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Abstract

Product of experts (PoE) are layered net-
works in which the value at each node is
an AND (or product) of the values (pos-
sibly negated) at its inputs. These were
introduced as a neural network architec-
ture that can efficiently learn to generate
high-dimensional data which satisfy many
low-dimensional constraints—thereby allow-
ing each individual expert to perform a sim-
ple task. PoEs have found a variety of appli-
cations in learning. We study the problem of
identifiability of a product of experts model
having a layer of binary latent variables, and
a layer of binary observables that are iid con-
ditional on the latents. The previous best
upper bound on the number of observables
needed to identify the model was exponential
in the number of parameters. We show: (a)
When the latents are uniformly distributed,
the model is identifiable with a number of
observables equal to the number of param-
eters (and hence best possible). (b) In the
more general case of arbitrarily distributed
latents, the model is identifiable for a num-
ber of observables that is still linear in the
number of parameters (and within a factor
of two of best-possible). The proofs rely on
root interlacing phenomena for some special
three-term recurrences.
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1 INTRODUCTION

Product of Experts Models In modeling com-
plex, high-dimensional data, it is often necessary to
combine various simple distributions to produce a
more expressive distribution. One way of doing this
is the mixture model, or weighted sum of distribu-
tions. Alone, however, this still requires quite expres-
sive components, which is a hindrance for modeling
data in a high-dimensional space. Product of experts
(PoE) were introduced in the neural networks litera-
ture as an antidote to this problem: the distribution is
factorized into a set of independent lower-dimensional
distributions [Hinton, 1999, Hinton, 2002]. Equiva-
lently, the overall distribution is an AND over the fac-
tor distributions (which may themselves be mixture
models).

PoEs have recently been applied to solve diverse prob-
lems requiring the generation of data that simultane-
ously satisfy numerous sets of constraints. For ex-
ample, the PoE-GAN framework has advanced the
state of the art in multimodal conditional image
synthesis, generating images conditioned on all or
some subset of text, sketch, and segmentation in-
puts [Huang et al., 2022]. In the field of language gen-
eration, a PoE with two factors, a pre-trained language
model and a combination of a toxicity expert with an
anti-expert, was used to steer a language model away
from offensive outputs [Liu et al., 2021].

However, fundamental questions about PoE models
remain unresolved. In this paper, we study a PoE
in which each observable random variable (rv) X de-
pends upon statistically independent latent rv’s U =
(Ur,...,Up). (We use a slightly nonstandard “latent
variable” parameterization of the PoE; see Sec. 4 for
the correspondence between this framework and the
standard one.)

The model here is the prior distributions on the Uj;
and the likelihoods Pr(X = z|U). We investigate the
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well-studied class of instances in which the X; and the
U; are binary and Pr(X = 1|U) can be expressed as a
product over the U;’s, namely, for some coefficients «,

4
PrX =1|U=u)=][]ju (1)
j=1

This class of models has a symmetry group ¢ involving
its latent parameters: the distribution of X conditional
on U is invariant to permutation of the U;’s, and also
to continuous gauge transformations of the parameters
(which we spell out in Sections 2.1, 3.1); due to the
latter, ¢ has positive dimension as a real manifold.

We are concerned with the following question: what is
the minimum n needed so that instances of this class
can be identified from the statistics of n independent
samples X1,...,X,,? (Specifically we focus on local
identification, see below.) It is necessary to sample
at least as many observable variables as there are pa-
rameters, minus the dimension of ¢ as a manifold.
However, the previous best upper bound on n was ex-
ponential in the number of parameters.

We show that (a) In the case of uniform priors on the
Uj’s, local identifiability holds with the least possible
number of observables. (b) In the case of general pri-
ors, local identifiability holds with at most twice the
least possible number of observables. This resolves the
previous exponential gap that existed for both versions
of this problem.

Algebraic Mappings The model described above
corresponds to a directed graphical model, or Bayesian
network, with all edges directed from latent toward
observable vertices (see Fig. 1). The independence of
the U;’s in the prior is implicit in that these vertices are
sources in this graph. The representation (1) specifies
an algebraic mapping from model parameters (namely,
the o’s and the prior distributions on the Uj) to a
probability distribution on JX.

In Section 2 the prior on each Uj; is assumed uniform,
so the mapping we are concerned with is from the a’s
to the distribution of X. Section 3 treats the general
case of arbitrary priors on each Uj.

Identifiability of a map f. If the preimage of every
point in im(f), apart from a set of measure 0 called
critical values, is a finite union of orbits under ¢, we
say the model is locally identifiable. If, further, at
non-critical values the pre-image is a single orbit un-
der ¢, then we say that the model is fully identifi-
able. In this paper, we consider a family of polyno-
mials f : R™ — R™ that (after first quotienting out
the continuous degrees of freedom of ¢) map param-
eters to observable statistics. By Sard’s theorem, the
set of critical values is of measure 0 in the codomain;
therefore, if f is anywhere a local isomorphism, then
the preimage of any point, except for the measure-0
set of critical values, is a union of isolated points. The
preimage of any point is, however, a real variety; it
must therefore be a 0-dimensional real variety, and is
therefore (by the Hilbert basis theorem) a finite point
set.

Thus, in order to show local identifiability, it will suf-
fice in the remainder of the paper to show that there
is a point in the domain at which the Jacobian of f is
non-singular.

The question of local identifiability along with the
related question of whether the model generates
all possible distributions on X, are the subjects of
much of the extensive literature about this model
and its undirected-graph variant (see below) in
the neural networks and algebraic statistics lit-
eratures  [Hinton et al., 2006,  Drton et al., 2007,
Roux and Bengio, 2008, Cueto et al., 2010,
Long and Servedio, 2010, Hinton, 2010,
Martens et al., 2013, Montifar and Morton, 2015,
Montufar and Morton, 2017, Montufar, 2018,
Seigal and Montufar, 2018].  We encountered this
question in the context of causal identification and
the classical moment problem [Gordon et al., 2020,
Gordon et al., 2021, Gordon et al., 2023].

The only prior upper bound for the number of observ-
ables required for model identification, was achieved
by treating U as a single “lumped” rv, taking on
2¢ possible values. Then there is a longstanding re-
sult [Blischke, 1964] implying an upper bound on n of
2¢+1 1. This is exponentially larger than the number
of parameters of the model.

We close this exponential gap, both for uniform and
for general priors. We introduce a general method for
showing local identifiability of these latent symmetric
models. Our main results are:

Theorem 1: In the uniform-prior case, the model
can be locally identified with n = £ 4+ 1 observables,
which is best possible, as it matches the number of
degrees of freedom of the model (after quotienting-out
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symmetries).

Theorem 16: In the general-prior case, the model can
be locally identified with n < 4¢ + 1 observables, which
18 within a factor of two of best possible.

These theorems are logically incomparable. Their
proofs share a basic structure, but the second involves
some surprising ingredients that are not foreshadowed
in the first.

Since the running time of any algorithm for identifica-
tion of PoEs from this class, is lower bounded by the
number of moments required for identification, our re-
sults open up the possibility of a fast algorithm for the
identification problem.

2 IDENTIFYING MODELS WITH
UNIFORM PRIORS

2.1 Preliminaries

The Model In this section we treat the case that
the prior on each Uj; is uniform. Then the model has
20 parameters o for j =1,...,£and b =0, 1; and (1)
yields that

Pr(X=1)=m where
¢
ajo + (2)
B = H I 5 1
j=1
and more generally
PriXi=...=Xi=1) = where

4 t t
oy + oty (3)
= I | %

j=1

Hadamard Products of Hankel Matrices It was
observed in [Cueto et al., 2010] that the RBM model
under consideration there, was a Hadamard product of
simpler models, each having only a single latent vari-
able. A similar phenomenon occurs in the directed
model we study.

For each j € [¢], define Han(n, j) to be the (n + 1) X
(n + 1) matrix with entries

a+b a+b)/2

Han(n, j)ap = (g~ + af] (0<a,b<mn).

This is a Hankel matrix of rank 2. The Hadamard
(or entrywise) product of these matrices, ranging over
1<j<{,is

H(n)ab = Hatb (0<a,b<mn).

If we had access to each individual Hankel
matrix Han(2,5), we could apply the classical

method of Prony or similar methods [de Prony, 1795,
Gordon et al., 2020, Kim et al., 2019] to determine
ajo and aj1; this method works (for an arbitrary prior
on U;) provided the Hankel matrix is rank-deficient.

However, what we have access to is only H(n) and not
the individual Han(n, j)’s. One may consider H(n) it-
self as a Hankel matrix, by ignoring the product struc-
ture on the U;’s and regarding U as a single latent
variable with range [2¢]; but then in order to have
rank deficiency, one requires the very large Hadamard
matrix H(2¢), and consequently, the Prony method is
only applicable to identifying the model if we obtain
n = 2% observables X;. This is exponentially larger
than the number of degrees of freedom of the model,
which as we see from the model (3) is merely linear in
£. As noted earlier, this exponential gap was the mo-
tivation for our investigation. We show that the linear
answer is correct: the model is locally identifiable as
soon as m matches the number of degrees of freedom
of the model (after quotienting out a continuous sym-
metry which we now describe).

Symmetries of the Model The model has both
discrete and continuous symmetries. The moments p;
are invariant to:

1. Discrete symmetries. The wreath product Ss 1Sy
(a.k.a. hyperoctahedral group):

(a) For any j, exchange ajo and a;i.
(b) Exchange any j and j'. That is, for j # 7/,
exchange oo with oo, and ;1 with ajrq.

2. Continuous symmetries. For any j # j' and \ >
0, the gauge transformation
{(ajo,aﬂ) = (Ao, Aajn),

4
(ajio, 1) = (A tago, A ayin) @)

The model can of course be identified only up to these
symmetries. We can therefore, w.l.0.g., take advantage
of the gauge symmetries to scale the parameters oy
so that for all j € [¢],

4
ajo + oy =2 =1 (5)

We see now that the model has only ¢ + 1 genuine
degrees of freedom; or, since <y is trivial to read off
from pq, that the model conditioned on v has only ¢
degrees of freedom.

If g1 = 0 the model is trivial, so from here on out we
assume y > 0.

To solve for ajo and a1, up to the symmetry between
them, it suffices, in view of (5), to solve for

a; ‘= o0 1.
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This transformation results in a family of polynomials
(parameterized by 7) ¢: in a1, ..., ag such that for any
t>1, uy = qi(aq,...,ap); fixing any m, the mapping
(g2, .., qm) of {a,...,ae} to (pa,..., py carries R
into a variety of dimension at most £. If the dimension
is ¢, then for all but a set of measure 0, specifically
at all regular points of the mapping, the image has
finitely many pre-images.

Our main result in this section is:

Theorem 1. The mapping (v,a1,...,a0) to
(p1, ..., pet1) is a.e. locally identifiable.

In the remainder of the paper, we have relegated the
proofs of some technical lemmas to the supplementary
material, and replaced lengthy proofs of important re-
sults with proof sketches.

2.2 The polynomial sequence

We require a more detailed understanding of the prob-
abilities ;. Observe that

2 2 N2 o 2 o
ajo + gy = (jo + aj1)° — 20051 = 77 — 2a

so that

Similarly:

04?0 + a?l = (ajo + ajl)g — 3(0&?001j1 + O‘joa?l)

= - 3va;

so that ps has an analogous expression. This contin-
ues. In the remainder of this Section the subscript ‘5’
is suppressed.

Lemma 2 (Three-term recurrence). Letting a =
apaq, (aft + af")/2 can be written as a polynomial
Pm(a) satisfying the three-term recurrence

Do (0’) = 17

pi(a) =7/2,

Pn(a) = YPm—1 — aPm—2, M >2. (6)
Proof. This is the Newton identity relating power and
elementary symmetric functions, specialized to the
two-variable case; v is the first, and a is the second,
elementary symmetric function of ag and ;. m|

The recurrence (6) resembles the familiar recurrence
of orthogonal polynomials, but differs significantly in
that the variable (here a) multiplies p,,_o rather than
Pm—1. In particular the polynomials p,, are not of
incrementing degree in a.

(We note however that at the particular value a = 1/4,
these polynomials as functions of y are rescalings of the
Chebychev polynomials of the first kind.)

Observation 3. The polynomials p,, defined above
satisfy the following:

1. The degree of pm(a) is [m/2].
2. pm(0) =~™/2 for m > 1.

3. The leading term of py,(a) has a negative sign if
|m/2] is odd, and a positive sign if [m/2] is even.

Proposition 4 (Interlacing). po and p1 are positive
constants. For any m > 2:

1. The roots of p,, are simple and contained in
the interval (0,00); denote them fpm1 < ... <

Bm,[m/QJ .

2. 0< Bt < Bm-1,1 and Brm—1,i—1 < Bm,i < Bm—1,
fori = 2,...,\m/2]. If pm has degree greater
than py,—1 then ﬁmfl,t(mfl)/% < Bm,[m/ZJ'

(For m = 2 this requires the convention 19 =
0,61,1 = 0.)

Proof sketch. By induction. Let m even for sim-
plicity. By the three term recurrence, py,(Bm—-1.) =
—Bm-1,iPm—2(Pm—1,). By induction, this sign al-
ternates as ¢ ranges from 1 to m/2 — 1, giving
m/2 — 2 roots by the Int. Val. Theorem (IVT).
Moreover, p,,(0) = v™/2 > 0, and pp,(Bm-11) =
~Bm-1,1Pm—2(Bm-1,1) < 0 because B, 1,1 < Bm-21,
accounting for another root. The last root can be
found by observing that the sign of the leading term of
Pm is opposite of p,,—1, Pm—2 and the IVT. Full proof
deferred to Appendix A.1. m]

2.3 Identifiability of latent symmetric
models: the method

We now describe the algebraic tool which enables the
proof of Theorem 1. Consider a sequence of £ univari-
ate polynomials Py,..., P;. (We will eventually sub-
stitute the P’s of the previous Section.) Let y1,...,ys
be indeterminates, and y = (y1,...,y¢). Construct
symmetric polynomials in the y; by taking products
as follows:

¢
m(y) = HPm(yj)-

Proposition 5. Suppose that for every m € [{], P,
has a root n,, that is simple and is not a root of
Py,...,P,_1. Then the mapping My where

(W15 90) = (@1 (y), - qe(y))

is locally identifiable.
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Proof sketch. We aim to construct a full-rank diagonal
Jacobian. If ¢ is the indeterminate for P;, then

O¢; _ 0P '

Note that OP;/0a(n;) # 0 by simplicity of roots and
P;(n;) = 0, giving us a mechanism to force off-diagonal
entries to be zero and hope that on-diagonal entries are
nonzero. By composing M, with another function, we
are able to achieve this exactly. Full proof deferred to
Appendix A.2. A proof of a more general version of
this proposition can be found in Appendix A.3. a

Proof of Theorem 1. Since -~y is identified from w1, we
have only to show that for any fixed v > 0, the map-
ping {a1,...,ae} — (pa,..., pe+1) is locally identifi-
able.

To show this we apply Prop. 5 with the polynomials
P, = pm41 for m = 1,...,¢ (for p,, as defined in
Lemma 2), and the root 7, of P,, being the point
Bm+1,1 provided by Prop. 4. ]

3 IDENTIFYING MODELS WITH
GENERAL PRIORS

3.1 Preliminaries

We now treat the more general setting where U; have
arbitrary priors, specified by the parameters

7Tj = PI(Uj = 1).

Because the U;’s are not uniformly sampled, the mo-
ments will take on a different form than before (we call
the nth moment g,):

Gn =Pr(X;j=---=X,=1)
L
= > [Imwej,
uef{0,1}¢ j=1
L
= H ((1 — 7Tj)0é?0 + ’ﬂ'jOZ;-Ll)
j=1
L
= [ rnlao, aju,m)) (7)
j=1

where we define r,(ag, a1, m) = maf + (1 — m)agy. We
may view 7,(cjo, @ 1,7;) as the contribution of U; to
the moment g, .

Symmetries of the Model The model has discrete
and continuous symmetries as before. The moments g;
are invariant to:

1. Discrete symmetries (hyperoctahedral).

(a) For any j, exchange «jo and «;1, and replace
m; with 1 — ;.

(b) Exchange any j and j’. That is, for j # j/,
exchange aj o with o9, o1 with a;q, and
m; with 7.

2. Continuous symmetries. For any j # j' and \ >
0, the gauge transformation

(jo,aj1) = (Aajo, A1),
(ajio, 1) = (A tagio, A agn)

Of course, the model may only be identified up to these
symmetries. Therefore, as before, we use the gauge
symmetries to scale our parameters such that for all
j € [0, letting v = Pr(X; = 1)¢, we have that
r1(ajo, a1, m;) = 7. Asin Sec. 2, the model is trivial
if ¥ = 0, so we assume throughout that ~ # 0.

3.2 Polynomial sequences

It will be convenient to make the change of variables
0; = 2mj—1. Due to the factorization (7), we can while
studying the polynomials 7, focus on an arbitrary j,
and drop the indices j until we return to treating the
polynomials ¢g. We can now write

ol + ag o

af —«o
rn =mal + (1 —maf = 5 +o 12 v,

Let d = (a1 — ) /2, expanding 7, for n > 1 we get:
T =2(y — 0d)rn_1 — [(v — 0d)? — d®|r_s (8)

The derivation for this recurrence can be found in Ap-
pendix A.4. We make a final change of variables to
replace (o,d) by (z,y): * = — od and y = d?. (This
is invertible after quotienting by the hyperoctahedral
symmetry of the model.) This yields the following
three-term recurrence:

To (LL', y) =1
ri(z,y) =~
Tn(-r7 y) =22rn-1 — (xQ - y)rn—2~
It is helpful to define the following family of polynomi-
als (py), which are very closely related to the polyno-
mials (r,,). In particular, we will see in the following
proposition that they are the “coefficient polynomials”
of the r,.
p-1(z,y) =1
po(z,y) =2z
Pa(@,y) = 22pn_1 — (2° = y)pn_2



Identifiability of Product of Experts Models

Proposition 6. Forany 0 <k<n-—1,

2
Tn = PkTn—k—1 — (&7 — Y)Ph—1Tn—k—2

Pn = PkPn—k—-1 — (SC2 - y)quPnfkfz

Proof. By induction over k. Full proof deferred to Ap-
pendix A.5. O

In analogy to Section 2.2, where we studied the roots
of the univariate polynomials p,,, we now need some
understanding of where each r,, (which is bivariate, in
variables z,y) is zero.

Notice that r;(0,0) = 0 for all ¢ > 2. Since this is a
common zero for all r;, i > 2, we call this the trivial
zero. The proof of the following statement is in the
supplementary material.

Lemma 7. Fori > 2 the only zero of r; on the curves
x =0 and 22 = y is the trivial zero.

Proof deferred to Appendix A.6.

3.3 Common Zeros

A new phenomenon that we encounter, unlike in Sec-
tion 2, is that we need to identify common zeros of
ri,r; for i # j. First we make the following observa-
tion.

Lemma 8. For no i is there a nontrivial zero shared
by r; and r;41, or by r; and ri42.

Proof. Pick the smallest such ¢ for which either claim
fails, and let (x0,y0) be a nontrivial zero. We know
from Lemma 7 that g # 0 and a3 # yo. If the
claim fails because r; = r;yo = 0, then writing
Tiya = 2xorit1 — (23 — yo)ri, we see that necessarily
also 7,41 = 0. Then

rig1 = 2zor; — (2§ — yo)ri—1

0= (:v3 - yO)Tifl

Since 2 # yo, it follows that r;_; = 0, which contra-
dicts the minimality of i. |

The structure of pairwise-common roots in the (x,y)
plane is complex and has two especially interesting re-
gions: the line 2 = /2 and the parabola y = 22 — +2.
The remainder of our analysis relies on common roots

within the first of these regions.

3.4 Restricting to the line z = /2

On this line we have the recurrence:

r(1/2,9) = Yrn—1 — (¥ /4 — y)rn_2 (9)

Since po(v/2,y) = 7, the initial conditions for the p
polynomials and 7 polynomials are identical evaluated
on the line:

p71(7/2; y) = ’I"()(’Y/Q, y)

PO('V/Z y) =T (7/27 y)
Observe that both p and r polynomials have the
same recurrence on the line, so it must be true that

rn(¥/2,9) = Pn—1(7/2,y). Now consider the univari-
ate polynomials defined by the following recursion:

so(y) =0

si(y) =1

sn(y) = vsn-1 = (V2/4 = y)sn—2
Notice that 7,—1(7/2,vy) = pn—2(7/2,y) = sn(y), thus
we will turn our attention to the zeros of the s poly-

nomials. From Proposition 6 we have the following
corollary:

Corollary 9. Forall2 <k <n-—1, s, = SpSp—k+1 —
(Y?/4 = y)s—15n—k-

We can now prove the following, which has no analogue
in the uniform-priors case but is key to the general-
priors case.

Theorem 10. ged(s;, sj) = Sged(i,j)-

(Note, this is ged in the ring R[y].)

Proof. The theorem will follow from showing that:

If j > i then ged(s;, s5) = ged(si, sj-i). (10)

To show (10): In Corollary 9, since j > i, we can
substitute n = j and k =7 + 1 to obtain:

sj = Si418j—i — (V2/4 = y)sisj—i—1

This shows ged(s;, sj—i) | s; therefore ged(s;,sj—i) |
ged(s;, s5).  This also shows ged(s;,s;) | Sit15j—i-
From Lemma 8, s; and s;1 are relatively prime, it fol-
lows that ged(s;, s;) | sj—i. Consequently ged(s;, s;) |
ged(s;, 85—4)- a

3.5 Simple roots of s, polynomials

We aim to show here that the roots of s, are simple
and real. We start with some useful properties. Recall
that v € (0,1].

Lemma 11. For every n > 1,

1. The leading coefficient of s, is positive.

2. s,(0) =n(F)""t>0.
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3. The degree of s, is |“5*].

Proof deferred to Appendix A.7. Using Lemma 11 we
exhibit an interlacing property of the polynomials s,
with similar proof to Prop. 4.

Lemma 12. For kK > 3, sg has real roots
Br,s - Br, | (k=1)/2], satisfying the following: (a) For
n>1, Bont1,1 < Pont <+ < Bopn—1 < Bans1,n < 0.
(b) For n > 1, —00 < fapnt1,1 < Pong21 < - <
B2n+1,n < ﬁ2n+2,n < 0

In particular, each sj, has only simple roots.

Proof deferred to Appendix A.8.

3.6 Decomposition of the polynomials s,

Theorem 10 and Lemma 12 actually imply that the
polynomials s,, have considerably more structure than
already revealed. This will be essential to our results.

Lemma 13. There are real polynomials h,, such that
hn has only simple real roots, ged(hp,hy) = 1 for
n # m, and for every n,

su(y) =[] haw)- (11)

d|n

Proof. We prove this by induction on n. For the gcd
claim, while treating n we address only m s.t. n { m.

Since s; = 1, the factorization and real-roots claims
hold for n prime, with h,, = s,; the gcd claim follows
from Theorem 10.

For n composite, we know from Theorem 10 that s,
shares the roots of every sq, d | n; by the inductive
hypothesis this is equivalent to saying that s, is divis-
ible by Hd‘n7d<n ha(y). Since s, has only simple roots,
any remaining factors of s,, cannot be shared with any
hq for d | n,d < n. Set h, = s,/ (Hdmkn hd(y)>.
Again, since s, has only simple roots, h, is rela-
tively prime to every hgq,d | n. It remains to show
that h, is relatively prime to h,, for n { m. Since
gcd(8n, 5m) = Sged(n,m), Which does not include any
factors of h,,, we know that h,, is relatively prime to
Sn, and therefore to h,,. O

We will refer to the h, as “atomic polynomials” to
recognize that they are what compose the s, polyno-
mials. Next we wish to work out their degrees, which
we denote f(n) = degh,,.

Lemma 14. f(1) = 0, f(2) = 0, and for n > 2,
f(n> = % Hq prime, q|n(1 - 1/q) > 0.

Proof deferred to Appendix A.9.

For every n > 2, therefore, h,, possesses a nonempty
set of simple roots, called the atomic roots of h,, or s,;
these are roots of s, if and only if n | m. See Fig. 2.

Figure 2: The roots of s3,s5, and s15. The blue, red
and orange dots represent the roots of the hg, hs and
h1s atomic polynomials respectively. For better spac-
ing, the transformation = +— log(—z) was applied to
the horizontal axis.

3.7 Identifiability: the Jacobian at perturbed
common roots

In this section we finally show how to generalize the
method of Sec. 2.3, by leveraging roots shared between
pairs of s,’s. Unlike in the basic method introduced
in Sec. 2.3, it will not work to evaluate the Jacobian
of the mapping exactly at a point specified by these
common roots; instead, it will be necessary to slightly
perturb the evaluation point.

For any pair r; and 72,41, let J; be the Jacobian of the
map (z,y) — (ri(z,y),r21+1(x,y)). Proposition 6 tells
Us 7941 = pi_17it1 — (2% — y)pi_ari, we compute the
partial derivatives of r9;41 using this expression and
the determinant of J; simplifies to:

<3Tz' Opi—1 Or; Opi—1
Tit1 -

i—1F; +riGy (12
Jdr Oy dy 8x)+p1 +riGi (12)

o 87”7; 8ri+1 . 8ri 8ri+1
Yoz Oy Oy Oz

G = pi—2 (8m + 2938”) —(2*—y) (14)

(13)

Oz oy
Or; Opi—2  Or; Op; 2
— 1
<8x Oy Jy Oz ) (15)

The proof of the following Lemma follows from using
Proposition 6 to write both r; and p;_1 in terms of
pi—2 and p;_3 then simply plugging in = /2 into
Equation 12. The proof in its entirety is in the sup-
plementary material.

Lemma 15. On the line x = v/2 the determinant of
Ji 18 —251'_;,_25@8%;1 + S,’+1(Fz‘ + Gz)
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Proof deferred to Appendix A.10.

Now we state the main theorem of this section.

Theorem 16. The map (x1,y1,...,Te,Ye)

(q27 g5, -y92n,44n+1, - - -, q2¢, CI4Z+1) 18 lOCGHy zdentzﬁ—
able.

The proof of this statement is lengthy and we have de-
ferred it to Appendix A.11, but we will show the proof
of a simpler case. Let p; be the ith prime. Consider
the following map:

yApey1—1s q2pe+1*1)
(16)

(‘rla s 7?»/[) = (qp2*17q2p2717 cee

We can explicitly write down the entry in the ¢th
row and the jth column of the Jacobian evaluated at

(Z1,91,-..,%¢,y¢). Suppose i =2n—1and j = 2m—1:
67“ nt1—1
pa%(xmyn) ) H T:Dn+1(33k7yk) (17)

k#n

If ¢ = 2n, the term rp, 1 is replaced with rgp,, ., 1
and when j = 2m the partial is taken with respect to
y instead. This allows us to look at the determinant
in 2 x 2 blocks.

Now pick the point to evaluate the Jacobian as follows.
Let ¢; be a root of sp,,, which exists since p;11 > 2
SO Sp,,, is non-constant. From Theorem 10 we know
that this is also a root of sz, ., and so (7/2,¢;) is a
root of both 7y, ., 1 and 79,, , 1. Recall all roots of
s polynomials are simple so for all i:

0Sap,
ot 0/26) £0 (19)
It follows from Equation 17 that all entries not
on a diagonal block of the Jacobian evaluated at
(v/2,¢1,...,7/2,¢¢) are zero. This makes the Jaco-
bian block diagonal; the determinant of each diagonal
block is:

H S2pita (Ck) “Spita (Ck) ’ det(‘]p7‘,+1—1(7/23 Cz))
ki

From Theorem 10, for ¢ # j € [{] in the ring R[y]
we see ged(sgp,,sp,) = ged(sy,,5,) = s1 = 1 and
ged(sap,, S2p,) = 82 = ¥ 80 ¢ is only a root of s,
and sz, ,. Applying Lemma 15 and using Equation
18 we see that the determinant of each diagonal block
is non-zero. Since the determinant of the Jacobian
is the product over the determinant of each diagnoal
block, it is non-zero and the map defined by Equation
16 is locally identifiable.

Unfortunately, this method cannot be generalized to
prove Theorem 16 because the polynomials s9;41 and

S2;j41 are not relatively prime in Rly]. However, by
e-perturbing atomic roots, we can bound the order of
each entry of the Jacobian. By scaling the Jacobian
evaluated at these perturbed roots, all of the entries in
2 x 2 blocks above the diagonal scale with some small
e. It is well known that for a block lower-triangular
matrix, the determinant is the product of its diagonal
blocks because any permutation that selects an entry
not in the diagonal block is either zero or will force the
permutation to select a zero in the other half. Analo-
gously, we show that the determinant of the product
of the diagonal blocks contains a term independent of
€ and all other terms contributed to the determinant
scale with e. We then pick e sufficiently small so that
the matrix is non-singular, showing local identifiabil-

ity.

4 CORRESPONDENCE BETWEEN
THE LATENT VARIABLE
FRAMEWORK AND THE
STANDARD PoE FRAMEWORK

Here, we justify the correspondence between the model
discussed in this paper and the traditional formulation
of the PoE. The PoE is often discussed in the litera-
ture; we will use [Oneto and Vannieuwenhoven, 2023]
as a recent reference point. They define the PoE’s
distribution by a normalized Hadamard product of
weighted rank 1 tensors. In comparison, in our model,
the observable statistics are precisely the set of prob-
abilities that a given subset of the m observable bits
equal 1, and the rest equal 0. In other words, if we
let X = (X1, Xo,...,X), then the observable statis-
tics are Pr(X = s) for s € {0,1}™. Since in our
model the X; are i.i.d. conditional on the latents,
and hence exchangeable, Pr(X = s) = Pr(X = ¢) if
w(s) = w(s") where w is the Hamming weight, so the
statistics Pr(X; =--- =Xy =1),fort =1,...,m are
sufficient to describe the full set of statistics. To see
the correspondence with the standard PoE formula-
tion, note that we may write our statistics in the form

of the 2 x -+ x 2 (m times) tensor (® is Hadamard
product):
1o I
w=Qafo] vl 7) o

Compare  this  with  Eqn.
[Oneto and Vannieuwenhoven, 2023]
index /):

(1.3) in
(using  our

P=X\-2Uo...000 (20)

where A is a normalizing (partition function) factor.
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Thus M and & have precisely the same form, except
that in our case, we are missing the normalization fac-
tor A\, because the entries of M do not themselves add
up to a probability distribution; rather they are the
probabilities of certain events. Specifically, if w(s) =¢
for s € {0,1}™, then from Eqn. (19):

¢
Mls] = H (1 =mj)aby+maf)) =Pr(Xy =+ X,
j=1

However, in both our formulation and the standard
PoE formulation Eqn. (20), the identification problem
is that of producing the decomposition of a tensor of
precisely the same type.

5 DISCUSSION
Related work: undirected
models. The conditional distributions
X that occur in our model (1) agree with
those of  Restricted Boltzmann Machines
(RBM) [Ackley et al., 1985] (a kind of Markov
random field model), and particularly the “harmo-
nium” [Smolensky, 1986, Freund and Haussler, 1991]
special case. An RBM is an undirected graphical
model comprising one layer of latent random variables
U, one layer of observable random variables X, and
satisfying that the X, are independent conditional on
U. An RBM is often written in the following form:

graphical
on

1
Pr((X,U) = (z,u)) = 7 exp(—zWu' — 2b" — cul)
(21)
where Z = Y exp(—aWu' — 2b" — cul). The de-
pendence of X on U can be expressed:

Pr(z|u) = exp(—zWu' — 2b" — cu’ — d) (22)
where d = =37, log(l a;jo); b =
$.5.0 . — 1-aija, —

_ Zj log 1faj’?7o, ¢ = —y log 1727;;, o=

—log fhii=reisy.
rected graphical model because each coefficient
Wi;; is regarded as an energy associated with the
unordered pair of sites {i,j} (i observable, j latent).
The conditional distributions Pr(X|U) in (22) have
the same form as in our model (1) (or its more
general version in which the X; are only conditionally
independent)—but (22) does not allow imposition of
a chosen product distribution on U as the prior, and
in fact, generally the U; will not be independent in
the distribution (21).

This is referred to as an undi-

The conditional distributions of RBMs enable expres-
sive statistical models with relatively few parameters.
For this reason and because of the connection to lay-
ered networks, RBMs have been extensively studied in

the neural networks and algebraic statistics literatures
(citations above). An interesting recent (and indepen-
dent) contribution in this literature concerns identifi-
ability [Oneto and Vannieuwenhoven, 2023], but there
are no obvious implications in either direction between
the works. (The main thing to note is that it relies
for identifiability on the Kruskal condition. That con-
dition does gives an upper bound on the number of

" observables required but if one works out the bound,

one sees that it cannot be less than 21 — 1. But the
slightly better bound of 2¢ was the exponentially-large
bound that we set out to rectify. Second, one should
note that that work addresses a somewhat more gen-
eral class of models, but then relies upon a general-
position assumption about the input, an assumption
we do not make, and that is also not valid in our set-
ting of conditionally-iid Xj.)

Open questions A fundamental issue is whether
there is an algorithm for efficiently identifying the
model from its statistics. Settling this in the positive
would be the ideal way also of proving full identifiabil-
ity.

A natural question is whether the product in Eqn. (3)
can be replaced by other symmetric functions; even
more generally, one may consider the situation in
which the effect of the latent variables Uy,...,U; on
the observable variables is invariant not under the per-
mutation group Sy but under, say, a transitive sub-
group of Sy.

A full understanding of this family of problems re-
quires also extending to non-binary X; and U;. The
lead of [Fan and Li, 2022] may be useful toward the
case of non-binary X;. It appears more challenging to
address non-binary U, as this demands replacing our
two-dimensional space (x,y) by a higher-dimensional
space and, perhaps, generalizing our approach through
pairwise-common zeros, to zeros shared by larger as-
semblies of polynomials.
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Checklist

1. For all models and algorithms presented, check if

you include:

(a) A clear description of the mathematical set-
ting, assumptions, algorithm, and/or model.
[Yes] See Section 1, Products of Experts
Models, Section 2.1, and Section 3.1

(b) An analysis of the properties and complexity
(time, space, sample size) of any algorithm.
[Not Applicable]

(¢) (Optional) Anonymized source code, with
specification of all dependencies, including
external libraries. [Not Applicable]

. For any theoretical claim, check if you include:

(a) Statements of the full set of assumptions of
all theoretical results. [Yes]

(b) Complete proofs of all theoretical results.
[Yes] Some proofs are in the supplemental
material because they do not fit in the main
paper

(c) Clear explanations of any assumptions. [Yes]
See Section 1 Products of Experts Models,
Section 2 Symmetries of the Model, and Sec-
tion 3 Symmetries of the Model

. For all figures and tables that present empirical
results, check if you include:

(a) The code, data, and instructions needed to
reproduce the main experimental results (ei-
ther in the supplemental material or as a
URL). [Not Applicable]

(b) All the training details (e.g., data splits, hy-
perparameters, how they were chosen). [Not
Applicable]

(¢) A clear definition of the specific measure or
statistics and error bars (e.g., with respect to
the random seed after running experiments
multiple times). [Not Applicable]

(d) A description of the computing infrastructure
used. (e.g., type of GPUs, internal cluster, or
cloud provider). [Not Applicable]

. If you are using existing assets (e.g., code, data,
models) or curating/releasing new assets, check if
you include:

(a) Citations of the creator If your work uses ex-
isting assets. [Not Applicable]

(b) The license information of the assets, if ap-
plicable. [Not Applicable]

(c) New assets either in the supplemental mate-
rial or as a URL, if applicable. [Not Applica-
ble]

(d) Information about consent from data
providers/curators. [Not Applicable]

(e) Discussion of sensible content if applicable,
e.g., personally identifiable information or of-
fensive content. [Not Applicable]

5. If you used crowdsourcing or conducted research

with human subjects, check if you include:

(a) The full text of instructions given to partici-
pants and screenshots. [Not Applicable]

(b) Descriptions of potential participant risks,
with links to Institutional Review Board
(IRB) approvals if applicable. [Not Appli-
cable]

(¢) The estimated hourly wage paid to partici-
pants and the total amount spent on partic-
ipant compensation. [Not Applicable]
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A DEFERRED PROOFS

A.1 Proof of Proposition 4

Proof. We induct on m. The Proposition holds for m = 0,1. Now py = —a +~2/2 which has a root at 72?/2 and
ps = y(—a+~%/2) — ay/2 = —3va/2 + /2 which has a root at v2/3.

Now fix any m > 2. Let d = deg(pm—2), so d + 1 = deg(py,). By the inductive hypothesis, 0 < B,—11 <
Bm—21 < Bm-12 < -+ < PBm-1,d < Bm-24- I deg(pm-1) = d+ 1 > deg(pm), then there is an additional
root Bm—1,d+1 of Pm—1 With By—2.4 < Bm—1,4+1. Since we’ve accounted for every root of p,,—; and p,,—2, the
value of p,,_1 must alternate between strictly positive and strictly negative on the sequence of open intervals

(=00, Bm-1,1); (Bm-1,1,Bm-1.2), (Bm-1,2,Bm-13)s-- -, (ﬁm—l,L(m—l)/QJ ,00), and p,,_» alternates in sign on the
intervals (—o0, Bm—21); (Bm-2.1;Bm—-22),---, (Bm—2,4,00). Now we compute
Pm(Bm—-1,1) = YPm—-1(Bm-1,1) — Brm—1,1Pm—2(Bm—1,1) = —Bm-1,1Pm—2(Bm-1,1) <0
pm(6m72,1) = ’Ypmfl(ﬁmfll) - ﬂm72,1pm72(6m72,1) = ’Ypmfl(ﬂmle) < 0.

By Observation 3, p,,(0) = 7™ /2 > 0 so there must be a root of p,, in (0, Br—11).

For 1 < i < d, Bm-1,i € (Bm—2,i-1,0m—2,) and Bpm_2i € (Bm—1,i,Pm—1,i+1). Moreover, pp,(Bm—1) =
—Bm-1,iPm—2(Bm-1,i) and Pp(Bm-2:) = YPm-1(Bm=2,i), 50 sign(Pm(Bm-1,i)) = sign(Pm(Bm-2.)) =
—sign(pm (Bm—1,i+1)). We conclude that there is a root of p,, in the interval (8m—2., Bm—1,i+1) for 1 <i < d.

We’ve shown that there are roots of p,, in each of the intervals (0, Bn—1.1), (Bm-2,1,8m-1,2), (Bm-2,2, Bm—-1,3)s-- -,
(Bm-2,d-1, Bm-1,4)- If deg(pm—1) = d + 1, then by the same logic there is also a root in (Bm-2.d, Bm—1.d+1)
and the proof is complete. If deg(p,,—1) = d, then the leading term of p,, has a different sign than the leading
terms of p,,—1 and P,—o2. Since sign(Pm(Bm—-2,4)) = sign(Pm—1(Bm—2,4)) and B,_2,4 is greater than all the
roots of p,,—1 it must be the case that sign(pm,—1(y)) = sign(pPm—1(Bm-2,4)) for all y € [Bm—_2,4,00). But
limy 00 Pm(y) = —limy—00 Pm—1(y), so there must be a root of p,, in (By—2.4,00). We've thus accounted for
all d + 1 roots of p,,. o

A.2 Proof of Proposition 5

Proof. Tt suffices to show that there is a point at which the Jacobian of the mapping is nonsingular. In what
follows for a rational function g let M (g,n;) denote the multiplicity of n; as a root of g; if 1, is a pole of ¢g then
—M/(g,mn;) is the order of the pole.

By assumption, M(p;,n;) =0 for j > i and M(p;,n;) =1 for all j.

We now construct a sequence of rational functions rq,...,r, satisfying (with d;; = Kronecker delta):
M(ri,nj) = (5”

First, we set 1 = p1, since M (p1,n;) =0 for all j > 1.

Inductively we construct r; for ¢ > 2 as follows:

i—1

T = Di H T;M(pimi/). (23)

=1

By construction, M (r;,n;) =0 for j < and M(r;,n;) = 1. Moreover, M(r;,n;) = 0 for j > i since

M(pi,m;) = M(ry,m5) = - = M(ri—1,n;).

Define s;(y) = H§:1 ri(y;) for ¢ = 1,...,¢ so that s; is the product of r; evaluated at each indeterminate, just
as ¢; is the product of p; evaluated at each indeterminate. In fact, we have

i—1
—M(pi,n;r)
S; = q; H Sy .

i'=1
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Let @Q and S be the following mappings:

Q S
W1, ye) = (a1, qe) = (515, 80).

Consider the Jacobian of S o @, evaluated at the point n = (11,...,7n¢). By construction

887;
Jy;

m) = | [ ritmi) | ritny)- (24)
J'#J
Now
[Iritmi) #0 = i=3
J'#3
since 7;(n;) = 0 and M (r;,n;) = 0 for any j # i. Moreover, r;(n;) # 0 since 7; is a simple root of r;, so we

conclude that g;i (n) #0 <= i =j. Thus, the Jacobian is a diagonal matrix with non-zero diagonal entries

and is therefore invertible. The Proposition follows. ]

A.3 General condition for applying root and pole information

Here we provide a more general version of Proposition 5. Observe that the process (23) is effectively Gaussian
elimination on the rows of the matrix M, which starts out lower-triangular with 1’s on the diagonal. Carried
further this yields:

Theorem 17. Let p1,...,ps be univariate rational functions and let q;(y) == H§:1 pi(y;) fori=1,...,¢. Let
m,...,NL be the points which are roots or poles of any p;. Then the mapping (y1,...,ye) — (q1(y),...,qe(y)) is
locally identifiable if and only if the £ x L matriz M (p,n) with (i, j) th entry M (p;,n;), has rank { over Q.

Proof. Only If: Let v € Z* be a linear dependence of the rows, v - M(p,n) = 0. Then Hf,zl qir(y)¥ factors
as []; Hf/zl pi'(y;)¥". By construction Hf/:1 pir(n;)"" is nonzero and finite for every 1 < j < L. Furthermore
Hf,zl pir(x)¥ is nonzero and finite for all ¢ {n,...,n.} because for such x every p;(z) is nonzero and
finite. Thus, Hf/=1 pf}" is a rational function without finite roots or poles, and therefore a nonzero constant.

So Hf/:1 qi(y)¥ is a nonzero constant. Consequently, the parameterized variety ¢(y) = (q1(y),-..,qe(y)) has
codimension at least 1 in C*.

If: Without loss of generality suppose the submatrix of M (p,n) in columns 1,...,¢ is nonsingular. Let N be a
matrix with integer entries such that N - M (p,n) = (D | B) where D is a diagonal matrix with positive integer
entries on the diagonal, and B is any ¢ x (L — ¢) matrix; | denotes concatenation. Define the rational functions

4
i'=1

By construction, for j < ¢, M(r;,n;) = D,;. Define s;(y) = H§=1 ri(y;) for i =1,...,¢ so that s; is the product

of r; evaluated at each indeterminate, just as ¢; is the product of p; evaluated at each indeterminate. Then

4
siy) = [[ e )™
i'=1

Unlike in the proof of Prop. 5, it is not sufficient to consider the Jacobian of the mapping

(Y1,---,ye) = (S1,...,80)

because this Jacobian is singular if any D;; > 1. However, we show the mapping is dimension-preserving by

examining its expansion in a small neighborhood of (7y,...,m¢). Observe, as in (24), that
aksi k
g, 0 = | TLritn) | (). (26)
j

J'#d
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with rgk) being the k’th derivative of r;. More generally, if k = (ki,...,ke), |k| = > kj, sgk)(y) =

ok ok
6"1;1 e W;Si(y)’ then
E k;
st (m) = T ri™ ().
J
Let s = (s1,...,8¢). In a small neighborhood of 7, s expands in terms of those nonzero partial derivatives (E)

for which k is minimal in the standard partial order on the nonnegative quadrant. For each s; this minimizer is
unique, (0,...,0,D;;,0,...,0). Thus (applying (26)), for small € = (e1,...,e¢), s(n + €) expands as

D D
(s1)seese) + (| T ralm) | 70 et | T retng) | ™ (o)™
J'#1 J'#
This mapping carries ¢ in a small open neighborhood of 0 in C*, onto an open neighborhood of s(7). O

A.4 Derivation for Equation 8

Observe that rg = 1 and recall that we have set r; = 7. Note that 2(y—od) = a; +ag and (y—0d)? —d? = a1 ap.

a4+ an a — al
o 1 5 0 +o 1 5 0
anfl + anfl anfl _ anfl an72 +an72 an72 _ an72
:(a1+a0)(1 20 +01 20 — apay 1 5 0 + 1 20

= (o1 4+ ag)rpn—1 — payrTp—o = 2(y — od)rp—1 — [(v — ad)2 — dQ}Tn,g

A.5 Proof of Proposition 6, Section 3.2

Proof. Fix n, and induct on k. k = 0 is immediate from the definitions. The proofs for r, and p,, are essentially
identical as they rely only on the three-term recurrences (which are the same) and on the initial conditions p_
and pg. We write out the argument for r,,: it amounts to showing that the expression for k£ equals that for k4 1:
PkTn—k—1 — ($2 — Y)Pk—1Tn—k—2 = Pr(207Tn -2 — (902 —Y)Tn—k-3) — ($2 — Y)Pk—1Tn—k—2
= n_k—2(2xpr — (2> — y)pr—1) — (4° — Y)prra—k—s

= Pk+1Tn—k—2 — ($2 - y)Panszfa

O
A.6 Proof of Lemma 7 (Zeroes of 7, on z = 0,2% = 3)
Proof. First, for 2 = 0 the recursion takes the form r,(0,y) = yr,_2, and so:
0.4) 2l if n=0 mod 2
rn (Y, = .
Y yln/2 ifn=1 mod 2
This implies that if r,(0,y) = 0, then y = 0. (Notice that this also forces n > 2.)
Second, for x2 = y: here the recursion takes the form r, (z, 2?) = 227, (z,?), and therefore we have r,,(z, 7?) =
v(2z)"~t. Therefore if 7, (z,2?) = 0 for n > 2 then z = 0. m

A.7 Proof of Lemma 11, (Properties of s, polynomials on the z = v/2)

Proof. Clearly, these statements are true of s; and so. Now suppose n > 2. For Part 1, observe that the leading
coefficient of s, _; is positive by the inductive hypothesis, and the same is true of ys, o — (y2/4)s,_2. Thus
the leading coefficient of s,, is positive. For Part 2, observe:

2 2

50(0) = ¥82-1(0) = rs02(0) = 7(n = ()" 2 = T(n = 2)()"* = ()"
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For Part 3, first suppose n is odd. Then s,_1,s,_2 have the same degree and so s, has the same degree as
YSn—2, which is (n — 1)/2. If n is even, then s,,_; has degree (n —2)/2 and s,,_5 has degree (n —4)/2. Since the
leading coefficients of ys,,_; and (y — 7?2/4)s,_o have the same sign by the inductive hypothesis, the degree of
Sp is (n — 2)/2. m|

A.8 Proof of Lemma 12 (Roots of s,, are simple)

Proof. 1t is easy to check that 331 = —%, Ban = —i, so f33.1 < P41, and they are both contained in the interval
(—00,0).

We proceed by induction for all n > 1, treating (a), (b) separately.
(a) Observe that for ¢ € [n — 1],

2

52n+1(62n,i> = - (1 - ﬁ2n,i) SQn—l(/BZn,i)-

2
By the inductive hypothesis, 82,,,; < 0, 50 4= — B2, ; is positive, and for convenience we will denote it by ¢;. Now
note as we range over all 4, the sign of s9,,—1(82n,;) changes every time we increment i because sg,_1 interlaces
Son, by the inductive hypothesis. By the Intermediate Value Theorem, we have found n — 2 roots in the intervals
(Ban.i, Bon,it1) for i =1,...,n — 2. We have two more roots to account for. Note

s (s2,41(Fan.)) = = sign(szn-1 (o)) = sign (1 _sanos(0)) = —sign ( Tin_s2,10)).

The first equality holds by the recurrence relation; the second equality holds because B2;,—1,1 < B2n,1, and the
third equality holds because the degrees of s9,_1,S2,41 are different by 1. Thus, so,41 has an odd number
of roots, and therefore one root, in the interval (—oo, f2,,1). Finally, observe that s2,—1(82n,n—1) > 0 because
B2n—1.n-1 < Bann—1 and sa,_1 has positive leading coefficient by the previous lemma. Thus, sap4+1(S2n,n—1) < 0.
Since s2,41(0) > 0, s2,,41 has a root in the interval (B25,,—1,0). Thus we’ve accounted for all n roots of sgy41,
and shown that they are all negative and interlace the roots of sa,.

(b) We now show that the roots of ss,,12 interlace those of sg,4+1 and 0. First, observe that sapi2(B2nt1,i) =
—¢;iSon(Bant1,4) for i = 1,...,n, where we have made the obvious change of definition for ¢; > 0. Since
Son(Ban+1,:) changes sign every time we increment 4, by the Intermediate Value Theorem, sg,42 has at least
one root each in (Ban+14, Bont1,i41) for i = 1,...,n — 1. Finally, we can see that so,(B2n+1,n) > 0 because
Bann—1 < Bant1,n and sg,, has positive leading coefficient. Thus, S2;,12(B82n+1,n) < 0, SO S2n42 has a root in the
interval (B2n+1,n,0). We have now accounted for all n roots of sap,42. O

A.9 Proof of Lemma 14 (Degrees of atomic polynomials)

Proof. From (11), degsn, = > ;, f(d). Next perform Mobius inversion in the division lattice to obtain an
expression for f(n) in terms of F(d) :— degsqy = [(d — 1)/2]: that is, for u the Mébius function of the division
lattice, f(n) = Zd|n F(d)u(n/d). Letting the prime factorization of n be n = ¢|* q,f" with ¢; < gi+1, this
expression simplifies to f(n) = ngk](fl)mF(n/qs) where ¢° :— [];c ¢- Now consider three cases.

First, suppose n is odd. Then |[(n —1)/2| = (n —1)/2, and n/q° is odd for any S. Observe

TURED SN G R SIS 1 (e T

SC[k] 4 SCIK] q i=1 di
The second equality follows because S has as many even-sized as odd-sized subsets.

Second, suppose that 4 | n. Now n/q” is even for any S because ¢° contains at most one factor of 2. For even
n, |(n—1)/2] = (n — 2)/2. The argument now follows the pattern for n odd.

Third, suppose that n = 2m, m > 1 odd. Now ¢; = 2,8, = 1. So for S C [k] if 1 ¢ S then F(n/q°) = -2
and if 1 € S then F(n/q%) = &L
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o (34
- Z%(—l)lslqls - ;%(—1)52; _ Zli (1 - ql) _ Zf{l (1 _ ql> .

A.10 Proof of Lemma 15 (Formula for Jacobian)

Proof. Pick any point on the line v = (v/2,vp). Notice that we can rewrite r; and p;_; as follows:

pi—1 =2zpi—s — (z* — Y)pi_s
ri = pi—2 — (2> = y)pi-s
Writing the partials of both equations we see:

Ori _ Opi—a (22 — )3101'73

or; - Opi—2 2 Opi—3 _ _
dr 7 ox (2 y) ox 2pi-y
Opi—1 Opi—2 Opi—3

_ (2 _ - )

Opi—1 _, Opi- 2 2 Opi—3
Oz =2 Ox (@ =)

i—3 + 2p;_2

Since we are only interested in the solutions on the line x = %, we can now rewrite the following partials:

27

Opi—1 B or;
5y (V) =50 (®)

Opi—1 _ or;
ax (U) -

Finally we see that:

Opi—1, | 0Or; Opi—1, | Or; or; or; ar; . Or;
()5 0) - 22 ) 5 0) = (G0 + 2s(un) ) G20 - S0 T
= 25, (00) 27 (0) = 254(00) 25 ()

We know on the line s;41 = r; = p;—1 for all i, so plugging this back into Equation 12, we get the following
expression as desired:

et()() = ~2sia(u)s (00) Z5 (00) + 541 (00) (o) + Gi)

A.11 Proof of Theorem 16, Section 3.7

Proof. From Theorem 10 we know sg,41 | S4n42, let ¢, be an atomic root of so,41 and let C = {c,}_,. For
ease of notation, let R, = {j | san(c;) = 0} and |R,| = o,. Let us make the following observations about this
set:

Observation 18. For all j € R, j < n. Moreover, san12(c;) =0 if and only if j € R,



Identifiability of Product of Experts Models

Proof. Suppose j > n, we know ¢; is an atomic root of spj;1 and by definition of an atomic root so,11(c;) # 0,
thus if j € R, then j <n.

Clearly if j € R,, then s4,42(c;) = 0. If s4542(c;) = 0, since ¢; is an atomic root of sg;41, then ged(san42, S25+1) =
Soj+1. This implies 2j + 1 | 4n + 2 and thus 2j + 1 | 2n + 1 and it follows so,41(c;) = 0 from Theorem 10 so
j € R,. O

We know that each root of sg,,41 is simple for all n, thus (9sa,+1/0y)(c;) # 0. Furthermore, since so,,11(cn) =0
then we know that s9,(c,) # 0 and sg,42(c,) # 0. Lastly, notice that from the above observation, i € R, if and
only if s4pt2(c;) = 0. Together with Theorem 10 this implies that there exists some § > 0 such that for all n,
we have that say,, Sont2, 0S2n4+1/0y, and s9;41 and s4449 for all i € {1,...,¢} \ R,, are all bounded away from
zero in the interval I, = [¢, — §, ¢,, + 8], by some constant A.

Clearly T = U’ _, I, is closed and bounded, then so is the set {7/2} x T and thus each of the functions in the
following set attain a maximum over {v/2} x T

4

U < Irzal, Ir2nsal | ||8’"2”||a7°2"|
T T T
2n 2n+1 2n—1 I 9 ay 9

n=1

37“4n+1 3T4n+1
b FTL Gn
= | = | Pl Gl

Define M to be the maximum over the maximums of these functions and 1.

We now pick some small € > 0 to be specified later. Define the set D; = {n | j € R,}. We will pick our points
as follows, for all 1 < i < ¢, we pick d; € I; such that 0 < sar11(d;) < €; and 0 < sqp42(d;) < ¢; for all k € D;,.
If 1 <i< ¢, we define €;41 as follows:

€it1 = min( U {Is2rs1(do)]; [sans2(d i)|}>
keD;

Notice that this process results in a set of points {d;} where for all n and k € R, if k # n then s9,11(d,) <
€n < Son+1(dr) and sant2(dy) < €, < Sant2(di). Therefore for all k € R,,:

Son+41 (dn)
Son+1(dy)

S4n+2 (dn)

<1
San+2(dk)

< <1 (27)

We now evaluate the Jacobian at the point (v/2,d;,...,7/2,de). We scale the rows corresponding to ¢a, and
Gan+1 by the following two non-zero values respectively:

1
S2n+1(dg)

1
San2(dy)

Son+41 (dn) H

kER,

S4n+2 (dn) H

kER,

We call the resulting matrix B, and notice that B is non-singular if and only if the Jacobian evaluated at this
point is non-singular. For ease of notation, we will refer to the i, jth entry of the matrix B as b; ; and we will
split the matrix B into 2 x 2 blocks.

Nl,l N Nl,f
B=| : : (28)
N&l . Nag

Notice that each 2 x 2 block has a similar structure, take any n,m € [¢] and we can explicitly write the matrix
corresponding to N, p,.

Nnm:

s

S2n41 d rom o
(s;L) 5 g, S2n+1(di) 0 ) ( Oran (1 d,,) 8312, (2. dyn) >

0 st 1], sinsa(di) ) \ 252 (o) 282 (3, d)

San+2(dm oz dy
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Lemma 19. Suppose b; j € Ny . If m € R,, then |b; ;| < M?*, otherwise |b;,5] < eMt1

Proof. First we will make the following observation, assume that 7 and j are odd, since M > 1 we have that:

8r2n
‘ ox (dm)

T Is2nsa(di) < M (29)
k¢ R,

If 7 is even we replace 2n with 4n+ 1, and if j is even we replace x with y. Notice that the same argument works
in all of those cases. If m € R,,, then we know that Equation 27 implies that both |sa,+1(dy)/S2n+1(dm)] < 1
and |san+2(dn)/San+2(dm)| < 1. Together with Equation 29 this implies that |b; ;| < M* as desired.

Suppose that m ¢ R,,, we will do the following analysis assuming both ¢ and j are odd, but an identical argument
works for either ¢ and j even.

argn

20 ()2, dr) - = Sl TE () = (/2 dn) - s2a(dn)  [] sonsa(di)

Son41(dm) kR, k¢ R,U{m}

Notice [s2n+1(dp)| < €, < € and all other terms are bounded above in magnitude by M, since there are at most
¢ — 1 of those terms and M > 1 we have that |b; ;| < eM*~! as desired. ]

The intuition for the rest of the proof is as follows. We know that for a block lower-triangular matrix, the
determinant is the product of its diagonal blocks. This is because any permutation 7w which selects an element of
the lower-left block must also select an element from the zero block and so the term associated to 7 contributes
nothing to the determinant.

Similar to this, we will show that the product of the determinant of the diagonal blocks, N, ,, contains a term
which is not dependent on €. In the following lemma we will show that all 7 which pick elements of off-diagonal
blocks scale with e. This will imply for sufficiently small e this matrix must be non-singular.

Let H C Sa be the subgroup generated by the ¢ transpositions (2n — 1,2n) for n € [£].
Lemma 20. For all w € Sop \ H:

L

sign () H bi,Tr(i)

=1

2
< eMt 1

Proof. Pick any m € Soy, notice that if for all 4 € {1,...,¢}, m(2i) < 2i and 7(2i — 1) < 2¢ then 7 € H. Thus
since we pick m € Sy, \ H, then for some ¢ either m(2¢) > 2i or w(2i — 1) > 21, in both cases we have that for
some j, bj ~(j lies in Ny, ,, for m > n.

From Observation 18, we noted that if m > n, then m ¢ R, and thus from Lemma 19 |b; »(j;| < eM*~! and for
all other k € {1,...,0}\ {j}, |brx(x)| < M*. From this, the inequality follows trivially. 0

Now we turn our attention to the portion of the determinant contributed by all the permutations in H.

Zs1gn H i ( )—Hdet o) (30)

TeEH

¢
= H det(J2n(dyn)) H S2n+41(dk) - Sant2(dr) (31)

k¢ Ry

Notice that using the definitions for M and A, we can bound the magnitude of the following product from above
and below.

L
A26°—2(ar+ o) < H H Sont1(dr) - Sanya(di)| < M2 (32)
n=1k¢R,
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Lemma 21.

Z 2@A3€ _ €2£<2£ _ 1)M3€—2

£
I1 det(J2n(dn))

Proof. From Lemma 15:

4 £
H det(JQn(dn)) = H (*252n+2(dn)52n(dn)as;7:;+1(dn) + 52n+1(dn)(F2n(’Y/2» dn) + ng('y/2, dn)))

We will first bound the magnitude of the term of this product that results from picking the left term of each
factor. From the definition of A we get the following bound.

4
Os9y,
H *252n+2(dn)32n(dn)%(dn) > 2€A3Z
n=1

All of the rest of the terms must include $a,,41(d,,) for some n, and we know that |s2,,41(d,)| < € for all n. Using
this fact and the definition of M, we observe the following inequalities.

I52n+1(dn) (Fan(7/2, dn) + G2n(7/2,dn)| < e(2M)
O8an,
| - 252n+2(dn)52n(dn)%(dn)| < 2M?
Clearly 2M3 > ¢(2M) so each of the 2¢ — 1 other terms in the product are bounded above in magnitude by

€2¢M3¢=2. Thus the magnitude of the product of the determinants is bounded from below by 2¢A3¢ — €2¢(2¢ —
1)M3¢=2 as desired. |

Using Lemma 20, Lemma 21, and Equation 32 we bound the magnitude of the determinant of B from below.

1

- Z sign(m) H bi = ()

nESy\H i=1

£
det(B)| > | >~ sign(m) [ [ bino

neH i=1

2 H 82n+1(dk) . S4n+2(dk) (2€A3€ — €2€(2€ — 1)M3l_2) — 6(25)!M€2_1
k¢ R,

> 22A2Z2+3Z—2(a1+"'+a2) —€ (2[(2@ _ 1)M2£2+3£—2(2€)!M£2_1>

Notice that for e sufficiently small, we have that | det(B)| > 0 and therefore the Jacobian of our desired map is
non-singular. This implies that our desired map is locally identifiable, concluding the proof. O
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