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Forgetting-Factor Regrets for Online
Convex Optimization

Yuhang Liu“, Wenxiao Zhao

Abstraci—This article develops a class of novel algo-
rithms for online convex optimization. The key construct
is a forgetting-factor regret. It introduces weights to the
objective functions at each time instant ¢ and allows the
weights of the past objective functions decaying to zero.
We establish the forgetting-factor regret bounds of clas-
sical algorithms including online gradient descent algo-
rithms, online gradient-free algorithms, and online Frank—
Wolfe algorithms. In addition, the article introduces online
gradient descent algorithm with a forgetting factor, and
analyze its performance under the new regret. Sufficient
conditions are obtained to guarantee the bounds of the
forgetting-factor regret of the above algorithms being of the
order o(1), which guarantees the tracking performance for
minimizers of time-varying objective functions. Finally, our
results are tested through numerical demonstration.

Index Terms—Forgetting-factor regret, iterative optimiza-
tion algorithm, online convex optimization.

[. INTRODUCTION

NLINE convex optimization (OCO) has received much

attention lately because many applications such as online
routing, advertising selection for search engines, and spam fil-
tering, etc., all fall into this category [1]. In such a scenario,
optimization algorithms need to be performed for a sequence
of convex objective functions {f:(-),t =1,...,T}. At each
time instance ¢, the algorithm generates a prediction z;; based
on available information including {z;,7 =1, ...t} as well as
{fi(:),1=1,...,t}, and then the loss of prediction f;;1(x¢11)
is obtained for the next round of optimization process. Note that
the OCO can also be considered for a continuous-time variable
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t € RT; see, e.g., [2]. In this article, we mainly focus on the
discrete time setting. Note that the optimal solutions of OCO
are time varying. As a result, the traditional convex optimization
algorithms for the time-invariant objective functions may not
be feasible. A widely applied index for describing the perfor-
mance of algorithms for time-varying objective functions is the
so-called static regret function, denoted by regret3. in this article,
which measures the cumulative difference between the loss of
the estimates and the best-fixed points:

T T
regret; = Z fe(xy) — gél)r(lz fe(u) (1)
t=1 t=1

where X denotes the feasible set. An optimization algorithm for
OCO is said to be acceptable if regret?} is sublinear with respect
to 1", that is,

lim regrety /T = 0.
T—o0

The definition of the regret function first appeared in [3], and
has been widely applied ever since in areas including online
learning [4], [5], [6], information theory [7], game theory [8],
etc. Under this framework, performance of many classes of
algorithms for OCO have been evaluated. For example, the pro-
jected online gradient descent (OGD) algorithm with O(1/+/%)
step size and the regularized follow-the-leader algorithm with
O(1/V/T) step size are studied in [9] and [10] and O(v/T)
regret bounds are given. The OGD algorithm with O(1/t) step
size is further investigated in [10] with a logarithmic regret
bound O(logT) established. There are also many variants of
the above algorithms with sublinear regrets, see the Frank—
Wolfe approach-based projection-free algorithm [11], [12], the
d-smoothing-based algorithm for OCO without gradient infor-
mation (named the bandit optimization in literature [13]), etc.,
and also [14], [15], [16], [17], [18], [19], [20], [21], [22], [23],
[24], [25], [26], and references therein. However, as indicated
in [27], algorithms with sublinear regrets do not necessarily
guarantee a satisfactory tracking performance for minimizers
of OCO.

Example (Hazan and Seshadhri [27]): With an even integer
T > 0, define the loss functions of OCO by
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By using the follow-the-leader algorithm (see, e.g., [6]):

t
Tiy1 = argmianS(m) 3)
rxeX —1
it follows that
1 t=1,...,L
— ] ) L)

As shown in [6], for the above algorithm, the static regret
function is bounded by O(log T'). On the other hand, it is direct
to check that the estimate x 1 equals 0, rather than the minimizer
—1of fr(-).

Based on regretg defined in (1), some other regrets are given
in the literature for evaluating performance of algorithms; see the
adaptive regret regrets in [27] and the dynamic regret regret?
in [28] defined by

regret? = sup

[r,s]C[T]

{th ) mgg; ft(u)} 5)

and

T
regret? = Z fe(zy) —

t=1

T
> fulay) 6)
t=1

respectively, where =} € argmin .y f;(z), ¢t > 1, and [T] and
[r, s] denote the sets {1,...,T} and {r,...,s}. The studies
for the adaptive regret and the dynamic regret can be found
in [29], [30], [9], [31], [32], [33], [34], [35], [36], [37], [38],
and [39], respectively, which aim at connecting different classes
of regrets and establishing the corresponding regret bounds
of optimization algorithms as tight as possible. For a given
algorithm {z;}7_,, it is readily checked that

regret? > regret? > regret?. @)

However, for an algorithm with a sub-linear dynamic re-
gret, there is no guarantee on fi(z:) — fi(a;) = 0 as
t — oco. For example, assuming fi(z¢) — fi(a}) = ar =
1 if t= 2m’ m > 1 and ft(xt) — ft(xi) = a+ = 0 oth-
erwise, then limy .o S/, a;/T < limy o log, T/T =0,
while f;(z:) — fi(x}) does not converge to zero.

From the definitions of regret%, regret4, and regret? , the time-
varying objective functions {f;(:), ¢t =1,...,T} are treated
equally for each time instant ¢. In many applications such as tar-
get tracking in systems and control, portfolio management, and
property price forecast, etc., in addition to guarantee a sublinear
regret, itis much desirable to ensure that at the terminal instant 7',
the bound of 0 < fr(zr) — fr(zk.) is small and furthermore,
fr(zr) — fr(a¥) — 0as T — oo, which generally cannot be
guaranteed by the sublinear regret7, regret?, and regret?.

In [7], the prediction with expert advice is considered and the
discounted regrets of the following form are introduced:

regret%sT Z Br—i (U(pe;ye) — U et Yt)) (®)
t=1

where p; € D with D being the prediction space, y, € Y with
Y being the outcome space, { fr+, E € £} being a set of ref-
erences called experts, | : D x ) — R being the loss function,
and {f;}+>1 being a sequence of positive numbers satisfying
Bt — 0 as t — co. Under the assumption that Z;’il By < o0,
[7, Th. 2.7] establishes a positive lower bound for the discounted
regrets, i.e., there exists some C' > 0 such that for any forecasting
strategy, there is a sequence of outcomes such that

riﬂlax{regretd‘S 1>C vT>1. 9)

From (9) it can be observed that if the {3, }:>1 decreases too
quickly, then, except for trivial cases, there is no hope to prove
that the discounted regrets converge to zero. Discussions for the
case Z;)C:l [y = oo can be found in [7, Th. 2.8] and [51, Sec.
VIJ.

Note that to achieve good tracking performance of fr(xr) —
fr(z¥), fi(-) and x; at time ¢ near T' is more informative
compared with those at earlier time instants. Motivated by
this and similar to the above discounted regret, and aiming at
characterizing the tracking performance of iterative algorithms
for general OCO, in this article, we propose a regret for the
convex loss functions, namely, regret with a forgetting factor, for
which the weighting coefficients are introduced to the objective
functions at each time instant ¢ and the weights for the past
objective functions are allowed to decay to zero asymptoti-
cally. To be specific, with a fixed p € (0, 1) the regret, namely,
forgetting-factor regret denoted by regretl: in this article, is
defined by

regret}. £ ZpT E(fe(xe) — felx})) (10)

where {x4,t =1,...,T} is generated from an algorithm for
OCO with 2} € argmin_ .y fi(x),t=1,...,T,and p € (0,1)
is the forgetting factor. Note that in regrety, the effect of
o=t (fi(x¢) — fi(x})) decays as the magnitude of T — ¢ in-
creases.

Under the framework of the forgetting-factor regret and for
an optimization algorithm of OCO, in this article we

1) analyze the upper bound of regret’,, and
2) introduce sufficient conditions such that limp_,
regrety = 0.

This establishes the tracking performance of the algo-
rithm since fr(z7) — fr(z%) < regret).. For a given algorithm
{x:}]_,, by (7) and (10) it is easy to check that if regretl: =
o(1) as T — oo, then regret? = o(T), regretss < o(T), and
regrety. < o(T).

The contributions of the article are as follows.

1) We are able to analyze the performance of the classical
algorithms for OCO under regret}.
We first analyze regret;: of the online gradient descent
algorithm (OGDA). Then, for the bandit information
model where the gradients of the objective functions are
unavailable, we establish bounds of regretg for the online
gradient-free algorithms (OGFA) with d-smoothing
and deterministic difference techniques.
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By introducing a line-search procedure into the online
Frank-Wolfe algorithm (OFWA), we investigate regret}:
of the corresponding algorithm, which reduces the com-
putation complexity compared with OGDA and OGFA.

2) Under the framework of regret?, we introduce a new class
of algorithm—online gradient descent algorithm with a
forgetting factor (OGDA-F) and analyze the correspond-
ing regret?..

3) We establish bounds of regret$ ’s for OGDA, OGFA,
OFWA, as well as OGDA-F and derive sufficient con-
ditions to ensure regret).’s of these algorithms tending to
0as T — oo. Our knowledge was not known in literature
in the past. In addition, the regret bound of OGDA-F
extends the well-established estimation error bound for
time-varying linear stochastic systems; see, e.g., [40] for
the nonlinear OCO problems.

The rest of the article is organized as follows. In Section IT, we
give the detailed problem formulation of OCO and the definition
of regrety, analyze the performance of OGDA, OGFA, and
OFWA, and propose a new algorithm OGDA-F together with
detailed analysis. In Section III, we provide some simulation ex-
amples to demonstrate our algorithms. Then, we make a number
of concluding remarks in Section IV. Finally, in Appendix, we
list some definitions and results for convex optimization.

Notation: Denote by (€2, F, P) the probability space and E(-)
the mathematical expectation operator. Denote by M i, j] the
(i, 7)th entry of the matrix M and by M[i,:] and M[:, j] its ith
row and jth column, respectively. Denote by e” the vector in R?
with the kth component being 1 and the others being 0. Denote
by || - || the Euclidean norm on R? and by (-, -) the inner product
on RY. The projection operator Px (-) onto the set X is defined
by Px(y) £ arg mingex ||z — y||. The gradient of the function
f(-) : R4 — Rata given z is denoted by V () if it exists. For
a set X, denote its interior by X°.

[I. PERFORMANCE ANALYSIS OF ALGORITHMS UNDER THE
FORGETTING FACTOR REGRET

Definition 1: Let{f(-),t =1,...,T} be asequence of con-
vex objective functions over the constraint set X C R%. Let . Abe
an algorithm for the above OCO problem. Denote by {z }1<t<7
the estimates generated by A. With a given p € (0, 1), the
forgetting-factor regret of algorithm A is defined by

T

regretg = Z ptt (fe(ze) — filxy))

t=1

an

where z} € argmin,x fe(z), t=1,...,T.

With the definition, an algorithm for OCO possesses good
tracking performance provided that limp_, ., regret? =0. We
first impose a set of conditions for the analysis to follow:

1) The feasible set X C R? is compact and convex.

2) For any ¢ > 0, the objective function f;(-) is convex
and differentiable in X and there exists L > 0 such that
IVi(x)| < L,ze X, t=1,...,T.

3) {f:(-),0 <t < T} are Lg-smoothin X.

The definition of L g-smooth functions is given in Appendix.
By Al), we can define a positive constant M £ sup{||z|| : 2 €
X} < co. As indicated in [32] and [34], it is impossible to
exactly track the optimizer defined by an arbitrarily varying
optimization problem. Thus, we introduce the following notation
to characterize the loss functions:

{9t = i1 — 2] (12)

Ff;& £ supgex |fie(z) = fiyr ()]

which will be used throughout the article.

A. Forgetting-Factor Regret of OGDA

The OGAD algorithm is one of the most widely applied
algorithms for online optimization, which incorporated with a
projection operator can be formulated as follows.

Algorithm 1: Online Gradient Descent Algorithm (OGDA).

Initialization: An initial estimate z, a step size o > 0
and the maximal number 7" of iterations.

Fort=0,...,T,

update the estimate as

13)
(14)

Tpp1 = 24 — avft(xt)
Tip1 = Px (Ty41)

end;

Theorem 1: Let {x:}+>1 be a sequence generated by Al-
gorithm 1. Assume A1)-A3) hold and for each t =1,...,7T,
the objective function f;(-) is o-strongly convex. Then for any
p € (max{1/2,1—-0/(4Lg)},1),

T
1 % —t su
regrety. < 3 {PT (filz1) = fi(z1)) + QZPT tFt,til

t=1

T
1 LZpT‘tet} (15)
=1
provided that @ < a<min{l/Lg,2/c}, where 5 = p +
2 — 1> 0. Moreover, if F{}}; = o(1) and 6; = o(1) as t —
o0, then limy_,  regreth, = 0.

Theorem 1 further requires that F; ;7 = o(1) and 0; = o(1)
as t — oo. It means that the varying minimizers of the OCO
problem should not change too fast with respect to the time
instants¢ > 1.Letus consider the following illustrative example.
Choose f(z) £ %|lz — 2z/|?, t > 1 with a compact and convex
feasible set X and z; € X, ¢t > 1. Assume that the changing of
the minimizers is slow, i.e., ||z: — z¢41|| = o(1) as t — oco. Set
M £ sup{||z|| : € X} < co. From the definitions of F}}};

sup

and 0y, it is direct to check that Fy Y, < 2M ||z — ze41 | =
2M6; and F}}%, = o(1) and 6; = o(1) follows.

Theorem 1 establishes the upper bound of the forgetting-factor
regret of OGDA and gives the sufficient conditions to guarantee
regrety, = o(1) as T — oc. From Theorem 1, for OGDA with

the appropriately selected forgetting factor p and the step size
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constant «, the tracking of the time-varying minimizers of OCO n

i x = (filwe) = fol@}) + 5 |l — 7)) 22)
can be guaranteed, i.e., fr(zr) — fr(zh) = 0asT — co. A A A 20 It el

key step toward establishing the upper bound of regret. is to
find a recursive formula for fi(x:) — f:(2}), t > 0 by using the
properties of the projection operator and the convexity of the
loss functions. The details are given as follows.

Proof: By the definition of F}}Y,, it directly follows that

ferr(@eq1) = frrr(2ipn) = ferr (@) = fe(@ee) + (i)
= fe(x)+ fewe) = fe(ap) + fe(ap) = frn (2iiq)
< FRR + fe(@en) = fe(we) + fo@e) — fel@))
+ fe(@y) = frer(zi40)-
For fi(a}) —
ft(xl‘)—ft+1(x2‘+1)
= fe(@}) = frer (xp) + fer (@7) = fer (241)
S FPR A (Vi (@), 2y — aiy) < Foyly + Lo,

where the last inequality follows from the Schwartz inequality
and Assumption A2).
Next we consider f;(z¢41) —

fe(zig1) — fi(we)

(16)

Ji+1(z7, 1), the convexity of f;11(-) yields that

a7
.ft (J?t) By A3),

Lg 2
<AV fi(we), w1 — 24) + > lzer1 — o] (18)
which together with the stepsize condition o < 1/Lg yields

fe(wea) = fila)
1
)+ 5o

<AV fizy), xpq1 — x4 %0

On the other hand, from (13)—(14), Algorithm 1 can be rewritten
as

19)

[@e41 *It||2-

Xpp1 = argmin || — x¢ + aV fy (mt)”2

reX
. 1 2

= argmm{(Vft (xe),x —x4) + % |z — | } .

(20)

reX

Combining (19) and (20) and by using the convexity of f(-),
we have

ilarsn) i) < mig { (o) 51 ol

reX

| N

mip { fle) = i) + 51 o~ el |
2D

Note that X is a convex set and f;(-) is convex in X. For
any fixed 7 € [0, 1], by setting z = (1 — n)z; + nz} in (21), we
have

fe(wig1) —
<1

ft(xt)
=) fe(xe) +nfelzy) —

2

ful) + o llee = ;]

By using the o-strong convexity of f;(-) and Lemma A1, we
obtain

fi(x}).

Setn = . By noting o < % itis direct to check that < 1.
Then from (22) and (23), we obtain

3 e =2l < fiw) — (23)

laess) = o) < (22 =) (b = el
= - (fle) - ) @9
which incorporated with (16) and (17) gives
Jrr1(@eqr) = fra(@iy0)
< (1= 7F) (falwn) = fulap)) + 25352, + Lo,
= (p—B) (Fulae) — fulai)) + 2652, + L6, 25)
where 3 =p+ 22 — 1 being positive since 212 < o <

min{1/Lg,2/c}.
By multiplying p” ~* to both sides of (25) and then summing
up the terms for ¢ = 1,..., 7T, we finally obtain

T
B p" (fulwe) = fo(a})) Z T (folwe) = fo(27)
=1 =1

T
— P (e (@) = fra (@740)) + QZ pT Tt (Freh i +16r)
t=1

T T

< p (i) = fi(@})+2D  p R LY p"0r (26)
t=1 t=1

Hence, (15) is proved.

If F{%, =o0() and 6;=o0(1) as t— oo, then
limp o regretg =0 follows directly from the fact that
for any positive sequence {7:};>0 tending to zero,
iy o Spy pT 0y = 0; (see, e.g., [49, Lemma3.1]). W

B. Forgetting-Factor Regret of Online Gradient-Free
Algorithms

Inapplications, to obtain the gradient/subgradient information
is sometimes computationally expensive, and even impractica-
ble in some cases, such as online source localization, online rout-
ing of data networks, online placement of advertisement [10], as
well as the graphical model inference [41], and the structured-
prediction [42] in statistics, etc. For OCO, this is called the partial
information model or the bandit model and in such a scenario,
at time instant ¢, the value of f;(-) at z; can be observed but the
gradient V f; () is unavailable.

The so-called d-smoothing technique is widely applied for
designing gradient-free algorithms for OCO [13]. In fact, such
an approach is rooted to a variation of the random direction
methods in stochastic approximation [43]; see also some recent
progress in stochastic approximation [44] and stochastic convex

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 31,2024 at 01:52:12 UTC from IEEE Xplore. Restrictions apply.



5038

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 8, AUGUST 2024

optimization [45]. In this section, we first analyze regret;: of
OGFA with the J-smoothing technique. Then we introduce a
deterministic difference based OGFA algorithm and analyze the
corresponding regretITT .

Denote by B the d-dimensional unit ball and by S the d-
dimensional unit sphere.

Definition 2 (see [13]): Attime instant ¢, for the loss function
fi(z) with z € RY, its 6-smoothing function f; 5(x) is given by

Fos(x) 2 E[fi(z + dv)]

where § > 0 is a scalar constant and v is a random vector
uniformly distributed over the d-dimensional unit ball B.

Before proceeding further, we strengthen Assumption A1) as
follows.

@n

A1) The constraintset X C R¢is compactand convex and satis-
fiesrB C X C RB forsome R > r > (0. Moreover, there ex-
istsan constant Ly > O such thatsup; <;<7 e x |fi(7)] < Ly.

Choose § € (0,7) and set X5 =
that (see, e.g., [13]),

(1 —0/r)X.Itcanbe proved

Xs+0BcC X (28)

and

Vﬁﬁg (.I') =

where v is a random vector uniformly distributed over the
d-dimensional unit sphere S. OGFA with the -smoothing tech-
nique is given as follows:

%l]E[ft(:c + du)ul (29)

Algorithm 2: Online Gradient-Free Algorithm (OGFA)
with §-Smoothing Technique.

Initialization: An initial estimate z, a step size «, a
smoothing parameter ¢, and the maximal number 7" of
iterations.

Fort=0,...,7T,

choose u; a random vector uniformly distributed over S
and independent of {uy, ..., u;_1},

update the estimate as

ft(xt))u (30)

gt = %i (fe(xy + ouy) —

Tt41 = PX5 (ﬂUt - agt) 3D

end;

Theorem 2: Let {x:}+>1 be a sequence generated by Al-
gorithm 2. Suppose that Al’), A2), and A3) hold and
fie(),t =1,...,T are o-strongly convex. Then for any p €
(max{1/2,1—0c/(4Ls)}, 1),

E[regret?]

T
= SR ) - fula})]

t=1

T
fr(@y)+2> p Y,

t=1

; {P E(fl(fﬂl)

(32)

Csa
L T, + —=

t=1

provided that 4(1077’3) <« <min{l/Lg,2/c}, where 8 = p +
—1>0 and Cso= (2L + ZEa+ Z2a)d + 2d*L30.
Moreover, if F;}}, =o(1) and 6; = 0(1) as t - oo, then

Cs.a
lim supy_, ., Efregret}] < 6(167—

Theorem 2 establishes the upper bound of the forgetting-factor
regret of Algorithm 2. Note that for OGFA with d-smoothing
technique, the upper bound of E[regret’.] is related by a positive
constant Cj . This is because the 6-smoothing based difference
(30) serves as an estimate for Vﬁ(;(x) given by (29), not
for the gradient of the optimization function V f;(x) itself.
The proof of Theorem 2 generally follows the similar lines
of Theorem 1, by paying attention to the difference between
the J-smoothing function ﬁg(:p) and the optimization function
fi(x),ie., fis(x) — fi(x).

Proof: A similar analysis as (16), (17) leads to

fro1(@ir1) = frpr (@)
<2F7 R+ fe(wer) = fe(we) + fe(we) = fe(2f) + Lz (33)
By (27), (28), and Assumption A2), for any z € X; we have
the following estimate:

Fos@) = f(@)| = [Elfu(a + 8v)] - fu(a)|

< E|fi(z + 6v) — fil2)]

< E[LS|lv]]] < Lé (34)

where the last inequality holds because v is uniformly distributed
over the unit ball B and thus

fe(@esr) — fr(ze) < 2L8 + frs(zes1) — Fro(ze).

Next, we consider the upper bound of ﬁ7§(xt+1) — ﬁ)g(%t).

Noting A3) and (28), by the assumption that X is compact
and the Lebesgue’s dominated convergence theorem, it can be
proven that Vﬁyg(:z:) =E[Vfi(z + dv)] and ﬁ,g(l‘) isalso Lg-
smooth over X, i.e.,

Fra(zy)

(35)

Frs(xep1) —
~ L
< <Vft,6(3?t)7l‘t+1 - 33t> + 75 |ze41 — xtHQ (36)

since by (31), z; € X;. From (36) and noting o < 1/Lg and
(30,

ﬁ,é(xt)

J?t,é(xt+1) -

~ 1
< <Vft,5(117t),$t+1 — If,> + % lwser — It||2

1
= (gt Tep1 — o) + % |ze1 — e

+ <VJ?t,6(CUt) — 9t, Tt41 — $t> .

By (29) and (30) and noting Al’), A2), we get |g:]| <
§ - Lldus]| = dL and ||V fo5(2)]| = |$E[(fi(x + du))u]|| =

(37)
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[4E[(fi(z + 6u) — fi(2))u]|| < dL for any = € X;. Then by Next we consider the term ﬁ,g(xt) - ﬁg(ﬁ) By Al’), we

Lemma A2 in Appendix and (31) it leads to know that 0 € X. Then, by the convexity of f;(-) we have
(VFos(@e) = giowesn — 1) Juld) = mip fule) = min fi (1= /1))
< (IV sl + o) ess =2l < {6/, (0)+ (1=/1) (@)} < SLafl))
xeE T
< 2dL - (allgi) < 2d*LPax (38) (45)

which combining with (37) yields

Frs(xes1) — Fro(ae)

Using | fi(z) — ft,g(:c)| < L¢ for all z € X5, we obtain
Fro@e) = Jos(#)

- 1 2 272 R R
S Gnaen =2 oo e e 20 e G 5 ) 4 1@ — Frs(@) + filen) — fu(@)

On the other hand, noting that Py, (+) is a projection operator, . i 5
for Algorithm 2 we have > = 2L0+ fu(we) = fu(@3) = —2L6 + fi(we) — fe(x) — ;Ll
(40)

. 1
xtﬂzargmm{(gt,x—xt}—FQ||x—:rt2}. (40)
ze€Xs @ where for the last inequality (45) is applied.

Combining (39) and (40), we obtain Taking the mathematical expectation on both sides of (46) and
—~ ~ then substituting it into (44) yield
ft,6($t+1) - ft,5 (xt)

1 5 i (J?t,é(xt+1) - fm(xt))
< min {(gt,x — )+ % |l — 2| } +2d%L3a
!

zeXs
) g—%}E(ft(xt)—ft(a:;‘))Jr% (2&5 + le) + 2d%L %,
— mi r _ . 2
- ;?61}% {<Vft’5(.%'t),l‘ xt> + 2% Hx mt” (47)

Combining (33), (35), and (47), we obtain

E (fir1(zeg1) — frar(ziyy))

~ ~ 1
< min § fr5(z) = fro(@) + o= o — 2 oa . sup
soxs |70 2 < (1 - T) E (fi(2:) — fi(2])) + 2F5%% | + L6,

+ (gt — Vfis(xe), @ — $t>} +2d%L2a

—Vf, - 2d2L? 41
r

where the last inequality holds because of the convexity of ﬁ’g ()

over X5. from which together with a similar discussion as (25), (26), we
Denote 7 = argmingcy, fi(z). By setting z = (1 — can prove (32). This completes the proof. |
22w, 4+ %2 &} € X5 in (41) and carrying out a similar analysis Motivated by the Kiefer—Wolfowitz algorithm for stochas-
as (22)—(24), we have tic optimization [43], [46], in what follows, we introduce
N . oo/~ - another class of gradient-free algorithm, which, to the au-
ft,é(xtJrl) - ft,ﬁ(xt) < I (ft,&(xt) - ft,5($t)) thors’ knowledge, has not been discussed in the literature.
oo R Let {c:}+>0 be a sequence of positive numbers. At time ¢,
- \gt — t,8 iEt,f:—iEt . assume that the values of f;(-) at the points x = x; + ¢;e” an
+ 5 (90 = Viis(ar) ) +2d°L? (42) hat the values of he p ¥ and
o ] r =1z — ¢’ with k =1,...,d can be observed, where e*
Note that for the conditional expectation E[g:|:] = i the vector in R? with the kth component being 1 and the
V ft.5(x¢) and thus others being 0. Denote the observed function values by [2F]* =
-~ . fi(ws + cie®) and [2F]” = fi(z — ciek) and define the
E <gt = Vfes(ze), 2 — xt> differences '
& - K1+ k-
:E<E {gt_Vft,é(xt”xt} y Ty —$t> =0 43) ht[k’] :[215]2&, k=1,....d (49)
¢
from which and by taking the mathematical expectation to both '
sides of (42), we have and
~ ~ T
E (fis(@i) = Frs(ar) he = 1], held]] (50)
< _%% ( ﬁ 5(ze) — ﬁ 5@:)) 1 9d22a. (44) which serve as estimates for the gradients of objective
4 ’ ’ functions.
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Algorithm 3: Online Gradient-Free Algorithm (OGFA)
with Deterministic Difference Technique.

Initialization: An initial estimate x, a step size «, the
maximal number 7 of iterations, and a positive
decreasing sequence {c; }7_ ;.

Fort=0,...,7T,

update the estimate as

_ _.T
A ) e e 4 sh
2Ct 2Ct
ft+1 =1z — ahy, (52)
Tip1 = Px (Ty41), (53)

end;

Before proceeding further, we need
assumptions.
A4) {fi(-), t=1,...,T} are second-order differentiable

and there exists a positive constant Lz such that

the following

|V2filk, k]| < Ly, t=1,....,T, k=1,....d

(54)

where V? f(-) represents the Hessian matrix of f(-).
A35) {c;}i>0 is a positive sequence decreasing to zero.
Theorem 3: Let {z:};>1 be the sequence generated by
(51)—(53) with initial value zo € X. Suppose that f;(-), t =
1,...,T are o-strongly convex and A1)—AS5) are satisfied. Fur-
ther, assume that a € (@,min{l/Ls, 2/o}]and 1 > p >
max{1/2,1 —o/(4Lg)}. Then,

T

regrets, = Z p" T (fr(me) — ful=)))

t=1

T
! {PT (fi(w1) = fi(z1)) + QZPT%FZL;&

S —
p =

T T
+LY p" 0 +4MVdLy Y p“ct} (55)
t=1 t=1

sup

where 8 = p + ZF — 1 > 0. Moreover, if ¢; = o(1), Fy ;% =
o(1), and 6; = o(1) as t — oo, then limy_, , regrett: = 0.
Remark 1: Theorem 3 establishes the upper bound of the
forgetting-factor regret of Algorithm 3. Here we make some
comparisons between Algorithms 2 and 3. Noting (29) and
30), g; = %(ft (x¢ + duy) — fi(xt))us applied to Algorithm 2
serves as an unbiased estimate for Vﬁ(s(l’) while the deter-
ministic difference h; applied in (51) serves as an estimate for
V fi(z) itself. From Theorem 2 we find that if /7Y, = o(1)
and 6; = o(1), for OGFA with the §-smoothing technique,
lim supy_, ., Efregretl’] = O(6) + O(«), which depends on the
choice of the smoothing parameter ¢ and the step size «. On the
other hand, for OGFA with the deterministic difference tech-
nique, Theorem 3 ensures lim sup,_, regrety: = 0 provided
that [} | = o(1) and§; = o(1)ast — oo. Hence, Algorithm 3

guarantees better performance than Algorithm 2 in regard of the
tracking error of fr(xr) — fr(z%). The proof of Theorem 3
generally follows the similar lines of Theorem 1, by properly
analyzing the deterministic difference h; given by (51).

Proof: Since the proof is similar to that of Theorem 1, here
we only give a sketch.

By the definitions in (49) and (50), for any ¢ > 0 and k €
{1,...,d}, for h, it follows that

281" — [2F]
QCt

_ ft($t+0t€k) _ft(xt_ctek). (56)
QCt

(") hy = hy[k] =

By Taylor’s expansion and noting that f;(-) is second-order
differentiable, we obtain that

he =V fe(z¢) + cope (57)

where

pl] = (%, 1) = )T [Vl + [T T erc) 0T

+ Ve (e +[B7]10F] cee®) (0] ] €

with (0517, (0717, [B¢]7, (8] € [-1, 1] fork € {1,....d}.
Formula (52) and (53) are equivalent to

(58)

. 1
Tii1 :Mgmm{(ht,x—xt)—&—Q |$—xt||2}- (59)
xeX (6%

Similar to (18)—(19) and noting (57), we obtain that

fe(wig1) < filae) + <Vft($t)7$t+1—$t>+% @241 — ||

1
= fi(@e) +(he, o1 —24) + % [N

_<Ctpt,$t+1—33t>-

Combining (59) and (60) leads to

i) = i) < mig { e = 20) + o o —

ex 2
— (Cetpes Tpy1 — T4)- (61)
By Al), A4), and (58), for (c:pt, 41 — o), We have
(e, we1 — 1) < collpel[|zer — 2|
<eVdLp (|l + o) <2MVdLye,.  (62)

Again by using (57), we obtain
. 1 2
_ < _ - _
filavsr) = i) <nig {(Vflaz = 4 5 Lo =l
+ {epe, ® — )} — (Cipes Tey1 — 1) < gél)f(l{ft(x) — fi(wr)

1
t 5 |l — a4 +2M\/gLHCt} + 2MVdLe,. (63)
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TABLE |
SELECTION OF STEP SIZE

Step Size «
ae (@,mm{uLS,z/a}

Algorithms 1, 2, 3

Algorithm 4: Online Frank—Wolfe Algorithm (OFWA) with
Line-Search for Step Size.

Initialization: An initial estimate x; and the maximal
number 1" of iterations.

Fort=1,...,T,

perform the linear optimization:

vy = arg min(V fy(z¢), v) (64)
veX
select the step size by line-search:
o = argmin fy (2 + o(ve — x4)) (65)
ael0,1]
update the estimates as:
Ti41 = (1 — Ozt)l‘t + Qv (66)

end;

By (57)—(63) and following the proofs of Theorem 1, we can
obtain the result. ]

Remark 2: Under the framework of the forgetting-factor re-
gret, Theorems 1-3 establish a unified interval for selection of
the step size for Algorithms 1-3; see, e.g., Table I. It indicates
that as far as the tracking of the time-varying minimizers of
OCO is of concern, the step size should be chosen neither too
small nor too large. To the authors’” knowledge, such interval for
selection of the step size has not been reported in the literature.

C. Forgetting-Factor Regret of Online Frank—Wolfe
Algorithm

In the design of Algorithms 1-3, there is a projection operator,
which usually results in high computational complexity for high-
dimensional problems. To deal with this difficulty, in literature
the online conditional gradient algorithm (OCG) [11], [35], the
one-shot Frank—Wolfe algorithm [12], [17], [34], are introduced.
The key idea of these algorithms lies in replacing the projection
operation with a linear optimization, which can be performed
more efficiently.

In what follows, we propose an online projection-free algo-
rithm and analyze the corresponding forgetting-factor regret.
The algorithm is motivated by the one-shot Frank—Wolfe algo-
rithm [34] as well as the line-search procedure for selection
of the step size, see, e.g. [35]. To the author’s knowledge,
combination of the one-shot Frank-Wolfe algorithm with the
line-search procedure for the step size is new and has not been
reported in the existing literature.

Theorem 4: For {x;};>1 generated by Algorithm 4, if Al)-
A3) are satisfied, then for any fixed p € (0, 1) and «g € (0, 1],

it holds that

regret), = ZpT E(fe(ze) — fe(x)))
Z “(1-a0) (fi(a1) = Au(a})
T—t (o) Tt7(00) , 2M?Ls
+22p F} +LZ ,> + ———= T,
t=1 t=1
(67)
where F®) =S L (1 —q)t s LFSP L and 60 =
t s=1 0 s,s+1 t
S (1 = ap)t 50, Moreover,  if F% =o(1) and

0; = o(1) as t — oo, then limy_, , regrett: = 0.

Theorem 4 establishes the upper bound of the forgetting-factor
regret of Algorithm 4 and gives the sufficient conditions to
guarantee regrety. = o(1) asT — oo. The key step toward estab-
lishing the upper bound of regret?. is to find a recursive formula
for fi(x¢) — fe(x}), t > 0 by using the linear optimization (64)
and the line-search procedure (65) for selection of the step size.

Proof: Noting that o is selected by the line-search procedure
(65), for any fixed ag € [0, 1], it follows that

Jr(@ip) = fi (o (ve — 20)) < fe (v +ao(ve—x¢)) (68)

from which together with the assumption that f;(z) is Lg-
smooth over X,

fi(@ir1) < fi (@ + ao(ve — 2¢))

< filze) +(Vfi(ze), ao(ve — 21))
L
+ 5 gl — i) (69)
By (64) we know that (V fy(x¢), v,) < (V fi(z),z}), which

combining with (69) gives

L
felwean) < folwe) + a0 (Vfilan), 2 —e) + oo~
(70)
By the convexity of f(-) in X, we have
(Vfilz),xp — @) < filag) — folwe). (71)

By (70) and (71), we obtain

Je(@ip1) < felze) —ao (felay) — 7Sa3||vt—xt||2.
(72)

On the other hand, a similar analysis as (16), (17) leads to

fe(xy)) +

Jer1(@es1) = fraa(zy 1)
<20+ filwe) = fo(z) + fo@) — fi(2p) + Lo, (73)

Combining (72) and (73) and noting that Al) ensures ||v; —
x¢||?> < 4M?, we obtain

frri(@i) < (1= ao) (fi(z) — filzy))

+2F; %, + L0 + 2 M*Lsag.
(74)

fer1(@eq1) —
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and furthermore,

fe(ze) — fe(z})

t—1
<(1—ao)' ™t (fi(w1) — fila}) +2) (1—ag) " 'FIN,

s=1
t—1 1

+ LZ(l — Oéo)t_s_les + 2M2LS Z(l _ Oéo)t_s_lag
s=1 =1

t—1
<(1—a0) ' (filer) = fil@]) +2D (1 —ag) T FIR,
s=1

t—1
+ LZ(l — o) 70, + 2 M2 Lsay.

s=1

(75)

Multiplying p” ¢ to both sides of (75) and then summing up
from t = 1 to T leads to (67).

From (67) it follows that if F}}Y, = o(1) and 6; = o(1) as
t — o0, then

M?L
0 < limsup regret? < 5
T—00 - p

Q.

Noting that «aq is arbitrary in the interval (0, 1], we obtain
limy_, o regrett: = 0. The proof is thus concluded. [ ]

D. OGDA With Forgetting Factor

In the above sections, we analyze the forgetting-factor regrets
of OGDA, OGFA, and OFWA. Note that the forgetting factor
p does not appear in these algorithms. On the other hand, since
{ft(:),t =1,...,T} are time varying, to predict the minimizer
xy, 1 of fp1(x),x € X, itis reasonable to use the information
in {zs, fs(zs), Vfs(xs)} at the recent time instants s near to
t, while those at time instants away from ¢ may be negligible.
Based on the consideration, in what follows, we introduce an
OGDA with a forgetting factor and analyze the corresponding

regret?..

We first reformulate the OCO problem as follows. Let
{fi(-),t =1,..., T} beasequence of convex functions over the
constraint set X. Denote x; = arg mingcx fi(z),t =1,...,T

and assume there exists an unknown matrix A € R**¢ with
|IA]| < 1 such that

xi g = Ary +§ (76)

where &; is a random noise.

Here we consider the full information model for OCO, i.e.,
the gradient Vfi(-),t =1,...,T are available for the algo-
rithm design. We first consider the case of X = RZ. The idea
arises from the following observation. Recall that the classical
regularized approach for OCO, see, e.g., [10], can be formu-
lated by 4 = argmin,cpa {30 (Vs().2) + o ]2},
By introducing a forgetting factor py € [0, 1] into the regularized
algorithm, i.e.,

zERY s—1

t
. s 1
Ty = argmm{ g Py " (ds, ) + an”Q} (77)

the predict x4 1 for 3, is then generated by

Ti41 = PoTt — ady (78)

where « is a positive step size, d; = V fi(x¢) + ¢; and ¢, is the
observation noise for the gradient. From (77), (78) and taking
the constraint X into consideration, we propose the following
algorithm.

Algorithm 5: OGDA with Forgetting Factor.
Initialization: An initial estimate x, a forgetting factor
po € [0, 1], the maximal number T of iterations, and a
sequence of step size {a; }7_;.

Fort =1,...,T, update the estimate as:
Tip1 = poty — apdy (79)
Tiy1 = Px (@4—1) (30)

end;

Remark 3: The OCO model (76) is similar to the model
considered in [47]. The difference lies in that the matrix A is
known in [47] as a priori information, while in this paper we
assume A is a unknown matrix. Examples of the model (76)
include the prediction of random signals in signal processing,
the identification of time-varying parameter vectors in systems
and control, etc.

With the forgetting factor pg, (76) can be rewritten as

Ty = pori +wy (81)

where

we = (A= pol)wy +&. (82)

Before proceeding further, we pose the following assumption
for the theoretical analysis.
A6) For the random noises {e; }- ; and {&} 4,
a) Ele;] = 0, E||¢;]|* < v? for some positive constant v and
anyt=1,...,T;
b) €5 and ¢; are mutually independent for any 1 < s < <
T
0 sup,cy,...r Bl ]| < oo
d) & and &; are mutually independent for any 1 < s < ¢ <
T.

Set the sequence of o-algebras F; e ofes,&s 11 <s<
t}, t=1,...,T. From the definition of F; and noting Algo-
rithm 5 and the assumption z},,; = Awj + &, it is direct to
check thatboth f; 1 (x;41) and f; 41 (27, ;) arerandom variables
measurable with respect to F; and in the following the forgetting
factor regret of Algorithm 5 in mathematical expectation will be
considered.

The key step for analyzing Algorithm 5 is to find the recursive
formula for the sequence {E||z; — 2}]|?}+>0, which is given by
the following technical lemma.

Lemma 1: Let {x;}1_, be generated by Algorithm 5. As-
sume that Al), A2), and A6) hold and f;(-),t =1,...,T are
o-strongly convex. Furthermore, assume the constraint set X
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satisfies ax € X forVa € (0,1) if # € X. Then,
El|z 41—z |* < poEllz —a7 | —2posE (folwi) — fu(ay))
— poooyBllz; — zi]|? + (L +v)2a? + 4AME||w,]|. (83)

Proof: By Al) and the Schwartz inequality, we have the
following chain of equality and inequality:

2 2
E ||z — 25" —Ellpoze — poxi |
= —Ellpoxs — ze4ll” + E (pozs — w41, pox; — 7}41)
+ E <p0.’L’t — T¢41, p()fL';tk + $z+1 — 2$t+1>

* * * *
+E <2$t+1 — Typ1 — POTy, PoTy — xt+1>

IN

—E|lpozt — zes1l” + E {poxs — To41,2p0%; — 2441)

+ AME||w,|. (84)

By (79), (80), and the definition of the projection operator
Px (+), we have that for Algorithm 5

o1 = argmin { (200dy — 2poze, ) + [[2]?}. (85)

reX

By Lemma A3 given in Appendix with z* = x44; and = =
poT;, we obtain

2(wyq1 + oudy — poxe, pox; — Teg1) >0 (86)
and thus

E (poxs — Tet1, pory — Teq1) < B (dy, poxy — To41)

= oy (dt, pory — pors) + B (dy, pors — Tey1)

= FEi(1) + E/(2) + E(3) &7)
where
Ey(1) = pooe B [(V fe(w1), 7} — w¢)] (88)
Ey(2) = pooiE [(er, 7y — @4)] (89)
and
Ei(3) = auE [(dy, pore — w441)] - (90)
By the fact that f;(-) is o-strongly convex, we have
—Ey(1) 2 poaiE (fila) — fi(w}))+ pocre S Bz —af .
oD

By (79), (80), and assumption A6) b), we know that z; — =}
is measurable with respect to F;_; and thus independent of ¢;.
Hence

E(2) = pociE(es, il?t*ID = poai(Eeq, E (ﬁ*zt» =0
(92)

where in the last equation assumption A6) c) is used.
By A2), A6) a), and the Lyapunov inequality,

Elld | =E [V fi(z) + e SENVfe(z) | +E lefl < L+v
(93)

and
Elde]|* = E [V fu(x:) + e
< E|Vfi(w)|* +Ellec)* +2E |V fola)| el
< L2+ 0? +2Lv = (L +v)% (94)

By using the Cauchy inequality and (94), for E;(3) we have
the following estimate:

Ey(3) = cuE [(dt, pore — e11)] < E (v [|de[ [[powe — 241 ]])

IN

1 1
iafE de||” + §]E oot — e )

o L+v)?
- 2
Combining (87)—(95) leads to

1
ozf + §E llpoz: — .Z‘t+1||2 ) (95)

E(pors — T¢11,2p0%; — 22441)
< —2p0cuE (fi(@e) — fi(})) — poocuE ||z — ;)

+ (L + U)Qaf + E ||p().’Et — (Et+1||2 (96)

which incorporated with (84) yields (83). |
Theorem 5: Let {x;}]_, be generated by Algorithm 5. As-
sume that A1), A2), and A6) hold and the constraint set X satis-
fiesaz € X forVa € (0,1)ifz € X. Then,forany0 < p < p3,
a) If f;(-), t =1,...,T are convex and the step size a; =

« > 0, then

T
Efregrety] = > p"'E (fi(w:) — fulx}))

t=1
27T—-1 2
p() * 12 (L+U) o
< —FE|z: —21|" + /———
2a s =il 2po(1 = pj)
T
2M 2T-2t
+2=5 E|w 97)
poa 2 I [[wel

b) If f;(-), t = 1,...,T are o-strongly convex and the step
size {ay }1_, is a decreasing positive sequence, then

E[regret)] = ZpTﬁtE (fe(xe) — felap))
t=1

27—
< Po

- 2

1 T
Ella—i [+ _ o5 "
t=1

(2 Bl

2

T
I or :
5" Bl

t=2

(98)

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 31,2024 at 01:52:12 UTC from IEEE Xplore. Restrictions apply.



5044

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 8, AUGUST 2024

Moreover, if ag =1, ay = ¢/t with 0 < ¢ < £2, and
E|w:|| = o(ay) as t — oo, then Efregrety] = o(1) as
T — oo.
Proof: Here we only prove Theorem 5b), while a) can be
proved by setting ¢ = 0 and a; = .
By Lemma 1, it follows that

PoE (fe(we) — fe(wy))
2 12 .12
PoE l|lz: — xtH -E ||55t+1 - xt+1H o w112
2 E e, —
< e, 5 P0 lz: — ]|
L 2 E
TRy e Ly (99)
2 o

Set p1 = pg. Multlplymg pT =1 to both sides of (99) and

summingupt = 1,...,7 leads to
T
—t-1/2 .
Z PR (fulxe) - fila})
T e .2
lsz 'E ||z _xt” - 1Eth+1 _$t+1H
2 Qi
t=1
T 9 T
o T—t-1/2 w2 (L+wv) e
D 1 L D Y
=1 t=1
T
E
oM plT—HM. (100)
Qi
t=1

‘We have the following chain of equalities and inequalities:

LB = il = o R e —ap |

Qg

M

t=1
T

ZPT t]Eth—l‘tH Z pi TE || miga —$t+1H
Qg

T

t=1 t=1

T * ®[|2
Z pi 'E ||$t p|)? Z pi EH% ||
t=1

T

T—t p'{ft
AP+ 3 E =i (a -2)
—2 t t—1

(101)
from which and noting (100)
T re 12 pi ! 2
> n E (fe(ze) = fe(zy)) < 21 E [z —z1]]
=1 a1
T T—t Tt
1 2 ( P1 P1 Tt1/2>
+ = E||x;—2} (——a
2; | =y | ot i1 P1
L +v)? a . L 1 E||lw
EE S a2yt 1¥. (102)
t=1 t=1

Noting 0 < p < p2 = p1, we arrive that

T T
ZpTﬁtE (ft(.’tt ft [Et Z 7= tE ft xt ft(x:))
t=1 t=1

Qg

2T -1
Po
o m _
bRy — i)
2T 2t p2T 2t
ZEH il (=~ gt
Q1
T T
L+v)? o o 1 Ellw
+( ) ZpgT 2t 1at+2MZp(Q)T ot 1 Ell t||

(103)

Thus, the conclusion of (98) is proved.

Ifag =1, ay = ¢/t with 0 < ¢ < 22 and E[|w;|| = o(ay) as
t — oo, then itis direct to check that Efregretl.] = o(1) as T —
00. ]

Remark4: Equation (97)in Theorem 5 indicates that to obtain
a small bound of regret}., an optimal step size « for Algorithm 5
should be chosen as a tradeoff between the magnitude of the
gradients of objective functions and the observation noise vari-
ance, i.e., L + v, as well as the magnitude of changing of the
time-varying minimizers of f;(-),i.e., sup; E||w;||. In [40], some
classical results for optimal tracking of time-varying parameters
in linear stochastic systems are obtained. To be specific, let the
linear systems be given by

Yt+1 = 9;% + Wit

where {6.};>1 are the unknown time-varying parameters,
{Yt+1, ¥t }1>1 are the observations, and {w; };>1 are the system
noises. Denote the estimates for {0;}:>1 by {é\t}tzl. In [40,
Th. 3.1 ] it is established that for the classical algorithms for
estimating {6; }+>1, including LMS, FFLS, and the KF-based
algorithm, the estimation error is bounded by

o(e02)

where 1 > 0 is the step size adopted in LMS, FFLS, the
KF-based algorithm. Note that (97) characterizes the tracking
performance by E(fr(z7) — fr(z})) = O(a+ 1). Soin this
sense (97) can be regarded as a parallel extensmn of results
in [40] to the nonlinear OCO problem.

Remark 5: By setting p = po = 1, Theorem 5 also generates
a bound of the dynamic regret of OGDA.

Remark 6: The OCO model (76) can also be seen as a way
of adding a priori knowledge about the sequence of convex
optimization functions f;(x),t = 1,..., 7. Similar idea, named
the online learning with a predictable sequence, was consid-
ered in [52], etc. To be specific, the online linear optimiza-
tion fi(x) = (x,y), t > 1 with a predictable sequence y; =
Mi(y1,...,y1-1) + €, Where ¢, is the noise is considered in [52]
and the static regrets are analyzed for both the accurate and
inaccurate prediction model. Compared with [52], this article
considers the general OCO functions fi(x),t =1,...,T and

E[||(8; — 0:) (6 — 6,)"|] = (104)
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Fig. 1. Estimates of follow the leader algorithm and Algorithm 1 with
a = 0.05, 0.45, and 0.95.
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0.95.

Forgetting factor regret of Algorithm 1 with & = 0.05, 0.45, and

analyze the performance of Algorithm 5 under the new regret
function regretk..

[ll. SIMULATION STUDIES

Example 1: (Hazan and Seshadhri’s example, [27]) Define
the loss functions of OCO by

_f(x—=5)?2 t=1,
ﬁ@%_&x+®% t=1
Set T' = 100 and the constraint set X = [—10, 10]. We test the
performance of the leader algorithm and Algorithm 1 through
this example.
By the leader algorithm, it follows that

T
2

-i-l7 LT (105)

Te1 = argmin Y f(x) (106)
s=1
and
5 t=1,..., L
Ty =9qsT T ]2 (107)
{t—%,t—2+L“WT

As shown in [6], for the above algorithm, the static regret
function is bounded by regret. = O(log T'). On the other hand,
the estimate &7 equals 0, rather than the minimizers —5 of f7(-).

Set the forgetting factor p = 0.95. For this example, it is
readily checked that the interval for selection of the step size,
see, e.g., Theorem 1, (@,min{l/Lsﬂ/a}] = (0.1,0.5].
We testify the performance of Algorithm 1 with av = 0.05, 0.45,
and 0.95. Tt is clear that only the step size &« = 0.45 belongs to
the above interval.

Fig. 1 shows trajectories of the estimates generated from the
leader algorithm and Algorithm 1 witha = 0.05, 0.45,and 0.95.
Fig. 2 shows the values of regret!’,t = 1,..., T of Algorithm 1
with a = 0.05, 0.45, and 0.95. Simulation results indicate that

for OCO, as far as the tracking of the time-varying minimizers
is concerned, performance of Algorithm 1 can be well evaluated
by the forgetting-factor regret.

Example 2: We consider the following system (see,
e.g., [48]), which is often used for the modeling of aircraft
tracking, spacecraft intersection, etc.

Denote by z, and zZ, the positions of the tracker and the target
at the time interval s € [¢,¢ + 1),

d
Zg = Z xi[k]ck . (s)
k=1

d
5= 3 &ulklena(s)
k=1

where x; € R? and & € R< are the coordinate vectors of the
tracker and the target at time ¢, respectively, and {cj .(s), k =
1,...,d} with s € [t,t + 1) are normalized orthogonal func-
tions on the interval [¢, ¢ + 1), i.e.,

o ifk =
/t <Ck7t(5)7cl,t(s)>d5:{1a fk=1

0, otherwise.

The values of the loss function at time ¢ are given by

t+1
fe(ze) =G <7Tta$t>+<2/ |25 — Zs||* ds
t

= G (me, 2e) + G lloe — &I

Here, we consider the 1-D system, i.e., d = 1 with a constraint
set X =[—2,2]. Set T'= 1000, ¢; =0, ¢ = 1, and the target
coordinate &; = 1%. We test the performance of Algorithms
1-5. To be specific, we set the forgetting factor p = 0.8. The
step size is chosen as o = 0.5 for Algorithms 1-3; for Al-
gorithm 2 the smoothing parameter is set as ¢ = 0.01; for
Algorithm 3 {¢; = %}th1~ For Algorithm 5, choosing the step
size a; = /p/2t, based on which we can prove that |w;| =
(1= p2)& + (G41 — &) = O(3)s |wi| /ey = o(1), and con-
ditions of Theorem 5b) are satisfied. For comparison, we also
test the performance of Algorithm 5 with a constant step size
a = 0.1. In fact, by setting po = p = 1 in Theorem 5, Algo-
rithm 5 becomes OGDA. By noting |w¢| = &1 — &| = O(55)
and |we|/oy = O(| % — WD = O(4), Theorem 5 ensures
that the dynamic regret of OGDA with oy = 1/(2t) is bounded
by regret? = O(log T').

Fig. 3 shows the tracking errors {|z; — &/|}]_; of the above
algorithms. It can be seen that Algorithms 1-5 generally perform
better than OGDA, even if OGDA ensures a dynamic regret
bound regret? = O(log T'). Fig. 4 shows the forgetting-factor
regrets of Algorithms 1-5. To further test the performance
of algorithms, we carry out ten Monte Carlo simulations. In
Fig. 5, the vertical axis shows the averaged regret!’s of the ten
simulations and the horizontal axis plots the averaged compu-
tation time, which shows that Algorithm 4 equipped with the
Frank—Wolfe technique requires less computational complexity
as expected.
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Fig. 5. Computation time of Algorithms 1-5 (unit: second).

IV. CONCLUDING REMARKS

In this article, aiming at further improving the tracking per-
formance of the time-varying minimizers of OCO, we propose a
new regret, namely, regret with a forgetting factor. We establish
the forgetting-factor regret bounds of classical algorithms in-
cluding OGDA, OGFA, and OFWA as well as a new algorithm,
namely, online gradient descent algorithm with a forgetting
factor.

The OGDA (Algorithm 1) is one of the most classical al-
gorithms for OCO and it is suitable for the full information
model being available, i.e., the gradients of the cost functions
can be observed at each time instant ¢. On the other hand, when
only the bandit model is available, the gradients of the cost
functions cannot be directly observed and in such cases the
OGFA with the §-smoothing technique and the deterministic
difference technique (Algorithms 2 and 3) can be applied. In
the design of Algorithms 1-3, there is a projection operator,
which usually results in high computational complexity for
high-dimensional problems. So for the high-dimensional OCO
problem, the OFWA (Algorithm 4) can be considered. When
a priori knowledge about the sequence of convex optimization

functions f:(x),t =1,...,T is available, such knowledge can
be used in the algorithm design like the OGDA with a forgetting
factor (Algorithm 5).

For future research, it is of interest to relax the conditions on
the objective functions such as strong convexity, smoothness,
etc., and to obtain a more precise upper bound of regreth.. It is
also of interest to apply the theoretical results in this article to
practical scenarios. Theoretical results in the article indicate that
the bounds of the forgetting factor regret regret’. will be different
for different sequences of {f;(-)}7_,. Another interesting topic
is to investigate, within the worst-case framework, a priori
bounds on regret}’ that do not involve individual optimization
functions but depend only on some gross geometric features of
the problem such as the diameter of the decision set, the Lipschitz
constant, the strong convexity, and the smoothness constant,
etc.

APPENDIX

Definition Al: Denote by dom(f) C R¢ the domain of f(-).
A vector-valued function df(z) € R? is the subgradient of
a nonsmooth convex function f(z): dom(f) — R if for any

@,y € dom(f), f(y) — f(x) = 9f(2) " (y — x).

Definition A2: Let f(-) be a convex function on a convex set
S. Denoting a subgradient of f(x) by 0f(z),z € S, f(-) is said
to be o-strongly convex on S, if for any x,y € S,

F) = f(@) = 0f @) (y —2) + Sy — ]

and is said to be Lg-smooth on S, if for any =,y € .5,

Fl) — (o) < OF (@) (y —2) + =2y — o

LemmaAl (see[11]): Assumethat f(z)is o-strongly convex
and differentiable over dom(f). For any x € dom(f),

f@) = f@*) = 3 le =) (108)

with z* € arg ming cyom( ) f(@).
Lemma A2 (see [49]): For the projection operator Px (-) :
R? — X,

IPx (2) = Px(y)ll < llz - yll Yo,y € RY.
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Lemma A3 (see [50]): If a function f(x) is convex and
differentiable in X, then for any z € X,

(Vf(@"),z—2") 20

with 2* € argmin .y f(2).
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