies

Algorithm 1 Generic Framework for 6-Equiv-top-k-MMSP

Inputs: g, k, 0, database D, ¥
Outputs: PDF(S): probability distribution over a set S of top-k sets
flag=0
Opt =
s = TopkSETS(1)(F, D, k)
Opt = s.score, Score = Opt
S «— {s}
12
while (Score > (1-0) X Opt)and(flag # 1) do
s = ToPkSETs(i)(F, D, k)
S—SUs
Score = s.score, i — i+1
: end while
: PDF(S) « MAXMINFAIR(S)

R A A R o A

_m s
N = O

until the utility score of a top-k set falls 0% below from the optimum top-k. After that, it calls the
MaxMinFair S to produce PDF(S).

In Section 4.2, we will show how these two steps could be combined to design a highly scalable
solution.

3.1 Algorithm for 9-Equiv-top-k-Sets

Our proposed algorithm OptTop-k-6 runs in a loop by performing sorted accesses over the input
lists through a cursor movement by calling getNext, gradually produces TopkSets(i) sets whose
scores monotonically decreases, and finally terminates when all 6 equivalent top-k sets are found.
0-Equiv-top-k-Sets requires the scoring functions to be monotonic, we demonstrate OptTop-k-6
using one of the representative function WRMSD described in Section 2.2.1.

(1) Generates and maintains a candidate set (C, i, j) of top-k sets as it reads j-th records from
the cursors. (C, i, j) is needed for deciding TopkSets(i).
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(2) Local stopping: if the TopkSets(i) is present in (C, i, j).

(3) Global stopping: if all 6 Equivalent top-k Sets are found.
OptTop-k-0 borrows inspiration from the celebrated NRA (No Random Access) algorithm [19].
However, it is an not an easy adaptation of NRA, because of the exponential nature of 0-Equiv-top-
k-Sets. The algorithm leverages an efficient data structure based on the concept of item lattice
that allows efficient computation of the possible size-k sets and incremental updates of their score
bounds by reusing previously calculated scores, as described in Sections 3.1.2 and 3.1.3, respectively.

3.1.1 Generate i-th best top-k set. The first two operations are done inside Algorithm TopkSets(i),
whose pseudo-code is presented in Algorithm 2. TopkSets(i) is responsible for generating the i-th
best top-k set. For the ease of exposition, we assume there exists only one unique top-k set in each
round, although ties could be handled seamlessly in the framework. Given the set £ of sorted input
lists, the algorithm sets a cursor on each list, and fetches the next record from those lists through
L getNext calls. As an example, if the input lists consist of both relevance and diversity, then
getNext fetches the next record from sortedRelList list as well as that from the sortedDivList list
and their corresponding scores. The cursor points to the current position in the lists (let us assume
that position to be j). It keeps track of the all seen records upto j-th position. Then createNewSets
creates all possible size-k sets (lines 1-4).

In order to accomplish (2), the other challenge involves score computations of size-k sets that are
encountered so far. Since, OptTop-k-60 performs only sorted accesses, it may not be able to produce
the exact score of a set of k records immediately - rather has to consider upper and lower bounds
of score to argue if this set is a possible candidate for TopkSets(i). Upper bound score of a set s,
ub(s) (similarly lower bound score Ib(s)) is the maximum possible (similarly the smallest) possible
score s can get. Moreover, when more records are being read, these bounds are to be updated as
well. Section 3.1.2 describes how that could be done efficiently.

Lower and upper bound score of a set. Clearly, the lower bound (upper bound) score of a set s,
Ib(s) (similarly ub(s)) is the minimum (similarly maximum) possible score of s that LowerBound
and UpperBound calculate. LowerBound(s) is calculated based on an objective function ¥ and
using the scores of any unseen component of # (s) by the smallest possible value. UpperBound(s)
is done analogously, except the unseen component is replaced by the cursor reading at the j-th
position. Lines 5-7 do that task.

Ilustration using WRMSD. Imagine ¥ is (weighted rel, max div). In that case L consists of
two lists - a sorted relevance list sortedRelList and a sorted pairwise diversity lists sortedDivList
in decreasing order of relevance and diversity values, respectively. Imagine the cursor is at the
2nd position of both these lists (i.e., j = 2)- therefore, so far it has seen rel(ry), rel(rz), div(rs, r3),
div(rs, r5). Clearly, 4 records are seen so far, but all of their scores are not known - 4 different size-k
(k = 3) sets could be produced. But, because of sorted access, the score of none of these sets could
be calculated exactly. As an example, ub(ry,r,73) = 8.6 + 8.5+ 8.5+ 5 + 5 + 5 if the weight A is
ignored. However, when the cursor reads another record, either from the relevance or from the
diversity list, the ub of all sets need to be updated.

Deciding the i-th top-k set. Line 8 of TopkSets(i) produces and maintains a threshold and lines
9-12 decide if it needs to continue the computation any further or it is safe to terminate.

Definition 3.1. Threshold is the maximum utility score of any unseen top-k set. threshold[j] =
Max[ub(C,i,j)]

Given the cursor is at the j-th position of the input lists, if threshold| j] falls below Opt x (1-0),
there is no point of looking any further,TopkSets(i) can terminate by returning the best set present
in (C, 1, ).
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Algorithm 2 TopkSets (i)

Inputs: a set L of input lists, i, 7, k, TopkSets(i — 1).score, 8, Opt
Outputs: nextBest: i-th best set

1: cursor < 0, seenR «— 0

2: for j = cursor to Maxjc pLen(l) do

3: seenR = {seenR | J GETNEXT(l;(j)), GEINEXT(l| £(j))}

4: (C,i, j) < cREATENEWSETS(seenR[j])

5: for sin (C, i, j) do

6: Ib(s), ub(s) < LowERBOUND(s), UPPERBOUND(s)
7: end for

8: threshold[j] « max(ub)

9: if threshold[j] < Opt X (1 — 0) then

10: nextBest = argmax(C, 1, j), flag = 1

11: return nextBest

12 end if

13: for sin (C, i, j) do

14: if 1b[s] > max(ub((C, i, j) — s)) then

15: nextBest « s

16: return nextBest

17: end if

18: if ub[(C, i, j)] < max(Ib((C, i, j) — s)) then
19: Prune {(C,i, j) — s}

20: end if

21: end for

22: if max(Ib[(C, i, j) > min(threshold[j], TopkSets(i — 1).score then
23: nextBest « ARGMAX(Ib(C, i, j))

24: Break

25: end if

26: cursor < j+1

27: end for

28: return nextBest

LEmMMA 3.2. s = TopkSets(i), if s = argmax(Ib(C,1i,j)) and 1b(s) = max(ub(C,i,j) —s))

Lines 13-17 make another key calculation based on Lemma 3.2. It checks if there exists a set s in
(C, 1, j) with the maximum lower bound, such that the [b(s) is not smaller than the upper bound
scores of all other remaining sets in (C, i, j). In that case, s is the i-th best set and TopkSets(i)
terminates upon returning that set and its values. Indeed, when ¥ is monotonic, no other unseen
sets can have higher score than s.

LEMMA 3.3. s = TopkSets(i), if s = argmax(Ib(C, i, j)) and Ib(s) = min(threshold|j], TopkSets (i—
1).score)

Similarly, based on Lemma 3.3, the algorithm makes another important decision in Lines 22-27.
If the maximum [b(s) of s is not smaller than the minimum of threshold[j] and the score of the
top-k set seen in the i — 1-th iteration, then [b(s) is the top-k set in the i-th iteration. This lemma
holds good, since the scores of the returned top-k sets decrease monotonically over iterations.
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Fig. 2. A complete lattice based on Example 2.1

Pruning sets. Even when TopkSets(i) can not terminate, it checks if all sets in (C, i, j) are potential
candidates to be the i-th best set - clearly, if the upper bound score of a set s in (C, i, j) is not larger
than the lower bound scores of all other sets in C, s could be pruned.

3.1.2  Subroutine createNewSets. Given N’ < N number of items that are encountered by
TopkSets(i) already, when a new item r is read through a getNext call, OptTop-k-0 has to
perform some hefty tasks.

e It needs to update (C, i, j) by adding additional size k sets that involve r.

e More importantly, it needs to update the lower and upper bound scores of the sets in (C, i, j)

- or see if the score could be calculated exactly, if all required scores are read.

A naive idea is to regenerate all size ((N;:l)) sets from scratch, which is computationally wasteful
and exponential. To that end, we abstract the representation of the size k sets over a hierarchically
ordered space as a lattice, and store ub and Ib scores of the record sets there. This data structure
offers a great benefit for doing both of these aforementioned tasks efficiently enabling incremental
computation.
Data Structure. Given N’ seen records, the lattice data structure maintains all (1\11'), (1\2[’), . (Nk/)
sets, as well as their utility score. A node in the lattice represents a possible set, singletons, pairs,
triples, ..., size k sets, and so on. An edge represents the membership between two size [ and [+1 sets.
In order to solve 8-Equiv-top-k-Sets exactly, this space requirement is indeed the lower bound.
We also note the lattice structure could be made significantly lightweight (both computationally
and storage-wise), if approximate solutions are acceptable, as we discuss in Section 4. A complete
lattice for our running example is shown in Figure 2 given N = 5, although the data structure only
stores information upto size k sets. The set {ry, 3, 3} at level three is created by union of three
sets in level two, which are {ry, r2}, {r1, r3}, {r2, r3}. Hence the edges represent the connection
between these sets in level [ and [ + 1.
Maintaining the structure. This data structure is updated incrementally as new records are read
by OptTop-k-6. Take the running example again and imagine rel(r;), and div(r,, r3) is read. So
far, the data structure have the following nodes ry, 2, 13, {r1, r2}, {ra, rs}, {r1, rs}, and {ry, ra, r3}.
Next, imagine it reads div(rs, r5), thus a new record rs is encountered. This creates a singleton, 3
new pairs, and 3 additional size-3 sets. Clearly, rs will include the following three additional size-k

sets in (C, 1, j), {r1,ra, s}, {ra, r3, 75}, {r1, 3, rs}.

3.1.3  Efficient bound computation and maintenance. Imagine the cursor on the diversity list now
moves to the third position and reads div(ri,r3) = 4. The upper bound scores of all of these
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following sets {ry, 72,73}, {ri,r2, rs}, {ra, rs, rs}, {r1, 3, rs} are to be updated now. One can naively
calculate these bounds from the scratch - but there exists an opportunity of reusing previously
done computation that is clearly more efficient.

After reading div(ry,r3) = 4, our representation updates the score of the node {ry,r3} in the
lattice. All nodes that have a direct or indirect edge to {r, r3}, their scores are also updated.

Similar situation occurs, when a new record r is encountered - the lattice representation allows
us to quickly identify the new nodes that now contains r, as well as how to efficiently reuse the
previously computed score of a set s” of size smaller than k to compute score of set {s” | Jr}.

F(s' | Jrg) = F(".q) + F(r.q) 3)

Formally, our effort is to study score update as an incremental process and reuse sub-computations
that are done before. We express the score (b, ub, or exact) of a set as a summation of scores over
the subsets and retrieve the previously computed scores and reuse it, as opposed to calculating the
scores from scratch every time. Indeed, the lattice representation over the seen records allows us to
decompose the score of a set as an aggregation over the sub-sets and reuse what has been done
before.

Score reuse for WRMSD. Imagine an instance of OptTop-k-60 and the getNext call has just
returned the second row in the diversity list, namely div(rs, r5) = 4 and the goal is to produce top-k
sets, where k = 4. A brand new record r;s is just seen and this will add three additional size-3 sets
{ri,ro, s}, {ra,rs, rs}, {r1,rs, rs}, three size-2 sets {rq, rs}, {r2,rs}, {rs,rs}, and one singleton rs on
the lattice. The lattice structure facilitates score calculation of WRMSD ({r1, 5, 13, r5}) by reusing
the scores that are calculated before. For the purpose of illustration, lets just consider the diversity
component of the WRMSD calculation WRMSD — Div({ry, r, r3, r5}) and see how upper bound of
scores could be calculated incrementally.

ub — div({ry,r, 13, r5}) = Maxdiv[(r1,{rs, r3,75})
+ Maxdiv[(ra, {r1,73,r5})
+ Maxdiv[(r3, {ri,r2,r5})
+ Maxdiv[(rs, {ri,r2,73})

[

—_ e —

Now consider Maxdiv[(rs, {r1, 2, r5})] and note that this could simply be expressed as follows:
Maxdiv[(rs, {r1,72,15})] = Max(div(r3, rs), Maxdio[ (rs, {ri,12})] 4)

Maxdiv[(rs, {r1,72})] is pre-calculated, hence Equation 4 could be efficiently computed by taking a
maximum over Maxdiv[(rs, {ri,r2})] score and div(rs, rs). This allows sharing computation across
sets.

3.1.4 Global stopping. OptTop-k-0 halts when all 9-equivalent top-k sets are produced. This is
checked by when one of the following two conditions is satisfied; (i). the last score received from
TopkSets(i) is smaller than (1 — 8) X Opt, or (ii). the latest threshold fell below (1 — ) x Opt
(which sets a flag to 1). It is guaranteed that there is no future unseen sets with score at most 0%
smaller than the best top-k sets. At that point, OptTop-k-0 safely terminates and produces the
exact solution.

THEOREM 3.4. OptTop-k-0 is an exact solution for 0-Equiv-top-k-Sets .

Proor. (sketch). Given a monotonic scoring function, it is easy to see that TopkSets(i) produces
the i-th best top-k set in the i-th iteration. OptTop-k-6 maintains all records across iteration,
forms all potential top-k sets. Finally, when OptTop-k-6 terminates, the global stopping condition
guarantees that no unseen set of k records will be 8-equivalent of the top-k set. Hence the proof. O
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Running time of OptTop-k-6. In Section 2, we prove that the counting problem involved in
0-Equiv-top-k-Sets is #P-hard. In reality, the running time is dominated by the number of records
# seen records

OptTop-k-0 reads before termination and is dominated by the factor ( 3 ), which is purely
instance dependent. It could be proved that OptTop-k-0 is instance optimal.

3.2 Algorithm for MaxMinFair

The last line of Algorithm 1 calls Algorithm MaxMinFair, which maximizes the minimum selection
probability of the records present in S. We propose a linear programming based optimum solution
Opt-SP that takes the set of sets S as input, and produces PDF(S), such that MaxMinFair optimizes.
The problem is formally defined as,

Maximize: x

subject to:

P(r) = > PGs)

Vri€s,seS
P(r;)) >x,r;€s,s€S

ZP(s)zl

VseS

Given the linear objective function and constraints this could be solved using an off-the-shelf linear
programming solver using Simplex or Ellipsoid method.

Running Time. Opt-SP involves solving a linear program using Simplex or Ellipsoid method.
Since the feasible region of the objective function is a polytope, these algorithms take polynomial
time to the input size N and |S|.

Running Example. Using Example 2.1, PDF(S) is produced as follows: P(s1) = 0,P(s2) =
0, P(s3) = 0.5, P(s4) = 0.5, leading to selection probability of 3 = 1, and the remaining all 4 records
each will have 0.5 selection probability.

4 APPROXIMATION ALGORITHMS

We present two approximate solutions in this section. The first one is RWalkTop-k-0. To solve
0-Equiv-top-k-Sets, instead of designing a deterministic exact solution that could be exponential,
it leverages a random walk based approach on the item lattice that is highly efficient and is backed
by probability theory. To solve MaxMinFair, it presents a highly efficient greedy solution Gr-SP.
ARWalkTop-k-0 solves both 6-Equiv-top-k-Sets and MaxMinFair at the same time through
an adaptive random walk. Both RWalkTop-k-6and ARWalkTop-k-0 make use of the lattice
structure described in Section 3, but it is computed only partially on the fly, making it significantly
lightweight computationally and storage-wise.

4.1 Algorithm RWalkTop-k-0

Algorithm 3 leverages probabilistic computation for producing 6-Equiv-top-k-Sets by making
random walks on the item lattice. Following that, it solves MaxMinFair using a greedy technique.
Inputs to the algorithm are the query, k, objective function 7, 6, and the items in D. Additionally,
it takes the optimum top-k set and its corresponding score from TopkSets 1. It starts by assigning
each record a uniform probability of 1/N. At each step it does uniform random sampling without
replacement to select a record and repeats the process until a set has k records. This completes a
single random walk on the item lattice, where the walk consists of the edges that are traversed.
After it retrieves a size k set s, it computes 7 (s, q) and retains s, if ¥ (s,q) > Opt — 0. It keeps
repeating the process and stops when each retained s is visited atleast twice in the process.
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Algorithm 3 RWalkTop-k-6
Inputs: query q, D, k, 7, 0
Outputs: PDF(S)

1: while true do

2 s={LS={}

3 while |s| < k do

4 pick a uniform random r € {D — s},

5: s—{sUr}

6

7

8

9

end while
if F(s,q) = (1 —60) x Opt then
S« SU{s}
end if
10: visit.s < visit.s +1
11: if visit.s > 2,Vs € S then
12: break
13: end if
14: end while
15: PDF(S) « GR-SP(S)

4.1.1 Termination Condition of the Random Walk. The termination condition used for random
walk is inspired by the Good Turing Test that is often used in population studies to determine
the number of unique species in a large unknown population [24]. Consider a large population of
individuals drawn from an unknown number of species with diverse frequencies, including a few
common species, some with intermediate frequencies, and many rare species. Let us draw a random
sample of Nyump individuals from this population, which results in n1 individuals that are the
lone representatives of their species, and the remaining individuals belong to species that contain
multiple representatives in the sample population. Then, P0, which represents the frequency of all
unseen species in the original population can be estimated as follows:

LEMMA 4.1. Lemma 1 (Good Turing Test). PO = n1/Nsam -

The assumption here is that the overall probability of hitting one rare species is high while the

probability of hitting the same rare species is low. Therefore, the more the sample hits the rare
species multiple times, the less likely there are unseen species in the original population. We apply
Lemma 4.1 to the -equivalent top-k sets construction, where a valid 8-equivalent top-k sets maps
to the species and the probabilities of finding each such set in RWalkTop-k-0 are the frequencies.
The set of 9-equivalent top-k sets discovered during RWalkTop-k-0 is the sample population. By
ensuring this process visits each constructed set at least twice, we are essentially ensuring that n,
is 0. Thus, using Lemma 4.1, Py can be estimated to be 0, which means it is highly likely that all
0-equivalent top-k sets are discovered.
Ilustrative Example. Figure 2 shows the complete lattice involving Example 2.1. To solve 6-
Equiv-top-k-Sets, the algorithm uniform randomly adds a record and continues the process until
a size-3 is obtained. This way the set s1:{ry, rp, r3} is formed. If s1 is a valid answer, it is retained.
The process continues until all valid sets are discovered at least twice.

4.1.2  Subroutine Gr-SP. Subroutine Gr-SP is designed by leveraging the following lemma.
LEmMMA 4.2. Ifevery recordr in S appears in only one set s € S, the PDF(S) is a uniform distribution

that guarantees equal selection probability of the records.
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Proor. Lemma 4.2 demonstrates an ideal scenario, where a record r € s, s € S appears in only
one s. If the PDF(S) is a uniform distribution, that is, P(s) = 1/|S|,Vs € S, by leveraging the
definition of selection probability of a record (Definition 2.3), then, £ (r) = 1/|S|. Clearly, this
guarantees that each records r to have the same selection probability. O

Basically, the greedy algorithm is iterative and attempts to select a subset of sets from S that
contains different records. Those subset of sets become part of O and gets a non-zero probability
value. Specifically, It selects a set s from S in each iteration and adds to O, which includes the
highest number of records that are not yet present in O but present in S. The process terminates
when O contains all records in S. After that, each set that is present in O gets uniform probability
of ﬁ. Any set s € {S — O}, gets probability 0. We conjecture that this simple yet highly efficient
algorithm accepts a 2-approximation factor, the formal proof is left to be explored in the future.
Ilustrative Example. Imagine S contains the following 5 sets (k = 2), s1: {ry, r2}, s2: {rs, r4}, s3:
{ri,rs}, s4: {rs,rs}, s5: {ri,r3}. If Gr-SP first adds s1 to O, then, in the next iteration it will add
s2, and finally s3/s4. One possible solution will be O = {s1,s2,s3}. Each of these sets will get a
probability of 1/3 and the remaining two sets will have probability 0. The minimum selection
probability of the records will be 1/3.

Running time. With an appropriate data structure, such as bucket queue, Gr-SP takes O(N X |S|)
to run.

4.2 Algorithm ARWalkTop-k-0

The last algorithm ARWalkTop-k-0 we discuss does not separately compute 6-Equiv-top-k-Sets,
and then, MaxMinFair - instead, solves these two problems together. It makes use of Lemma 4.2
to design an adaptive random walk.

The adaptive random walk based algorithm ARWalkTop-k-0 is similar to the random walk part
of RWalkTop-k-0, except it performs the random walk adaptively, by lowering the probability
of the records that are already part of some valid s, and boosting the probability of the remaining
records that have not been part of any valid s yet. The goal is to discover 8-equivalent top-k sets
where the same record r repeats as few times as possible across the sets - ideally appears in one
and only one s. The stopping condition is still guided by the Good Turing Test as described above.
Once the process terminates, each set s in S gets uniform probability, and accordingly the selection
probability of the records are calculated.

For each record r € N, the algorithm keeps track of the sets in S that contain r (r.seenCnt).

Instead of picking a record uniformly at random, it then, selects r with a probability that is inversely
proportional to r.seenCnt. The intuition is that if a record r has already appeared in many s € S,
picking it again will hurt the minimum selection probability of other records r’ that did not appear
as frequently. Therefore, in the i-th iteration of the random walk, it is likely to discover a set of k
records that contains new records that are not present in S yet.
Illustrative Example. Imagine Example 2.1 again and assume that s1: {r;, rz, r3} is discovered.
After that, the ri.seenCnt, ry.seenCnt, r3.seenCnt are increased to 1, and the probabilities of these
records are readjusted proportional to their 1/r.seenCnt. Consequently rq, ry, r3 now have smaller
probabilities, whereas, r4, rs have higher probability. Then the random walk is repeated again and
the process terminates based on the Good Turing Test. Once S is obtained, each s € S is assigned
uniform probability to produce PDF(S).

5 EXPERIMENTAL EVALUATIONS

Our experimental evaluations have three primary goals.
Goal (1) (Section 5.1). How 6-Equiv-top-k-MMSP alleviates a limitation that demographic parity
based group fairness, such as, top-k parity, or proportional fairness [32, 48] has. We measure how

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 240. Publication date: December 2023.



Equitable Top-k Results for Long Tail Data 240:15

Dataset Size Used Attributes
Yelp 112,686 latitude, longitude, review count
IMDB-top 1000 1,000 numVotes, genre,rating
IMDB 10,000 numVotes
Airbnb 39,882 price
Synthetic 10,000 random samples from uniform distribution
Makeblobs 1,000,000 | random samples from guassian distribution

Table 5. Dataset statistics
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varying 6 varying 6 OptTop-k-6

top-k parity alone leads to inequitable exposure, but when 6-Equiv-top-k-MMSP is integrated
inside top-k parity, they together promote both equal exposure while satisfying group fairness
constraints. For that, we present (max-min normalized) exposure, which counts the number of
times each record is returned in top-k.

Goal (2) (Section 5.2). Examine quality. For 0-Equiv-top-k-Sets , we present recall [28] of
the efficient alternatives RWalkTop-k-6 and ARWalkTop-k-6 compared to OptTop-k-6. For
MaxMinFair, we present approximation factors (objective function of approximate solution/ ob-
jective function of exact solution) of Gr-SP and H-SP wrt Opt-SP.

Goal (3) (Section 5.3). Investigate scalability. For -Equiv-top-k-Sets, we present pruning capa-
bilities of OptTop-k-60 , as well as study the scalability of the different algorithms designed for
0-Equiv-top-k-Sets and MaxMinFair varying pertinent parameters.

1. Experimental setup. All algorithms are implemented in Python 3.8. All experiments are
conducted on a server machine with 128GB RAM memory, OS: windows server 2019 datacenter,
version: 1809, CPU: Processor 11th Gen Intel(R) Core(TM) i9-11900K @ 3.50GHz, 3504 Mhz, 8
Core(s), 16 Logical Processor(s). Obtained results are the average of three separate runs. Github has
further details [14].

2. Datasets. Experiments are conducted on six datasets, four real and two synthetic data. For
real datasets, we use Yelp [51], IMDB-top 1000 [31], IMDB [29], and Airbnb [4]. For one of
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the synthetic data, we generate random samples for relevance and diversity scores from uniform
distributions. The other synthetic data is MakeBlobs [36] from the sklearn package that produces
data points from a normal distribution. Table 5 has an overview.

3. Implemented Algorithms.

We note that existing works [7, 21, 25] do not have an easy extension to solve 8-Equiv-top-k-MMSP
because the solution frameworks do not adapt to solve §-Equiv-top-k-Sets.

e J-Equiv-top-k-Sets. We compare the exact algorithm OptTop-k-6 with the two approximate
solutions RWalkTop-k-6 and ARWalkTop-k-6.

e MaxMinFair. We implement a simple baseline H-SP first. It goes over the sets in S one by
one and checks if all records in a set s are present in other sets in {S — s}. If yes, s is deleted
from S. After that, the remaining sets are returned, each associated with uniform probability.
We compare the LP-based exact solutions Opt-SP, with approximate solutions Gr-SP and
H-SP.

4. Representative utility functions.

(1) Maximize relevance. Xy esRel(r, q)
(2) Weighted relevance and max sum diversity (WRMSD)
Maximize AXX,esRel(r, q)+(1-1) XZ,ESMax,,,jE{s_r}Div(r, rj), where A is a weight between
[0, 1].
(3) Maximize diversity. Maximize 3,esMaxy.r e (s—ryDiv(r,1})
5. Query & Parameters. Queries are selected randomly. Unless specified, the default parameters
are N = 10k, k =5, F = WRMSD with A = 0.99, 6 = 0.01.

5.1 Goal 1: 6-Equiv-top-k-MMSP and Top-k Parity

Figures 3 show (max-min normalized) exposure of IMDB-1000 movies considering group-fairness [43]
top-k parity [32] alone and that of when 6-Equiv-top-k-MMSP is implemented along with top-k
parity [32]. Group fairness considering top-k parity [32] is imposed using the genre attribute. It is
clear when the top-k records are returned based on 6-Equiv-top-k-MMSP, while satisfying group-
fairness [43], the exposure of the records remain unchanged (Figure 3(b)), whereas, records get
inequitable exposure when only group-fairness is ensured. Thus, 8-Equiv-top-k-MMSP alleviates
a shortcoming that group fairness suffers from.

5.2 Goal 2: Quality analysis

We first present the quality study related to the algorithms designed for 6-Equiv-top-k-Sets ,
following which, we present those results for the algorithms designed for MaxMinFair .

5.2.1 Quality Analysis of 6-Equiv-top-k-Sets . We study the algorithms designed for 6-Equiv-
top-k-Sets from the quality standpoint. We present the Recall percentage [28], which is the
percentage of equivalent top-k sets returned by the underlying algorithm w.r.t. the exact solution
OptTop-k-6(ground truth).

A. Recall of RWalkTop-k-0 . We measure the quality of RWalkTop-k-60 by presenting the Recall
value as described above, which produces the ratio of the top-k sets returned by RWalkTop-k-0
compared to that of the exact solution OptTop-k-0 by varying 6. Figure 4 shows that the recall of
RWalkTop-k-0 stays steady mostly (close to 80% for almost all real datasets) or increases with
increasing 6. At some point it becomes as high as 91%. When data distribution is uniform (synthetic
data), clearly RWalkTop-k-60 becomes more effective with increasing 8, which is unsurprising.
These results also validate the applicability of the Good Turing Test for our studied problem,
informing that for almost all of the datasets, the random walk is returning around 80% of the 60
equivalent top-k sets, while being significantly computationally efficient.
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B. Recall of ARWalkTop-k-0. Figure 5 shows the Recall value for the ARWalkTop-k-6 algorithm.
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As expected, ARWalkTop-k-6 is inferior to solve 8-Equiv-top-k-Sets compared to RWalkTop-
k-0, as it only produces sets that are highly different from each other, giving rise to fewer number
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Fig. 11. MaxMinFair approx factor and scalability

of sets. ARWalkTop-k-60 reaches up to 60% recall for Airbnb dataset. Recall decreases with
increasing 6 here, since more top-k sets with common items become eligible with increasing 0,
which ARWalkTop-k-6 does not return.

5.2.2  Quality analysis of MaxMinFair . A. Approximation Factor. We calculate the approx-
imation factor by dividing the minimum selection probability of the records returned by Gr-SP
with that of Opt-SP. Since MaxMinFair is a maximization problem, hence the approximation
factor is always < 1. Similarly, the approximation factor of H-SP is also computed. As we shall
demonstrate in Section 5.3.2, despite being an exact solution, Opt-SP is not highly scalable, since it
involves a linear program. Figure 11 (a) shows the approximation factor using the sets returned by
RWalkTop-k-0 algorithm for Gr-SP and H-SP. Since minimum selection probability for Gr-SP is
higher than H-SP, its approximation factor is larger. The approximation factors demonstrate an
encouraging facts. the minimum approximation factor value for Gr-SP is 0.74 and that of H-SP is
0.68, where as the maximum is 0.84 and 0.75, respectively. Figure 11 (b) present the approximation
factor by varying k on 1000 sets returned by RWalkTop-k-6 algorithm for Gr-SP and H-SP. The
minimum value of approximation factor of Gr-SP is 0.77, and for H-SP is 0.60, and the maximum
values are 0.81 and 0.74, respectively.

5.3 Goal 3: Scalability Analysis

We first present the scalability study related to the algorithms designed for 8-Equiv-top-k-Sets ,

following which, we present those results for the algorithms designed for MaxMinFair .

5.3.1 Scalability Analysis for 6-Equiv-top-k-Sets . We compare the scalability aspects of the three

designed algorithms by varying pertinent parameters.

A. Pruning Effectiveness. We show that OptTop-k-6 solves 6-Equiv-top-k-Sets by accessing a

very few records in the sorted lists. Figure 6 shows effective record pruning of OptTop-k-0 varying
(N — number of seen records)

N

0. Record pruning percentage is = . OptTop-k-0 is able to prune
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99% of the dataset to exactly solve 9-Equiv-top-k-Sets. Also with 6, more equivalent sets are to be
found, OptTop-k-0 needs to read more records, thereby pruning percentage slightly decreased by
increasing 6.

B. Running time varying N. Figure 7 shows the scalability of the three proposed algorithms
for 0-Equiv-top-k-Sets by increasing N. As expected, due to the exponential nature of -Equiv-
top-k-Sets , OptTop-k-0 is not scalable over large value of N. In contrast, the other two proposed
algorithms are scalable. ARWalkTop-k-0 is more scalable than RWalkTop-k-0 since it finds
less number of sets because of its adaptiveness, it stops earlier. With 1M records in MakeBlobs,
ARWalkTop-k-0 takes only a few minutes to finish.

C. Running time varying k. Figure 8 demonstrates the scalability of the three proposed algorithms
by varying k. As expected, OptTop-k-0 does not scale well. Consider Figure 8(c) using Yelp dataset.
When k =5, OptTop-k-0 takes 34.02 seconds to run, and the number of seen records is 28. (258) =
98280 sets are generated and examined only to produce 12 final top-k sets. Now consider that it is
increased to k = 10. This may end up producing (fg) = 13123110 sets even with only 28 seen records,
which is 133X larger than before. This exponential increase is expected due to the computational
nature of 0-Equiv-top-k-Sets . On the other hand, RWalkTop-k-9 and ARWalkTop-k-0 are
highly scalable, and not very sensitive to increasing k.

D. Running time varying 6. Figure 9 demonstrates the scalability of the three proposed algorithms
by varying 6. Increasing 6 increases the size of |S|. As expected, OptTop-k-0 is highly sensitive
to this parameter and does not scale well. In comparison, the random walk based algorithms
RWalkTop-k-6 and ARWalkTop-k-6 are less sensitive and scale reasonably well with increasing
0.

E. Running time varying ¥ . In Figure 10 we present the running time of RWalkTop-k-6 using
the three representative utility functions, described at the beginning of the Section 5: Figure 10(a),
Figure 10(b), Figure 10(c) demonstrate the scalability by varying parameters N, 6 and k. As we
can see, the running times of all three objective functions increase by increasing N, k, 8. However,
the nature of the underlying objective function does not as such impact the running time. Similar
observation holds for ARWalkTop-k-0 (the graphs are not presented for brevity). This is highly
encouraging, as it demonstrates the effectiveness of our designed solutions across different objective
functions.

5.3.2  Scalability Analysis of MaxMinFair . In this section, we present the scalability analysis of
the three algorithms designed for MaxMinFair. We evaluate the scalability varying S|, N, k.

A. Running time varying |S|. Figure 11 (c) shows running time of the Opt-SP, Gr-SP, H-SP with
k = 5. The heuristic H-SP exhibits the highest scalability among all and the linear programming
based exact algorithm Opt-SP has the least scalability, as expected. Similar observation holds when
N is varied. Nevertheless, both Gr-SP and H-SP are highly scalable and the results corroborate
their theoretical running time.

B. Running time varying k. Figure 11 (d) shows the scalability with varying k and |S| = 1000.
Similar observation holds as before that agorithms Gr-SP and H-SP are highly scalable to increasing
k. This observation is also consistent to their theoretical analysis.

5.4 Summary of Results

(a) Our first observation is §-Equiv-top-k-MMSP alleviates a fairness limitation inherent to
demographic parity based group-fairness [43]. (b) Our second observation demonstrates the compu-
tational effectiveness of OptTop-k-0 - despite the fact 0-Equiv-top-k-MMSP is computationally
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intractable, our designed solution OptTop-k-6 is highly effective in pruning the vast majority of
the records from the input database to produce the exact solution for 6-Equiv-top-k-Sets. The
pruning effectiveness is at times as high as 99%. (c) We experimentally observe that RWalkTop-k-6
is a highly scalable algorithm that is several order of magnitude faster than the exact solutions
OptTop-k-0 and Opt-SP, yet the produced results are highly comparable qualitatively. This so-
lution achieves high recall, sometime, as high as 91% recall value, while taking a few seconds to
run. These results demonstrate the efficiency as well as effectiveness of RWalkTop-k-6 to be used
and deployed inside real world applications. (d) Our final observation is that ARWalkTop-k-0 is
a highly efficient solution that can easily scale to a very large N with millions of records, and is
suitable for applications that can accommodate modest inaccuracy.

6 RELATED WORK

Group Fairness. Most approaches to algorithmic fairness interpret fairness as lack of discrim-
ination [23] seeking that an algorithm should not discriminate against its input entities based on
attributes that are not relevant to the task at hand. Such attributes are called protected, or sensitive,
and often include among others gender, religion, age, sexual orientation and race. So far, most work
on defining, detecting and removing unfairness has focused on classification algorithms [52, 54]
used in decision making. W.r.t ranking and top-k results, the algorithmic fairness literature deals
with group fairness along the lines of demographic parity this is typically expressed by means of
some fairness constraint requiring that the top — k results (for any k) to contain enough records
from some groups that are protected [6, 21, 26, 30, 34, 40, 44, 48, 50, 53, 55]. A good survey on this
could be found in [39].

Individual Fairness. Individual fairness, on the other hand, as proposed by Dwork et al [16],
intends to ensure “similar individuals are treated similarly”. Dwork et al. explain that a classifier is
individually fair if the distance between probability distributions mapped by the classifier is not
greater than the actual distance between the records [16]. Biega et al. propose measures that identify
unfairness at the level of individual subjects considering position bias in ranking [8]. Mahabadi et al.
study the individual fairness in k-clustering. Their goal is to develop a clustering algorithm of the
records so that all records are treated (approximately) equally[35]. Patro et al. [38] investigate the
fair allocation problem and study individual fairness in two-sided platforms consisting of producers
and customers on opposite sides. Fish et al. study individual fairness in social network [20] to
maximize the minimum probability of receiving the information for poorly connected users.

It has been recognized that group fairness alone has its deficiencies [22]. In two independent efforts,
Flanigan et. al. [21] and Garcia-Soriano et. al. [25] study how to enable equitable selection probability
of the records under group fairness constraints and propose maxmin-fair distributions of ranking.
Zemel et al. develop a learning algorithm for fair classification that ensures both group fairness
and individual fairness [54]. [7] studies individual fairness in similarity search to ensure points
within distance r from the given query have the same probability to be returned.

In [13], the authors propose a new ranking function for search engines called “page quality” by
estimating the intrinsic quality of a page. This solution deals with web pages with hyperlinks and
alleviates the unequal exposure problem. Due to this specific nature, the solution does not extend
to 8-Equiv-top-k-MMSP .

Top-k Algorithms. Given a user query, a top-k result contains k records that have the highest
scores [41]. Scores are computed based on relevance, diversity, newness, serendipity, etc. Designing
effective scoring functions as well as efficient algorithms [1, 2] lend to numerous applications in
recommendation and search [3, 10, 11, 18, 33, 46, 47] and is an active area of research. The authors
in [42] present a model-based approach to studying result diversity in search engines, exploring
the interplay between diversity and quality and improving upon Google’s performance on both

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 240. Publication date: December 2023.



240:22 Md Mouinul Islam, Mahsa Asadi, and Senjuti Basu Roy

random and selective queries. We, on the other hand, do not propose any new scoring function or
a new top-k algorithm, but study how to alleviate the unequal exposure problem in the existing
algorithms.

0-Equiv-top-k-MMSP borrows inspiration from existing works, yet it is unique - we study existing
top-k algorithms and redesign them to address a fairness concern that is prevalent in long tail data.

7 CONCLUSION

We formalize 0-Equiv-top-k-MMSP to redesign existing top-k algorithms for long tail data to en-
sure fairness. Given a query, 0-Equiv-top-k-MMSP computes a set of top-k sets that are equivalent
and assigns a probability distribution over these sets, such that, after many users draw a set from
these sets according to its assigned probability, the selection probabilities of the records present
in these sets are as uniform as possible. We present multiple algorithmic results with theoretical
guarantees as well as present extensive experimental evaluation. We demonstrate how our proposed
notion of fairness positively impacts compelling downstream applications, and complements group
fairness.

One of the directions that we are currently exploring lies in understanding pre-processing
techniques that can speed up the computation of -Equiv-top-k-Sets.

8 ACKNOWLEDGMENTS

This work is supported by the NSF CAREER Award #1942913, IIS #2007935, IIS #1814595, PPoSS:Planning
#2118458, and by ONR Grants: #N000141812838, #N000142112966.

REFERENCES

[1] Sofiane Abbar, Sihem Amer-Yahia, Piotr Indyk, and Sepideh Mahabadi. 2013. Real-time recommendation of diverse
related articles. In Proceedings of the 22nd international conference on World Wide Web. 1-12.

[2] Sofiane Abbar, Sihem Amer-Yahia, Piotr Indyk, Sepideh Mahabadi, and Kasturi R Varadarajan. 2013. Diverse near
neighbor problem. In Proceedings of the twenty-ninth annual symposium on Computational geometry. 207-214.

[3] Pankaj K Agarwal, Stavros Sintos, and Alex Steiger. 2020. Efficient Indexes for Diverse Top-k Range Queries. In
Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems. 213-227.

[4] Airbnb. 2023. Dataset. http://insideairbnb.com/get-the-data

[5] Robert Armstrong. 2008. The long tail: Why the future of business is selling less of more. Canadian Journal of
Communication 33, 1 (2008), 127.

[6] Abolfazl Asudeh, HV Jagadish, Julia Stoyanovich, and Gautam Das. 2019. Designing fair ranking schemes. In Proceedings
of the 2019 international conference on management of data. 1259-1276.

[7] Martin Aumuller, Sariel Har-Peled, Sepideh Mahabadi, Rasmus Pagh, and Francesco Silvestri. 2021. Fair near neighbor
search via sampling. ACM SIGMOD Record 50, 1 (2021), 42-49.

[8] Asia ] Biega, Krishna P Gummadi, and Gerhard Weikum. 2018. Equity of attention: Amortizing individual fairness in
rankings. In The 41st international acm sigir conference on research & development in information retrieval. 405-414.

[9] Reuben Binns. 2020. On the apparent conflict between individual and group fairness. In Proceedings of the 2020
conference on fairness, accountability, and transparency. 514-524.

[10] Zhi Cai, Georgios Kalamatianos, Georgios J Fakas, Nikos Mamoulis, and Dimitris Papadias. 2020. Diversified spatial
keyword search on RDF data. The VLDB Journal (2020), 1-19.

[11] David Campos, Tung Kieu, Chenjuan Guo, Feiteng Huang, Kai Zheng, Bin Yang, and Christian S Jensen. 2021.
Unsupervised Time Series Outlier Detection with Diversity-Driven Convolutional Ensembles-Extended Version. arXiv
preprint arXiv:2111.11108 (2021).

[12] Jaime Carbonell and Jade Goldstein. 1998. The use of MMR, diversity-based reranking for reordering documents and
producing summaries. In Proceedings of the 21st annual international ACM SIGIR conference on Research and development
in information retrieval. 335-336.

[13] Junghoo Cho, Sourashis Roy, and Robert E. Adams. 2005. Page Quality: In Search of an Unbiased Web Ranking (SIGMOD
’05). Association for Computing Machinery, New York, NY, USA, 551-562. https://doi.org/10.1145/1066157.1066220

[14] Codes and data. 2024. https://anonymous.4open.science/r/FairSelectionInsideTopk-2F4F/README.md.

[15] Gil Delannoi and Oliver Dowlen. 2016. Sortition: Thoery and Practice. Vol. 3. Andrews UK Limited.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 240. Publication date: December 2023.


http://insideairbnb.com/get-the-data
https://doi.org/10.1145/1066157.1066220
https://anonymous.4open.science/r/FairSelectionInsideTopk-2F4F/README.md

Equitable Top-k Results for Long Tail Data 240:23

[16]
[17]
[18]
[19]
[20]
[21]
[22]
[23]
[24]
[25]

[26]

[27]

[28]
[29]

[30]

[31]
[32]
[33]
[34]
[35]

[36]
[37]

[38]

[39]
[40]
[41]
[42]
[43]

[44]

Cynthia Dwork, Moritz Hardt, Toniann Pitassi, Omer Reingold, and Richard Zemel. 2012. Fairness through awareness.
In Proceedings of the 3rd innovations in theoretical computer science conference. 214-226.

Ulle Endriss. 2018. Lecture notes on fair division. arXiv preprint arXiv:1806.04234 (2018).

Mohammadreza Esfandiari, Ria Mae Borromeo, Sepideh Nikookar, Paras Sakharkar, Sihem Amer-Yahia, and Senjuti
Basu Roy. 2021. Multi-Session Diversity to Improve User Satisfaction in Web Applications. In Proceedings of the Web
Conference 2021. 1928-1936.

Ronald Fagin, Amnon Lotem, and Moni Naor. 2003. Optimal aggregation algorithms for middleware. Journal of
computer and system sciences 66, 4 (2003), 614-656.

Benjamin Fish, Ashkan Bashardoust, Danah Boyd, Sorelle Friedler, Carlos Scheidegger, and Suresh Venkatasubramanian.
2019. Gaps in Information Access in Social Networks?. In The World Wide Web Conference. 480-490.

Bailey Flanigan, Paul G6lz, Anupam Gupta, Brett Hennig, and Ariel D Procaccia. 2021. Fair algorithms for selecting
citizens’ assemblies. Nature 596, 7873 (2021), 548-552.

Will Fleisher. 2021. What’s Fair about Individual Fairness?. In Proceedings of the 2021 AAAI/ACM Conference on Al
Ethics, and Society. 480-490.

Sorelle A Friedler, Carlos Scheidegger, and Suresh Venkatasubramanian. 2021. The (im) possibility of fairness: Different
value systems require different mechanisms for fair decision making. Commun. ACM 64, 4 (2021), 136-143.

William A Gale and Geoffrey Sampson. 1995. Good-turing frequency estimation without tears. Journal of quantitative
linguistics 2, 3 (1995), 217-237.

David Garcia-Soriano and Francesco Bonchi. 2021. Maxmin-fair ranking: individual fairness under group-fairness
constraints. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining. 436-446.
Sahin Cem Geyik, Stuart Ambler, and Krishnaram Kenthapadi. 2019. Fairness-aware ranking in search & recommenda-
tion systems with application to linkedin talent search. In Proceedings of the 25th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. 2221-2231.

Dimitrios Gunopulos, Roni Khardon, Heikki Mannila, Sanjeev Saluja, Hannu Toivonen, and Ram Sewak Sharma. 2003.
Discovering all most specific sentences. ACM Transactions on Database Systems (TODS) 28, 2 (2003), 140-174.

Jiawei Han, Jian Pei, and Hanghang Tong. 2022. Data mining: concepts and techniques. Morgan kaufmann.

IMDB. 2023. Dataset. https://www.kaggle.com/datasets/isaactaylorofficial/imdb-10000-most-voted-feature-films-
041118

Zhongjun Jin, Mengjing Xu, Chenkai Sun, Abolfazl Asudeh, and HV Jagadish. 2020. Mithracoverage: a system
for investigating population bias for intersectional fairness. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data. 2721-2724.

Kaggle. [n.d.]. Top-1000 IMDB Movies. https://www.kaggle.com/datasets/harshitshankhdhar/imdb- dataset- of-top-
1000-movies-and-tv-shows.

Caitlin Kuhlman and Elke Rundensteiner. 2020. Rank aggregation algorithms for fair consensus. Proceedings of the
VLDB Endowment 13, 12 (2020).

Chang Li, Haoyun Feng, and Maarten de Rijke. 2020. Cascading Hybrid Bandits: Online Learning to Rank for Relevance
and Diversity. In RecSys 2020: The ACM Conference on Recommender Systems. ACM, 33-42.

Yungqi Li, Hanxiong Chen, Zuohui Fu, Yingqiang Ge, and Yongfeng Zhang. 2021. User-oriented fairness in recommen-
dation. In Proceedings of the Web Conference 2021. 624-632.

Sepideh Mahabadi and Ali Vakilian. 2020. Individual fairness for k-clustering. In International Conference on Machine
Learning. PMLR, 6586-6596.

Makeblobs. 2023. Dataset. https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html
Alberto O Mendelzon and Tova Milo. 1997. Formal models of web queries. In Proceedings of the sixteenth ACM
SIGACT-SIGMOD-SIGART symposium on Principles of database systems. 134-143.

Gourab K Patro, Arpita Biswas, Niloy Ganguly, Krishna P Gummadi, and Abhijnan Chakraborty. 2020. Fairrec:
Two-sided fairness for personalized recommendations in two-sided platforms. In Proceedings of The Web Conference
2020. 1194-1204.

Evaggelia Pitoura, Kostas Stefanidis, and Georgia Koutrika. 2021. Fairness in rankings and recommendations: an
overview. The VLDB Journal (2021), 1-28.

Evaggelia Pitoura, Panayiotis Tsaparas, Giorgos Flouris, Irini Fundulaki, Panagiotis Papadakos, Serge Abiteboul, and
Gerhard Weikum. 2018. On measuring bias in online information. ACM SIGMOD Record 46, 4 (2018), 16-21.

Lu Qin, Jeffrey Xu Yu, and Lijun Chang. 2012. Diversifying top-k results. arXiv preprint arXiv:1208.0076 (2012).
Davood Rafiei, Krishna Bharat, and Anand Shukla. 2010. Diversifying web search results. In The Web Conference.
Babak Salimi, Bill Howe, and Dan Suciu. 2020. Database repair meets algorithmic fairness. ACM SIGMOD Record 49, 1
(2020), 34-41.

Ashudeep Singh and Thorsten Joachims. 2018. Fairness of exposure in rankings. In Proceedings of the 24th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining. 2219-2228.

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 240. Publication date: December 2023.


https://www.kaggle.com/datasets/isaactaylorofficial/imdb-10000-most-voted-feature-films-041118
https://www.kaggle.com/datasets/isaactaylorofficial/imdb-10000-most-voted-feature-films-041118
https://www.kaggle.com/datasets/harshitshankhdhar/imdb-dataset-of-top-1000-movies-and-tv-shows
https://www.kaggle.com/datasets/harshitshankhdhar/imdb-dataset-of-top-1000-movies-and-tv-shows
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html

240:24 Md Mouinul Islam, Mahsa Asadi, and Senjuti Basu Roy

[45] Peter Stone. 2016. Sortition, voting, and democratic equality. Critical review of international social and political
philosophy 19, 3 (2016), 339-356.

[46] Sanne Vrijenhoek, Gabriel Bénédict, Mateo Gutierrez Granada, Daan Odijk, and Maarten de Rijke. 2022. RADio -
Rank-Aware Divergence Metrics to Measure Normative Diversity in News Recommendation. In RecSys 2022: The ACM
Conference on Recommender Systems. ACM.

[47] Lina Wang, Xuyun Zhang, Tian Wang, Shaohua Wan, Gautam Srivastava, Shaoning Pang, and Lianyong Qi. 2020.
Diversified and scalable service recommendation with accuracy guarantee. IEEE Transactions on Computational Social
Systems (2020).

[48] Dong Wei, Md Mouinul Islam, Baruch Schieber, and Senjuti Basu Roy. 2022. Rank aggregation with proportionate
fairness. In Proceedings of the 2022 International Conference on Management of Data. 262-275.

[49] Guizhen Yang. 2004. The complexity of mining maximal frequent itemsets and maximal frequent patterns. In Proceedings
of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining. 344-353.

[50] Ke Yang and Julia Stoyanovich. 2017. Measuring fairness in ranked outputs. In Proceedings of the 29th international
conference on scientific and statistical database management. 1-6.

[51] Yelp. 2023. Dataset. https://www.yelp.com/dataset/documentation/main

[52] Muhammad Bilal Zafar, Isabel Valera, Manuel Gomez Rodriguez, and Krishna P Gummadi. 2017. Fairness beyond
disparate treatment & disparate impact: Learning classification without disparate mistreatment. In Proceedings of the
26th international conference on world wide web. 1171-1180.

[53] Meike Zehlike, Francesco Bonchi, Carlos Castillo, Sara Hajian, Mohamed Megahed, and Ricardo Baeza-Yates. 2017.
Fa* ir: A fair top-k ranking algorithm. In Proceedings of the 2017 ACM on Conference on Information and Knowledge
Management. 1569-1578.

[54] Rich Zemel, Yu Wu, Kevin Swersky, Toni Pitassi, and Cynthia Dwork. 2013. Learning fair representations. In Interna-
tional conference on machine learning. PMLR, 325-333.

[55] Hantian Zhang, Xu Chu, Abolfazl Asudeh, and Shamkant B Navathe. 2021. Omnifair: A declarative system for
model-agnostic group fairness in machine learning. In Proceedings of the 2021 International Conference on Management
of Data. 2076-2088.

Received April 2023; revised July 2023; accepted August 2023

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 240. Publication date: December 2023.


https://www.yelp.com/dataset/documentation/main

	Abstract
	1 Introduction
	2 Data Model & Problem Definition
	2.1 Running Example
	2.2 Data Model
	2.3 Problem Definition & Hardness

	3 Exact Algorithms
	3.1 Algorithm for -Equiv-top-k-Sets 
	3.2 Algorithm for MaxMinFair 

	4 Approximation Algorithms
	4.1 Algorithm RWalkTop-k- 
	4.2 Algorithm ARWalkTop-k- 

	5 Experimental Evaluations
	5.1 Goal 1: -Equiv-top-k-MMSP and Top-k Parity
	5.2 Goal 2: Quality analysis
	5.3 Goal 3: Scalability Analysis
	5.4 Summary of Results

	6 Related Work
	7 Conclusion
	8 ACKNOWLEDGMENTS
	References

