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ARTICLE INFO ABSTRACT
Keywords: This research explores the socio-cognitive mechanisms of human intelligence through the lens of anthropo-
Anthropomorphism

morphic, Xenocentric, intentional, and social (AXIS) robotics. After delving into three pivotal AXIS concepts —

ﬁf:;;;z:ls;i robotic anthropomorphism, intentionality, and sociality — the study examines their impact on robot likeability

Sociality and successful human-robot interaction (HRI) implementation. The research introduces the concept of robotic

AXIS robotics Xenocentrism (represented by perceived inferiority and social aggrandizement) as a new global dimension in

Human-robot interaction social robotics literature, positioning it as a higher-order concept that moderates the impact of pivotal inde-
pendent variables on robot likeability. Analyzing a sample of 308 respondents in global cross-cultural teams, the
study confirms that pivotal AXIS robotics concepts foster positive robot likeability and successful HRI imple-
mentation for both industrial and social robots. Perceived inferiority negatively moderated the relationship
between anthropomorphism and robot likeability, but it was a positive moderator between intentionality and
robot likeability. However, social aggrandizement did not act as a significant boundary condition. Sociality re-
mains unaffected by the moderating influence of Xenocentrism. The study concludes by outlining future research
directions for AXIS robotics.

1. Introduction Social robots have sparked controversies in ethical, legal, and social

spheres, though their paramount importance for the global society is
When [artificial intelligence] is focused on augmenting humans rather unquestionable (Ullrich & Diefenbach, 2017). Although human-human
than mimicking them, then humans retain the power to insist on a share of interaction (HHI) differs substantially from HRI, researchers have tried

the value created. What’s more, augmentation creates new capabilities to map similarities between HHI and HRI to develop social robots that
and new products and services, ultimately generating far more value than can successfully interact with humans (Schellen & Wykowska, 2019).
merely humanlike AI (Brynjolfsson, 2022, p. 272, p. 272). Social robots are artificial embodied agents that react to natural social

stimuli (Chang & Kim, 2022; Wiese, Metta, & Wykowska, 2017;
Wykowska, Chaminade, & Cheng, 2016) and have the social and psy-
chological capabilities of social cognition (Schellen & Wykowska,
2019). HRI researchers have paid particular attention to humanoid ro-
bots because these robots are deeply engrained in human psychology
(Li, Terfurth, Woller, & Wiese, 2022; Wiese et al., 2017; Wykowska
et al., 2016) as artificial humanlike agents capable of forming lasting
relationships with humans by displaying anthropomorphism (i.e.,
embodying human characteristics; Zogaj, Mahner, Yang, & Tscheulin,
2023; Arora, Parnell, & Arora, 2022; Kaplan, Sanders, & Hancock, 2019;
Woods et al., 2007) resulting in a successful HRI implementation.

Human-robot interaction (HRI) is a multidisciplinary field of study
that draws research insights from psychology, sociology, computer sci-
ence, technology, engineering, mathematics, business, and other disci-
plines (Arora & Arora, 2020; Chang & Kim, 2022; Mahdi, Saleh, Shariff,
& Dautenhahn, 2020; Marchesi, Spatola, & Wykowska, 2021). HRI is
relevant to a wide range of domains, including manufacturing, health-
care, education, and entertainment. As robots become more sophisti-
cated and integrated into our lives, it is important to develop a deep
understanding of how humans interact with robots. This understanding
is needed to design robots that are safe, easy to use, and beneficial to
society.
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A ‘successful HRI implementation’ is characterized by a social robot
engaging consumers through a meaningful user experience. Key com-
ponents of such an engagement include a careful consideration of the
use context, a focused purpose integrated into the robot design and use,
and an interaction flow relying on both verbal and non-verbal commu-
nication (Dang & Liu, 2023; Kim & Im, 2023; Mikkelsen & Rehm, 2022,
pp. 950-955). In real-world scenarios, successfully implemented robots
are generally more socially acceptable or artificial agents that are suc-
cessfully integrated with society and complete their tasks (as needed)
without having the sense of the presence of any foreign agent among
humans. An example of a “successfully implemented robot” is PackBot,
which is a range of military robots developed by iRobot - an interna-
tional robotics company designed for search and rescue activities. These
robots were deployed in Iraq and Afghanistan; they were also used to
search the debris at the World Trade Center in 2001 and the Fukushima
Nuclear plant disaster.

Some examples of anthropomorphized humanoids include: (a) Pep-
per Robot, an internationally renowned humanoid robot developed by
SoftBank Robotics, is used as a humanoid companion that communicates
intuitively with color-changing lights in its eyes and the tablet on its
torso. It operates in Pepper Parlor cafés in Japan, taking customer orders
and interacting with customers at tables (Chang & Kim, 2022); (b)
Ocean One, a bimanual underwater humanoid robot created by the
Stanford Robotics Lab, explores coral reefs; (¢) ATLAS humanoid,
developed by Boston Dynamics with funding from the United States
Defense Advanced Research Projects Agency, displays agility and
maneuvering capabilities for navigating difficult terrains through range
sensing, stereo vision, and other sensors; (d) NAO humanoid, developed
by the French robotics company Aldebaran Robotics, has been successful
working with children diagnosed with autism and other learning dis-
orders; and (e) Sophia, developed by roboticist David Hanson and
Hanson Robotics, was the first robot to be granted citizenship by the
Kingdom of Saudi Arabia (Fernandes, 2022, pp. 51-64). In addition,
schools and other public institutions have recently begun using robots to
minimize the spread of COVID-19 by cleaning surfaces with ultraviolet
radiation, sanitizing floors, scanning schoolchildren for fevers, enforcing
mask-wearing, spraying antimicrobial gases and disinfectants in outdoor
public spaces, and taking on jobs considered dangerous for humans
(Mims, 2020).

In HRI situations, robots exhibit anthropomorphism through their
looks and/or voice (e.g., Asimo, Kirobo Mini, Pepper, Nao, Sophia, MIT
robots Kismet and Cog). They also display intentionality, which refers
“more narrowly to adopting a strategy in predicting and explaining
others’ behavior with reference to mental states” (Schellen & Wykow-
ska, 2019, p. 139). In addition, the concept of xenocentrism (Arora &
Arora, 2020), or “the belief that what is foreign is best, that our own
lifestyle, products, or ideas are inferior to others” (Eshleman, Cashion, &
Basirico, 1993, p. 109), adds value to social robotics. We anticipate
direct linkages and relationships among anthropomorphism, intention-
ality, and sociality to robot likeability and HRI implementation, and we
propose that xenocentrism moderates these relationships. To distinguish
and differentiate the moderating effects of xenocentrism (considered a
higher-order variable) from the direct effects of anthropomorphism,
intentionality, and sociality on robot likeability, herein, we refer to this
higher order construct as “Xenocentrism.” In line with the
social-collaborative robotics domain, we collectively refer to these
phenomena as anthropomorphic, Xenocentric, intentional, and social
(A)A(IS) robotics in the HRI context.

Our paper makes several contributions to address the dearth of
research in social robotics and HRI. First, we enhance the understanding
of social-collaborative robotics by comprehensively considering levels of

1 https://interestingengineering.com/innovation/a-brief-history-of-military-r
obots-including-autonomous-systems.
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AXIS in social robotics and their subsequent influence on robot like-
ability and successful HRI implementation. Second, we add to the
limited research addressing how these socio-behavioral relationships are

associated with AXIS characteristics in robots (Ciardo, De Tommaso, &
Wykowska, 2022; Kaplan et al., 2019; Lajante, Tojib, & Ho, 2023;
Letheren, Kuhn, Lings, & Pope, 2016; Marchesi et al., 2021; Woods et al.,
2007). We delve into each of the constructs using the computers are social
actors (CASA) paradigm as an overarching theory, the uncanny valley
effect, and the sociality, effectance, and elicited agent knowledge (SEEK)
model theories. Third, we investigate robotic Xenocentrism as a
higher-order social robotics construct comprising perceived inferiority
and social aggrandizement through the lenses of robotic anthropomor-
phism, robotic intentionality, and robotic sociality. This construct and
its impact have not been previously examined in social robotics and HRI
research. Furthermore, we analyze the linkages of robotic Xenocentrism
to robot likeability and HRI implementation (Arora & Arora, 2020). We
strive to address the following questions: How do robots mimic hu-
manlike characteristics, and how do their implicit characteristics of
sociality and intentionality arouse robot likeability that leads to a suc-
cessful HRI? Our research explores these questions and fills the research
gaps through an in-depth examination of AXIS robotics that focuses on
robot likeability and overall successful HRI implementation.

This article consists of four sections. First, we define and describe

AXIS robotics as a part of social-collaborative robotics in HRI. Second,

we examine how robotic AXIS are interrelated in the social-
collaborative robotics and HRI context, propose our conceptual frame-
work, and develop a series of hypotheses. Third, we test our conceptual
framework by analyzing data from 308 respondents using the moder-

ating effects of AXIS robotics on robot likeability and HRI imple-
mentation. Fourth, we discuss our study’s theoretical and practical
implications, limitations, and future research directions.

2. Conceptual background
2.1. Social robotics and HRI

Humanoid social robots are human-made technologies with physical
(e.g., NAO, Pepper, Zora) or digital forms (e.g., voice assistants such as
Siri and Alexa, chatbots) that bear some resemblance to humans,
whether bodily or through anthropomorphic/humanlike features (Di
Dio et al., 2020; Fox & Gambino, 2021; Liu & Sundar, 2018). Social
robotics is an emerging research field, and HRI research is still in its
infancy. One of the significant theories applied to HRI is the CASA
(computers are social actors) paradigm. CASA framework was derived
from Reeves and Nass's (1996) media equation, and it refers to the
phenomenon of humans conditioned to react mindlessly to technology,
thereby treating “technology” as yet another “social being” and
mimicking HHI in HRI situations (Fox & Gambino, 2021; Gambino, Fox,
& Ratan, 2020). Although social robotics research may question whether
CASA applies equally to both HHI and HRI situations, elements of CASA
perspectives are clearly present in both HHI and HRI, and modern-day
HRI is aimed to simulate HHI, especially when the robots demonstrate
social and anthropomorphic cues. As technologies in artificial intelli-
gence (AI) and robotics advance, social robots continue to become
increasingly sophisticated, thus blurring the boundaries of HHI into HRI
despite complexity and cost constraints (Fox & Gambino, 2021; Nicolas
& Agnieszka, 2021; Song & Kim, 2022).

2.2. AXIS robotics

The HRI literature defines social-collaborative robots as robots that
are (1) socially evocative (relying on CASA and anthropomorphic fea-
tures), (2) socially situated (relying on social and environmental cues),
(3) sociable (relying on active human engagement and social cognition),
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Table 1

Definitions of key terms/concepts used in the current research.
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Concept

Definition

Theories Used

Sources

AXIS Robotics

Robotic
Anthropomorphism

Robotic Xenocentrism

Robotic Intentionality

Robotic Sociality

Robot Likeability

The current research proposes a mix of robotics concepts of
anthropomorphism, Xenocentrism, intentionality, and
sociality in the HRI context.

Robotic anthropomorphism entails exhibiting human
characteristics in robots (e.g., mimicking human emotions
in robots, facial and voice recognition, and exhibiting
walking/dancing behaviors). Humans anthropomorphize
robots by simulating and exhibiting emotional associations
with artificial human agents.

Xenocentrism is “a psychological attribute which implies a
biased view ... one who is xenocentric sees faults where
none exist” (Kent & Burnight, 1951, pp. 256-57).

Robotic intentionality, or intentional stance, in AXIS
robots, involves activating brain regions related to
mentalizing and social cognition. This leads to positive or
negative human behaviors toward robots and high-level
decision-making in the HRI context.

Humans are motivated to seek alternative ways (e.g., using
robots as social companions) through the social
reconnection hypothesis.

Favorable attitudes and behaviors toward social robots.
Research shows that there is more likeability between
robots and humans, especially individuals with ASD, as
anthropomorphic characteristics increase.
Anthropomorphism amplifies the big five human
personality traits in individuals with ASD and other
learning/cognitive disabilities.

The CASA paradigm means that humans are
conditioned to react mindlessly to technology, thereby
treating technology as another social being and
mimicking HHI in HRI situations.

The uncanny valley effect is a dip in positive
perception, whereby the robotic likeability increases
as the robot becomes more humanlike and then drops
if the robot becomes too humanlike.

System justification theory uses the psychological
process by which existing social arrangements are
legitimized at the expense of personal and group
interests

Uncanny Valley Effect theory

The SEEK model theory predicts that humans like to
interact with technology (e.g., social robots) when
they are motivated to be effective social agents and/or
when they lack a sense of social connection to other
humans

Uncanny Valley Effect theory

Kim and Im (2023)

Fox and Gambino (2021)
Gambino et al. (2020)
Dang and Liu (2023)
Chung, Kang, and Jun
(2023)

Arora, Arora, Jentjens,
McIntyre, and Sepehri
(2022)

Schuetz and Venkatesh
(2020)

Damiano and Dumouchel
(2018)

Turkle (2017)

Wiese et al. (2017)

Aly & Tapus (2016)
Ztotowski, Proudfoot,
Yogeeswaran, and Bartneck
(2015)

Hesslow (2012)

Bartneck, Kuli¢, Croft, and
Zoghbi (2009)

Epley, Waytz, and Cacioppo
(2007)

Sung et al. (2007)

Hesslow (2002)

Wilson (2002)

Chartrand and Bargh (1999)
Mori (1970)

Kliiber and Onnasch (2022)

Arora and Arora (2020)
Balabanis and
Diamantopoulos (2016)
Eshleman et al. (1993)
Zhou and Belk (2004)

Marchesi et al. (2021)

Nicolas and Agnieszka
(2021)

Spatola and Wudarczyk
(2021)

Schellen and Wykowska
(2019)

Hesslow (2012)

Wiese et al. (2017)
Ozdem et al. (2017)
Bartneck et al. (2009)
Leo-Liu (2023)
Christoforakos and
Diefenbach (2022)
Marchesi et al. (2021)
Kwok, Grisham, and Norberg
(2018)

Damiano and Dumouchel
(2018)

Gaudiello, Zibetti, Lefort,
Chetouani, and Ivaldi (2016)
Bartneck et al. (2009)
Epley et al. (2007)
DeWall and Baumeister
(2006)

Li, Guo, Wang, Chen, and
Ham (2023)

Kliiber and Onnasch (2022)
Chang and Kim (2022)

Li et al. (2022)

Marchesi et al. (2021)
Arora, Fleming, Arora,
Taras, and Xu (2021)
Bartneck et al. (2009)

(continued on next page)
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Table 1 (continued)
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Concept Definition

Theories Used Sources

Successful and Positive
HRI Implementation

In AXIS robotics, when robots mimic human emotions and
portray humanlike characteristics (both implicitly and
explicitly) either through their humanlike face, voice, and
other external features or through their internal and
implicit characteristics of intelligence and intentional
mindset, they arouse positive human behaviors toward
robots and lead to a positive implementation for robots in
human spheres.

Uncanny Valley Effect theory Dang and Liu (2023)

Li et al. (2023)

Mikkelsen and Rehm (2022)
Christoforakos and
Diefenbach (2022)

Chang and Kim (2022)

Li et al. (2022)

Arora, Parnell, and Arora
(2022)

Marchesi et al. (2021)
Bartneck et al. (2009)
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Fig. 1. A relational view of the AXIS robotics-likeability—HRI success framework.

(4) socially intelligent (relying on human social intelligence and human
cognition), and (5) socially interactive (relying on peer-to-peer HRI)
(Grundke, Stein, & Appel, 2023; Mahdi et al., 2020). AXIS robots refer
to social-collaborative robots (e.g., robot interrogators, therapeutic ro-
bots, physical assistance robots, Wizard-of-Oz (WoZ), industrial robots
with human interaction capabilities) that employ principles of
socio-cognitive intelligence by ensuring that social robots collaborate,
“follow and exhibit socially acceptable behaviors, and understand the
societal and ethical consequences of their interactions in the sociocul-
tural context in which they operate” (Arora & Arora, 2020, p. 4; see also
Leo-Liu, 2023; Spatola & Wudarczyk, 2021). Collaborative robots
(cobots) are generally flexible, easily programmable, capable of working
with humans in social contexts and sharing workplaces, and offer or-
ganizations the ability to successfully implement human-robot interac-
tion (HRI) experiences and applications (Cherubini et al., 2016; Schou
et al., 2018; Kopp et al., 2021). Humanoid robots exhibit socio-cognitive
intelligence by modeling humanlike intelligence through human
cognition, including decision-making, perception, reasoning, and
problem-solving skills (Arora, Parnell, & Arora, 2022; Li et al., 2022;
Lieto, Chella, & Frixione, 2017). We argue that social robotics should be

defined and examined through AXIS robotics, which covers social,
cognitive, and collaborative robotics. Table 1 illustrates key concepts of

AXIS robotics, definitions, theories used, and sources,/references.

Fig. 1 exemplifies relationships among the AXIS constructs that lead
to robot likeability and successful HRI outcomes along with moderating
effects, as described in H1—Hg. Previous research in social robotics and
HRI has not investigated robotic Xenocentrism. To address this gap, we
explore this concept in depth and through the lenses of the three pivotal
concepts of robotic anthropomorphism, intentionality, and sociality, as
well as the impact of these concepts on robot likeability and successful
HRI implementation. Robotic Xenocentrism can be considered a higher-
order concept that comprises perceived inferiority and social aggran-
dizement, and it moderates the linkages of robotic anthropomorphism,
intentionality, and sociality to robot likeability and HRI implementation
(Arora & Arora, 2020). In AXIS robotics, when robots mimic human
emotions and portray humanlike characteristics (both implicitly and
explicitly)—whether through their humanlike faces, voices, or other
external features or their mental, internal, and implicit characteristics of
intelligence, sociality, and intentional mindset—they arouse robot
likeability moderated by robotic Xenocentrism, which in turn leads to a
successful HRI implementation.

2.2.1. Anthropomorphism

Our study’s first independent, pivotal variable/construct is robotic
anthropomorphism. Anthropomorphism is “the human tendency to
attribute human traits to non-human entities” (Damiano & Dumouchel,
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2018, p. 2; see also Chung et al., 2023; Li et al., 2023; Epley et al., 2007;
Ztotowski et al., 2015), and robotic anthropomorphism refers specif-
ically to robots exhibiting human characteristics (e.g., mimicking
human emotions, facial and voice recognition, exhibiting walking/-
dancing behaviors). Humans anthropomorphize robots by simulating
and exhibiting emotional associations with artificial human agents
(Arora, Parnell, & Arora, 2022; Schuetz & Venkatesh, 2020; Sung et al.,
2007; Turkle, 2017; Zogaj et al., 2023). Robotic anthropomorphism can
facilitate strong social relationships, interactions, and exchanges be-
tween humans and robots. Robot designers and roboticists are aware
that human likeness to robots increases with the addition of more
anthropomorphic robotic features, and companies such as Furhat Ro-
botics and SoftBank Robotics make and design their robots using the
principles of anthropomorphism. The principle of robotic anthropo-
morphism uses socio-cognitive processes based on perception, action,
and emotion and emphasizes thinking similar to interaction with the
external environment (Hesslow, 2002, 2012, Wilson, 2002; Aly & Tapus,
2016, p. 193; see also Chartrand & Bargh, 1999).

Mori’'s (1970) uncanny valley effect can be described as the phe-
nomenon of robotic likeability increasing up to the point at which the
robot becomes highly humanlike or humanoid and then drops when the
robot becomes too humanlike (Arora et al., 2021; Spatola & Wudarczyk,
2021). The uncanny valley effect curve proves that although humans
tend to anthropomorphize robots, they accept the robot’s humanlike
attributes (or anthropomorphism) only to a certain extent, beyond
which human affinity/likeness for robots decreases exponentially. Ac-
cording to Marchesi et al. (2021), anthropomorphism and how humans
differ in their tendencies to anthropomorphize robots can be explained
by three factors: the display of an agent’s physical characteristics acti-
vating knowledge and heuristics related to humans, fulfillment of
humans’ sociality needs, and human personality traits. The uncanny
valley effect is critical for robot design and development in terms of the
robot’s anthropomorphic appearance and behavior, considering the
primary aim for robot development is human likeability, social inter-
action, and responsiveness toward robots. In other words, “an increase
of human likeness raises a robot’s likeability until the resemblance be-
comes nearly perfect” (Damiano & Dumouchel, 2018, p. 2), a point that
can be designated as a social threshold between human likeness and
familiarity toward robots leading to a successful HRI implementation.
The more anthropomorphic a robot is (until the point of social threshold,
as highlighted in the uncanny valley effect curve), the more likable the
robot is, and the more likelihood of a successful HRI implementation for
humans (Chung et al., 2023; Damiano & Dumouchel, 2018; Kim & Im,
2023; Marchesi et al., 2021). Therefore, we posit the following:

H1A, 1B. Robotic anthropomorphism is positively associated with
robot likeability and successful HRI implementation.

2.2.2. Xenocentrism

Robotic Xenocentrism refers to a psychological attitude that implies
a biased and favorable view of social robots and uses the system justi-
fication theory (Balabanis & Diamantopoulos, 2016; Hesslow, 2012), in
which consumers prefer social robots that reflect social power because
of a social justification motive (Arora & Arora, 2020; Shepherd, Char-
trand, & Fitzsimons, 2015). In social robotics and HRI, Xenocentric ro-
bots are liked and preferred due to two traits of Xenocentrism: (1)
perceived inferiority (i.e., ingroup derogation whereby people nega-
tively stereotype and undervalue themselves and fail to appreciate do-
mestic products and brands), which is related to AXIS robotics in that
humans perceive robots to be “superior” to humans (in other words,
humans tend to perceive themselves as “inferior” to robots and AI) due
to the concept of foreignness, and (2) social aggrandizement (i.e., out-
group favoritism, whereby people prefer foreign goods more than do-
mestic ones to enhance perceived social status), which is related to AXIS
robotics in that robots are perceived as more intelligent than humans;
come from a different, foreign world; and have a different composition

Computers in Human Behavior: Artificial Humans 2 (2024) 100036

(Arora & Arora, 2020; Balabanis & Diamantopoulos, 2016).

Herein, we treat Xenocentrism as a moderator rather than an inde-
pendent, pivotal concept because it is a higher-order construct measured
through perceived inferiority and social aggrandizement. Defined as
“the belief that what is foreign is best, that our own lifestyle, products, or
ideas are inferior to those of others” (Eshleman et al., 1993, p. 109; see
also Kent & Burnight, 1951), its key attribute is negative stereotypical
perceptions of one’s own group or perceived inferiority, whereby in the
context of humans versus robots, robots are always perceived to be more
intelligent. These perceptions are coupled with favoritism toward out-
groups or social aggrandizement, whereby in the context of humans
versus robots, humans prefer robots with reliable information and
technology aid (e.g., using robot vacuum cleaners in homes; asking Siri,
Alexa, or Google for news, weather conditions, or help with navigating
when driving; robots being used in hospitals for performing intricate

surgeries). Xenocentrism is studied in conjunction with the system
justification theory, defined as “the psychological process by which
existing social arrangements are legitimized, even at the expense of
personal and group interests” (Jost & Banaji, 1994, p. 2), whereby
humans accept and legitimize robots as superior to themselves due to
outgroup favoritism and their alleged inferiority in the HRI context.

2.2.3. Intentionality

Our study’s second independent, pivotal variable/construct is ro-
botic intentionality, or intentional stance, defined as activating brain
regions related to mentalizing and social cognition leading to positive or
negative human behaviors toward robots and high-level decision-mak-
ing in HRI (Candrian & Scherer, 2022; Schellen & Wykowska, 2019).
Human thinking employs the brain’s “perception, action, and emotion.
The mental model covertly simulates actions and their associated
perceptual effects” (Vanderelst & Winfield, 2018, p. 57). Socio-cognitive
processes result in an intentional stance or intentionality, in which
“humans engage socially, wisely, and utilize their social cognition and
information processing with robots with the assumption that their
interaction partner has a brain resulting in highly efficient [HRIs]”
(Arora & Arora, 2020, p. 8; see also Hesslow, 2012; Ozdem et al., 2017;
Schellen & Wykowska, 2019; Wiese et al., 2017).

In the HRI context, intentionality is related to perceived robotic in-
telligence that is governed by humans’ (state-of-mind) social associa-
tions and mental states, resulting in favorable behaviors toward robots
(Arora & Arora, 2020; Christoforakos & Diefenbach, 2022; Dennett,
1971, 1988, 1997; Marchesi et al., 2019; Schellen & Wykowska, 2019).
While using humanlike robots has resulted in positive outcomes such as
increased feelings of familiarity or ease in working with robots (Sauppé
& Mutlu, 2015), researchers have also identified consumers’ adverse
feelings (Esterwood & Robert, 2023; Mori, MacDorman, & Kageki,
2012) toward robots due to uncanny valley effect theory. Studies show
that when robots work with children diagnosed with cognitive disorders
(e.g., autism), successful outcomes occur in these HRI implementation
scenarios because the children enjoy interacting with robots more than
humans due to overall robot likeability, situatedness, embodiment, and
consistency (Dautenhahn, Werry, Salter, & Boekhorst, 2003; Ferrara &
Hill, 1980; Hudson & Lewis, 2020; Huijnen, Lexis, Jansens, & de Witte,
2019). Therefore, we posit the following:

H2A, 2B. Robotic intentionality is positively associated with robot
likeability and successful HRI implementation.

2.2.4. Sociality

The third independent, pivotal variable/construct concept, robotic
sociality, refers to the phenomenon that people’s tendency to anthro-
pomorphize is related to the fundamental need for sociality, acknowl-
edged in the sociality, effectance, and elicited agent knowledge (SEEK)
model theory (Christoforakos & Diefenbach, 2022; Epley et al., 2007).
Humans prioritize their social well-being (Ormel, Lindenberg, Steverink,
& Verbrugge, 1999). If their social needs are unsatisfied, they are
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motivated to seek alternative ways (e.g., using robots as social com-
panions) through the social reconnection hypothesis (DeWall & Bau-
meister, 2006; Picarra & Giger, 2018). We argue that social needs act as
drivers to search for social cues and fulfill human needs to anthropo-
morphize animals/non-living objects by attributing humanlike charac-
teristics to them (Christoforakos & Diefenbach, 2022). Kwok et al.
(2018) relate anxious attachment with social tendencies and prove that
these tendencies are moderately positively related. Humans with intense
isolation levels tend to exhibit stronger robot sociality and likeability
due to their increased social needs, and successful HRI implementation
outcomes are likely due to the sociality needs of humans through HRI.
Therefore, we posit:

H3A, 3B. Robotic sociality is positively associated with (a) robot
likeability and (b) successful HRI implementation.

Humans prefer AXIS robots because they are more humanlike (often
humanoid), sophisticated, artificially intelligent foreign beings. Robot
likeability plays a significant role and leads to a successful HRI imple-
mentation (Arora et al., 2021; Christoforakos & Diefenbach, 2022;
Kliiber & Onnasch, 2022; Li et al., 2022; Marchesi et al., 2021). Thus, we
posit the following:

H4. Robot likeability is positively associated with successful HRI
implementation.

2.2.5. Anthropomorphism, intentionality, and sociality as independent
constructs/variables

As proposed in our AXIS robotics-likeability—HRI success framework
(Fig. 1), anthropomorphism, intentionality, and sociality are considered
as independent variables because they can be manipulated and
measured independently. Robotic anthropomorphism has been studied
in conjunction with intentional stance/intentionality in robots, focusing
on people’s attribution of varying degrees of anthropomorphism and
intentionality to robot actions (Bossi et al., 2020; Hegel, Krach, Kircher,
Wrede, & Sagerer, 2008; Marchesi et al., 2019; Thellman & Ziemke,
2021). Dennett (1971, 1988, 1997) examines intentional stance or
intentionality through various human attitudes (toward robots) for
predicting (robot) behavior in HRI implementation. For the intention-
ality construct, social robots may be programmed to act as if they adopt
(or not) an intentional stance, which may result in increased likeability
and an efficient HRI implementation, even though these humanoid so-
cial robots do not possess beliefs and desires as they are interpreted in
folk psychology (Schellen & Wykowska, 2019).

Studies show conflicting relationships regarding robotic anthropo-
morphism and intentionality. One stream of research posits that
anthropomorphism results in intentionality—in other words, “a higher
tendency to anthropomorphize is associated with a higher tendency to
adopt the intentional stance to explain the behavior of a humanoid
robot” (Marchesi et al., 2019; Marchesi et al., 2021, p. 4). However,
another stream posits that anthropomorphism and intentional stan-
ce/intentionality are separate, independent constructs because the
adoption of an intentional stance relies primarily on neuropsychological
processes of predicting human behavior toward robots regarding mental
states that are independent of humans’ ability to anthropomorphize
robots (Schellen & Wykowska, 2019; Wiese et al., 2017; Wykowska
et al.,, 2016). We align with the latter view, even though anthropo-
morphism and intentionality both focus on the human psyche and traits.

Robots demonstrate sociality through their capability to interact
with humans through trust-building during HRI situations by following
social acceptance norms (Gaudiello et al., 2016; Ribino, Lodato, &
Infantino, 2018). Previous robotics research has explored robotic soci-
ality in conjunction with the attribution of anthropomorphic qualities to
robots and robotic agents (e.g., Christoforakos & Diefenbach, 2022;
Epley et al., 2007; Epley, Akalis, Waytz, & Cacioppo, 2008; Niemyjska &
Drat-Ruszczak, 2013). Studies have focused on comparing anthropo-
morphic and non-anthropomorphic technology agents and assessing
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is positively associated
with robot likeability and
successful HRI
implementation.

Haa, 28. Intentionality is
positively associated with
robot likeability and
successful HRI
implementation.

Hsa, 3g. Sociality is positively
associated with robot
likeability and successful
HRI implementation.

H,. Robot likeability is
positively associated with
successful HRI
implementation.

Hsa, 5B, 5c- Xenocentrism
(through perceived
inferiority) moderates the
relationships among (a)
anthropomorphism, (b)

framework, derived
from Reeves and
Nass’s (1996) media
equation, suggests
that humans apply
stereotypes and
norms to computers
and technology,
further assigning
personality traits and
making inferences as
if the computers
were human, even
though they
understand that
computers are not
human

The uncanny valley
effect is a dip in
positive perception,
whereby the robotic
likeability increases
as the robot becomes
more humanlike and
then drops if the
robot becomes too
humanlike.

The SEEK model
theory predicts that
humans like to
interact with
technology (e.g.,
social robots) when
motivated to be
effective social
agents and/or
lacking a sense of
social connection to
other humans.

The CASA paradigm
means that humans
are conditioned to
react mindlessly to
technology, thereby
treating technology
as another social
being and mimicking
HHI in HRI
situations.

System justification
theory uses the
psychological
process by which
existing social

Table 2

Hypotheses, theories used, and rationale.
Hypotheses Theories Used Rationale
Hia, 18- Anthropomorphism The CASA The more

anthropomorphic a robot
is (until the point of social
threshold, as highlighted
in the uncanny valley
effect curve), the more
likable the robot is, and
anthropomorphism will
result in a successful HRI
implementation for
humans (Damiano &
Dumouchel, 2018;
Marchesi et al., 2021).

Intentionality (a.k.a.,
intentional stance or
intentional mindset) is
related to perceived
robotic intelligence that is
governed by humans’
(state-of-mind) social
associations and mental
states, resulting in
favorable behaviors
toward robots (Arora &
Arora, 2020;
Christoforakos &
Diefenbach, 2022;
Dennett, 1971, 1997;
Schellen & Wykowska,
2019).

Sociality acts as a driver to
search for social cues and
fulfill human needs to
anthropomorphize
animals/non-living objects
by attributing humanlike
characteristics to these
objects (Christoforakos &
Diefenbach, 2022).
Humans with intense
isolation levels tend to
exhibit stronger sociality,
robot likeability due to
their increased social
needs, and successful HRI
implementation outcomes
due to the sociality needs
of humans through HRI (
Kwok et al., 2018).
Humans prefer A X IS
robots since they are more
humanlike (often
humanoids), sophisticated,
artificially intelligent
foreign beings. Robot
likeability plays a
significant role in a
successful HRI
implementation (Arora &
Arora, 2020; Arora et al.,
2021; Christoforakos &
Diefenbach, 2022; Li et al.,
2022; Marchesi et al.,
2021).

Robotic Xenocentrism is a
boundary condition among
the pivotal concepts of
anthropomorphism,
intentionality, sociality,

(continued on next page)
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Table 2 (continued)

Hypotheses Theories Used Rationale

intentionality, and (c)
sociality and robot
likeability.

Hen, 6B, 6c- Xenocentrism
(through social
aggrandizement)
moderates the
relationships among (a)
anthropomorphism, (b)
intentionality, and (c)
sociality and robot
likeability.

arrangements are
legitimized at the
expense of personal
and group interests

and robot likeability.
While humanlike robots
have resulted in positive
outcomes such as
increased feelings of
familiarity or ease in
working with robots (
Sauppé & Mutlu, 2015),
researchers have also
identified adverse
(negative) feelings (Mori,
1970; Mori et al., 2012) of
consumers toward robots.
Social robotics research
has never used
Xenocentrism as a
construct in measuring a
successful HRI
implementation, so the
direction of moderating
effects is unknown.

their sociality needs (on intentional and behavioral levels), but no
causality has been established (Christoforakos & Diefenbach, 2022;
Mourey, Olson, & Yoon, 2017). Thus, we investigate sociality as an in-
dependent variable, such as anthropomorphism and intentionality, in

our AXIS robotics-likeability-HRI success framework (Fig. 1).

2.2.6. Xenocentrism and robot likeability
Robotic Xenocentrism is closely related to the concept of foreignness

and robotic intelligence in AXIS robots. Humans perceive robots as
foreign beings who are “intelligent” (more intelligent than humans).
Robotic intelligence refers to displaying both AI and socio-cognitive
intelligence (Bartneck et al., 2009; Hesslow, 2012). Social robots face
the challenge of behaving intelligently in HRI situations requiring high
levels of social cognition and human decision-making skills. Although Al
simulations in robots work well in experimental design methods and
situations, when social robots are deployed in the complex world of
everyday users, their limitations will become known to their users
because they interact with these users over a time span of years rather
than a few minutes or seconds (Bartneck et al., 2009). Bartneck et al.
(2009, p. 78) propose a series of questionnaires to measure the users’
perception of robots called “Godspeed” because “it is intended to help
creators of robots on their development journey.”

This research is the first of its kind and makes several contributions

to theory and practice in AXIS robotics. The most significant contribu-
tion is the identification of robotic Xenocentrism as a boundary condi-
tion among the pivotal concepts of anthropomorphism, intentionality,
and sociality leading to robot likeability. Drawing from system justifi-
cation theory, Balabanis and Diamantopoulos (2016) conceptualized the
‘consumer xenocentrism’ construct as a combination of two dimensions:
‘perceived inferiority’ and ‘social aggrandizement’. They developed
(and validated) a new scale (the C-XENSCALE) for understanding con-
sumer attraction toward foreign things (social robots in this research) for
measuring consumers’ xenocentric tendencies (p. 58). While some
studies show that humanlike robots have resulted in positive outcomes
such as increased feelings of familiarity or ease in working with robots
(Sauppé & Mutlu, 2015), others identify consumers’ adverse feelings
(Esterwood & Robert, 2023; Mori, 1970; Mori et al., 2012) toward ro-
bots. Social robotics research has never used Xenocentrism (through
perceived inferiority and social aggrandizement) to assess a successful
HRI implementation; thus, the direction of moderating effects is un-
known. With limited research available in the field of HRI, we rely on
empirical results for assessing the impact of these moderating effects of
Xenocentrism in social robotics. Thus, we offer the following hypotheses
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(considering positive moderation effects for the purpose of this
research):

H5A, 5B, 5C. The impact of perceived inferiority (first dimension of
robotic Xenocentrism) of humans vis-a-vis robots on robot likeability is
stronger (and positive) when the robot exhibits (a) anthropomorphism,
(b) intentionality, and (c) sociality.

H6A, 6B, 6C. The impact of social aggrandizement (second dimension
of robotic Xenocentrism) between humans and robots on robot like-
ability is stronger (and positive) when the robot exhibits (a) anthropo-
morphism, (b) intentionality, and (c) sociality.

Table 2 summarizes the hypotheses, theories used, and rationales.

3. Methodology

To collect the data to test the conceptual framework, we used the X-
Culture project (www.X-Culture.org), a large-scale international busi-
ness collaboration and consulting project that employs approximately
5000 participants per academic semester. The participants are business
students and working professionals from over 150 universities in 50
countries in six continents. The project is run twice a year. Working in
global virtual teams, typically six to seven people per team, each from a
different country, the project participants spend the semester solving
real-life challenges presented by client companies, typically involving
market research, competition analysis, product design, developing a
marketing strategy, and completing other tasks related to identifying
market expansion opportunities for the client company. The project
participants rely on the same online collaboration and communication
tools commonly used in the corporate world, such as Google Docs,
Dropbox, Zoom, Slack, etc.

3.1. Sample

In total, 308 respondents who participated in the 2021 project
completed the questionnaires. The average age of the respondents was
23.3 years, ranging from 18 to over 50, and 39% were male. The ma-
jority of the respondents had at least some work experience (average of
3.2 years), and many (30.1%) were employed at the time of the project.
Some even ran their own business or held managerial positions (5.1%).
The global virtual teams participating in the project submitted weekly
deliverables, and all project respondents completed weekly progress
surveys. The average response rate was 97.2%, resulting in a sample size
of 308 useable, fully completed questionnaires, which provided data on
the respondent’s demographics, cultural background, values, and
attitudes.

To ensure that respondents understood the field of industrial and
social robotics, we required X-Culture respondents to watch three videos
(2-3 min each) of social robots in industrial, personal, and social-
collaborative situations before being exposed to the final question-
naire. Research in social sciences and interpersonal communication has
revealed that messages/communications can be made more persuasive
and compliant by cuing humans’ involvement with objects and behav-
iors (Clark, 1998; Cleveland, Kalamas, & Laroche, 2005). Thus, to help
the respondents understand the field of social-collaborative robotics, we
used video messages/advertisements as cues to ensure they grasped
social behaviors in varying HRI situations. After multiple exposures to
industrial and social robots through videos, respondents received an
electronic web-based questionnaire with questions focusing on two ro-
bots: (1) KUKA Industrial Robot,2 which manufacturing companies use
for automation and digitization, turnkey production facilities, and smart
software solutions, and (2) PARO Seal Therapeutic Robot,3 a personal

2 https://www.kuka.com/en-us/about-kuka/.
3 http://www.parorobots.com/.
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Table 3
Overview of indicators and measures of reliability and validity.
Constructs and indicators Sources Outer loadings
Point t-value
estimation
Anthropomorphism (x = .902, AVE = .719, CR = .927) Godspeed Questionnaires (Bartneck et al.,
2009)
Anthrol Please rate your impression about the PARO/KUKA robot (5-point scale where 1 = .852 46.696

extreme left choice and 5 = extreme right choice):
Fake—Natural

Anthro2 Machinelike-Humanlike .867 44.867
Anthro3 Unconscious—-Conscious .821 33.456
Anthro4 Artificial-Lifelike .891 53.491
Anthro5 Moving rigidly-Moving elegantly .804 30.606
Intentionality (x = .723, AVE = .676, CR = .846) Marchesi et al.’s (2019) InStance Test (IST);

Schellen and Wykowska (2019)
Intl Please rate your impression about the PARO/KUKA robot (5-point scale where 1 = 793 11.329

mechanistic/less intentional and 5 = mentalistic/intentional):
The robot makes soothing sounds/noises versus the robot is enjoying attention.
(Mechanistic-Mentalistic)
Int2 The robot looks at me when I talk to the robot versus the robot reduces my stress. .851 14.714
(Mechanistic-Mentalistic)

Sociality (¢ = .851, AVE = .626, CR = .893) Epley et al. (2007); Eyssel et al. (2011)
An extension of Godspeed Questionnaires
Socl Please rate your impression about the PARO/KUKA robot (5-point scale where 1 = 763 28.614
extreme left choice and 5 = extreme right choice):
Non-social-Social

Soc2 Non-Trustworthy-Trustworthy .817 29.424
Soc3 Non-Communicative-Communicative 757 23.837
Soc4 Non-Interactive-Interactive .828 27.527
Soc5 Non-engaged/Non-reciprocal-Engaged/Reciprocal .790 23.979
Perceived Inferiority (« = .843, AVE = .617, CR = .887) C-XENSCALE: Balabanis and Diamantopoulos

(2016)
PerInfl I prefer ‘robots’ over humans because robots represent ‘foreignness’ (with different .853 13.337

composition from humans) as compared to humans.
PerInf2 Robots are better in quality than humans. .890 14.015
PerInf3 I trust robots over humans performing jobs and services. .789 12.082
PerInf4 Robots outperform humans in major activities/tasks. .814 11.438
PerInf5 Even though humans deliver good quality jobs/services, yet robots are far better than .529 3.925
humans.

Social Aggrandizement (a = .896, AVE = .669, CR = .909) C-XENSCALE: Balabanis and Diamantopoulos

(2016)
SocAggl Using (foreign) robots enhances my self-esteem. .684 2.218
SocAgg2  People who don’t use/buy robots are less regarded by others. .844 3.266
SocAgg3 I prefer (foreign) robots over humans as most of my friends prefer robots as well. .804 3.148
SocAgg4  Buying/using robots makes me trendier. .847 3.450
SocAgg5 I use/purchase robots to differentiate myself from others. .894 3.659
Robot Likeability (a« = .912, AVE = .741, CR = .934) Godspeed Questionnaires (Bartneck et al.,

2009
Likel Please rate your impression about the PARO/KUKA robot (5-point scale where 1 = 781 31.112

extreme left choice and 5 = extreme right choice):
Dislike-Like

Like2 Unfriendly—Friendly .860 45.415
Like3 Unkind-Kind .888 51.620
Like4 Unpleasant-Pleasant .900 64.357
Like5 Awful-Nice .869 31.997
HRI Implementation (x = .869, AVE = .792, CR = .920) Godspeed Questionnaires (Bartneck et al.,

2009)
HRI1 Please rate your impression about the PARO/KUKA robot (5-point scale where 1 = .901 61.661

extreme left choice and 5 = extreme right choice):

Inert-Interactive
HRI2 Stagnant-Lively .907 70.653
HRI3 Failure-Success .862 47.483
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assistant social robot intended to help humans reduce anxiety, depres-
sion, and loneliness while also stimulating, collaborating and engaging
with people who are living with dementia (Pu, Moyle, & Jones, 2020).
We avoided using a humanoid robot (e.g., NAO Robot) due to a potential
likeability bias that could be generated vis-a-vis the industrial KUKA
robot and the non-humanoid PARO robot.

Admittedly, the present sample comprises students, and we
acknowledge certain concerns about the generalizability of the findings
because students differ from the general population in their de-
mographic characteristics, particularly age. However, the threat to the
validity and generalizability of the findings is likely minimal. The fact
that students are typically younger is of little concern if the maturation
effect is not expected to influence the effects studied significantly. The
respondents, the project settings, and the inter-member differences were
real, and the work design was closely reminiscent of the real business
world. Within a year or two, all the project respondents would be part of
the labor force, and many already were; we have no reason to believe
that their attitudes toward robots would drastically change at that time.
Therefore, we consider the threat that the present study’s findings would
not generalize to the real-world consumer population minimal. How-
ever, we acknowledge that we can generalize our findings only to the
younger to working-age populations. Our results may not apply to se-
niors, whose attitudes to robots might differ, and our sample does not
fully capture such differences.

3.2. Measures

3.2.1. Survey instrument

To design and validate an appropriate survey instrument, we
extensively reviewed the literature to identify scales used in past
research. We adopted or adapted established scales from past literature
to measure anthropomorphism, intentionality, sociality, xenocentrism,
robot likeability, and successful HRI implementation as a part of the
AXIS robotics-likeability—HRI success conceptual framework. Table 3
lists all constructs and scales used in this research.

Godspeed questionnaires using 5-point semantic differential scales
measured robotic anthropomorphism, robot likeability, and HRI
implementation (Bartneck et al., 2009). We measured sociality using
Godspeed scales describing the need and desire to establish social con-
nections with others through robots (Epley et al, 2007; Eyssel,
Kuchenbrandt, & Bobinger, 2011). We used Marchesi et al.’s (2019)
InStance Test (IST), a novel tool that assesses the adoption of the
intentional stance, wherein two sentences are displayed as possible de-
scriptions, and respondents choose the sentence that best fits the sce-
nario description. For our purposes, one sentence refers to a mental state
(i.e., intentional stance), and the other refers to a mechanistic expla-
nation (i.e., design stance) of the HRI scenario. We used sentences
mentioning mental states to measure intentionality. We used the con-
sumer xenocentrism scale (C-XENSCALE) to measure Xenocentrism
(Balabanis & Diamantopoulos, 2016) in robots, with robots treated as
foreign (intelligent) beings. All seven constructs (including
Xenocentrism represented as two constructs: Xeno A (perceived inferi-
ority) and Xeno B (social aggrandizement) in the conceptual model
constitute latent variables requiring indirect measurement (Bagozzi &
Phillips, 1982; Churchill, 1979).

Because the constructs in our research reflect (i.e., cause) their in-
dicators, we specified them as reflective (Diamantopoulos, Riefler, &
Roth, 2008; Diamantopoulos & Winklhofer, 2001). We selected in-
dicators of all constructs from existing literature and according to aca-
demic and practitioner evidence. We conducted Harman'’s single-factor
test (Podsakoff, MacKenzie, Lee, & Podsakoff, 2003; Podsakoff & Organ,
1986) to allay concerns about common method variance. In the
exploratory factor analysis, the first factor explained 15% of the vari-
ance, the last factor explained 6% of the variance, and no single factor
accounted for the majority (i.e., 50%) of the variance; thus, we consider
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it unlikely that common method bias is of serious concern in this study
(Podsakoff & Organ, 1986).

3.2.2. Content validity

Content validity aims to analyze whether the scales in the survey
questionnaire fully represent the domain being researched (Bollen,
1989). We pretested the scales with experienced managers and re-
searchers to ensure content validity. Two industry professionals directly
involved in robotics research and implementing robotics curricula in
schools and universities in the United States reviewed our survey
questionnaire. They pointed out ambiguities and provided suggestions
to improve the survey instrument. In addition, four scholarly experts
(outside the authors) also reviewed the questionnaire for clarity, struc-
ture, and representativeness.

Based on the feedback of industry professionals and academic ex-
perts, we carefully considered the order of presenting questions in our
questionnaire to ensure both face validity and content validity. The
sequence of questions was strategically designed to flow logically and
intuitively, enhancing the face validity by making the questionnaire
appear sensible and relevant to participants. This ordering was crucial to
maintain participant engagement and reduce response fatigue, which
can significantly impact the quality of data collected. We arranged the
questions to gradually transition from general to more specific items,
thereby providing a coherent narrative that aligns with our research
objectives.

3.3. Data collection

We used a web-based survey to collect the data to test the proposed
hypotheses. Web surveys are becoming increasingly popular across
various research streams (Seepana, Huq, & Paulraj, 2021; Statsenko &
Corral de Zubielqui, 2020) because of such advantages as quicker and
higher response rates. In addition, web-based surveys allow for the
collection of valuable information about the respondents’ survey
completion process (Griffis, Goldsby, & Cooper, 2003).

3.4. Analytical procedure

We validated our measures and tested our hypotheses using partial
least squares (PLS), specifically SmartPLS software version 3.2.8
(Ringle, Wende, & Becker, 2015). Partial least squares structural equa-
tion modeling (PLS-SEM) methodology is preferred for our research for
several reasons. First, we focus on theory development and prediction
(Matthews, Hair, & Matthews, 2018). Second, PLS-SEM is the preferred
statistical method to analyze a model with higher-order constructs
(Hair, Hult, Ringle, & Sarstedt, 2022; Manley, Williams, & Hair, 2022),
such as Xenocentrism. Third, PLS-SEM employs a fixed point or
component-based least squares estimation procedure to obtain param-
eter estimates. Fourth, PLS uses a series of interdependent ordinary least
squares regressions to minimize residual variances. Fifth, it places
minimal demands on data in terms of measurement scales, sample size,
and distributional assumptions (Chin, 1998; Fornell & Bookstein, 1982;
Wold, 1982), which makes it a preferable approach compared to
covariance-based maximum likelihood methods (e.g., LISREL) when
examining data for which the sample size is relatively small (Bagozzi, Vi,
& Singh, 1991). Finally, PLS is a more conservative modeling approach
that tends to underestimate path coefficients (Dijkstra, 1983), reducing
the likelihood of Type I errors in hypothesis testing (Bagozzi et al.,
1991).

To test our model’s indicator reliability, we employed a boot-
strapping procedure with 2000 randomized samples taken from the
original sample (Henseler, Ringle, & Sinkovics, 2009). The results of the
analysis are available in Table 3. All estimates of outer loadings exceed
the minimum recommended value of 0.7 and also exhibit sufficiently
high t-values. We also assessed the convergent validity of all constructs.
All loadings were greater than 0.7, which implies that all indicators
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Table 4
Correlations between constructs.
Construct Anthro HRI Implementation Intentionality Likeability Sociality Perceived Inferiority Social Aggrandize-ment
Anthropomorphism .848
HRI Implementation 618 .890
Intentionality .524 .561 .594
Likeability .581 .753 .534 .861
Sociality 613 718 .427 .604 791
Perceived Inferiority .167 172 229 .180 211 .786
Social Aggrandizement .066 .026 .053 —.092 .081 372 .818
Notes: The square root of AVE on the diagonal is in boldface.
implementation [R?® = 0.691]) are substantial according to Chin’s
Table 5 - " (1998) specifications. Overall, the results of our analysis indicate a good
Path coefficients and R of the structural model. S . . . s
model fit with sufficient predictive power. We tested the significance of
Relationship Path coefficients Hypotheses the relationships among the latent variables using the associated t-sta-
Point t tistics obtained from PLS bootstrapping. As the results shown in Table 5
estimate Value indicate, 9 of the 13 hypotheses are confirmed, all of which are signif-
Likeability (R? = .510) icant at p < 0.01 level.
Anthro — Likeability .260 4.175 Hja  Supported
Intention — Likeability .206 3.641 Hza  Supported 4. Discussion and implications
Sociality — Likeability 356 6.227 Hia Supported
HRI Implement (R? = .691) . . . . .
Anthro — HRI Implement .096 2037 Hip  Supported In an HHI situation, social cues (e.g., language and emotional dis-
Intention — HRI .104 2.469  Hy  Supported plays) are critical for coordination and communication. Similarly, in an
Implement HRI context, social/emotional cues that are integrated into robot design
Sociality — HRI -350 6.697  Hsp  Supported can improve long-term collaboration between robots and humans
I}fﬁg:gﬁ?; - HRI 438 7662 H, Supported (Fischer, 2019). Social-collaborative robots use collaboration as social
Implement actors through implicit and explicit mechanisms of communicating in-
Likeability (Moderating effects) formation efficiently (Admoni, Dragan, Srinivasa, & Scassellati, 2014;
Anthro x Perceived —.208 2428 Hsn  Supported (-ve Fischer, Jensen, Suvei, & Bodenhagen, 2016). This research uses the
IIEEESZI?;HW N 158 2631 He ;ﬂs;sﬁz‘;p) CASA Parading, which equa.tes HHI with HRI by n?imicking interper-
Perceived Inferiority sonal interactions and relationships (Fox & Gambino, 2021), as the
Sociality x Perceived —.006 0.092  Hsc  Not supported theoretical framework for describing AXIS robotics.
Inferiority As CASA posits that robots with anthropomorphic and emotional
Anthro x Social .031 0.428 Hea Not supported . . . . .
Aggrandizement cues can support higher forms of social and collaborative interactions
Intentionality x Social -.106 1.472  Hes  Not supported with humans (Eyssel & Hegel, 2012; Fox & Gambino, 2021), we
Aggrandizement conceptualize and define AXIS robots as social-collaborative robots that
Sociality x Social 048 0719 Hec  Not supported use principles of socio-cognitive intelligence for human-robot collabo-
Aggrandizement

share more variance with their constructs than with error variances
(Chin, 1998). We assessed Cronbach’s alpha («) and composite reli-
ability (CR) for construct reliability. Table 3 shows that the o values for
all constructs are above the cutoff value of 0.7 (Cronbach, 1951; Litwin,
1995). The same applies to all CR values that exceed the recommended
cutoff value of 0.6 (Bagozzi & Yi, 1988; Henseler et al., 2009). The
average variance extracted (AVE) values (Table 3) are above the
threshold value of 0.5 (Fornell & Larcker, 1981; Henseler et al., 2009),
thus establishing convergent validity. We also assessed discriminant
validity; Table 4 shows the correlations between the latent variables and
the square roots of the AVE on the diagonal, indicating that the AVE’s
square roots are greater than the correlations among the latent variable
scores in all cases. Thus, we can conclude that no construct shares more
variance with another, thereby establishing discriminant validity (For-
nell & Larcker, 1981; Henseler et al., 2009). Furthermore, to test the
prediction relevance of the model, we applied a blindfolding procedure
with an omission distance of 5 (Henseler et al., 2009). All resulting Q2
values were positive, thus establishing sufficient predictive power of the
structural model (Geisser, 1975; Stone, 1974).

3.5. Results of analysis

Table 5 presents the results from the evaluation of the structural
model (Fig. 1). They show that the R? values of the endogenous latent
variables (robot likeability [R?® = 0.510] and successful HRI
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ration and exhibit anthropomorphic, Xenocentric, intentional, and so-
cial behaviors in the sociocultural HRI context in which they operate
(Arora & Arora, 2020). A real-world example is Vanderbilt University’s
ASK NAO program developed for the NAO robot (a French humanoid
robot by Aldebaran Robotics) to interact with students diagnosed with
autism spectrum disorder (ASD) and other learning disorders. This NAO

robot (with ASK NAO software) can be examined as an AXIS robot with
socio-cognitive-collaborative intelligence operating in a sociocultural
HRI situation aimed at ASD students globally. This example provides
some face validity to our conceptual framework and empirical results.
The robotics industry is currently experiencing a major trans-
formation (Ballestar, Garcia-Lazaro, Sainz, & Sanz, 2022). Industrial
robots are increasingly used in businesses and organizations as precision
instruments, mimicking the capabilities of skilled human labor, and
repeating a handful of tasks thousands of times over (without showing
signs of fatigue). Recently, interest in non-industrial (social) robots has
also emerged: businesses are moving away from purely industrial robots
to ones that are more social, autonomous, collaborative, and easily
trainable (i.e., less programming intensive) (Sanneman, Fourie, & Shah,
2021). Robotics companies and roboticists are studying demand pat-
terns for co-robots or cobots (safe, flexible, vision-enabled, and easily
trainable robotic assistants) helping and collaborating with humans in
their social spheres (Cherubini et al., 2016; Schou et al., 2018; Kopp
et al., 2021). This research used industrial KUKA and social PARO robots
in social HRI settings. KUKA has developed a robot called the youBot,
which can be used for education and research. It includes a mobile,
two-fingered (with five degrees of freedom) plug-and-play robotic arm.
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The seal robot PARO is an advanced Japanese interactive robot
administered to patients in environments such as hospitals and extended
care facilities.

We found that all pivotal concepts of AXIS robotics (anthropomor-
phism, intentionality, and sociality) lead to positive robot likeability and
a successful HRI implementation for both KUKA and PARO robots. These
findings corroborate our research perspective illustrated through the
CASA framework that humans anthropomorphize robots by simulating
and exhibiting social-emotional-collaborative-cognitive associations
(Marchesi et al., 2021) before developing affinity/liking toward them.
According to CASA framework and uncanny valley effect theories,
intentionality (i.e., the tendency to exhibit mentalizing and social
cognition behavior) can lead to positive human behavior and likeability
of robots. Using the SEEK model theory, we propose that sociality (i.e.,
the tendency to act as a social/emotional agent) in robots can lead to
developing likeability of robots and facilitating HRI implementation
(Damiano & Dumouchel, 2018). According to our findings, imple-
menting a social HRI in practice (and ensuring its success) depends on

the pivotal AXIS robotics concepts. Anthropomorphic, intentional, and
social robots can help generate a successful HRI implementation.

Our results further reveal that using an intentional mentalistic
description for robots (e.g., attributing human mental capabilities to
robots for activating neural representations), and highlighting a social
(or emotional/attachment) cue will result in an efficient and successful
HRI implementation that benefits humans involved in HRI situations by
engendering feelings of joy, accomplishment, excitement, and enjoy-
ment, and even improved health outcomes (resulting from health care
robotic implementations). Relatedly, prior research shows that robot
likeability can happen within seconds in HRI situations, and the
impression of likeability significantly influences HRI implementation
(Bartneck et al., 2009; Kaplan et al., 2019). We found that robot like-
ability is positively associated with successful HRI implementation: the
more anthropomorphic (humanlike), intentional, and social a robot is,
the more likable it is, and thus, there is a stronger possibility of a suc-
cessful HRI implementation. However, the uncanny valley effect should
be considered when designing and developing robots, paying careful
attention to the point of inflection at which a dip in likeability occurs
when the robots appear or behave in too human a manner (Arora et al.,
2021; Mori et al., 2012). Robotic designers and roboticists employ the
uncanny valley effect in many real-world instances. For example, Soul
Machines, a New Zealand company, created Ava (a digital-human avatar
and a virtual assistant) for Autodesk Inc. (an American multinational
software corporation that makes software products and services for the
architecture, engineering, construction, manufacturing, media, educa-
tion, and entertainment industries). Ava appears remarkably lifelike; she
is designed to analyze human facial expressions and voices of joy,
sadness, anger, and frustration. She can generate an emotional reaction
on her face in return for the received human expression. Because of these
Al capabilities, Soul Machines intentionally created Ava with purple
eyes so that she is not perceived as too human (or too real), thus
avoiding the uncanny valley effect.

We encountered plausible results while examining the moderating
effects of Xenocentrism on the linkages between robot likeability and
anthropomorphism, intentionality, and sociality, as well as between
successful HRI implementation and these pivotal concepts. The concept
of Xenocentrism can be explained through the system justification the-
ory, which highlights social aggrandizement (i.e., the phenomena of
outgroup favoritism for enhancing perceived social status) and
perceived inferiority (i.e., the phenomena of ingroup derogation,
particularly among members of low-status groups) (Balabanis & Dia-
mantopoulos, 2016). Diverse domains such as consumer behavior,
human resources management, marketing, organizational behavior,
corporate social responsibility, and business ethics research have glob-
ally implemented system justification theory (e.g., DiTomaso, 2015;
Fujimoto, Hartel, & Azmat, 2013; Li & Agrawal, 2014; Shepherd et al.,
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2015); herein, we expand the use of this theory for social robotics and
HRI research. We employed the C-XENSCALE to measure Xenocentrism
and how it moderates the relationships between pivotal concepts, robot
likeability, and successful HRI implementation. We find that humans
perceive robots to be more intelligent and superior (Rampersad, 2020),
thus confirming that robotic Xenocentrism exists. Robots are used in
manufacturing, science, surgery, and performing/delivering services.
Robots work efficiently and effectively; for example, they fly planes
more safely than humans and perform household cleaning tasks better
than humans, and driverless cars are better than human drivers who
may be distracted by their cellphones or driving under the influence.

When delving deeper into our results, we found that social aggran-
dizement (outgroup favoritism) did not act as a significant boundary
condition for the relationships between pivotal concepts and robot
likeability but that perceived inferiority (ingroup derogation) was a
significant negative moderator between anthropomorphism and robot
likeability. In addition, perceived inferiority was a positive (significant)
moderator in the relationship between intentionality and robot like-
ability. Sociality was not affected due to the moderating influence of
Xenocentrism. These findings demonstrate that humans perceive robots
as superior because they see themselves as inferiors or of low status and
not because they think that robots come from a foreign (better) world
and have a different composition than humans.

An important finding is that robotic Xenocentrism moderates the
linkage between anthropomorphism and robot likeability. Due to the
uncanny valley effect, there is a significant negative moderating rela-
tionship of Xenocentrism on the linkage between anthropomorphism
and robot likeability. This finding confirms robot designers and robot-
icists’ insistence on having imperfections in robots to prevent the
occurrence of high levels of anthropomorphic feelings in consumers
during HRI. In contrast, we found a significant, positive moderating
relationship of Xenocentrism on the linkage between intentionality and
robot likeability, meaning that the more intentional the robot is, the
more likable it is.

Computers are social actors (CASA) paradigm was utilized as an
overarching theory (along with the uncanny valley effect and the soci-
ality, effectance, and elicited agent knowledge (SEEK) model theories)
proposing that social robots display high social cognition and decision-
making skills. These social robots can behave intelligently in complex
HRI situations (e.g., military operations: biological, radiological,
chemical, and nuclear detection; battle-space awareness and environ-
mental sensing; precision targeting and precision strike; counter-
improvised explosive device capabilities). During these situations,
humans tend to use mentalistic descriptions more than mechanistic
descriptions for social robots. Thus, perceived robotic intentionality is
higher, resulting in positive robot likeability when moderated by robotic
xenocentrism. The HRI research on human facial responses and ani-
matronics is crucial considering the importance of robotic intentionality
and human mental states. Currently, robots can portray and mimic
human emotions, but in the future, the ability to respond to human
emotions appropriately will take innovations in AXIS robotics to the
next level.

5. Limitations and future research directions

The study has some limitations, which point to further research di-
rections. First, the research involved students and working professionals
who examined HRI situations through video messages rather than in-
person HRI encounters. However, we would not have been able to
garner 308 survey responses from a global audience using an in-person
study. Therefore, future research should focus on in-person HRI en-
counters. Second, our AXIS robotics research has added a new global
dimension/concept of robotic Xenocentrism (Balabanis & Dia-
mantopoulos, 2016) to social robotics. While this concept enriches the
field of social-collaborative robotics, it is still in its infancy and needs
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Table 6
Future research directions for AXIS robotics research.
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Concept Theories used

Future research directions and questions

CASA paradigm (overarching
framework for AXIS Robotics)
Uncanny valley effect

AXIS Robotics

Robotic
Anthropomorphism

Further exploration of AXIS concepts in relation to each other along with investigating the moderating effects

of Xenocentrism.

a Why does robotic anthropomorphism negatively influence robot likeability in HRI situations when it is
moderated by perceived inferiority?

b Why does robotic anthropomorphism have no effect on robot likeability when it is moderated by social
aggrandizement for either industrial or social robots?

o

System justification theory;

i

Robotic Xenocentrism

o o

Are there any other significant effects of anthropomorphism on other key AXIS concepts?

Why does robotic Xenocentrism moderate anthropomorphism negatively with robot likeability?
Why does robotic Xenocentrism moderate intentionality positively with robot likeability?
Why does robotic Xenocentrism have no moderation effect on sociality with robot likeability for either

industrial or social robots?

Robotic Intentionality Uncanny valley effect theory

o

Why does robotic intentionality positively impact robot likeability in HRI situations, when it is moderated

by perceived inferiority?
b Why does robotic intentionality have no effect (whatsoever) on robot likeability when it is moderated by
social aggrandizement for either industrial or social robots?

o

Robotic Sociality SEEK model theory

o

Are there any other significant effects of intentionality on other key AXIS concepts?
Why does robotic sociality have no effect on robot likeability in HRI situations, when it is moderated by

perceived inferiority and/or social aggrandizement for either industrial or social robots?

b Are there any other significant effects of sociality on other key AXIS concepts?

further investigation. Further empirical research should focus on
implementing robotic Xenocentrism (and examining its moderating ef-
fects) in social robotics and HRI contexts and situations. Table 6 presents
some suggestions and questions that can guide future scholars in
developing new research directions.

Our research on AXIS robotics is the first of its kind to use socio-
cognitive, management, and international business concepts in the
ever-growing field of social robotics and HRI. We hope our study will
help designers of the next generation of social-collaborative robots, thus
further bridging the gap between humans and robots.
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