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Abstract—In the trace reconstruction problem, one observes

the output of passing a binary string s 2 {0, 1}n through a

deletion channel T times and wishes to recover s from the

resulting T “traces.” Most of the literature has focused on

characterizing the hardness of this problem in terms of the

number of traces T needed for perfect reconstruction either in

the worst case or in the average case (over input sequences s). In

this paper, we propose an alternative, instance-based approach to

the problem. We define the “Levenshtein difficulty” of a problem

instance (s, T ) as the probability that the resulting traces do

not provide enough information for correct recovery with full

certainty. One can then try to characterize, for a specific s, how

T needs to scale in order for the Levenshtein difficulty to go to

zero, and seek reconstruction algorithms that match this scaling

for each s. For a class of binary strings with alternating long

runs, we precisely characterize the scaling of T for which the

Levenshtein difficulty goes to zero. For this class, we also prove

that a simple “Las Vegas algorithm” has an error probability

that decays to zero with the same rate as that with which the

Levenshtein difficulty tends to zero.

I. INTRODUCTION

In the trace reconstruction problem, originally proposed by
Levenshtein in 1997 [1, 2], there exists a binary source string
s 2 {0, 1}n and we are given a set T of traces of s, where
a trace is simply a subsequence of s. We are then asked
to reconstruct s from T . The problem received considerable
attention in the last few years [3–14], partially due to its
applications in nanopore sequencing [6], DNA-based storage
[15, 16] and personalized immunogenomics [17].

Most of the work on the trace reconstruction problem has
focused on characterizing the minimum number of traces
T required to guarantee perfect reconstruction of s with
high probability. Batu et al. [3] studied the problem in the
setting where each trace is generated by passing s through a
deletion channel that deletes every bit in s independently with
probability p (and coined the name “trace reconstruction”).
The authors derived lower and upper bounds on the number of
traces T needed to guarantee correct reconstruction with high
probability in two different problem settings: in the worst-
case trace reconstruction problem, an algorithm is required to
reconstruct any sequence s 2 {0, 1}n with high probability; in
the average-case trace reconstruction problem, s is assumed
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to be chosen uniformly at random from {0, 1}n (equivalently,
each symbol is independently chosen as Bern(1/2)).

Since the work by Batu et al., significant development has
been made for both the worst-case and the average-case ver-
sions of the problem. For the average-case version, assuming
s is chosen uniformly at random from {0, 1}n, it is known
that T = exp(O(log1/3 n)) traces are sufficient [9], while at
least ⌦̃(log5/2(n)) traces are required [18]. However, in many
practical settings the assumption that s is an i.i.d. random
string is unrealistic (e.g., DNA sequences exhibit long repeat
patterns [19–21]). On the other hand, for the worst-case
version of the problem, it is known that T = exp(Õ(n1/5))
traces suffice [22], while the best known lower bound on the
minimum number of traces required is ⌦̃(n3/2) [18]. The gap
between the upper and lower bounds in this case is striking.
This suggests that the landscape of problem instances is too
diverse, some easy and some very hard, and requiring an
algorithm to reconstruct any s correctly may be too strict.

Inspired by the reconstruction condition in Levenshtein’s
original work [1, 2], we propose an instance-based approach
to the trace reconstruction problem. The approach is based
on a feasibility question: if the length of the source string
s is known, when does the set of traces T contain enough
information to allow the unambiguous recovery of s with
full certainty? More precisely, we say that T is Levenshtein
sufficient if s is the only length-n sequence that could have
generated T . The term Levenshtein sufficiency is used because
reconstruction with full certainty is required in Levenshtein’s
original study of the problem [1, 2]. More random traces
are generally required for Levenshtein-sufficiency to hold
compared to the commonly studied goal of reconstruction with
high probability [18, 22], since the latter does not require that
the string has been reconstructed with full certainty. Current
state of the art algorithms for worst-case trace reconstruction
with high probability can use a metric, such as likelihood, to
choose among a set of possible candidate reconstructions that
are all consistent with T . In contrast, Levenshtein-sufficiency
requires that there is only one possible reconstruction from the
set of traces.

For a problem instance defined by the a pair (s, T ) (where
T is the number of traces, not the traces themselves), a natural
definition for the difficulty of (s, T ) is then

D(s, T ) = Pr (T is not sufficient | s, T ) , (1)



where T is a set of T traces of s generated with deletion
probability p. We refer to D(s, T ) as the Levenshtein difficulty
of (s, T ).

For example, the sequence s = 00 . . . 0011 . . . 11 (similar
to the sequences used to prove the lower bound in [3]) has
a high value of D(s, T ), since it is unlikely that the traces
will reveal the right number of zeros and ones. Levenshtein
difficulty provides an algorithm-independent measure of diffi-
culty for reconstructing a particular source string s that other
frameworks do not explicitly provide, and thus gives rise to
an instance-based approach to trace reconstruction.

Intuitively, a good reconstruction algorithm should have a
small error probability for instances (s, T ) for which D(s, T )
is small, but should not be heavily penalized if its error proba-
bility is large on an instance with large D(s, T ). In particular,
if we consider the asymptotic regime n ! 1 (considered in
most studies of the trace reconstruction problem), a natural
goal is to design an algorithm A satisfying

Pr(error | A, s, T )! 0 whenever D(s, T )! 0, (2)

as n ! 1. This means that, if T scales with n fast enough
so that D(s, T ) ! 0 (i.e., T is scaling in a way that
makes the problem feasible with high probability), then the
algorithm’s error probability also goes to zero. Because our
goal is reconstruction with full certainty in this framework, we
are interested in algorithms that either output the source string,
or report an error if the source string is not the only possible
reconstruction. The probability of failure of such an algorithm
then serves as an upper bound on D(s, T ). If in addition,
the algorithm is computationally efficient given the number
of traces T , it can be classified as a Las Vegas algorithm [23].

We initiate the investigation of this framework for the
trace reconstruction problem by deriving general necessary
conditions and sufficient conditions for T to be Levenshtein
sufficient for s. These conditions are in terms of specific
sequence patterns that must be preserved in the traces, and
they translate into bounds on D(s, T ). We use these necessary
conditions to prove that a broad class of strings containing
consecutive repeated sequences requires exp(poly(n)) traces
for Levenshtein sufficiency to hold with high probability. We
then focus on a class of strings s (strings that are formed by a
fixed number of alternating runs of zeros and ones) and show
that, for this class, D(s, T ) exhibits a phase transition: if T

grows faster than exp(c⇤n), where c
⇤ is a positive constant

that depends on the length of the runs, D(s, T ) ! 0; if T

grows slower than that, then D(s, T )! 1. We then propose a
simple Las Vegas algorithm (based on observing the maximum
run lengths in traces) for which the goal in (2) is achieved.
Therefore, for this class of strings, this algorithm is optimal,
in the sense that its error probability goes to zero whenever we
have a sequence of problems whose difficulty tends to zero.
Moreover, we show that in those cases the error probability
decays with a similar rate to the instance difficulty D(s, T ).
An appendix containing omitted derivations is available in a
longer version of this paper [24].

II. PRELIMINARIES

Strings in this paper are binary and indexed starting from 1.
For a given string x, we let |x| denote the length of x. A
subsequence of x is a string that can be formed by deleting
elements from x, and a supersequence of x is a string that can
be formed by inserting elements into x. This is in comparison
to a substring of x, which is a string that appears contiguously
in x. We let x[i, j] = (xi, xi+1, . . . , xj) be the substring of x
that begins at position i and ends at position j. For a string
a and positive integer r, we let a

r be the length r|a| string
aa..a that has a repeated r times. A run in a string s is a
substring in s of the form 0r that has a 1 or nothing on either
side, or 1r that has a 0 or nothing on either side. For example,
for the string 010011, the runs in order are 0, 1, 00, and 11.
For a string x, we denote the ith run in x by ri(x). If x is
clear from context, we denote ri(x) by ri. Following standard
notation, for two real-valued sequences {an} and {bn}, we
write an ⇠ bn if limn!1 an/bn = 1. We let log(x) denote the
natural logarithm of x. For a matrix A, we denote the transpose
of A by A

†. Following standard notation, for a positive integer
M , we let [M ] denote the set {1, . . . ,M}.

Let s = (s1, s2, . . . , sn) 2 {0, 1}n be the length-n string
we are trying to recover. s will be called the source string.
A trace of s is any subsequence of s. For our probabilistic
analysis, we denote the channel that s is passed through by
C. In this paper, C is the deletion channel Delp that deletes
each bit of the source string s independently with probability
p. In our probabilistic analysis, a trace t of s is the output of
channel C when s is passed through it, i.e., t C(s).

Definition 1. A set of traces T is Levenshtein sufficient for
reconstructing a string s if the only length-n string that could
have given rise to T is s itself.

Given T that is sufficient for s, we wish to reconstruct s
from T . A problem instance is defined by a pair (s, T ).

Definition 2. The Levenshtein difficulty of instance (s, T ) is
defined as

D(s, T ) = Pr (T is not sufficient | s, T ) . (3)

An algorithm A is Levenshtein efficient for a sequence of
strings {sn} (where n indicates the length of sn) and number
of traces {Tn} if it always either outputs the correct source
string, or does not output a string and reports an error, and
as n increases, the probability that A fails to reconstruct sn
approaches zero whenever the instance difficulty approaches
zero; i.e., if

Pr(error | A, sn, Tn)! 0 whenever D(sn, Tn)! 0, (4)

as n ! 1. Here, the probability of error for A depends
on any randomness used in A in addition to randomness in
trace generation. In principle, we can always find the set of
all possible length-n strings that could have given rise to T
by taking the intersection of all sets Si for i 2 [T ], where
Si is the set of length-n strings that are supersequences of
trace ti. This brute-force “algorithm” reconstructs the source



strings correctly whenever T is Levenshtein sufficient, and is
therefore a Levenshtein efficient reconstruction algorithm for
any sequence of source strings {sn} and number of traces
{Tn}. However, it is not computationally efficient since in the
worst case; it runs in time exponential in n. Furthermore, such
an algorithm is difficult to analyze and provides no insight as
to which scaling of Tn is needed in order for D(s, Tn)! 0.

III. MAIN RESULTS

Our first main result provides a lower bound on how
Tn must scale with the string length n to guarantee that
D(sn, Tn) ! 0 when sn belongs to the class of sequences
of strings defined below.

Definition 3. We denote by Q(rn, fn) the set of sequences of
strings {sn} such that sn is a string of length n that contains
a substring of the form A

fn for some string A where |A| = rn.
Note that if for some n, fn is not an integer, the substring in
sn can be A

dfne or A
bfnc, so long as |sn| = n.

For example, the class Q(2, n/4) contains the sequence of
strings of the form (01)n/40n/2 where A is taken to be 01 in
this case.

Theorem 1. Let c⇤ = ` log( 1
1�pr ). For a sequence of strings

{sn} 2 Q(r, `n) where r, ` are constants such that r � 1 and
0 < `  1, the instance difficulty satisfies, as n!1,

D(sn, Tn)! 1 if Tn = O(exp (cn)), c < c
⇤
. (5)

This theorem shows that any string in Q(r, `n) requires
an exponential number of traces in n, and can be further
generalized to strings in Q(r, `na) for a  1 as shown in
the next section. Interestingly, the string pairs that are used
to calculate lower bounds on trace reconstuction with high
probability [18] use strings in Q(r, `n). Theorem 1 is proved
by establishing necessary conditions for a set of traces to be
Levenshtein sufficient, and calculating the probability that the
conditions are satisfied.

We use Theorem 1 to give an asymptotic characterization of
D(sn, Tn) as the string length n increases when {sn} belongs
to the more restrictive class of sequences of strings S(M, `

⇤)
defined below.

Definition 4. We denote by S(M, `
⇤) the set of sequences of

strings {sn} such that sn has M runs for all n, the ith run
has length `in with

PM
i=1 `i = 1, and `

⇤ = maxi2[M ] `i. Note
that if for some n, there exists a subset G ✓ [M ] such that
`in is not an integer for i 2 G, the length of the ith run can
be chosen to be d`ine or b`inc for each i 2 G, in any way
such that |sn| = n.

For example, the class S(3, 1/2) contains strings of the form
0 . . . 01 . . . 10 . . . 0 and 1 . . . 10 . . . 01 . . . 1, with a maximum
run of length n/2. Notice that S(M, `

⇤) ⇢ Q(1, `⇤n). While
somewhat restrictive, this class serves as a way to study the
impact of the number of runs and the run lengths on the
problem difficulty.

Theorem 2. Let c⇤ = `
⇤ log( 1

1�p ). For a sequence of strings
{sn} 2 S(M, `

⇤), the instance difficulty satisfies, as n!1,

D(sn, Tn)! 0 if Tn = ⌦(exp (cn)), c > c
⇤
, (6)

D(sn, Tn)! 1 if Tn = O(exp (cn)), c < c
⇤
. (7)

We prove Theorem 2 in the next sections by applying
Theorem 1, and deriving a sufficient condition for T to be
Levenshtein sufficient. The sufficient conditions can also be
seen as the sufficient conditions for a simple algorithm called
Maximal Runs (Algorithm 1) to reconstruct s from T .

Theorem 2 establishes a critical phenomenon for the prob-
lem difficulty for sequences in S(M, `

⇤) and precisely charac-
terizes the regime where an algorithm can be expected to per-
form well. It may seem counterintuitive that T = exp(⌦(n))
traces are required for a set of traces to be Levenshtein-
sufficient with high probability for a source string in S(M, `

⇤),
while T = exp(Õ(n1/5)) traces are known to be sufficient for
reconstructing any source string with high probability [22].
This difference in trace complexity occurs because algorithms
for reconstructing a string with high probability can select
one among a set of possible reconstructions based on some
specific criterion (such as likelihood or another statistic of the
traces), without the set of traces necessarily being Levenshtein
sufficient.

In Theorem 3, we state that the Maximal Runs algorithm
(Algorithm 1) performs well precisely when Tn scales so
that D(sn, Tn) ! 0. While very simple, the Maximal Runs
algorithm is computationally efficient in that it runs in O(nT )
time. Moreover, it is easy to see that this algorithm can only
recover s correctly when T is Levenshtein sufficient.

Theorem 3. Let c⇤ = `
⇤ log( 1

1�p ), and let A be the Maximal
Runs algorithm (Algorithm 1). For {sn} 2 S(M, `

⇤), A
satisfies, as n!1,

Pr(error | A, sn, Tn)! 0, (8)
log(Pr(error | A, sn, Tn))

log(D(sn, Tn))
! 1, (9)

as long as Tn = ⌦(exp (cn)), for c > c
⇤.

Observe that c⇤ is a sharp threshold on the exponent c in
T = exp(cn), below which the problem becomes infeasible
as n increases, and above which, the problem is feasible and
the Maximal Runs algorithm outputs the correct answer as
n increases. Furthermore, (9) implies that error probability
Pr(error | A, sn, Tn) goes to zero at the same exponential rate
as the rate with which D(s, T ) goes to zero.

IV. CONCLUDING REMARKS

In this paper, we proposed an instance-based approach to
the trace reconstruction problem based on a new notion of
instance-specific difficulty. For a class of strings with a fixed
number of runs, we precisely characterized how the number
of traces needs to grow as a function of the run lengths
in order for the instance difficulty to go to zero. While the
class of strings considered is somewhat restrictive, we obtain



Algorithm 1: Maximal Runs
Data: n, T
Result: ŝ

1 ŝ empty string;
2 M̂  maximum number of runs in any trace in T ;
3 S  set of all traces with M̂ runs;
4 if t1[1] = t2[1] for all t1, t2 2 S then

5 for i 2 [M̂ ] do

6 t
⇤  argmaxt2S |ri(t)| ;

7 xi  ri(t⇤);

8 if
P

i2[M̂ ] |xi| = n then

9 ŝ x1x2...xM̂ ;

sharp bounds on the required T , in contrast to most existing
results for trace reconstruction. In addition, we derived a lower
bound on the number of traces for the instance difficulty to
go to zero for a much broader class of strings. This work
can thus be seen as developing the initial tools for a more
general characterization of the instance-based hardness of trace
reconstruction. We note that our Theorem 1 can be generalized
to the following as proved in the following section.

Theorem 4. Let c⇤ = ` log( 1
1�pr ). For a sequence of strings

{sn} 2 Q(r, `na) where r � 1 and 0 < `, a  1, the instance
difficulty satisfies, as n!1,

D(sn, Tn)! 1 if Tn = O(exp (cna)), c < c
⇤ (10)

This shows that any string that contains a constant length
string repeated consecutively a polynomial number of times
in n requires a superpolynomial number of traces in n for
Levenshtein sufficiency to hold with high probability.

Finally, we point out that other interesting definitions for
the “sufficiency” of T are possible. For example, one could
say T is sufficient for s if the maximum likelihood source
string given T is s.

V. PROOF OF MAIN RESULTS

We begin by introducing necessary and sufficient conditions
for T to be Levenshtein sufficient for s, which we will use
to prove the main results. Out of the conditions in Lemma 1,
we only need condition (1) for our analysis of Levenshtein
sufficiency, but we include the other two conditions to show
additional requirements for Levenshtein sufficiency.

Lemma 1. For any two distinct binary strings A,B such that
|A|  |B|, we have the following necessary conditions on the
set of traces T to be Levenshtein sufficient for s. Let a, b 2 N
such that a, b � 1.

1) If Aa is a substring of s, it cannot happen that for every
trace, there exists a copy of A in this substring that is
deleted.

2) If Ba
AB

b is a substring of s, it cannot happen that for
every trace, there exists a copy of B in this substring
that is deleted.

3) If Aa
B

b or B
b
A

a is a substring of s, it cannot happen
that for every trace, there exists a copy of A or B that
is deleted from this substring.

Proof: (1) If a copy of A is deleted from this substring
in every trace, then T could arise from s with the substring
A

a replaced by DA
a�1 for any string D such that |D| = |A|

and D 6= A.
(2) If a copy of B is deleted from this substring in every

trace, then T could arise from s with the substring B
a
AB

b

replaced by G = B
a�1

ABA1|B|�|A|
B

b�1. To see this, notice
that if a trace of s has a copy of B deleted from B

a in B
a
AB

b,
then the same trace can be formed if B

a
AB

b is replaced by
G in s since A1|B|�|A|) can be deleted from G. A similar
argument holds if a trace of s has a copy of B deleted from
B

b in B
a
AB

b.
(3) If a copy of A or B is deleted from the substring

A
a
B

b in every trace, then T could arise from s with the
substring A

a
B

b replaced by A
a�1

BAB
b�1. The B

b
A

a case
is analogous.

Lemma 2. T is Levenshtein sufficient for s if for each run i,
there exists a trace such that no run is fully deleted and run
i is fully preserved.

The fact that the conditions in Lemma 2 imply Levenshtein
sufficiency is straightforward to verify. Moreover, it is easy to
see that these conditions guarantee that Algorithm 1 recovers
s correctly. Also notice that the condition for Levenshtein
sufficiency in Lemma 2 is very similar to the necessary
condition (1) in Lemma 1 when A is a single bit, and this
observation forms the basis of our result.

We now prove the main theorems. For a source string sn

where {sn} 2 Q(r, fn) and r is a constant, let Exn
1 denote the

event that necessary condition (1) holds for the substring xn

in sn where xn = A
fn for some string A of length r. In other

words, Exn
1 is the event that for the substring xn = AA...A

of interest, we have that there exists a trace where no copy of
A in xn is fully deleted.

Let E2 denote the event that the sufficient condition in
Lemma 2 holds for (sn, Tn). Notice that for any sn and Tn

such that {sn} 2 Q(r, fn) and xn is a substring of sn of the
form described above, it follows that

Pr(Ēxn
1 )  D(sn, Tn)  Pr(Ē2). (11)

Therefore, by proving that limn!1 Pr(Ēxn
1 ) = 1 for a pair of

sequences {sn}, {Tn}, we prove that limn!1 D(sn, T 0
n) = 1

for any {T 0
n} such that T

0
n = O(Tn) since D(s, T ) can

only increase for fixed s if T decreases. Also, by proving
that limn!1 Pr(Ē2) = 0 for {sn}, {Tn}, we prove that
limn!1 D(sn, T 0

n) = 0 for any {T 0
n} such that T 0

n = ⌦(Tn)
since D(s, T ) can only decrease for fixed s if T increases.

Lemma 3 gives an asymptotic characterization of Pr(Ēxn
1 )

for {sn} 2 Q(r, `na) which immediately yields Theorems
1 and 4. Lemma 4 gives an asymptotic characterization of
Pr(Ē2), which immediately yields Theorems 2 and 3 by the
logic above along with the fact that S(M, `

⇤) ⇢ Q(1, `⇤n).



Lemma 3. Suppose {sn} 2 Q(r, `na) where r, `, a are
constants such that 0 < `, a  1, and let xn be a substring
of sn of the form A

`na

where |A| = r. Let c⇤ = ` log( 1
1�pr ).

Then, as n!1,r Pr(Ēxn
1 )! 0 if Tn = ⌦(exp (cna)), c > c

⇤ (12)r Pr(Ēxn
1 )! 1/e if Tn = exp (c⇤na) (13)r Pr(Ēxn
1 )! 1 if Tn = O(exp (cna)), c < c

⇤ (14)

Lemma 4. Suppose {sn} 2 S(M, `
⇤) and let xn be a run in

sn of length `
⇤
n. Let c⇤ = `

⇤ log( 1
1�p ). Then, as n!1,

log(Pr(Ē2))

log(Pr(Ēxn
1 ))

! 1 if Tn = ⇥(exp (cn)), c > c
⇤
. (15)

VI. PROOF OF LEMMAS 3 AND 4

For ease of presentation in this proof, we write Tn as T .
For the source string sn, let xn be a substring of sn of the
form A

fn where A is of length r. We have that

Pr(Exn
1 ) = 1� Pr(Ēxn

1 ) = 1� (1� (1� p
r)fn)T .

Let Ei
2 be the event that there is at least one trace that has

the ith run fully preserved and has no run fully deleted. With
slight abuse of notation, let ri be the length of the ith run. Let
a be the T ⇥ 1 binary vector that has a 1 in the ith position
if the ith trace has no run fully deleted, and has a 0 in the ith
position otherwise. We then have that

Pr(E2) =
X

a2{0,1}T⇥1

Pr(E2|a) Pr(a)

=
X

a

 
MY

i=1

Pr(Ei
2|a)

! 
MY

i=1

(1� p
ri)

!1†a

⇥
 
1�

MY

i=1

(1� p
ri)

!T�1†a

=
X

a

 
MY

i=1

 
1�

✓
1� (1� p)ri

1� pri

◆1†a
!!

⇥
 

MY

i=1

(1� p
ri)

!1†a 
1�

MY

i=1

(1� p
ri)

!T�1†a

=
TX

j=0

✓
T

j

◆ MY

i=1

 
1�

✓
1� (1� p)ri

1� pri

◆j
!!

⇥ (
MY

i=1

(1� p
ri))j(1�

MY

i=1

(1� p
ri))T�j (16)

where the third equality follows because

Pr(Ei
2|a) = 1� Pr(Ēi

2|a)

= 1� Pr(Ēi
2 \ a)

Pr(a)

= 1� (1� p
ri � (1� p)ri)1

†a

⇣QM
j=1(1� prj )

⌘1†a ⇣
1�

QM
j=1(1� prj )

⌘T�1†a

⇥

0

@
MY

j 6=i

(1� p
rj )

1

A
1†a0

@1�
MY

j=1

(1� p
rj )

1

A
T�1†a

= 1� (1� p
ri � (1� p)ri)1

†a

(1� pri)1†a

= 1�
✓
1� (1� p)ri

1� pri

◆1†a

. (17)

Observe that

Pr(E2) = E

"
MY

i=1

 
1�

✓
1� (1� p)ri

1� pri

◆X
!#

(18)

where X ⇠ Bin(T,
QM

i=1(1 � p
ri)) is a binomial random

variable with T trials and probability parameter
QM

i=1(1�pri).

A. Analysis of Pr(Ēx
1 )

Suppose the string xn = AA...A that we are analyzing is
such that A is repeated `n

a times where 0 < a, `  1 are
constants, and |A| = r. where r > 0 is constant.

Suppose the number of traces is T = exp(cna) where
c is a positive constant. We will write n in terms of T in
the expression for Pr(Ēxn

1 ) to perform asymptotic analysis.
According to the formula in the previous section, and letting
q = `/c, we have

Pr(Ēxn
1 ) = (1� (1� p

r)`n
a

)T

= (1� (1� p
r)q log(T ))T

⇠ exp
⇣
�T q log(1�pr)+1

⌘
. (19)

We prove the asymptotic expression in (19) in the appendix
[24].

If c > c
⇤ = ` log( 1

1�pr ), which is equivalent to `
c log(1 �

p
r) + 1 > 0 8i 2 [M ], then

lim
n!1

Pr(Ēxn
1 ) = 0. (20)

If T grows faster than exp(c⇤na), i.e., T = ⌦(exp(cna)) for
c > c

⇤, then P (Ēxn
1 ) approaches zero because for fixed n,

having more traces can only cause P (Ēxn
1 ) to decrease. This

proves (12). On the other hand, if c < c
⇤, then clearly

lim
n!1

Pr(Ēxn
1 ) = 1. (21)

If T = O(exp(cna)) where c < c
⇤, we have that

limn!1 Pr(Ēxn
1 ) = 1 since for any such c, there exists a

larger value of c that also satisfies the property and for fixed
n, having less traces can only cause P (Ēxn

1 ) to increase. This
proves (14). Finally, if c = c

⇤, then clearly

lim
n!1

Pr(Ēxn
1 ) = 1/e. (22)

B. Analysis of Pr(Ē2)

In this section suppose that {sn} 2 S(M, `
⇤). Notice that

S(M, `
⇤) ⇢ Q(1, `⇤n), so the analysis of Pr(Ēxn

1 ) in the
previous subsection can be applied to any string in S(M, `

⇤).
Suppose the number of traces is Tn = exp(cn) where c

is a positive constant. For ease of presentation, let qi = `i/c



and ui = `i
c log(T ). Let X ⇠ Bin(T,

QM
i=1(1 � p

ui)) be
the binomial random variable with T trials and probability
parameter pX =

QM
i=1(1� p

ui). We have that

Pr(Ē2) = 1� E

"
MY
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◆X
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=
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"
Y

i2K

✓
1� (1� p)ui

1� pui

◆X
#

=
MX

y=1

X

K✓[M ]: |K|=y

(�1)y+1

⇥ E

"
exp

 
log

 
Y

i2K

✓
1� (1� p)ui

1� pui

◆!
X

!#

=
MX

y=1

X

K✓[M ]: |K|=y

(�1)y+1

 
1� pX+ pX

Y

i2K

✓
1� (1� p)ui

1� pui

◆!T

(23)

from the moment-generating function of a binomial random
variable. Letting N = |{i : `i = `i⇤}| where i

⇤ =
argmaxi `i, we have that Pr(Ē2) is asymptotically given by

N exp

 
�
 

MY

k=1

(1� T
qk log(p))

!✓
T

qi⇤ log(1�p)+1

1� T qi⇤ log(p)

◆!
(24)

as proved in the appendix [24]. Therefore, if c >

`i⇤ log(
1

1�p ) = `
⇤ log( 1

1�p ) = c
⇤,

log(Pr(Ē2))

log(Pr(Ēri⇤ (sn)
1 ))

⇠
QM

k=1(1� T
qk log(p))

1� T qi⇤ log(p)
⇠ 1 (25)

as proved in the appendix [24]. This concludes the proof of
Lemma 4.
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