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A B S T R A C T   

This research explores the socio-cognitive mechanisms of human intelligence through the lens of anthropo
morphic, x̂enocentric, intentional, and social (AX̂IS) robotics. After delving into three pivotal AX̂IS concepts – 
robotic anthropomorphism, intentionality, and sociality – the study examines their impact on robot likeability 
and successful human-robot interaction (HRI) implementation. The research introduces the concept of robotic 
x̂enocentrism (represented by perceived inferiority and social aggrandizement) as a new global dimension in 
social robotics literature, positioning it as a higher-order concept that moderates the impact of pivotal inde
pendent variables on robot likeability. Analyzing a sample of 308 respondents in global cross-cultural teams, the 
study confirms that pivotal AXÍS robotics concepts foster positive robot likeability and successful HRI imple
mentation for both industrial and social robots. Perceived inferiority negatively moderated the relationship 
between anthropomorphism and robot likeability, but it was a positive moderator between intentionality and 
robot likeability. However, social aggrandizement did not act as a significant boundary condition. Sociality re
mains unaffected by the moderating influence of x̂enocentrism. The study concludes by outlining future research 
directions for AX̂IS robotics.   

1. Introduction 

When [artificial intelligence] is focused on augmenting humans rather 
than mimicking them, then humans retain the power to insist on a share of 
the value created. What’s more, augmentation creates new capabilities 
and new products and services, ultimately generating far more value than 
merely humanlike AI (Brynjolfsson, 2022, p. 272, p. 272). 

Human–robot interaction (HRI) is a multidisciplinary field of study 
that draws research insights from psychology, sociology, computer sci
ence, technology, engineering, mathematics, business, and other disci
plines (Arora & Arora, 2020; Chang & Kim, 2022; Mahdi, Saleh, Shariff, 
& Dautenhahn, 2020; Marchesi, Spatola, & Wykowska, 2021). HRI is 
relevant to a wide range of domains, including manufacturing, health
care, education, and entertainment. As robots become more sophisti
cated and integrated into our lives, it is important to develop a deep 
understanding of how humans interact with robots. This understanding 
is needed to design robots that are safe, easy to use, and beneficial to 
society. 

Social robots have sparked controversies in ethical, legal, and social 
spheres, though their paramount importance for the global society is 
unquestionable (Ullrich & Diefenbach, 2017). Although human–human 
interaction (HHI) differs substantially from HRI, researchers have tried 
to map similarities between HHI and HRI to develop social robots that 
can successfully interact with humans (Schellen & Wykowska, 2019). 
Social robots are artificial embodied agents that react to natural social 
stimuli (Chang & Kim, 2022; Wiese, Metta, & Wykowska, 2017; 
Wykowska, Chaminade, & Cheng, 2016) and have the social and psy
chological capabilities of social cognition (Schellen & Wykowska, 
2019). HRI researchers have paid particular attention to humanoid ro
bots because these robots are deeply engrained in human psychology 
(Li, Terfurth, Woller, & Wiese, 2022; Wiese et al., 2017; Wykowska 
et al., 2016) as artificial humanlike agents capable of forming lasting 
relationships with humans by displaying anthropomorphism (i.e., 
embodying human characteristics; Zogaj, Mähner, Yang, & Tscheulin, 
2023; Arora, Parnell, & Arora, 2022; Kaplan, Sanders, & Hancock, 2019; 
Woods et al., 2007) resulting in a successful HRI implementation. 
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A ‘successful HRI implementation’ is characterized by a social robot 
engaging consumers through a meaningful user experience. Key com
ponents of such an engagement include a careful consideration of the 
use context, a focused purpose integrated into the robot design and use, 
and an interaction flow relying on both verbal and non-verbal commu
nication (Dang & Liu, 2023; Kim & Im, 2023; Mikkelsen & Rehm, 2022, 
pp. 950–955). In real-world scenarios, successfully implemented robots 
are generally more socially acceptable or artificial agents that are suc
cessfully integrated with society and complete their tasks (as needed) 
without having the sense of the presence of any foreign agent among 
humans. An example of a “successfully implemented robot” is PackBot, 
which is a range of military robots developed by iRobot - an interna
tional robotics company designed for search and rescue activities. These 
robots were deployed in Iraq and Afghanistan; they were also used to 
search the debris at the World Trade Center in 2001 and the Fukushima 
Nuclear plant disaster.1 

Some examples of anthropomorphized humanoids include: (a) Pep
per Robot, an internationally renowned humanoid robot developed by 
SoftBank Robotics, is used as a humanoid companion that communicates 
intuitively with color-changing lights in its eyes and the tablet on its 
torso. It operates in Pepper Parlor cafés in Japan, taking customer orders 
and interacting with customers at tables (Chang & Kim, 2022); (b) 
Ocean One, a bimanual underwater humanoid robot created by the 
Stanford Robotics Lab, explores coral reefs; (c) ATLAS humanoid, 
developed by Boston Dynamics with funding from the United States 
Defense Advanced Research Projects Agency, displays agility and 
maneuvering capabilities for navigating difficult terrains through range 
sensing, stereo vision, and other sensors; (d) NAO humanoid, developed 
by the French robotics company Aldebaran Robotics, has been successful 
working with children diagnosed with autism and other learning dis
orders; and (e) Sophia, developed by roboticist David Hanson and 
Hanson Robotics, was the first robot to be granted citizenship by the 
Kingdom of Saudi Arabia (Fernandes, 2022, pp. 51–64). In addition, 
schools and other public institutions have recently begun using robots to 
minimize the spread of COVID-19 by cleaning surfaces with ultraviolet 
radiation, sanitizing floors, scanning schoolchildren for fevers, enforcing 
mask-wearing, spraying antimicrobial gases and disinfectants in outdoor 
public spaces, and taking on jobs considered dangerous for humans 
(Mims, 2020). 

In HRI situations, robots exhibit anthropomorphism through their 
looks and/or voice (e.g., Asimo, Kirobo Mini, Pepper, Nao, Sophia, MIT 
robots Kismet and Cog). They also display intentionality, which refers 
“more narrowly to adopting a strategy in predicting and explaining 
others’ behavior with reference to mental states” (Schellen & Wykow
ska, 2019, p. 139). In addition, the concept of xenocentrism (Arora & 
Arora, 2020), or “the belief that what is foreign is best, that our own 
lifestyle, products, or ideas are inferior to others” (Eshleman, Cashion, & 
Basirico, 1993, p. 109), adds value to social robotics. We anticipate 
direct linkages and relationships among anthropomorphism, intention
ality, and sociality to robot likeability and HRI implementation, and we 
propose that xenocentrism moderates these relationships. To distinguish 
and differentiate the moderating effects of xenocentrism (considered a 
higher-order variable) from the direct effects of anthropomorphism, 
intentionality, and sociality on robot likeability, herein, we refer to this 
higher order construct as “x̂enocentrism.” In line with the 
social-collaborative robotics domain, we collectively refer to these 
phenomena as anthropomorphic, x̂enocentric, intentional, and social 
(AX̂IS) robotics in the HRI context. 

Our paper makes several contributions to address the dearth of 
research in social robotics and HRI. First, we enhance the understanding 
of social-collaborative robotics by comprehensively considering levels of 

AX̂IS in social robotics and their subsequent influence on robot like
ability and successful HRI implementation. Second, we add to the 
limited research addressing how these socio-behavioral relationships are 
associated with AX̂IS characteristics in robots (Ciardo, De Tommaso, & 
Wykowska, 2022; Kaplan et al., 2019; Lajante, Tojib, & Ho, 2023; 
Letheren, Kuhn, Lings, & Pope, 2016; Marchesi et al., 2021; Woods et al., 
2007). We delve into each of the constructs using the computers are social 
actors (CASA) paradigm as an overarching theory, the uncanny valley 
effect, and the sociality, effectance, and elicited agent knowledge (SEEK) 
model theories. Third, we investigate robotic x̂enocentrism as a 
higher-order social robotics construct comprising perceived inferiority 
and social aggrandizement through the lenses of robotic anthropomor
phism, robotic intentionality, and robotic sociality. This construct and 
its impact have not been previously examined in social robotics and HRI 
research. Furthermore, we analyze the linkages of robotic x̂enocentrism 
to robot likeability and HRI implementation (Arora & Arora, 2020). We 
strive to address the following questions: How do robots mimic hu
manlike characteristics, and how do their implicit characteristics of 
sociality and intentionality arouse robot likeability that leads to a suc
cessful HRI? Our research explores these questions and fills the research 
gaps through an in-depth examination of AX̂IS robotics that focuses on 
robot likeability and overall successful HRI implementation. 

This article consists of four sections. First, we define and describe 
AX̂IS robotics as a part of social-collaborative robotics in HRI. Second, 
we examine how robotic AX̂IS are interrelated in the social- 
collaborative robotics and HRI context, propose our conceptual frame
work, and develop a series of hypotheses. Third, we test our conceptual 
framework by analyzing data from 308 respondents using the moder
ating effects of AX̂IS robotics on robot likeability and HRI imple
mentation. Fourth, we discuss our study’s theoretical and practical 
implications, limitations, and future research directions. 

2. Conceptual background 

2.1. Social robotics and HRI 

Humanoid social robots are human-made technologies with physical 
(e.g., NAO, Pepper, Zora) or digital forms (e.g., voice assistants such as 
Siri and Alexa, chatbots) that bear some resemblance to humans, 
whether bodily or through anthropomorphic/humanlike features (Di 
Dio et al., 2020; Fox & Gambino, 2021; Liu & Sundar, 2018). Social 
robotics is an emerging research field, and HRI research is still in its 
infancy. One of the significant theories applied to HRI is the CASA 
(computers are social actors) paradigm. CASA framework was derived 
from Reeves and Nass’s (1996) media equation, and it refers to the 
phenomenon of humans conditioned to react mindlessly to technology, 
thereby treating “technology” as yet another “social being” and 
mimicking HHI in HRI situations (Fox & Gambino, 2021; Gambino, Fox, 
& Ratan, 2020). Although social robotics research may question whether 
CASA applies equally to both HHI and HRI situations, elements of CASA 
perspectives are clearly present in both HHI and HRI, and modern-day 
HRI is aimed to simulate HHI, especially when the robots demonstrate 
social and anthropomorphic cues. As technologies in artificial intelli
gence (AI) and robotics advance, social robots continue to become 
increasingly sophisticated, thus blurring the boundaries of HHI into HRI 
despite complexity and cost constraints (Fox & Gambino, 2021; Nicolas 
& Agnieszka, 2021; Song & Kim, 2022). 

2.2. AX̂IS robotics 

The HRI literature defines social-collaborative robots as robots that 
are (1) socially evocative (relying on CASA and anthropomorphic fea
tures), (2) socially situated (relying on social and environmental cues), 
(3) sociable (relying on active human engagement and social cognition), 

1 https://interestingengineering.com/innovation/a-brief-history-of-military-r 
obots-including-autonomous-systems. 
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Table 1 
Definitions of key terms/concepts used in the current research.  

Concept Definition Theories Used Sources 

AX̂IS Robotics The current research proposes a mix of robotics concepts of 
anthropomorphism, x̂enocentrism, intentionality, and 
sociality in the HRI context. 

The CASA paradigm means that humans are 
conditioned to react mindlessly to technology, thereby 
treating technology as another social being and 
mimicking HHI in HRI situations. 

Kim and Im (2023) 

Fox and Gambino (2021) 
Gambino et al. (2020) 

Robotic 
Anthropomorphism 

Robotic anthropomorphism entails exhibiting human 
characteristics in robots (e.g., mimicking human emotions 
in robots, facial and voice recognition, and exhibiting 
walking/dancing behaviors). Humans anthropomorphize 
robots by simulating and exhibiting emotional associations 
with artificial human agents. 

The uncanny valley effect is a dip in positive 
perception, whereby the robotic likeability increases 
as the robot becomes more humanlike and then drops 
if the robot becomes too humanlike. 

Dang and Liu (2023) 
Chung, Kang, and Jun 
(2023) 
Arora, Arora, Jentjens, 
McIntyre, and Sepehri 
(2022) 
Schuetz and Venkatesh 
(2020) 
Damiano and Dumouchel 
(2018) 
Turkle (2017) 
Wiese et al. (2017) 
Aly & Tapus (2016) 
Złotowski, Proudfoot, 
Yogeeswaran, and Bartneck 
(2015) 
Hesslow (2012) 
Bartneck, Kulić, Croft, and 
Zoghbi (2009) 
Epley, Waytz, and Cacioppo 
(2007) 
Sung et al. (2007) 
Hesslow (2002) 
Wilson (2002) 
Chartrand and Bargh (1999) 
Mori (1970) 

Robotic X̂enocentrism X̂enocentrism is “a psychological attribute which implies a 
biased view … one who is xenocentric sees faults where 
none exist” (Kent & Burnight, 1951, pp. 256–57). 

System justification theory uses the psychological 
process by which existing social arrangements are 
legitimized at the expense of personal and group 
interests 

Klüber and Onnasch (2022) 

Arora and Arora (2020) 
Balabanis and 
Diamantopoulos (2016) 
Eshleman et al. (1993) 
Zhou and Belk (2004) 

Robotic Intentionality Robotic intentionality, or intentional stance, in AX̂IS 
robots, involves activating brain regions related to 
mentalizing and social cognition. This leads to positive or 
negative human behaviors toward robots and high-level 
decision-making in the HRI context. 

Uncanny Valley Effect theory 
Marchesi et al. (2021) 

Nicolas and Agnieszka 
(2021) 
Spatola and Wudarczyk 
(2021) 
Schellen and Wykowska 
(2019) 
Hesslow (2012) 
Wiese et al. (2017) 
Özdem et al. (2017) 
Bartneck et al. (2009) 

Robotic Sociality Humans are motivated to seek alternative ways (e.g., using 
robots as social companions) through the social 
reconnection hypothesis. 

The SEEK model theory predicts that humans like to 
interact with technology (e.g., social robots) when 
they are motivated to be effective social agents and/or 
when they lack a sense of social connection to other 
humans 

Leo-Liu (2023) 
Christoforakos and 
Diefenbach (2022) 
Marchesi et al. (2021) 
Kwok, Grisham, and Norberg 
(2018) 
Damiano and Dumouchel 
(2018) 
Gaudiello, Zibetti, Lefort, 
Chetouani, and Ivaldi (2016) 
Bartneck et al. (2009) 
Epley et al. (2007) 
DeWall and Baumeister 
(2006) 

Robot Likeability Favorable attitudes and behaviors toward social robots. 
Research shows that there is more likeability between 
robots and humans, especially individuals with ASD, as 
anthropomorphic characteristics increase. 
Anthropomorphism amplifies the big five human 
personality traits in individuals with ASD and other 
learning/cognitive disabilities. 

Uncanny Valley Effect theory Li, Guo, Wang, Chen, and 
Ham (2023) 
Klüber and Onnasch (2022) 
Chang and Kim (2022) 
Li et al. (2022) 
Marchesi et al. (2021) 
Arora, Fleming, Arora, 
Taras, and Xu (2021) 
Bartneck et al. (2009) 

(continued on next page) 
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(4) socially intelligent (relying on human social intelligence and human 
cognition), and (5) socially interactive (relying on peer-to-peer HRI) 
(Grundke, Stein, & Appel, 2023; Mahdi et al., 2020). AX̂IS robots refer 
to social-collaborative robots (e.g., robot interrogators, therapeutic ro
bots, physical assistance robots, Wizard-of-Oz (WoZ), industrial robots 
with human interaction capabilities) that employ principles of 
socio-cognitive intelligence by ensuring that social robots collaborate, 
“follow and exhibit socially acceptable behaviors, and understand the 
societal and ethical consequences of their interactions in the sociocul
tural context in which they operate” (Arora & Arora, 2020, p. 4; see also 
Leo-Liu, 2023; Spatola & Wudarczyk, 2021). Collaborative robots 
(cobots) are generally flexible, easily programmable, capable of working 
with humans in social contexts and sharing workplaces, and offer or
ganizations the ability to successfully implement human-robot interac
tion (HRI) experiences and applications (Cherubini et al., 2016; Schou 
et al., 2018; Kopp et al., 2021). Humanoid robots exhibit socio-cognitive 
intelligence by modeling humanlike intelligence through human 
cognition, including decision-making, perception, reasoning, and 
problem-solving skills (Arora, Parnell, & Arora, 2022; Li et al., 2022; 
Lieto, Chella, & Frixione, 2017). We argue that social robotics should be 
defined and examined through AX̂IS robotics, which covers social, 
cognitive, and collaborative robotics. Table 1 illustrates key concepts of 
AX̂IS robotics, definitions, theories used, and sources/references. 

Fig. 1 exemplifies relationships among the AX̂IS constructs that lead 
to robot likeability and successful HRI outcomes along with moderating 
effects, as described in H1–H6. Previous research in social robotics and 
HRI has not investigated robotic x̂enocentrism. To address this gap, we 
explore this concept in depth and through the lenses of the three pivotal 
concepts of robotic anthropomorphism, intentionality, and sociality, as 
well as the impact of these concepts on robot likeability and successful 
HRI implementation. Robotic x̂enocentrism can be considered a higher- 
order concept that comprises perceived inferiority and social aggran
dizement, and it moderates the linkages of robotic anthropomorphism, 
intentionality, and sociality to robot likeability and HRI implementation 
(Arora & Arora, 2020). In AX̂IS robotics, when robots mimic human 
emotions and portray humanlike characteristics (both implicitly and 
explicitly)—whether through their humanlike faces, voices, or other 
external features or their mental, internal, and implicit characteristics of 
intelligence, sociality, and intentional mindset—they arouse robot 
likeability moderated by robotic x̂enocentrism, which in turn leads to a 
successful HRI implementation. 

2.2.1. Anthropomorphism 
Our study’s first independent, pivotal variable/construct is robotic 

anthropomorphism. Anthropomorphism is “the human tendency to 
attribute human traits to non-human entities” (Damiano & Dumouchel, 

Table 1 (continued ) 

Concept Definition Theories Used Sources 

Successful and Positive 
HRI Implementation 

In AX̂IS robotics, when robots mimic human emotions and 
portray humanlike characteristics (both implicitly and 
explicitly) either through their humanlike face, voice, and 
other external features or through their internal and 
implicit characteristics of intelligence and intentional 
mindset, they arouse positive human behaviors toward 
robots and lead to a positive implementation for robots in 
human spheres. 

Uncanny Valley Effect theory 
Dang and Liu (2023) 

Li et al. (2023) 
Mikkelsen and Rehm (2022)  
Christoforakos and 
Diefenbach (2022) 
Chang and Kim (2022) 
Li et al. (2022) 
Arora, Parnell, and Arora 
(2022) 
Marchesi et al. (2021) 
Bartneck et al. (2009)  

Fig. 1. A relational view of the AX̂IS robotics–likeability–HRI success framework.  
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2018, p. 2; see also Chung et al., 2023; Li et al., 2023; Epley et al., 2007; 
Złotowski et al., 2015), and robotic anthropomorphism refers specif
ically to robots exhibiting human characteristics (e.g., mimicking 
human emotions, facial and voice recognition, exhibiting walking/
dancing behaviors). Humans anthropomorphize robots by simulating 
and exhibiting emotional associations with artificial human agents 
(Arora, Parnell, & Arora, 2022; Schuetz & Venkatesh, 2020; Sung et al., 
2007; Turkle, 2017; Zogaj et al., 2023). Robotic anthropomorphism can 
facilitate strong social relationships, interactions, and exchanges be
tween humans and robots. Robot designers and roboticists are aware 
that human likeness to robots increases with the addition of more 
anthropomorphic robotic features, and companies such as Furhat Ro
botics and SoftBank Robotics make and design their robots using the 
principles of anthropomorphism. The principle of robotic anthropo
morphism uses socio-cognitive processes based on perception, action, 
and emotion and emphasizes thinking similar to interaction with the 
external environment (Hesslow, 2002, 2012, Wilson, 2002; Aly & Tapus, 
2016, p. 193; see also Chartrand & Bargh, 1999). 

Mori’s (1970) uncanny valley effect can be described as the phe
nomenon of robotic likeability increasing up to the point at which the 
robot becomes highly humanlike or humanoid and then drops when the 
robot becomes too humanlike (Arora et al., 2021; Spatola & Wudarczyk, 
2021). The uncanny valley effect curve proves that although humans 
tend to anthropomorphize robots, they accept the robot’s humanlike 
attributes (or anthropomorphism) only to a certain extent, beyond 
which human affinity/likeness for robots decreases exponentially. Ac
cording to Marchesi et al. (2021), anthropomorphism and how humans 
differ in their tendencies to anthropomorphize robots can be explained 
by three factors: the display of an agent’s physical characteristics acti
vating knowledge and heuristics related to humans, fulfillment of 
humans’ sociality needs, and human personality traits. The uncanny 
valley effect is critical for robot design and development in terms of the 
robot’s anthropomorphic appearance and behavior, considering the 
primary aim for robot development is human likeability, social inter
action, and responsiveness toward robots. In other words, “an increase 
of human likeness raises a robot’s likeability until the resemblance be
comes nearly perfect” (Damiano & Dumouchel, 2018, p. 2), a point that 
can be designated as a social threshold between human likeness and 
familiarity toward robots leading to a successful HRI implementation. 
The more anthropomorphic a robot is (until the point of social threshold, 
as highlighted in the uncanny valley effect curve), the more likable the 
robot is, and the more likelihood of a successful HRI implementation for 
humans (Chung et al., 2023; Damiano & Dumouchel, 2018; Kim & Im, 
2023; Marchesi et al., 2021). Therefore, we posit the following: 

H1A, 1B. Robotic anthropomorphism is positively associated with 
robot likeability and successful HRI implementation. 

2.2.2. X̂enocentrism 
Robotic x̂enocentrism refers to a psychological attitude that implies 

a biased and favorable view of social robots and uses the system justi
fication theory (Balabanis & Diamantopoulos, 2016; Hesslow, 2012), in 
which consumers prefer social robots that reflect social power because 
of a social justification motive (Arora & Arora, 2020; Shepherd, Char
trand, & Fitzsimons, 2015). In social robotics and HRI, x̂enocentric ro
bots are liked and preferred due to two traits of x̂enocentrism: (1) 
perceived inferiority (i.e., ingroup derogation whereby people nega
tively stereotype and undervalue themselves and fail to appreciate do
mestic products and brands), which is related to AX̂IS robotics in that 
humans perceive robots to be “superior” to humans (in other words, 
humans tend to perceive themselves as “inferior” to robots and AI) due 
to the concept of foreignness, and (2) social aggrandizement (i.e., out
group favoritism, whereby people prefer foreign goods more than do
mestic ones to enhance perceived social status), which is related to AX̂IS 
robotics in that robots are perceived as more intelligent than humans; 
come from a different, foreign world; and have a different composition 

(Arora & Arora, 2020; Balabanis & Diamantopoulos, 2016). 
Herein, we treat x̂enocentrism as a moderator rather than an inde

pendent, pivotal concept because it is a higher-order construct measured 
through perceived inferiority and social aggrandizement. Defined as 
“the belief that what is foreign is best, that our own lifestyle, products, or 
ideas are inferior to those of others” (Eshleman et al., 1993, p. 109; see 
also Kent & Burnight, 1951), its key attribute is negative stereotypical 
perceptions of one’s own group or perceived inferiority, whereby in the 
context of humans versus robots, robots are always perceived to be more 
intelligent. These perceptions are coupled with favoritism toward out
groups or social aggrandizement, whereby in the context of humans 
versus robots, humans prefer robots with reliable information and 
technology aid (e.g., using robot vacuum cleaners in homes; asking Siri, 
Alexa, or Google for news, weather conditions, or help with navigating 
when driving; robots being used in hospitals for performing intricate 
surgeries). X̂enocentrism is studied in conjunction with the system 
justification theory, defined as “the psychological process by which 
existing social arrangements are legitimized, even at the expense of 
personal and group interests” (Jost & Banaji, 1994, p. 2), whereby 
humans accept and legitimize robots as superior to themselves due to 
outgroup favoritism and their alleged inferiority in the HRI context. 

2.2.3. Intentionality 
Our study’s second independent, pivotal variable/construct is ro

botic intentionality, or intentional stance, defined as activating brain 
regions related to mentalizing and social cognition leading to positive or 
negative human behaviors toward robots and high-level decision-mak
ing in HRI (Candrian & Scherer, 2022; Schellen & Wykowska, 2019). 
Human thinking employs the brain’s “perception, action, and emotion. 
The mental model covertly simulates actions and their associated 
perceptual effects” (Vanderelst & Winfield, 2018, p. 57). Socio-cognitive 
processes result in an intentional stance or intentionality, in which 
“humans engage socially, wisely, and utilize their social cognition and 
information processing with robots with the assumption that their 
interaction partner has a brain resulting in highly efficient [HRIs]” 
(Arora & Arora, 2020, p. 8; see also Hesslow, 2012; Özdem et al., 2017; 
Schellen & Wykowska, 2019; Wiese et al., 2017). 

In the HRI context, intentionality is related to perceived robotic in
telligence that is governed by humans’ (state-of-mind) social associa
tions and mental states, resulting in favorable behaviors toward robots 
(Arora & Arora, 2020; Christoforakos & Diefenbach, 2022; Dennett, 
1971, 1988, 1997; Marchesi et al., 2019; Schellen & Wykowska, 2019). 
While using humanlike robots has resulted in positive outcomes such as 
increased feelings of familiarity or ease in working with robots (Sauppé 
& Mutlu, 2015), researchers have also identified consumers’ adverse 
feelings (Esterwood & Robert, 2023; Mori, MacDorman, & Kageki, 
2012) toward robots due to uncanny valley effect theory. Studies show 
that when robots work with children diagnosed with cognitive disorders 
(e.g., autism), successful outcomes occur in these HRI implementation 
scenarios because the children enjoy interacting with robots more than 
humans due to overall robot likeability, situatedness, embodiment, and 
consistency (Dautenhahn, Werry, Salter, & Boekhorst, 2003; Ferrara & 
Hill, 1980; Hudson & Lewis, 2020; Huijnen, Lexis, Jansens, & de Witte, 
2019). Therefore, we posit the following: 

H2A, 2B. Robotic intentionality is positively associated with robot 
likeability and successful HRI implementation. 

2.2.4. Sociality 
The third independent, pivotal variable/construct concept, robotic 

sociality, refers to the phenomenon that people’s tendency to anthro
pomorphize is related to the fundamental need for sociality, acknowl
edged in the sociality, effectance, and elicited agent knowledge (SEEK) 
model theory (Christoforakos & Diefenbach, 2022; Epley et al., 2007). 
Humans prioritize their social well-being (Ormel, Lindenberg, Steverink, 
& Verbrugge, 1999). If their social needs are unsatisfied, they are 

A.S. Arora et al.                                                                                                                                                                                                                                



Computers in Human Behavior: Artificial Humans 2 (2024) 100036

6

motivated to seek alternative ways (e.g., using robots as social com
panions) through the social reconnection hypothesis (DeWall & Bau
meister, 2006; Piçarra & Giger, 2018). We argue that social needs act as 
drivers to search for social cues and fulfill human needs to anthropo
morphize animals/non-living objects by attributing humanlike charac
teristics to them (Christoforakos & Diefenbach, 2022). Kwok et al. 
(2018) relate anxious attachment with social tendencies and prove that 
these tendencies are moderately positively related. Humans with intense 
isolation levels tend to exhibit stronger robot sociality and likeability 
due to their increased social needs, and successful HRI implementation 
outcomes are likely due to the sociality needs of humans through HRI. 
Therefore, we posit: 

H3A, 3B. Robotic sociality is positively associated with (a) robot 
likeability and (b) successful HRI implementation. 

Humans prefer AX̂IS robots because they are more humanlike (often 
humanoid), sophisticated, artificially intelligent foreign beings. Robot 
likeability plays a significant role and leads to a successful HRI imple
mentation (Arora et al., 2021; Christoforakos & Diefenbach, 2022; 
Klüber & Onnasch, 2022; Li et al., 2022; Marchesi et al., 2021). Thus, we 
posit the following: 

H4. Robot likeability is positively associated with successful HRI 
implementation. 

2.2.5. Anthropomorphism, intentionality, and sociality as independent 
constructs/variables 

As proposed in our AX̂IS robotics–likeability–HRI success framework 
(Fig. 1), anthropomorphism, intentionality, and sociality are considered 
as independent variables because they can be manipulated and 
measured independently. Robotic anthropomorphism has been studied 
in conjunction with intentional stance/intentionality in robots, focusing 
on people’s attribution of varying degrees of anthropomorphism and 
intentionality to robot actions (Bossi et al., 2020; Hegel, Krach, Kircher, 
Wrede, & Sagerer, 2008; Marchesi et al., 2019; Thellman & Ziemke, 
2021). Dennett (1971, 1988, 1997) examines intentional stance or 
intentionality through various human attitudes (toward robots) for 
predicting (robot) behavior in HRI implementation. For the intention
ality construct, social robots may be programmed to act as if they adopt 
(or not) an intentional stance, which may result in increased likeability 
and an efficient HRI implementation, even though these humanoid so
cial robots do not possess beliefs and desires as they are interpreted in 
folk psychology (Schellen & Wykowska, 2019). 

Studies show conflicting relationships regarding robotic anthropo
morphism and intentionality. One stream of research posits that 
anthropomorphism results in intentionality—in other words, “a higher 
tendency to anthropomorphize is associated with a higher tendency to 
adopt the intentional stance to explain the behavior of a humanoid 
robot” (Marchesi et al., 2019; Marchesi et al., 2021, p. 4). However, 
another stream posits that anthropomorphism and intentional stan
ce/intentionality are separate, independent constructs because the 
adoption of an intentional stance relies primarily on neuropsychological 
processes of predicting human behavior toward robots regarding mental 
states that are independent of humans’ ability to anthropomorphize 
robots (Schellen & Wykowska, 2019; Wiese et al., 2017; Wykowska 
et al., 2016). We align with the latter view, even though anthropo
morphism and intentionality both focus on the human psyche and traits. 

Robots demonstrate sociality through their capability to interact 
with humans through trust-building during HRI situations by following 
social acceptance norms (Gaudiello et al., 2016; Ribino, Lodato, & 
Infantino, 2018). Previous robotics research has explored robotic soci
ality in conjunction with the attribution of anthropomorphic qualities to 
robots and robotic agents (e.g., Christoforakos & Diefenbach, 2022; 
Epley et al., 2007; Epley, Akalis, Waytz, & Cacioppo, 2008; Niemyjska & 
Drat-Ruszczak, 2013). Studies have focused on comparing anthropo
morphic and non-anthropomorphic technology agents and assessing 

Table 2 
Hypotheses, theories used, and rationale.  

Hypotheses Theories Used Rationale 

H1A, 1B. Anthropomorphism 
is positively associated 
with robot likeability and 
successful HRI 
implementation. 

The CASA 
framework, derived 
from Reeves and 
Nass’s (1996) media 
equation, suggests 
that humans apply 
stereotypes and 
norms to computers 
and technology, 
further assigning 
personality traits and 
making inferences as 
if the computers 
were human, even 
though they 
understand that 
computers are not 
human 

The more 
anthropomorphic a robot 
is (until the point of social 
threshold, as highlighted 
in the uncanny valley 
effect curve), the more 
likable the robot is, and 
anthropomorphism will 
result in a successful HRI 
implementation for 
humans (Damiano & 
Dumouchel, 2018;  
Marchesi et al., 2021). 

H2A, 2B. Intentionality is 
positively associated with 
robot likeability and 
successful HRI 
implementation. 

The uncanny valley 
effect is a dip in 
positive perception, 
whereby the robotic 
likeability increases 
as the robot becomes 
more humanlike and 
then drops if the 
robot becomes too 
humanlike. 

Intentionality (a.k.a., 
intentional stance or 
intentional mindset) is 
related to perceived 
robotic intelligence that is 
governed by humans’ 
(state-of-mind) social 
associations and mental 
states, resulting in 
favorable behaviors 
toward robots (Arora & 
Arora, 2020;  
Christoforakos & 
Diefenbach, 2022;  
Dennett, 1971, 1997;  
Schellen & Wykowska, 
2019). 

H3A, 3B. Sociality is positively 
associated with robot 
likeability and successful 
HRI implementation. 

The SEEK model 
theory predicts that 
humans like to 
interact with 
technology (e.g., 
social robots) when 
motivated to be 
effective social 
agents and/or 
lacking a sense of 
social connection to 
other humans. 

Sociality acts as a driver to 
search for social cues and 
fulfill human needs to 
anthropomorphize 
animals/non-living objects 
by attributing humanlike 
characteristics to these 
objects (Christoforakos & 
Diefenbach, 2022). 
Humans with intense 
isolation levels tend to 
exhibit stronger sociality, 
robot likeability due to 
their increased social 
needs, and successful HRI 
implementation outcomes 
due to the sociality needs 
of humans through HRI ( 
Kwok et al., 2018). 

H4. Robot likeability is 
positively associated with 
successful HRI 
implementation. 

The CASA paradigm 
means that humans 
are conditioned to 
react mindlessly to 
technology, thereby 
treating technology 
as another social 
being and mimicking 
HHI in HRI 
situations. 

Humans prefer A X̂ IS 
robots since they are more 
humanlike (often 
humanoids), sophisticated, 
artificially intelligent 
foreign beings. Robot 
likeability plays a 
significant role in a 
successful HRI 
implementation (Arora & 
Arora, 2020; Arora et al., 
2021; Christoforakos & 
Diefenbach, 2022; Li et al., 
2022; Marchesi et al., 
2021). 

H5A, 5B, 5C. X̂enocentrism 
(through perceived 
inferiority) moderates the 
relationships among (a) 
anthropomorphism, (b) 

System justification 
theory uses the 
psychological 
process by which 
existing social 

Robotic x̂enocentrism is a 
boundary condition among 
the pivotal concepts of 
anthropomorphism, 
intentionality, sociality, 

(continued on next page) 
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their sociality needs (on intentional and behavioral levels), but no 
causality has been established (Christoforakos & Diefenbach, 2022; 
Mourey, Olson, & Yoon, 2017). Thus, we investigate sociality as an in
dependent variable, such as anthropomorphism and intentionality, in 
our AX̂IS robotics–likeability–HRI success framework (Fig. 1). 

2.2.6. X̂enocentrism and robot likeability 
Robotic x̂enocentrism is closely related to the concept of foreignness 

and robotic intelligence in AX̂IS robots. Humans perceive robots as 
foreign beings who are “intelligent” (more intelligent than humans). 
Robotic intelligence refers to displaying both AI and socio-cognitive 
intelligence (Bartneck et al., 2009; Hesslow, 2012). Social robots face 
the challenge of behaving intelligently in HRI situations requiring high 
levels of social cognition and human decision-making skills. Although AI 
simulations in robots work well in experimental design methods and 
situations, when social robots are deployed in the complex world of 
everyday users, their limitations will become known to their users 
because they interact with these users over a time span of years rather 
than a few minutes or seconds (Bartneck et al., 2009). Bartneck et al. 
(2009, p. 78) propose a series of questionnaires to measure the users’ 
perception of robots called “Godspeed” because “it is intended to help 
creators of robots on their development journey.” 

This research is the first of its kind and makes several contributions 
to theory and practice in AX̂IS robotics. The most significant contribu
tion is the identification of robotic x̂enocentrism as a boundary condi
tion among the pivotal concepts of anthropomorphism, intentionality, 
and sociality leading to robot likeability. Drawing from system justifi
cation theory, Balabanis and Diamantopoulos (2016) conceptualized the 
‘consumer xenocentrism’ construct as a combination of two dimensions: 
‘perceived inferiority’ and ‘social aggrandizement’. They developed 
(and validated) a new scale (the C-XENSCALE) for understanding con
sumer attraction toward foreign things (social robots in this research) for 
measuring consumers’ xenocentric tendencies (p. 58). While some 
studies show that humanlike robots have resulted in positive outcomes 
such as increased feelings of familiarity or ease in working with robots 
(Sauppé & Mutlu, 2015), others identify consumers’ adverse feelings 
(Esterwood & Robert, 2023; Mori, 1970; Mori et al., 2012) toward ro
bots. Social robotics research has never used x̂enocentrism (through 
perceived inferiority and social aggrandizement) to assess a successful 
HRI implementation; thus, the direction of moderating effects is un
known. With limited research available in the field of HRI, we rely on 
empirical results for assessing the impact of these moderating effects of 
x̂enocentrism in social robotics. Thus, we offer the following hypotheses 

(considering positive moderation effects for the purpose of this 
research): 

H5A, 5B, 5C. The impact of perceived inferiority (first dimension of 
robotic x̂enocentrism) of humans vis-à-vis robots on robot likeability is 
stronger (and positive) when the robot exhibits (a) anthropomorphism, 
(b) intentionality, and (c) sociality. 

H6A, 6B, 6C. The impact of social aggrandizement (second dimension 
of robotic x̂enocentrism) between humans and robots on robot like
ability is stronger (and positive) when the robot exhibits (a) anthropo
morphism, (b) intentionality, and (c) sociality. 

Table 2 summarizes the hypotheses, theories used, and rationales. 

3. Methodology 

To collect the data to test the conceptual framework, we used the X- 
Culture project (www.X-Culture.org), a large-scale international busi
ness collaboration and consulting project that employs approximately 
5000 participants per academic semester. The participants are business 
students and working professionals from over 150 universities in 50 
countries in six continents. The project is run twice a year. Working in 
global virtual teams, typically six to seven people per team, each from a 
different country, the project participants spend the semester solving 
real-life challenges presented by client companies, typically involving 
market research, competition analysis, product design, developing a 
marketing strategy, and completing other tasks related to identifying 
market expansion opportunities for the client company. The project 
participants rely on the same online collaboration and communication 
tools commonly used in the corporate world, such as Google Docs, 
Dropbox, Zoom, Slack, etc. 

3.1. Sample 

In total, 308 respondents who participated in the 2021 project 
completed the questionnaires. The average age of the respondents was 
23.3 years, ranging from 18 to over 50, and 39% were male. The ma
jority of the respondents had at least some work experience (average of 
3.2 years), and many (30.1%) were employed at the time of the project. 
Some even ran their own business or held managerial positions (5.1%). 
The global virtual teams participating in the project submitted weekly 
deliverables, and all project respondents completed weekly progress 
surveys. The average response rate was 97.2%, resulting in a sample size 
of 308 useable, fully completed questionnaires, which provided data on 
the respondent’s demographics, cultural background, values, and 
attitudes. 

To ensure that respondents understood the field of industrial and 
social robotics, we required X-Culture respondents to watch three videos 
(2–3 min each) of social robots in industrial, personal, and social- 
collaborative situations before being exposed to the final question
naire. Research in social sciences and interpersonal communication has 
revealed that messages/communications can be made more persuasive 
and compliant by cuing humans’ involvement with objects and behav
iors (Clark, 1998; Cleveland, Kalamas, & Laroche, 2005). Thus, to help 
the respondents understand the field of social-collaborative robotics, we 
used video messages/advertisements as cues to ensure they grasped 
social behaviors in varying HRI situations. After multiple exposures to 
industrial and social robots through videos, respondents received an 
electronic web-based questionnaire with questions focusing on two ro
bots: (1) KUKA Industrial Robot,2 which manufacturing companies use 
for automation and digitization, turnkey production facilities, and smart 
software solutions, and (2) PARO Seal Therapeutic Robot,3 a personal 

Table 2 (continued ) 

Hypotheses Theories Used Rationale 

intentionality, and (c) 
sociality and robot 
likeability. 

arrangements are 
legitimized at the 
expense of personal 
and group interests 

and robot likeability. 
While humanlike robots 
have resulted in positive 
outcomes such as 
increased feelings of 
familiarity or ease in 
working with robots ( 
Sauppé & Mutlu, 2015), 
researchers have also 
identified adverse 
(negative) feelings (Mori, 
1970; Mori et al., 2012) of 
consumers toward robots. 
Social robotics research 
has never used 
x̂enocentrism as a 
construct in measuring a 
successful HRI 
implementation, so the 
direction of moderating 
effects is unknown. 

H6A, 6B, 6C. X̂enocentrism 
(through social 
aggrandizement) 
moderates the 
relationships among (a) 
anthropomorphism, (b) 
intentionality, and (c) 
sociality and robot 
likeability.  

2 https://www.kuka.com/en-us/about-kuka/.  
3 http://www.parorobots.com/. 

A.S. Arora et al.                                                                                                                                                                                                                                



Computers in Human Behavior: Artificial Humans 2 (2024) 100036

8

Table 3 
Overview of indicators and measures of reliability and validity.  

Constructs and indicators Sources Outer loadings 

Point 
estimation 

t-value 

Anthropomorphism (α = .902, AVE = .719, CR = .927) Godspeed Questionnaires (Bartneck et al., 
2009)   

Anthro1 Please rate your impression about the PARO/KUKA robot (5-point scale where 1 =
extreme left choice and 5 = extreme right choice): 
Fake–Natural  

.852 46.696 

Anthro2 Machinelike–Humanlike  .867 44.867 
Anthro3 Unconscious–Conscious  .821 33.456 
Anthro4 Artificial–Lifelike  .891 53.491 
Anthro5 Moving rigidly–Moving elegantly  .804 30.606  

Intentionality (α = .723, AVE = .676, CR = .846) Marchesi et al.’s (2019) InStance Test (IST);  
Schellen and Wykowska (2019)   

Int1 Please rate your impression about the PARO/KUKA robot (5-point scale where 1 =
mechanistic/less intentional and 5 = mentalistic/intentional): 
The robot makes soothing sounds/noises versus the robot is enjoying attention. 
(Mechanistic–Mentalistic)  

.793 11.329 

Int2 The robot looks at me when I talk to the robot versus the robot reduces my stress. 
(Mechanistic–Mentalistic)  

.851 14.714  

Sociality (α = .851, AVE = .626, CR = .893) Epley et al. (2007); Eyssel et al. (2011) 
An extension of Godspeed Questionnaires   

Soc1 Please rate your impression about the PARO/KUKA robot (5-point scale where 1 =
extreme left choice and 5 = extreme right choice): 
Non-social–Social  

.763 28.614 

Soc2 Non-Trustworthy–Trustworthy  .817 29.424 
Soc3 Non-Communicative–Communicative  .757 23.837 
Soc4 Non-Interactive–Interactive  .828 27.527 
Soc5 Non-engaged/Non-reciprocal–Engaged/Reciprocal  .790 23.979  

Perceived Inferiority (α = .843, AVE = .617, CR = .887) C-XENSCALE: Balabanis and Diamantopoulos 
(2016)   

PerInf1 I prefer ‘robots’ over humans because robots represent ‘foreignness’ (with different 
composition from humans) as compared to humans.  

.853 13.337 

PerInf2 Robots are better in quality than humans.  .890 14.015 
PerInf3 I trust robots over humans performing jobs and services.  .789 12.082 
PerInf4 Robots outperform humans in major activities/tasks.  .814 11.438 
PerInf5 Even though humans deliver good quality jobs/services, yet robots are far better than 

humans.  
.529 3.925  

Social Aggrandizement (α = .896, AVE = .669, CR = .909) C-XENSCALE: Balabanis and Diamantopoulos 
(2016)   

SocAgg1 Using (foreign) robots enhances my self-esteem.  .684 2.218 
SocAgg2 People who don’t use/buy robots are less regarded by others.  .844 3.266 
SocAgg3 I prefer (foreign) robots over humans as most of my friends prefer robots as well.  .804 3.148 
SocAgg4 Buying/using robots makes me trendier.  .847 3.450 
SocAgg5 I use/purchase robots to differentiate myself from others.  .894 3.659  

Robot Likeability (α = .912, AVE = .741, CR = .934) Godspeed Questionnaires (Bartneck et al., 
2009   

Like1 Please rate your impression about the PARO/KUKA robot (5-point scale where 1 =
extreme left choice and 5 = extreme right choice): 
Dislike–Like  

.781 31.112 

Like2 Unfriendly–Friendly  .860 45.415 
Like3 Unkind–Kind  .888 51.620 
Like4 Unpleasant–Pleasant  .900 64.357 
Like5 Awful–Nice  .869 31.997  

HRI Implementation (α = .869, AVE = .792, CR = .920) Godspeed Questionnaires (Bartneck et al., 
2009)   

HRI1 Please rate your impression about the PARO/KUKA robot (5-point scale where 1 =
extreme left choice and 5 = extreme right choice): 
Inert–Interactive  

.901 61.661 

HRI2 Stagnant–Lively  .907 70.653 
HRI3 Failure–Success  .862 47.483  
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assistant social robot intended to help humans reduce anxiety, depres
sion, and loneliness while also stimulating, collaborating and engaging 
with people who are living with dementia (Pu, Moyle, & Jones, 2020). 
We avoided using a humanoid robot (e.g., NAO Robot) due to a potential 
likeability bias that could be generated vis-à-vis the industrial KUKA 
robot and the non-humanoid PARO robot. 

Admittedly, the present sample comprises students, and we 
acknowledge certain concerns about the generalizability of the findings 
because students differ from the general population in their de
mographic characteristics, particularly age. However, the threat to the 
validity and generalizability of the findings is likely minimal. The fact 
that students are typically younger is of little concern if the maturation 
effect is not expected to influence the effects studied significantly. The 
respondents, the project settings, and the inter-member differences were 
real, and the work design was closely reminiscent of the real business 
world. Within a year or two, all the project respondents would be part of 
the labor force, and many already were; we have no reason to believe 
that their attitudes toward robots would drastically change at that time. 
Therefore, we consider the threat that the present study’s findings would 
not generalize to the real-world consumer population minimal. How
ever, we acknowledge that we can generalize our findings only to the 
younger to working-age populations. Our results may not apply to se
niors, whose attitudes to robots might differ, and our sample does not 
fully capture such differences. 

3.2. Measures 

3.2.1. Survey instrument 
To design and validate an appropriate survey instrument, we 

extensively reviewed the literature to identify scales used in past 
research. We adopted or adapted established scales from past literature 
to measure anthropomorphism, intentionality, sociality, xenocentrism, 
robot likeability, and successful HRI implementation as a part of the 
AXIS robotics–likeability–HRI success conceptual framework. Table 3 
lists all constructs and scales used in this research. 

Godspeed questionnaires using 5-point semantic differential scales 
measured robotic anthropomorphism, robot likeability, and HRI 
implementation (Bartneck et al., 2009). We measured sociality using 
Godspeed scales describing the need and desire to establish social con
nections with others through robots (Epley et al., 2007; Eyssel, 
Kuchenbrandt, & Bobinger, 2011). We used Marchesi et al.’s (2019) 
InStance Test (IST), a novel tool that assesses the adoption of the 
intentional stance, wherein two sentences are displayed as possible de
scriptions, and respondents choose the sentence that best fits the sce
nario description. For our purposes, one sentence refers to a mental state 
(i.e., intentional stance), and the other refers to a mechanistic expla
nation (i.e., design stance) of the HRI scenario. We used sentences 
mentioning mental states to measure intentionality. We used the con
sumer xenocentrism scale (C-XENSCALE) to measure x̂enocentrism 
(Balabanis & Diamantopoulos, 2016) in robots, with robots treated as 
foreign (intelligent) beings. All seven constructs (including 
x̂enocentrism represented as two constructs: X̂eno A (perceived inferi
ority) and X̂eno B (social aggrandizement) in the conceptual model 
constitute latent variables requiring indirect measurement (Bagozzi & 
Phillips, 1982; Churchill, 1979). 

Because the constructs in our research reflect (i.e., cause) their in
dicators, we specified them as reflective (Diamantopoulos, Riefler, & 
Roth, 2008; Diamantopoulos & Winklhofer, 2001). We selected in
dicators of all constructs from existing literature and according to aca
demic and practitioner evidence. We conducted Harman’s single-factor 
test (Podsakoff, MacKenzie, Lee, & Podsakoff, 2003; Podsakoff & Organ, 
1986) to allay concerns about common method variance. In the 
exploratory factor analysis, the first factor explained 15% of the vari
ance, the last factor explained 6% of the variance, and no single factor 
accounted for the majority (i.e., 50%) of the variance; thus, we consider 

it unlikely that common method bias is of serious concern in this study 
(Podsakoff & Organ, 1986). 

3.2.2. Content validity 
Content validity aims to analyze whether the scales in the survey 

questionnaire fully represent the domain being researched (Bollen, 
1989). We pretested the scales with experienced managers and re
searchers to ensure content validity. Two industry professionals directly 
involved in robotics research and implementing robotics curricula in 
schools and universities in the United States reviewed our survey 
questionnaire. They pointed out ambiguities and provided suggestions 
to improve the survey instrument. In addition, four scholarly experts 
(outside the authors) also reviewed the questionnaire for clarity, struc
ture, and representativeness. 

Based on the feedback of industry professionals and academic ex
perts, we carefully considered the order of presenting questions in our 
questionnaire to ensure both face validity and content validity. The 
sequence of questions was strategically designed to flow logically and 
intuitively, enhancing the face validity by making the questionnaire 
appear sensible and relevant to participants. This ordering was crucial to 
maintain participant engagement and reduce response fatigue, which 
can significantly impact the quality of data collected. We arranged the 
questions to gradually transition from general to more specific items, 
thereby providing a coherent narrative that aligns with our research 
objectives. 

3.3. Data collection 

We used a web-based survey to collect the data to test the proposed 
hypotheses. Web surveys are becoming increasingly popular across 
various research streams (Seepana, Huq, & Paulraj, 2021; Statsenko & 
Corral de Zubielqui, 2020) because of such advantages as quicker and 
higher response rates. In addition, web-based surveys allow for the 
collection of valuable information about the respondents’ survey 
completion process (Griffis, Goldsby, & Cooper, 2003). 

3.4. Analytical procedure 

We validated our measures and tested our hypotheses using partial 
least squares (PLS), specifically SmartPLS software version 3.2.8 
(Ringle, Wende, & Becker, 2015). Partial least squares structural equa
tion modeling (PLS-SEM) methodology is preferred for our research for 
several reasons. First, we focus on theory development and prediction 
(Matthews, Hair, & Matthews, 2018). Second, PLS-SEM is the preferred 
statistical method to analyze a model with higher-order constructs 
(Hair, Hult, Ringle, & Sarstedt, 2022; Manley, Williams, & Hair, 2022), 
such as x̂enocentrism. Third, PLS-SEM employs a fixed point or 
component-based least squares estimation procedure to obtain param
eter estimates. Fourth, PLS uses a series of interdependent ordinary least 
squares regressions to minimize residual variances. Fifth, it places 
minimal demands on data in terms of measurement scales, sample size, 
and distributional assumptions (Chin, 1998; Fornell & Bookstein, 1982; 
Wold, 1982), which makes it a preferable approach compared to 
covariance-based maximum likelihood methods (e.g., LISREL) when 
examining data for which the sample size is relatively small (Bagozzi, Yi, 
& Singh, 1991). Finally, PLS is a more conservative modeling approach 
that tends to underestimate path coefficients (Dijkstra, 1983), reducing 
the likelihood of Type I errors in hypothesis testing (Bagozzi et al., 
1991). 

To test our model’s indicator reliability, we employed a boot
strapping procedure with 2000 randomized samples taken from the 
original sample (Henseler, Ringle, & Sinkovics, 2009). The results of the 
analysis are available in Table 3. All estimates of outer loadings exceed 
the minimum recommended value of 0.7 and also exhibit sufficiently 
high t-values. We also assessed the convergent validity of all constructs. 
All loadings were greater than 0.7, which implies that all indicators 
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share more variance with their constructs than with error variances 
(Chin, 1998). We assessed Cronbach’s alpha (α) and composite reli
ability (CR) for construct reliability. Table 3 shows that the α values for 
all constructs are above the cutoff value of 0.7 (Cronbach, 1951; Litwin, 
1995). The same applies to all CR values that exceed the recommended 
cutoff value of 0.6 (Bagozzi & Yi, 1988; Henseler et al., 2009). The 
average variance extracted (AVE) values (Table 3) are above the 
threshold value of 0.5 (Fornell & Larcker, 1981; Henseler et al., 2009), 
thus establishing convergent validity. We also assessed discriminant 
validity; Table 4 shows the correlations between the latent variables and 
the square roots of the AVE on the diagonal, indicating that the AVE’s 
square roots are greater than the correlations among the latent variable 
scores in all cases. Thus, we can conclude that no construct shares more 
variance with another, thereby establishing discriminant validity (For
nell & Larcker, 1981; Henseler et al., 2009). Furthermore, to test the 
prediction relevance of the model, we applied a blindfolding procedure 
with an omission distance of 5 (Henseler et al., 2009). All resulting Q2 

values were positive, thus establishing sufficient predictive power of the 
structural model (Geisser, 1975; Stone, 1974). 

3.5. Results of analysis 

Table 5 presents the results from the evaluation of the structural 
model (Fig. 1). They show that the R2 values of the endogenous latent 
variables (robot likeability [R2 = 0.510] and successful HRI 

implementation [R2 = 0.691]) are substantial according to Chin’s 
(1998) specifications. Overall, the results of our analysis indicate a good 
model fit with sufficient predictive power. We tested the significance of 
the relationships among the latent variables using the associated t-sta
tistics obtained from PLS bootstrapping. As the results shown in Table 5 
indicate, 9 of the 13 hypotheses are confirmed, all of which are signif
icant at p < 0.01 level. 

4. Discussion and implications 

In an HHI situation, social cues (e.g., language and emotional dis
plays) are critical for coordination and communication. Similarly, in an 
HRI context, social/emotional cues that are integrated into robot design 
can improve long-term collaboration between robots and humans 
(Fischer, 2019). Social-collaborative robots use collaboration as social 
actors through implicit and explicit mechanisms of communicating in
formation efficiently (Admoni, Dragan, Srinivasa, & Scassellati, 2014; 
Fischer, Jensen, Suvei, & Bodenhagen, 2016). This research uses the 
CASA paradigm, which equates HHI with HRI by mimicking interper
sonal interactions and relationships (Fox & Gambino, 2021), as the 
theoretical framework for describing AX̂IS robotics. 

As CASA posits that robots with anthropomorphic and emotional 
cues can support higher forms of social and collaborative interactions 
with humans (Eyssel & Hegel, 2012; Fox & Gambino, 2021), we 
conceptualize and define AX̂IS robots as social-collaborative robots that 
use principles of socio-cognitive intelligence for human-robot collabo
ration and exhibit anthropomorphic, x̂enocentric, intentional, and so
cial behaviors in the sociocultural HRI context in which they operate 
(Arora & Arora, 2020). A real-world example is Vanderbilt University’s 
ASK NAO program developed for the NAO robot (a French humanoid 
robot by Aldebaran Robotics) to interact with students diagnosed with 
autism spectrum disorder (ASD) and other learning disorders. This NAO 
robot (with ASK NAO software) can be examined as an AX̂IS robot with 
socio-cognitive-collaborative intelligence operating in a sociocultural 
HRI situation aimed at ASD students globally. This example provides 
some face validity to our conceptual framework and empirical results. 

The robotics industry is currently experiencing a major trans
formation (Ballestar, García-Lazaro, Sainz, & Sanz, 2022). Industrial 
robots are increasingly used in businesses and organizations as precision 
instruments, mimicking the capabilities of skilled human labor, and 
repeating a handful of tasks thousands of times over (without showing 
signs of fatigue). Recently, interest in non-industrial (social) robots has 
also emerged: businesses are moving away from purely industrial robots 
to ones that are more social, autonomous, collaborative, and easily 
trainable (i.e., less programming intensive) (Sanneman, Fourie, & Shah, 
2021). Robotics companies and roboticists are studying demand pat
terns for co-robots or cobots (safe, flexible, vision-enabled, and easily 
trainable robotic assistants) helping and collaborating with humans in 
their social spheres (Cherubini et al., 2016; Schou et al., 2018; Kopp 
et al., 2021). This research used industrial KUKA and social PARO robots 
in social HRI settings. KUKA has developed a robot called the youBot, 
which can be used for education and research. It includes a mobile, 
two-fingered (with five degrees of freedom) plug-and-play robotic arm. 

Table 4 
Correlations between constructs.  

Construct Anthro HRI Implementation Intentionality Likeability Sociality Perceived Inferiority Social Aggrandize-ment 

Anthropomorphism .848       
HRI Implementation .618 .890      
Intentionality .524 .561 .594     
Likeability .581 .753 .534 .861    
Sociality .613 .718 .427 .604 .791   
Perceived Inferiority .167 .172 .229 .180 .211 .786  
Social Aggrandizement .066 .026 .053 −.092 .081 .372 .818 

Notes: The square root of AVE on the diagonal is in boldface. 

Table 5 
Path coefficients and R2 of the structural model.  

Relationship Path coefficients Hypotheses 

Point 
estimate 

t- 
Value   

Likeability (R2 = .510) 
Anthro → Likeability .260 4.175 H1A Supported 
Intention → Likeability .206 3.641 H2A Supported 
Sociality → Likeability .356 6.227 H3A Supported 

HRI Implement (R2 = .691) 
Anthro → HRI Implement .096 2.037 H1B Supported 
Intention → HRI 
Implement 

.104 2.469 H2B Supported 

Sociality → HRI 
Implement 

.350 6.697 H3B Supported 

Likeability → HRI 
Implement 

.438 7.662 H4 Supported 

Likeability (Moderating effects) 
Anthro × Perceived 
Inferiority 

−.208 2.428 H5A Supported (-ve 
relationship) 

Intentionality ×
Perceived Inferiority 

.158 2.631 H5B Supported 

Sociality × Perceived 
Inferiority 

−.006 0.092 H5C Not supported 

Anthro × Social 
Aggrandizement 

.031 0.428 H6A Not supported 

Intentionality × Social 
Aggrandizement 

−.106 1.472 H6B Not supported 

Sociality × Social 
Aggrandizement 

.048 0.719 H6C Not supported  
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The seal robot PARO is an advanced Japanese interactive robot 
administered to patients in environments such as hospitals and extended 
care facilities. 

We found that all pivotal concepts of AX̂IS robotics (anthropomor
phism, intentionality, and sociality) lead to positive robot likeability and 
a successful HRI implementation for both KUKA and PARO robots. These 
findings corroborate our research perspective illustrated through the 
CASA framework that humans anthropomorphize robots by simulating 
and exhibiting social-emotional-collaborative-cognitive associations 
(Marchesi et al., 2021) before developing affinity/liking toward them. 
According to CASA framework and uncanny valley effect theories, 
intentionality (i.e., the tendency to exhibit mentalizing and social 
cognition behavior) can lead to positive human behavior and likeability 
of robots. Using the SEEK model theory, we propose that sociality (i.e., 
the tendency to act as a social/emotional agent) in robots can lead to 
developing likeability of robots and facilitating HRI implementation 
(Damiano & Dumouchel, 2018). According to our findings, imple
menting a social HRI in practice (and ensuring its success) depends on 
the pivotal AX̂IS robotics concepts. Anthropomorphic, intentional, and 
social robots can help generate a successful HRI implementation. 

Our results further reveal that using an intentional mentalistic 
description for robots (e.g., attributing human mental capabilities to 
robots for activating neural representations), and highlighting a social 
(or emotional/attachment) cue will result in an efficient and successful 
HRI implementation that benefits humans involved in HRI situations by 
engendering feelings of joy, accomplishment, excitement, and enjoy
ment, and even improved health outcomes (resulting from health care 
robotic implementations). Relatedly, prior research shows that robot 
likeability can happen within seconds in HRI situations, and the 
impression of likeability significantly influences HRI implementation 
(Bartneck et al., 2009; Kaplan et al., 2019). We found that robot like
ability is positively associated with successful HRI implementation: the 
more anthropomorphic (humanlike), intentional, and social a robot is, 
the more likable it is, and thus, there is a stronger possibility of a suc
cessful HRI implementation. However, the uncanny valley effect should 
be considered when designing and developing robots, paying careful 
attention to the point of inflection at which a dip in likeability occurs 
when the robots appear or behave in too human a manner (Arora et al., 
2021; Mori et al., 2012). Robotic designers and roboticists employ the 
uncanny valley effect in many real-world instances. For example, Soul 
Machines, a New Zealand company, created Ava (a digital-human avatar 
and a virtual assistant) for Autodesk Inc. (an American multinational 
software corporation that makes software products and services for the 
architecture, engineering, construction, manufacturing, media, educa
tion, and entertainment industries). Ava appears remarkably lifelike; she 
is designed to analyze human facial expressions and voices of joy, 
sadness, anger, and frustration. She can generate an emotional reaction 
on her face in return for the received human expression. Because of these 
AI capabilities, Soul Machines intentionally created Ava with purple 
eyes so that she is not perceived as too human (or too real), thus 
avoiding the uncanny valley effect. 

We encountered plausible results while examining the moderating 
effects of x̂enocentrism on the linkages between robot likeability and 
anthropomorphism, intentionality, and sociality, as well as between 
successful HRI implementation and these pivotal concepts. The concept 
of x̂enocentrism can be explained through the system justification the
ory, which highlights social aggrandizement (i.e., the phenomena of 
outgroup favoritism for enhancing perceived social status) and 
perceived inferiority (i.e., the phenomena of ingroup derogation, 
particularly among members of low-status groups) (Balabanis & Dia
mantopoulos, 2016). Diverse domains such as consumer behavior, 
human resources management, marketing, organizational behavior, 
corporate social responsibility, and business ethics research have glob
ally implemented system justification theory (e.g., DiTomaso, 2015; 
Fujimoto, Härtel, & Azmat, 2013; Li & Agrawal, 2014; Shepherd et al., 

2015); herein, we expand the use of this theory for social robotics and 
HRI research. We employed the C-XENSCALE to measure x̂enocentrism 
and how it moderates the relationships between pivotal concepts, robot 
likeability, and successful HRI implementation. We find that humans 
perceive robots to be more intelligent and superior (Rampersad, 2020), 
thus confirming that robotic x̂enocentrism exists. Robots are used in 
manufacturing, science, surgery, and performing/delivering services. 
Robots work efficiently and effectively; for example, they fly planes 
more safely than humans and perform household cleaning tasks better 
than humans, and driverless cars are better than human drivers who 
may be distracted by their cellphones or driving under the influence. 

When delving deeper into our results, we found that social aggran
dizement (outgroup favoritism) did not act as a significant boundary 
condition for the relationships between pivotal concepts and robot 
likeability but that perceived inferiority (ingroup derogation) was a 
significant negative moderator between anthropomorphism and robot 
likeability. In addition, perceived inferiority was a positive (significant) 
moderator in the relationship between intentionality and robot like
ability. Sociality was not affected due to the moderating influence of 
x̂enocentrism. These findings demonstrate that humans perceive robots 
as superior because they see themselves as inferiors or of low status and 
not because they think that robots come from a foreign (better) world 
and have a different composition than humans. 

An important finding is that robotic x̂enocentrism moderates the 
linkage between anthropomorphism and robot likeability. Due to the 
uncanny valley effect, there is a significant negative moderating rela
tionship of x̂enocentrism on the linkage between anthropomorphism 
and robot likeability. This finding confirms robot designers and robot
icists’ insistence on having imperfections in robots to prevent the 
occurrence of high levels of anthropomorphic feelings in consumers 
during HRI. In contrast, we found a significant, positive moderating 
relationship of x̂enocentrism on the linkage between intentionality and 
robot likeability, meaning that the more intentional the robot is, the 
more likable it is. 

Computers are social actors (CASA) paradigm was utilized as an 
overarching theory (along with the uncanny valley effect and the soci
ality, effectance, and elicited agent knowledge (SEEK) model theories) 
proposing that social robots display high social cognition and decision- 
making skills. These social robots can behave intelligently in complex 
HRI situations (e.g., military operations: biological, radiological, 
chemical, and nuclear detection; battle-space awareness and environ
mental sensing; precision targeting and precision strike; counter- 
improvised explosive device capabilities). During these situations, 
humans tend to use mentalistic descriptions more than mechanistic 
descriptions for social robots. Thus, perceived robotic intentionality is 
higher, resulting in positive robot likeability when moderated by robotic 
x̂enocentrism. The HRI research on human facial responses and ani
matronics is crucial considering the importance of robotic intentionality 
and human mental states. Currently, robots can portray and mimic 
human emotions, but in the future, the ability to respond to human 
emotions appropriately will take innovations in AX̂IS robotics to the 
next level. 

5. Limitations and future research directions 

The study has some limitations, which point to further research di
rections. First, the research involved students and working professionals 
who examined HRI situations through video messages rather than in- 
person HRI encounters. However, we would not have been able to 
garner 308 survey responses from a global audience using an in-person 
study. Therefore, future research should focus on in-person HRI en
counters. Second, our AX̂IS robotics research has added a new global 
dimension/concept of robotic x̂enocentrism (Balabanis & Dia
mantopoulos, 2016) to social robotics. While this concept enriches the 
field of social-collaborative robotics, it is still in its infancy and needs 
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further investigation. Further empirical research should focus on 
implementing robotic x̂enocentrism (and examining its moderating ef
fects) in social robotics and HRI contexts and situations. Table 6 presents 
some suggestions and questions that can guide future scholars in 
developing new research directions. 

Our research on AX̂IS robotics is the first of its kind to use socio- 
cognitive, management, and international business concepts in the 
ever-growing field of social robotics and HRI. We hope our study will 
help designers of the next generation of social-collaborative robots, thus 
further bridging the gap between humans and robots. 
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