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ABSTRACT: Building on previous constructions examining how a collection of small, locally
interacting quantum systems might emerge via spontaneous symmetry breaking from a single-
particle system of high dimension, we consider a larger family of geometric loss functionals
and explicitly construct several classes of critical metrics which “know about qubits” (KAQ).
The loss functional consists of the Ricci scalar with the addition of the Gauss-Bonnet term,
which introduces an order parameter that allows for spontaneous symmetry breaking. The
appeal of this method is two-fold: (i) the Ricci scalar has already been shown to have
KAQ critical metrics and (ii) exact equations of motions are known for loss functionals with
generic curvature terms up to two derivatives. We show that KAQ critical metrics, which
are solutions to the equations of motion in the space of left-invariant metrics with fixed
determinant, exist for loss functionals that include the Gauss-Bonnet term. We find that
exploiting the subalgebra structure leads us to natural classes of KAQ metrics which contain
the familiar distributions (GUE, GOE, GSE) for random Hamiltonians. We introduce tools
for this analysis that will allow for straightfoward, although numerically intensive, extension
to other loss functionals and higher-dimension systems.
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1 Introduction

Although the notion of emergent gravity has been studied from a variety of perspectives,!

a simpler but still illuminating question to consider is the emergence of locality. A formal
structure to pose that question, at least for toy systems described by large, finite-dimensional
quantum systems, was recently suggested by Freedman and Zini [7-9]. They introduced
functionals of geometry on the evolutionary operators of high-dimensional quantum systems
and asked whether the geometries that minimize those functionals correspond to dynamics
of a many-body quantum system with a notion of local interactions. The tools to answer
this question are inner products on the Lie algebra su(N), corresponding to left-invariant
metrics on the associated manifold of the Lie group SU(NV) [10-12]. Those inner products,
or metrics, can be used to construct probability distributions over Hamiltonians that give
preference to different classes of dynamics on a Hilbert space of dimension N.

'A non-exhaustive list of examples includes [1-6].



Here, we expand in two technical ways on the examples considered in the original
statement of this program [7]. First, we consider a new set of geometrically motivated loss
functionals which have critical points corresponding to a qubit structure decomposition.
Reference [7] labeled critical points of that type as KAQ since they ‘know about qubits’
Motivated by the critical point structure of the Ricci scalar, we consider loss functions built
from higher-order curvature terms. The exact equations of motion for such actions already
exist in the literature [13-16]. Secondly, we provide a construction for classes of KAQ metrics
that generalize those recovered in [7] and originally found in [17]. We use this construction
as an ansatz for critical points of our loss functionals. In this way we are able to determine
potential KAQ critical points in the space of our ansatz metrics, which then may be checked
against the equations of motion. We do not need to search in the full space of left-invariant
metrics, we only need to search in the exponentially reduced space of our ansatz KAQ metrics.
Although still numerically intensive, this is a promising approach to apply to systems larger
than those we treat in this article.

In the rest of this section, we lay out in more detail the statement of the problem and
the tools to be used, including the new loss functionals. Section 2 then describes in detail
the parameterizations of KAQ metrics we find useful. In section 3 we present the equations
of motion that must be solved to find critical points and apply the parameterizations to
find new critical points, presented in section 4. We conclude with implications and further
directions in section 5.

1.1 Distributions over Hamiltonians

Rather than searching for some dynamics that picks out a specific Hamiltonian, it is natural
to ask for a distribution over Hamiltonians that assigns a higher likelihood to a particular
class with interesting behavior. A simple and familiar choice for a distribution over dynamics
of a quantum system of dimension N is the Gaussian Unitary Ensemble [18, 19], where each
independent real number of the N x N Hermitian matrix that defines the Hamiltonian, H, is
independently drawn from a Gaussian distribution. Equivalently,

pcue(H) et () (1.1)
This distribution is invariant under unitary transformations, H — UHU' (as is clear from
the cyclic property of the trace). It does not give preference to Hamiltonians that have
the many-body local structure typical of spin systems frequently observed in nature, where
the many entries in the large matrix H that correspond to interactions among nearly all
the degrees of freedom would be suppressed. A different distribution that would support a
many-body local structure when N = 2% would, for example, have a basis constructed from

Pauli words for qubits, ®;~i:10§])

, where each o(/) is any of the Pauli matrices or the 2 x 2
identity. A choice of weights assigned to operators in this basis could define a distribution
favoring some subset of operators, for example words of shorter length (measured by the
number of non-identity Pauli matrices).

To formalize distributions that are different from GUE, consider the set of inner products
on the space of operators, which for quantum systems with Hilbert space of dimension N is

the algebra g = su(N). The Lie algebra comes equipped with the Lie bracket, but the bracket



itself does not assign an inner product. The GUE arises from the most symmetric choice of
metric, given by the Killing form K : g x g — C, which defines a map that is invariant under
a basis change. Using K defines the Killing-Cartan metric for X, Y elements of the algebra

§(X,Y) =tr(adX xadY), (1.2)

where adX is the map defined by adX(Y) = [X,Y] for all Y. General inner products on
the algebra correspond to left-invariant metrics on the group manifold for G = SU(N),
while the Killing-Cartan metric is special in that it is both left and right invariant i.e. bi-
invariant. Although from the manifold point of view one can imagine more complex metrics
that depend on some choice of coordinates, the set of left-invariant metrics is sufficient for
constructing a larger class of distributions over Hamiltonians. The more general distributions
over Hamiltonians can be written

prz(0) o e9(©:0) (1.3)

where g is a strictly left-invariant metric over SU(N). To construct a left-invariant metric,
one need only supply its value over the Lie algebra. This is equivalent to supplying the
Lie algebra with an inner product i.e.

(w)y:gxg—C (1.4)

which may be propagated to the rest of the Lie group through use of the differential of
left-multiplication [10]. Defining the metric in this way guarantees that it is indeed left-
invariant. For a left-invariant metric to be bi-invariant, its associated inner product must
be adg invariant i.e.

<[O,A],[O,B]> = <A7B> (1'5>

holds for all O, A, B € su(N). In section 2 we construct several classes of strictly left-invariant
metrics, and one may demonstrate they are strictly left-invariant by finding any particular
O for which eq. (1.5) fails to hold.

In fact the Killing-Cartan geometry is the only bi-invariant geometry over SU(N) (up to
overall scale) and so considering strictly left-invariant geometries allows for more structure.
Left-invariant metrics can be distinguished using their principal axes, which correspond to the
elements of the orthonormal basis (X,) of an associated inner product. These operators are
orthonormal in the sense that (X, Xp) = 045 where 0, is the Kronecker delta and the indices
take values between 1 and 4% — 1. In general, the orthonormal basis of an inner product
produces a non-holonomic or non-coordinate basis over the manifold since the structure
constants (C¢,, ) are non-zero. Recall that the structure constants of a basis are given by

[(Xo, Xp] =) CpXe. (1.6)

Therefore, one may not use the standard formulas from general relativity when computing
curvature functionals. For example, in a non-holonomic basis the Christoffel connection picks
up a term proportional to the structure constants. See appendix A for all relevant formula
of the curvature functionals expressed in a non-holonomic basis.



1.2 Many-body dynamics via preferred geometries

Although one can construct any distribution over Hamiltonians by hand, it is interesting to
ask if there may be a geometrical means of picking out interesting classes, which perhaps
could be dynamically realized as a spontaneous symmetry breaking process that fragments a
large “single-particle” quantum system into an ensemble of small quantum systems interacting
in a way that resembles local, many-body physics. Freedman and Zini [7-9] considered a
family of functionals of the group geometry, parameterized by the metric and the structure
constants, and explored whether the minima of these functionals select out KAQ metrics.

Here, we explore this idea a bit further by looking at functionals L£[g] that are natural
on the group manifold, defined by the set of two-derivative curvature tensors

L[g] = R+ aR* 4 BR4R™ + YR apeq R

(1.7)
=R+ aRy+ PBRa+ VR,

The critical points of just the Ricci scalar, R, were first studied by [17], and the same results
were recovered by [7]. The larger class of functionals in eq. (1.7) is especially tractable to
study since the conditions for a metric to be a critical point are already known [15, 16]. We
return to this in section 3. While [7] used numerical techniques to find all critical points of
some loss functionals and then determine if they corresponded to KAQ or non-KAQ metrics,
we take a different approach and instead explore whether or not KAQ metrics occur as critical
points (and ideally minima) of an expanded set of loss functions. To do so, we next introduce
parameterizations of KAQ metrics, including generalizations of those that correspond to the
KAQ critical points found in [17] for £[g] = R. This allows us to explore the structure and
properties of the KAQ metrics in more detail, although with the drawback that we cannot
determine the relative frequency of KAQ vs non-KAQ minima.

2 KAQ parameterization schemes

Among the (V. h 1) distinct metrics on SU(N), only some will have a structure that is compatible
with a tensor product decomposition into d qubit operators when N = 2¢. This notion
can be expanded to apply to tensor decompositions of more general large N spaces that
can include factors of dimension other than two (qudits) [8, 9]. The KAQ property of a
metric g is decoded from its (possibly non-unique) principle axes. An observable E, is said
to be a principle axis of the metric if

9"y Ea = MEy (2.1)

that is F, is an eigenvector of the tensor g% = g0“*, where J44 is the Killing-Cartan metric.
The location of indices in the previous equation matter; they are chosen so that we may
compute eigenvectors. Later on we compute only the components of tensors in an orthonormal
basis of the metric, therefore placement of indices becomes essentially irrelevant. In eq. (2.1)
the index placement is relevant, as we require a tensor that maps vectors to vectors.

The principal axis {E,} need only be orthogonal, hence the need for a distinct from an
orthonormal basis which are denoted by {X,}. A left-invariant (but not bi-invariant) metric



is said to be KAQ if a basis of principal axis exist such that
DE,] = 0'§a1) ®...Q Jéad)

2.2
[Ea, By = Pop Ee 2

where @ is a Lie algebra isomorphism i.e. a bijective linear map which preserves commutation
relations and the tensors P¢,, are the structure constants of s(u(2)®?), the Lie algebra u(2)®?
with the generator 1%¢ removed. While our definition is slightly different than that given
in [7], they are in fact equivalent. Taking a given Pauli word to a linear combination requires
using unitary conjugation which will not effect commutation relations. It is important to
stress that the metric will typically have many possible bases of principle axes, and only
one needs to satisfy the KAQ condition. Furthermore, among that restricted set of KAQ
metrics, not all will generate many-body local dynamics by suppressing the contributions
from Pauli words with length close to d.

The degeneracy pattern of metric determines the freedom there is in choosing a KAQ
basis. In the case of no degenerate eigenvalues, the metric is KAQ iff all principal axes
already align with some Pauli word basis. This is clearly a special case. More generally, a
degenerate eigenspace may be decomposed into a basis that aligns with Pauli words, although
some “decoding” may be required. Decoding here means that the degenerate principal
axes are mixed using an element of SO(4¢ — 1) which is not an inner automorphism of
su(29). Such transformations keep distinct degenerate axis orthogonal, but they do not
preserve commutation relations. Later in this section we give an explicit example of such
a decoding process, where we demonstrate that Gell-Mann matrices may serve the role of
a KAQ basis for certain metrics.

An obvious structure to make use of in searching for KAQ metrics is the so(2%) subalgebra
of su(2%), which one might expect contains a set of axes decodable to the length-one Pauli
words, the single-qubit operators [20]. In the case of su(4), the construction is simple: if
one starts with the natural basis of Gell-mann matrices, the single-qubit operators can be
recovered by identifying linear combinations of matrices in the sub-algebra that have a tensor
product form and then making a rotation to align those linear combinations with length-one
Pauli words. On the other hand, the other obvious subalgebra decomposition, sp(2¢~1),
contains degenerate subspaces that must align with Pauli word basis, and others which may
require decoding. Operationally, we consider this case in detail below to illuminate the
relationship between known critical points of the Ricci scalar, which carry this subgroup
structure, and critical points with KAQ structure.

In order to construct parameterizations of KAQ metrics, which can then be used as
ansatze for critical metrics, we use the fact that a left-invariant metric over a Lie group
is entirely specified by an inner product over the corresponding Lie algebra. In this way
instead of referring to the metric, one may just as well refer to an orthonormal basis of the
associated inner product. For excellent reviews of the Lie algebra and geometric background
needed for these constructions, see [10-12].

2.1 Riemannian geometry of compact symmetric Lie algebras

Consider first the Killing-Cartan geometry naturally available to SU(4). It is the unique (up
to scale) bi-invariant geometry over the special unitary group, and describes color dynamics



(in 041 dimensions) mediated by 15 gluons. The generalized Gell-Mann matrices, G, provide
an orthonormal basis, where we use the definitions provided in [21]. However, we include an
additional factor of 4 in our construction of generalized Gell-Mann matrices therefore taking
them to be anti-Hermitian operators. This is more in keeping with standard notation in
differential geometry. We further consider a non-standard normalization

1
tr(Gle) = 5(5&1,, (23)
which will enter the structure constants
[Ga’ Gb] = Kcach' (24)

Denoting K, as the matrix of structure constants with entries K¢, in the Gell-Mann basis
we then have

tr K Ky = —40 4 (25)

and bi-invariance implies that K = —K, i.e. the structure constants are totally anti-
symmetric. This equation is negative definite due to the compactness of the special unitary
group. The normalization choice here leads to a convenient normalization later on in the
loss functionals, where the Ricci scalar takes the value R = 15 = N2 — 1 when evaluated
over the Killing-Cartan geometry.

The Killing-Cartan geometry serves the role of a simple fiducial metric, as well as the
assumed unstable starting point for spontaneous symmetry breaking. Instead of studying a
more complicated left-invariant metric directly, one may look at the linear transformation
(w) relating one of its orthonormal bases to that of the Killing-Cartan geometry [17]. The
transformation w is required to fix the determinant, which we impose in order to use the
equations of motion referenced in section 3. The linear transformation is related to the metric
when expressed in the Gell-Mann basis as ¢ = w™2. One may check such transformation
certainly maps Gell-Mann letters to an orthonormal basis of g.

Assume we have related a new orthonormal basis to the Gell-Mann matrices by a special
linear transformation G, = > o WabGp. Then the structure constants are related by

Ka = Zwab[w_lew] ) (26)
b

where K} is the matrix with kjth entry K ,’fj. For these calculations the location of an index
(up or down) is unimportant, as the metric is always an identity matrix. The preceding
equation makes explicit the matrix multiplication that must be performed to determine the
new structure constants. That is, the transformation law may be written equivalently as

Kcad = Kead = ZwabwgelKebfwfd~ (2.7)
bef
The utility is that now curvature functions may be expressed in terms of Killing-Cartan
tensor networks, where the total anti-symmetry can be leveraged.
We shall end with a final bit of notation, which simplifies the construction of KAQ
metrics. As the metrics are considered over the Lie algebra, it is helpful to use the adjoint



representation (adg). Here observables themselves become operators acting over g. For
example, we can define kets from the Gell-mann matrices G, € su(2%), denoted |G,). We
then define dual vectors with respect to the Killing-Cartan metric i.e.

(G| = 2tr [GZ(-)} . (2.8)

Defined in this way {|G,)} is an orthonormal basis of g, with inner product (G,|Gp) = dup.
Projectors are defined in the standard way

o = [Ga){(Gal, (2.9)
and the action of the observables becomes (2.4)

adGo|Gy) = Ka|Gy) = |[Ga, Gy)) = > Keap|Ge) - (2.10)

We also obtain a matrix representation for the action of any metric over g. For example
the linear transformation w takes the form

W= wap|Ga)(Gyl (2.11)
ab

where wep = wp, and wep € R.

2.2 Jensen geometries over SU(4)

In [17] the author searched for the critical points of the Ricci scalar curvature (R) in the
space of left-invariant metrics with fixed determinant. It was shown that for unimodular Lie
algebras (tr [Cy] = 0), Einstein metrics are precisely the critical points of R. While the proof
was not constructive for general unimodular Lie groups, by specializing the author was able
to construct several classes of Einstein metrics, now called Jensen metrics. These were found
over symmetric Lie algebras i.e. those Lie algebras with at least one Cartan decomposition.
The Cartan decomposition plays a crucial role in forming the ansatz metric used in [17] to
find Einstein metrics. Further exploring the algebraic structures of these decompositions is an
interesting point we return to later. We find it useful to first explore the algebraic properties
of Jensen metric through explicit constructions of two classes relevant for this work.

Further assuming that the manifold is compact guarantees the existence of a strictly
left-invariant Einstein metric. The Lie algebra su(4) is compact and symmetric. Thus it
may be Cartan decomposed into a subalgebra and its orthogonal complement with respect
to the Killing-Cartan form, allowing for non-trivial Ricci critical metrics. There are two
inequivalent ways to do this, corresponding to the two non-isomorphic subalgebras so(4),
and sp(2) the compact symplectic Lie algebra.

The heart of the Cartan decomposition is to break the Lie algebra into the subalgebra
and the orthogonal complement with respect to the Killing-Cartan form. That is, given
a subalgebra Y C g we decompose g as

g=RaoM (2.12)



where §(A,B) = 0 for all A € R and B € 9M. We say the pair (g,R) forms a Cartan
decomposition if the following are satisfied

R\ CR, [RMCM ,and [N, M) C K. (2.13)

The commutation relations above are equivalent to the existence of a certain kind of Lie
algebra isomorphism, known as the Cartan involution (¢). Explicitly a Cartan involution
is a Lie algebra automorphism 6 : g — g such that [22]

1, 0
[ 0] o

where r = dimR and m = dim9. In what follows we construct the two types of Jensen
metrics that exist for su(4). To do so, we construct the transformation w, which takes an
orthonormal basis of the Killing-Cartan metric to an orthonormal basis of the given critical
metric. These transformations are generated by the symmetric, traceless operator

1
=1 0
B = [7" - ] (2.15)
0 —; 1,
yielding the linear transformation
w=expTB. (2.16)

The metric corresponding to w(7) is a non-trivial critical point of the Ricci scalar iff

rm 2r4+m
= n )
2(r+m) 2r—m

(2.17)

These metrics are KAQ due to the following. First, the subalgebras which are pulled out
for these two Cartan decompositions are generated by known sets of Pauli-words. This in
conjunction with the large degeneracy in the Cartan blocks that ensures a KAQ basis may
be defined. We do this explicitly in the next section.

Before moving to our more general sets of KAQ parameterizations, it is worth explaining
the algebraic structures we leverage. To begin we simply note that the Jensen metrics have a
reduced symmetry structure compared to the Killing-Cartan metric. Using the form of Jensen
metrics, defined by egs. (2.15)—(2.17), and the commutation relations, one may show that
the Jensen metrics are only bi-invariant with respect to Ji. Thus since Jensen metrics are
not adg invariant, they cannot support GUE dynamics. However the ad®R invariance allows
for the creation of Gaussian ensembles over smaller sets of matrices. For example the so0(4)
Jensen metric gives dynamics via the Ricci scalar where the GUE spontaneously breaks down
to a model which approximates a lower dimensional Gaussian orthogonal ensemble (GOE),

p=peue(HN D) = p~ paop(HVWV D7), (2.18)

It does not exactly yield the GOE as there is a non-negligible probability for observables
outside of the so(4) subalgebra to contribute to the Hamiltonian. Similarly, the sp(2) Jensen
metrics generate an approximate Gaussian Symplectic Ensemble (GSE).



But there are other known examples of Einstein metrics over SU(N), which have more
varied structure than Jensen metrics. Most of these metrics are naturally reductive like the
Jensen metrics. Naturally reductive metrics are more general than Jensen metrics, but they
remain ad®R invariant. The more varied structure is obtained by decomposing the Lie algebra
further, isolating certain algebraic structures of fR. Given a Lie algebra with an orthogonal
(but not necessarily Cartan) decomposition, one further decomposes it as

g=ROM=CBTD...0T, &M (2.19)
where € is the center of R ([€,9R]=0) and J;(i > 0) are simple ideals satisfying
R,7;] C J;. (2.20)
Using this decomposition, a general form of naturally reductive metrics is given in [23],
()= {(1)e+ My, +...+ A1y, + plon (2.21)

where (| )¢ is a general inner product over €, and \; and p are non-negative. The authors
used these parameterization to find examples of naturally reductive (non-Jensen) Einstein
metrics, which are also critical points of R. The critical points of R found in [7—9] were only
of Jensen type. We find evidence later for why the non-Jensen type critical points were not
found during the evolutionary search done by Freedman and Zini.

It has recently been shown that non-naturally reductive Einstein metrics exist over
SU(N) [24], but we do not yet know how large the overlap is with KAQ metrics. With that
said, we shall also consider metric parameterizations which are non-naturally reductive. We
motivate our construction by considering metrics with a reduced bi-invariance compared with
the Jensen metrics. That is we consider metrics which are bi-invariant with respect to a
Cartan subalgebra of R. Explicitly we decompose the Lie algebra as

g=REM=R"eR o...0NR, oM (2.22)
where Rg is a Cartan subalgebra of R, and fR; are subspaces satisfying
[Ro, Ri] CR;. (2.23)
Using this decomposition we define the following metrics
(1) = (mo + Mz, + ... + Aglw, + plon (2.24)

where A\;, u > 0. It is simple to show these metrics are indeed ad®Ry invariant using the
preceding commutation relations.

2.3 Cipher classes

In this section we introduce our KAQ parameterizations, which we break into cipher classes.
These classes are distinguished by the existence of non-isomorphic KAQ bases. A given cipher
class will have a basis of principal axes that is mixed between Gell-Mann letters and Pauli
words. The smallest of these classes are the untranslated KAQ (UKAQ) metrics. These



metrics have a KAQ basis consisting entirely of Gell-Mann letters. Such metrics are the most
difficult to decode the KAQ property. The next biggest class are the partially translated KAQ
metrics (PKAQ), followed by the fully translated KAQ metrics (FKAQ). The FKAQ metrics
only have KAQ bases consisting entirely of Pauli words, thus they require no decoding when
checking the KAQ property. We have the inclusion relation

UKAQ c PKAQ c FKAQ. (2.25)

For what follows we assume the basis principal axes maps to pure tensor Pauli words i.e.

) [Ea} =04 ®...® 0q, (2.26)

where E, represents the bases of principal axes post possible decoding process. It is useful
to introduce some additional notation for the generalized Gell-Mann matrices, splitting
them into three groups

{Ga} = {{idi}, {iSi}, {iDp}} (2.27)

which are the anti-symmetric matrices, the off-diagonal symmetric matrices, and the diagonal
matrices respectively. For a generic N these indices take values in

N
1§l§<2> (2.28)

I1<p<N-1

How we label the Gell-Mann matrices follows the notation from [21], although we use a

different overall normalization.

2.3.1 Untranslated KAQ metrics

We consider first the class of untranslated KAQ metrics (UKAQ). As a natural example,
we use generalizations of the so(4) Jensen metrics that are considerably less degenerate.
To begin the construction we choose an orthonormal basis of the Killing-Cartan metric.
We define generalized so(4) Jensen metrics as those with an orthonormal basis compatible
with the involution §[X] = —X T, i.e. an orthonormal basis constructed from eigenvectors
of 6. Notice that

0[A)] = A
0[S] = =S (2.29)
0[Dp] = =Dy

thus Gell-Mann letters are a good fiducial basis that can be used to construct generalized
50(4) Jensen metrics.

Now notice that the eigen-spectra of Gell-Mann letters do not match those of the Pauli
words. Therefore it is impossible to relate these bases through unitary conjugation i.e. inner
automorphism. But in order to serve as a basis of principal axes, a Lie algebra homomorphism
to Pauli words must exist. See also [20, 25]. Having ruled out the existence of an inner

,10,



automorphism (unitary conjugation) that accomplishes the translation to Pauli words, the only
remaining isomorphisms are the outermorphisms. But the only non-trivial outermorphism
of su(n) is complex conjugation. Complex conjugation combined with unitary conjugation
can never match the eigen-spectra of Gell-Mann letters and Pauli words.

Therefore we need to be able to decode the Gell-Mann matrices for the constructed
metrics to be KAQ. It is straightforward to show that they may serve as a basis of principal
axis, so long as we assume certain degeneracy patterns exist in the metric. To elucidate this
concept, we construct the following dictionary that translates Gell-Mann letters to Pauli words

(A1 + Ag) = %(11 ® YQ), (Al — Ag) = %(Zl & Yg)
(A2 + A5) = %(Yl ® 1a), (Ay — A5) = %(Yl ® ZQ) (2.30)
(A3+A4)=%<Y1®X2), (As—A4)=%<X1®Y2)'

We may further construct Pauli words from 9t

(S1+ S6) = %(11 ® X2>, (81— S6) = %(Zl ® X2)
(524-55) = %(X1®12), (SQ—S5) = %(X1®Zg)
(53+S4):%(X1®X2)7 (54—53):%(3/1@}/2)
<D1 — \/gDz + \/zDs) = %(11 ® ZQ) (2.31)
<D1 + \/gDz - \/§D3> = %(Z1 ® Zz)
<0D1 + \/gDz + \/§D3> = %(21 ® 12) .

Therefore it is possible for Gell-Mann letters to form a KAQ basis, so long as the metric has
appropriate degeneracy patterns. These degeneracies are required to be able to translate
Gell-Mann letters to Pauli words using more general maps than inner automorphisms. As
an example consider A; and Ag. Their weights must be the same to construct the words E
and Fs. It is these considerations that lead us to the following UKAQ metrics

wuraa(7 i) = ¢ (1A (A + A6} (ol ) + €7 (| 42)(Aal + |45} (43 )
e (|A3><A3| + |A4><A4) +em (rsl><51| + |sﬁ><sﬁ|)
(2.32)
+em(152)(a]+ |5)(S51) + € (1) (Sal + [S2)(S31 )

4 (ID{DI] +D2) (Dl + D) (Ds1)

where we fix the determinant by setting A = %Zz(rz + m;). Now we may see that the
UKAQ parameterization is compatible with a many-body structure. A physically interesting

— 11 —



structure arises when
r; >0
m; <0 (233)
A>0,

where a many-body structure exists if an inner automorphism ®ypp exists mapping R to

the set of 1-string Pauli words. The inner automorphism for this example is constructed
by the unitary

UniBp = exp [ZZYI & Y2:| (2.34)

which maps computational states to Bell states. Therefore, with a few assumptions about
the singular values, we have shown that many-body KAQ metrics exist which generalize
the s0(4) Jensen metrics. For further exploration in the more complex loss functionals, we
make the simplifying assumption that m; = —A and r9 = r3. This results in a class of
adfR( invariant metrics

Qurcaqlts) = e (141) (1] + o) (Aol ) + €8 (Jda) (Al + | A5)(As| + |As) (Aa] + | A42) ]

e (190)(S1] + [S6) (o] + [S2){Sal +15) (5| + 1S3) (] + [5) (Sl

+ [D1){(D1] + [Da){(Ds| + [ Ds)( Dy
(2.35)

where SRg=span(A1, Ag). Notice that Qukaq(t,t) corresponds to the class of so(4) Jensen
metrics, and all metrics off of this line are non-Jensen. We note this as over R the metric
contains two unequal weights whenever ¢ # s.

2.3.2 Partially translated KAQ metrics

The partially translated or PKAQ metrics have a KAQ basis which is mixed between Gell-
Mann letters and Pauli words. They will be simpler to decode than UKAQ metrics, but still
require some work. A natural class of PKAQ metric structures appear from a generalization of
the sp(2) Jensen metrics. The KAQ basis in this case must be compatible with the involution
0 X] =JTX T 7 where the matrix J is defined as

- 0 Tga—
J = [_12(11 0 ] (2.36)

A critical difference appearing for this choice of 8 is that most Gell-Mann matrices are not
eigenvectors. For example

0[A1] = —Ag

Oldg] — —A; (2.37)

thus (A; — Ag) is an eigenvector of 0 that lives in R and (A; + Ag) is an eigenvector of 0
that lives in 9. So we must use an orthonormal basis of the Killing-Cartan metric that is
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mixed between Gell-Mann letters and Pauli words to be compatible with 6. Using the same
dictionary, but a different Cartan decomposition, the Pauli words in R are

1 1
(51 — SG) = 5(21 &® XQ), (Al — Aﬁ) = i(Zl & YQ)
1 1
(52+55)=§(X1®112), (A2+A5)=§(Y1®]12)
1 1
(53+S4):§(X1®X2), (84—5’3)—5(}/1®Yg
1 1 (2.38)
(As+4) = (e X),  (A-A)= (X eT)
1 2 1
Dy — \/;DQ =+ \/;Dg = 5(11 ® ZQ)
4 2 1
0D; + \/;DQ + \/;Dg - 5(21 ® 12) ,
and the Pauli words constructed from 9% are
(S1+ S6) = 1(]l1 & XQ) (A + Ag) = 1(]ll ® YQ)
2 ’ 2
1
5(Vi@2) (2.39)

1
(S2—55) = §(X1 ® Z2>, (A — As) =
1 2
Dy + \/QDQ — \/ng = i(Zl &® ZQ) .

Each word constructed from the same pair of Gell-Mann letters living in different Cartan
blocks must be pre-translated into the Killing-Cartan basis to be compatible with 6. For
each of these pre-translated words, we may assign an independent weight in the metric.
Only the pairs (S3,54) and (As, A4) have the same weights, as we do not require them
to be translated to achieve the Cartan decomposition. We are thus lead to the following

—_

parameterization for generalized sp(2) metrics

WpKAQ(Tis Ma) = €| Z1 X2)(Z1 Xo| + 2| Z1Yo)(Z1Ya| + 3| X1)(X1] + €™ |Y1) (Y]
+ " (193)(S3] + [S4)(Sal) + €™ (| A3)(As| + [A4)(A4])
+ €' Za)(Za| + €| Z1)(Z1| + €™ | X2) (Xo| + ™2 Y2) (Y2
+ €™ | X1 Zo) (X1 2| + €™ Y1 Z2) (Y1 Zo| + 2| Z1 Z2)(Z1 Zo)|

(2.40)

where again A is chosen such that det(wpkaq) = 1. Here we clearly see that a few principle
axes are still untranslated, but there is far less translation to be done than in the UKAQ
example. Note as well that there are many other ways to construct a PKAQ parameterization
that are not compatible with the Cartan involution.

Again we take a simpler PKAQ parameterization for further investigation. We reduce to
two parameters as this is the minimal number necessary to search for non-Jensen type critical
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points. We take the following non-naturally reductive adRg invariant parameterization

Qpkaq(t, s) =
_ 3t+2s
e~ 25 (’X2><X2| + 6m2|Y2><Yé‘ + |X1Z2><X1Z2| + |Y1Z2><Y1Z2| + |ZlZQ><ZlZ2|)

+ €10 (|21 Xo)(Z1 Xo| + | Z21Yo)( Z1Ya| + [ X1) (Xa| + [¥2) (V] + | Z2)(Za] + | Z1)(Z1])

+ €15 (|S5)(Sa| + 54) (Sal + [A3) (As] + | Aa){Aa]) (2.41)

which is bi-invariant with respect to Ro=span(Zi, Z2). When ¢t = s the parametrization
reduces to that of sp(2) Jensen metrics, therefore any critical points found along the line
t = s in the t — s plane are Jensen metrics for the given parameterization. Otherwise the
other metrics in the t — s plane are all non-Jensen.

2.3.3 Fully translated KAQ metrics

The final cipher class we consider is the class of fully translated KAQ (FKAQ) metrics. These
metrics have no degeneracy, therefore to know about qubits the principal axes must already
agree with a set of Pauli words. We use the following parameterization for FKAQ metrics

wrKkAQ(wi, Wa) = e [ Xi)(Xa| + e |[Y1)(Y1| + e[ Z1)(Z: |
+ " Xo) (Xo| + ° Vo) (Ya| + €| Z2) (2]
+ M X X)W (X1 Xo| 4+ V2| X1 Yo (X1 Y| + V3| X1 Zo) (X1 Z|  (2.42)
+ MY X)) (VX | 4 V3 V1Yo ) (Y1 Ya| + V6| Y] Z5) (Y1 Zo|
+ V7| 21 Xo) (21 Xo| + V3| Z1Ya) (21 Yo | + e 2| Z1 Z) (21 Zo|

where we have assumed that all the principal axes are pure tensor. We have reduced the
number of parameters by choosing a set of lab frames for the qubits, i.e. a choice of xyz-axes.
But notice that this choice has no effect on the shape of the curvature functionals, changing
the definition of axis or even meronomic frame comes only at the cost of performing an
inner automorphism. The parameter A is chosen such that wrkxaq has unit determinant. In
this class no decoding needs to be done, only the commutation relations need to be checked
to confirm the KAQ property.

Again we reduce the number of independent weights to simplify the search. First we
consider a naturally reductive example based upon a penalty metric [26-29]. We define
the biased penalty metric

Qup(t,s) = ed (|X0)(Xa| + V1) (Vi] + [ Z1)(Z1]) + €3 (|Xo)(Xo| + [Y2) (V] + [ Z2) (Za])
_ (+s)
e (IX0X0) (X1 Xo| + [ X1 Vo) (X1 Y| + | X120) (X1 25|
+ Y1 X2) (Y1 Xo| + [Y1Y2) (Y1 Y2| + [Y122) (Y122
+ 121 Xo)(Z1 Xo| + |21 Y2 W Z1Ya| + | Z1 20} Z1 2] )
(2.43)
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Motivated by the construction in [30] we define a class of non-naturally reductive class of
metrics, referred to as Abelian breakdown (AB)

waB(ti) = e 2 (|20)(Z1| + | Zo)(Zo| + | 21 Z2)(Z1 Z))
+ e (1X0) (X1 | + X122} X1 Za]) + €2 (V) (Yi] + Y1 Z2)(Y1 Za])
+ e (|Xo)(Xa| + | Z1Xo)(Z1 X ) + €4 (|Ya) (Yo + | 21Y2) (Z1 Vs )
+ ¢ (| X1 Xo) (X1 Xa| + [¥V1Y2) (V1V2 ) + €' (| X1 ¥2) (X1 V2] + [V Xo) (Vi Xe])
(2.44)

The name is chosen as all degenerate eigenspaces form Abelian subalgebras. We may reduce
to two parameters for further investigation

_ 8t+4s

Qap(t,s) = e 30 (| Z10(Z1| + | Z2)(Z2| + | 21 Z2)(Z1 Z2)
B (1X0) (X + Vi) (V1] + | X2) (Xo] + [V2) (Y2l

(2.45)
+ [ X1 20) (X1 Za| + Y1 22) (Y1 Za| + | 21 Xa) (21 Xs| + | Z1 Vo) Z1 Y )

+ €70 (1X1 X5) (X1 Xo| + [¥1 Xo) (V1 Xo| + | X1 ¥2) (X1 Yo + [V1Y2)(¥1Va )

Notice that when ¢t = s, a 1-dimensional space of naturally reductive metrics is obtained.
But none of the contained naturally reductive metrics are Jensen metrics. Indeed, the
metric is never Jensen for any value of (¢, s) in this parameterization as Jensen metrics are
naturally-reductive. To see this note that while the 3 dimensional subspace does form a
subalgebra, the final commutation relation [, 9] € R does not hold.

3 Equations of motion

We turn our attention now to the loss functionals we consider in this work, which may only
depend on the metric and structure constants. We consider loss functionals derived from
curvature functionals which are essentially tensor networks of the Christoffel connection. These
classes of loss functionals contain structure constant networks not appearing in [7-9] at the
same order in “perturbation” (defined by the number of structure constants in the contraction).

We find it appealing to construct the loss functional from curvature functionals as
I R[g] is the lowest order term in many natural classes of such actions.
IT R[g] always has two distinct classes of KAQ critical metrics.

A larger, natural class of loss functionals is

Llg] = R+ aR* 4+ BRyuR™ + Y Rapeqg R

(3.1)
=R+ aRp+ R+ vR4.

An additional improvement on the pure Ricci theory is that this loss functional contains
order parameters, allowing for the appearance of quantum subsystems through spontaneous
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symmetry breaking. The results of [15, 16] provide the equations of motion that must be
satisfied in order for g to be a critical metric of the loss functional L[g; «, /3, 7], over a compact
manifold while enforcing a fixed volume element. The last point is why the determinant
of the metric must be fixed for our purposes.
Performing the variation of these functionals (in an orthonormal basis of the metric)
yields the following “stress-energy” tensors
Tij = Rij — %R%’
TO) — 9RR,; + 2VFV,(RS,;) — 2ViV, R — L R,
ij j k ij 1V 2 ij
TZ(JQ) = 2R¢kﬂRkl + Vkkaij + %Vkvk(R@j) — VZ‘V]‘R — %RMRM(SZ‘J'
(4

T

1
) = 2Ry RM™ + 4Ry RM + AVFV Ry — 2V, VR — ARy, R*; — §Rk,manlm”5ij :

It is important to note that using our definition of R;;; (see appendix A), leads to different
indicies being contracted in the Riemann-Ricci terms than those found in [16]. Muto [15]
proved that a given metric is a critical point iff

Tij = Ty + oTy) + BT + 10 = Ay (32)

where A is a real constant depending on the parameters of the problem, namely m, r, and
the coupling constants. Note to reduce the calculation, we may move all the terms already
proportional to the metric to the r.h.s. . Further, as we are considering homogeneous spaces
the covariant derivatives of the Ricci scalar vanish. The “stress-energy” tensors simplify to

Tij = Rij
7.9 = 2RR;; + 2RV, Vi (0;5)
Ti(j2) = 2RipiRu + Vi.Vi(Ri;) + %Rvkvk(@' )
Tl.(f) = 2Rigim Rjkim + ARigj Ry + 4V Vi (Rij) — 4R Ry,

where, as we are working in an orthonormal basis, we are free to lower all the indices.
Summation over repeated indices is still implied. The last simplification available is to
compute the terms involving the covariant Laplacian. The Laplacian of the metric vanishes

ViVi(0i5) = =Vi(Tiidy; + Tigjda) = Vi(Tikj + Tjri) =0 (3.3)

which is equivalent to metric compatibility of the connection. We need to also compute
the Laplacian of the Ricci tensor, but notice if we take a particular choice of the coupling
constants the contribution from this term cancel. This particular combination is in fact the
Gauss-Bonnet term yielding the loss functional

EGB('Y) =R+ ’)/(Ro — 4Ry + R4) . (3.4)

We should emphasis that the Gauss-Bonnet term is not topological in this theory; the
dimension of the space is 42 — 1 > 15, thus clearly never 4. The equations of motion for
the chosen loss functional are

Tij = Rij + V(QRRU + 2Ripim Rjpim — 4R Ry — 4Rz‘kRkj) = Aggdij - (3.5)
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where indeed we see the VQRM term vanishes. In the next section we provide much evidence
that the Gauss-Bonnet functional has the Killing-Cartan geometry as an unstable critical
point. We suspect that the general class of loss functionals contained in eq. (3.1) are concave
about the Killing-Cartan geometry for the same reason as found in [7], who examined the
behavior of individual diagrams contributing to the functionals (see their appendix C and
our appendix B).

And while ostensibly we have made a restrictive choice of coupling constants, by using a
graphical method developed in appendix B we in fact see that the loss functional in eq. (3.4)
has general properties of the larger family, as no special cancellations appear in the graphs. As
further evidence we may also contrast the Gauss-Bonnet loss functional with those introduced
by Freedman and Zini. Besides the Ricci scalar, they considered non-Gaussian functionals
for example the Euclidean integral

F[G;k] = /3(4 . dylddey?’e[—Hzf:lgaby$y§’+0abcyfy§’y§] ) (3.6)
R3(4™—1)

The use of three integration variables is necessary to construct a non-vanishing scalar from
the structure constants. Considering perturbed Gaussian integrals allows for a systematic
approach to the perturbative calculation. In this way a series of trivalent tensor networks is
obtained that determines the loss functional at a given order in perturbation parameter k.

Now consider the graphical representation of the types of terms is given in appendix B. The
diagrams help illuminate a few important points of comparison between the loss functionals
in eq. (3.1) compared to eq. (3.6). First, the family of curvature terms depends on diagrams
with only at most four structure constants in the contraction. In contrast, the perturbed
Gaussian of [7] contains a series out to infinite order, which was computed up to terms of
order six for the analysis. At the level of fourth order terms, the Gauss-Bonnet combination
does not induce any special cancellation between diagrams appearing in Rg, Ro, and Ry4.
The individual curvature terms contain somewhat symmetric combinations of diagrams with
a different relationship from that imposed by eq. (3.6). This family of loss-functionals is
well-suited to a geometrically illuminating study that may be able to connect KAQ structure
to other known and interesting classes of metrics, including the naturally reductive metrics.

4 Results for SU(4)

The equations of motion allow us to search for solutions in the space of each 2-parameter
KAQ metrics defined in section 2. These parameterizations include both naturally and
non-naturally reductive metrics. To yield a solution, a given w must generate a diagonal
stress energy tensor satisfying

Ti = Ti = Acs (4.1)

where 1 <4 < 15 and Agp is real. Thus for a given parameterization, we first determine the
number of independent 7;. By setting s = at, we simultaneously plot the independent 7,
allowing us to vary a and check if any critical points appear for non-zero values of t.

By making contour plots of the loss function, we systematically find potential critical
points and check if they are indeed true critical points. Further, while we do not have
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access to the second variation of the loss functional, we still obtain information about the
second derivative by comparing contour plots which agree along the line ¢ = s. Doing
so affords us a glimpse at the stability of the loss functional around certain Jensen type
critical points. The straightforward but lengthy evaluation of the second variation could
be performed to fully check stability.

4.1 FKAQ critical points

Here we collect our results for the two FKAQ parameterizations given in section 2. These
include the naturally reductive parameterization Qpp defined in eq. (2.43) and the non-
naturally reductive parameterization Qap defined in eq. (2.45). Using two parameterizations
allows us to compare the type of critical metrics that appear in the naturally reductive
vs. non-naturally reductive cases.

We show results with the help of two types of figures. First, to demonstrate the technique,
we plot the equations of motion for an example, at fixed values of the weighting parameters in
the metric (s,t). But, to visualize the space of solutions in the weighting parameters, we show
contour plots of the loss functionals for varying s, t. It is important to stress that not all critical
points that appear in these plots are critical in the space of left-invariant metrics. All that
can be learned from these plots is whether they are critical in the considered parameterization
space. In order to determine true criticality we always appeal to the equations of motion.

4.1.1 Biased penalty metric

There are only three independent 7; for the biased penalty metric ansatz, Qpp from eq. (2.43).
The equations that must be satisfied are

7'1 —_ e%(f7a710)t(_ 3’}/6% 4 1875,)/6%(a+1)t + 976%(a+2)t —1.125'}/65(2a+11)t +1.125,Yeé(8a+5)t
4 0.3757e810aF13)t 4 (g 7505+t 4 () 9505(Tat1d)t _ 1.1257&/3)
= AGBa
Ti= e%(*“’“”)t( —1.1257e% + 18.757e5 (@Dl 4 1125765 Bat _ 1 195ye5(11a+2)
+ 0.375765(13a+10)t + 97€§(2at+t) + 0.75¢8 (a+1)t + 0.25¢8 (13a+7)t
- 3’Y€t/3) = Acs,
Tr = oo (at 1)t (2%% + 1_57€§(a+1)t + 51_5,}/6%(a+1)t + 376((1—‘,-%)15 _ 18.75765(4%7)'5
_ 0.75,)/6%(&1—}—11)1& _ 18‘7576)%(7&—&-4)16 _ 0'75veé(lla+5)t + 376%%
_ 0.5e5(at8)t _ () 5,5 (8atb)t 4+ ettt 4 27@2t/3)
= AgB. (4.2)
With only three independent diagonal elements, this parameterization is only slightly more
complicated than the Jensen type. For Jensen metrics there are only 2 independent 7;. Recall

that we want to find non-Jensen type critical points, as for larger number of qubits Jensen
metrics are highly non-local and do not give a typical many-body structure.
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Figure 1. Here the equations of motion (eq. 3.4) are plotted for the biased penalty metric ansatz
Qpp (eq. 2.43), which includes a Gauss-Bonnet with v = 1. The left plot shows the line ¢ = s, and
for the biased penalty metric these are Jensen-type. In fact we find an additional solution (relative
to pure Ricci scalar) for t < 0. The second plot demonstrates that for most a strictly left-invariant
solutions do not exist.

EOM for BP
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| ]
20 — 7
0 7
=20
-4 -2 0 2 4

Figure 2. Here the equations of motion for Qpp are plotted for a &~ —2.06. We see that there is a
non-Jensen type solution for ¢ ~ —1.67.

In figure 1 we plot the set of 7; for two different values of a. The left plot shows that for
most values of a (here 0.1), the only solution that appears is the trivial non-KAQ solution
s = at = 0. But for special values of a, non-trivial solutions do appear. We unsurprisingly
find Jensen type critical points for ¢ = 1, which is expected due to the simplicity of the
equations of motion. Figure 2 however, shows an example of a non-Jensen type critical
points, of which several exist.

In figure 3 we present a holistic view of the critical points that appear through the use
of contour plots of the loss functional. We see that even for the Ricci scalar, non-Jensen
naturally reductive critical points are present. The shapes of the contour near the origin
show why evolutionary searches performed in [7] likely missed out on the more structured
critical points. Evolutionary searches begin with the choice of an initial parent point. The
natural choice here is the Killing-Cartan metric, or a randomly selected nearby point. The
search then casts a small net around the parent point, and the loss functions is computed
for each of these points. The point with the lowest value serves as the new parent point in
the following step. The topography of these plots demonstrates that such a method can fail
to find the saddle points, instead settling on the Jensen-type critical point(s).
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Figure 3. Contours of the loss functional are plotted for Qpp, eq. (2.43), with v = 0 (the Ricci scalar
only) and v = 1. All red points marked on the plots are critical in the space of left-invariant metrics
with fixed determinant. Critical points residing on the line ¢t = s are Jensen type, while all others are
non-Jensen appealing to the form of Qgp(t, s).
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Figure 4. Plotted are the equations of motion for the Abelian breakdown metric ansatz, Qap of
eq. (2.45), which is non-naturally reductive. Again, we have taken v = 1 for the amplitude of the
Gauss-Bonnet term. The first plot shows the behavior for a typical a; no non-trivial solutions exist.
The second plot shows the existence of a non-Jensen type critical point for a = 1 and ¢ ~ 1.45.

4.1.2 Abelian breakdown metric

Moving to the non-naturally reductive FKAQ parameterization, Qap from eq. (2.45), we
plot the set of independent 7; in figure 4, where there are 4 such elements. We find solutions
only for a = 1, the potential meeting point in the left plot never actually becomes a crossing.
In this case the solution is naturally reductive but not of Jensen type, even though the
corresponding critical metric only has two distinct weights, as the weights do not distinguish
blocks that belong to a Cartan decomposition.

We have plotted contour plots in figure 5, where we find only one non-trivial solution.
Comparing to the biased penalty example we may make two comments. First, there are far
fewer critical points along these directions in the space of left-invariant metrics. Further,
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Figure 5. Contours of the loss functional Lgp is plotted for Qagp, eq. (2.45), with v = 0 (the
Ricci scalar only) and v = 1. The red points marked on the plots are critical points in the space of
left-invariant metrics with fixed determinant. As explained in section 2.3.3, no metric in this class,
regardless of parameter values, is of the Jensen type.

the critical point we obtained is rather interesting. The KAQ critical metric puts distinct
weight on Cartan subalgebra distinguishing it from the remaining observables. While a
small step, it is evidence that curvature-based loss functionals may support KAQ critical
points with many-body local structure.

4.2 UKAQ critical points

Turning to our UKAQ parametrization, Qukaq from eq. (2.35), we may perform the same
search for critical points. The equations of motions are much more complex for this example,
where there are 6 independent 7;. While certain choices of a reduce the number of independent
T, only for a = 1 do we obtain non-trivial solutions to the equations of motion.

By comparing figure 3 and figure 6 we obtain some evidence about the preference of
naturally reductive metric. Notice that these figures exactly agree on the line ¢t = s, so we
can see how the value of the functional changes in naturally reductive vs. non-naturally
reductive direction. We see that figure 3 clearly contains more true critical metrics, and
that the only critical metrics contained within figure 6 are naturally reductive as well. This
provides some evidence that naturally reductive metrics may be favored over non-naturally
reductive metrics when weighed by curvature based functionals.

Some understanding about the stability of the Jensen type critical points common to
both examples can be obtained by comparing these figures. The Jensen type critical point
with s,t < 0 appears to be a stable critical point, where as the solution for positive t and s is
clearly a saddle point. Although there are many different cross sections one must consider
to truly determine the stability.

We do not fully understand the propensity towards Jensen metrics in our examples.
It could simply be a preference for naturally reductive metrics. There is however another
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Figure 6. Contours of the loss functionals are plotted for the Qukaq parameterization, eq. (2.35).
The red points located along the line ¢ = s are critical points in the space of left-invariant metrics. All
other points (green) are only critical in the considered parameterization space.
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Figure 7. Contours are plotted for the Qpgkaq parameterization, eq. (2.41). The red points indicate
true critical points, which are all Jensen type. The green point, in the second plot, is only critical in
the parameterization space.

possibility. At such a low dimension (two qubits) the Jensen metrics and penalty metrics are
essentially the same. So, the loss functions investigated here may simply be favoring penalty
structures. It would be enlightening to study su(8) to illuminate this point.

4.3 PKAQ critical points

For the final parameterization, we investigate Qpgaq defined in eq. (2.41). From figure 7(b),
we only find Jensen-type critical points, and note that this direction seems the least fruitful
in the search for critical metrics.
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5 Conclusions

In this work we have found critical points of curvature-based loss functionals that are KAQ
and include metrics which are compatible with many-body physics. All of the critical points
we have found are naturally reductive, although we cannot rule out the existence of non-
naturally reductive KAQ metrics. From the examples we tried we found no adRy invariant
critical metrics which were not Jensen. We also have found that most critical points are
saddle points, with the potential for a few stable Jensen critical points.

While we have only analyzed detailed examples for su(4), it is straightforward, although
numerically intensive, to generalize these constructions to larger N. What we have presented
is evidence that the KAQ ansatz is a useful tool both for finding critical metrics among the
large set of left-invariant metrics and for better understanding the structure of KAQ critical
points. Even going to su(8) would be helpful in determining more about the structure of the
critical points of curvature-based loss functionals. For example with three qubits, penalty
metrics are not Jensen, allowing for more exploration in what exactly drives the value of the
loss function; the algebraic properties of the principal axes or structure of the weights?

These constructions for KAQ metrics we provide may also be used to explore a much
broader family of functionals depending on curvature tensors. However, as this construction
cannot find non-KAQ minima, we cannot study the relative frequency of KAQ vs non-KAQ.
Ideally, one would like functionals with only KAQ minima, or related structure for N # 2.
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A Curvature functionals from the structure constants

To begin, a non-holonomic basis is a choice of basis over the tangent manifold that is
non-commutative. Assume that {X,} forms a basis for the tangent manifold with

[X,, X3] = C°, X, (A1)

defining the structure constants associated to the chosen basis. The Christoffel connection
(the unique connection that is torsion-less and compatible with the metric) in a non-coordinate
basis is

1
Lape = 5 [8cgab + 8bgac - aa.gbc + Cave — Chea — cha] . (AQ)

Assuming {X,} is an orthonormal basis of the metric and that the metric is left invariant,
the terms involving the metric vanish leaving

1
F(;Lbc = i(Cabc - Cbca - cha) . (A?’)
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Notice that I'ype = —I'epg. The components of the Christoffel connection in an orthonormal,
non-holonomic basis are referred to as the Ricci rotation coefficients [31]. The Riemann
tensor and its various traces are computed as functions of the Christoffel connection and
structure constants [32]

Rabed =T gl ace = T ade — C¢q 1

aeb
1 d a1 d
Rab = - 596() (Cdaccce + C’cadCYCe - §C'acdcveC > (A4)
_ 1 cba 1 abc
R — 2 abcC 4 CabcC °

Using the graphical method described in appendix B, we compute the second order curvatures
functionals in terms of structure constant networks. We have found

1
Rolg] = 0 g° f ik (Cdbf [ 4C e bk cracl 4C e Cbdk el 8Cee Cdbk Cvcla:|

+ C'fdb {Cecackdbclca - 4Caceckdbcad + 4Caceckdbccla} )

1
Rulg] = g g° f ik ( Cary { 4C, e bk racl _ 4C e bk el _ 8C e bk C«cla}

+ Crap [3Ceca0kdbclm + 8Cac CFC 4 scaceckdbclca]
— Cfea [Cebackdbclca + 20,0kl 4 4, CPIRCac

SCaebckdbclca - 8Caebckdbcda + QSCaebckdbCacq) .

B Graphical representation of structure networks

The fundamental information about the group structure and the metric on the manifold
is carried in the structure constants, organized into the connection, and the metric. Any
functionals one might want to define, including the Ricci scalar R, R2[g], and R4[g] can be
built from the totally contracted combinations of Cjjp, Ck '™ and ggm. A diagrammatic
representation of the terms is useful, where each Cj;y, is represented by a node and contractions
are indicated with edges. The line style of the edge carries relevant information about the
contraction, i.e., whether it involves the metric and any symmetry information.

We define the following notation for the placement and style of nodes and edges: Cjjy, is
a node with edges emerging upward, while C%* is a node with edges emerging downward.
Contractions via the metric will then always be represented by horizontal lines, while others
appear as vertical or diagonal lines. Since the Cj;;, are antisymmetric in the last two indices,
we differentiate contractions between indices in different positions. Contractions of indices
both in the first position are drawn with a solid line, both indices in the second or both in
the third position with a dashed line, and contractions between an index in the first position
and one in the second or third is a solid line with arrows pointing from the node containing
the first-position index to the node containing the second- or third-position index.

For example, the two terms contributing to the R = —%CabcCCb“ — %CabCC“bc can be

drawn as
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Cabc cha Cabc Cabc

These are similar to the theta diagrams defined in [7]. The remaining curvature structures
we consider, Re and R4, have terms containing four structure constants, so all additional
graphs have four nodes. There are two classes of graphs, depending on whether each node
is connected to two others (“tin cans”) or to three (“tetrahedra”). Ra contains only tin
cans while R4 has both types of graphs.

Tin can terms from the product of four Christoffel symbols have a symmetry structure
that helps to simplify the large number of terms. Consider, for example, the term

1
9 9T papTace TFT o = def 90e(Cap — Capg — Coar) (C*® — C¥F — CP¥)L . T (B.1)

Here there are two pairs of terms that cancel, among the nine terms coming from expanding
r fdekdb, due to the anti-symmetry of the full contraction under permutations of indices. On
the other hand, there are two pairs of terms that add, containing Cdbedbk and C’bdbedk,
for example. There are therefore three sets of nine diagrams that remain to be evaluated.
For example, one such term is

gengdebedbk [Cacecad - Cacdcda - Cacecfca (BQ)
_Cceacacg + Cceacc&z + Cceacfca
_Cecacace + Cecaccea + Cceaczca] - gefgékrfdbracerkdbrad .

The nine terms in this sum can be represented diagramatically as:

i
cmmm--

==
R

-
-
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As the graph structure (and colors) indicate, the nine terms contain only four distinct
constructions. Note that the graph structure does not directly indicate the relative sign
between graphs related by a rotation of the structure nodes, for example between the upper
right diagram and the lower left diagram. Furthermore, the signs of the terms are inherited
from the signs in the expansions I'gp. = %(Cabc — Cheq — Cepa)- Collecting all relative signs,
the two identical (green) diagrams in the right column cancel, as do the two identical (green)
diagrams in the bottom row. The other pairs add so that there are three distinct diagrams.
Within the four-gamma term that contains the above set, ¢¢/ ggT’ fde’acedebFad , there are
two other sets of nine terms that must be evaluated. The pattern of colors (identical graphs)
and cancellations repeats in each of the nine sets of nine graphs, and there are ultimately
three additional types of diagrams.

A different contraction structure occurs in terms like ¢¢f gy, C fcdl“aebfkdbfad. This term
can be represented by tetrahedron diagrams. Among the (seven) terms that do not cancel,
there are just three diagrams:

— R — ——
. . .
l‘§ ¢ l~‘ * ‘; L4
[} - L4 1 [} - 04 - L4
N . H R4 . e
v 1 A
[] RN 1 [} LY LY
* - * -~ L4 -~
L . ! . - . -
LI L | ' . R4 S,
W— S e

One can certainly consider other loss functionals. For example, the function primarily
studied in [7], given by eq. (3.6), contains terms with all even numbers of Cjj,. That work
considered an expansion of terms up to third order, giving rise to graphs with two, four, and
six nodes. However, only a subset of the four-vertex graphs appeared. The set of four-vertex
graphs needed for the curvature terms is larger.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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