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Forgetting-Factor Regrets for Online
Convex Optimization

Yuhang Liu , Wenxiao Zhao , Member, IEEE, and George Yin , Life Fellow, IEEE

Abstract—This article develops a class of novel algo-
rithms for online convex optimization. The key construct
is a forgetting-factor regret. It introduces weights to the
objective functions at each time instant t and allows the
weights of the past objective functions decaying to zero.
We establish the forgetting-factor regret bounds of clas-
sical algorithms including online gradient descent algo-
rithms, online gradient-free algorithms, and online Frank–
Wolfe algorithms. In addition, the article introduces online
gradient descent algorithm with a forgetting factor, and
analyze its performance under the new regret. Sufficient
conditions are obtained to guarantee the bounds of the
forgetting-factor regret of the above algorithms being of the
order o(1), which guarantees the tracking performance for
minimizers of time-varying objective functions. Finally, our
results are tested through numerical demonstration.

Index Terms—Forgetting-factor regret, iterative optimiza-
tion algorithm, online convex optimization.

I. INTRODUCTION

O
NLINE convex optimization (OCO) has received much

attention lately because many applications such as online

routing, advertising selection for search engines, and spam fil-

tering, etc., all fall into this category [1]. In such a scenario,

optimization algorithms need to be performed for a sequence

of convex objective functions {ft(·), t = 1, . . . , T}. At each

time instance t, the algorithm generates a prediction xt+1 based

on available information including {xi, i = 1, . . . , t} as well as

{fi(·), i = 1, . . . , t}, and then the loss of prediction ft+1(xt+1)
is obtained for the next round of optimization process. Note that

the OCO can also be considered for a continuous-time variable
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t ∈ R
+; see, e.g., [2]. In this article, we mainly focus on the

discrete time setting. Note that the optimal solutions of OCO

are time varying. As a result, the traditional convex optimization

algorithms for the time-invariant objective functions may not

be feasible. A widely applied index for describing the perfor-

mance of algorithms for time-varying objective functions is the

so-called static regret function, denoted by regretST in this article,

which measures the cumulative difference between the loss of

the estimates and the best-fixed points:

regretST =
T∑

t=1

ft(xt)−min
u∈X

T∑

t=1

ft(u) (1)

where X denotes the feasible set. An optimization algorithm for

OCO is said to be acceptable if regretST is sublinear with respect

to T , that is,

lim
T→∞

regretST /T = 0.

The definition of the regret function first appeared in [3], and

has been widely applied ever since in areas including online

learning [4], [5], [6], information theory [7], game theory [8],

etc. Under this framework, performance of many classes of

algorithms for OCO have been evaluated. For example, the pro-

jected online gradient descent (OGD) algorithm with O(1/
√
t)

step size and the regularized follow-the-leader algorithm with

O(1/
√
T ) step size are studied in [9] and [10] and O(

√
T )

regret bounds are given. The OGD algorithm with O(1/t) step

size is further investigated in [10] with a logarithmic regret

bound O(log T ) established. There are also many variants of

the above algorithms with sublinear regrets, see the Frank–

Wolfe approach-based projection-free algorithm [11], [12], the

δ-smoothing-based algorithm for OCO without gradient infor-

mation (named the bandit optimization in literature [13]), etc.,

and also [14], [15], [16], [17], [18], [19], [20], [21], [22], [23],

[24], [25], [26], and references therein. However, as indicated

in [27], algorithms with sublinear regrets do not necessarily

guarantee a satisfactory tracking performance for minimizers

of OCO.

Example (Hazan and Seshadhri [27]): With an even integer

T > 0, define the loss functions of OCO by

ft(x) =

{
(x− 1)2, t = 1, . . . , T

2

(x+ 1)2, t = T
2 + 1, . . . , T.

(2)
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By using the follow-the-leader algorithm (see, e.g., [6]):

xt+1 = argmin
x∈X

t∑

s=1

fs(x) (3)

it follows that

xt =

{
1, t = 1, . . . , T

2
T
t − 1, t = T

2 + 1, . . . , T.
(4)

As shown in [6], for the above algorithm, the static regret

function is bounded by O(log T ). On the other hand, it is direct

to check that the estimate xT equals 0, rather than the minimizer

−1 of fT (·).
Based on regretST defined in (1), some other regrets are given

in the literature for evaluating performance of algorithms; see the

adaptive regret regretAT in [27] and the dynamic regret regretDT
in [28] defined by

regretAT = sup
[r,s]⊂[T ]

{
s∑

t=r

ft(xt)−min
u∈X

s∑

t=r

ft(u)

}
(5)

and

regretDT =

T∑

t=1

ft(xt)−
T∑

t=1

ft(x
∗
t) (6)

respectively, where x∗
t ∈ argminx∈X ft(x), t ≥ 1, and [T ] and

[r, s] denote the sets {1, . . . , T} and {r, . . . , s}. The studies

for the adaptive regret and the dynamic regret can be found

in [29], [30], [9], [31], [32], [33], [34], [35], [36], [37], [38],

and [39], respectively, which aim at connecting different classes

of regrets and establishing the corresponding regret bounds

of optimization algorithms as tight as possible. For a given

algorithm {xt}Tt=1, it is readily checked that

regretDT ≥ regretAT ≥ regretST . (7)

However, for an algorithm with a sub-linear dynamic re-

gret, there is no guarantee on ft(xt)− ft(x
∗
t) → 0 as

t → ∞. For example, assuming ft(xt)− ft(x
∗
t) = at =

1 if t = 2m, m ≥ 1 and ft(xt)− ft(x
∗
t) = at = 0 oth-

erwise, then limT→∞
∑T

t=1 at/T ≤ limT→∞ log2 T/T = 0,

while ft(xt)− ft(x
∗
t) does not converge to zero.

From the definitions of regretST , regretAT , and regretDT , the time-

varying objective functions {ft(·), t = 1, . . . , T} are treated

equally for each time instant t. In many applications such as tar-

get tracking in systems and control, portfolio management, and

property price forecast, etc., in addition to guarantee a sublinear

regret, it is much desirable to ensure that at the terminal instantT ,

the bound of 0 ≤ fT (xT )− fT (x
∗
T ) is small and furthermore,

fT (xT )− fT (x
∗
T ) → 0 as T → ∞, which generally cannot be

guaranteed by the sublinear regretST , regretAT , and regretDT .

In [7], the prediction with expert advice is considered and the

discounted regrets of the following form are introduced:

regretdis
E,T =

T∑

t=1

βT−t (l(pt, yt)− l(fE,t, yt)) (8)

where pt ∈ D with D being the prediction space, yt ∈ Y with

Y being the outcome space, {fE,t, E ∈ E} being a set of ref-

erences called experts, l : D × Y → R being the loss function,

and {βt}t≥1 being a sequence of positive numbers satisfying

βt → 0 as t → ∞. Under the assumption that
∑∞

t=1 βt < ∞,

[7, Th. 2.7] establishes a positive lower bound for the discounted

regrets, i.e., there exists someC > 0 such that for any forecasting

strategy, there is a sequence of outcomes such that

max
E∈E

{regretdis
E,T } ≥ C ∀T ≥ 1. (9)

From (9) it can be observed that if the {βt}t≥1 decreases too

quickly, then, except for trivial cases, there is no hope to prove

that the discounted regrets converge to zero. Discussions for the

case
∑∞

t=1 βt = ∞ can be found in [7, Th. 2.8] and [51, Sec.

VI].

Note that to achieve good tracking performance of fT (xT )−
fT (x

∗
T ), ft(·) and xt at time t near T is more informative

compared with those at earlier time instants. Motivated by

this and similar to the above discounted regret, and aiming at

characterizing the tracking performance of iterative algorithms

for general OCO, in this article, we propose a regret for the

convex loss functions, namely, regret with a forgetting factor, for

which the weighting coefficients are introduced to the objective

functions at each time instant t and the weights for the past

objective functions are allowed to decay to zero asymptoti-

cally. To be specific, with a fixed ρ ∈ (0, 1) the regret, namely,

forgetting-factor regret denoted by regretFT in this article, is

defined by

regretFT �

T∑

t=1

ρT−t (ft(xt)− ft(x
∗
t)) (10)

where {xt, t = 1, . . . , T} is generated from an algorithm for

OCO with x∗
t ∈ argminx∈X ft(x), t = 1, . . . , T , and ρ ∈ (0, 1)

is the forgetting factor. Note that in regretFT , the effect of

ρT−t(ft(xt)− ft(x
∗
t)) decays as the magnitude of T − t in-

creases.

Under the framework of the forgetting-factor regret and for

an optimization algorithm of OCO, in this article we

1) analyze the upper bound of regretFT , and

2) introduce sufficient conditions such that limT→∞
regretFT = 0.

This establishes the tracking performance of the algo-

rithm since fT (xT )− fT (x
∗
T ) ≤ regretFT . For a given algorithm

{xt}Tt=1, by (7) and (10) it is easy to check that if regretFT =
o(1) as T → ∞, then regretDT = o(T ), regretAT ≤ o(T ), and

regretST ≤ o(T ).
The contributions of the article are as follows.

1) We are able to analyze the performance of the classical

algorithms for OCO under regretFT .

We first analyze regretFT of the online gradient descent

algorithm (OGDA). Then, for the bandit information

model where the gradients of the objective functions are

unavailable, we establish bounds of regretFT for the online

gradient-free algorithms (OGFA) with δ-smoothing

and deterministic difference techniques.
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By introducing a line-search procedure into the online

Frank–Wolfe algorithm (OFWA), we investigate regretFT
of the corresponding algorithm, which reduces the com-

putation complexity compared with OGDA and OGFA.

2) Under the framework of regretFT , we introduce a new class

of algorithm–online gradient descent algorithm with a

forgetting factor (OGDA-F) and analyze the correspond-

ing regretFT .

3) We establish bounds of regretFT ’s for OGDA, OGFA,

OFWA, as well as OGDA-F and derive sufficient con-

ditions to ensure regretFT ’s of these algorithms tending to

0 as T → ∞. Our knowledge was not known in literature

in the past. In addition, the regret bound of OGDA-F

extends the well-established estimation error bound for

time-varying linear stochastic systems; see, e.g., [40] for

the nonlinear OCO problems.

The rest of the article is organized as follows. In Section II, we

give the detailed problem formulation of OCO and the definition

of regretFT , analyze the performance of OGDA, OGFA, and

OFWA, and propose a new algorithm OGDA-F together with

detailed analysis. In Section III, we provide some simulation ex-

amples to demonstrate our algorithms. Then, we make a number

of concluding remarks in Section IV. Finally, in Appendix, we

list some definitions and results for convex optimization.

Notation: Denote by (Ω,F ,P) the probability space and E(·)
the mathematical expectation operator. Denote by M [i, j] the

(i, j)th entry of the matrix M and by M [i, :] and M [:, j] its ith
row and jth column, respectively. Denote by ek the vector in R

d

with the kth component being 1 and the others being 0. Denote

by ‖ · ‖ the Euclidean norm on R
d and by 〈·, ·〉 the inner product

on R
d. The projection operator PX(·) onto the set X is defined

by PX(y) � argminx∈X ‖x− y‖. The gradient of the function

f(·) : Rd → R at a given x is denoted by ∇f(x) if it exists. For

a set X , denote its interior by Xo.

II. PERFORMANCE ANALYSIS OF ALGORITHMS UNDER THE

FORGETTING FACTOR REGRET

Definition 1: Let {ft(·), t = 1, . . . , T} be a sequence of con-

vex objective functions over the constraint setX ⊂ R
d. LetA be

an algorithm for the above OCO problem. Denote by {xt}1≤t≤T

the estimates generated by A. With a given ρ ∈ (0, 1), the

forgetting-factor regret of algorithm A is defined by

regretFT =

T∑

t=1

ρT−t (ft(xt)− ft(x
∗
t)) (11)

where x∗
t ∈ argminx∈X ft(x), t = 1, . . . , T .

With the definition, an algorithm for OCO possesses good

tracking performance provided that limT→∞ regretFT = 0. We

first impose a set of conditions for the analysis to follow:

1) The feasible set X ⊂ R
d is compact and convex.

2) For any t ≥ 0, the objective function ft(·) is convex

and differentiable in X and there exists L > 0 such that

‖∇ft(x)‖ ≤ L, x ∈ X, t = 1, . . . , T .

3) {ft(·), 0 ≤ t ≤ T} are LS-smooth in X .

The definition of LS-smooth functions is given in Appendix.

By A1), we can define a positive constant M � sup{‖x‖ : x ∈
X} < ∞. As indicated in [32] and [34], it is impossible to

exactly track the optimizer defined by an arbitrarily varying

optimization problem. Thus, we introduce the following notation

to characterize the loss functions:
{
θt � ‖x∗

t+1 − x∗
t‖

F sup
t,t+1 � supx∈X |ft(x)− ft+1(x)|

(12)

which will be used throughout the article.

A. Forgetting-Factor Regret of OGDA

The OGAD algorithm is one of the most widely applied

algorithms for online optimization, which incorporated with a

projection operator can be formulated as follows.

Algorithm 1: Online Gradient Descent Algorithm (OGDA).

Initialization: An initial estimate x0, a step size α > 0
and the maximal number T of iterations.

For t = 0, . . . , T,
update the estimate as

x̂t+1 = xt − α∇ft(xt) (13)

xt+1 = PX (x̂t+1) (14)

end;

Theorem 1: Let {xt}t≥1 be a sequence generated by Al-

gorithm 1. Assume A1)–A3) hold and for each t = 1, . . . , T ,

the objective function ft(·) is σ-strongly convex. Then for any

ρ ∈ (max{1/2, 1− σ/(4LS)}, 1),

regretFT ≤ 1

β

{
ρT (f1(x1)− f1(x

∗
1)) + 2

T∑

t=1

ρT−tF sup
t,t+1

+ L

T∑

t=1

ρT−tθt

}
(15)

provided that
4(1−ρ)

σ < α ≤ min{1/LS , 2/σ}, where β = ρ+
σα
4 − 1 > 0. Moreover, if F sup

t,t+1 = o(1) and θt = o(1) as t →
∞, then limT→∞ regretFT = 0.

Theorem 1 further requires that F sup
t,t+1 = o(1) and θt = o(1)

as t → ∞. It means that the varying minimizers of the OCO

problem should not change too fast with respect to the time

instants t ≥ 1. Let us consider the following illustrative example.

Choose ft(x) �
1
2‖x− zt‖2, t ≥ 1 with a compact and convex

feasible set X and zt ∈ X, t ≥ 1. Assume that the changing of

the minimizers is slow, i.e., ‖zt − zt+1‖ = o(1) as t → ∞. Set

M � sup{‖x‖ : x ∈ X} < ∞. From the definitions of F sup
t,t+1

and θt, it is direct to check that F sup
t,t+1 ≤ 2M‖zt − zt+1‖ =

2Mθt and F sup
t,t+1 = o(1) and θt = o(1) follows.

Theorem 1 establishes the upper bound of the forgetting-factor

regret of OGDA and gives the sufficient conditions to guarantee

regretFT = o(1) as T → ∞. From Theorem 1, for OGDA with

the appropriately selected forgetting factor ρ and the step size
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constant α, the tracking of the time-varying minimizers of OCO

can be guaranteed, i.e., fT (xT )− fT (x
∗
T ) → 0 as T → ∞. A

key step toward establishing the upper bound of regretFT is to

find a recursive formula for ft(xt)− ft(x
∗
t), t ≥ 0 by using the

properties of the projection operator and the convexity of the

loss functions. The details are given as follows.

Proof: By the definition of F sup
t,t+1, it directly follows that

ft+1(xt+1)− ft+1(x
∗
t+1) = ft+1(xt+1)−ft(xt+1)+ft(xt+1)

− ft(xt)+ft(xt)−ft(x
∗
t)+ft(x

∗
t)−ft+1(x

∗
t+1)

≤ F sup
t,t+1+ft(xt+1)−ft(xt)+ft(xt)−ft(x

∗
t)

+ ft(x
∗
t)−ft+1(x

∗
t+1). (16)

For ft(x
∗
t)− ft+1(x

∗
t+1), the convexity of ft+1(·) yields that

ft(x
∗
t)−ft+1(x

∗
t+1)

= ft(x
∗
t)−ft+1(x

∗
t)+ft+1(x

∗
t)−ft+1(x

∗
t+1)

≤ F sup
t,t+1 +

〈
∇ft+1(x

∗
t), x

∗
t − x∗

t+1

〉
≤ F sup

t,t+1 + Lθt (17)

where the last inequality follows from the Schwartz inequality

and Assumption A2).

Next we consider ft(xt+1)− ft(xt). By A3),

ft(xt+1)− ft(xt)

≤ 〈∇ft(xt), xt+1 − xt〉+
LS

2
‖xt+1 − xt‖2 (18)

which together with the stepsize condition α ≤ 1/LS yields

ft(xt+1)− ft(xt)

≤ 〈∇ft(xt), xt+1 − xt〉+
1

2α
‖xt+1 − xt‖2 . (19)

On the other hand, from (13)–(14), Algorithm 1 can be rewritten

as

xt+1 = argmin
x∈X

‖x− xt + α∇ft (xt)‖2

= argmin
x∈X

{
〈∇ft (xt) , x− xt〉+

1

2α
‖x− xt‖2

}
.

(20)

Combining (19) and (20) and by using the convexity of ft(·),
we have

ft(xt+1)−ft(xt) ≤ min
x∈X

{
〈∇ft(xt), x−xt〉+

1

2α
‖x−xt‖2

}

≤ min
x∈X

{
ft(x)− ft(xt) +

1

2α
‖x− xt‖2

}
.

(21)

Note that X is a convex set and ft(·) is convex in X . For

any fixed η ∈ [0, 1], by setting x = (1− η)xt + ηx∗
t in (21), we

have

ft(xt+1)− ft(xt)

≤ (1− η)ft(xt) + ηft(x
∗
t)− ft(xt) +

η2

2α
‖xt − x∗

t‖2

= −η (ft(xt)− ft(x
∗
t)) +

η2

2α
‖xt − x∗

t‖2 . (22)

By using the σ-strong convexity of ft(·) and Lemma A1, we

obtain
σ

2
‖xt − x∗

t‖2 ≤ ft(xt)− ft(x
∗
t). (23)

Set η = σα
2 . By noting α ≤ 2

σ , it is direct to check that η ≤ 1.

Then from (22) and (23), we obtain

ft(xt+1)− ft(xt) ≤
(
η2

σα
− η

)
(ft(xt)− ft(x

∗
t))

= −σα

4
(ft(xt)− ft(x

∗
t)) (24)

which incorporated with (16) and (17) gives

ft+1(xt+1)− ft+1(x
∗
t+1)

≤
(
1− σα

4

)
(ft(xt)− ft(x

∗
t)) + 2F sup

t,t+1 + Lθt

= (ρ− β) (ft(xt)− ft(x
∗
t)) + 2F sup

t,t+1 + Lθt (25)

where β = ρ+ σα
4 − 1 being positive since

4(1−ρ)
σ < α ≤

min{1/LS , 2/σ}.

By multiplying ρT−t to both sides of (25) and then summing

up the terms for t = 1, . . . , T , we finally obtain

β

T∑

t=1

ρT−t (ft(xt)−ft(x
∗
t)) ≤

T∑

t=1

(
ρT−t+1 (ft(xt)−ft(x

∗
t))

− ρT−t(ft+1(xt+1)−ft+1(x
∗
t+1)

)
+ 2

T∑

t=1

ρT−t
(
F sup
t,t+1+Lθt

)

≤ ρT (f1(x1)−f1(x
∗
1))+2

T∑

t=1

ρT−tF sup
t,t+1+L

T∑

t=1

ρT−tθt. (26)

Hence, (15) is proved.

If F sup
t,t+1 = o(1) and θt = o(1) as t → ∞, then

limT→∞ regretFT = 0 follows directly from the fact that

for any positive sequence {γt}t≥0 tending to zero,

limT→∞
∑T

t=1 ρ
T−tγt = 0; (see, e.g., [49, Lemma 3.1]). �

B. Forgetting-Factor Regret of Online Gradient-Free
Algorithms

In applications, to obtain the gradient/subgradient information

is sometimes computationally expensive, and even impractica-

ble in some cases, such as online source localization, online rout-

ing of data networks, online placement of advertisement [10], as

well as the graphical model inference [41], and the structured-

prediction [42] in statistics, etc. For OCO, this is called the partial

information model or the bandit model and in such a scenario,

at time instant t, the value of ft(·) at xt can be observed but the

gradient ∇ft(xt) is unavailable.

The so-called δ-smoothing technique is widely applied for

designing gradient-free algorithms for OCO [13]. In fact, such

an approach is rooted to a variation of the random direction

methods in stochastic approximation [43]; see also some recent

progress in stochastic approximation [44] and stochastic convex
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optimization [45]. In this section, we first analyze regretFT of

OGFA with the δ-smoothing technique. Then we introduce a

deterministic difference based OGFA algorithm and analyze the

corresponding regretFT .

Denote by B the d-dimensional unit ball and by S the d-

dimensional unit sphere.

Definition 2 (see [13]): At time instant t, for the loss function

ft(x) with x ∈ R
d, its δ-smoothing function f̂t,δ(x) is given by

f̂t,δ(x) � E[ft(x+ δv)] (27)

where δ > 0 is a scalar constant and v is a random vector

uniformly distributed over the d-dimensional unit ball B.

Before proceeding further, we strengthen Assumption A1) as

follows.

A1’) The constraint setX ⊂ R
d is compact and convex and satis-

fies rB ⊂ X ⊂ RB for some R > r > 0. Moreover, there ex-

ists an constantL1 > 0 such that sup1≤t≤T,x∈X |ft(x)| ≤ L1.

Choose δ ∈ (0, r) and setXδ � (1− δ/r)X . It can be proved

that (see, e.g., [13]),

Xδ + δB ⊂ X (28)

and

∇f̂t,δ(x) =
d

δ
E[ft(x+ δu)u] (29)

where u is a random vector uniformly distributed over the

d-dimensional unit sphere S. OGFA with the δ-smoothing tech-

nique is given as follows:

Algorithm 2: Online Gradient-Free Algorithm (OGFA)

with δ-Smoothing Technique.

Initialization: An initial estimate x0, a step size α, a

smoothing parameter δ, and the maximal number T of

iterations.

For t = 0, . . . , T ,

choose ut a random vector uniformly distributed over S

and independent of {u1, . . . , ut−1},

update the estimate as

gt =
d

δ
(ft(xt + δut)− ft(xt))ut (30)

xt+1 = PXδ
(xt − αgt) (31)

end;

Theorem 2: Let {xt}t≥1 be a sequence generated by Al-

gorithm 2. Suppose that A1’), A2), and A3) hold and

ft(·), t = 1, . . . , T are σ-strongly convex. Then for any ρ ∈
(max{1/2, 1− σ/(4LS)}, 1),

E[regretFT ] =
T∑

t=1

ρT−t
E [ft(xt)− ft(x

∗
t)]

≤ 1

β

{
ρTE(f1(x1)−f1(x

∗
1))+2

T∑

t=1

ρT−tF sup
t,t+1

+ L

T∑

t=1

ρT−tθt+
Cδ,α

1−ρ

}
(32)

provided that
4(1−ρ)

σ < α ≤ min{1/LS , 2/σ}, where β = ρ+
σα
4 − 1 > 0 and Cδ,α = (2L+ σL

2 α+ σL1

4r α)δ + 2d2L2α.

Moreover, if F sup
t,t+1 = o(1) and θt = o(1) as t → ∞, then

lim supT→∞ E[regretFT ] ≤
Cδ,α

β(1−ρ) .
Theorem 2 establishes the upper bound of the forgetting-factor

regret of Algorithm 2. Note that for OGFA with δ-smoothing

technique, the upper bound of E[regretFT ] is related by a positive

constant Cδ,α. This is because the δ-smoothing based difference

(30) serves as an estimate for ∇f̂t,δ(x) given by (29), not

for the gradient of the optimization function ∇ft(x) itself.

The proof of Theorem 2 generally follows the similar lines

of Theorem 1, by paying attention to the difference between

the δ-smoothing function f̂t,δ(x) and the optimization function

ft(x), i.e., f̂t,δ(x)− ft(x).
Proof: A similar analysis as (16), (17) leads to

ft+1(xt+1)− ft+1(x
∗
t+1)

≤ 2F sup
t,t+1+ft(xt+1)−ft(xt) + ft(xt)−ft(x

∗
t) + Lθt. (33)

By (27), (28), and Assumption A2), for any x ∈ Xδ we have

the following estimate:
∣∣∣f̂t,δ(x)− ft(x)

∣∣∣ =
∣∣E[ft(x+ δv)]− ft(x)

∣∣

≤ E
∣∣ft(x+ δv)− ft(x)

∣∣

≤ E[Lδ‖v‖] ≤ Lδ (34)

where the last inequality holds because v is uniformly distributed

over the unit ball B and thus

ft(xt+1)− ft(xt) ≤ 2Lδ + f̂t,δ(xt+1)− f̂t,δ(xt). (35)

Next, we consider the upper bound of f̂t,δ(xt+1)− f̂t,δ(xt).
Noting A3) and (28), by the assumption that X is compact

and the Lebesgue’s dominated convergence theorem, it can be

proven that ∇f̂t,δ(x) = E[∇ft(x+ δv)] and f̂t,δ(x) is also LS-

smooth over Xδ , i.e.,

f̂t,δ(xt+1)− f̂t,δ(xt)

≤
〈
∇f̂t,δ(xt), xt+1 − xt

〉
+

LS

2
‖xt+1 − xt‖2 (36)

since by (31), xt ∈ Xδ . From (36) and noting α ≤ 1/LS and

(30),

f̂t,δ(xt+1)− f̂t,δ(xt)

≤
〈
∇f̂t,δ(xt), xt+1 − xt

〉
+

1

2α
‖xt+1 − xt‖2

= 〈gt, xt+1 − xt〉+
1

2α
‖xt+1 − xt‖2

+
〈
∇f̂t,δ(xt)− gt, xt+1 − xt

〉
. (37)

By (29) and (30) and noting A1’), A2), we get ‖gt‖ ≤
d
δ · L‖δut‖ = dL and ‖∇f̂t,δ(x)‖ = ‖d

δE[(ft(x+ δu))u]‖ =
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‖d
δE[(ft(x+ δu)− ft(x))u]‖ ≤ dL for any x ∈ Xδ. Then by

Lemma A2 in Appendix and (31) it leads to
〈
∇f̂t,δ(xt)− gt, xt+1 − xt

〉

≤
(
‖∇f̂t,δ(xt)‖+ ‖gt‖

)
‖xt+1 − xt‖

≤ 2dL · (α‖gt‖) ≤ 2d2L2α (38)

which combining with (37) yields

f̂t,δ(xt+1)− f̂t,δ(xt)

≤ 〈gt, xt+1 − xt〉+
1

2α
‖xt+1 − xt‖2 + 2d2L2α. (39)

On the other hand, noting that PXδ
(·) is a projection operator,

for Algorithm 2 we have

xt+1 = argmin
x∈Xδ

{
〈gt, x− xt〉+

1

2α
‖x− xt‖2

}
. (40)

Combining (39) and (40), we obtain

f̂t,δ(xt+1)− f̂t,δ(xt)

≤ min
x∈Xδ

{
〈gt, x− xt〉+

1

2α
‖x− xt‖2

}
+ 2d2L2α

= min
x∈Xδ

{
〈∇f̂t,δ(xt), x− xt〉+

1

2α
‖x− xt‖2

+ 〈gt −∇f̂t,δ(xt), x− xt〉
}
+ 2d2L2α

≤ min
x∈Xδ

{
f̂t,δ(x)− f̂t,δ(xt) +

1

2α
‖x− xt‖2

+ 〈gt −∇f̂t,δ(xt), x− xt〉
}
+ 2d2L2α (41)

where the last inequality holds because of the convexity of f̂t,δ(·)
over Xδ.

Denote x̃∗
t = argminx∈Xδ

ft(x). By setting x = (1−
σα
2 )xt +

σα
2 x̃∗

t ∈ Xδ in (41) and carrying out a similar analysis

as (22)–(24), we have

f̂t,δ(xt+1)− f̂t,δ(xt) ≤ −σα

4

(
f̂t,δ(xt)− f̂t,δ(x̃

∗
t)
)

+
σα

2
〈gt −∇f̂t,δ(xt), x̃

∗
t − xt〉+ 2d2L2α. (42)

Note that for the conditional expectation E[gt|xt] =

∇f̂t,δ(xt) and thus

E

〈
gt −∇f̂t,δ(xt), x̃

∗
t − xt

〉

= E

〈
E

[
gt −∇f̂t,δ(xt)|xt

]
, x̃∗

t − xt

〉
= 0 (43)

from which and by taking the mathematical expectation to both

sides of (42), we have

E

(
f̂t,δ(xt+1)− f̂t,δ(xt)

)

≤ −σα

4
E

(
f̂t,δ(xt)− f̂t,δ(x̃

∗
t)
)
+ 2d2L2α. (44)

Next we consider the term f̂t,δ(xt)− f̂t,δ(x̃
∗
t). By A1’), we

know that 0 ∈ X . Then, by the convexity of ft(·) we have

ft(x̃
∗
t) = min

x∈Xδ

ft(x) = min
x∈X

ft ((1− δ/r)x)

≤ min
x∈X

{(δ/rft(0)+(1−δ/r) ft(x)} ≤ δ

r
L1+ft(x

∗
t).

(45)

Using |ft(x)− f̂t,δ(x)| ≤ Lδ for all x ∈ Xδ, we obtain

f̂t,δ(xt)− f̂t,δ(x̃
∗
t)

= f̂t,δ(xt)− ft(xt) + ft(x̃
∗
t)− f̂t,δ(x̃

∗
t) + ft(xt)− ft(x̃

∗
t)

≥ − 2Lδ+ft(xt)−ft(x̃
∗
t) ≥−2Lδ + ft(xt)−ft(x

∗
t)−

δ

r
L1

(46)

where for the last inequality (45) is applied.

Taking the mathematical expectation on both sides of (46) and

then substituting it into (44) yield

E

(
f̂t,δ(xt+1)− f̂t,δ(xt)

)

≤−σα
4
E(ft(xt)−ft(x

∗
t))+

σα

4

(
2Lδ +

δ

r
L1

)
+ 2d2L2α.

(47)

Combining (33), (35), and (47), we obtain

E
(
ft+1(xt+1)− ft+1(x

∗
t+1)

)

≤
(
1− σα

4

)
E (ft(xt)− ft(x

∗
t)) + 2F sup

t,t+1 + Lθt

+

(
2Lδ +

σα

4

(
2Lδ +

δ

r
L1

)
+ 2d2L2α

)
(48)

from which together with a similar discussion as (25), (26), we

can prove (32). This completes the proof. �

Motivated by the Kiefer–Wolfowitz algorithm for stochas-

tic optimization [43], [46], in what follows, we introduce

another class of gradient-free algorithm, which, to the au-

thors’ knowledge, has not been discussed in the literature.

Let {ct}t≥0 be a sequence of positive numbers. At time t,
assume that the values of ft(·) at the points x = xt + cte

k and

x = xt − cte
k with k = 1, . . . , d can be observed, where ek

is the vector in R
d with the kth component being 1 and the

others being 0. Denote the observed function values by [zkt ]
+ =

ft(xt + cte
k) and [zkt ]

− = ft(xt − cte
k) and define the

differences

ht[k] =
[zkt ]

+ − [zkt ]
−

2ct
, k = 1, . . . , d (49)

and

ht = [ht[1], . . ., ht[d]]
�

(50)

which serve as estimates for the gradients of objective

functions.
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Algorithm 3: Online Gradient-Free Algorithm (OGFA)

with Deterministic Difference Technique.

Initialization: An initial estimate x0, a step size α, the

maximal number T of iterations, and a positive

decreasing sequence {ct}Tt=1.

For t = 0, . . . , T ,

update the estimate as

ht =

[
[z1t ]

+ − [z1t ]
−

2ct
, . . . ,

[zdt ]
+ − [zdt ]

−

2ct

]T
(51)

x̂t+1 = xt − αht, (52)

xt+1 = PX (x̂t+1) , (53)

end;

Before proceeding further, we need the following

assumptions.

A4) {ft(·), t = 1, . . . , T} are second-order differentiable

and there exists a positive constant LH such that

∣∣∇2ft[k, k]
∣∣ ≤ LH , t = 1, . . . , T, k = 1, . . . , d

(54)

where ∇2ft(·) represents the Hessian matrix of ft(·).
A5) {ct}t≥0 is a positive sequence decreasing to zero.

Theorem 3: Let {xt}t≥1 be the sequence generated by

(51)–(53) with initial value x0 ∈ X . Suppose that ft(·), t =
1, . . . , T are σ-strongly convex and A1)–A5) are satisfied. Fur-

ther, assume that α ∈ ( 4(1−ρ)
σ ,min{1/LS , 2/σ}] and 1 > ρ >

max{1/2, 1− σ/(4LS)}. Then,

regretFT =

T∑

t=1

ρT−t (ft(xt)− ft(x
∗
t))

≤ 1

β

{
ρT (f1(x1)− f1(x

∗
1)) + 2

T∑

t=1

ρT−tF sup
t,t+1

+L

T∑

t=1

ρT−tθt + 4M
√
dLH

T∑

t=1

ρT−tct

}
(55)

where β = ρ+ σα
4 − 1 > 0. Moreover, if ct = o(1), F sup

t,t+1 =

o(1), and θt = o(1) as t → ∞, then limT→∞ regretFT = 0.

Remark 1: Theorem 3 establishes the upper bound of the

forgetting-factor regret of Algorithm 3. Here we make some

comparisons between Algorithms 2 and 3. Noting (29) and

(30), gt =
d
δ (ft(xt + δut)− ft(xt))ut applied to Algorithm 2

serves as an unbiased estimate for ∇f̂t,δ(x), while the deter-

ministic difference ht applied in (51) serves as an estimate for

∇ft(x) itself. From Theorem 2 we find that if F sup
t,t+1 = o(1)

and θt = o(1), for OGFA with the δ-smoothing technique,

lim supT→∞ E[regretFT ] = O(δ) +O(α), which depends on the

choice of the smoothing parameter δ and the step size α. On the

other hand, for OGFA with the deterministic difference tech-

nique, Theorem 3 ensures lim supT→∞regretFT = 0 provided

thatF sup
t,t+1 = o(1) and θt = o(1) as t → ∞. Hence, Algorithm 3

guarantees better performance than Algorithm 2 in regard of the

tracking error of fT (xT )− fT (x
∗
T ). The proof of Theorem 3

generally follows the similar lines of Theorem 1, by properly

analyzing the deterministic difference ht given by (51).

Proof: Since the proof is similar to that of Theorem 1, here

we only give a sketch.

By the definitions in (49) and (50), for any t ≥ 0 and k ∈
{1, . . . , d}, for ht it follows that

(ek)�ht = ht[k] =
[zkt ]

+ − [zkt ]
−

2ct

=
ft(xt + cte

k)− ft(xt − cte
k)

2ct
. (56)

By Taylor’s expansion and noting that ft(·) is second-order

differentiable, we obtain that

ht = ∇ft(xt) + ctpt (57)

where

pt[k] = 〈ek, pt〉 =
1

2
(ek)�

[
∇2ft

(
xt + [βk

t ]
+[θkt ]

+cte
k
)
[θkt ]

+

+ ∇2ft
(
xt+[βk

t ]
−[θkt ]

−cte
k
)
[θkt ]

−] ek (58)

with [θkt ]
+, [θkt ]

−, [βk
t ]

+, [βk
t ]

− ∈ [−1, 1] for k ∈ {1, . . . , d}.

Formula (52) and (53) are equivalent to

xt+1 = argmin
x∈X

{
〈ht, x− xt〉+

1

2α
‖x− xt‖2

}
. (59)

Similar to (18)–(19) and noting (57), we obtain that

ft(xt+1) ≤ ft(xt) + 〈∇ft(xt), xt+1−xt〉+
1

2α
‖xt+1−xt‖2

= ft(xt)+〈ht, xt+1−xt〉+
1

2α
‖xt+1−xt‖2

−〈ctpt, xt+1−xt〉. (60)

Combining (59) and (60) leads to

ft(xt+1)− ft(xt) ≤ min
x∈X

{
〈ht, x− xt〉+

1

2α
‖x− xt‖2

}

− 〈ctpt, xt+1 − xt〉. (61)

By A1), A4), and (58), for 〈ctpt, xt+1 − xt〉, we have

〈ctpt, xt+1 − xt〉 ≤ ct‖pt‖‖xt+1 − xt|‖

≤ ct
√
dLH(‖xt+1‖+ ‖xt‖) ≤ 2M

√
dLHct. (62)

Again by using (57), we obtain

ft(xt+1)− ft(xt)≤min
x∈X

{
〈∇ft(xt), x− xt〉+

1

2α
‖x− xt‖2

+ 〈ctpt, x− xt〉} − 〈ctpt, xt+1 − xt〉 ≤ min
x∈X

{ft(x)− ft(xt)

+
1

2α
‖x− xt‖2 + 2M

√
dLHct

}
+ 2M

√
dLHct. (63)
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TABLE I
SELECTION OF STEP SIZE

Algorithm 4: Online Frank–Wolfe Algorithm (OFWA) with

Line-Search for Step Size.

Initialization: An initial estimate x1 and the maximal

number T of iterations.

For t = 1, . . . , T ,

perform the linear optimization:

vt = argmin
v∈X

〈∇ft(xt), v〉 (64)

select the step size by line-search:

αt = argmin
α∈[0,1]

ft(xt + α(vt − xt)) (65)

update the estimates as:

xt+1 = (1− αt)xt + αtvt (66)

end;

By (57)–(63) and following the proofs of Theorem 1, we can

obtain the result. �

Remark 2: Under the framework of the forgetting-factor re-

gret, Theorems 1–3 establish a unified interval for selection of

the step size for Algorithms 1–3; see, e.g., Table I. It indicates

that as far as the tracking of the time-varying minimizers of

OCO is of concern, the step size should be chosen neither too

small nor too large. To the authors’ knowledge, such interval for

selection of the step size has not been reported in the literature.

C. Forgetting-Factor Regret of Online Frank–Wolfe
Algorithm

In the design of Algorithms 1–3, there is a projection operator,

which usually results in high computational complexity for high-

dimensional problems. To deal with this difficulty, in literature

the online conditional gradient algorithm (OCG) [11], [35], the

one-shot Frank–Wolfe algorithm [12], [17], [34], are introduced.

The key idea of these algorithms lies in replacing the projection

operation with a linear optimization, which can be performed

more efficiently.

In what follows, we propose an online projection-free algo-

rithm and analyze the corresponding forgetting-factor regret.

The algorithm is motivated by the one-shot Frank–Wolfe algo-

rithm [34] as well as the line-search procedure for selection

of the step size, see, e.g. [35]. To the author’s knowledge,

combination of the one-shot Frank-Wolfe algorithm with the

line-search procedure for the step size is new and has not been

reported in the existing literature.

Theorem 4: For {xt}t≥1 generated by Algorithm 4, if A1)–

A3) are satisfied, then for any fixed ρ ∈ (0, 1) and α0 ∈ (0, 1],

it holds that

regretFT =
T∑

t=1

ρT−t (ft(xt)− ft(x
∗
t))

≤
T∑

t=1

ρT−t(1−α0)
t−1 (f1(x1)−f1(x

∗
1))

+ 2

T∑

t=1

ρT−tF̃
(α0)
t +L

T∑

t=1

ρT−tθ̃
(α0)
t +

2M2LS

1− ρ
α0

(67)

where F̃
(α0)
t =

∑t−1
s=1(1− α0)

t−s−1F sup
s,s+1 and θ̃

(α0)
t =∑t−1

s=1(1− α0)
t−s−1θs. Moreover, if F sup

t,t+1 = o(1) and

θt = o(1) as t → ∞, then limT→∞ regretFT = 0.

Theorem 4 establishes the upper bound of the forgetting-factor

regret of Algorithm 4 and gives the sufficient conditions to

guarantee regretFT = o(1) asT → ∞. The key step toward estab-

lishing the upper bound of regretFT is to find a recursive formula

for ft(xt)− ft(x
∗
t), t ≥ 0 by using the linear optimization (64)

and the line-search procedure (65) for selection of the step size.

Proof: Noting thatαt is selected by the line-search procedure

(65), for any fixed α0 ∈ [0, 1], it follows that

ft(xt+1)= ft (xt+αt(vt − xt)) ≤ ft (xt+α0(vt−xt)) (68)

from which together with the assumption that ft(x) is LS-

smooth over X ,

ft(xt+1) ≤ ft (xt + α0(vt − xt))

≤ ft(xt) + 〈∇ft(xt), α0(vt − xt)〉

+
LS

2
α2
0‖vt − xt‖2. (69)

By (64) we know that 〈∇ft(xt), vt〉 ≤ 〈∇ft(xt), x
∗
t〉, which

combining with (69) gives

ft(xt+1)≤ ft(xt) + α0 〈∇ft(xt), x
∗
t−xt〉+

LS

2
α2
0‖vt−xt‖2.

(70)

By the convexity of ft(·) in X , we have

〈∇ft(xt), x
∗
t − xt〉 ≤ ft(x

∗
t)− ft(xt). (71)

By (70) and (71), we obtain

ft(xt+1)≤ ft(xt)−α0 (ft(xt)−ft(x
∗
t)) +

LS

2
α2
0‖vt−xt‖2.

(72)

On the other hand, a similar analysis as (16), (17) leads to

ft+1(xt+1)− ft+1(x
∗
t+1)

≤ 2F sup
t,t+1+ft(xt+1)−ft(xt)+ft(xt)−ft(x

∗
t) + Lθt. (73)

Combining (72) and (73) and noting that A1) ensures ‖vt −
xt‖2 ≤ 4M2, we obtain

ft+1(xt+1)− ft+1(x
∗
t+1) ≤ (1− α0) (ft(xt)− ft(x

∗
t))

+ 2F sup
t,t+1 + Lθt + 2M2LSα

2
0.

(74)
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and furthermore,

ft(xt)− ft(x
∗
t)

≤(1− α0)
t−1 (f1(x1)− f1(x

∗
1)) + 2

t−1∑

s=1

(1−α0)
t−s−1F sup

s,s+1

+ L
t−1∑

s=1

(1− α0)
t−s−1θs + 2M2LS

t−1∑

s=1

(1− α0)
t−s−1α2

0

≤ (1− α0)
t−1 (f1(x1)− f1(x

∗
1)) + 2

t−1∑

s=1

(1− α0)
t−s−1F sup

s,s+1

+ L
t−1∑

s=1

(1− α0)
t−s−1θs + 2M2LSα0. (75)

Multiplying ρT−t to both sides of (75) and then summing up

from t = 1 to T leads to (67).

From (67) it follows that if F sup
t,t+1 = o(1) and θt = o(1) as

t → ∞, then

0 ≤ lim sup
T→∞

regretFT ≤ 2M2LS

1− ρ
α0.

Noting that α0 is arbitrary in the interval (0, 1], we obtain

limT→∞ regretFT = 0. The proof is thus concluded. �

D. OGDA With Forgetting Factor

In the above sections, we analyze the forgetting-factor regrets

of OGDA, OGFA, and OFWA. Note that the forgetting factor

ρ does not appear in these algorithms. On the other hand, since

{ft(·), t = 1, . . . , T} are time varying, to predict the minimizer

x∗
t+1 of ft+1(x), x ∈ X , it is reasonable to use the information

in {xs, fs(xs),∇fs(xs)} at the recent time instants s near to

t, while those at time instants away from t may be negligible.

Based on the consideration, in what follows, we introduce an

OGDA with a forgetting factor and analyze the corresponding

regretFT .

We first reformulate the OCO problem as follows. Let

{ft(·), t = 1, . . . , T} be a sequence of convex functions over the

constraint set X . Denote x∗
t = argminx∈X ft(x), t = 1, . . . , T

and assume there exists an unknown matrix A ∈ R
d×d with

‖A‖ ≤ 1 such that

x∗
t+1 = Ax∗

t + ξt (76)

where ξt is a random noise.

Here we consider the full information model for OCO, i.e.,

the gradient ∇ft(·), t = 1, . . . , T are available for the algo-

rithm design. We first consider the case of X = R
d. The idea

arises from the following observation. Recall that the classical

regularized approach for OCO, see, e.g., [10], can be formu-

lated by xt+1 = argminx∈Rd{
∑t

s=1〈∇fs(xs), x〉+ 1
2α‖x‖2}.

By introducing a forgetting factor ρ0 ∈ [0, 1] into the regularized

algorithm, i.e.,

xt+1 = argmin
x∈Rd

{
t∑

s=1

ρt−s
0 〈ds, x〉+

1

2α
‖x‖2

}
(77)

the predict xt+1 for x∗
t+1 is then generated by

xt+1 = ρ0xt − αdt (78)

where α is a positive step size, dt = ∇ft(xt) + εt and εt is the

observation noise for the gradient. From (77), (78) and taking

the constraint X into consideration, we propose the following

algorithm.

Algorithm 5: OGDA with Forgetting Factor.

Initialization: An initial estimate x1, a forgetting factor

ρ0 ∈ [0, 1], the maximal number T of iterations, and a

sequence of step size {αt}Tt=1.

For t = 1, . . . , T , update the estimate as:

x̂t+1 = ρ0xt − αtdt (79)

xt+1 = PX (x̂t+1) (80)

end;

Remark 3: The OCO model (76) is similar to the model

considered in [47]. The difference lies in that the matrix A is

known in [47] as a priori information, while in this paper we

assume A is a unknown matrix. Examples of the model (76)

include the prediction of random signals in signal processing,

the identification of time-varying parameter vectors in systems

and control, etc.

With the forgetting factor ρ0, (76) can be rewritten as

x∗
t+1 = ρ0x

∗
t + ωt (81)

where

ωt = (A− ρ0I)x
∗
t + ξt. (82)

Before proceeding further, we pose the following assumption

for the theoretical analysis.

A6) For the random noises {εt}Tt=1 and {ξt}Tt=1,

a) E[εt] = 0, E‖εt‖2 ≤ v2 for some positive constant v and

any t = 1, . . . , T ;

b) εs and εt are mutually independent for any 1 ≤ s < t ≤
T ;

c) supt=1,...,T E‖ξt‖ < ∞;

d) ξs and ξt are mutually independent for any 1 ≤ s < t ≤
T .

Set the sequence of σ-algebras Ft � σ{εs, ξs : 1 ≤ s ≤
t}, t = 1, . . . , T . From the definition of Ft and noting Algo-

rithm 5 and the assumption x∗
t+1 = Ax∗

t + ξt, it is direct to

check that bothft+1(xt+1) andft+1(x
∗
t+1) are random variables

measurable with respect toFt and in the following the forgetting

factor regret of Algorithm 5 in mathematical expectation will be

considered.

The key step for analyzing Algorithm 5 is to find the recursive

formula for the sequence {E‖xt − x∗
t‖2}t≥0, which is given by

the following technical lemma.

Lemma 1: Let {xt}Tt=1 be generated by Algorithm 5. As-

sume that A1), A2), and A6) hold and ft(·), t = 1, . . . , T are

σ-strongly convex. Furthermore, assume the constraint set X

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 31,2024 at 01:52:12 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: FORGETTING-FACTOR REGRETS FOR ONLINE CONVEX OPTIMIZATION 5043

satisfies ax ∈ X for ∀ a ∈ (0, 1) if x ∈ X . Then,

E‖xt+1−x∗
t+1‖2≤ ρ20E‖xt−x∗

t‖2−2ρ0αtE (ft(xt)−ft(x
∗
t))

− ρ0σαtE‖xt − x∗
t‖2 + (L+ v)2α2

t + 4ME‖ωt‖. (83)

Proof: By A1) and the Schwartz inequality, we have the

following chain of equality and inequality:

E
∥∥xt+1 − x∗

t+1

∥∥2 − E ‖ρ0xt − ρ0x
∗
t‖2

= − E ‖ρ0xt − xt+1‖2 + E
〈
ρ0xt − xt+1, ρ0x

∗
t − x∗

t+1

〉

+ E
〈
ρ0xt − xt+1, ρ0x

∗
t + x∗

t+1 − 2xt+1

〉

+ E
〈
2xt+1 − x∗

t+1 − ρ0x
∗
t , ρ0x

∗
t − x∗

t+1

〉

≤ − E ‖ρ0xt − xt+1‖2 + E 〈ρ0xt − xt+1, 2ρ0x
∗
t − 2xt+1〉

+ 4ME‖ωt‖. (84)

By (79), (80), and the definition of the projection operator

PX(·), we have that for Algorithm 5

xt+1 = argmin
x∈X

{
〈2αtdt − 2ρ0xt, x〉+ ‖x‖2

}
. (85)

By Lemma A3 given in Appendix with x∗ = xt+1 and x =
ρ0x

∗
t , we obtain

2 〈xt+1 + αtdt − ρ0xt, ρ0x
∗
t − xt+1〉 ≥ 0 (86)

and thus

E 〈ρ0xt − xt+1, ρ0x
∗
t − xt+1〉 ≤ αtE 〈dt, ρ0x∗

t − xt+1〉
= αtE 〈dt, ρ0x∗

t − ρ0xt〉+ αtE 〈dt, ρ0xt − xt+1〉
= Et(1) + Et(2) + Et(3) (87)

where

Et(1) = ρ0αtE [〈∇ft(xt), x
∗
t − xt〉] (88)

Et(2) = ρ0αtE [〈εt, x∗
t − xt〉] (89)

and

Et(3) = αtE [〈dt, ρ0xt − xt+1〉] . (90)

By the fact that ft(·) is σ-strongly convex, we have

−Et(1)≥ ρ0αtE (ft(xt)−ft(x
∗
t))+ρ0αt

σ

2
E‖xt−x∗

t‖2.
(91)

By (79), (80), and assumption A6) b), we know that xt − x∗
t

is measurable with respect to Ft−1 and thus independent of εt.
Hence

Et(2)= ρ0αtE〈εt, xt−x∗
t〉= ρ0αt〈Eεt,E (x∗

t−xt)〉= 0
(92)

where in the last equation assumption A6) c) is used.

By A2), A6) a), and the Lyapunov inequality,

E ‖dt‖=E ‖∇ft(xt) + εt‖≤ E ‖∇ft(xt)‖+E ‖εt‖ ≤ L+ v
(93)

and

E ‖dt‖2 = E ‖∇ft(xt) + εt‖2

≤ E ‖∇ft(xt)‖2 + E ‖εt‖2 + 2E ‖∇ft(xt)‖ ‖εt‖

≤ L2 + v2 + 2Lv = (L+ v)2. (94)

By using the Cauchy inequality and (94), for Et(3) we have

the following estimate:

Et(3) = αtE [〈dt, ρ0xt − xt+1〉] ≤ E (αt ‖dt‖ ‖ρ0xt − xt+1‖)

≤ 1

2
α2
tE ‖dt‖2 +

1

2
E ‖ρ0xt − xt+1‖2

≤ (L+ v)2

2
α2
t +

1

2
E ‖ρ0xt − xt+1‖2 . (95)

Combining (87)–(95) leads to

E 〈ρ0xt − xt+1, 2ρ0x
∗
t − 2xt+1〉

≤ −2ρ0αtE (ft(xt)− ft(x
∗
t))− ρ0σαtE ‖xt − x∗

t‖2

+ (L+ v)2α2
t + E ‖ρ0xt − xt+1‖2 (96)

which incorporated with (84) yields (83). �

Theorem 5: Let {xt}Tt=1 be generated by Algorithm 5. As-

sume that A1), A2), and A6) hold and the constraint set X satis-

fiesax ∈ X for∀ a ∈ (0, 1) ifx ∈ X . Then, for any 0 ≤ ρ ≤ ρ20,

a) If ft(·), t = 1, . . . , T are convex and the step size αt ≡
α > 0, then

E[regretFT ] =
T∑

t=1

ρT−t
E (ft(xt)− ft(x

∗
t))

≤ ρ2T−1
0

2α
E ‖x1 − x∗

1‖2 +
(L+v)2α

2ρ0(1− ρ20)

+
2M

ρ0α

T∑

t=1

ρ2T−2t0 E‖ωt‖ (97)

b) If ft(·), t = 1, . . . , T are σ-strongly convex and the step

size {αt}Tt=1 is a decreasing positive sequence, then

E[regretFT ] =

T∑

t=1

ρT−t
E (ft(xt)− ft(x

∗
t))

≤ ρ2T−10

2α1
E‖x1−x∗

1‖2+
T∑

t=1

ρ2T−2t−10

×
(
(L+v)2

2
αt+2M

E‖ωt‖
αt

)

+
1

2

T∑

t=2

ρ2T−2t+1
0 E‖xt−x∗

t‖2

×
(

1

αt
− 1

αt−1
− σ

ρ0

)
. (98)
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Moreover, if α0 = 1, αt = c/t with 0 < c ≤ ρ0

σ , and

E‖ωt‖ = o(αt) as t → ∞, then E[regretFT ] = o(1) as

T → ∞.

Proof: Here we only prove Theorem 5b), while a) can be

proved by setting σ = 0 and αt ≡ α.

By Lemma 1, it follows that

ρ0E (ft(xt)− ft(x
∗
t))

≤ ρ20E ‖xt − x∗
t‖2 − E

∥∥xt+1 − x∗
t+1

∥∥2

2αt
− σ

2
ρ0E ‖xt − x∗

t‖2

+
(L+ v)2

2
αt + 2M

E‖ωt‖
αt

. (99)

Set ρ1 = ρ20. Multiplying ρT−t−1
1 to both sides of (99) and

summing up t = 1, . . . , T leads to

T∑

t=1

ρ
T−t−1/2
1 E (ft(xt)− ft(x

∗
t))

≤ 1

2

T∑

t=1

ρT−t
1 E ‖xt − x∗

t‖2 − ρT−t−1
1 E

∥∥xt+1 − x∗
t+1

∥∥2

αt

− σ

2

T∑

t=1

ρ
T−t−1/2
1 E ‖xt − x∗

t‖2 +
(L+ v)2

2

T∑

t=1

ρT−t−1
1 αt

+ 2M

T∑

t=1

ρT−t−1
1

E‖ωt‖
αt

. (100)

We have the following chain of equalities and inequalities:

T∑

t=1

ρT−t
1 E ‖xt − x∗

t‖2 − ρT−t−1
1 E

∥∥xt+1 − x∗
t+1

∥∥2

αt

=

T∑

t=1

ρT−t
1 E ‖xt − x∗

t‖2
αt

−
T∑

t=1

ρT−t−1
1 E

∥∥xt+1 − x∗
t+1

∥∥2

αt

=
T∑

t=1

ρT−t
1 E ‖xt − x∗

t‖2
αt

−
T+1∑

t=2

ρT−t
1 E ‖xt − x∗

t‖2
αt−1

≤ ρT−1
1

α1
E ‖x1−x∗

1‖2+
T∑

t=2

E ‖xt−x∗
t‖2

(
ρT−t
1

αt
− ρT−t

1

αt−1

)

(101)

from which and noting (100)

T∑

t=1

ρ
T−t−1/2
1 E (ft(xt)−ft(x

∗
t)) ≤

ρT−1
1

2α1
E ‖x1−x∗

1‖2

+
1

2

T∑

t=2

E ‖xt−x∗
t‖2

(
ρT−t
1

αt
− ρT−t

1

αt−1
−σρ

T−t−1/2
1

)

+
(L+ v)2

2

T∑

t=1

ρT−t−1
1 αt + 2M

T∑

t=1

ρT−t−1
1

E‖ωt‖
αt

. (102)

Noting 0 ≤ ρ ≤ ρ20 = ρ1, we arrive that

T∑

t=1

ρT−t
E (ft(xt)−ft(x

∗
t))≤

T∑

t=1

ρT−t
1 E (ft(xt)−ft(x

∗
t))

≤ ρ2T−1
0

2α1
E ‖x1 − x∗

1‖2

+
ρ0
2

T∑

t=2

E ‖xt−x∗
t‖2

(
ρ2T−2t
0

αt
− ρ2T−2t

0

αt−1
−σρ2T−2t−1

0

)

+
(L+v)2

2

T∑

t=1

ρ2T−2t−1
0 αt + 2M

T∑

t=1

ρ2T−2t−1
0

E‖ωt‖
αt

.

(103)

Thus, the conclusion of (98) is proved.

If α0 = 1, αt = c/t with 0 < c ≤ ρ0

σ and E‖ωt‖ = o(αt) as

t → ∞, then it is direct to check that E[regretFT ] = o(1) as T →
∞. �

Remark 4: Equation (97) in Theorem 5 indicates that to obtain

a small bound of regretFT , an optimal step size α for Algorithm 5

should be chosen as a tradeoff between the magnitude of the

gradients of objective functions and the observation noise vari-

ance, i.e., L+ v, as well as the magnitude of changing of the

time-varying minimizers of ft(·), i.e., supt E‖ωt‖. In [40], some

classical results for optimal tracking of time-varying parameters

in linear stochastic systems are obtained. To be specific, let the

linear systems be given by

yt+1 = θ�t ϕt + ωt+1

where {θt}t≥1 are the unknown time-varying parameters,

{yt+1, ϕt}t≥1 are the observations, and {ωt}t≥1 are the system

noises. Denote the estimates for {θt}t≥1 by {θ̂t}t≥1. In [40,

Th. 3.1 ] it is established that for the classical algorithms for

estimating {θt}t≥1, including LMS, FFLS, and the KF-based

algorithm, the estimation error is bounded by

E[‖(θt − θ̂t)(θt − θ̂t)
�‖] = O

(
μ+

1

μ

)
(104)

where μ > 0 is the step size adopted in LMS, FFLS, the

KF-based algorithm. Note that (97) characterizes the tracking

performance by E(fT (xT )− fT (x
∗
T )) = O(α+ 1

α ). So in this

sense (97) can be regarded as a parallel extension of results

in [40] to the nonlinear OCO problem.

Remark 5: By setting ρ = ρ0 = 1, Theorem 5 also generates

a bound of the dynamic regret of OGDA.

Remark 6: The OCO model (76) can also be seen as a way

of adding a priori knowledge about the sequence of convex

optimization functions ft(x), t = 1, . . . , T . Similar idea, named

the online learning with a predictable sequence, was consid-

ered in [52], etc. To be specific, the online linear optimiza-

tion ft(x) = 〈x, yt〉, t ≥ 1 with a predictable sequence yt =
Mt(y1, . . . , yt−1) + εt, where εt is the noise is considered in [52]

and the static regrets are analyzed for both the accurate and

inaccurate prediction model. Compared with [52], this article

considers the general OCO functions ft(x), t = 1, . . . , T and

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 31,2024 at 01:52:12 UTC from IEEE Xplore.  Restrictions apply. 



LIU et al.: FORGETTING-FACTOR REGRETS FOR ONLINE CONVEX OPTIMIZATION 5045

Fig. 1. Estimates of follow the leader algorithm and Algorithm 1 with
α = 0.05, 0.45, and 0.95.

Fig. 2. Forgetting factor regret of Algorithm 1 with α = 0.05, 0.45, and
0.95.

analyze the performance of Algorithm 5 under the new regret

function regretFT .

III. SIMULATION STUDIES

Example 1: (Hazan and Seshadhri’s example, [27]) Define

the loss functions of OCO by

ft(x) =

{
(x− 5)2, t = 1, . . . , T

2

(x+ 5)2, t = T
2 + 1, . . . , T.

(105)

Set T = 100 and the constraint set X = [−10, 10]. We test the

performance of the leader algorithm and Algorithm 1 through

this example.

By the leader algorithm, it follows that

xt+1 = argmin
x∈X

t∑

s=1

fs(x) (106)

and

xt =

{
5, t = 1, . . . , T

2
5T
t − 5, t = T

2 + 1, . . . , T.
(107)

As shown in [6], for the above algorithm, the static regret

function is bounded by regretST = O(log T ). On the other hand,

the estimatexT equals 0, rather than the minimizers−5 of fT (·).
Set the forgetting factor ρ = 0.95. For this example, it is

readily checked that the interval for selection of the step size,

see, e.g., Theorem 1, ( 4(1−ρ)
σ ,min{1/LS , 2/σ}] = (0.1, 0.5].

We testify the performance of Algorithm 1 withα = 0.05, 0.45,

and 0.95. It is clear that only the step size α = 0.45 belongs to

the above interval.

Fig. 1 shows trajectories of the estimates generated from the

leader algorithm and Algorithm 1 withα = 0.05, 0.45, and 0.95.

Fig. 2 shows the values of regretFt , t = 1, . . . , T of Algorithm 1

with α = 0.05, 0.45, and 0.95. Simulation results indicate that

for OCO, as far as the tracking of the time-varying minimizers

is concerned, performance of Algorithm 1 can be well evaluated

by the forgetting-factor regret.

Example 2: We consider the following system (see,

e.g., [48]), which is often used for the modeling of aircraft

tracking, spacecraft intersection, etc.

Denote by zs and z̃s the positions of the tracker and the target

at the time interval s ∈ [t, t+ 1),

zs =

d∑

k=1

xt[k]ck,t(s)

z̃s =

d∑

k=1

ξt[k]ck,t(s)

where xt ∈ R
d and ξt ∈ R

d are the coordinate vectors of the

tracker and the target at time t, respectively, and {ck,t(s), k =
1, . . . , d} with s ∈ [t, t+ 1) are normalized orthogonal func-

tions on the interval [t, t+ 1), i.e.,

∫ t+1

t

〈ck,t(s), cl,t(s)〉 ds =
{
1, if k = l

0, otherwise.

The values of the loss function at time t are given by

ft (xt) = ζ1 〈πt, xt〉+ ζ2

∫ t+1

t

‖zs − z̃s‖2 ds

= ζ1 〈πt, xt〉+ ζ2 ‖xt − ξt‖2 .

Here, we consider the 1-D system, i.e., d = 1with a constraint

set X = [−2, 2]. Set T = 1000, ζ1 = 0, ζ2 = 1, and the target

coordinate ξt =
100
t2 . We test the performance of Algorithms

1–5. To be specific, we set the forgetting factor ρ = 0.8. The

step size is chosen as α = 0.5 for Algorithms 1–3; for Al-

gorithm 2 the smoothing parameter is set as δ = 0.01; for

Algorithm 3 {ct = 1
t }Tt=1. For Algorithm 5, choosing the step

size αt =
√
ρ/2t, based on which we can prove that |ωt| =

|(1− ρ
1

2 )ξt + (ξt+1 − ξt)| = O( 1
t2 ), |ωt|/αt = o(1), and con-

ditions of Theorem 5b) are satisfied. For comparison, we also

test the performance of Algorithm 5 with a constant step size

α = 0.1. In fact, by setting ρ0 = ρ = 1 in Theorem 5, Algo-

rithm 5 becomes OGDA. By noting |ωt| = |ξt+1 − ξt| = O( 1
t3 )

and |ωt|/αt = O(| 1t2 − 1
(t+1)2 |) = O( 1

t2 ), Theorem 5 ensures

that the dynamic regret of OGDA with αt = 1/(2t) is bounded

by regretDT = O(log T ).
Fig. 3 shows the tracking errors {|xt − ξt|}Tt=1 of the above

algorithms. It can be seen that Algorithms 1–5 generally perform

better than OGDA, even if OGDA ensures a dynamic regret

bound regretDT = O(log T ). Fig. 4 shows the forgetting-factor

regrets of Algorithms 1–5. To further test the performance

of algorithms, we carry out ten Monte Carlo simulations. In

Fig. 5 , the vertical axis shows the averaged regretFt s of the ten

simulations and the horizontal axis plots the averaged compu-

tation time, which shows that Algorithm 4 equipped with the

Frank–Wolfe technique requires less computational complexity

as expected.
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Fig. 3. Tracking errors |xt − ξt| of Algorithms 1–5 and OGDA with step
size {αt = 1/(2t)}.

Fig. 4. Forgetting factor regrets of Algorithms 1–5.

Fig. 5. Computation time of Algorithms 1–5 (unit: second).

IV. CONCLUDING REMARKS

In this article, aiming at further improving the tracking per-

formance of the time-varying minimizers of OCO, we propose a

new regret, namely, regret with a forgetting factor. We establish

the forgetting-factor regret bounds of classical algorithms in-

cluding OGDA, OGFA, and OFWA as well as a new algorithm,

namely, online gradient descent algorithm with a forgetting

factor.

The OGDA (Algorithm 1) is one of the most classical al-

gorithms for OCO and it is suitable for the full information

model being available, i.e., the gradients of the cost functions

can be observed at each time instant t. On the other hand, when

only the bandit model is available, the gradients of the cost

functions cannot be directly observed and in such cases the

OGFA with the δ-smoothing technique and the deterministic

difference technique (Algorithms 2 and 3) can be applied. In

the design of Algorithms 1–3, there is a projection operator,

which usually results in high computational complexity for

high-dimensional problems. So for the high-dimensional OCO

problem, the OFWA (Algorithm 4) can be considered. When

a priori knowledge about the sequence of convex optimization

functions ft(x), t = 1, . . . , T is available, such knowledge can

be used in the algorithm design like the OGDA with a forgetting

factor (Algorithm 5).

For future research, it is of interest to relax the conditions on

the objective functions such as strong convexity, smoothness,

etc., and to obtain a more precise upper bound of regretFT . It is

also of interest to apply the theoretical results in this article to

practical scenarios. Theoretical results in the article indicate that

the bounds of the forgetting factor regret regretFT will be different

for different sequences of {ft(·)}Tt=1. Another interesting topic

is to investigate, within the worst-case framework, a priori

bounds on regretFT that do not involve individual optimization

functions but depend only on some gross geometric features of

the problem such as the diameter of the decision set, the Lipschitz

constant, the strong convexity, and the smoothness constant,

etc.

APPENDIX

Definition A1: Denote by dom(f) ⊂ R
d the domain of f(·).

A vector-valued function ∂f(x) ∈ R
d is the subgradient of

a nonsmooth convex function f(x) : dom(f) → R if for any

x, y ∈ dom(f), f(y)− f(x) ≥ ∂f(x)�(y − x).
Definition A2: Let f(·) be a convex function on a convex set

S. Denoting a subgradient of f(x) by ∂f(x), x ∈ S, f(·) is said

to be σ-strongly convex on S, if for any x, y ∈ S,

f(y)− f(x) ≥ ∂f(x)�(y − x) +
σ

2
‖y − x‖2

and is said to be LS-smooth on S, if for any x, y ∈ S,

f(y)− f(x) ≤ ∂f(x)�(y − x) +
LS

2
‖y − x‖2.

Lemma A1 (see [11]): Assume that f(x) isσ-strongly convex

and differentiable over dom(f). For any x ∈ dom(f),

f(x)− f(x∗) ≥ σ

2
‖x− x∗‖2 (108)

with x∗ ∈ argminx∈dom(f) f(x).
Lemma A2 (see [49]): For the projection operator PX(·) :

R
d → X ,

‖PX(x)− PX(y)‖ ≤ ‖x− y‖ ∀x, y ∈ R
d.
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Lemma A3 (see [50]): If a function f(x) is convex and

differentiable in X , then for any x ∈ X ,

〈∇f(x∗), x− x∗〉 ≥ 0

with x∗ ∈ argminx∈X f(x).
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[49] S. Sundhar Ram, A. Nedić, and V. V. Veeravalli, “Distributed stochastic

subgradient projection algorithms for convex optimization,” J. Optim.

Theory Appl., vol. 147, no. 3, pp. 516–545, 2010.
[50] P. T. Harker and J. S. Pang, “Finite-dimensional variational inequal-

ity and nonlinear complementarity problems: A survey of theory, algo-
rithms and applications,” Math. Program., vol. 48, no. 1/3, pp. 161–220,
1990.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 31,2024 at 01:52:12 UTC from IEEE Xplore.  Restrictions apply. 



5048 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 8, AUGUST 2024

[51] N. Cesa-bianchi, P. Gaillard, G. Lugosi, and G. Stoltz, “Mirror descent
meets fixed share (and feels no regret),” in Proc. 25th Adv. Neural Inf.

Process. Syst., 2012, pp. 980–988.
[52] A. Rakhlin and K. Sridharan, “Online learning with predictable se-

quences,” in Proc. 26th Conf. Learn. Theory, 2013, pp. 993–1019.

Yuhang Liu received the B.Sc. degree in math-
ematics from Shandong University, China, in
2018 and the Ph.D. degree in operation re-
search and cybernetics from the Institute of Sys-
tems Science, Academy of Mathematics and
Systems Science, Chinese Academy of Sci-
ences, China, in 2023.

Her research interests are mainly in dis-
tributed/centralized approaches for online opti-
mization and games.

Wenxiao Zhao (Member, IEEE) received the
Ph.D. degree in operation research and cyber-
netics from the Institute of Systems Science,
Academy of Mathematics and Systems Science
(AMSS), Chinese Academy of Sciences (CAS),
China, in 2008.

He is currently a Professor with AMSS, CAS.
His research interests are mainly in system
identification and adaptive control, variable and
feature selection, and distributed stochastic op-
timization.

George Yin (Life Fellow, IEEE) received the
B.S. degree in mathematics from the University
of Delaware, Newark, DE, USA, in 1983, and the
M.S. degree in electrical engineering and the
Ph.D. degree in applied mathematics both from
Brown University, Providence, RI, USA, in 1987.

He joined Wayne State University in 1987,
became a Professor in 1996, and the University
Distinguished Professor in 2017. He moved to
the University of Connecticut in 2020. His re-
search interests include stochastic processes,

and stochastic systems theory and applications. He served as the Co-
chair for a number of conferences and served on many committees for
IEEE, IFAC, and SIAM. He was the Chair of the SIAM Activity Group
on Control and Systems Theory, and was on the Board of Directors
of the American Automatic Control Council. He is the Editor-in-Chief
of SIAM Journal on Control and Optimization, an Associate Editor of
Applied Mathematics and Optimization, ESAIM: Control, Optimisation
and Calculus of Variations, and on the editorial boards of many other
journals. He was an Associate Editor of Automatica 1995–2011, IEEE
TRANSACTIONS ON AUTOMATIC CONTROL 1994–1998, and a Senior Editor
of IEEE CONTROL SYSTEMS LETTERS 2017–2019.

Dr. Yin is a fellow of IFAC and a fellow of SIAM.

Authorized licensed use limited to: UNIVERSITY OF CONNECTICUT. Downloaded on July 31,2024 at 01:52:12 UTC from IEEE Xplore.  Restrictions apply. 


