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Abstract We investigate the response of outer radiation belt electron fluxes to different solar wind and
geomagnetic indices using an interpretable machine learning method. We reconstruct the electron flux variation
during 19 enhancement and 7 depletion events and demonstrate the feature attribution analysis called SHAP
(SHapley Additive exPlanations) on the superposed epoch results for the first time. We find that the intensity
and duration of the substorm sequence following an initial dropout determine the overall enhancement or
depletion of electron fluxes, while the solar wind pressure drives the initial dropout in both types of events.
Further statistical results from a data set with 71 events confirm this and show a significant correlation between
the resulting flux levels and the average AL index, indicating that the observed “depletion” event can be more
accurately described as a “non-enhancement” event. Our novel SHAP-Enhanced Superposed Epoch Analysis
(SHESEA) method can offer insight in various physical systems.

Plain Language Summary This study examines the responses of relativistic electrons in Earth's
radiation belt to various solar wind and geomagnetic disturbances, identifying key influencing factors. We first
adopt an explainable machine learning method to understand the importance of different features during 19
enhancement and 7 depletion events. Our results directly reveal that an increase in solar wind dynamic pressure
contributes to a sudden decrease in electron fluxes. Additionally, we find that the strength and duration of
subsequent substorms determine whether the electron flux increases or decreases. Guided by the importance

of these features as determined by our machine learning model, we carry out a statistical analysis, showing a
significant correlation between the flux level and the average AL index. Our method offers advantages over
traditional superposed epoch analysis since it directly shows the determining factors.

1. Introduction

The radiation belt consists of trapped energetic electrons ranging from tens of keV to several MeV (D. Baker
etal., 2018). This hazardous radiation environment, known to cause spacecraft anomalies such as surface charging
and deep dielectric discharges, is associated with enhanced fluxes of hot (5—100 keV) and relativistic (>500 keV)
electrons (Choi et al., 2011; D. N. Baker & Lanzerotti, 2016). Particularly during periods of solar wind distur-
bances and resulting geomagnetic activity, the outer radiation belt exhibits significant variability. Electrons can
be accelerated through inward radial diffusion (e.g., Brautigam & Albert, 2000; Schulz & Lanzerotti, 2012) and
local acceleration driven by magnetospheric waves (e.g., Thorne et al., 2013; Q. Ma et al., 2018). Simultaneously,
losses in the outer radiation belt primarily arise from magnetopause shadowing with enhanced outward transport,
and pitch angle scattering loss (e.g., Bortnik et al., 2006; Onsager et al., 2002). The balance between these accel-
eration and loss mechanisms results in either an enhanced or depleted energetic electron population in the outer
radiation belt following disturbed solar wind activity (e.g., Anderson et al., 2015; Reeves et al., 2003).

A number of previous studies have demonstrated that geomagnetic storms can result in either an increase or
a decrease of the fluxes of relativistic electrons in the outer radiation belt. Reeves et al. (2003) examined 276
storms from 1989 to 2000 revealing that approximately half of the geomagnetic storms resulted in increased radi-
ation belt electron fluxes, roughly a quarter resulted in decreased fluxes and a quarter were roughly unchanged.
Turner et al. (2013) analyzed the electron phase space density (PSD) of 53 storms with main phase minimum
Dst <—40 nT, revealing that of the 58% storms resulted in relativistic electron PSD enhancement, 17% resulted
in depletion, and the rest remained unchanged. These studies primarily focused on geomagnetic storm times,
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identified with a threshold set by the SYM-H index. Katsavrias et al. (2019) employed a superposed epoch anal-
ysis to investigate flux changes during geospace disturbances by combining both storm and non-storm events.

Despite significantly advancing our understanding of radiation belt dynamics, these studies contain certain limi-
tations. Particularly, these studies have faced challenges in delineating the relative importance of different driv-
ing factors that occur simultaneously. Their findings are primarily based on statistical results only and cannot
reproduce the processes observed in the satellite data with the identified drivers. The traditional approach to
reconstructing radiation belt dynamics uses the Fokker-Planck (FP) simulations (e.g., Q. Ma et al., 2016; Thorne
et al., 2013). However, incorporating the different and competing drivers into the FP model for a large number
of storms is computationally expensive, and the simulation accuracy depends on the availability of global wave
distributions and simulation boundary conditions. The temporal and spatial distribution of different waves cannot
be well modeled by one of the geomagnetic indices and there is no guarantee that such parameterizations are
unique. Thus, machine learning has emerged as a widely adopted method for identifying the primary driving
parameters in radiation belt dynamics (e.g., Balikhin et al., 2011; Smirnov et al., 2020).

Our previous work presents an alternative approach to radiation belt modeling using a set of neural network
models to reproduce the radiation belt fluxes (D. Ma et al., 2022; Chu et al., 2021). The model is driven by
geomagnetic indices and solar wind parameters and successfully captures electron dynamics over long and short
timescales for different energies. Building on this, D. Ma et al. (2023) further examined what's inside the “Black
Box” of the machine learning (ML) model with a state-of-art ML model explanation method called SHAP (Shap-
ley Additive exPlanations, (Lundberg & Lee, 2017)). The proposed framework demonstrates that the feature
importance of different input features deduced from the ML model aligns well with our existing physical under-
standing of both storm time and non-storm time enhancement events. In this letter, we employ the same interpret-
able ML method in conjunction with a superposed epoch analysis to investigate the enhancement and depletion
events of relativistic electrons in the radiation belt. Section 2 introduces the methodology, Section 3 presents the
results and our conclusions are discussed and summarized in Section 4.

2. Data and Methods

In this study, we utilize an ML model that is trained on relativistic electron flux data, specifically the 909 keV
channel, from the Magnetic Electron Ion Spectrometer (MagEIS) instrument (Blake et al., 2014) aboard the
Van Allen Probes (Mauk et al., 2014). This model has demonstrated remarkable accuracy when tested with
out-of-sample data, giving R?> ~ 0.78-0.92 (D. Ma et al., 2022). In the following study, D. Ma et al. (2023)
implemented the SHAP method to provide insight into the workings of the ML model using 2-hr average values
of AL, SYM-H, Psw, and solar wind speed Vsw as inputs. For each input data point . to be explained, the sum
of the SHAP values corresponds to the difference between the model prediction and the average prediction of
the model for only background samples:Y, ¢; = f(X) — E(f (X)) where ¢, is the SHAP value of the i-th feature.
Positive (Negative) SHAP value ¢, indicates that the feature has a positive (negative) impact on the output value.

Figure 1 shows examples of a typical acceleration (left panels) and depletion (right panels) event, with color-coded
SHAP values superimposed on each of the corresponding inputs in Figures 1a—1d and 1g—1j. In each of these
panels, the y-axis on the right side of the panel indicates the particular L-shell at which the output fluxes are being
affected by the current feature, in accordance with the SHAP value displayed in color. In each event, the times at
which the output fluxes to be explained are indicated by the vertical dashed lines. For the enhancement event, it
is seen that the cluster of AL peaks occurring at ~06:00-23:00 UT on 17 March 2013 dominantly contributes to
the acceleration of fluxes across a broad range of L-shells from ~3 to 6, while the main phase and minimum of
SYM-H contribute to the enhancement at lower L-shells around 3.5. For the depletion event shown in the right
column, although the strong peaks in the AL index occurring before 13 September 2014 show positive SHAP
values (i.e., causing flux enhancements at L > 4), the following low intensity, continuous AL indices after 13
September 2014 and pressure enhancement occurring around 15:00 UT on 12 September 2014 show negative
contributions to the flux at high L shells (L > 4) which ultimately lead to a depletion of the fluxes after 13
September 2014.

The events selected in Katsavrias et al. (2019) consist of 71 intervals during the RBSP era which satisfied a set
of specific conditions from at least 12 hr before each event starts: the average solar wind speed must be below
400 km/s, and pressure must be under 3 nPa; the geomagnetic SYM-H index must be consistently over —20 nT,
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Figure 1. Van Allen Probes observation, machine learning model and SHAP results of enhancement and depletion events. Left column: Enhancement event of 17
March 2013, input time series of the ML model: (a) AL index, (b) SYM-H index, (c) solar wind dynamic pressure, Psw, (d) solar wind speed, Vsw, (a—d) together with
color-coded SHAP feature contributions for the model output at time 00 UT on 19 March 2013. (e) Observed 909 keV electron fluxes as a function of time and L-shell.
(f) Model reconstruction along the trajectories. (g) Model reconstruction of 909 keV electron fluxes on the equatorial plane. (h) The differences between the observed
and modeled electron fluxes, which are defined as log10(fluxmod + 1) — log10(fluxobs + 1). Right column: same as (a—h) for the depletion event of 13 September
2014. The SHAP results are input feature contributions for output at time 00 UT on 15 September 2014, across all L shells.

the AL index above —300 nT, and Bz between —5 and 5 nT. The end time of the event is taken to be the time
when all parameters revert to their pre-event levels. The authors then select 20 enhancement and 8 depletion
events from these 71 events for their superposed epoch analysis method. The events we use in the present study
are the same as the Katsavrias et al. (2019) data set described above, except for 1 enhancement and 1 depletion
event in December 2013 where the gap in solar wind data was too large for us to reasonably interpolate in order to
reproduce the required ML output for our SHAP method. Another slight difference is that we define the £, epoch
as the time of maximum dynamic pressure of the solar wind instead of the time of the maximum compression of
the magnetopause. In addition to the standard superposed epoch analysis that was used in the above study, here
we calculate the SHAP value of each feature for each event, for the output fluxes at three different times: #, + 5h,
f, + 1d, and 7, + 2d, in order to gain insight into how each feature controls the output. The SHAP “enhanced”
superposed epoch analysis (SHESEA) is colored with the median SHAP values of the input parameters for all the
events, in order to identify the ML interpretation results as a function of storm phase, L-shell, and event type. We
also calculate the ML output flux of each event and show the median flux results.

3. Results

Figure 2 shows the results corresponding to the 19 enhancement events. Panels 2a to 2d show the time series of
each of the inputs and the superposed results for AL, SYM-H, Psw, and Vsw displaying the median in black, and
upper and lower quartiles in red. The median flux from the ML model in Figure 2e shows that the minimum flux
level occurs roughly at #, + Sh as indicated by the third vertical dashed line, following the dropout. The median
SHAP results of the flux at £, + 5h are colored-coded and superimposed on the input time series in the upper four
panels of each column. It is clearly recognized that the negative contribution to the output flux comes mainly
from the Psw maximum (Figure 2c) at around ¢, and SYM-H (Figure 2b) closer to the time of the observation at
t, + Sh, where all other input values contribute to the output only weakly at this time. Figure 2f shows the sum
of median SHAP values shown in Figures 2a—2d, of the different indices (solid lines), and the output flux result
at t, + 5h (yellow dashed line) compared to the initial flux at 7, — 1d (purple dashed line). The flux is seen to
decrease at higher L-shells (L > 4). The corresponding sum-SHAP results indicate that Psw (green line) is the
primary contributor to the dropout as it has the lowest negative sum-SHAP values occurring at L > 4. The feature
attribution results here are consistent with previous studies during the storm time event (Turner et al., 2013). They
can be interpreted to mean that the dayside magnetopause causes trapped electrons to escape the outer bound-
ary through magnetopause shadowing effect (Ukhorskiy et al., 2006) and occurs as the result of magnetopause
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Figure 2. Superposed epoch analysis and SHAP interpretation of geomagnetic indices and solar wind parameters for an enhancement event at three different times. The
black lines in the upper three panels correspond to the median value, while the red lines correspond to the upper and lower quantiles. The vertical dashed line at f, = 0
is defined as the maximum of the solar wind pressure Psw. The vertical dashed line at # = #, — 24hr (1d) is used to define the initial flux as used in panels (f, 1, and r).
The vertical dashed lines at ¢, + Sh (a—f), £, + 24hr (g-1), and #, + 48hr (m-r) are the times used to evaluate the corresponding SHAP values. The median SHAP values
of all events are then color-coded on the corresponding input features. (e, k and q) show the median flux results from machine learning model at 909 keV energy. The
dashed lines in (f, 1 and r) show the initial flux (black) and target flux (Magenta) at different L shells and times. The solid lines show the sum of median SHAP results
of different indices: AL (blue), SYM-H (yellow), Psw (green) and Vsw (red) indicating their overall event importance.

moving abruptly inward in reaction to increased Psw. The enhanced SYM-H may be indicative of the Dst effect,
inflating the outer radiation belt to larger L-shells and accelerating the rate of magnetopause shadowing loss.

Figures 2g-21 show the result for the early acceleration phase at #;, + 1d, when the enhancement of the fluxes
starts to become apparent. The cluster of AL peaks (Figure 2g) occurring immediately after ¢, is brightly high-
lighted in red (i.e., positive SHAP values) which indicates that it contributes most to the acceleration of fluxes at
higher L-shell (L > 4). It is worth noting that the high solar wind speed (Figure 2j) also contributes to the accel-
eration at high L-shells, and we believe that is due to the collinearity between AL and Vsw, and will be discussed
at the end of this section. Interestingly, there is some positive contribution to the flux from Psw (Figure 2i) at low
L-shells (L < 5) which may be associated with the compression occurring in the interior region of the ring current,
but this conjecture requires further investigation.

Figures 2m—2r show the SHAP results for the late acceleration phase, at 7, + 2d, when the flux has reached its upper
limit. As above, the results show that the highest contribution to the acceleration is from the cluster of AL peaks
occurring immediately after #,. Thus, it can be surmised that high-intensity continuous substorm activity produces
enhanced fluxes of outer belt electrons through the injection of source and seed electrons (Jaynes et al., 2015), and
continuous acceleration by enhanced chorus waves during such active times (e.g., Hua et al., 2022).

Figure 3 demonstrates the SHAP-enhanced superposed epoch analysis results corresponding to the 7 depletion
events identified as described above. Figures 3a—3f show the dropout process occurring in a very similar manner
to the one in Figure 2e, with the minimum flux still occurring at around #, + 5h. The Psw enhancement is again
seen to provide a negative contribution to the flux at higher L-shells (L > 4). The results indicate that the effect
of magnetopause shadowing is present in both groups of events, and electrons are quickly lost at higher L-shells
because of the same process, with a smaller contribution coming from SYM-H in the present event. Figures 3g—31
show the early-stage development of the depletion of the fluxes and the SHAP results after pressure maximum at
1, + 1d. The late stage development of the depletion is displayed in Figures 3m-3r for the period 7, + 2d. Panel
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Figure 3. Same as Figure 2 except for depletion events.

3r shows the negative sum-SHAP values from AL and Figures 3g and 3m indicate that those negative AL contri-
butions are the result of quiet substorm activities following the pressure enhancement. It is perhaps surprising at
first that an extended period of low AL values act as the dominant contributor to the flux depletion, but this can
be understood as follows: since the events in both acceleration and depletion groups experience a similar dropout
process, the key determining feature of whether the flux ultimately becomes enhanced or depleted is essentially
the total substorm activity that follows the dropout, as indicated by AL after #,. The strong, continuous substorm
activities (indicated by cluster of AL peaks) leads to subsequent overall acceleration, whereas quiet substorm
activity (indicated by period of AL ~ 0 nT) contributes to depletion. To further confirm our conclusions obtained
from the SHAP results, Figure 4 shows the statistical results from a larger data set containing 71 events obtained
in a similar way as previously described in Section 2. Figures 4a—4c depict the average measured flux from Van
Allen Probes at different L-shells and three distinct times. The epoch time #,, still represents the maximum of solar
wind dynamic pressure Psw, and the three times picked for comparison are the initial stages prior to the dropout
(t, — 1d), the dropout stage (#, + Sh), and the final stage (7, + 2d). The average IALI is calculated in the time
interval ranging from ¢, to 7, + 2d as indicated on the SHAP results in Figures 2 and 3 for each event. Figure 4a

demonstrates that under quiet substorm activity <|AL| < 100nT>, the flux first decreases for L > 4 at the dropout

stage, and the flux at the final stage remain similar to the flux level at the dropout stage. This indicates that the
relativistic electron flux cannot be accelerated in this range of substorm activity levels. Figure 4b shows a similar
flux level to Figure 4a at both the initial and dropout stages but the flux at the final stage (red-colored curve) is
enhanced to a level that is higher than the initial stage.

Figure 4c presents the results corresponding to very strong substorm activity levels following the pressure maxi-
mum. The pre-storm flux is slightly higher than in Figures 4a and 4b, and the flux at the dropout stage is also
higher at low L-shells. This could be related to the fact that these strong substorm events usually follow strong
geomagnetic storms, which may affect the characteristics of the dropout (and will be examined in future studies).
The fluxes at the final stage are seen to be enhanced to a significantly higher level than those corresponding to
weak and moderate substorm conditions.

Figure 4d then demonstrates the relation between the flux at 7, + 2d (Flux,,,,) at L = 5 and the average absolute
value of the AL index, |AL|. The results show a high correlation coefficient (R = 0.84) between the two values
which is consistent with previous studies (Hua et al., 2022, 2023; Mourenas et al., 2019; Smirnov et al., 2020).
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Figure 4. The statistical results from 71 flux events and the relation to different geomagnetic indices and solar wind parameters. (a—c) The statistical flux
measurements for 909 keV energy at £, — 1d (black), £, + Sh (blue) and ¢, + 2d (red) with different | AL|, where the |AL| is the average |ALI from £, to ¢, + 2d. The
vertical error bars in each plot show the minimum and maximum range of the distribution of events in each L-shell bin. Panel (d) shows the resulting flux at £, + 2d
from measurements at L = 5 categorized by depletion (blue) and acceleration (orange) events, and its linear relation with m Panel (e) shows the relation between
JAL[ and Vsw, where Vsw is average Vsw also from 1, to , + 2d. Panel (f) shows the resulting flux at #, + 2d and its relation to Vsw.

Compared to prior studies, our interpretable ML method doesn't require extensive statistics based on different
variables. Instead, it directly identifies the key influencing variable AL and the time ranges after Psw enhance-
ment that are most significant. Our findings indicate that the depletion events can essentially be thought of as
“non-acceleration” events, occurring when the substorms that follow the enhanced Psw are not sufficiently strong
to enhance the flux above its prior level.

Although the SHAP profiles shown in Figures 21 and 2r suggest that the high solar wind speed contributes to the
flux enhancement, it is not necessarily a condition that directly relates to the fluxes. This can be explained by
noting that the training process of the ML model uses a feature selection method by adding the most informative
drivers sequentially to the model (D. Ma et al., 2022), and shows that AL is the most important parameter, but
adding Vsw does not affect model performance much. Figure 4c shows the correlation between the average AL
and Vsw, and Figure 4f shows the relation between Flux, .,
good correlation to Vsw. In fact, the AL index can be modeled more accurately by the combination of solar wind
speed and IMF Bz (X. Li et al., 2007; McPherron et al., 2015). The prolonged southward Bz together with high
solar wind speed gives strong, continuous AL excursions, which drive the flux enhancement in the ML model.

, and the average Vsw. Neither AL nor the flux shows a

So the SHAP result of solar wind contribution may be due in large part to the collinearity between AL and Vsw.

4. Conclusions and Discussion

In this study, we investigated the response of relativistic radiation belt electron fluxes at 909 keV to various solar
wind and geomagnetic disturbances. By combining an interpretable machine learning method and superposed
epoch analysis, we reconstructed the fluxes and directly identified the key driving features of the electron flux
enhancement and depletion events as a function of time from the Psw enhancement and L-shell.
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The application of SHAP feature attribution method to the 19 enhancement and 7 depletion events has shown the
following:

1. Anincreased solar wind dynamic pressure is the dominant contributor to the dropouts preceding both enhance-
ment and depletion events.

2. The high-intensity, continuous substorm activity following the pressure maximum (indicated by a cluster
of AL peaks) contributes to the rapid increase of electron fluxes following the dropout during enhancement
events.

3. The quiet condition, or lack of substorm activity following the initial dropout, contributes to the decrease of
electron flux during depletion events.

To get more insight into our results, we performed a statistical study on 71 geospace disturbances events. The
results show significant correlation between the resulting fluxes and average AL value following the solar wind
pressure maximum. These results, in combination with our SHAP results, indicate that the depletion events can
be thought of essentially as “non-acceleration” events that occur when substorm activity following the pressure
maximum is not sufficient to accelerate the fluxes above its pre-storm level.

Our study utilizes a novel approach to modeling and understanding the dynamics of Earth's radiation belt.
Although the Superposed Epoch Analysis (SEA) is a popular method for identifying correlations between phys-
ical parameters involved in radiation belt dynamics, and hence inferring the causative driving factors, it has a
number of important limitations. Specifically, the SEA cannot identify the roles of key parameters during rapid
radiation belt flux changes, when the different parameters change simultaneously, or their roles in driving flux
dynamics change as a function of time and/or L-shell; therefore, its results are often difficult to verify using
physics-based models such as quasilinear simulations. In contrast, our interpretive machine learning model is not
only capable of accurately reproducing the dynamics of the radiation belt, but it can also directly identify the key
features corresponding to various significant dynamics, as they evolve in time and space, and which are shown to
be in line with our physical understanding.

The results showing that average AL has a significant correlation with the resulting flux levels suggests that it is
important to incorporate the AL index more directly into the radiation belt modeling. It is worth noting that the
cluster of AL peaks can not only be used in identifying strong whistler-mode wave intensity (W. Li et al., 2009),
but can also relate to the plasma frequency to gyrofrequency ratio (w,/w,,) that affects the electron loss and
energization efficiency and time scales (Agapitov et al., 2019). The purely data-driven results will serve as a
baseline for future studies, that the density and wave models based on AL can be used in the radiation belt simu-
lation. Furthermore, our conclusions should be applicable to a wide energy range of radiation belt electrons (e.g.,
500 keV-7 MeV), although there may be some quantitative differences for different energies. We only investigate
a typical energy channel to demonstrate our method and leave others for future studies. The dropout occurrence
rate and the magnitude of flux decrease during dropout may depend on the electron energy (Xiang et al., 2018).
The acceleration of higher energy electrons also requires a longer time (Thorne et al., 2013), therefore affecting
the SHAP values in the past times.

Finally, a number of caveats of our present work need to be mentioned. The uncertainty of the SHAP interpret-
ability method comes primarily from the ML model itself, and there could be differences between the training
and test data sets when explaining individual samples, so a model with very accurate performance should always
be prioritized, as in the present case. We show the model performance in Figure S1 in Supporting Informa-
tion S1, and we demonstrate each model result in the provided repository (D. Ma, 2023b). The SHAP and other
feature attribution methods usually assume feature independence, and this property requires us to choose the input
features carefully, since it is clear that solar wind parameters ultimately control geomagnetic index values, albeit
in complex ways. Although we chose our input features based on the strategy of adding the most informative
predictors sequentially, there could still be hidden interactions that are ignored such as the solar wind and AL
mentioned above. Possible solutions are using tree-like models that can have global interpretation and feature
interaction (Lundberg et al., 2018), or using encoding and self-supervised methods (e.g., He et al., 2020) to map
the input features to higher dimensions.

Despite the above caveats, we have demonstrated that a SHAP-enhanced superposed epoch analysis (SHESEA)
has the unique ability to provide context for the standard SEA method, showing how independent variables
control the dependent variable, how their roles vary as a function of time and how this behavior changes as a
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function of space. This approach is general, and can be applied in a variety of situations where a standard SEA
method is typically used, and is a novel way that ML can be used as an insight discovery tool in physical science.

Data Availability Statement

The event lists, data files and the detailed code to reproduce each figure are available at D. Ma (2023b) and the
ORIENT machine learning model code is available at Github https://github.com/donglai9%/ORIENT and at D.
Ma (2023a).

References

Agapitov, O., Mourenas, D., Artemyev, A., Hospodarsky, G., & Bonnell, J. (2019). Time scales for electron quasi-linear diffusion by lower-band
chorus waves: The effects of wpe/wce dependence on geomagnetic activity. Geophysical Research Letters, 46(12), 6178-6187. https://doi.
org/10.1029/2019g1083446

Anderson, B., Millan, R., Reeves, G., & Friedel, R. (2015). Acceleration and loss of relativistic electrons during small geomagnetic storms.
Geophysical Research Letters, 42(23), 10-113. https://doi.org/10.1002/2015g1066376

Baker, D., Erickson, P., Fennell, J., Foster, J., Jaynes, A., & Verronen, P. (2018). Space weather effects in the earth’s radiation belts. Space Science
Reviews, 214, 1-60. https://doi.org/10.1007/s11214-017-0452-7

Baker, D. N., & Lanzerotti, L. J. (2016). Resource letter swl: Space weather. American Journal of Physics, 84(3), 166—180. https://doi.
org/10.1119/1.4938403

Balikhin, M. A., Boynton, R. J., Walker, S. N., Borovsky, J. E., Billings, S. A., & Wei, H.-L. (2011). Using the NARMAX approach to
model the evolution of energetic electrons fluxes at geostationary orbit. Geophysical Research Letters, 38(18), L18105. https:/doi.
org/10.1029/2011g1048980

Blake, J., Carranza, P., Claudepierre, S., Clemmons, J., Crain, W., Dotan, Y., et al. (2014). The magnetic electron ion spectrometer (MAGEIS)
instruments aboard the radiation belt storm probes (RBSP) spacecraft (pp. 383—421). The van Allen probes mission.

Bortnik, J., Thorne, R., O’Brien, T., Green, J., Strangeway, R., Shprits, Y., & Baker, D. (2006). Observation of two distinct, rapid loss mech-
anisms during the 20 november 2003 radiation belt dropout event. Journal of Geophysical Research, 111(A12), A12216. https://doi.
org/10.1029/2006ja011802

Brautigam, D., & Albert, J. (2000). Radial diffusion analysis of outer radiation belt electrons during the october 9, 1990, magnetic storm. Journal
of Geophysical Research, 105(A1), 291-309. https://doi.org/10.1029/1999ja900344

Choi, H.-S., Lee, J., Cho, K.-S., Kwak, Y.-S., Cho, I.-H., Park, Y.-D., et al. (2011). Analysis of geo spacecraft anomalies: Space weather relation-
ships. Space Weather, 9(6), S06001. https://doi.org/10.1029/2010sw000597

Chu, X., Ma, D., Bortnik, J., Tobiska, W. K., Cruz, A., Bouwer, S. D., et al. (2021). Relativistic electron model in the outer radiation belt using a
neural network approach. Space Weather, 19(12), e2021SW002808. https://doi.org/10.1029/2021sw002808

He, K., Fan, H., Wu, Y., Xie, S., & Girshick, R. (2020). Momentum contrast for unsupervised visual representation learning. In Proceedings of

the IEEE/CVF conference on computer vision and pattern recognition (pp. 9729-9738).

Hua, M., Bortnik, J., Chu, X., Aryan, H., & Ma, Q. (2022). Unraveling the critical geomagnetic conditions controlling the upper limit of electron
fluxes in the earth’s outer radiation belt. Geophysical Research Letters, 49(22), €2022GL101096. https://doi.org/10.1029/2022g1101096

Hua, M., Bortnik, J., Spence, H. E., & Reeves, G. D. (2023). Testing the key processes that accelerate outer radiation belt relativistic electrons
during geomagnetic storms. Frontiers in Astronomy and Space Sciences, 10, 1168636. https://doi.org/10.3389/fspas.2023.1168636

Jaynes, A. N., Baker, D. N., Singer, H. J., Rodriguez, J. V., Loto’Aniu, T., Ali, A., et al. (2015). Source and seed populations for relativis-
tic electrons: Their roles in radiation belt changes. Journal of Geophysical Research: Space Physics, 120(9), 7240-7254. https://doi.
org/10.1002/2015ja021234

Katsavrias, C., Daglis, I. A., & Li, W. (2019). On the statistics of acceleration and loss of relativistic electrons in the outer radiation belt: A super-
posed epoch analysis. Journal of Geophysical Research: Space Physics, 124(4), 2755-2768. https://doi.org/10.1029/2019ja026569

Li, W., Thorne, R., Angelopoulos, V., Bortnik, J., Cully, C. M., Ni, B., et al. (2009). Global distribution of whistler-mode chorus waves observed
on the themis spacecraft. Geophysical Research Letters, 36(9), L09104. https://doi.org/10.1029/2009g1037595

Li, X., Oh, K. S., & Temerin, M. (2007). Prediction of the al index using solar wind parameters. Journal of Geophysical Research, 112(A6),
A06224. https://doi.org/10.1029/2006ja011918

Lundberg, S. M., Erion, G. G., & Lee, S.-I. (2018). Consistent individualized feature attribution for tree ensembles. arXiv preprint
arXiv:1802.03888.

Lundberg, S. M., & Lee, S.-1. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 30.

Ma, D. (2023a). donglai96/orient: Orient (v1.0.0) [Software]. Zenodo. https://doi.org/10.5281/zenodo.8361955

Ma, D. (2023b). Machine learning interpretability of outer radiation belt enhancement & depletion events [Dataset]. Zenodo. https:/doi.
org/10.5281/zenodo.8347502

Ma, D., Bortnik, J., Chu, X., Claudepierre, S. G., Ma, Q., & Kellerman, A. (2023). Opening the black box of the radiation belt machine learning
model. Space Weather, 21(4), €2022SW003339. https://doi.org/10.1029/2022sw003339

Ma, D., Chu, X., Bortnik, J., Claudepierre, S. G., Tobiska, W. K., Cruz, A., et al. (2022). Modeling the dynamic variability of sub-relativistic
outer radiation belt electron fluxes using machine learning. Space Weather, 20(8), €2022SW003079. https://doi.org/10.1029/2022sw003079

Ma, Q., Li, W., Bortnik, J., Thorne, R., Chu, X., Ozeke, L., et al. (2018). Quantitative evaluation of radial diffusion and local acceleration processes
during gem challenge events. Journal of Geophysical Research: Space Physics, 123(3), 1938—1952. https://doi.org/10.1002/2017ja025114

Ma, Q., Li, W., Thorne, R. M., Bortnik, J., Reeves, G. D., Kletzing, C., et al. (2016). Characteristic energy range of electron scattering due to
plasmaspheric hiss. Journal of Geophysical Research: Space Physics, 121(12), 11-737. https://doi.org/10.1002/2016ja023311

Mauk, B., Fox, N. J., Kanekal, S., Kessel, R., Sibeck, D., & Ukhorskiy, a. A. (2014). Science objectives and rationale for the radiation belt storm
probes mission. The van Allen probes mission, 179(1-4), 3-27. https://doi.org/10.1007/s11214-012-9908-y

McPherron, R. L., Hsu, T.-S., & Chu, X. (2015). An optimum solar wind coupling function for the al index. Journal of Geophysical Research:
Space Physics, 120(4), 2494-2515. https://doi.org/10.1002/2014ja020619

Mourenas, D., Artemyev, A., & Zhang, X.-J. (2019). Impact of significant time-integrated geomagnetic activity on 2-MeV electron flux. Journal
of Geophysical Research: Space Physics, 124(6), 4445-4461. https://doi.org/10.1029/2019ja026659

MA ET AL.

8of9

QSUQDIT SUOWWO)) dA1EAI) o[qedr|dde oy £q pauIoA0s ale sa[oIIR YO ash JO S9Nl 10f A1eIqi dul[uQ A3[IA\ UO (SUONIPUOD-PUE-SULID)/WO0D K[ Im AIeIqI[oul[uo//:sd)y) SUuonIpuoy) pue swd [ oY1 39S “[$707/S0/50] uo Areiqr auruQ L3[IM ‘6+0901T1DET0T/6T01°01/10p/wod Kopim Kreiqiaurjuo sqndnSe//:sdyy woi papeojumod ‘1 4707 ‘LO0SHH6 1


https://github.com/donglai96/ORIENT
https://doi.org/10.1029/2019gl083446
https://doi.org/10.1029/2019gl083446
https://doi.org/10.1002/2015gl066376
https://doi.org/10.1007/s11214-017-0452-7
https://doi.org/10.1119/1.4938403
https://doi.org/10.1119/1.4938403
https://doi.org/10.1029/2011gl048980
https://doi.org/10.1029/2011gl048980
https://doi.org/10.1029/2006ja011802
https://doi.org/10.1029/2006ja011802
https://doi.org/10.1029/1999ja900344
https://doi.org/10.1029/2010sw000597
https://doi.org/10.1029/2021sw002808
https://doi.org/10.1029/2022gl101096
https://doi.org/10.3389/fspas.2023.1168636
https://doi.org/10.1002/2015ja021234
https://doi.org/10.1002/2015ja021234
https://doi.org/10.1029/2019ja026569
https://doi.org/10.1029/2009gl037595
https://doi.org/10.1029/2006ja011918
https://doi.org/10.5281/zenodo.8361955
https://doi.org/10.5281/zenodo.8347502
https://doi.org/10.5281/zenodo.8347502
https://doi.org/10.1029/2022sw003339
https://doi.org/10.1029/2022sw003079
https://doi.org/10.1002/2017ja025114
https://doi.org/10.1002/2016ja023311
https://doi.org/10.1007/s11214-012-9908-y
https://doi.org/10.1002/2014ja020619
https://doi.org/10.1029/2019ja026659

Aru g
AUV
ADVANCING EARTH

AND SPACE SCIENCES

Geophysical Research Letters 10.1029/2023GL106049

Onsager, T., Rostoker, G., Kim, H.-J., Reeves, G., Obara, T., Singer, H., & Smithtro, C. (2002). Radiation belt electron flux dropouts:
Local time, radial, and particle-energy dependence. Journal of Geophysical Research, 107(A11), SMP-21-1-SMP-21-11. https://doi.
org/10.1029/2001JA000187

Reeves, G., McAdams, K., Friedel, R., & O’brien, T. (2003). Acceleration and loss of relativistic electrons during geomagnetic storms. Geophys-
ical Research Letters, 30(10), 1529. https://doi.org/10.1029/2002g1016513

Schulz, M., & Lanzerotti, L. J. (2012). Particle diffusion in the radiation belts (Vol. 7). Springer Science & Business Media.

Smirnov, A., Berrendorf, M., Shprits, Y., Kronberg, E. A., Allison, H. J., Aseev, N. A, et al. (2020). Medium energy electron flux in earth’s outer
radiation belt (merlin): A machine learning model. Space Weather, 18(11), €2020SW002532. https://doi.org/10.1029/2020sw002532

Thorne, R. E., Li, W., Ni, B., Ma, Q., Bortnik, J., Chen, L., et al. (2013). Rapid local acceleration of relativistic radiation-belt electrons by magne-
tospheric chorus. Nature, 504(7480), 411-414. https://doi.org/10.1038/nature 12889

Turner, D., Angelopoulos, V., Li, W., Hartinger, M., Usanova, M., Mann, L., et al. (2013). On the storm-time evolution of relativistic elec-
tron phase space density in earth’s outer radiation belt. Journal of Geophysical Research: Space Physics, 118(5), 2196-2212. https://doi.
org/10.1002/jgra.50151

Ukhorskiy, A., Anderson, B., Brandt, P., & Tsyganenko, N. (2006). Storm time evolution of the outer radiation belt: Transport and losses. Journal
of Geophysical Research, 111(A11), A11S03. https://doi.org/10.1029/2006ja011690

Xiang, Z., Tu, W., Ni, B., Henderson, M., & Cao, X. (2018). A statistical survey of radiation belt dropouts observed by van allen probes. Geophys-
ical Research Letters, 45(16), 8035-8043. https://doi.org/10.1029/2018g1078907

MA ET AL.

9 0of 9

QSUQDIT SUOWWO)) dA1EAI) o[qedr|dde oy £q pauIoA0s ale sa[oIIR YO ash JO S9Nl 10f A1eIqi dul[uQ A3[IA\ UO (SUONIPUOD-PUE-SULID)/WO0D K[ Im AIeIqI[oul[uo//:sd)y) SUuonIpuoy) pue swd [ oY1 39S “[$707/S0/50] uo Areiqr auruQ L3[IM ‘6+0901T1DET0T/6T01°01/10p/wod Kopim Kreiqiaurjuo sqndnSe//:sdyy woi papeojumod ‘1 4707 ‘LO0SHH6 1


https://doi.org/10.1029/2001JA000187
https://doi.org/10.1029/2001JA000187
https://doi.org/10.1029/2002gl016513
https://doi.org/10.1029/2020sw002532
https://doi.org/10.1038/nature12889
https://doi.org/10.1002/jgra.50151
https://doi.org/10.1002/jgra.50151
https://doi.org/10.1029/2006ja011690
https://doi.org/10.1029/2018gl078907

	Machine Learning Interpretability of Outer Radiation Belt Enhancement and Depletion Events
	Abstract
	Plain Language Summary
	1. Introduction
	2. Data and Methods
	3. Results
	4. Conclusions and Discussion
	Data Availability Statement
	References


