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Abstract

Genomic data and machine learning approaches have gained interest due to their po-
tential to identify adaptive genetic variation across populations and to assess species
vulnerability to climate change. By identifying gene-environment associations for pu-
tatively adaptive loci, these approaches project changes to adaptive genetic composi-
tion as a function of future climate change (genetic offsets), which are interpreted as
measuring the future maladaptation of populations due to climate change. In principle,
higher genetic offsets relate to increased population vulnerability and therefore can
be used to set priorities for conservation and management. However, it is not clear
how sensitive these metrics are to the intensity of population and individual sampling.
Here, we use five genomic datasets with varying numbers of SNPs (Ngp,=7006-
1,398,773), sampled populations (Npop=23—47) and individuals (N;,,=185-595) to
evaluate the estimation sensitivity of genetic offsets to varying degrees of sampling
intensity. We found that genetic offsets are sensitive to the number of populations
being sampled, especially with less than 10 populations and when genetic structure is
high. We also found that the number of individuals sampled per population had small
effects on the estimation of genetic offsets, with more robust results when five or
more individuals are sampled. Finally, uncertainty associated with the use of different
future climate scenarios slightly increased estimation uncertainty in the genetic off-
sets. Our results suggest that sampling efforts should focus on increasing the number
of populations, rather than the number of individuals per populations, and that mul-

tiple future climate scenarios should be evaluated to ascertain estimation sensitivity.
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1 | INTRODUCTION

It is unlikely that greenhouse gas emissions will decrease by the year
2100 (IPPC, 2022) and thus these will continue to generate changes
in mean global climatic conditions, including an increased frequency
and severity of more-extreme seasonal temperatures, drought and
other natural disasters. Overall, these changes will continue to nega-
tively impact the persistence of species (Parmesan, 2006; Parmesan
& Yohe, 2003) and affect their interactions (Zamora-Gutiérrez et
al., 2021), leading to increased risk of population decimations, local
extinctions and losses of genetic diversity (Ceballos et al., 2017;
Wauest et al., 2021).

Climate adaptation strategies are necessary to conserve and
manage wild populations and to facilitate an adequate and timely
response of populations to climate change (LeDee et al., 2021;
Thompson et al., 2023). Unfortunately, reducing the potential im-
pacts of climate change is due to the difficulties of obtaining ade-
quate biological information and designing successful conservation
strategies. Conservation and mitigation strategies should favour
identifying or promoting the evolutionary potential or adaptive ca-
pacity of species and populations, based on the identified or hypoth-
esized pathway(s) and mechanism(s) by which climate acts on the
focal taxa (Forester et al., 2022; LeDee et al., 2021; Meek et al., 2023;
Thompson et al., 2023; Thurman et al., 2020). To date, the evalua-
tion of a population's risk has been most commonly based on future
persistence probabilities estimated through the use of species dis-
tribution models (SDMs) (Peterson et al., 2011). However, SDMs do
not incorporate the demographic and the evolutionary potential of
species, which limits their potential use (Forester et al., 2022). The
adaptive capacity of a species in the future can also be assessed
using phenotypic, ecological, geographic, experimental, life-history
and genetic data, in addition to addressing pathways affecting the
exposure, sensitivity and adaptive capacity of focal taxa (Thompson
et al., 2023; Thurman et al., 2020).

When genetic data are available, the future persistence of pop-
ulations can also be assessed based on patterns of genetic diver-
sity, inbreeding metrics and population structure across species'
ranges (Frankham, 2005; Thompson et al., 2023; Tobdn-Niedfeldt
et al., 2022). Many studies have used neutral or adaptive genetic
markers to assess genetic diversity and population connectivity as
indirect indicators of the potential for persistence. However,
considering adaptive capacity is necessary for predicting the pos-
sible response of populations to future climate change (Thurman et
al., 2020, 2022). The analysis of patterns of adaptive genetic
diversity and the evolutionary history of populations has been
bolstered by the development of genomic tools, which allow the
production of genome-wide data on a massive scale even for non-
model species (Aguirre-Liguori et al., 2021; Capblancq, Fitzpatrick,
et al., 2020; Schoville et al., 2012; Stapley et al., 2010; Tiffin & Ross-
Ibarra, 2014; Waldvogel et al., 2019). The use of population genomic
data to assess risks and evolutionary capacities across populations
can help to identify more (or less) vulnerable populations and to

recognize priorities for population conservation and management

(Allendorf et al., 2010; Thurman et al., 2020; Waldvogel et al., 2019).
Indeed, genome-wide data have been used to characterize genetic-
environment associations, identify genetic variants involved in cli-
mate adaption and assess how populations will cope under new
conditions brought on by a rapidly changing climate (Capblancq,
Fitzpatrick, et al., 2020).

The rationale for the use of population genomic data is straight-
forward: some populations can either be locally adapted to en-
vironmental and biotic conditions expected under future climate
change scenarios (Meek et al., 2023), or they may contain standing
genetic variation that could become adaptive in the future (Barrett &
Schluter, 2007; Hampe & Petit, 2005). The challenge is connect-ing
genetic variants, and the projected change of genetic variants over
time, to climatic change. In recent years, machine learning ap-
proaches have gained popularity for assessing population vulnera-
bility and the capacity for adaptation to new climate conditions. One
of these approaches, Gradient Forest (GF), has been used to identify
gene-environment associations, to model genetic turnover across
the landscape and to project changes in genetic composition under
future climate change scenarios (Fitzpatrick & Keller, 2015). The es-
timated change in genetic composition over time is called the genetic
offset (Fitzpatrick & Keller, 2015), and it is interpreted as measuring
the maladaptation of populations in the face of predicted climate
change (Capblancq, Fitzpatrick, et al., 2020). In theory, populations
with a high genetic offset are expected to be more vulnerable to cli-
mate change either because these will need to respond substantively
through adaptation or migration or because their current genetic
composition is projected to be out-of-sync with future conditions.
This is clearly an oversimplification of the process, because genetic
offsets omit relevant mechanisms of populations' adaptation, such
as climatic tolerances driven by phenotypic plasticity (Thurman et
al., 2020), adaptation through new mutations or standing genetic
variation (Barrett & Schluter, 2007), the introgression of adaptive al-
leles by gene flow and maladaptation associated with the accumula-
tion of deleterious mutations (Aguirre-Liguori et al., 2021). However,
the genetic offset of a given population can also be projected across
the landscape (Gougherty et al., 2021; Rhoné et al., 2020) to po-
tentially identify areas where the population may remain locally
adapted if actively translocated (Gougherty et al., 2021).

The temporal and spatial projections of genetic offsets across
a landscape can be used to assess populations' response to climate
change either through in situ local adaptation or migration. Few ex-
perimental validations of the projected genomic offsets have been
performed (Rellstab et al., 2021), but these show that genomic off-
sets have the potential to successfully predict the response of pop-
ulations to climate change (Exposito-Alonso et al., 2019; Fitzpatrick
et al., 2021; Rhoné et al., 2020). However, it is still not clear how
powerful or informative these methods are, and how useful they are
for the conservation and management of nonmodel species (Rellstab
et al., 2021). For instance, a recent simulation study revealed the
sensitivity of genetic offsets to species' genetic structure and de-
mographic history (Laruson et al., 2022). In addition, genetic offsets

appear to be inversely correlated with deme size, suggesting that
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genetic drift could impact the estimation of genetic offsets (Laruson
et al., 2022).

In addition to these limitations, there is a practical aspect to ge-
netic offsets that remains unexplored: their sensitivity to nonrandom
and limited population (and genomic) sampling. To construct a GF
model and estimate genetic offsets, an ideal sampling likely consists
of populations distributed across the entire geographic and environ-
mental distribution of the species, with large number of loci across
the genome and enough individuals per population to provide rea-
sonable estimates of allele frequencies (Aguirre-Liguori et al., 2020).
However, there is always a tradeoff between the number of sampled
individuals and sequencing resources (Meirmans, 2015) and many
highly vulnerable nonmodel species have few genetic resources or
known populations. Therefore, it is critical to empirically evaluate
the sensitivity of genomic offset projections under limited, but real-
istic, sampling of natural populations.

Here, we perform an assessment of the sensitivity of genetic
offsets under both varying degrees of sampling effort and different
climate change scenarios. To answer this question, we use published
genomic datasets (Table 1) to evaluate how the estimation of ge-
netic offsets is impacted by sampling designs by varying the number
of populations, ecological variation and geographic spread. We also
evaluate the uncertainty in the estimation of genetic offset associ-
ated with the use of multiple climate projections, based on differ-
ent socioeconomic pathways models of greenhouse gas effects and
global circulation models. Finally, we use our results to generate a list
of recommendations for adequate sampling designs and sensitivity

tests to consider when estimating genetic offsets.

2 | MATERIALS AND METHODS

2.1 | Bioclimate and genomic datasets

We downloaded from WorldClim (Fick & Hijmans, 2017), 19 biocli-
matic variables for the present-day (1970-2000) at a 2.5 arc-minutes
resolution. We also obtained future models from the Coupled
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Model Intercomparison Project Phase 6 (CMIPé, publicly available at
https://esgf-node.lInl.gov/search/cmipé/, Eyring et al., 2016). Since
future climates are modelled using different shared socioeconomic
pathways and different global circulation models, it is important to
include this uncertainty to have a range of possible future scenarios
(Foden et al., 2019). To have a good representation of future climatic
scenarios (Sanderson et al., 2015), we obtained data derived from
five circulation models (GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-
2-HR, MRI-ESM2-0, UKESM1-0-LL), four shared socioeconomic
pathways (i.e. SSPs 126, 245, 370, 585) and three time periods
(2041-2060, 2061-2080 and 2081-2100).

We downloaded published genomic datasets (Table 1) belong-
ing to different taxonomic groups (plants and animals), with dif-
ferent life histories (i.e. annuals, perennials) that inhabit several
regions across the world (Figure S1). Because we aimed to explore
sampling properties, we focussed on large datasets that were suf-
ficient for subsampling. We selected datasets with more than 20
sampled populations and with geographic information available for
every population. For each species, we ran the bioinformatic anal-
yses described in Supplementary Methods (Supporting Text S1) to
process the data, obtain SNPs and climatic data for each popula-
tion and generate the input datasets used for further analyses.
For each species, we generated: (1) a table with populations' allelic
counts for each SNP; and (2) a table with the geographic and en-
vironmental data of each population. For species with individual-
level data, we also generated a genind object ( package
in R). Since we used different numbers of individuals per subsa-
mpling design with different missing data (see below) we needed
to impute these datasets to obtain individual genotypes for most
loci. We used the imputation procedure of the package in R
(Frichot & Francois, 2015) to estimate the number of ancestral
populations (K) using sparse non-negative matrix factorization al-
gorithms (snmf function, with k=1:10) (Frichot & Francois, 2015)
and impute missing genotypes across individuals (impute function
in , using the K selected in the snmf analysis).

We used the resulting SNPs as the reference datasets to estimate

genetic offsets and to assess estimation sensitivity under different

TABLE 1 Description of the datasets and summary statistics of the species analysed.

Life-history
Species trait Distribution Dataset N,
Empidonax traillii Bird North America  Radseq 25
Fagus sylvatica Perennial/ Europe Radseq 36
Plant
Zea mays mexicana Annual/plant  Mexico Chip 23
Zea mays parviglumis  Annual/plant  Mexico Chip 24

Arabidopsis lyrata Annual/plant  North America  WGS 47

Ninq(range)  Ngypo Hg Fsr Reference

185 (1-19) 10,790 0.14 0.04 Ruegg et al. (2018)

595 (9-63) 7006 0.22 0.05 Capblancq,
Fitzpatrick,
et al. (2020),
Capblancgq,
Morin,
et al. (2020)

333 (11-15) 33,456 0.22 0.16 Aguirre-Liguori
et al. (2017)

313 (10-16) 33,456 0.22 0.24 Aguirre-Liguori
et al. (2017)

poolSeq 1,398,773 0.14 0.48 Willi et al. (2018)
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sampling schemes. This approach assumes that the reference data-
sets are representative of the true patterns and are themselves
without bias, which is unlikely because these datasets are impacted
by their original sampling (e.g. not sampling an adequate represen-
tation of individuals, populations and SNPs) (see Caveats section in
the Section 4). Nonetheless, the reference datasets provide a conve-

nient point of comparison to assess sampling sensitivity.

2.2 | Summary statistics and outlier SNPs

The estimation of genetic offsets depends on a robust estimation of
the demographic history and genetic structure of species. Genetic
structure and genetic drift make genome-environment association
(GEA\) prone to identify false positives—that is, if genetic structure is
co-aligned with a selective environment, false-positive SNPs can be
identified due to population history rather than genetic adaptation.
To contextualize our estimates of genetic offsets in each dataset
described in Table 1, we estimated two summary statistics that cor-
relate with levels of genetic drift and genetic structure. We first esti-
mated the genetic diversity (Hs) using the basic.stats function in the
Hierfstat (Goudet, 2005) package in R. The basic.stats function esti-
mates the genetic diversity of each locus in each population and the
overall mean Hs across all populations. We also used the apply func-
tion in R to estimate the mean Hs for each population. To account
for varying patterns and strength of genetic structure, we used the
calculate.pairwise.Fst function in the package in R (Bradburd
et al.,, 2013) to estimate pairwise F¢; between each pair of popula-
tions, the mean Fg; across all populations and the mean F¢; between
each population against the remaining populations. Finally, we as-
sessed environmental and geographic variation across populations,
which frequently correlate with genetic structure, by estimating the
distances to the species' geographic and environmental centroids for
every population (Lira-Noriega & Manthey, 2014); these distances
describe how far populations are from the species' optimal environ-
mental conditions (Eckert et al., 2008). The geographic centroid was
estimated as the median longitude and latitude of species' occur-
rences. For the niche centroid, first, we used the prcomp functionin
R to obtain a principal component analysis (PCA) of the 19 biocli-
matic variables (explained >95% of variance in each dataset). Then,
we estimated the niche centroid as the mean score across the first
six principal components (PCs). The distances to the two centroids
were estimated as the Euclidian distance between the populations’
position (geographic coordinates, PC scores) and the respective cen-
troids (Lira-Noriega & Manthey, 2014).

The application of GF often relies on outlier loci (Fitzpatrick
et al., 2018; Fitzpatrick & Keller, 2015), which we identified using
latent factor mixed model 2 (LFMM2) (Caye et al., 2019). Briefly,
LFMM2 identifies SNPs whose allelic frequencies are significantly
associated with continuous variables (that is, climate), while con-
trolling for genetic structure using latent factors. For simplicity, we
only used the scores from the first PC obtained from the bioclimatic
PCA described above. To determine the number of Latent Factors

(K), we used the prcomp function in R to perform a genetic PCA using
all SNPs, calculated the percentage of variance explained by each
PC and estimated the rate of change of the variance explained be-
tween consecutive PCs. The optimal K was defined where the rate of
change of the variance explained between two consecutive PCs was
negative (meaning that there was a ‘knee’ in the screeplot). Next, we
ran the LFMM2 model using K latent factors, a ridge penalty (Ifmm_
ridge function), and controlling for the genomic inflation (Ifmm_test
function, with calibrate="gif’). To make sampling consistent across
datasets, for each dataset we defined the 100 SNPs with the lowest
p-value as outliers. Applying strict corrections (Bonferroni or FDR)
for outlier detection would decrease the number of outlier SNPs and

hinder our capacity to compare results between replicates.

2.3 | Reference genetic offsets

We used GF (Ellis et al., 2012) to model the turnover in the genetic
composition of species across the landscape as a function of con-
tinuous variables, usually climate (Fitzpatrick & Keller, 2015). The
GF models estimate differences in genetic composition among
populations, assess which response variables have the strongest
contribution to model construction and identify particular SNPs
with significant nonlinear associations with response variables
(Capblancq, Fitzpatrick, et al., 2020; Fitzpatrick & Keller, 2015;
Waldvogel et al., 2019).

For each genomic dataset (that is species), we built a GF model
using the gradientForest function from the R package ,
based on 500 trees per run and corr.threshold=0.5. The initial mod-
els used all sampled populations and estimated the corresponding
genetic offset using a reference climate scenario (see below). We
built GF models with the 100 outlier SNPs described above using
the 19 bioclimatic variables. For every model replicate, we ranked-
ordered the bioclimatic variables based on their weighted impor-
tance for model construction and also ranked-ordered SNPs with
significant associations with climate (R?>0). To calculate the genetic
offsets of populations, we used the GF models to predict the genetic
composition of populations across the landscape using present-day
and future climate layers. Keeping with the original methodology of
Fitzpatrick and Keller (2015), we used the multidimensional Euclidian
distances between the present and future genetic compositions to
calculate populations' genetic offsets.

To incorporate uncertainty in future climate projections, we
estimated the genetic offsets of populations under each of the 54
different climate change projections (see above), which allowed us
to assess the impact of climate model uncertainty on the estimation
of genetic offsets. Finally, we estimated the rank correlation (cor.test
function in R) between the reference genetic offset of populations
against offsets estimated under each climatic scenario. In this case, a
rank correlation approaching 1.0 indicates that two climate scenar-
ios project similar genetic offsets. For tractability, we defined a refer-
ence climate scenario as the one with the strongest rank correlations
of genetic offsets relative to the remaining 53 climate scenarios. To
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further assess uncertainty among climate change scenarios, for each
bioclimatic variable we estimated the correlation between present
values and their future projections under the 54 models; these cor-

relations were estimated for each species separately.

2.4 | Subsampling designs

Given the costs of genome-wide sequencing, there is a trade-off
between the number of individuals and populations that can be
sequenced. Previous studies have shown that sampling alimited
number of populations (relative to the ‘true’ number of

populations) can inflate estimates of Fy; between populations
(Aguirre-Liguori et al., 2020; Landguth & Schwartz, 2014; Schwartz
& McKelvey, 2008; Willing et al., 2012) and increase the number of
false positives outlier SNPs (De Mita et al., 2013). Likewise, Gradient
Forest models rely on estimates of allelic frequencies across popula-
tions and therefore are, in principle, sensitive to varying levels of
sampling intensity both in terms of populations and individuals per
population. The reference genetic offset datasets described above
were used as a baseline to assess the sensitivity of the inference of
genetic offsets under different subsampling designs. To approximate
real-world situations, we designed our subsampling to vary sampling
intensities across populations and individuals within those popula-
tions. For each genomic dataset (Table 1), we generated random sub-
samples of N populations without replacement using varying levels
pop:15, Npop:20, and
=30. Each random subsampling

of sampling intensity: Npop:5, Npop:10, N
when possible, N, =25 and N,
(i.e. Npop:5) was replicated 1000 times. To describe the geographic
and environmental structure of the sampled populations in each rep-
licate, we evaluated how well each replicate represented the climatic
and geographic distribution of the entire reference set of popula-
tions. For each replicate, we estimated the absolute sum and the

standard deviation of the distances to the niche (£ sd.iche) and

niche’

geo? sdgeo) centroid of sampled populations, divided by

geographic (X

niche OF Zgeo iNdicate that some of the sampled

Npop- High values of =
populations were near the niche edge and that there was wide cov-
erage of the underlying environmental or geographic space.

For genomic datasets with individual-level data (Table 1), we also
evaluated the effect of sampling different numbers of individuals
per population. The number of individuals within a population is in
principle an important parameter because it impacts the estimation
of allele frequencies, a key input parameter for estimating genomic
offsets. For each dataset, we chose the 20 populations that had the
highest number of individuals and generated random subsamples
of N4 individuals per population using varying sampling intensities
from N; =1 to N, ,=10 (i.e. N, ,=1 replicates consisted of 20 pop-
ulations each with one sampled individual). For each N, , we per-
formed 1000 replicates. In the few instances where N, , was higher
than the number of individuals in a given population, we sampled
all individuals present in the population. We also tested the effect
of sampling all individuals for 20 populations and adding one to five
extra populations (20+1 to 20+ 5) but with only one individual in

MOLECULAR ECOLOGY | 5
R — Y | EY

each added population (singleton populations). The rationale behind
this test is to assess the effect of including populations known by

single individuals (for instance, museum collections or accessions).

2.5 | Estimation sensitivity of genetic offsets

For each subsampled replicate (using subsamples of either popula-
tions or individuals), we performed the same analyses described for
the reference datasets: (1) identify 100 outlier SNPs; (2) estimate
genetic offsets; (3) rank-order bioclimatic variables; and (4) identify
SNPs significantly associated with climate.

Since we performed random subsamplings, an individual popula-
tion was not selected for all replicates. Thus, each time a population
was sampled in each replicate, we recorded its estimated genetic off-
set. We then estimated the mean and range of estimated genetic off-
sets across replicates for each population under different sampling
intensities (See Figure S2). To assess inference sensitivity associated
with different sampling intensities, we estimated the Spearman rank
correlation (cor.test function in R) between populations' reference
genetic offsets and their corresponding replicate genetic offsets. A
rank correlation approaching 1.0 indicates that, irrespective of the
sampling context, populations always tend to rank in the same order
of genetic offsets. Likewise, a rank correlation approaching O (or be-
coming negative) indicates there the estimation of genetic offsets
deviates significantly from the reference under limited sampling.

An important application of GF models is the ability to extrap-
olate the turnover functions across the landscape and predict ge-
netic offsets at unsampled locations (Fitzpatrick & Keller, 2015).
Extrapolating genetic offsets may help identify areas more or less
vulnerable to future climate change (Fitzpatrick & Keller, 2015) or
identify areas suitable for active migration or translocation in the
future (Gougherty et al., 2021; Rhoné et al., 2020). In real-life sce-
narios, extrapolation to unsampled locations may correspond to in-
stances in which populations are known but remain unsampled due
to budget or logistic limitations. Thus, we also tested the capacity to
predict genetic offsets in nonsampled populations under different
levels of sampling intensity. To do this, for each sampling replicate
we divided the original populations into sampled or unsampled. We
then used the GF models estimated with the sampled populations
(e.g. Np0p=1o; see Section 2.4 above) to extrapolate the turnover
functions and estimate genetic offset for the unsampled popula-
tions. We called these genetic offsets for unsampled populations
the ‘extrapolated genetic offset’. We estimated the rank correlation
between the reference genetic offsets and the extrapolated genetic
offsets of the unsampled populations. A rank correlation approach-
ing 1.0 indicates that, irrespective of sampling, the extrapolation of
genetic offsets is not sensitive to sampling.

The five genomic datasets we used were generated using differ-
ent sequencing platforms with varying depth and coverage. Thus, the
number of SNPs varied among species. These differences may result
in varying power to detect the full range of genomic patterns of local

adaptation across species, especially when considering only 100
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outlier SNPs. To assess possible bias associated with the selection of
SNPs, we also performed replicate sampling with varying number of
population (N, =5, N, =10, N, =15 N_
ble, Np0p=25 and Npop=30; see Subsampling designs above) using the
complete datasets with all SNPs. Our rational was that using all SNPs

=20, and when possi-

relaxed the constraints and biases associated with the use of only
100 outlier SNPs. Due to computational limitations, we performed
100 replicates per subsampling and excluded the Arabidopsis lyrata
dataset from this analysis, which had more than 1 million SNPs in the
dataset (Table 1).

2.6 | Identifying relevant bioclimatic variables

GF models identify the environmental variables that most strongly
contribute to the construction of the models, measured by their
‘weight’. Weights have been used to determine which variables have
the strongest effects on populations in the future (Aguirre-Liguori
et al., 2021; Capblancq, Fitzpatrick, et al., 2020). For each dataset,
from the GF models we extracted the estimated R? weighted im-
portance of the bioclimatic variables that have the strongest contri-
bution to the reference GF model. To compare among species, we
renamed these bioclimatic variables as pos1 to pos19 based on their
order of importance. For each replicate we rank-ordered the biocli-
matic variables based on their contribution to model construction;
we then compared the variability of ranking across replicates com-
pared with that from the reference model. We visualized the similar-
ity between replicates and the reference model using a heat map in
which an aggregation of warmer colours across the diagonal indi-
cates that the true contribution of bioclimate variables is retrieved
irrespective of sampling.

3 | RESULTS

3.1 | Focal datasets

To estimate both the sensitivity of genetic offsets to sampling in-
tensity and the robustness of inference based on climate models,
we analysed complete and subsampled datasets from five species
(Table 1). We chose the five datasets based largely on sampling
intensity; we required that each dataset represents at least 20
populations, with the sufficient sample within populations to have
reasonable estimates of allele frequencies. However, the datasets
varied in myriad ways. For example, one dataset from the annual
plant Arabidopsis lyrata was based on pooled sequencing of multiple
individuals within each population. Other datasets—such as from the
annual plants Zea mays ssp. mexicana and Zea mays ssp. parviglumis—
were based on chip-based assays rather than resequencing data. The
species also varied dramatically in genetic diversity (Hc) and popu-
lation differentiation (Fg;). Finally, the species themselves varied
quite dramatically, in that one represented a bird (Empidonas trail-

lii), another represents a perennial plant (Fagus sylvatica), while the

remainder are annual plants. Overall, our goal was to find datasets
with sufficient sampling to be able to assess the effect of subsample,
but we also sought to choose datasets that represent diverse eco-

logical and organismal histories.

3.2 | Population sampling

3.2.1 | Estimation sensitivity
We tested whether the number of populations sampled impacted
the estimation of genetic offsets. To assess this, we estimated ge-
netic offsets for replicate subsamples consisting of 5, 10, 15 and 20
randomly selected populations—and 25 and 30 populations when
possible—for each species. We compared the genetic offsets across
replicates to reference estimates based on the entire dataset and
the reference climate scenario (i.e. the scenario that had the highest
correlations to other scenarios; see Section 2). Overall, we found a
consistent trend across species, where the rank correlation between
the reference and the replicate genetic offset estimates increased
with increasing sampling intensity (Figure 1a, Table S1). Decreasing
the number of populations resulted in genetic offsets that departed
from the reference metrics across species and, interestingly, this
sensitivity varied as a function of the species' genetic structure.
More pronounced genetic structure (higher Fg) resulted in more
sensitive estimates, such that a higher intensity of population sam-
pling was needed to converge on the reference genetic offsets. For
example, in Arabidopsis lyrata (Fg;=0.48) the median rank correlation
decreased from 0.8 to -0.1 when decreasing sampling from 30 to 5
populations. By contrast, the median rank correlation in Empidonax
trailli (F4;=0.04) decreased from 1 to 0.6 with an equivalent de-
crease in population sampling (Table S1).

Moreover, in the two species with the highest F; (A.lyrata and
Z. mays parviglumis), we found that more than 15 populations were
needed to retrieve a median rank correlation above 0.5 (Figure 1a,
Table S1). For A.lyrata (Fs;=0.48), at least 20 populations were
needed to retrieve a median rank correlation >0.5 (the median rank
=15 and N___=20 were 0.39 and 0.59, re-

pop pop
spectively). By contrast, we found that sampling 5 populations was

correlations for N

enough to obtain rank correlations >0.5 for the remaining three spe-
cies: Z. mays mexicana (median rank correlation of 0.5), E.trailli (me-
dian rank correlation of 0.6) and F.sylvatica (median rank correlation
of 0.58) (Table S1).

A large proportion of replicates with fewer than 15 populations
showed rank correlations <0.5 between the reference and replicate
genetic offsets (Figure 1a, Table S1). The proportion of sampling rep-
licates with rank correlations <0.5 when sampling 15 populations
ranged from 15.4% in F.sylvatica to 62.3% in A.lyrata (Table S1). We
wondered whether maximizing the environmental or geographic
b
, could lead to better performance. To evalu-

distribution of populations (T , while minimizing population
sd
ate this idea, we performed replicates with low sampling intensity

(N =5 and Npopzlo) that maximized =

env’ geo)

clustering (sd,, dge,)

but that minimized

pop env/geo
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sd
ing the geographic or environmental distribution of sampled popu-

env/geo (S€€ Section 2). Counterintuitively, we found that maximiz-
lations did not increase the correlation between the reference and
subsampled genetic offsets (Figure S3).

It is possible that our results reflect properties of the methods
used to identify SNP outliers rather than properties of genomic off-
set estimation. To assess this possibility, we also performed repli-
cate sampling on the complete datasets (all SNPs) and found that

increasing the number SNPs had little to no impact on the estimation

F. sylvatica Z. mexicana  Z. parviglumis A. lyrata
(F¢,=0.05) (F5,=0.16) (F5,=0.24) (Fs;=0.48)
-Fst->

of genetic offsets; the rank correlations between replicates and the
reference estimates resulting from considering all SNPs were similar
to those obtained using only 100 outlier SNPs. Overall, we found
that increasing the number of populations resulted in higher rank
correlations, irrespective of the number of SNPs used in the analy-
ses (Figure 1b). This suggests that the estimation of genetic offsets is
likely to be robust to the restrictions imposed by selecting few
SNPs with the strongest signals of local adaptation (Aguirre-Liguori
et al., 2019; Fitzpatrick et al., 2021; Rhoné et al., 2020).
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3.2.2 | Extrapolation to unsampled locations

We assessed the effects of population samples to extrapolate GF
models and genetic offsets to unsampled localities. For every rep-
licate and sampling intensity, we estimated the genetic offsets of
populations that were not sampled and estimated the rank corre-
lation between extrapolated and reference genetic offsets. As ex-
pected, we found that increasing sampling intensity led to a more
robust extrapolation of genetic offsets (Figure 1C, Table S2), but
this depended on the underlying genetic structure of populations.
For example, the median rank correlations were high in species with
low genetic structure (E.trailli ranged from 0.51 in Nyop=5to 1iin
Npop=25), whereas these were low or even negative in species with
high genetic structure (A.lyrata ranged from -0.15 in Npop:5 to 0.8
in Npop:BO). Extrapolated genetic offsets deviated more from the
reference estimates as sampling intensity decreased (N<15) and in
species with high Fq; for the two species with more pronounced
genetic structures, the capacity to extrapolate remained poor (as
indicated by low-rank correlations) even when sampling >20 popula-
tions. For example, sampling 15 populations in Z.mays parviglumis
and A.lyrata resulted in 43.3% and 55.5% of the replicates with rank
correlations <0.5, respectively. By contrast, the same sampling in
F.sylvatica, E.trailli and Z. mays mexicana resulted in 11.6%, 36% and
23% of replicates with rank correlations <0.5, respectively. Thus,
sampling high numbers of populations appear to be especially im-
portant if the goal is to estimate offsets for localities that have not
been explicitly sampled.

3.2.3 | Relevant bioclimatic variables

We evaluated whether sampling populations with varying intensity
changed the estimated weight (contribution) of bioclimatic variables
to the underlying GF models. Overall, we found that sampling in-
tensity had a substantial impact on the identification of relevant
bioclimatic variables (Figure 2). For N <10, we found highly in-
consistent results across replicates compared with the reference
dataset, indicating a poor capacity to identify bioclimatic variables
with the highest contribution to model building. Our results suggest
that with N,,, >10, the contribution of different variables can be
approximated more consistently but still with substantial sensitivity
to sampling (Figure 2). For example, with N> 10 the top three most
important variables were consistently identified for most replicates
(Figure 2c,d).

3.3 | Individual sampling

3.3.1 | Estimation sensitivity
To gauge the impact of sampling different numbers of individuals
(N;,4) on the estimation of genetic offsets, we used a subsampling

approach to test whether genetic offsets were sensitive to individual

sampling intensity (N, ,=1-10 individuals per population sampled).
We could not perform these analyses for A.lyrata because the SNP
data were based on pooled samples within each population (Table 1).
For the remaining four species, we found that sampling more than
five individuals per population resulted in only a marginal increase in
the median rank correlations, albeit with a reduced range of es-
timates (Figure 3). For example, the median rank correlations were
>0.9 for E.trailli, Z.mays parviglumis and Z. mays mexicana when sam-
pling more than five individuals per population (Table S3). However,
for the two species with the lowest number of SNPs (E.trailli and
F.sylvatica), estimates of genetic offsets were sensitive to sampling
fewer than four individuals (Figure 3a). In E.trailli, for example, the
mean rank correlations increased from 0.26 to 0.88 when increasing
sampling from one to four individuals per population, and 30% of
replicates had rank correlations <0.5 when sampling less than two
individuals per population. Interestingly, in F.sylvatica we observed
highly consistent rank correlations across sampling intensities, but
the median rank correlation always remained <0.7 (Table S3). In this
case, the 20 populations selected for these analyses had a low-rank
correlation relative to the reference genetic offsets such that the
observed rank correlations were lower than 0.7.

Occasionally it may be possible to add single individuals to repre-
sent additional sampling locations, which will provide frequency es-
timates based on bi-allelic SNPs. We evaluated whether it is helpful
to increase the number of populations by adding single individuals
from more locations. To do this, we sampled all individuals across
20 populations and then added single individuals from randomly
chosen populations (singleton populations), ranging from one to five
extra populations. Overall, across our five species, we did not find a
consistent effect of increasing the number of singleton populations
(Figure 3b), but for some species, it appeared that incorporating sin-
gleton populations increased estimation sensitivity. For example, in
Z. mays parviglumis and E.trailli we found that adding one extra
population increased the range of rank correlations observed across
replicates. Interestingly, for F.sylvatica we observed that increas-
ing the number of singleton populations produced genetic offsets
that increasingly deviated from the reference estimates (Figure 3b,
Table S4). Overall, these results suggest that sampling few individu-
als (N, 4=4-5) across many populations, while keeping N, , homog-
enous across populations, is likely to result in genetic offsets that
converge on the reference estimates.

3.4 | Climate uncertainty

Climate models use different circulation models and shared socioec-
onomic pathways to project climate conditions in the future. In stud-
ies of climate change, it is important to incorporate this uncertainty
to have a range of future potential scenarios (Foden et al., 2019). For
this reason, we assessed the variance in the estimation of genetic
offsets across climate change scenarios. For each species, we esti-
mated genetic offsets of populations under 54 future climate sce-

narios and calculated pairwise rank correlations of genetic offsets
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FIGURE 2 Detection sensitivity of the most important bioclimatic variables to varying sampling intensity. The heat maps depict the
number of times a bioclimatic variable was selected to have a specific weight (importance) in the construction of the GF model. These maps
interrogate across the five species, with separate maps for subsampled (a) 5, (b) 10, (c) 15 and (d) 20 populations. The x axis shows the rank
order of variables obtained with the reference datasets and the y-axis the rank order obtained with the replicates. Warmer colours indicate
that a variable was identified more frequently in a given rank order across replicates. Warmer colours across the diagonal indicate a similar
rank order of variables in the replicates and the reference. To compare among species, the 19 bioclimatic variables were anonymized and
renamed (e.g. order1, order19) according to their weights (importance) in the reference analysis (see Section 2).

among scenarios (Figure 4). Overall, our results indicated that using
data from different future climate scenarios did not have a substan-
tial effect on the estimation of genetic offsets. For most species,
the use of different circulation models had a marginal impact on the
estimation of genetic offsets across populations. However, these
impacts also appeared to be species- or region-specific. More spe-
cifically, we found weak deviations of genetic offsets from the refer-
ence under different models: only 0%-8.73% of replicates (for all
species except F.sylvatica) had median rank correlations <0.5 under
distinct future scenarios. For F.sylvatica, the rank correlations among
climatic scenarios were highly variable, with 51.9% less than 0.5. This
suggests that, at least in some cases, the uncertainty associated with
future climate scenarios propagated into the estimation of genetic
offsets.

Finally, we explored variations in the projected bioclimatic
variables under the 54 climate models for each species. Overall,
we found that present-day conditions were strongly correlated to
future conditions across all models (Figure S4A-E) but with some
variation among variables and species; this pattern could partly ex-
plain the high uncertainty in genetic offsets observed across climate

models for F.sylvatica. To further explore this idea, we estimated the

standard deviation (sd) in correlation statistics for each variable and
summed the sd across variables (Xsd) for each species. In principle,
higher Xsd reflected an overall greater uncertainty among future
climate models. We found F.sylvatica had the highest Zsd, which ex-
plained, to some extent, the high estimation sensitivity of genetic
offsets to future climatic models for this species (Figure S4F). The
higher variance across climate models for this species did not appear

to be explained by either elevation or latitude (Figures S4G and S5).

4 | DISCUSSION

Genetic offsets have become an important metric to evaluate how
vulnerable or maladapted populations might respond to ongo-ing
climate change (Aguirre-Liguori et al., 2019; Bay et al., 2018;
Capblancq, Fitzpatrick, et al., 2020; Ruegg et al., 2018). In this re-
spect, they have become useful to assess priorities for conservation,
to design schemes for assisted migrations (Meek et al., 2023) and to
implement genetic crosses that may help populations adapt to
climate change (Rhoné et al., 2020). However, genetic offsets have

not been sufficiently validated, and it remains unclear whether these
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FIGURE 3 Estimation sensitivity of genetic offsets to varying sampling intensity of individuals. In each panel, the boxplots depict
the distribution of the rank correlation of genetic offsets between replicates and the reference datasets for each of the four species.

Boxplots depict the distribution of the rank correlation of genetic offsets between replicates and the reference datasets for five species. Rank

correlations estimated for the sampling replicates using (a) varying the number of sampled individuals per population, based on 20
populations, and (b) varying the number of added singletons—that is, populations with a single sampled individual. One thousand replicates
were performed for each test. Rank correlations closer to 1.0 indicate that populations' ranks are similar to those estimated for the reference
and also that genetic offsets were less sensitive to inputs. Species are ordered from left to right according to decreasing number of loci (loci).
The boxes show the first and third quartiles. The upper and lower whisker show values that are at the limit of 1.5 times the interquartile

range. The rest of the dots show the outliers.

metrics are robust and work as intended (Rellstab et al., 2021). In
this study we used multiple genomic datasets of species collected
across different regions (Figure S1) and with different life-history
traits (Table 1), to test how sampling intensity (i.e. the number of
populations and individuals) impacts the estimation of genetic off-
sets and, ultimately, our capacity to set conservation priorities and

management strategies.

4.1 | Sampling recommendations

Our results allow us to outline several sampling recommendations
and suggest possible avenues to evaluate the estimation sensitiv-
ity of genetic offsets in real-life situations. Below we discuss these
recommendations and present a markdown file with code (See

Supplementary Text S2) that can be used to perform evaluations of

sampling adequacy.

4.1.1 | Number of populations

We first tested the effect of sampling different numbers of popula-
tions on the estimation of genetic offsets. We have found that sam-
pling more populations increases the rank correlation between the
reference and replicate genetic offsets. The effect of increased pop-
ulation sampling is especially prominent for species with complex
genetic structures, typified in this study by high F¢; (Table 1). These
results are not surprising, since many simulation and sampling studies
have shown that sampling a higher number of populations decreases

sensitivity in the estimation of populations genetic parameters
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FIGURE 4 Uncertainty in the estimation of genetic offset under future climate scenarios. Heat maps depict the rank correlation of
genetic offsets across populations, compared between pairs of 54 future climate scenarios. Warmer colours reflect higher rank correlations
between genetic offsets estimated under different models. White squares depict rank correlations <0.5. Climate models in the y and x axis

are coded according to Table S5.

(Aguirre-Liguori et al., 2020; Landguth & Schwartz, 2014; Schwartz
& McKelvey, 2008; Willing et al., 2012). It has also been shown that
sampling more populations is necessary to identify outlier SNPs and
to discard potential false positives (De Mita et al., 2013). Importantly,
for all species, we have found that sampling more than 15 popula-
tions was enough to retrieve median rank correlations above 0.5
between the reference and replicate datasets (Table 2 shows a
summary of the results found and our sampling recommendations).
Interestingly, for species with low F¢ sampling fewer than 15 popu-
lations was enough to converge on the reference patterns of genetic
offsets across populations (Figure 1).

Our results also indicate that sampling fewer than 10 popula-
tions generated negative or close to zero rank correlations between
replicates and the reference dataset, especially in species with

high genetic structure. We recognize that gathering such extensive

samples can be prohibitive, especially for nonmodel or endangered
species or for research groups with limited funding. We therefore
have also examined whether an explicit sampling scheme encom-
passing high geographic or environmental variation, but few pop-
ulations reduce the bias in genetic offset estimations. We were
surprised that this more systematic sampling of populations did not
have a major effect on the estimation of genetic offsets (Figure S3). In
other words, based on our analyses, maximizing geographic or
environmental sampling is not a convenient shortcut that obviates
the need for extensive population sampling. We nonetheless rec-
ommend that sampling should be designed to maximize the ecolog-
ical and geographic distributions of populations, because these do
impact the ability to detect local adaptation and estimate genetic
structure. When only a few populations can be (or are) sampled, we

recommend that the limitations of genetic offsets be considered,
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TABLE 2 Main observations and recommendations for sampling design.

Test Main observation

Number of populations Sampling more populations:

e Reduces the sensitivity of genetic offsets, making

them more repeatable

e Increases the power to extrapolate genetic offsets
e Improves detection of relevant bioclimatic variables

Number of individuals e Sampling more individuals has a marginal effect on

genetic offset estimates

e Adding singleton populations did not decrease the
sensitivity in the estimation of genetic offsets

Climatic models

populations

especially when implementing conservation and management strat-
egies. In such cases, it may prove more informative to incorporate
additional layers of information to inform conservation priorities of
populations (e.g. factors associated with life-history traits, demog-
raphy, niche) (Thurman et al., 2020). Also, for critically endangered
species, it might not even be necessary to estimate the genetic
offsets of populations, because the goal may be to protect all the
known populations of the species.

GF models can project the present and future genetic turnover
as a function of bioclimatic variables and thus genetic offsets can be
estimated for any geographic area, even when populations have not
been sampled. This permits extrapolating to unsampled geographic
locations, with the potential to identify areas that are more or less
vulnerability to future climate change (Aguirre-Liguori et al., 2021;
Capblancgq, Fitzpatrick, et al., 2020; Fitzpatrick & Keller, 2015) or
that may serve as areas for potential future re-settlement (Aguirre-
Liguori et al., 2021; Gougherty et al., 2021; Rhoné et al., 2020).
This feature of genetic offsets is particularly attractive because it
can be used to design assisted migration programme while avoid-
ing outbreeding depression and maladaptation during the migra-
tion process (Aguirre-Liguori et al., 2021; Aitken & Whitlock, 2013;
Allendorf et al., 2010). However, we have found that the extrap-
olation of genetic offsets to unsampled populations is highly sen-
sitive to sampling intensity; more than 15 populations are needed
to produce robust estimations of extrapolated genetic offsets with
our datasets. This conclusion is especially important in species with
complex genetic structures (Figure 1c).

Finally, GF models have the potential to identify bioclimatic
variables that are important for the structure of adaptive variation
across species ranges (Fitzpatrick & Keller, 2015). Identifying these
variables can be valuable to assess the sensitivity of populations to
climate change. Therefore, we also tested the capacity of GF
models to identify the most important bioclimatic variables under
varying levels of sampling intensity. Again, we found that at least

For some species, different climatic scenarios predict
different rank ordination of genetic offsets among

Recommendation

At least 15 populations should be sampled to: (1)
attain robust estimates of genetic offsets, (2)
extrapolate genetic offsets to unsampled locations
and (3) identify the most important bioclimatic
variables. If genetic structure is high, more
populations need to be sampled. A subsampling
procedure can be used to evaluate if a plateau of
genomic offset is reached; if not, results should
recognize this caveat

At least 4-5 individuals per population should be
sampled, with the number of individuals similar
across populations. If new singleton populations
are added, it should be tested whether this
increase/decrease the sensitivity in the estimation
of genetic offsets

Evaluate the uncertainty associated with different
climatic models. Uncertainty should be reported
and discussed

15 populations were needed to be able to accurately identify the
most important bioclimatic variables driving allelic turnover across
species ranges (Figure 2), but the identification of these variables
was consistent with >15 population samples.

Overall, we found that for most species, and particularly for
species with complex genetic structures (as defined by increasingly
higher F¢; values), sampling more than 15 populations serves three
purposes: (1) decreases the sensitivity in the estimation of genetic
offsets; (2) increases the capacity to extrapolate genetic offsets to
unsampled locations; and (3) consistently identifies the most import-
ant bioclimatic variables for climate adaptation.

The markdown and code provided in Supporting Text S2 show
how to implement our sampling strategy both to evaluate whether
the number of sampled populations is sufficient to make a robust
estimation of genetic offsets and to identify important bioclimatic
variables. Briefly, when the estimation sensitivity of genetic offsets is
high (i.e. rank correlations do not converge to 1.0) and the rank
order of bioclimatic variables does not maximize the number of val-
ues across the diagonal (as in Figure 2), this might be an indication
that the number of sampled populations is likely not sufficient, and

that caution is warranted for interpreting genetic offsets.

41.2 | Number of individuals

With the development of landscape genomics, it has become evident
that sampling a greater number of populations is more important
than sampling more individuals to adequately identify outlier SNPs
(Nazareno et al., 2017; Willing et al., 2012). There is a clear tradeoff
between the number of individuals and populations that can be sam-
pled at finite sequencing costs. We have tested if sampling different
numbers of individuals affected the estimation of genetic offsets
and, as previously suggested by Aguirre-Liguori et al. (2022), found
that increasing the number of individuals does not have an important
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effect on the estimation of genetic offsets (Figure 3). However, for
the two species (E.trailli and F.sylvatica) with the lowest number of
SNPs, we found that sampling more than four individuals per popu-
lation is needed for high correlations to reference genetic offsets.
Moreover, we have examined whether sampling additional pop-
ulations, but with only single individuals (singleton populations), in-
creases the estimation sensitivity of genetic offsets. Interestingly,
increasing the number of singleton populations does not result in a
substantial decrease in estimation sensitivity in our datasets. By
contrast, for F.sylvatica we have found that increasing the number
of singleton populations not only did not decrease the sensitivity
but even increased it, with estimated genetic offsets deviating more
substantially from the reference. Assuming a tradeoff between the
number of sampled populations and the number of sampled indi-
viduals per population, our recommendation is to increase the num-
ber of populations even if fewer individuals are sampled, as long as
at least 4-5 individuals are sampled per population. In addition, we
recommend that when additional singleton populations are ob-
tained (i.e. museum specimens or accessions), one should evaluate
whether adding samples decreases the sensitivity in the estimation
of genetic offsets. The markdown in Supporting Text S2 describes a
way to evaluate whether estimation sensitivities decrease with more
individuals per population or additional singleton populations. Again,
when the estimation sensitivity of genetic offsets remains high or
even increases, this would indicate that either more individuals per

population are needed or that adding singletons is not advisable.

4.1.3 | Climatic models
Finally, a common problem in studies evaluating the genetic offsets
of populations is that different climatic models are rarely incorpo-
rated into analyses. This is potentially problematic because future
climates can be modelled with different global circulation models
and different socioeconomic pathways (Sanderson et al., 2015). This
variation leads to intermodel uncertainty that should be explicitly
considered, especially in conservation studies (Foden et al., 2019).
For most of our species, we found that using different climatic
models to estimate genetic offsets had a negligible effect on the es-
timation uncertainty of genetic offsets. For most species, we found
high rank correlations between genetic offsets estimated using
different climatic models (Figure 4). However, for F.sylvatica, we
observed that more than 50% of the models had pairwise rank cor-
relations below 0.5, indicating that climatic models identify different
populations with high climate vulnerability. This uncertainty can-
not be explained by the geographic and orographic distribution of
F.sylvatica, which grows at high latitudes and altitudes (Capblancq,
Morin, et al., 2020) (Figures S4G and S5). Instead, we found that cor-
relations between present and future bioclimatic variables were par-
ticularly variable for this species, partially explaining the sensitivity
of genetic offsets to climate models for F.sylvatica (Figure S4F). Even
when genetic offsets of most species were not substantially affected

using different circulation models, the odd behaviour in F.sylvatica
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shows that this source of uncertainty should be tested and discussed
(Table 2). A high genetic offset under a particular climate model may
suggest future maladaptation, even if other models yield low genetic
offsets. Altogether, the use of multiple climate models to estimate
genetic offsets may help identify populations or localities that are
consistently projected to be highly vulnerable.

The markdown in Supplementary Text S2 describes a way to es-
timate the rank correlation between different climatic models and
to identify the climate model with consistently high correlations to
other models. The model with high correlations can then be used as

a reference climatic model.

4.2 | Caveats of our study
Here we were not interested in identifying biological signals, but
rather identifying how sampling intensity affects the estimation of
genetic offsets. Therefore, the results herein presented should only
be interpreted methodologically. Below, we list five caveats that
should be considered while interpreting our results. Although it is
likely that our results are affected by some of the issues outlined
below, in general, we found consistent patterns among datasets.
First, we used the complete datasets to represent reference
(or ‘true’) values of genetic offsets, and thus, our reference pa-
rameters are impacted by ‘unknown’ sampling biases imposed by
the original sampling design and sequencing specifications. It is
highly likely that the reference datasets do not include all the indi-
viduals, genotypes and populations that best describe the genetic
composition, geographic range and climatic tolerance of the spe-
cies (e.g. the F.sylvatica dataset only contains a small proportion
of populations in the South of France). To reduce misinterpreta-
tions and to be able to compare both among species and among
realistic sampling scenarios, we decided to perform our replicate
samples of individuals and populations based on absolute numbers
(Npop:5, 10, 15, 20, 25 and 30) instead of the percentage of sam-
pled populations. This allowed us to compare realistic sampling
sizes and directly compare observed patterns among datasets. We
found that, under the same sampling intensity, the estimation sen-
sitivity of genetic offsets was higher for species with more pop-
ulations originally sampled (e.g. A.lyrata with 47 populations vs.
Z.mays mexicana with 23 populations). This result likely reflects
the varying percentage of populations sampled in the replicates
(e.g. Npop
responds to 87% of Z.mays mexicana populations). However, the

=20 corresponds to 48% of A.lyrata populations but cor-

observed impact of lowering sampling intensity was consistent
across datasets, supporting previous simulation results suggesting
the impacts of sampling design on the estimation of genetic off-
sets (Laruson et al., 2022).

Second, the design of our study has included thousands of rep-
licates for the estimation of outlier loci and GF models. For each
species, we performed more than 20,000 replicates, therefore it
was impossible to perform detailed analyses to identify the most
supported outlier SNPs while avoiding false positives (De Mita
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et al., 2013; Tiffin & Ross-Ibarra, 2014). Instead, we selected the
100 SNPs with the lowest p-value according to LFMM2 analyses.
However, we believe that the misidentification of outlier SNPs will
not affect our conclusions due to the low sensitivity to the se-
lection of SNPs (Figure 1b). Moreover, while studies are needed to
show that randomly selected SNPs are representative of the
genomic landscape, previous studies have shown that randomly
selected SNPs can be sufficient to estimate genetic offsets and
identify patterns associated with changes in fitness (Aguirre-
Liguori et al., 2019; Fitzpatrick et al., 2021; Rhoné et al., 2020).
Along these lines, we did not attempt to perform robust SNP
callings and instead employed the widely used stacks pipeline
to identify SNPs (Catchen et al., 2013). Our approach to identify
SNPs has the advantage that it can be used to obtain polymorphic
SNPs for nonmodel species without a reference genome (Catchen
etal, 2013).

A third caveat is that we were limited by the type of data avail-
able to perform the analyses. We downloaded data obtained with
different genomic tools and with varying ascertainment biases.
Ascertainment bias has been found to affect the estimation of de-
mographic parameters estimated from the site frequency spectrum,
yet it appears that Fq is not strongly affected by ascertainment bias
(Albrechtsen et al., 2010). It is interesting to note that both E. trailli
and A.lyrata had few low-frequency SNPs (Figure S6). These might
explain why estimation of genetic offsets in E. trailli and A.lyrata was
highly sensitive to individual and population sampling, respectively
(Figures 1 and 3a). However, we currently have no information to
make inferences about the sensitivity of genetic offsets to ascer-
tainment bias.

Fourth, the genetic structure and genetic diversity of popula-
tions can depend on the life-history traits of species (Aguinagalde
et al., 2005; Nybom, 2004). While the data that we analysed did not
allow us to conclude life-history traits could be important in the es-
timation of genetic offsets, it will be interesting to test whether gen-
eration time, range sizes, dispersal, reproductive system and other
life-history traits affect the sensitivity in the estimation of genetic
offsets.

Finally, genetic offsets have a more profound limitation. These
are measures of the predicted level of the future maladaptation of
populations (Capblanc et al., 2021), but assume that maladapta-
tion occurs because of deviations from the optimum fitness values.
However, local adaptation to climate change is a very complex pro-
cess in which fitness is affected by other nonselective processes,
such as inbreeding, genetic drift and genomic load, all of which are
more impactful on small populations (Aguirre-Liguori et al., 2021;
Willi et al., 2022). In general, these small populations are the focus of
conservation priorities but potentially have low adaptive capac-ity
that limits the utility of genomic offsets (Meek et al., 2023).
Moreover, it is increasingly being reported that species-climate
relationships vary across space or time (Schultz et al., 2022; Smith et
al., 2019), and therefore, different populations could be affected by
different processes. Finally, populations can tolerate changes in
climate before suffering reductions in fitness through phenotypic

plasticity or standing genetic variation, which are not considered by

the approach to estimate genetic offsets.
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