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Abstract

Product of experts (PoE) are layered net-
works in which the value at each node is
an AND (or product) of the values (pos-
sibly negated) at its inputs. These were
introduced as a neural network architec-
ture that can efficiently learn to generate
high-dimensional data which satisfy many
low-dimensional constraints—thereby allow-
ing each individual expert to perform a sim-
ple task. PoEs have found a variety of appli-
cations in learning. We study the problem of
identifiability of a product of experts model
having a layer of binary latent variables, and
a layer of binary observables that are iid con-
ditional on the latents. The previous best
upper bound on the number of observables
needed to identify the model was exponential
in the number of parameters. We show: (a)
When the latents are uniformly distributed,
the model is identifiable with a number of
observables equal to the number of param-
eters (and hence best possible). (b) In the
more general case of arbitrarily distributed
latents, the model is identifiable for a num-
ber of observables that is still linear in the
number of parameters (and within a factor
of two of best-possible). The proofs rely on
root interlacing phenomena for some special
three-term recurrences.
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1 INTRODUCTION

Product of Experts Models In modeling com-
plex, high-dimensional data, it is often necessary to
combine various simple distributions to produce a
more expressive distribution. One way of doing this
is the mixture model, or weighted sum of distribu-
tions. Alone, however, this still requires quite expres-
sive components, which is a hindrance for modeling
data in a high-dimensional space. Product of experts
(PoE) were introduced in the neural networks litera-
ture as an antidote to this problem: the distribution is
factorized into a set of independent lower-dimensional
distributions [Hinton, 1999, Hinton, 2002]. Equiva-
lently, the overall distribution is an AND over the fac-
tor distributions (which may themselves be mixture
models).

PoEs have recently been applied to solve diverse prob-
lems requiring the generation of data that simultane-
ously satisfy numerous sets of constraints. For ex-
ample, the PoE-GAN framework has advanced the
state of the art in multimodal conditional image
synthesis, generating images conditioned on all or
some subset of text, sketch, and segmentation in-
puts [Huang et al., 2022]. In the field of language gen-
eration, a PoE with two factors, a pre-trained language
model and a combination of a toxicity expert with an
anti-expert, was used to steer a language model away
from offensive outputs [Liu et al., 2021].

However, fundamental questions about PoE models
remain unresolved. In this paper, we study a PoE
in which each observable random variable (rv) X de-
pends upon statistically independent latent rv’s U =
(U1, . . . , U`). (We use a slightly nonstandard “latent
variable” parameterization of the PoE; see Sec. 4 for
the correspondence between this framework and the
standard one.)

The model here is the prior distributions on the Uj
and the likelihoods Pr(X = x|U). We investigate the
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Figure 1: The graphical model (latent variables
shaded)

well-studied class of instances in which the Xi and the
Uj are binary and Pr(X = 1|U) can be expressed as a
product over the Uj ’s, namely, for some coefficients α,

Pr(X = 1 | U = u) =
∏̀
j=1

αj,uj
(1)

This class of models has a symmetry group G involving
its latent parameters: the distribution of X conditional
on U is invariant to permutation of the Uj ’s, and also
to continuous gauge transformations of the parameters
(which we spell out in Sections 2.1, 3.1); due to the
latter, G has positive dimension as a real manifold.

We are concerned with the following question: what is
the minimum n needed so that instances of this class
can be identified from the statistics of n independent
samples X1, . . . , Xn? (Specifically we focus on local
identification, see below.) It is necessary to sample
at least as many observable variables as there are pa-
rameters, minus the dimension of G as a manifold.
However, the previous best upper bound on n was ex-
ponential in the number of parameters.

We show that (a) In the case of uniform priors on the
Uj ’s, local identifiability holds with the least possible
number of observables. (b) In the case of general pri-
ors, local identifiability holds with at most twice the
least possible number of observables. This resolves the
previous exponential gap that existed for both versions
of this problem.

Algebraic Mappings The model described above
corresponds to a directed graphical model, or Bayesian
network, with all edges directed from latent toward
observable vertices (see Fig. 1). The independence of
the Uj ’s in the prior is implicit in that these vertices are
sources in this graph. The representation (1) specifies
an algebraic mapping from model parameters (namely,
the α’s and the prior distributions on the Uj) to a
probability distribution on X.

In Section 2 the prior on each Uj is assumed uniform,
so the mapping we are concerned with is from the α’s
to the distribution of X. Section 3 treats the general
case of arbitrary priors on each Uj .

Identifiability of a map f . If the preimage of every
point in im(f), apart from a set of measure 0 called
critical values, is a finite union of orbits under G, we
say the model is locally identifiable. If, further, at
non-critical values the pre-image is a single orbit un-
der G, then we say that the model is fully identifi-
able. In this paper, we consider a family of polyno-
mials f : Rm → Rm that (after first quotienting out
the continuous degrees of freedom of G) map param-
eters to observable statistics. By Sard’s theorem, the
set of critical values is of measure 0 in the codomain;
therefore, if f is anywhere a local isomorphism, then
the preimage of any point, except for the measure-0
set of critical values, is a union of isolated points. The
preimage of any point is, however, a real variety; it
must therefore be a 0-dimensional real variety, and is
therefore (by the Hilbert basis theorem) a finite point
set.

Thus, in order to show local identifiability, it will suf-
fice in the remainder of the paper to show that there
is a point in the domain at which the Jacobian of f is
non-singular.

The question of local identifiability along with the
related question of whether the model generates
all possible distributions on X, are the subjects of
much of the extensive literature about this model
and its undirected-graph variant (see below) in
the neural networks and algebraic statistics lit-
eratures [Hinton et al., 2006, Drton et al., 2007,
Roux and Bengio, 2008, Cueto et al., 2010,
Long and Servedio, 2010, Hinton, 2010,
Martens et al., 2013, Montúfar and Morton, 2015,
Montúfar and Morton, 2017, Montúfar, 2018,
Seigal and Montúfar, 2018]. We encountered this
question in the context of causal identification and
the classical moment problem [Gordon et al., 2020,
Gordon et al., 2021, Gordon et al., 2023].

The only prior upper bound for the number of observ-
ables required for model identification, was achieved
by treating U as a single “lumped” rv, taking on
2` possible values. Then there is a longstanding re-
sult [Blischke, 1964] implying an upper bound on n of
2`+1−1. This is exponentially larger than the number
of parameters of the model.

We close this exponential gap, both for uniform and
for general priors. We introduce a general method for
showing local identifiability of these latent symmetric
models. Our main results are:

Theorem 1: In the uniform-prior case, the model
can be locally identified with n = ` + 1 observables,
which is best possible, as it matches the number of
degrees of freedom of the model (after quotienting-out
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symmetries).

Theorem 16: In the general-prior case, the model can
be locally identified with n ≤ 4`+ 1 observables, which
is within a factor of two of best possible.

These theorems are logically incomparable. Their
proofs share a basic structure, but the second involves
some surprising ingredients that are not foreshadowed
in the first.

Since the running time of any algorithm for identifica-
tion of PoEs from this class, is lower bounded by the
number of moments required for identification, our re-
sults open up the possibility of a fast algorithm for the
identification problem.

2 IDENTIFYING MODELS WITH
UNIFORM PRIORS

2.1 Preliminaries

The Model In this section we treat the case that
the prior on each Uj is uniform. Then the model has
2` parameters αjb for j = 1, . . . , ` and b = 0, 1; and (1)
yields that

Pr(X = 1) = µ1 where

µ1 :=
∏̀
j=1

αj0 + αj1
2

(2)

and more generally

Pr(X1 = . . . = Xt = 1) = µt where

µt :=
∏̀
j=1

αtj0 + αtj1
2

.
(3)

Hadamard Products of Hankel Matrices It was
observed in [Cueto et al., 2010] that the RBM model
under consideration there, was a Hadamard product of
simpler models, each having only a single latent vari-
able. A similar phenomenon occurs in the directed
model we study.

For each j ∈ [`], define Han(n, j) to be the (n + 1) ×
(n+ 1) matrix with entries

Han(n, j)ab = (αa+bj0 + αa+bj1 )/2 (0 ≤ a, b ≤ n).

This is a Hankel matrix of rank 2. The Hadamard
(or entrywise) product of these matrices, ranging over
1 ≤ j ≤ `, is

H(n)ab = µa+b (0 ≤ a, b ≤ n).

If we had access to each individual Hankel
matrix Han(2, j), we could apply the classical

method of Prony or similar methods [de Prony, 1795,
Gordon et al., 2020, Kim et al., 2019] to determine
αj0 and αj1; this method works (for an arbitrary prior
on Uj) provided the Hankel matrix is rank-deficient.

However, what we have access to is only H(n) and not
the individual Han(n, j)’s. One may consider H(n) it-
self as a Hankel matrix, by ignoring the product struc-
ture on the Uj ’s and regarding U as a single latent
variable with range [2`]; but then in order to have
rank deficiency, one requires the very large Hadamard
matrix H(2`), and consequently, the Prony method is
only applicable to identifying the model if we obtain
n = 2` observables Xi. This is exponentially larger
than the number of degrees of freedom of the model,
which as we see from the model (3) is merely linear in
`. As noted earlier, this exponential gap was the mo-
tivation for our investigation. We show that the linear
answer is correct: the model is locally identifiable as
soon as n matches the number of degrees of freedom
of the model (after quotienting out a continuous sym-
metry which we now describe).

Symmetries of the Model The model has both
discrete and continuous symmetries. The moments µt
are invariant to:

1. Discrete symmetries. The wreath product S2 o S`
(a.k.a. hyperoctahedral group):

(a) For any j, exchange αj0 and αj1.

(b) Exchange any j and j′. That is, for j 6= j′,
exchange αj0 with αj′0, and αj1 with αj′1.

2. Continuous symmetries. For any j 6= j′ and λ >
0, the gauge transformation{

(αj0, αj1) 7→ (λαj0, λαj1),

(αj′0, αj′1) 7→ (λ−1αj′0, λ
−1αj′1)

(4)

The model can of course be identified only up to these
symmetries. We can therefore, w.l.o.g., take advantage
of the gauge symmetries to scale the parameters αjb
so that for all j ∈ [`],

αj0 + αj1 = 2µ
1/`
1 =: γ (5)

We see now that the model has only ` + 1 genuine
degrees of freedom; or, since γ is trivial to read off
from µ1, that the model conditioned on γ has only `
degrees of freedom.

If µ1 = 0 the model is trivial, so from here on out we
assume γ > 0.

To solve for αj0 and αj1, up to the symmetry between
them, it suffices, in view of (5), to solve for

aj := αj0αj1.
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This transformation results in a family of polynomials
(parameterized by γ) qt in a1, . . . , a` such that for any
t ≥ 1, µt = qt(a1, . . . , a`); fixing any m, the mapping
(q2, . . . , qm) of {a1, . . . , a`} to (µ2, . . . ,µm carries R`
into a variety of dimension at most `. If the dimension
is `, then for all but a set of measure 0, specifically
at all regular points of the mapping, the image has
finitely many pre-images.

Our main result in this section is:

Theorem 1. The mapping (γ, a1, . . . , a`) to
(µ1, . . . ,µ`+1) is a.e. locally identifiable.

In the remainder of the paper, we have relegated the
proofs of some technical lemmas to the supplementary
material, and replaced lengthy proofs of important re-
sults with proof sketches.

2.2 The polynomial sequence

We require a more detailed understanding of the prob-
abilities µt. Observe that

α2
j0 + α2

j1 = (αj0 + αj1)2 − 2αj0αj1 = γ2 − 2aj

so that

µ2 =
∏̀
j=1

γ2 − 2aj
2

.

Similarly:

α3
j0 + α3

j1 = (αj0 + αj1)3 − 3(α2
j0αj1 + αj0α

2
j1)

= γ3 − 3γaj

so that µ3 has an analogous expression. This contin-
ues. In the remainder of this Section the subscript ‘j’
is suppressed.

Lemma 2 (Three-term recurrence). Letting a =
α0α1, (αm0 + αm1 )/2 can be written as a polynomial
pm(a) satisfying the three-term recurrence

p0(a) = 1,

p1(a) = γ/2,

pm(a) = γpm−1 − apm−2, m ≥ 2. (6)

Proof. This is the Newton identity relating power and
elementary symmetric functions, specialized to the
two-variable case; γ is the first, and a is the second,
elementary symmetric function of α0 and α1. 2

The recurrence (6) resembles the familiar recurrence
of orthogonal polynomials, but differs significantly in
that the variable (here a) multiplies pm−2 rather than
pm−1. In particular the polynomials pm are not of
incrementing degree in a.

(We note however that at the particular value a = 1/4,
these polynomials as functions of γ are rescalings of the
Chebychev polynomials of the first kind.)

Observation 3. The polynomials pm defined above
satisfy the following:

1. The degree of pm(a) is bm/2c.

2. pm(0) = γm/2 for m ≥ 1.

3. The leading term of pm(a) has a negative sign if
bm/2c is odd, and a positive sign if bm/2c is even.

Proposition 4 (Interlacing). p0 and p1 are positive
constants. For any m ≥ 2:

1. The roots of pm are simple and contained in
the interval (0,∞); denote them βm,1 < . . . <
βm,bm/2c.

2. 0 < βm,1 < βm−1,1 and βm−1,i−1 < βm,i < βm−1,i
for i = 2, . . . , bm/2c. If pm has degree greater
than pm−1 then βm−1,b(m−1)/2c < βm,bm/2c.

(For m = 2 this requires the convention β1,0 =
0, β1,1 =∞.)

Proof sketch. By induction. Let m even for sim-
plicity. By the three term recurrence, pm(βm−1,i) =
−βm−1,ipm−2(βm−1,i). By induction, this sign al-
ternates as i ranges from 1 to m/2 − 1, giving
m/2 − 2 roots by the Int. Val. Theorem (IVT).
Moreover, pm(0) = γm/2 > 0, and pm(βm−1,1) =
−βm−1,1pm−2(βm−1,1) < 0 because βm−1,1 < βm−2,1,
accounting for another root. The last root can be
found by observing that the sign of the leading term of
pm is opposite of pm−1,pm−2 and the IVT. Full proof
deferred to Appendix A.1. 2

2.3 Identifiability of latent symmetric
models: the method

We now describe the algebraic tool which enables the
proof of Theorem 1. Consider a sequence of ` univari-
ate polynomials P1, . . . ,P`. (We will eventually sub-
stitute the P ’s of the previous Section.) Let y1, . . . , y`
be indeterminates, and y = (y1, . . . , y`). Construct
symmetric polynomials in the yj by taking products
as follows:

qm(y) =
∏̀
j=1

Pm(yj).

Proposition 5. Suppose that for every m ∈ [`], Pm
has a root ηm that is simple and is not a root of
P1, . . . ,Pm−1. Then the mapping M` where

(y1, . . . , y`) 7→ (q1(y), . . . , q`(y))

is locally identifiable.
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Proof sketch. We aim to construct a full-rank diagonal
Jacobian. If a is the indeterminate for Pi, then

∂qi
∂yj

=
∂Pi
∂a

(ηj)
∏
k 6=j

Pi(ηk).

Note that ∂Pi/∂a(ηi) 6= 0 by simplicity of roots and
Pi(ηi) = 0, giving us a mechanism to force off-diagonal
entries to be zero and hope that on-diagonal entries are
nonzero. By composing M` with another function, we
are able to achieve this exactly. Full proof deferred to
Appendix A.2. A proof of a more general version of
this proposition can be found in Appendix A.3. 2

Proof of Theorem 1. Since γ is identified from µ1, we
have only to show that for any fixed γ > 0, the map-
ping {a1, . . . , a`} 7→ (µ2, . . . ,µ`+1) is locally identifi-
able.

To show this we apply Prop. 5 with the polynomials
Pm = pm+1 for m = 1, . . . , ` (for pm as defined in
Lemma 2), and the root ηm of Pm being the point
βm+1,1 provided by Prop. 4. 2

3 IDENTIFYING MODELS WITH
GENERAL PRIORS

3.1 Preliminaries

We now treat the more general setting where Uj have
arbitrary priors, specified by the parameters

πj = Pr(Uj = 1).

Because the Uj ’s are not uniformly sampled, the mo-
ments will take on a different form than before (we call
the nth moment qn):

qn := Pr(X1 = · · · = Xn = 1)

=
∑

u∈{0,1}`

∏̀
j=1

πj(uj)α
n
juj

=
∏̀
j=1

(
(1− πj)αnj0 + πjα

n
j1

)
=
∏̀
j=1

rn(αj0, αj1, πj) (7)

where we define rn(α0, α1, π) = παn1 + (1− π)αn0 . We
may view rn(αj0, αj1, πj) as the contribution of Uj to
the moment qn.

Symmetries of the Model The model has discrete
and continuous symmetries as before. The moments qt
are invariant to:

1. Discrete symmetries (hyperoctahedral).

(a) For any j, exchange αj0 and αj1, and replace
πj with 1− πj .

(b) Exchange any j and j′. That is, for j 6= j′,
exchange αj0 with αj′0, αj1 with αj′1, and
πj with πj′ .

2. Continuous symmetries. For any j 6= j′ and λ >
0, the gauge transformation{

(αj0, αj1) 7→ (λαj0, λαj1),

(αj′0, αj′1) 7→ (λ−1αj′0, λ
−1αj′1)

.

Of course, the model may only be identified up to these
symmetries. Therefore, as before, we use the gauge
symmetries to scale our parameters such that for all
j ∈ [`], letting γ := Pr(X1 = 1)1/`, we have that
r1(αj0, αj1, πj) = γ. As in Sec. 2, the model is trivial
if γ = 0, so we assume throughout that γ 6= 0.

3.2 Polynomial sequences

It will be convenient to make the change of variables
σj = 2πj−1. Due to the factorization (7), we can while
studying the polynomials r, focus on an arbitrary j,
and drop the indices j until we return to treating the
polynomials q. We can now write

rn = παn1 + (1− π)αn0 =
αn1 + αn0

2
+ σ

αn1 − αn0
2

.

Let d = (α1 − α0)/2, expanding rn for n > 1 we get:

rn = 2(γ − σd)rn−1 − [(γ − σd)2 − d2]rn−2 (8)

The derivation for this recurrence can be found in Ap-
pendix A.4. We make a final change of variables to
replace (σ, d) by (x, y): x = γ − σd and y = d2. (This
is invertible after quotienting by the hyperoctahedral
symmetry of the model.) This yields the following
three-term recurrence:

r0(x, y) = 1

r1(x, y) = γ

rn(x, y) = 2xrn−1 − (x2 − y)rn−2.

It is helpful to define the following family of polynomi-
als (pn), which are very closely related to the polyno-
mials (rn). In particular, we will see in the following
proposition that they are the “coefficient polynomials”
of the rn.

p−1(x, y) = 1

p0(x, y) = 2x

pn(x, y) = 2xpn−1 − (x2 − y)pn−2



Identifiability of Product of Experts Models

Proposition 6. For any 0 ≤ k ≤ n− 1,

rn = pkrn−k−1 − (x2 − y)pk−1rn−k−2

pn = pkpn−k−1 − (x2 − y)pk−1pn−k−2

Proof. By induction over k. Full proof deferred to Ap-
pendix A.5. 2

In analogy to Section 2.2, where we studied the roots
of the univariate polynomials pn, we now need some
understanding of where each rn (which is bivariate, in
variables x, y) is zero.

Notice that ri(0, 0) = 0 for all i ≥ 2. Since this is a
common zero for all ri, i ≥ 2, we call this the trivial
zero. The proof of the following statement is in the
supplementary material.

Lemma 7. For i ≥ 2 the only zero of ri on the curves
x = 0 and x2 = y is the trivial zero.

Proof deferred to Appendix A.6.

3.3 Common Zeros

A new phenomenon that we encounter, unlike in Sec-
tion 2, is that we need to identify common zeros of
ri, rj for i 6= j. First we make the following observa-
tion.

Lemma 8. For no i is there a nontrivial zero shared
by ri and ri+1, or by ri and ri+2.

Proof. Pick the smallest such i for which either claim
fails, and let (x0, y0) be a nontrivial zero. We know
from Lemma 7 that x0 6= 0 and x20 6= y0. If the
claim fails because ri = ri+2 = 0, then writing
ri+2 = 2x0ri+1 − (x20 − y0)ri, we see that necessarily
also ri+1 = 0. Then

ri+1 = 2x0ri − (x20 − y0)ri−1

0 = (x20 − y0)ri−1

Since x20 6= y0, it follows that ri−1 = 0, which contra-
dicts the minimality of i. 2

The structure of pairwise-common roots in the (x, y)
plane is complex and has two especially interesting re-
gions: the line x = γ/2 and the parabola y = x2 − γ2.
The remainder of our analysis relies on common roots
within the first of these regions.

3.4 Restricting to the line x = γ/2

On this line we have the recurrence:

rn(γ/2, y) = γrn−1 − (γ2/4− y)rn−2 (9)

Since p0(γ/2, y) = γ, the initial conditions for the p
polynomials and r polynomials are identical evaluated
on the line:

p−1(γ/2, y) = r0(γ/2, y)

p0(γ/2, y) = r1(γ/2, y)

Observe that both p and r polynomials have the
same recurrence on the line, so it must be true that
rn(γ/2, y) = pn−1(γ/2, y). Now consider the univari-
ate polynomials defined by the following recursion:

s0(y) = 0

s1(y) = 1

sn(y) = γsn−1 − (γ2/4− y)sn−2

Notice that rn−1(γ/2, y) = pn−2(γ/2, y) = sn(y), thus
we will turn our attention to the zeros of the s poly-
nomials. From Proposition 6 we have the following
corollary:

Corollary 9. For all 2 ≤ k ≤ n−1, sn = sksn−k+1−
(γ2/4− y)sk−1sn−k.

We can now prove the following, which has no analogue
in the uniform-priors case but is key to the general-
priors case.

Theorem 10. gcd(si, sj) = sgcd(i,j).

(Note, this is gcd in the ring R[y].)

Proof. The theorem will follow from showing that:

If j > i then gcd(si, sj) = gcd(si, sj−i). (10)

To show (10): In Corollary 9, since j > i, we can
substitute n = j and k = i+ 1 to obtain:

sj = si+1sj−i − (γ2/4− y)sisj−i−1

This shows gcd(si, sj−i) | sj therefore gcd(si, sj−i) |
gcd(si, sj). This also shows gcd(si, sj) | si+1sj−i.
From Lemma 8, si and si+1 are relatively prime, it fol-
lows that gcd(si, sj) | sj−i. Consequently gcd(si, sj) |
gcd(si, sj−i). 2

3.5 Simple roots of sn polynomials

We aim to show here that the roots of sn are simple
and real. We start with some useful properties. Recall
that γ ∈ (0, 1].

Lemma 11. For every n ≥ 1,

1. The leading coefficient of sn is positive.

2. sn(0) = n(γ2 )n−1 > 0.



Spencer L. Gordon, Manav Kant, Eric Y. Ma

3. The degree of sn is bn−12 c.

Proof deferred to Appendix A.7. Using Lemma 11 we
exhibit an interlacing property of the polynomials sn,
with similar proof to Prop. 4.

Lemma 12. For k ≥ 3, sk has real roots
βk,1, . . . , βk,b(k−1)/2c, satisfying the following: (a) For
n > 1, β2n+1,1 < β2n,1 < · · · < β2n,n−1 < β2n+1,n < 0.
(b) For n ≥ 1, −∞ < β2n+1,1 < β2n+2,1 < · · · <
β2n+1,n < β2n+2,n < 0.

In particular, each sk has only simple roots.

Proof deferred to Appendix A.8.

3.6 Decomposition of the polynomials sn

Theorem 10 and Lemma 12 actually imply that the
polynomials sn have considerably more structure than
already revealed. This will be essential to our results.

Lemma 13. There are real polynomials hn such that
hn has only simple real roots, gcd(hn, hm) = 1 for
n 6= m, and for every n,

sn(y) =
∏
d|n

hd(y). (11)

Proof. We prove this by induction on n. For the gcd
claim, while treating n we address only m s.t. n - m.

Since s1 = 1, the factorization and real-roots claims
hold for n prime, with hn = sn; the gcd claim follows
from Theorem 10.

For n composite, we know from Theorem 10 that sn
shares the roots of every sd, d | n; by the inductive
hypothesis this is equivalent to saying that sn is divis-
ible by

∏
d|n,d<n hd(y). Since sn has only simple roots,

any remaining factors of sn cannot be shared with any

hd for d | n, d < n. Set hn = sn/
(∏

d|n,d<n hd(y)
)

.

Again, since sn has only simple roots, hn is rela-
tively prime to every hd, d | n. It remains to show
that hn is relatively prime to hm for n - m. Since
gcd(sn, sm) = sgcd(n,m), which does not include any
factors of hm, we know that hm is relatively prime to
sn, and therefore to hn. 2

We will refer to the hn as “atomic polynomials” to
recognize that they are what compose the sn polyno-
mials. Next we wish to work out their degrees, which
we denote f(n) = deg hn.

Lemma 14. f(1) = 0, f(2) = 0, and for n > 2,
f(n) = n

2

∏
q prime, q|n(1− 1/q) > 0.

Proof deferred to Appendix A.9.

For every n > 2, therefore, hn possesses a nonempty
set of simple roots, called the atomic roots of hn or sn;
these are roots of sm if and only if n | m. See Fig. 2.

s15

s3

s5

Figure 2: The roots of s3, s5, and s15. The blue, red
and orange dots represent the roots of the h3, h5 and
h15 atomic polynomials respectively. For better spac-
ing, the transformation x 7→ log(−x) was applied to
the horizontal axis.

3.7 Identifiability: the Jacobian at perturbed
common roots

In this section we finally show how to generalize the
method of Sec. 2.3, by leveraging roots shared between
pairs of sn’s. Unlike in the basic method introduced
in Sec. 2.3, it will not work to evaluate the Jacobian
of the mapping exactly at a point specified by these
common roots; instead, it will be necessary to slightly
perturb the evaluation point.

For any pair ri and r2i+1, let Ji be the Jacobian of the
map (x, y) 7→ (ri(x, y), r2i+1(x, y)). Proposition 6 tells
us r2i+1 = pi−1ri+1 − (x2 − y)pi−2ri, we compute the
partial derivatives of r2i+1 using this expression and
the determinant of Ji simplifies to:

ri+1

(
∂ri
∂x

∂pi−1
∂y

− ∂ri
∂y

∂pi−1
∂x

)
+ pi−1Fi + riGi (12)

Fi =
∂ri
∂x

∂ri+1

∂y
− ∂ri
∂y

∂ri+1

∂x
(13)

Gi = pi−2

(
∂ri
∂x

+ 2x
∂ri
∂y

)
− (x2 − y) (14)(

∂ri
∂x

∂pi−2
∂y

− ∂ri
∂y

∂pi−2
∂x

)
(15)

The proof of the following Lemma follows from using
Proposition 6 to write both ri and pi−1 in terms of
pi−2 and pi−3 then simply plugging in x = γ/2 into
Equation 12. The proof in its entirety is in the sup-
plementary material.

Lemma 15. On the line x = γ/2 the determinant of

Ji is −2si+2si
∂si+1

∂y + si+1(Fi +Gi)
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Proof deferred to Appendix A.10.

Now we state the main theorem of this section.

Theorem 16. The map (x1, y1, . . . , x`, y`) 7→
(q2, q5, . . . , q2n, q4n+1, . . . , q2`, q4`+1) is locally identifi-
able.

The proof of this statement is lengthy and we have de-
ferred it to Appendix A.11, but we will show the proof
of a simpler case. Let pi be the ith prime. Consider
the following map:

(x1, . . . , y`) 7→ (qp2−1, q2p2−1, . . . , qp`+1−1, q2p`+1−1)
(16)

We can explicitly write down the entry in the ith
row and the jth column of the Jacobian evaluated at
(x1, y1, . . . , x`, y`). Suppose i = 2n−1 and j = 2m−1:

∂rpn+1−1

∂x
(xn, yn) ·

∏
k 6=n

rpn+1(xk, yk) (17)

If i = 2n, the term rpn+1−1 is replaced with r2pn+1−1
and when j = 2m the partial is taken with respect to
y instead. This allows us to look at the determinant
in 2× 2 blocks.

Now pick the point to evaluate the Jacobian as follows.
Let ci be a root of spi+1

which exists since pi+1 > 2
so spi+1

is non-constant. From Theorem 10 we know
that this is also a root of s2pi+1 , and so (γ/2, ci) is a
root of both rpi+1−1 and r2pi+1−1. Recall all roots of
s polynomials are simple so for all i:

∂spi+1

∂y
(γ/2, ci) 6= 0

∂s2pi+1

∂y
(γ/2, ci) 6= 0 (18)

It follows from Equation 17 that all entries not
on a diagonal block of the Jacobian evaluated at
(γ/2, c1, . . . , γ/2, c`) are zero. This makes the Jaco-
bian block diagonal; the determinant of each diagonal
block is:∏

k 6=i

s2pi+1
(ck) · spi+1

(ck)

 · det(Jpi+1−1(γ/2, ci))

From Theorem 10, for i 6= j ∈ [`] in the ring R[y]
we see gcd(s2pi , spj ) = gcd(spi , spj ) = s1 = 1 and
gcd(s2pi , s2pj ) = s2 = γ so ck is only a root of spk+1

and s2pk+1
. Applying Lemma 15 and using Equation

18 we see that the determinant of each diagonal block
is non-zero. Since the determinant of the Jacobian
is the product over the determinant of each diagnoal
block, it is non-zero and the map defined by Equation
16 is locally identifiable.

Unfortunately, this method cannot be generalized to
prove Theorem 16 because the polynomials s2i+1 and

s2j+1 are not relatively prime in R[y]. However, by
ε-perturbing atomic roots, we can bound the order of
each entry of the Jacobian. By scaling the Jacobian
evaluated at these perturbed roots, all of the entries in
2× 2 blocks above the diagonal scale with some small
ε. It is well known that for a block lower-triangular
matrix, the determinant is the product of its diagonal
blocks because any permutation that selects an entry
not in the diagonal block is either zero or will force the
permutation to select a zero in the other half. Analo-
gously, we show that the determinant of the product
of the diagonal blocks contains a term independent of
ε and all other terms contributed to the determinant
scale with ε. We then pick ε sufficiently small so that
the matrix is non-singular, showing local identifiabil-
ity.

4 CORRESPONDENCE BETWEEN
THE LATENT VARIABLE
FRAMEWORK AND THE
STANDARD PoE FRAMEWORK

Here, we justify the correspondence between the model
discussed in this paper and the traditional formulation
of the PoE. The PoE is often discussed in the litera-
ture; we will use [Oneto and Vannieuwenhoven, 2023]
as a recent reference point. They define the PoE’s
distribution by a normalized Hadamard product of
weighted rank 1 tensors. In comparison, in our model,
the observable statistics are precisely the set of prob-
abilities that a given subset of the m observable bits
equal 1, and the rest equal 0. In other words, if we
let X = (X1, X2, . . . , Xm), then the observable statis-
tics are Pr(X = s) for s ∈ {0, 1}m. Since in our
model the Xi are i.i.d. conditional on the latents,
and hence exchangeable, Pr(X = s) = Pr(X = s′) if
w(s) = w(s′) where w is the Hamming weight, so the
statistics Pr(X1 = · · · = Xt = 1), for t = 1, . . . ,m are
sufficient to describe the full set of statistics. To see
the correspondence with the standard PoE formula-
tion, note that we may write our statistics in the form
of the 2 × · · · × 2 (m times) tensor (� is Hadamard
product):

M =
⊙̀
j=1

(
πj

[
1
αj1

]⊗m
+ (1− πj)

[
1
αj0

]⊗m)
(19)

Compare this with Eqn. (1.3) in
[Oneto and Vannieuwenhoven, 2023] (using our
index `):

P = λ ·P(1) � · · · �P(`) (20)

where λ is a normalizing (partition function) factor.
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Thus M and P have precisely the same form, except
that in our case, we are missing the normalization fac-
tor λ, because the entries of M do not themselves add
up to a probability distribution; rather they are the
probabilities of certain events. Specifically, if w(s) = t
for s ∈ {0, 1}m, then from Eqn. (19):

M [s] =
∏̀
j=1

(
(1− πj)αtj0 + πjα

t
j1

)
= Pr(X1 = · · ·Xt = 1).

However, in both our formulation and the standard
PoE formulation Eqn. (20), the identification problem
is that of producing the decomposition of a tensor of
precisely the same type.

5 DISCUSSION

Related work: undirected graphical
models. The conditional distributions on
X that occur in our model (1) agree with
those of Restricted Boltzmann Machines
(RBM) [Ackley et al., 1985] (a kind of Markov
random field model), and particularly the “harmo-
nium” [Smolensky, 1986, Freund and Haussler, 1991]
special case. An RBM is an undirected graphical
model comprising one layer of latent random variables
U, one layer of observable random variables X, and
satisfying that the Xi are independent conditional on
U. An RBM is often written in the following form:

Pr((X,U) = (x, u)) =
1

Z
exp(−xWu† − xb† − cu†)

(21)
where Z =

∑
x,u exp(−xWu† − xb† − cu†). The de-

pendence of X on U can be expressed:

Pr(x|u) = exp(−xWu† − xb† − cu† − d) (22)

where d = −
∑
i,j log(1 − αi,j,0); bi =

−
∑
j log

αi,j,0

1−αi,j,0
; cj = −

∑
i log

1−αi,j,1

1−αi,j,0
; Wij =

− log
αi,j,1(1−αi,j,0)
αi,j,0(1−αi,j,1)

. This is referred to as an undi-

rected graphical model because each coefficient
Wij is regarded as an energy associated with the
unordered pair of sites {i, j} (i observable, j latent).
The conditional distributions Pr(X|U) in (22) have
the same form as in our model (1) (or its more
general version in which the Xi are only conditionally
independent)—but (22) does not allow imposition of
a chosen product distribution on U as the prior, and
in fact, generally the Uj will not be independent in
the distribution (21).

The conditional distributions of RBMs enable expres-
sive statistical models with relatively few parameters.
For this reason and because of the connection to lay-
ered networks, RBMs have been extensively studied in

the neural networks and algebraic statistics literatures
(citations above). An interesting recent (and indepen-
dent) contribution in this literature concerns identifi-
ability [Oneto and Vannieuwenhoven, 2023], but there
are no obvious implications in either direction between
the works. (The main thing to note is that it relies
for identifiability on the Kruskal condition. That con-
dition does gives an upper bound on the number of
observables required but if one works out the bound,
one sees that it cannot be less than 2`+1 − 1. But the
slightly better bound of 2` was the exponentially-large
bound that we set out to rectify. Second, one should
note that that work addresses a somewhat more gen-
eral class of models, but then relies upon a general-
position assumption about the input, an assumption
we do not make, and that is also not valid in our set-
ting of conditionally-iid Xi.)

Open questions A fundamental issue is whether
there is an algorithm for efficiently identifying the
model from its statistics. Settling this in the positive
would be the ideal way also of proving full identifiabil-
ity.

A natural question is whether the product in Eqn. (3)
can be replaced by other symmetric functions; even
more generally, one may consider the situation in
which the effect of the latent variables U1, . . . , U` on
the observable variables is invariant not under the per-
mutation group S` but under, say, a transitive sub-
group of S`.

A full understanding of this family of problems re-
quires also extending to non-binary Xi and Uj . The
lead of [Fan and Li, 2022] may be useful toward the
case of non-binary Xi. It appears more challenging to
address non-binary Uj , as this demands replacing our
two-dimensional space (x, y) by a higher-dimensional
space and, perhaps, generalizing our approach through
pairwise-common zeros, to zeros shared by larger as-
semblies of polynomials.
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Checklist

1. For all models and algorithms presented, check if
you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes] See Section 1, Products of Experts
Models, Section 2.1, and Section 3.1

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Not Applicable]

(c) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Not Applicable]

2. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes] Some proofs are in the supplemental
material because they do not fit in the main
paper

(c) Clear explanations of any assumptions. [Yes]
See Section 1 Products of Experts Models,
Section 2 Symmetries of the Model, and Sec-
tion 3 Symmetries of the Model

3. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Not Applicable]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Not
Applicable]

(c) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Not Applicable]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Not Applicable]

4. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Not Applicable]

(b) The license information of the assets, if ap-
plicable. [Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Not Applica-
ble]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research
with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable]

(c) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]
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A DEFERRED PROOFS

A.1 Proof of Proposition 4

Proof. We induct on m. The Proposition holds for m = 0, 1. Now p2 = −a+ γ2/2 which has a root at γ2/2 and
p3 = γ(−a+ γ2/2)− aγ/2 = −3γa/2 + γ3/2 which has a root at γ2/3.

Now fix any m ≥ 2. Let d = deg(pm−2), so d + 1 = deg(pm). By the inductive hypothesis, 0 < βm−1,1 <
βm−2,1 < βm−1,2 < · · · < βm−1,d < βm−2,d. If deg(pm−1) = d + 1 > deg(pm), then there is an additional
root βm−1,d+1 of pm−1 with βm−2,d < βm−1,d+1. Since we’ve accounted for every root of pm−1 and pm−2, the
value of pm−1 must alternate between strictly positive and strictly negative on the sequence of open intervals
(−∞, βm−1,1), (βm−1,1, βm−1,2), (βm−1,2, βm−1,3), . . . , (βm−1,b(m−1)/2c,∞), and pm−2 alternates in sign on the
intervals (−∞, βm−2,1), (βm−2,1, βm−2,2), . . . , (βm−2,d,∞). Now we compute

pm(βm−1,1) = γpm−1(βm−1,1)− βm−1,1pm−2(βm−1,1) = −βm−1,1pm−2(βm−1,1) < 0;

pm(βm−2,1) = γpm−1(βm−2,1)− βm−2,1pm−2(βm−2,1) = γpm−1(βm−2,1) < 0.

By Observation 3, pm(0) = γm/2 > 0 so there must be a root of pm in (0, βm−1,1).

For 1 < i < d, βm−1,i ∈ (βm−2,i−1, βm−2,i) and βm−2,i ∈ (βm−1,i, βm−1,i+1). Moreover, pm(βm−1,i) =
−βm−1,ipm−2(βm−1,i) and pm(βm−2,i) = γpm−1(βm−2,i), so sign(pm(βm−1,i)) = sign(pm(βm−2,i)) =
− sign(pm(βm−1,i+1)). We conclude that there is a root of pm in the interval (βm−2,i, βm−1,i+1) for 1 < i < d.

We’ve shown that there are roots of pm in each of the intervals (0, βm−1,1), (βm−2,1,βm−1,2), (βm−2,2, βm−1,3), . . . ,
(βm−2,d−1, βm−1,d). If deg(pm−1) = d + 1, then by the same logic there is also a root in (βm−2,d, βm−1,d+1)
and the proof is complete. If deg(pm−1) = d, then the leading term of pm has a different sign than the leading
terms of pm−1 and pm−2. Since sign(pm(βm−2,d)) = sign(pm−1(βm−2,d)) and βm−2,d is greater than all the
roots of pm−1 it must be the case that sign(pm−1(y)) = sign(pm−1(βm−2,d)) for all y ∈ [βm−2,d,∞). But
limy→∞ pm(y) = − limy→∞ pm−1(y), so there must be a root of pm in (βm−2,d,∞). We’ve thus accounted for
all d+ 1 roots of pm. 2

A.2 Proof of Proposition 5

Proof. It suffices to show that there is a point at which the Jacobian of the mapping is nonsingular. In what
follows for a rational function g let M(g, ηj) denote the multiplicity of ηj as a root of g; if ηj is a pole of g then
−M(g, ηj) is the order of the pole.

By assumption, M(pi, ηj) = 0 for j > i and M(pj , ηj) = 1 for all j.

We now construct a sequence of rational functions r1, . . . , r` satisfying (with δij = Kronecker delta):

M(ri, ηj) = δij .

First, we set r1 = p1, since M(p1, ηj) = 0 for all j > 1.

Inductively we construct ri for i ≥ 2 as follows:

ri = pi

i−1∏
i′=1

r
−M(pi,ηi′ )
i′ . (23)

By construction, M(ri, ηj) = 0 for j < i and M(ri, ηi) = 1. Moreover, M(ri, ηj) = 0 for j > i since

M(pi, ηj) = M(r1, ηj) = · · · = M(ri−1, ηj).

Define si(y) =
∏`
j=1 ri(yj) for i = 1, . . . , ` so that si is the product of ri evaluated at each indeterminate, just

as qi is the product of pi evaluated at each indeterminate. In fact, we have

si = qi

i−1∏
i′=1

s
−M(pi,ηi′ )
i′ .
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Let Q and S be the following mappings:

(y1, . . . , y`)
Q7−→ (q1, . . . , q`)

S7−→ (s1, . . . , s`).

Consider the Jacobian of S ◦Q, evaluated at the point η = (η1, . . . , η`). By construction

∂si
∂yj

(η) =

∏
j′ 6=j

ri(ηj′)

 r′i(ηj). (24)

Now ∏
j′ 6=j

ri(ηj′) 6= 0 ⇐⇒ i = j

since ri(ηi) = 0 and M(ri, ηj) = 0 for any j 6= i. Moreover, r′i(ηi) 6= 0 since ηi is a simple root of ri, so we
conclude that ∂si

∂yj
(η) 6= 0 ⇐⇒ i = j. Thus, the Jacobian is a diagonal matrix with non-zero diagonal entries

and is therefore invertible. The Proposition follows. 2

A.3 General condition for applying root and pole information

Here we provide a more general version of Proposition 5. Observe that the process (23) is effectively Gaussian
elimination on the rows of the matrix M , which starts out lower-triangular with 1’s on the diagonal. Carried
further this yields:

Theorem 17. Let p1, . . . ,p` be univariate rational functions and let qi(y) :=
∏`
j=1 pi(yj) for i = 1, . . . , `. Let

η1, . . . , ηL be the points which are roots or poles of any pi. Then the mapping (y1, . . . , y`) 7→ (q1(y), . . . , q`(y)) is
locally identifiable if and only if the `× L matrix M(p, η) with (i, j)’th entry M(pi, ηj), has rank ` over Q.

Proof. Only If: Let v ∈ Z` be a linear dependence of the rows, v ·M(p, η) = 0. Then
∏`
i′=1 qi′(y)vi′ factors

as
∏
j

∏`
i′=1 pi′(yj)

vi′ . By construction
∏`
i′=1 pi′(ηj)

vi′ is nonzero and finite for every 1 ≤ j ≤ L. Furthermore∏`
i′=1 pi′(x)vi′ is nonzero and finite for all x /∈ {η1, . . . , ηL} because for such x every pi′(x) is nonzero and

finite. Thus,
∏`
i′=1 p

vi′
i′ is a rational function without finite roots or poles, and therefore a nonzero constant.

So
∏`
i′=1 qi′(y)vi′ is a nonzero constant. Consequently, the parameterized variety q(y) = (q1(y), . . . , q`(y)) has

codimension at least 1 in C`.

If: Without loss of generality suppose the submatrix of M(p, η) in columns 1, . . . , ` is nonsingular. Let N be a
matrix with integer entries such that N ·M(p, η) = (D | B) where D is a diagonal matrix with positive integer
entries on the diagonal, and B is any `× (L− `) matrix; | denotes concatenation. Define the rational functions

ri =
∏̀
i′=1

p
Nii′
i′ (25)

By construction, for j ≤ `, M(ri, ηj) = Dij . Define si(y) :=
∏`
j=1 ri(yj) for i = 1, . . . , ` so that si is the product

of ri evaluated at each indeterminate, just as qi is the product of pi evaluated at each indeterminate. Then

si(y) =
∏̀
i′=1

qi′(y)Nii′

Unlike in the proof of Prop. 5, it is not sufficient to consider the Jacobian of the mapping

(y1, . . . , y`) 7→ (s1, . . . , s`)

because this Jacobian is singular if any Dii > 1. However, we show the mapping is dimension-preserving by
examining its expansion in a small neighborhood of (η1, . . . , η`). Observe, as in (24), that

∂ksi
∂kyj

(η) =

∏
j′ 6=j

ri(ηj′)

 r
(k)
i (ηj). (26)
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with r
(k)
i being the k’th derivative of ri. More generally, if ~k = (k1, . . . , k`), |~k| =

∑
kj , s

(~k)
i (y) =

∂k1

∂k1y1
· · · ∂k`

∂k`y`
si(y), then

s
(~k)
i (η) =

∏
j

r
(kj)
i (ηj).

Let s = (s1, . . . , s`). In a small neighborhood of η, s expands in terms of those nonzero partial derivatives (~k)

for which ~k is minimal in the standard partial order on the nonnegative quadrant. For each si this minimizer is
unique, (0, . . . , 0, Dii, 0, . . . , 0). Thus (applying (26)), for small ε = (ε1, . . . , ε`), s(η + ε) expands as

(s1(η), . . . , s`(η)) +

∏
j′ 6=1

r1(ηj′)

 r
(D11)
1 (η1)εD11

1 , . . . ,

∏
j′ 6=`

r`(ηj′)

 r
(D``)
` (η`)ε

D``

`


This mapping carries ε in a small open neighborhood of 0 in C`, onto an open neighborhood of s(η). 2

A.4 Derivation for Equation 8

Observe that r0 = 1 and recall that we have set r1 = γ. Note that 2(γ−σd) = α1+α0 and (γ−σd)2−d2 = α1α0.

rn =
αn1 + αn0

2
+ σ

αn1 − αn0
2

= (α1 + α0)

(
αn−11 + αn−10

2
+ σ

αn−11 − αn−10

2

)
− α0α1

(
αn−21 + αn−20

2
+ σ

αn−21 − αn−20

2

)
= (α1 + α0)rn−1 − α0α1rn−2 = 2(γ − σd)rn−1 − [(γ − σd)2 − d2]rn−2

A.5 Proof of Proposition 6, Section 3.2

Proof. Fix n, and induct on k. k = 0 is immediate from the definitions. The proofs for rn and pn are essentially
identical as they rely only on the three-term recurrences (which are the same) and on the initial conditions p−1
and p0. We write out the argument for rn: it amounts to showing that the expression for k equals that for k+ 1:

pkrn−k−1 − (x2 − y)pk−1rn−k−2 = pk(2xrn−k−2 − (x2 − y)rn−k−3)− (x2 − y)pk−1rn−k−2

= rn−k−2(2xpk − (x2 − y)pk−1)− (x2 − y)pkrn−k−3

= pk+1rn−k−2 − (x2 − y)pkrn−k−3.

2

A.6 Proof of Lemma 7 (Zeroes of rn on x = 0, x2 = y)

Proof. First, for x = 0 the recursion takes the form rn(0, y) = yrn−2, and so:

rn(0, y) =

{
γybn/2c if n ≡ 0 mod 2

ybn/2c if n ≡ 1 mod 2

This implies that if rn(0, y) = 0, then y = 0. (Notice that this also forces n ≥ 2.)

Second, for x2 = y: here the recursion takes the form rn(x, x2) = 2xrn−1(x, x2), and therefore we have rn(x, x2) =
γ(2x)n−1. Therefore if rn(x, x2) = 0 for n ≥ 2 then x = 0. 2

A.7 Proof of Lemma 11, (Properties of sn polynomials on the x = γ/2)

Proof. Clearly, these statements are true of s1 and s2. Now suppose n > 2. For Part 1, observe that the leading
coefficient of γsn−1 is positive by the inductive hypothesis, and the same is true of ysn−2 − (γ2/4)sn−2. Thus
the leading coefficient of sn is positive. For Part 2, observe:

sn(0) = γsn−1(0)− γ2

4
sn−2(0) = γ(n− 1)(

γ

2
)n−2 − γ2

4
(n− 2)(

γ

2
)n−3 = n(

γ

2
)n−1
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For Part 3, first suppose n is odd. Then sn−1, sn−2 have the same degree and so sn has the same degree as
ysn−2, which is (n− 1)/2. If n is even, then sn−1 has degree (n− 2)/2 and sn−2 has degree (n− 4)/2. Since the
leading coefficients of γsn−1 and (y − γ2/4)sn−2 have the same sign by the inductive hypothesis, the degree of
sn is (n− 2)/2. 2

A.8 Proof of Lemma 12 (Roots of sn are simple)

Proof. It is easy to check that β3,1 = − 3
4 , β4,1 = − 1

4 , so β3,1 < β4,1, and they are both contained in the interval
(−∞, 0).

We proceed by induction for all n > 1, treating (a), (b) separately.

(a) Observe that for i ∈ [n− 1],

s2n+1(β2n,i) = −
(
γ2

4
− β2n,i

)
s2n−1(β2n,i).

By the inductive hypothesis, β2n,i < 0, so γ2

4 −β2n,i is positive, and for convenience we will denote it by ci. Now
note as we range over all i, the sign of s2n−1(β2n,i) changes every time we increment i because s2n−1 interlaces
s2n by the inductive hypothesis. By the Intermediate Value Theorem, we have found n− 2 roots in the intervals
(β2n,i, β2n,i+1) for i = 1, . . . , n− 2. We have two more roots to account for. Note

sign(s2n+1(β2n,1)) = − sign(s2n−1(β2n,1)) = sign

(
lim

v→−∞
s2n−1(v)

)
= − sign

(
lim

v→−∞
s2n+1(v)

)
.

The first equality holds by the recurrence relation; the second equality holds because β2n−1,1 < β2n,1, and the
third equality holds because the degrees of s2n−1, s2n+1 are different by 1. Thus, s2n+1 has an odd number
of roots, and therefore one root, in the interval (−∞, β2n,1). Finally, observe that s2n−1(β2n,n−1) > 0 because
β2n−1,n−1 < β2n,n−1 and s2n−1 has positive leading coefficient by the previous lemma. Thus, s2n+1(β2n,n−1) < 0.
Since s2n+1(0) > 0, s2n+1 has a root in the interval (β2n,n−1, 0). Thus we’ve accounted for all n roots of s2n+1,
and shown that they are all negative and interlace the roots of s2n.

(b) We now show that the roots of s2n+2 interlace those of s2n+1 and 0. First, observe that s2n+2(β2n+1,i) =
−cis2n(β2n+1,i) for i = 1, . . . , n, where we have made the obvious change of definition for ci > 0. Since
s2n(β2n+1,i) changes sign every time we increment i, by the Intermediate Value Theorem, s2n+2 has at least
one root each in (β2n+1,i, β2n+1,i+1) for i = 1, . . . , n − 1. Finally, we can see that s2n(β2n+1,n) > 0 because
β2n,n−1 < β2n+1,n and s2n has positive leading coefficient. Thus, s2n+2(β2n+1,n) < 0, so s2n+2 has a root in the
interval (β2n+1,n, 0). We have now accounted for all n roots of s2n+2. 2

A.9 Proof of Lemma 14 (Degrees of atomic polynomials)

Proof. From (11), deg sn =
∑
d|n f(d). Next perform Möbius inversion in the division lattice to obtain an

expression for f(n) in terms of F (d) :− deg sd = b(d − 1)/2c: that is, for µ the Möbius function of the division

lattice, f(n) =
∑
d|n F (d)µ(n/d). Letting the prime factorization of n be n = qβ1

1 · · · q
βk

k with qi < qi+1, this

expression simplifies to f(n) =
∑
S⊆[k](−1)|S|F (n/qS) where qS :−

∏
i∈S qi. Now consider three cases.

First, suppose n is odd. Then b(n− 1)/2c = (n− 1)/2, and n/qS is odd for any S. Observe

f(n) =
1

2

∑
S⊆[k]

(−1)|S|
(
n

qS
− 1

)
=
n

2

∑
S⊆[k]

(−1)|S|
1

qS
=
n

2

k∏
i=1

(
1− 1

qi

)
.

The second equality follows because S has as many even-sized as odd-sized subsets.

Second, suppose that 4 | n. Now n/qS is even for any S because qS contains at most one factor of 2. For even
n, b(n− 1)/2c = (n− 2)/2. The argument now follows the pattern for n odd.

Third, suppose that n = 2m, m > 1 odd. Now q1 = 2, β1 = 1. So for S ⊂ [k] if 1 /∈ S then F (n/qS) = n
qS
− 2,

and if 1 ∈ S then F (n/qS) = n
qS
− 1.
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f(n) =
1

2

∑
1/∈S

(−1)|S|
(
n

qS
− 2

)
+

1

2

∑
1∈S

(−1)|S|
(
n

qS
− 1

)

=
n

2

∑
1/∈S

(−1)|S|
1

qS
− n

2

∑
1/∈S

(−1)|S|
1

2qS
=
n

4

k∏
i=2

(
1− 1

qi

)
=
n

2

k∏
i=1

(
1− 1

qi

)
.

2

A.10 Proof of Lemma 15 (Formula for Jacobian)

Proof. Pick any point on the line v = (γ/2, v0). Notice that we can rewrite ri and pi−1 as follows:

pi−1 = 2xpi−2 − (x2 − y)pi−3

ri = γpi−2 − (x2 − y)pi−3

Writing the partials of both equations we see:

∂ri
∂y

= γ
∂pi−2
∂y

− (x2 − y)
∂pi−3
∂y

+ pi−3

∂ri
∂x

= γ
∂pi−2
∂x

− (x2 − y)
∂pi−3
∂x

− 2xpi−3

∂pi−1
∂y

= 2x
∂pi−2
∂y

− (x2 − y)
∂pi−3
∂y

+ pi−3

∂pi−1
∂x

= 2x
∂pi−2
∂x

− (x2 − y)
∂pi−3
∂x

− 2xpi−3 + 2pi−2

Since we are only interested in the solutions on the line x = γ
2 , we can now rewrite the following partials:

∂pi−1
∂y

(v) =
∂ri
∂y

(v)

∂pi−1
∂x

(v) =
∂ri
∂x

(v) + 2si(v0)

Finally we see that:

∂pi−1
∂x

(v)
∂ri
∂y

(v)− ∂pi−1
∂y

(v)
∂ri
∂x

(v) =

(
∂ri
∂x

(v) + 2si(v0)

)
∂ri
∂y

(v)− ∂ri
∂y

(v)
∂ri
∂x

(v)

= 2si(v0)
∂ri
∂y

(v) = 2si(v0)
∂si+1

∂y
(v0)

We know on the line si+1 = ri = pi−1 for all i, so plugging this back into Equation 12, we get the following
expression as desired:

det(Ji)(v) = −2si+2(v0)si(v0)
∂si+1

∂y
(v0) + si+1(v0)(Fi(v) +Gi(v))

2

A.11 Proof of Theorem 16, Section 3.7

Proof. From Theorem 10 we know s2n+1 | s4n+2, let cn be an atomic root of s2n+1 and let C = {cn}`n=1. For
ease of notation, let Rn = {j | s2n(cj) = 0} and |Rn| = αn. Let us make the following observations about this
set:

Observation 18. For all j ∈ Rn, j ≤ n. Moreover, s4n+2(cj) = 0 if and only if j ∈ Rn
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Proof. Suppose j > n, we know cj is an atomic root of s2j+1 and by definition of an atomic root s2n+1(cj) 6= 0,
thus if j ∈ Rn then j ≤ n.

Clearly if j ∈ Rn then s4n+2(cj) = 0. If s4n+2(cj) = 0, since cj is an atomic root of s2j+1, then gcd(s4n+2, s2j+1) =
s2j+1. This implies 2j + 1 | 4n + 2 and thus 2j + 1 | 2n + 1 and it follows s2n+1(cj) = 0 from Theorem 10 so
j ∈ Rn. 2

We know that each root of s2n+1 is simple for all n, thus (∂s2n+1/∂y)(ci) 6= 0. Furthermore, since s2n+1(cn) = 0
then we know that s2n(cn) 6= 0 and s2n+2(cn) 6= 0. Lastly, notice that from the above observation, i ∈ Rn if and
only if s4n+2(ci) = 0. Together with Theorem 10 this implies that there exists some δ > 0 such that for all n,
we have that s2n, s2n+2, ∂s2n+1/∂y, and s2i+1 and s4i+2 for all i ∈ {1, . . . , `} \ Rn, are all bounded away from
zero in the interval In = [cn − δ, cn + δ], by some constant A.

Clearly T = ∪`n=1In is closed and bounded, then so is the set {γ/2} × T and thus each of the functions in the
following set attain a maximum over {γ/2} × T :

⋃̀
n=1

{
|r2n|, |r2n+1|, |r2n−1|, |

∂r2n
∂x
|, |∂r2n

∂y
|,

|∂r4n+1

∂x
|, |∂r4n+1

∂y
|, |F2n|, |G2n|

}
Define M to be the maximum over the maximums of these functions and 1.

We now pick some small ε > 0 to be specified later. Define the set Dj = {n | j ∈ Rn}. We will pick our points
as follows, for all 1 ≤ i ≤ `, we pick di ∈ Ii such that 0 < s2k+1(di) < εi and 0 < s4k+2(di) < εi for all k ∈ Di.
If 1 ≤ i < `, we define εi+1 as follows:

εi+1 = min

( ⋃
k∈Di

{|s2k+1(di)|, |s4k+2(di)|}

)

Notice that this process results in a set of points {di} where for all n and k ∈ Rn if k 6= n then s2n+1(dn) <
εn < s2n+1(dk) and s4n+2(dn) < εn < s4n+2(dk). Therefore for all k ∈ Rn:∣∣∣∣s2n+1(dn)

s2n+1(dk)

∣∣∣∣ ≤ 1

∣∣∣∣s4n+2(dn)

s4n+2(dk)

∣∣∣∣ ≤ 1 (27)

We now evaluate the Jacobian at the point (γ/2, d1, . . . , γ/2, d`). We scale the rows corresponding to q2n and
q4n+1 by the following two non-zero values respectively:

s2n+1(dn)
∏
k∈Rn

1

s2n+1(dk)
s4n+2(dn)

∏
k∈Rn

1

s4n+2(dk)

We call the resulting matrix B, and notice that B is non-singular if and only if the Jacobian evaluated at this
point is non-singular. For ease of notation, we will refer to the i, jth entry of the matrix B as bi,j and we will
split the matrix B into 2× 2 blocks.

B =

N1,1 . . . N1,`

...
...

N`,1 . . . N`,`

 (28)

Notice that each 2 × 2 block has a similar structure, take any n,m ∈ [`] and we can explicitly write the matrix
corresponding to Nn,m.

Nn,m =

(
s2n+1(dn)
s2n+1(dm)

∏
k/∈Rn

s2n+1(dk) 0

0 s4n+2(dn)
s4n+2(dm)

∏
k/∈Rn

s4n+2(dk)

)(
∂r2n
∂x (γ2 , dm) ∂r2n

∂y (γ2 , dm)
∂r4n+1

∂x (γ2 , dm) ∂r4n+1

∂y (γ2 , dm)

)
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Lemma 19. Suppose bi,j ∈ Nn,m. If m ∈ Rn then |bi,j | ≤M `, otherwise |bi,j | ≤ εM `−1

Proof. First we will make the following observation, assume that i and j are odd, since M ≥ 1 we have that:∣∣∣∣∂r2n∂x
(dm)

∣∣∣∣ ∏
k/∈Rn

|s2n+1(dk)| < M ` (29)

If i is even we replace 2n with 4n+ 1, and if j is even we replace x with y. Notice that the same argument works
in all of those cases. If m ∈ Rn, then we know that Equation 27 implies that both |s2n+1(dn)/s2n+1(dm)| ≤ 1
and |s4n+2(dn)/s4n+2(dm)| ≤ 1. Together with Equation 29 this implies that |bi,j | < M ` as desired.

Suppose that m /∈ Rn, we will do the following analysis assuming both i and j are odd, but an identical argument
works for either i and j even.

∂r2n
∂x

(γ/2, dm) · s2n+1(dn)

s2n+1(dm)

∏
k/∈Rn

s2n+1(dk) =
∂r2n
∂x

(γ/2, dm) · s2n+1(dn)
∏

k/∈Rn∪{m}

s2n+1(dk)

Notice |s2n+1(dn)| < εn < ε and all other terms are bounded above in magnitude by M , since there are at most
`− 1 of those terms and M > 1 we have that |bi,j | < εM `−1 as desired. 2

The intuition for the rest of the proof is as follows. We know that for a block lower-triangular matrix, the
determinant is the product of its diagonal blocks. This is because any permutation π which selects an element of
the lower-left block must also select an element from the zero block and so the term associated to π contributes
nothing to the determinant.

Similar to this, we will show that the product of the determinant of the diagonal blocks, Nn,n, contains a term
which is not dependent on ε. In the following lemma we will show that all π which pick elements of off-diagonal
blocks scale with ε. This will imply for sufficiently small ε this matrix must be non-singular.

Let H ⊂ S2` be the subgroup generated by the ` transpositions (2n− 1, 2n) for n ∈ [`].

Lemma 20. For all π ∈ S2` \H: ∣∣∣∣∣sign(π)
∏̀
i=1

bi,π(i)

∣∣∣∣∣ < εM `2−1

Proof. Pick any π ∈ S2`, notice that if for all i ∈ {1, . . . , `}, π(2i) ≤ 2i and π(2i − 1) ≤ 2i then π ∈ H. Thus
since we pick π ∈ S2` \ H, then for some i either π(2i) > 2i or π(2i − 1) > 2i, in both cases we have that for
some j, bj,π(j) lies in Nn,m for m > n.

From Observation 18, we noted that if m > n, then m /∈ Rn and thus from Lemma 19 |bj,π(j)| < εM `−1 and for

all other k ∈ {1, . . . , `} \ {j}, |bk,π(k)| < M `. From this, the inequality follows trivially. 2

Now we turn our attention to the portion of the determinant contributed by all the permutations in H.

∑
π∈H

sign(π)
∏̀
i=1

bi,π(i) =
∏̀
n=1

det(Nn,n) (30)

=
∏̀
n=1

det(J2n(dn))

 ∏
k/∈Rn

s2n+1(dk) · s4n+2(dk)

 (31)

Notice that using the definitions for M and A, we can bound the magnitude of the following product from above
and below.

A2`2−2(α1+···+α`) ≤

∣∣∣∣∣∣
∏̀
n=1

∏
k/∈Rn

s2n+1(dk) · s4n+2(dk)

∣∣∣∣∣∣ ≤M2`2 (32)
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Lemma 21. ∣∣∣∣∣∏̀
n=1

det(J2n(dn))

∣∣∣∣∣ ≥ 2`A3` − ε2`(2` − 1)M3`−2

Proof. From Lemma 15:

∏̀
n=1

det(J2n(dn)) =
∏̀
n=1

(−2s2n+2(dn)s2n(dn)
∂s2n+1

∂y
(dn) + s2n+1(dn)(F2n(γ/2, dn) +G2n(γ/2, dn)))

We will first bound the magnitude of the term of this product that results from picking the left term of each
factor. From the definition of A we get the following bound.∣∣∣∣∣∏̀

n=1

−2s2n+2(dn)s2n(dn)
∂s2n+1

∂y
(dn)

∣∣∣∣∣ ≥ 2`A3`

All of the rest of the terms must include s2n+1(dn) for some n, and we know that |s2n+1(dn)| < ε for all n. Using
this fact and the definition of M , we observe the following inequalities.

|s2n+1(dn)(F2n(γ/2, dn) +G2n(γ/2, dn)| < ε(2M)

| − 2s2n+2(dn)s2n(dn)
∂s2n+1

∂y
(dn)| < 2M3

Clearly 2M3 > ε(2M) so each of the 2` − 1 other terms in the product are bounded above in magnitude by
ε2`M3`−2. Thus the magnitude of the product of the determinants is bounded from below by 2`A3` − ε2`(2` −
1)M3`−2 as desired. 2

Using Lemma 20, Lemma 21, and Equation 32 we bound the magnitude of the determinant of B from below.

|det(B)| ≥

∣∣∣∣∣∑
π∈H

sign(π)
∏̀
i=1

bi,π(i)

∣∣∣∣∣−
∣∣∣∣∣∣
∑

π∈S2`\H

sign(π)
∏̀
i=1

bi,π(i)

∣∣∣∣∣∣
≥

 ∏
k/∈Rn

s2n+1(dk) · s4n+2(dk)

(2`A3` − ε2`(2` − 1)M3`−2)− ε(2`)!M `2−1

≥ 2`A2`2+3`−2(α1+···+α`) − ε
(

2`(2` − 1)M2`2+3`−2(2`)!M `2−1
)

Notice that for ε sufficiently small, we have that | det(B)| > 0 and therefore the Jacobian of our desired map is
non-singular. This implies that our desired map is locally identifiable, concluding the proof. 2
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