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A variety of supergravity and string models involve hidden sectors where the hidden sectors may
couple feebly with the visible sectors via a variety of portals. While the coupling of the hidden sector to
the visible sector is feeble, its coupling to the inflaton is largely unknown. It could couple feebly or with
the same strength as the visible sector, which would result in either a cold or a hot hidden sector at the
end of reheating. These two possibilities could lead to significantly different outcomes for observables.
We investigate the thermal evolution of the two sectors in a cosmologically consistent hidden sector
dark matter model where the hidden sector and the visible sector are thermally coupled. Within this
framework, we analyze several phenomena to illustrate their dependence on the initial conditions. These
include the allowed parameter space of models, dark matter relic density, proton-dark matter cross
section, effective massless neutrino species at big bang nucleosynthesis time, self-interacting dark
matter cross section, where self-interaction occurs via exchange of dark photon, and Sommerfeld
enhancement. Finally, fits to the velocity dependence of dark matter cross sections from galaxy scales to
the scale of galaxy clusters is given. The analysis indicates significant effects of the initial conditions on
the observables listed above. The analysis is carried out within the framework where dark matter is
constituted of dark fermions, and the mediation between the visible and the hidden sector occurs via the
exchange of dark photons. The techniques discussed here may have applications for a wider class of
hidden sector models using different mediations between the visible and the hidden sectors to explore

the impact of big bang initial conditions on observable physics.
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I. INTRODUCTION

Hidden sectors appear in most modern models of particle
physics beyond the standard model and have become
increasingly relevant in analyses of particle physics phe-
nomena. Success of precision electroweak physics tell us
that the hidden sector couplings to the standard model must
be feeble, but what about the coupling of the hidden sector
to the inflaton? If the coupling of the hidden sector to
the inflaton is also feeble relative to the coupling of the
standard model, the population of the hidden sector
particles would be negligible, and their temperature would
be much colder than of the standard model particles. On the
other extreme, the hidden sector and the visible sectors
could couple democratically, i.e., with equal strength, to the
inflaton and thus be essentially in thermal equilibrium at
the end of reheating. These cases represent two extreme
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possibilities with a variety of other possibilities in between.
Because of the interactions between the visible and the
hidden sectors, the two sectors are thermally coupled, and
thus, their evolution is constrained by the initial condition
on the hidden sector at the end of inflation which can be
codified by the ratio & = T9/T°, where T9 is the temper-
ature of the hidden sector, and 79 is the temperature of the
visible sector initially after reheating. It is thus of relevance
to ask the influence of the initial conditions on physical
observables at low energy. In this work, we study the effect
of &, on a variety of physical observables, i.e., on the relic
density of dark matter, on the proton-DM scattering cross
sections, on the number of massless degrees of freedom
at big bang nucleosynthesis (BBN), and on DM self-
interaction cross sections. For DM self-interaction cross
section, we further analyze the effect of &, on its velocity
dependence and on Sommerfeld enhancement and analyze
the effect of &, on fits to the galactic dark matter cross
sections from the scale of dwarf galaxies to the scale of
galaxy clusters. The portal we utilize in the analysis
consists of a hidden sector with a U(1)y gauge invariance
with kinetic mixing [1] and Stueckelberg mass growth of
the U(1)y gauge boson [2]. By numerically solving the
Schrodinger equation, we are able to achieve a compre-
hensive understanding of the dark matter self-interacting
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cross section in this model. While our analysis is done in a
specific choice of the portal, one may expect similar effects
discussed in this work using other portals connecting
visible and the hidden sectors.

The outline of the rest of the note is as follows: Sec. II
gives a summary of the thermal evolution of coupled visible
and hidden sectors, while Sec. III discusses a specific
model with the visible sector coupled to one hidden sector
where the coupling arises via kinetic mixing along with
Stueckelberg mass generation for the hidden sector gauge
boson. Section IV discusses the effect of &, on dark freeze-
out and on the relic density of dark matter. Here, we also
discuss the dependence of AN at BBN time on &, and
further the effect of &, on the allowed parameter space and on
the spin-independent proton-DM cross section. In Sec. V,
we discuss the effect of £, on Sommerfeld enhancement for
the self-interacting dark matter cross section. In Sec. VI,
we discuss the effect of &, on fits to the galaxy data on dark
matter cross sections from low relative velocities to high
relative velocities, which encompass scales from dwarf
galaxies to galaxy clusters. Conclusions are given in
Sec. VII. Additional details related to the analysis are given
in Appendix A-C. Further, in Appendix D, we give a
comparison of our analysis of the thermal evolution when
the total entropy is conserved vs the thermal evolution when
the entropies of the visible and the hidden sectors are
separately conserved. In this section, we also analyze the
accuracy of using conservation of total entropy in compu-
tations of yields for dark matter since, in general, the total
entropy is not conserved unless the sectors equilibrate.

II. COSMOLOGICALLY CONSISTENT
EVOLUTION OF COUPLED VISIBLE AND
HIDDEN SECTORS IN DM ANALYSIS

As mentioned in the previous section, most models of
particle physics based on physics beyond the standard
model contain hidden sectors that may be feebly coupled to
the visible sector. In this case, the thermal evolution of each
is interdependent on the other. Thus, the approximation
typically made that the entropy of the visible and the hidden
sectors are separately conserved is invalid. Further, the
hidden sector by itself may consist of several sectors, some
of which may interact directly with the visible sector while
others indirectly via their interactions with other hidden
sectors, which couple with the visible sector. First, in this
case, the Hubble expansion is affected by the hidden sectors
via their energy densities so that

H2 SJTGN ( 4 Zpl>

where p, is the energy density of the visible sector, and p;
the energy density of the ith hidden sector where p’s have
temperature dependence so that

(2.1)

(2.2)

2
p= 30 (gett T + Zgl eff )’

and the total entropy density of the visible and hidden
sectors is given by

272
S = 45 (héffT3 + Z hlheffT ) (23)

Here, ggfi? and hgf‘f are the energy and entropy degrees of
freedom and are temperature dependent. A full expression
for them for the specific model we will consider is given in
Sec. III. In [3], an analysis was given where the visible
sector (V) at temperature 7' is coupled to the hidden sector
H, at temperature 7’|, the hidden sector H, is coupled to the
hidden sector H, at temperature 7', and so on, and finally
that the hidden sector H,_; at temperature 7',_; is coupled
to the hidden sector H,, at temperature 7',,. In the analysis
of [3], radiation dominance was assumed. Here, we extend
the analysis to include radiation and matter. In this case, the
energy densities for various sectors obey the following set
of coupled Boltzmann equations:

(Pa+ Pa) = Jor  a=0,1,2,...n.  (2.4)

a
dt
Here, p, and p, are the energy and momentum densities for
the sector a, where a = 0O refers to the visible sector, and
a = 1,2, ..., n to the hidden sectors, and where j, encodes
in it all the possible processes exchanging energy between
neighboring sectors. We note now that the total energy
density p = > ", p, in an expanding universe satisfies the
equation

d
L L 3H(p+p) =0,

b (2.5)

where p = > " _,p, is the total pressure density. In the
analysis, it is convenient to introduce the functions { =
3(1+2) and ¢, =3 (1 +2=), where {, = 1 for radiation
dominance and {, :% for matter dominance. More gen-
erally, { and ¢, are temperature dependent, and this

dependence is taken into account in the evolution equa-
tions. Thus, p, and p satisfy the evolution equations:

dp,

L L AHE p, = 2.

dt + gapa av ( 6)
dp
L v 4Hp = 2.7
5 TAHSp (2.7)

We use the visible sector temperature 7 as the clock as
we thus wish to write the evolution equations Egs. (2.6)
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and (2.7) in terms of temperature 7 rather than time. This is
accomplished using the relation

dTr 4HEp
E - - dp " (28)
dr
Thus, using dp,/dt = (dp,/dT)(dT/dt), one has
d 4H —Ja) 4
po _ (4HCupa = Ja) dp (2.9)

dr 4HCp  dT’

Next decomposing p so that p = p, + > ", p;, one finds
that dp;/dT can be written as

dp; <~ dp,
=
Here,
4HCp; — J;
¢, = Hewizi, (2.11)
4Ho; + j;
where o; = {p — {;p;, and C;; is defined so that
Cljzél]—cl(lﬁé]),l, J: 1,2,...,]’1. (212)
Note that one may also write
dp:
d—[;:Pi—in =120 (213)

Here, P; =& . Q; = T g, where & =T;/T and & =

dé&;/dT. Thus, we have an equation for d&; /dT, which takes
the form

dg; P; - —1 P/p_ -
d_T:_§+Z(C )ijcjai, i=12,....n,

i j=1

(2.14)

where p), = dp,/dT. Equations (2.14) give us a set of n
differential equations for the evolution functions d¢;/dT.
These have to be solved along with the Boltzmann
equations governing the number density evolution of the
hidden sector particles. This will allow us to determine
the relic densities of all stable species and describe the
thermal evolution of this coupled system. For the case
of the visible sector coupled to one hidden sector, we have
Cy = 1,Cy = (4HSuwpy — jin)/(4HEp — AH iy + i),
pn=p1, Ty =Ty, j,=ji, and we define =&, =T,/T.
The source term j, is discussed in Appendix A. With this
notation specific to the case of the visible sector and one
hidden sector, we have the following equation for & which
governs the temperature evolution of the hidden sector
relative to that of the visible sector

aé dpy,
dr ngh *

4HSupp — Jn dﬂb} <Tﬂ>_l
4Hp —4HEpy, + jy AT ar,)

(2.15)

We note that gZ; and hl; are precalculated, and we use
tabulated results from micrOMEGAs [4]. As noted already,
¢ and h; for the hidden sector that enter Eqgs. (2.2)
and (2.3) are temperature dependent [5,6], and their explicit
expressions are given in Eq. (B4).

III. THE MODEL COUPLING VISIBLE AND
HIDDEN SECTORS

There are a variety of portals that allow communication
between the visible and the hidden sectors. These include
the Higgs field portal [7], kinetic mixing of two gauge
fields [1], Stueckelberg mass mixing [2,8], kinetic and
Stueckelberg mass mixing [9], Higgs-Stueckelberg
portal [10], as well as other possibilities such as higher
dimensional operators. In this work, we focus on kinetic
mixing along with the mass growth for the hidden sector
gauge field via the Stueckelberg mechanism. Thus, for
analysis in this work, we consider a specific model for dark
matter, which is an extension of the standard model with an
SU(3) x SU(2) x U(1)y x U(1)y gauge invariance where
the U(1)y gauge field has kinetic mixing with the visible
sector U(1), gauge field [1] and, in general, a Stueckelberg
mass mixings [2,9,11,12]. We assume that the U(1)y
hidden sector has a dark fermion D, which interacts
with the U(1)y gauge field. Thus, the extended SU(3) x
SU(2) x U(1)y x U(1)y Lagrangian consisting of the SM
part Lgy and the extended part L., is given by

L= ESM + ‘Cextv
1 - 1 _
Loy = 4 CWC;w -D (7’” ?6” + mD>D - gXDQXyMDCﬂ

2 OB, ~ 3 (M\C, 4 Mo, 0,07, (1)
Here B, is the gauge field for the U(1)y, C, is the gauge
field of U(1)y, ¢ is an axionic field that gives mass to C,
and is absorbed in the unitary gauge, and D is the dark
fermion where Qy is the U(1)y charge of D and gy is gauge
coupling of U(1)y. Further, § is the kinetic mixing
parameter between the field strengths of C* and B,
and M| and M, are the Stueckelberg mass parameters.
A nonvanishing M, will lead to a milli-charge for the dark
fermion D, and we assume neutrality of dark matter and
thus set M, = 0 in the analysis.' The spontaneous breaking
of the SU(2) x U(1)y electroweak symmetry along with
the Stueckelberg mass growth gives rise to mixing among

'A nonvanishing M, was used to resolve the EDGES anomaly
in the analysis of [13].
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the three gauge fields C”,B”,A’;, where Ag‘ is the third
component of the SU(2), gauge field A; (a = 1, 2, 3) of
the standard model. The mixings give rise to a 3 X 3 mass
square matrix, which can be diagonalized by the three
Euler angles (6, ¢, y), which are given in Eq. (B3). The
diagonalization gives the following mass eigenstates:
the Z boson, a massive dark photon y’, and the massless
photon y. The Lagrangian governing the interaction of dark
photon and dark fermion, which enters into our analysis, is
given by

1 1 _ 1
= 2
T YY  CLINE

— Dy*[eDZ, + gPALID. (3.2)
The interaction of Eq. (3.2) involves two massive gauge
bosons (Z,y). For the case when the kinetic mixing
is small, one has g}’/), ~ gyxQOy and € = O(8%), which is
negligible. In addition, the dark photon will have couplings
with the standard model quarks and leptons, which are
discussed in Appendix C. Setting Qy = 1, the input
parameters of the model are gy, mp, m,, 5, which are what
appear in Table I. We note here that models with the
vector boson as the mediator between the hidden sector
and the visible sector have been considered in several
previous works [14-56]. Axions and dark photons in
the light to ultralight mass region have also been inves-
tigated [45,47,57-61], and dark photons have been used
in explaining astro-physical phenomena including galactic
y rays [62,63] and PAMELA positron excess [64—68].
We further note that the dark photon in this model even
when very light and kinematically disallowed to decay into

dp,/dT
4lp—A4Lupp+jn/H

d¥p __s
dT ~ H

av, s ( dp,/dT
dr H \4¢p —48py + ju/H

ete™ will eventually decay via the modes y’ — v and
y' — 3y and not contribute to dark matter density unless its
lifetime is larger than the lifetime of the Universe and, even
in that case, only if it has non-negligible relic density,
which is not the case we consider. Thus, the dark fermion
will be the only constituent of dark matter. Further details
about this model are given in Appendix B.

IV. BIG BANG CONSTRAINTS ON DARK
FREEZE-OUT, RELIC DENSITY, AN, AND ON
PROTON-DM CROSS SECTION

In this section, we discuss the effects on the relic density,
on the number of relativistic degrees of freedom due to the
hidden sector at the BBN time, on the allowed parameter
space of models, and on the proton-dark matter scattering
cross section arising from different choices of the initial
value &, at the end of reheating. In the model discussed in
the preceding section, the dark fermion D constitutes dark
matter and has self-interactions due to exchange of dark
photon.

A. Effect of &, on dark freeze-out and on relic density

In the analysis here, we will discuss the effect of &, on
the dark freeze-out, which generates the relic density of D.
Computationally, the quantities of interest for this purpose
are the yields for the dark fermion Y, and for the dark
photon Y, where the yield is defined so that ¥ = n/s,
where 7 is the number density, and S is the entropy density.
Assuming conservation of total entropy (this assumption
will be tested in Appendix D), the evolution equations for
Yp and Y, are given by

)[<av>DM-<T>Yzq<T>2—<av>D,W<Th>YD<Th>2+<av>y,7qDD<Th>Y¢<n>21, (4.1)

) [(00) 7 (T Y (T3 = (00) ()Y (T

+(00) iy (NYT)? = (Tyiar,) )Yy (Th)]-

(4.2)

Here, (o) pp_; is the annihilation cross section of DD into standard model particles, which are denoted by ii, (6v) .,

is their annihilation into dark photon, while (ov)

ii—y

, gives the annihilation of standard model particles into a dark photon,

and nj, and n, are the number densities of the D fermion and the dark photon y’. In the above, the cross section for the

process DD — 7'y’ is given by

_ 9‘)1((7311 - 55R21)4

\/(s - 4m§,)(s — 4m?)

DD—y'y
? (s) 8s(s — 4m3)

m;‘j, +m3 (s — 4m§,)

[Zm‘y‘, + m3 (s + 4m3)]

+ log

s =2m} + \/(5 —4m3,)(s —4mp) | (s> + 4mds + 4my, — 8mip, — 8mpm,)

, (4.3)

s =2m3 — \/(s —4m>)(s — 4mp)

—2m2
s m},/
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while the rest of the cross sections are given in Appendix
of [13]. Here s, t, u are Mandelstam variables, where
s+t+u=2m+ 2m§,, R, and R,; are matrix elements
of R, which diagonalizes the mass and kinetic energy
matrices of Eq. (3.1) as given in [9]. Further, we note that in
addition to DD — y'y/, we also have y’y’ = DD, which
enters in the yield equations when kinematically allowed
and is related to DD — y'y’ so that

9(s — 4m§,)o”/}’/"DD(s) = 8(s —4md)aPP=17 (s).  (4.4)
In the above equation, the thermally averaged cross section
and decay widths are given by

(ov)aa=be(T) = Wﬁ; dso(s)y/s(s —4m3)
X Kl(\/E/T)7 (4-5)
(Cyoa(T)) = Ty /) (46)

UK (my/T)
The equilibrium yield of the i-th particle is given by

eq
yeaa i 9
! s 2xS

m?TK,(m;/T), (4.7)
where S is the entropy density. In Egs. (4.5)—(4.7), K; and
K, are the modified Bessel functions of the second kind and
of degrees one and of degree two. Further, cross sections for
the processes DD — ii, where i, i are the standard model
particles, can be found in Appendix D of [69]. As noted
above, in this model, the dark photon is unstable and decays
and does not contribute to the relic density, and the entire
DM relic density arises from the dark fermion, where at
current times, the relic density Qph? is given by

Qth _ SO’"DY(l))h2
pe

(4.8)

where s, is the current entropy density. Y%, which is Y, at
current times, can be gotten using Egs. (2.15), (4.1), and (4.2),
p. 18 the critical energy density needed to close the Universe,
and  is defined so that H, = 100k kms~! Mpc~!, where H,,
is the Hubble parameter today.

The procedure for solving the evolution equations
involves simultaneous analysis of coupled equations
Egs. (2.1)—(2.3), (2.15), (B4), and (B5), the yield equations
for Yp, Y}, Eqs. (4.1)-(4.2), and Egs. (4.3)—~(4.8). Using
these, we do Monte Carlo simulations with parameters
varying in the ranges

1071 GeV <mp <10°GeV, 1072 MeV <m, <10* MeV

1074 <gy<1, 1072<85<107, (4.9)

TABLE I. Six model points used in the analysis of this work
and their decay lifetime for the dark photon.

Model mp [GeV] m, [MeV] gy 6 (in 107) 7,3, (Y1)

(a) 0.354 0.306  0.00738  3.99 2.6 x 107
(b) 0.259 0.214  0.00675  6.29 2.6 x 108
(c) 0.281 0.550  0.00931 400 1.3 x 10!
(d) 0.170 0.225 0.00618 193 1.8 x 107
(e) 0.156 0.285 0.00631 529 2.8 x 10°
®) 0.568 0.445 0.00810  2.62 2.0 x 10°

and search for model points satisfying all the current
experimental constraints. Table I gives six model points
used in this paper, all of which are consistent with the
current experimental constraints [70] including those from
a variety of experiments, i.e., BABAR [71,72], HPS [73],
LHCb [74], Belle-2 [75], SHiP [76], SeaQuest [77,78]
and NAG62 [78], CHARM [78], vCal [78-80], E137 [81],
E141 [82], NA64 [83], NA48 [84]. For a sub-MeV dark
photon mass stringent constraints on the parameter space
of the model arise from Supernova 338, SN1987A [85]
and from BBN, stellar cooling [86] and from the decay
to 3y on cosmological timescales [30,87]. An analysis of
these constraints in limiting the parameter space is given
in [69,70]. The parameter space chosen in the current
analysis is consistent with these constraints.

We note here that the mass of the dark photon is in the
sub MeV region and is long lived with its most dominant
decay mode being y’ — 3y. For kinetic mixing, the decay
width for the mode y’ — 3y is given by [30,87,88]

17a(el,)> m), (4.10)
'3y = 8 :
Iancid 2736537[3 mg

coupling between dark photon y’ and photon y given
by €/, = gyV1+ &Ry, as defined in [9], m, is the dark
photon mass, and m, is the electron mass. The dark
photon lifetimes for the different model points are given in
Table 1. Here, we find that the dark photon lifetimes are
smaller than the age of the Universe, and thus, there is no
contribution of the dark photon to the relic density and
consequently, no constraint on the allowed parameter
space regarding the relic density constraint. We note,
however, that even if the dark photon was long lived with
a lifetime greater than the lifetime of the Universe, its
contribution to the relic density would be negligible.
A recent analysis [69] in accord with the analysis of [30]
shows that with one hidden sector, it is not possible to get
both a long lived dark photon that can contribute to the
relic density and simultaneously achieve a significant
amount of dark matter relic density. To do that, one needs
at least a two hidden sector model [69] in which a dark

where a = , is the Kkinetic mixing parameter of
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Top left panel: Exhibition of the dependence of the dark freeze-out temperature when &, = 0.01 (blue) vs &, = 1 (red) for

model (f) in Table I. Top right panel: Zoom in of the top left panel in the region of the freeze-out. Bottom left panel: Yields of dark
fermion (dark matter) and dark photon for model of the top panels for &, = 0.01 (blue) and &, = 1 (red). Bottom right panel: Zoom in of
the bottom left panel to exhibit the shift of the dark fermion yield for the cases £, = 0.01 (blue) and &, = 1 (red).

photon as dark matter can produce a non-negligible
amount of dark matter.

We discuss now the dependence of the dark matter
freeze-out and of the relic density on the initial conditions.
In the top left panel of Fig. 1, we exhibit the dependence of
the dark freeze-out and specifically the decoupling of the
dark photon and the dark fermion on &, where we consider
the cases: £, = 0.01 and &, = 1. The top right panel is the
zoom in of the top right in the region of the freeze-out.
From Fig. 1, we see that the process DD — 7'y’ falls below
H(T) at different temperatures for &, = 0.01 and for &, = 1,
and consequently, the temperature where the dark freeze-
out occurs changes by a significant amount. The sensitivity
of the freeze-out on &, directly affects the yields as shown
in the bottom left panel and the bottom right panel (a zoom
in of the bottom left panel) of Fig. 1. In the left panel of
Fig. 2, we exhibit the dependence of the relic density on &,
for the six model points of Table I. Here, we find that the
relic density can change up to 40% as &, varies in the
range (0,1).

B. Dependence of AN at BBN on &,

One of the predictions of beyond the standard model
physics is N, the number of effective relativistic degrees of
freedom at BBN. For the standard model, N ;4 = 3.046. The
current experimental constraint on Ny is summarized in
Fig. 39 of the Planck Collaboration [89], which shows the
spread in N.. Thus, the Planck Collaboration gives
N = 2.99 £ 0.17, while the joint BBN analysis of deu-
terium/helium abundance and the Planck CMB data gives
N = 3.41 £0.45. Here, we will use the conservative
constraint on ANz = Nt — N5I so that AN ¢ < 0.25. In
the model under discussion, the dark fermion D and dark
photon y’ will contribute to the effective neutrino number.
Such contribution is given by

1I\43 (T,\4
3) \7)-
where gé’ff can computed from Egs. (B4) and (4.11) is to
be evaluated at the BBN temperature Tggy = 1 MeV

4
A]\Ieff 25

h

o (4.11)
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FIG. 2. Left panel: Exhibition of the dependence of the relic density Qh? on &; in the range & = (0,
Table 1. Right panel: Exhibition of the dependence of ANy at BBN time on &, in the range &, = (0,

Table I.

(for related works see, e.g., [90,91]). In Table II, AN is
computed for the six model points of Table I for
& =0.01 and &, =1, while the right panel of Fig. 2
exhibits AN (BBN) for the six model points for &, in
the range (0 — 1). The analysis in general indicates that
hidden sectors which start off cooler than the standard
model at the end of reheating contribute a smaller
amount to ANy than those that are relatively hotter
at the end of reheating. Further, the analysis indicates
that models where £~0 could accommodate more
massless degrees of freedom allowing for the possibility
of building a wider class of models with more hidden
sector particles, which may still be consistent with the
AN, constraint at BBN time.

TABLE II. Table of AN and &(Tgpn) = (71,/T)ggny When
&y = 0.01 and &y = 1 for the model points of Table 1. As noted in
the text, the benchmarks of this table are chosen to lie in the
parameter space allowed in the analysis of Ref. [70], which gives
an exhaustive analysis of all of the current experimental con-
straints on the dark photon and its couplings and exhibits the
parameter space still unconstrained.

£ =1 £ = 0.01
Model AN s &(Teen) AN s &(Tgen)
(a) 1.50 0.692 1.53 x 107 0.0391
(b) 1.36 0.675 1.22 x 1073 0.0369
(c) 1.53 0.700 1.18 x 1072 0.208

(d) 1.40 0.679 6.37 x 1075 0.0558
(e) 1.43 0.684 3.80 x 1074 0.0873
) 1.42 0.685 2.59 x 107 0.0448

10"

—— Model (a) === Model (b) : = Model (c) == Model (d)

100 L = Model (¢) === Model (f) := = ANgs =0.25

0.0 0.2 0.4 0.6 0.8 1.0
o

) for the model points of

1
1) for the model points of

C. Effect of &, on the allowed parameter space
and on spin-independent proton-DM cross section

Next, we investigate the influence of &, on the allowed
parameter space consistent for a chosen range of relic
density. To this end, we constrain the relic density to lie in
the range 0.012 < Qh? < 0.12 and m, to lie in the range of
5 GeV to 10 TeV. Specifically, we explore the allowed
region for the two cases: &, = 0.01 and &, = 1. The result
of our analysis is exhibited in the left panel of Fig. 3, which
gives a scatter plot of the allowed models in 6 vs m.,, where
those with color blue correspond to &, = 0.01 and those
with color red correspond to &, = 1. One of the interesting
result that emerges is that for £, = 1, most of the models
lie in the range 1071° < § < 1073, while for &, = 0.01, the
allowed range is 107 < & < 10™*. Thus, the analysis
shows that the initial choice of &, significantly impacts
the model’s allowed parameter space. &, also has significant
effect on the proton-DM scattering cross section in the
direct detection experiments for dark matter. Specifically,
we consider the spin-independent proton-DM cross section
osi:p-pm- Here, we use the micrOMEGAs [4] to find the
spin independent cross section. In the right panel of Fig. 3,
we exhibit ogy.,_py for the six model points of Table I, and
their dependence on & in the range (0.01-1) is indicated by
the small vertical lines for each of the model points. The
numerical values of the og;.,_py for £y = 0.01 and &, = 1
are exhibited in Table III for the models of Table I. Here,
one finds that the variation of the cross section can be as
large as 40%. Thus, some of the models that are eliminated
for the &, =1 case would still be viable for the
case &, = 0.01.
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FIG. 3. Left panel: A scatter plot of 6 vs m,

e &o=1
o £=0.01

1073

—— Model (a) = Model (b) —— Model (c]

——— Model (§) = Mode (¢) —— Modef (]

10736

10737}

RX0s|p-pm fenf]

10° 38|
=== XENONIT (S2-only data)
—— CRESST-III

10°%°

02 04 06 08 1.0

mp(GeV)

+ displaying the models allowed under the constraint 0.012 < QA? < 0.12 for &, = 0.01

(blue) and &, = 1 (red). The solid red ellipse shows that a significant region of the parameter space in the m, — 5 plane becomes
accessible when &, = 1, which would otherwise be excluded when & = 0.01. This is meant as an illustration that &, plays a significant
role in determining the allowed parameter space of models. Right panel: Plot of the spin-independent proton-DM cross section for six
model points where the vertical lines show the shift in the cross section as one moves from &, = 0.01 to &, = 1. The experiment

constraints are from CRESST-III [92] and XENONIT [93].

V. SELF-INTERACTING DARK MATTER,
SOMMERFELD ENHANCEMENT, AND
DEPENDENCE ON ¢,

The self-interacting dark matter cross sections arises
from the processes DD — DD, DD — DD and DD — DD
via the exchange of a dark photon. The Lagrangian of
Eq. (3.1) leads to a Yukawa potential between the D
fermions due to the dark photon exchange in the non-
relativistic limit so that

(5.1)

where the plus sign is for DD — DD and DD — DD and
the minus sign is for DD — DD. In some of the regions

. ) 2 .
of parameters (i.e., Z—; < %), tree-level scattering or the
Born approximation is no longer valid, and one has
contributions from higher order dark photon exchanges

as shown in Fig. 4, which contribute to scattering. In this

TABLEIII. Table of spin-independent proton-DM cross section
osi.p-pm for the model points of Table 1 for &, = 0.01 and
& =1.0.

=1 & =0.01
Model Os1:p—DM (cm?) 0s1:p—DM (cm?)
(a) 5.84 x 10738 5.24 x 10738
(b) 3.18 x 10737 2.87 x 10737
(c) 2.19 x 10737 1.81 x 10737
(d) 1.03 x 1073¢ 8.88 x 10~%7
(e) 2.61 x 10736 2.23 x 10736
) 1.39 x 10738 1.03 x 10738

case, we need to numerically solve the Schrodinger
equation to find the accurate scattering cross sections.
The radial equation one needs to solve is given by

d’R; [ 2dR; I(I+1)R,
dr*  rdr r?

) (P = 2V ()R =0,

(5.2)

where p is the particle momentum, and V() is the potential.

The substitution x = pr and R,; = Np®,(x)/x gives [94]

d? (I+1) 2ae™"
(W“‘ o) =0
2 /
a=+Hx T (5.3)
4rzp p

The nonperturbative effect arising from the repeated
exchange of the mediator is often encoded in Sommerfeld
enhancement and has been discussed in several previous
works (see, e.g., [24,36,95-98] and the references therein).
Thus, including nonperturbative effects, the annihilation
cross section times the velocity v (where v is the relative

D

D

FIG. 4. A diagram exhibiting a contribution to DD — DD
scattering beyond the Born approximation.
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2
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Left panel: Plot of S wave Sommerfeld enhancement for an attractive potential, where Sg is for the Yukawa potential by

solving numerically (red), Sc is for the Coulomb potential (black), and Sy is for the Hulthen potential as a function of gy for the case
when mp =250 GeV, m, = 45 MeV, and v = 10 km/s. Right panel: Plot of S wave Sommerfeld suppression for the case of a
repulsive potential where we use the same symbols S, Syo, Sco for suppression as for enhancement to avoid a proliferation of notation.

velocity in the CM system) for the cross section o, for the
elastic scattering process a + b — a + b may be written as

(64pv) = Sg(6%,v), (5.4)
where (69, v) is the tree-level cross section, and Sg is the
Sommerfeld enhancement. As noted in the present context,
the contribution to the Sommerfeld enhancement arises from

multiple exchanges of the dark photon y’. The solution of the
differential equation Eq. (5.3) has the form:

!
®,(x), ... — Asin <x - 5” + 5,) : (5.5)

where §; is the phase shift for the /th partial wave. We write
the Sommerfeld enhancement of /th partial wave cross
section for the case of the Yukawa potential so that

6, = Sg; 60 (5-6)

where [94], Sz; = (1-3---(21+ 1)/A)?. Using Eq. (5.5),
we get

A% = A%sin? (X - lg + 51) + A2cos? (x - %ﬂ + 51)

= (I)lz(x)x—wo + (I)% <x - g) ’

(21 + 1)11)>2 o

Sg1 = .
DF (%) ym0 + PT(X = 5) 1m0

(5.7)

Taking x larger than 30 gives a good enough approxima-
tion to the exact solution. Typically, an attractive potential
leads to Sommerfeld enhancement of cross section at low
collision velocities, but one may also have Sommerfeld
suppression for a repulsive potential. In the left panel
of Fig. 5, we exhibit Sommerfeld enhancement for the
case of a negative Yukawa potential. Here, we see that
Sommerfeld enhancement can be very significant, and
further, the enhancement shows oscillatory behavior with
gx. To check the accuracy of our numerical analysis and to
explain the oscillatory behavior, we compare our result
with those from the Hulthen potential as an approximation
to the Yukawa potential for which one can obtain a good
analytic approximation for the S wave. The Hulthen
potential is given by [99,100]

—ur
V(r) — ot = , a=

o M 5 (5.8)

It is known that Hulthen potential is a very good approxi-
mation to Yukawa potential both at short and at long
distances. With it, one can find an analytic solution for
the S wave and thus, find a good analytic approximation to
the S wave Sommerfeld enhancement [101,102]:

¢ _ sinh (2ze, f)
"0 ¢, cosh (2me,B) — cos (2m\/ B — €2%) ,
v m}’l 1
=M™ - 5.9
T 2 ¢ amp b e, /6 (59)
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From Eq. (5.9), valid for the attractive potential case, it is
obvious that the oscillation is due to the existence of the
cosine term. For the Coulomb potential, the Sommerfeld
enhancement for the S wave is given by

2ra 1

SCO = :l:TeiZJm/v -1

(5.10)

where plus is for repulsive potential and minus is for
attractive potential. The left panel of Fig. 5 gives a
comparison of the S wave Sommerfeld effect for three
different potentials: Yukawa, Hulthen, and Coulomb.
The analysis shows that Hulthen potential gives a good
approximation to the Yukawa potential and also explains the
deep oscillations as a function of gy. For the case of a
repulsive potential (a negative), the analysis is very different.
A comparison of the numerical analysis using Yukawa
potential and the analytic solution using Hulthen potential
for the case of a repulsive potential is given in the right panel
of Fig. 5. Here again, one finds that the numerical analysis
and the Hulthen potential result fully agree.

Having checked the numerical accuracy of our analysis
in Fig. 5, we next investigate the effect of the big bang
initial conditions on Sommerfeld enhancement. In Fig. 6,
we compare S wave Sommefeld enhancement for the cases
&, = 0.01 and &, = 1 for the case of an attractive Yukawa
potential. The left panel of Fig. 6 shows Sommmerfeld
enhancement vs v, and here, one finds that £, = 1 (red)
gives an enhancement which is larger than for the case
&y = 0.01 (blue). In the analysis, we keep the relic density
fixed at ~0.12 for &, = 0.01 and &, = 1 by allowing gy
to vary. The right panel of Fig. 6 displays Sommerfeld

-

o

o
T

a
o
— T

-
o
T

Sommerfeld Enhancement Sg,

o
——

mp =250GeV

my =45MeV
Jx (Blue)=0:162
gx (Red)=0.198

1 10 100 1000
velocity[km]

enhancement as a function of m, /mp, and here, one finds
that the oscillation peaks for the case &y =1 (red) are
significantly larger than those for the case &, = 0.01 (blue).
A similar analysis for a repulsive Yukawa potential is
carried out in Fig. 7. However, in this case, we have
Sommerfeld suppression rather than an enhancement where
the Sommerfeld suppression is vs v for the left panel and vs
m,, /mp, for the right panel, and the red curve is for &, = 1.0
and the blue curve for £, = 0.01. For both cases, the
Sommerfeld suppression is significantly larger for &, = 1
relative to £, = 0.01.

VI. EFFECT OF &, ON FIT TO GALAXY DATA

Several analyses of galaxy data indicate that dark matter
is collisional at the scale of dwarf galaxies and appears
collisionless at the scale of galaxy clusters [33,38,103].
Thus, for dwarf galaxies, one finds collisional velocity (v)
of dark matter in the range 10-100 km/s and 1 cm?/g <
o/m < 50 cm?/g [33,103], where ¢ is the cross section,
and m is the mass of DM particle. For midsize galaxies such
as the low surface brightness galaxies (LSB) and the
Milky Way, one finds (v) in the range 80-200 km/s and
0.5 cm?/g < 6/m < 5 cm?/g. The galaxy clusters exhibit
(v) > 1000 km/s. Here, it is estimated that the o/m is
maximally 1 cm?/g [33,103,104] and could be as low as
0.065 cm?/g < 6/m < 1 cm?/g [38,105,106]. As is well
known, one interesting possibility to account for the
velocity dependence of the DM cross sections is that
DM is self-interacting by Spergel and Steinhardt [107],
and there is considerable follow up work on this idea
[22,25-28,36,108—115]. An analysis of fit to the data

1055,
10%F
- :
i)
(%))
£ [
[0]
& 1000+
8 E
S :
(0]
<
c
s [
ke L
3 100,
0] [
E [
£
E [
(4]
108 v =1okmss
[ g (Blue) =0.162
(L 9(Red) =0.198

10°5 104 0.001 0.010

my/mp

FIG. 6. Plot of S wave Sommerfeld enhancement for an attractive Yukawa potential for the case &, = 0.01 (blue) and for &, = 1 (red),
where for the left panel, the x axis is v, and for the right panel, the x axis is m, /mp. Here, we allow gy to vary but keep the relic density

~0.12 for £, = 0.01 and &) = 1.
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FIG. 7. Plot of § wave Sommerfeld suppression for a repulsive Yukawa potential for the case &, = 0.01 (blue) and for &, = 1 (red),
where for the left panel, the x axis is v, and for the right panel, the x axis is m, /mp. Here, we allow gy to vary to keep the relic density

~0.12 for &, = 0.01 and for &, = 1.

within the dark photon model was previously done in [11]
(see also [116,117]). Here, we study the dependence of the
fits on &,. Further, here, the analysis goes beyond the Born
approximation used in [11], taking into account nonper-
turbative effects encoded in the Sommerfeld enhancement
with also inclusion of identical particle exchange effects.
Since the dark matter is constituted of dark Dirac fermions
consisting of D and D constituents, we will have processes
of the type DD — DD, DD — DD, and DD — DD. Thus,
the total cross section opy; is given by

oo = / 4o |:d6DD—>DD T l dopp-pp ldGDD—J)D

dQ 2 dQ 2 dQ ’
6.1)

where the factor of 1/2 arises due to identical nature of
particles.

To numerically calculate the cross section, we start
with Eq. (5.3) and use the method of [27]. Here, in the
computation of DM cross sections, we need to calculate the
phase shifts (5,) for DD — DD separately from the phase
shifts (6,) for DD — DD, while the phase shifts for the
process DD — DD will be the same as for the process
DD — DD. Including all contributions, i.e., from DD —
DD, DD — DD, and D D — DD, and taking account of the

identical nature of particles in DD — DD and DD — DD
scattering, we find

Oior = 4;:;(25 +1) [|ff|2 + 2<1 - % (_1)f> |f/f|2] ,

(6.2)

where f, = e sind,/k and f, = e sind,/k. The
details leading to Eq. (6.2) are given in Appendix C.
The result of our numerical analysis to fit the galaxy data
on ov/mp in the range of velocities from 10 km/s to
10* km/s is given in Fig. 8, which exhibits the dependence
of the fits on & in the range &, = 0.01 to &, = 1. In the
analysis, we allow gy to vary to keep the relic density
fixed at QA% ~0.12 as &, varies between 0.01 and 1. The
analysis shows that the variation of ocv/m with &, is
significant and can sometimes be as large as O(1) [see
Model (f)] in Fig. 8. We note that the plots include
Sommerfeld enhancement effects, but these effects are
relatively small. The reason for it is that the Sommerfeld
enhancement strongly depends on gy as can be seen from
the left panel of Fig. 5. However, in the analysis of galaxy
fits of Fig. 8, we find that gy is relatively small, which
suppresses the Sommerfeld enhancement. Our result here
is consistent with a similar observation on Sommerfeld
enhancement in the work of [36] (see also [24]). In Fig. 8,
the Born approximation results are also plotted for com-
parison with the exact solutions. Further, we note that more
fine tuned fits to the galaxy data can be gotten by adjust-
ment of the model parameters such that resonances appear
in some of the low lying partial waves, e.g., S, P, and D
waves. This is exhibited in Fig. 9, where in the
left panel, we see enhancements in the S and the P waves
appear to simulate the oscillations in the data at (v) ~
102 km/s and at (v) ~ 10° km/s. On the right panel of
Fig. 9, we plot the cross section contributed from each
partial wave separately. It is clear that the peak at (v) ~
10? km/s is largely due to the S wave while the one at
(v) ~10° km/s has a large contribution from [ =5,
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FIG. 8. A fit to the galaxy data taken from [33], which studies the dependence of cv/mp on & in the range (0.01-1) for the six models
of Table 1. Here, solid lines are for &, = 1 and the dashed line for &, = 0.01 exhibit the dependence of cv/mp on &,. The fits (in red) are
done using the full analysis by numerically integrating the Schrodinger equation including identical particle effects as well as
Sommerfeld enhancement. For comparison, we also exhibit the tree-level QFT cross section shown by black curves that does not
consider the effect of identical scattering. In the analysis, we allow gy to vary but keep the relic density fixed at ~0.12 as &, varies. It is to
be noted that “galaxy data” is itself a computed quantity based on observation as evident from [33].

although the sum of all partial waves up to / = 5 enter in  In terms of partial waves, o7 and oy are given by
the fit given on the left panel.

Besides the total cross section, the transfer cross section 1 ¢ /
’ or = 4n T +211—-=(-1 T , 6.4
[22,23,25-28,118] o7 has been used in simulations of long T ; [ (fe) < 2 =D > (ff)} (6.4)

range interactions [108,111,119]. Further, the viscosity

cross section oy is also widely used in analyses of . LYY, ,
SIDM [27,120,121]. They are defined so that "V_4”Zf: V(fe) +2( =5 (=07 ) V()| (65)

T(fr) = (@+DIf? = fif i = L+ Dfifi). (6.6)

do
Ootal = | -4, 2P+ 1-1)(2041)
or = | —5 (1 —cos0)dQ. (I-0l, . (+2)(1+1), .

flgs _mflfl—Z_WflfH»Z)'
av—/d—g(l — cos? 0)dQ. (6.3) (6.7)
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FIG.9. Left: Exhibition of peaks in fits to the galaxy data (which is the same as in Fig. 8) with specific parameters. Right panel: Here, it
is shown how the peaks in the left panel at (v) ~ 10> km/s and at (v) ~ 103 km/s arise from successive additional of higher waves.
Thus, the peak at (v) ~ 10? km/s arises mainly from S and P contributions, while the one at (v) ~ 10* km/s arises from contributions

from up to [ = 5.

Details of their computation in terms of partial waves are
given in Appendix C. Figure 10 shows that o, o7, oy
differ significantly from each other. We also exhibit the
tree-level cross section for comparison.

104
mp = 0.568 GeV
my = 0.445 MeV
gy = 0.0081
103 7%
@
£
~
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2 2
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£ 10
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----- QFT tree- level(With Idendical scattering effect)
Total Cross Section(Numerically)
Transfer Cross Section(Numerically)
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FIG. 10. A comparison of ov/mp vs v for different cross
sections, which include the total cross section o, the transverse
cross section oy, the viscosity cross section oy as defined by
Eq. (6.3) and the tree-level QFT cross section with and without
identical particle effects for model (f) of Table I. The analysis is
done for &, = 1.

VII. CONCLUSION

Hidden sectors are ubiquitous in models of extra
dimensions, in extended supergravity, and in strings and
appear in a variety of beyond the standard model con-
structions such as in moose/quiver gauge theories (see, e.g.,
[122-125]). While the hidden sectors are neutral under the
standard model gauge group, they can couple feebly with
the standard model. However, the couplings of the hidden
sector to the inflaton could vary over a wide range. Thus, on
one extreme, the hidden sector coupling to the inflaton
could be negligible relative to the coupling of the standard
model. In this case, at the end of reheating, there would be
essentially no production of the hidden sector particles,
except via gravitational production, and the hidden sector
would likely be colder than the standard model. On the
other extreme, the hidden sector and the visible sectors
could couple democratically to the inflaton, and in this
case, the hidden sector and the visible sectors would be in
thermal equilibrium at the end of reheating. These two
extremes would have significantly different thermal evo-
lution and would result in significant differences in their
predictions of the physical observables. In this work, we
have investigated these effects in the context of a specific
hidden sector model, which arises from a U(1)y extension
of the standard model gauge group. The contents of the
hidden sector consists of a dark fermion, which has gauge
interactions with the U(1)y gauge field. The communica-
tion between the hidden sector and the visible sector arises
from kinetic mixing between the U(1)y and U(1), gauge
fields, where the U(1)y gauge field acquires mass via the
Stueckelberg mechanism. In view of the asymmetric
coupling of the visible and the hidden sectors to the inflaton
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field, the temperature of the hidden sector 7% and of the
visible sector 79 will, in general, be unequal at the end of
reheating. Thus, the ratio of the two, ie., & = (T%/T°),
enters in the thermal evolution of the hidden and the visible
sectors and affects phenomena at low energy.

The analysis of the work provides a cosmologically
consistent framework in that it involves a synchronous
evolution of the coupled hidden and visible sectors. In the
above framework, we investigate a number of phenomena
and their dependence on &,. These include dark freeze-out,
relic density, and the extra number of relativistic degrees of
freedom at the BBN time, and the proton-DM cross section.
Further, we investigate the effects of &, on the self-
interaction cross section and on Sommerfeld enhancement.
The model is then used in fitting self-interacting dark
matter cross sections from galaxy scales to the scale of
galaxy clusters. Here, we find that fits to data show a
significant variation sometime as much as O(1) for &, in the
range (0,1). Thus, the analysis indicates that inclusion of
hidden sectors that appear in a variety of models of particle
physics beyond the standard model and the initial con-
straints on the hidden sector at the end of reheating and
specifically on &, could have significant influence on
observables, and thus, their inclusion will be relevant for
accurate description of physical phenomena. While our

analysis is done for the case of one portal, the general
|

techniques discussed here would be valid for a broader
class of models. Finally, we show that the approximation
often made in the thermal evolution of visible and hidden
sectors by assuming entropy conservation for each of the
sectors separately gives widely inaccurate results even for
the case for very feeble interactions such as, for example,
with the kinetic mixing parameter as low as 6 = 10710
Such an analysis is thus a poor approximation to the
analysis we carry out for the thermal evolution of the
visible and the hidden sectors in a synchronous manner
using Eq. (2.15). For generality, we also consider the case
with the mass mixing parameter e that reaches a similar
conclusion. We have also analyzed the accuracy of
assuming the conservation of total entropy for the yield
equations and find that the differences between conser-
vation assumption and no conservation assumption are
typically within O(15%). We conclude that an accurate
thermal evolution is essential for the current and future
precision analyses in cosmology while analyzing physics
involving hidden sectors.
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APPENDIX A: SOURCE FUNCTIONS
The source term j, that appears in Eq. (2.15) is defined by:

jn=Y_RYT2(ii - DD)(T) + Y{U(T)2(ii — ¥ )(T))8* = Y, J(y — e"e)(T))s.

i

The J functions that appear in Eq. (A1) are defined as

nS(T)2J(ii - DD)(T)

=5 | ool —sK(VE/T).  (A2)
WT P > 7')(T)
- " dsops(s—s)Ka(VA/T), (A
nyJ(y = ete)(Ty) = nymyTy_ e, (A4)
and
nT (o0 (T)
i | T dso(s)Vils = 0K (/). (A3)

(A1)

where, as noted earlier, K is the modified Bessel function
of the second kind and degree one, and s, is the minimum
value of the Mandelstam variable s.

APPENDIX B: MODEL DETAILS

In addition to the interactions given in Sec. III, there are
interactions involving the dark sector and the standard
model particles in the canonical basis where the kinetic
energy and the mass matrices of the gauge boson are
diagonal. Here, the standard model fermions (i.e., quarks
and leptons) have feeble interactions with the dark photon,
which are given by

Aﬁim

92 Y
ZCOSQWfV”KUf rsap)Aulyy,  (B1)
where g, is the SU(2), gauge coupling constant, f stands
for the standard model fermions, and angle 6 is defined in
Eq. (B3). The vector and axial vector couplings of the dark

photon with the SM fermions f are given by
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ay = —cosy(tany — s55in 6)T5;. (B2)

vl = —cosy/|(tany — 5580 0) T3, — 25in°60(—s5 csc O + tany) O],
!
f
Here, 55 = sinh §, T3 is the third component of isospin, and Q is the electric charge for the fermion f. The angles & and v,

which, along with ¢, are the three Euler angles with diagonalize the 3 x 3 gauge boson mass square matrix involving the
fields C¥, B#, A%, are defined as [9]

—255m% sin 0
tanezg—yc5cos¢, tan 2y = — 5 622 5
9 my, —mz + (my + mz —

tan ¢ = —ss, (B3)

m¥,)6%’

where c5 = cosh d. For the model of Eq. (3.1), where the hidden sector consists of the dark photon and a dark Dirac fermion,
gl and Al are given by

o7 D
heff - heff + heff’

, ,/x —X,
hfo_ /

no_ Y D
Jeft = YGetr + Yefr»

2_ 2
45 (e /XXy
= / Y T2y
e er—=1

G = — 4x —x
eff 7[4

= [ =B [TV e g (B4
¢ x, e 1 ¢ ), e+ 1
where xp = mp/Ty, x, = my/T).
Further, to compute ¢, =3 (1 42 ") we need p;, and pj,, which are given by
Ph :py’+pD’ Ph :py’+pD’
[2_ .2 3
;= gV’T4 /OO ; _xylxzdx )= gy,T4 /OO (xz _x3/)2dx
Pr =0 y  ef=1 ’ Pr =622 ., et—1 ’
gDT4 e V xz B 'x% 2d gDT4 /oo (xz B ‘x2D)%d (BS)
= X X, = X.
Pp =502 €+l P =" y, e 1
|
Here, g, = 3 and gp = 4. For total {, we need energy and D D ) o
pressure densities for both the visible and the hidden & =9x@x €z =ExOxsin0il+2,
sectors, and we use the relation 5
e ~—egyOyx cos@{l —1—:], (B8)
€

3 Dy + Dn
=—|14+—). B
Before proceeding further, we note that the extension
to include both the kinetic and mass mixings in
Egs. (3.2)—(B3) is straightforward as has been discussed
in [9], and we exhibit them here for easy reference to guide
the discussion in Sec. VII. With inclusion of both the
kinetic mixing parameter 6 and the mass mixing parameter
€ = M,/M,, the neutral current Lagrangian in the hidden

sector takes the form

L34 = Dy*[ePAl + €DZ, + ePALID (B7)

where

where € is defined so that € = (¢ — 8)/V'1 — 8°. There is
also a corresponding modification of the neutral current in
the visible sector as discussed in [9]. The constraints on &
and e arising from the fits to the electroweak data are mild,
and one finds that |¢ — §| can be as large as 0.05, consistent
with the same level of y? fits to the electroweak data as the
standard model [9].

APPENDIX C: SELF-INTERACTIONG DARK
MATTER CROSS SECTIONS

1. DD - DD

Let us first consider DD — DD scattering. Here, the
wave function for scattering of a plane wave scattering from
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a central potential is given by y(7) ~ [¢/X* + £(0)e™*" /r]. In
this case, the scattering amplitude (@) has an expansion in

terms of the partial wave amplitudes f; = @ where 6,
is the phase shift for the /th partial wave so that f(0) has the
expansion f(0) = >%,(21 + 1)f,P;(cos §) and oOP have
the expansion

o0, = /v )Pa = (4321 DIAE. (€

The transfer cross section is defined by

/ |£(8)]?(1 = cos §)dS. (C2)
Using the relations
) forl=1'+1
+1)(2I3
[(@npi@puta) = TR U
m forl=10— 1,
the transfer cross section can be written as
= 4712 (QU+DIAP = Ufifiny = A+ Dfif i)
=0
(C4)
The viscosity cross section defined by
obD = / I£(0)]2(1 — cos? 0)dQ (C5)

can be expanded in terms of partial waves using the
relations

2(I'+1)(I'+2)

erinereres) ori=r+2
2 _
[@Pa)Py0 = { BRI ori =1
20 (I'-1
ey forl=1-2,
(Co)
which gives
12+l 1)(21+1) (I-1)1
=4r 2_ .
Z( 2l+3) |fl| (2l_l)f1fl—2
(+2)(+1),
—szfm : (C7)

2. DD - DD, DD — DD

Here, the scattering involves identical particles, which
are fermions, so the overall wave function for the particles

must be antisymmetric. This can happen in two ways:
(i) spin antisymmetric and space symmetric or (ii) spin
symmetric and space antisymmetric. Now the two spin
particles can have a total spin 1 (triplet state) or total spin is
zero (singlet state). For the triplet state, the space wave
function must be antisymmetric in & — 7 — 6, and for the
singlet state, the space wave function must be symmetric.
Thus, we have for 6P (6) the expression

3
oP(0) = 317'(0)  f'(x ~ O)F + 7 1(0) + f/(x + O)F
=[O +|f (z = 0)]> — Re(f'(0) " (z - 0)).
(C8)
Further, 62P is given by
oRP = ;/UDD(G’)dQ, (C9)

where the front factor of 1/2 is to take account of the
identical nature of the scattering particles. The partial wave
analysis of ¢2P gives

oD _2772 21+1) {|f12+2{1——( 1)}|f’|2} (C10)

Here, f)=eisingd, since the potential governing
DD — DD scattering is different from the one that governs
DD — DD scattering. Similar calculations are done for
the transfer Cross section and for viscosity cross section.

_ DD
Further, 62P = o2P.

APPENDIX D: ENTROPY CONSERVATION
APPROXIMATION

Here, in Sec. D 1, we will discuss the validity of separate
entropy conservation approximation for visible and hidden
sectors, and in Sec. D 2, we will discuss the validity of the
conservation of the total entropy which is the sum of the
visible and the hidden sector entropies.

1. On the validity of separate entropy conservation
approximation of visible and hidden sector

In several previous works (see, e.g., [29]), an assumption
of entropy conservation per comoving volume separately
for the visible and the hidden sectors is made to relate &(7')
at different temperatures. The above implies that the ratio
s,/ s, is unchanged at different temperatures, where s, and
sy are the entropy densities for the visible and the hidden
sectors, where

272 27>
15 he”ffT3 sy = 15 h’ffT (D1)

Sy =
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Specifically it is assumed that the following relation
between the temperatures 7y and 7 holds:

e (Th) s heee(Ton) 23
T) = Ty). D2
() & (g ST Y
Noting that T, = &(T)T and Ty, =& Ty, where & = E(T),
we can write the above equation as follows:
W (E T\ /3
(7)) Pe() = (g (1) () P .
heff(TO)
(D3)

Note that the left-hand side is a highly nonlinear function
of &(T) since for our model

45 ® X - x%zy’
hgtr(Th) 4;14/ o1 (4x* — xfly,)dx,
X!
15 —x2
hB(T),) = g 1w — x2,,)dx, (D4)
where  x,, =my,/(T,) =m,/({(T)T) and x,p =
mp/(&(T)T).

In Fig. 11, we give a comparison of the analysis of the
evolution of the &(T) using Eq. (2.15) vs the evolution
given by the approximation of entropy conservation in
comoving volume for the visible and the hidden sectors
separately. The analysis shows that as &, gets progressively
smaller, deviations of the approximate solutions gets
progressively worse, and especially in the freeze-in region
where &, = 0.001, the deviations of the approximate from
the exact is huge for temperatures in the visible sector
below 10° GeV. More importantly, for any choice of &, in

the range (0,1), which includes both the freeze-out and the
freeze-in regions, the prediction of & for the approximation
is always inaccurate at the BBN temperature of ~1 MeV.
The right panel gives a plot of £ as a function of the visible
sector temperature for different values of 6 for the case
when &, = 0.001. Here, one finds that the approximation
(dashed line) gives a reasonably accurate result for the case
when 6 = 0; i.e., there is no kinetic mixing, but it gives
highly inaccurate results for the case when ¢ in non-
vanishing, even as small as § ~ 10710

In the analysis done so far, we assumed M, = 0. For
generality, we consider now the case where we include the
mass mixing parameter ¢ along with kinetic mixing 0.
Thus, we discuss again the thermal evolution when there
are both kinetic mixing and mass mixing present where we
use the relations given by Egs. (B7) and (B8) and related
relations given in [9]. In Fig. 12, we investigate the effect of
including e along & on the evolution of &(7'). The left panel
is for the case ¢ = 0.95 with § = 4 x 1078, and as expected,
the evolution for different &, shows a pattern similar to the
left panel of Fig. 11. The right panel of Fig. 12 shows that
evolutions with different e follow a similar path at high
temperatures but begin to separate at 7 ~ 10 GeV. This
separation results in significantly different values of £(T') at
BBN temperature. As expected, we find that since 6 and e
together control the thermal evolution, there is a significant
difference in the pattern of evolution here relative to those
of Fig. 11. However, for both Figs. 11 and 12, one finds that
the predictions for &(T) given by the approximation
equation Eq. (D2) shown by dashed curves differ by wide
margins from the result using Eq. (2.15) over wide regions
of the parameter space and specifically at BBN temper-
ature. Thus, our conclusion is that the entropy conservation
approximation separately for the visible and hidden sectors
in thermal evolution is not suitable for a precision analysis.

100 -

107"

6=4x10"8

10°

6=4x10710
6=4x10"12
6=0

-1
10 R By Eq.(7.2)

S 5
= =
n n
“n un
1072¢ 10721
1073} 103+ | T
10 1073 102 107" 10° 10' 10 10° 10* 10° 10° 10+ 107 102 107" 10° 10" 102 10® 10* 10° 10°

Visible sector temperature, T[GeV]

FIG. 11.

Visible sector temperature, T[GeV]

Evolution of &(T) with different initial condition using Eq. (2.15) of this paper (solid) and using the approximation of entropy
conservation (dashed). Left panel: Here, § = 4 x 107%, and analysis is given for three widely different values of &, i.e., & =

0.001,

& = 0.01, & = 0.1. Right panel: Here, & = 0.001, and an analysis for several different values for & in the range § = 0 to § = 1078 is
exhibited. The rest of parameters are chosen so that m, =2 GeV, m, =2 MeV, gy = 0.015.
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FIG. 12. Evolution of £(T) with different initial conditions using Eq. (2.15) of this paper (solid) and using the approximation of
entropy conservation (dashed). Left panel: Here, ¢ = 0.9, and the plot is for three different values of &, as shown. Right panel: Here,
&y = 0.001, and the plots are for several different values of €. For both the left and the right panels, the rest of parameters are chosen to be

mp =2 GeV, m, =2 MeV, gy =0.015, 6§ =4 x 1078,

2. On the validity of the total entropy conservation

In the preceding analysis, we discussed the evolution of
&(T) for the case when entropy conservation per comoving
volume is assumed separately for the visible and the hidden
sectors vs the case when the entropy conservation is
assumed only for their sum. It is found that the deviations
between the two analysis could be significant, as exhibited
by Figs. 11 and 12. It is then pertinent to ask the validity of
conservation of total entropy since the total entropy itself in
not conserved either unless various sectors themselves
equilibrate. We note that in our analysis the deduction of
|

an
dt

We note now that the equation for the yield Yp = np/s
without the use of entropy conservation gives so that

dYD_lan nst

dT s dT s*dT
S dpu/dT (CD>

s2

T HA4Lp 4L +jn/H

ds
AS = |:E + 3HS:|

Yp dp
—— ) A.
+4HsZ_,’p <dT) s
(Do)

We notice that the set of terms on the right-hand side of
Eq. (D6) involving Cp are exactly what we have in
Eq. (4.1). Further, the term involving A vanishes on using
the conservation of total entropy and indicates the deviation
of the exact equation from the approximate one where total
entropy conservation is assume. A similar analysis holds
for the case of the dark photon yield equation. Thus, we
carry out an analysis using the exact equations without

DD 4 3Hnp = Cp = [(00) (DT = (00) iy S (TWInp (T + (00) 5y (T (T2,

the evolution equation for &(7) did not involve any
assumptions related to entropy, and the only place where
the conservation of the total entropy was used was in the
yield equations. For this reason, we reconsider the
Botzmann equation for the yields without the assumption
of total entropy conservation. We focus on the yield
equation for the D fermion, which constitutes dark matter
in the model and the analysis for the yield for the dark
photon is very similar.

Thus, we start with the Boltzmann equation for the
number density np, which is given by

(D5)

[

entropy conservation constraint and compare it with the
analysis where entropy conservation is assumed. Results
are presented in Fig. 13. The analysis of Fig. 13 shows that
when the conservation of entropy (COE) is dropped, the
results do not change a lot. Thus the top left panel for
&y = 0.01 shows that the yield Y, changes by typically
within ~15% without inclusion of the entropy conservation
constraint. A similar analysis holds for the case &, = 1, as
shown on the right panel of Fig. 13. However, we point out
an issue that arises at very low temperatures. Without COE
constraint, the yields begin to exhibit an instability at low
temperature at around 10™* GeV. In part, this could be due
to lack of analytic expressions for the entropy degrees of
freedom in the visible sector where on relies on curves or
tabulated data (see, e.g., [5,6]) because of hadronization of
quarks and gluons. The instability arises essentially from
the terms proportional to A;. A proper analysis of this issue
is outside the scope of this work and a relevant topic for
further investigation.
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Left panel: Yields of dark fermion and dark photon when &, = 0.01 with and without conversation of entropy (COE). Right

panel: Evolution of (T') when &, = 1 with and without COE. The model point we used here is the same as Fig. 1, which is model (f) of
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