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Abstract

Genomic data and machine learning approaches have gained interest due to their po-

tential to identify adaptive genetic variation across populations and to assess species

vulnerability to climate change. By identifying gene–environment associations for pu-

tatively adaptive loci, these approaches project changes to adaptive genetic composi-

tion as a function of future climate change (genetic offsets), which are interpreted as

measuring the future maladaptation of populations due to climate change. In principle,

higher genetic offsets relate to increased population vulnerability and therefore can

be used to set priorities for conservation and management. However, it is not clear

how sensitive these metrics are to the intensity of population and individual sampling.

Here, we use five genomic datasets with varying numbers of SNPs (NSNPs = 7006–

1,398,773), sampled populations (Npop = 23–47) and individuals (Nind = 185–595) to

evaluate the estimation sensitivity of genetic offsets to varying degrees of sampling

intensity. We found that genetic offsets are sensitive to the number of populations

being sampled, especially with less than 10 populations and when genetic structure is

high. We also found that the number of individuals sampled per population had small

effects on the estimation of genetic offsets, with more robust results when five or

more individuals are sampled. Finally, uncertainty associated with the use of different

future climate scenarios slightly increased estimation uncertainty in the genetic off-

sets. Our results suggest that sampling efforts should focus on increasing the number

of populations, rather than the number of individuals per populations, and that mul-

tiple future climate scenarios should be evaluated to ascertain estimation sensitivity.
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1     |     INTRODUC TION                                                           (Allendorf et al., 2010; Thurman et al., 2020; Waldvogel et al., 2019).

Indeed, genome-wide data have been used to characterize genetic-

It is unlikely that greenhouse gas emissions will decrease by the year

2100 (IPPC, 2022) and thus these will continue to generate changes

in mean global climatic conditions, including an increased frequency

and severity of more-extreme seasonal temperatures, drought and

other natural disasters. Overall, these changes will continue to nega-

tively impact the persistence of species (Parmesan, 2006; Parmesan

& Yohe, 2003) and affect their interactions (Zamora-Gutiérrez et

al., 2021), leading to increased risk of population decimations, local

extinctions and losses of genetic diversity (Ceballos et al., 2017;

Wuest et al., 2021).

Climate adaptation strategies are necessary to conserve and

manage wild populations and to facilitate an adequate and timely

response of populations to climate change (LeDee et al., 2021;

Thompson et al., 2023). Unfortunately, reducing the potential im-

pacts of climate change is due to the difficulties of obtaining ade-

quate biological information and designing successful conservation

strategies. Conservation and mitigation strategies should favour

identifying or promoting the evolutionary potential or adaptive ca-

pacity of species and populations, based on the identified or hypoth-

esized pathway(s) and mechanism(s) by which climate acts on the

focal taxa (Forester et al., 2022; LeDee et al., 2021; Meek et al., 2023;

Thompson et al., 2023; Thurman et al., 2020). To date, the evalua-

tion of a population's risk has been most commonly based on future

persistence probabilities estimated through the use of species dis-

tribution models (SDMs) (Peterson et al., 2011). However, SDMs do

not incorporate the demographic and the evolutionary potential of

species, which limits their potential use (Forester et al., 2022). The

adaptive capacity of a species in the future can also be assessed

using phenotypic, ecological, geographic, experimental, life-history

and genetic data, in addition to addressing pathways affecting the

exposure, sensitivity and adaptive capacity of focal taxa (Thompson

et al., 2023; Thurman et al., 2020).

When genetic data are available, the future persistence of pop-

ulations can also be assessed based on patterns of genetic diver-

sity, inbreeding metrics and population structure across species'

ranges (Frankham, 2005; Thompson et al., 2023; Tobón-Niedfeldt

et al., 2022). Many studies have used neutral or adaptive genetic

markers to assess genetic diversity and population connectivity as

indirect indicators of the potential for persistence. However,

considering adaptive capacity is necessary for predicting the pos-

sible response of populations to future climate change (Thurman et

al., 2020, 2022). The analysis of patterns of adaptive genetic

diversity and the evolutionary history of populations has been

bolstered by the development of genomic tools, which allow the

production of genome-wide data on a massive scale even for non-

model species (Aguirre-Liguori et al., 2021; Capblancq, Fitzpatrick,

et al., 2020; Schoville et al., 2012; Stapley et al., 2010; Tiffin & Ross-

Ibarra, 2014; Waldvogel et al., 2019). The use of population genomic

data to assess risks and evolutionary capacities across populations

can help to identify more (or less) vulnerable populations and to

recognize priorities for population conservation and management

environment associations, identify genetic variants involved in cli-

mate adaption and assess how populations will cope under new

conditions brought on by a rapidly changing climate (Capblancq,

Fitzpatrick, et al., 2020).

The rationale for the use of population genomic data is straight-

forward: some populations can either be locally adapted to en-

vironmental and biotic conditions expected under future climate

change scenarios (Meek et al., 2023), or they may contain standing

genetic variation that could become adaptive in the future (Barrett &

Schluter, 2007; Hampe & Petit, 2005). The challenge is connect-ing

genetic variants, and the projected change of genetic variants over

time, to climatic change. In recent years, machine learning ap-

proaches have gained popularity for assessing population vulnera-

bility and the capacity for adaptation to new climate conditions. One

of these approaches, Gradient Forest (GF), has been used to identify

gene–environment associations, to model genetic turnover across

the landscape and to project changes in genetic composition under

future climate change scenarios (Fitzpatrick & Keller, 2015). The es-

timated change in genetic composition over time is called the genetic

offset (Fitzpatrick & Keller, 2015), and it is interpreted as measuring

the maladaptation of populations in the face of predicted climate

change (Capblancq, Fitzpatrick, et al., 2020). In theory, populations

with a high genetic offset are expected to be more vulnerable to cli-

mate change either because these will need to respond substantively

through adaptation or migration or because their current genetic

composition is projected to be out-of-sync with future conditions.

This is clearly an oversimplification of the process, because genetic

offsets omit relevant mechanisms of populations' adaptation, such

as climatic tolerances driven by phenotypic plasticity (Thurman et

al., 2020), adaptation through new mutations or standing genetic

variation (Barrett & Schluter, 2007), the introgression of adaptive al-

leles by gene flow and maladaptation associated with the accumula-

tion of deleterious mutations (Aguirre-Liguori et al., 2021). However,

the genetic offset of a given population can also be projected across

the landscape (Gougherty et al., 2021; Rhoné et al., 2020) to po-

tentially identify areas where the population may remain locally

adapted if actively translocated (Gougherty et al., 2021).

The temporal and spatial projections of genetic offsets across

a landscape can be used to assess populations' response to climate

change either through in situ local adaptation or migration. Few ex-

perimental validations of the projected genomic offsets have been

performed (Rellstab et al., 2021), but these show that genomic off-

sets have the potential to successfully predict the response of pop-

ulations to climate change (Exposito-Alonso et al., 2019; Fitzpatrick

et al., 2021; Rhoné et al., 2020). However, it is still not clear how

powerful or informative these methods are, and how useful they are

for the conservation and management of nonmodel species (Rellstab

et al., 2021). For instance, a recent simulation study revealed the

sensitivity of genetic offsets to species' genetic structure and de-

mographic history (Láruson et al., 2022). In addition, genetic offsets

appear to be inversely correlated with deme size, suggesting that
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genetic drift could impact the estimation of genetic offsets (Láruson

et al., 2022).

In addition to these limitations, there is a practical aspect to ge-

netic offsets that remains unexplored: their sensitivity to nonrandom

and limited population (and genomic) sampling. To construct a GF

model and estimate genetic offsets, an ideal sampling likely consists

of populations distributed across the entire geographic and environ-

mental distribution of the species, with large number of loci across

the genome and enough individuals per population to provide rea-

sonable estimates of allele frequencies (Aguirre-Liguori et al., 2020).

However, there is always a tradeoff between the number of sampled

individuals and sequencing resources (Meirmans, 2015) and many

highly vulnerable nonmodel species have few genetic resources or

known populations. Therefore, it is critical to empirically evaluate

the sensitivity of genomic offset projections under limited, but real-

istic, sampling of natural populations.

Here, we perform an assessment of the sensitivity of genetic

offsets under both varying degrees of sampling effort and different

climate change scenarios. To answer this question, we use published

genomic datasets (Table 1) to evaluate how the estimation of ge-

netic offsets is impacted by sampling designs by varying the number

of populations, ecological variation and geographic spread. We also

evaluate the uncertainty in the estimation of genetic offset associ-

ated with the use of multiple climate projections, based on differ-

ent socioeconomic pathways models of greenhouse gas effects and

global circulation models. Finally, we use our results to generate a list

of recommendations for adequate sampling designs and sensitivity

tests to consider when estimating genetic offsets.

| 3

Model Intercomparison Project Phase 6 (CMIP6, publicly available at

https://esgf-node.llnl.gov/search/cmip6/, Eyring et al., 2016). Since

future climates are modelled using different shared socioeconomic

pathways and different global circulation models, it is important to

include this uncertainty to have a range of possible future scenarios

(Foden et al., 2019). To have a good representation of future climatic

scenarios (Sanderson et al., 2015), we obtained data derived from

five circulation models (GFDL-ESM4, IPSL-CM6A-LR, MPI-ESM1-

2-HR, MRI-ESM2-0, UKESM1-0-LL), four shared socioeconomic

pathways (i.e. SSPs 126, 245, 370, 585) and three time periods

(2041–2060, 2061–2080 and 2081–2100).

We downloaded published genomic datasets (Table 1) belong-

ing to different taxonomic groups (plants and animals), with dif-

ferent life histories (i.e. annuals, perennials) that inhabit several

regions across the world (Figure S1). Because we aimed to explore

sampling properties, we focussed on large datasets that were suf-

ficient for subsampling. We selected datasets with more than 20

sampled populations and with geographic information available for

every population. For each species, we ran the bioinformatic anal-

yses described in Supplementary Methods (Supporting Text S1) to

process the data, obtain SNPs and climatic data for each popula-

tion and generate the input datasets used for further analyses.

For each species, we generated: (1) a table with populations' allelic

counts for each SNP; and (2) a table with the geographic and en-

vironmental data of each population. For species with individual-

level data, we also generated a genind object (a d eg e n e t  package

in R). Since we used different numbers of individuals per subsa-

mpling design with different missing data (see below) we needed

to impute these datasets to obtain individual genotypes for most

loci. We used the imputation procedure of the l e a  package in R

2     |     MATERIAL S AND METHODS                                 (Frichot & François, 2015) to estimate the number of ancestral

populations (K ) using sparse non-negative matrix factorization al-

2.1 | Bioclimate and genomic datasets                                 gorithms (snmf function, with k = 1:10) (Frichot & François, 2015)

and impute missing genotypes across individuals (impute function

We downloaded from WorldClim (Fick & Hijmans, 2017), 19 biocli-

matic variables for the present-day (1970–2000) at a 2.5 arc-minutes

resolution. We also obtained future models from the Coupled

in l e a ,  using the K selected in the snmf analysis).

We used the resulting SNPs as the reference datasets to estimate

genetic offsets and to assess estimation sensitivity under different

TA B L E 1 Description of the datasets and summary statistics of the species analysed.

Life-history
Species

Empidonax traillii

Fagus sylvatica

Zea mays mexicana

Zea mays parviglumis

Arabidopsis lyrata

trait

Bird

Perennial/
Plant

Annual/plant

Annual/plant

Annual/plant

Distribution

North America

Europe

Mexico

Mexico

North America

Dataset

Radseq

Radseq

Chip

Chip

WGS

NPop NInd (range)

25 185 (1–19)

36 595 (9–63)

23 333 (11–15)

24 313 (10–16)

47 poolSeq

NSNPs

10,790

7006

33,456

33,456

1,398,773

HS FST

0.14 0.04

0.22 0.05

0.22 0.16

0.22 0.24

0.14 0.48

Reference

Ruegg et al. (2018)

Capblancq,
Fitzpatrick,
et al. (2020),
Capblancq,
Morin,
et al. (2020)

Aguirre-Liguori
et al. (2017)

Aguirre-Liguori
et al. (2017)

Willi et al. (2018)

https://esgf-node.llnl.gov/search/cmip6/
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sampling schemes. This approach assumes that the reference data-

sets are representative of the true patterns and are themselves

without bias, which is unlikely because these datasets are impacted

by their original sampling (e.g. not sampling an adequate represen-

tation of individuals, populations and SNPs) (see Caveats section in

the Section 4). Nonetheless, the reference datasets provide a conve-

nient point of comparison to assess sampling sensitivity.

AGUIRRE-LIGUORI e t  a l .

(K), we used the prcomp function in R to perform a genetic PCA using

all SNPs, calculated the percentage of variance explained by each

PC and estimated the rate of change of the variance explained be-

tween consecutive PCs. The optimal K was defined where the rate of

change of the variance explained between two consecutive PCs was

negative (meaning that there was a ‘knee’ in the screeplot). Next, we

ran the LFMM2 model using K latent factors, a ridge penalty (lfmm_

ridge function), and controlling for the genomic inflation (lfmm_test

function, with calibrate = ‘gif’). To make sampling consistent across

2.2 | Summary statistics and outlier SNPs                          datasets, for each dataset we defined the 100 SNPs with the lowest

p-value as outliers. Applying strict corrections (Bonferroni or FDR)

The estimation of genetic offsets depends on a robust estimation of

the demographic history and genetic structure of species. Genetic

structure and genetic drift make genome-environment association

(GEA) prone to identify false positives—that is, if genetic structure is

for outlier detection would decrease the number of outlier SNPs and

hinder our capacity to compare results between replicates.

co-aligned with a selective environment, false-positive SNPs can be 2.3 | Reference genetic offsets
identified due to population history rather than genetic adaptation.

To contextualize our estimates of genetic offsets in each dataset

described in Table 1, we estimated two summary statistics that cor-

relate with levels of genetic drift and genetic structure. We first esti-

mated the genetic diversity (Hs) using the basic.stats function in the

Hierfstat (Goudet, 2005) package in R. The basic.stats function esti-

mates the genetic diversity of each locus in each population and the

overall mean Hs across all populations. We also used the apply func-

tion in R to estimate the mean Hs for each population. To account

for varying patterns and strength of genetic structure, we used the

calculate.pairwise.Fst function in the bedass le  package in R (Bradburd

et al., 2013) to estimate pairwise FST between each pair of popula-

tions, the mean FST across all populations and the mean FST between

each population against the remaining populations. Finally, we as-

sessed environmental and geographic variation across populations,

which frequently correlate with genetic structure, by estimating the

distances to the species' geographic and environmental centroids for

every population (Lira-Noriega & Manthey, 2014); these distances

describe how far populations are from the species' optimal environ-

mental conditions (Eckert et al., 2008). The geographic centroid was

estimated as the median longitude and latitude of species' occur-

rences. For the niche centroid, first, we used the prcomp function in

R to obtain a principal component analysis (PCA) of the 19 biocli-

matic variables (explained >95% of variance in each dataset). Then,

we estimated the niche centroid as the mean score across the first

six principal components (PCs). The distances to the two centroids

were estimated as the Euclidian distance between the populations’

position (geographic coordinates, PC scores) and the respective cen-

troids (Lira-Noriega & Manthey, 2014).

The application of GF often relies on outlier loci (Fitzpatrick

et al., 2018; Fitzpatrick & Keller, 2015), which we identified using

latent factor mixed model 2 (LFMM2) (Caye et al., 2019). Briefly,

LFMM2 identifies SNPs whose allelic frequencies are significantly

associated with continuous variables (that is, climate), while con-

trolling for genetic structure using latent factors. For simplicity, we

only used the scores from the first PC obtained from the bioclimatic

PCA described above. To determine the number of Latent Factors

We used GF (Ellis et al., 2012) to model the turnover in the genetic

composition of species across the landscape as a function of con-

tinuous variables, usually climate (Fitzpatrick & Keller, 2015). The

GF models estimate differences in genetic composition among

populations, assess which response variables have the strongest

contribution to model construction and identify particular SNPs

with significant nonlinear associations with response variables

(Capblancq, Fitzpatrick, et al., 2020; Fitzpatrick & Keller, 2015;

Waldvogel et al., 2019).

For each genomic dataset (that is species), we built a GF model

using the gradientForest function from the R package g r a d i e n t f o r e s t ,

based on 500 trees per run and corr.threshold = 0.5. The initial mod-

els used all sampled populations and estimated the corresponding

genetic offset using a reference climate scenario (see below). We

built GF models with the 100 outlier SNPs described above using

the 19 bioclimatic variables. For every model replicate, we ranked-

ordered the bioclimatic variables based on their weighted impor-

tance for model construction and also ranked-ordered SNPs with

significant associations with climate (R2 > 0). To calculate the genetic

offsets of populations, we used the GF models to predict the genetic

composition of populations across the landscape using present-day

and future climate layers. Keeping with the original methodology of

Fitzpatrick and Keller (2015), we used the multidimensional Euclidian

distances between the present and future genetic compositions to

calculate populations' genetic offsets.

To incorporate uncertainty in future climate projections, we

estimated the genetic offsets of populations under each of the 54

different climate change projections (see above), which allowed us

to assess the impact of climate model uncertainty on the estimation

of genetic offsets. Finally, we estimated the rank correlation (cor.test

function in R) between the reference genetic offset of populations

against offsets estimated under each climatic scenario. In this case, a

rank correlation approaching 1.0 indicates that two climate scenar-

ios project similar genetic offsets. For tractability, we defined a refer-

ence climate scenario as the one with the strongest rank correlations

of genetic offsets relative to the remaining 53 climate scenarios. To
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further assess uncertainty among climate change scenarios, for each

bioclimatic variable we estimated the correlation between present

values and their future projections under the 54 models; these cor-

relations were estimated for each species separately.

| 5

each added population (singleton populations). The rationale behind

this test is to assess the effect of including populations known by

single individuals (for instance, museum collections or accessions).

2.5 | Estimation sensitivity of genetic offsets
2.4 | Subsampling designs

Given the costs of genome-wide sequencing, there is a trade-off

between the number of individuals and populations that can be

sequenced. Previous studies have shown that sampling a limited

number of populations (relative to the ‘true’ number of

populations) can inflate estimates of FST between populations

(Aguirre-Liguori et al., 2020; Landguth & Schwartz, 2014; Schwartz

& McKelvey, 2008; Willing et al., 2012) and increase the number of

false positives outlier SNPs (De Mita et al., 2013). Likewise, Gradient

Forest models rely on estimates of allelic frequencies across popula-

tions and therefore are, in principle, sensitive to varying levels of

sampling intensity both in terms of populations and individuals per

population. The reference genetic offset datasets described above

were used as a baseline to assess the sensitivity of the inference of

genetic offsets under different subsampling designs. To approximate

real-world situations, we designed our subsampling to vary sampling

intensities across populations and individuals within those popula-

tions. For each genomic dataset (Table 1), we generated random sub-

samples of N populations without replacement using varying levels

of sampling intensity: Npop = 5, Npop = 10, Npop = 15, Npop = 20, and

when possible, Npop = 25 and Npop = 30. Each random subsampling

(i.e. Npop = 5) was replicated 1000 times. To describe the geographic

and environmental structure of the sampled populations in each rep-

licate, we evaluated how well each replicate represented the climatic

and geographic distribution of the entire reference set of popula-

tions. For each replicate, we estimated the absolute sum and the

standard deviation of the distances to the niche (Σniche, sdniche) and

geographic (Σgeo, sdgeo) centroid of sampled populations, divided by

Npop. High values of Σniche or Σgeo indicate that some of the sampled

populations were near the niche edge and that there was wide cov-

erage of the underlying environmental or geographic space.

For genomic datasets with individual-level data (Table 1), we also

evaluated the effect of sampling different numbers of individuals

per population. The number of individuals within a population is in

principle an important parameter because it impacts the estimation

of allele frequencies, a key input parameter for estimating genomic

offsets. For each dataset, we chose the 20 populations that had the

highest number of individuals and generated random subsamples

of Nind individuals per population using varying sampling intensities

from Nind = 1 to Nind = 10 (i.e. Nind = 1 replicates consisted of 20 pop-

ulations each with one sampled individual). For each Nind we per-

formed 1000 replicates. In the few instances where Nind was higher

than the number of individuals in a given population, we sampled

all individuals present in the population. We also tested the effect

of sampling all individuals for 20 populations and adding one to five

extra populations (20 + 1 to 20 + 5) but with only one individual in

For each subsampled replicate (using subsamples of either popula-

tions or individuals), we performed the same analyses described for

the reference datasets: (1) identify 100 outlier SNPs; (2) estimate

genetic offsets; (3) rank-order bioclimatic variables; and (4) identify

SNPs significantly associated with climate.

Since we performed random subsamplings, an individual popula-

tion was not selected for all replicates. Thus, each time a population

was sampled in each replicate, we recorded its estimated genetic off-

set. We then estimated the mean and range of estimated genetic off-

sets across replicates for each population under different sampling

intensities (See Figure S2). To assess inference sensitivity associated

with different sampling intensities, we estimated the Spearman rank

correlation (cor.test function in R) between populations' reference

genetic offsets and their corresponding replicate genetic offsets. A

rank correlation approaching 1.0 indicates that, irrespective of the

sampling context, populations always tend to rank in the same order

of genetic offsets. Likewise, a rank correlation approaching 0 (or be-

coming negative) indicates there the estimation of genetic offsets

deviates significantly from the reference under limited sampling.

An important application of GF models is the ability to extrap-

olate the turnover functions across the landscape and predict ge-

netic offsets at unsampled locations (Fitzpatrick & Keller, 2015).

Extrapolating genetic offsets may help identify areas more or less

vulnerable to future climate change (Fitzpatrick & Keller, 2015) or

identify areas suitable for active migration or translocation in the

future (Gougherty et al., 2021; Rhoné et al., 2020). In real-life sce-

narios, extrapolation to unsampled locations may correspond to in-

stances in which populations are known but remain unsampled due

to budget or logistic limitations. Thus, we also tested the capacity to

predict genetic offsets in nonsampled populations under different

levels of sampling intensity. To do this, for each sampling replicate

we divided the original populations into sampled or unsampled. We

then used the GF models estimated with the sampled populations

(e.g. Npop = 10; see Section 2.4 above) to extrapolate the turnover

functions and estimate genetic offset for the unsampled popula-

tions. We called these genetic offsets for unsampled populations

the ‘extrapolated genetic offset’. We estimated the rank correlation

between the reference genetic offsets and the extrapolated genetic

offsets of the unsampled populations. A rank correlation approach-

ing 1.0 indicates that, irrespective of sampling, the extrapolation of

genetic offsets is not sensitive to sampling.

The five genomic datasets we used were generated using differ-

ent sequencing platforms with varying depth and coverage. Thus, the

number of SNPs varied among species. These differences may result

in varying power to detect the full range of genomic patterns of local

adaptation across species, especially when considering only 100
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6 |

outlier SNPs. To assess possible bias associated with the selection of

SNPs, we also performed replicate sampling with varying number of

population (Npop = 5, Npop = 10, Npop = 15, Npop = 20, and when possi-

ble, Npop = 25 and Npop = 30; see Subsampling designs above) using the

complete datasets with all SNPs. Our rational was that using all SNPs

relaxed the constraints and biases associated with the use of only

AGUIRRE-LIGUORI e t  a l .

remainder are annual plants. Overall, our goal was to find datasets

with sufficient sampling to be able to assess the effect of subsample,

but we also sought to choose datasets that represent diverse eco-

logical and organismal histories.

100 outlier SNPs. Due to computational limitations, we performed 3.2 | Population sampling
100 replicates per subsampling and excluded the Arabidopsis lyrata

dataset from this analysis, which had more than 1 million SNPs in the 3.2.1 | Estimation sensitivity
dataset (Table 1).

We tested whether the number of populations sampled impacted

the estimation of genetic offsets. To assess this, we estimated ge-

2.6 | Identifying relevant bioclimatic variables netic offsets for replicate subsamples consisting of 5, 10, 15 and 20

randomly selected populations—and 25 and 30 populations when

GF models identify the environmental variables that most strongly

contribute to the construction of the models, measured by their

‘weight’. Weights have been used to determine which variables have

the strongest effects on populations in the future (Aguirre-Liguori

et al., 2021; Capblancq, Fitzpatrick, et al., 2020). For each dataset,

from the GF models we extracted the estimated R2 weighted im-

portance of the bioclimatic variables that have the strongest contri-

bution to the reference GF model. To compare among species, we

renamed these bioclimatic variables as pos1 to pos19 based on their

order of importance. For each replicate we rank-ordered the biocli-

matic variables based on their contribution to model construction;

we then compared the variability of ranking across replicates com-

pared with that from the reference model. We visualized the similar-

ity between replicates and the reference model using a heat map in

which an aggregation of warmer colours across the diagonal indi-

cates that the true contribution of bioclimate variables is retrieved

irrespective of sampling.

possible—for each species. We compared the genetic offsets across

replicates to reference estimates based on the entire dataset and

the reference climate scenario (i.e. the scenario that had the highest

correlations to other scenarios; see Section 2). Overall, we found a

consistent trend across species, where the rank correlation between

the reference and the replicate genetic offset estimates increased

with increasing sampling intensity (Figure 1a, Table S1). Decreasing

the number of populations resulted in genetic offsets that departed

from the reference metrics across species and, interestingly, this

sensitivity varied as a function of the species' genetic structure.

More pronounced genetic structure (higher FST) resulted in more

sensitive estimates, such that a higher intensity of population sam-

pling was needed to converge on the reference genetic offsets. For

example, in Arabidopsis lyrata (FST = 0.48) the median rank correlation

decreased from 0.8 to −0.1 when decreasing sampling from 30 to 5

populations. By contrast, the median rank correlation in Empidonax

trailli (FST = 0.04) decreased from 1 to 0.6 with an equivalent de-

crease in population sampling (Table S1).

Moreover, in the two species with the highest FST (A. lyrata and

3 | RESULTS Z. mays parviglumis), we found that more than 15 populations were

needed to retrieve a median rank correlation above 0.5 (Figure 1a,

3.1 | Focal datasets Table S1). For A. lyrata (FST = 0.48), at least 20 populations were

needed to retrieve a median rank correlation >0.5 (the median rank

To estimate both the sensitivity of genetic offsets to sampling in-

tensity and the robustness of inference based on climate models,

we analysed complete and subsampled datasets from five species

(Table 1). We chose the five datasets based largely on sampling

intensity; we required that each dataset represents at least 20

populations, with the sufficient sample within populations to have

reasonable estimates of allele frequencies. However, the datasets

varied in myriad ways. For example, one dataset from the annual

plant Arabidopsis lyrata was based on pooled sequencing of multiple

individuals within each population. Other datasets—such as from the

annual plants Zea mays ssp. mexicana and Zea mays ssp. parviglumis—

were based on chip-based assays rather than resequencing data. The

species also varied dramatically in genetic diversity (HS) and popu-

lation differentiation (FST). Finally, the species themselves varied

quite dramatically, in that one represented a bird (Empidonas trail-

lii), another represents a perennial plant (Fagus sylvatica), while the

correlations for Npop = 15 and Npop = 20 were 0.39 and 0.59, re-

spectively). By contrast, we found that sampling 5 populations was

enough to obtain rank correlations >0.5 for the remaining three spe-

cies: Z. mays mexicana (median rank correlation of 0.5), E. trailli (me-

dian rank correlation of 0.6) and F. sylvatica (median rank correlation

of 0.58) (Table S1).

A large proportion of replicates with fewer than 15 populations

showed rank correlations <0.5 between the reference and replicate

genetic offsets (Figure 1a, Table S1). The proportion of sampling rep-

licates with rank correlations <0.5 when sampling 15 populations

ranged from 15.4% in F. sylvatica to 62.3% in A. lyrata (Table S1). We

wondered whether maximizing the environmental or geographic

distribution of populations (Σenv, Σgeo), while minimizing population

clustering (sdenv, sdgeo), could lead to better performance. To evalu-

ate this idea, we performed replicates with low sampling intensity

(Npop = 5 and Npop = 10) that maximized Σenv/geo but that minimized
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F I G U R E 1 Estimation sensitivity of
genetic offsets to varying population
sampling intensities. In each panel,
the boxplots depict the distribution of
the rank correlation of genetic offsets
between replicates and the reference
datasets for each of five species. (a)
reports correlations based on 100 outlier
SNPs and (b) reports on all available
SNPs. The rank correlations in (c) report
correlations from extrapolations of
unsampled populations. Each boxplot

(a) Random Sampling

1.0

0.5

0.0

−0.5

| 7

sampling

pop_5
pop_10
pop_15
pop_20
pop_25
pop_30

is based on 1000 replicates. Rank
correlations closer to 1.0, with less
variability across replicates, indicate both
lower estimation sensitivity of genetic
offsets and greater agreement between
replicates and the reference datasets.
In each panel, the species are ordered
from left to right according to increasing
genetic structure (FST). The boxes show
the first and third quartiles. The upper and
lower whisker show values that are at the
limit of 1.5 times the interquartile range.
The remaining dots show outliers.

−1.0

E. trailli
(FST=0.04)

(b) All SNPs

1.0

0.5

0.0

−0.5

F. sylvatica
(FST=0.05)

Z. mexicana
(FST=0.16)

−Fst−>

Z. parviglumis
(FST=0.24)

A. lyrata
(FST=0.48)

sampling

pop_5
pop_10
pop_15
pop_20
pop_25
pop_30

−1.0

E. trailli
(FST=0.04)

(c) Extrapolation

1.0

F. sylvatica Z. mexicana
(F =0.05) (F =0.16)

−Fst−>

Z. parviglumis
(FST=0.24)

0.5 sampling

pop_5
pop_10
pop_15

0.0                                                                                                                                                     pop_20
pop_25
pop_30

−0.5

E. trailli
(FST=0.04)

F. sylvatica
(FST=0.05)

Z. mexicana
(FST=0.16)

−Fst−>

Z. parviglumis
(FST=0.24)

A. lyrata
(FST=0.48)

sdenv/geo (See Section 2). Counterintuitively, we found that maximiz-

ing the geographic or environmental distribution of sampled popu-

lations did not increase the correlation between the reference and

subsampled genetic offsets (Figure S3).

It is possible that our results reflect properties of the methods

used to identify SNP outliers rather than properties of genomic off-

set estimation. To assess this possibility, we also performed repli-

cate sampling on the complete datasets (all SNPs) and found that

increasing the number SNPs had little to no impact on the estimation

of genetic offsets; the rank correlations between replicates and the

reference estimates resulting from considering all SNPs were similar

to those obtained using only 100 outlier SNPs. Overall, we found

that increasing the number of populations resulted in higher rank

correlations, irrespective of the number of SNPs used in the analy-

ses (Figure 1b). This suggests that the estimation of genetic offsets is

likely to be robust to the restrictions imposed by selecting few

SNPs with the strongest signals of local adaptation (Aguirre-Liguori

et al., 2019; Fitzpatrick et al., 2021; Rhoné et al., 2020).
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8 | AGUIRRE-L IGUORI e t  a l .

3.2.2 | Extrapolation to unsampled locations                     sampling intensity (Nind = 1–10 individuals per population sampled).

We could not perform these analyses for A. lyrata because the SNP

We assessed the effects of population samples to extrapolate GF

models and genetic offsets to unsampled localities. For every rep-

licate and sampling intensity, we estimated the genetic offsets of

populations that were not sampled and estimated the rank corre-

lation between extrapolated and reference genetic offsets. As ex-

pected, we found that increasing sampling intensity led to a more

robust extrapolation of genetic offsets (Figure 1C, Table S2), but

this depended on the underlying genetic structure of populations.

For example, the median rank correlations were high in species with

low genetic structure (E. trailli ranged from 0.51 in Npop = 5 to 1 in

Npop = 25), whereas these were low or even negative in species with

high genetic structure (A. lyrata ranged from −0.15 in Npop = 5 to 0.8

in Npop = 30). Extrapolated genetic offsets deviated more from the

reference estimates as sampling intensity decreased (N < 15) and in

species with high FST; for the two species with more pronounced

genetic structures, the capacity to extrapolate remained poor (as

indicated by low-rank correlations) even when sampling >20 popula-

tions. For example, sampling 15 populations in Z. mays parviglumis

and A. lyrata resulted in 43.3% and 55.5% of the replicates with rank

correlations <0.5, respectively. By contrast, the same sampling in

F. sylvatica, E. trailli and Z. mays mexicana resulted in 11.6%, 36% and

23% of replicates with rank correlations <0.5, respectively. Thus,

sampling high numbers of populations appear to be especially im-

portant if the goal is to estimate offsets for localities that have not

been explicitly sampled.

data were based on pooled samples within each population (Table 1).

For the remaining four species, we found that sampling more than

five individuals per population resulted in only a marginal increase in

the median rank correlations, albeit with a reduced range of es-

timates (Figure 3). For example, the median rank correlations were

>0.9 for E. trailli, Z. mays parviglumis and Z. mays mexicana when sam-

pling more than five individuals per population (Table S3). However,

for the two species with the lowest number of SNPs (E. trailli and

F. sylvatica), estimates of genetic offsets were sensitive to sampling

fewer than four individuals (Figure 3a). In E. trailli, for example, the

mean rank correlations increased from 0.26 to 0.88 when increasing

sampling from one to four individuals per population, and 30% of

replicates had rank correlations <0.5 when sampling less than two

individuals per population. Interestingly, in F. sylvatica we observed

highly consistent rank correlations across sampling intensities, but

the median rank correlation always remained <0.7 (Table S3). In this

case, the 20 populations selected for these analyses had a low-rank

correlation relative to the reference genetic offsets such that the

observed rank correlations were lower than 0.7.

Occasionally it may be possible to add single individuals to repre-

sent additional sampling locations, which will provide frequency es-

timates based on bi-allelic SNPs. We evaluated whether it is helpful

to increase the number of populations by adding single individuals

from more locations. To do this, we sampled all individuals across

20 populations and then added single individuals from randomly

chosen populations (singleton populations), ranging from one to five

extra populations. Overall, across our five species, we did not find a

3.2.3 | Relevant bioclimatic variables                                  consistent effect of increasing the number of singleton populations

(Figure 3b), but for some species, it appeared that incorporating sin-

We evaluated whether sampling populations with varying intensity

changed the estimated weight (contribution) of bioclimatic variables

to the underlying GF models. Overall, we found that sampling in-

tensity had a substantial impact on the identification of relevant

bioclimatic variables (Figure 2). For Npop <10, we found highly in-

consistent results across replicates compared with the reference

dataset, indicating a poor capacity to identify bioclimatic variables

with the highest contribution to model building. Our results suggest

that with Npop >10, the contribution of different variables can be

approximated more consistently but still with substantial sensitivity

to sampling (Figure 2). For example, with N > 10 the top three most

important variables were consistently identified for most replicates

gleton populations increased estimation sensitivity. For example, in

Z. mays parviglumis and E. trailli we found that adding one extra

population increased the range of rank correlations observed across

replicates. Interestingly, for F. sylvatica we observed that increas-

ing the number of singleton populations produced genetic offsets

that increasingly deviated from the reference estimates (Figure 3b,

Table S4). Overall, these results suggest that sampling few individu-

als (Nind = 4–5) across many populations, while keeping Nind homog-

enous across populations, is likely to result in genetic offsets that

converge on the reference estimates.

(Figure 2c,d). 3.4 | Climate uncertainty

Climate models use different circulation models and shared socioec-

3.3 | Individual sampling onomic pathways to project climate conditions in the future. In stud-

ies of climate change, it is important to incorporate this uncertainty

3.3.1 | Estimation sensitivity to have a range of future potential scenarios (Foden et al., 2019). For

this reason, we assessed the variance in the estimation of genetic

To gauge the impact of sampling different numbers of individuals

(Nind) on the estimation of genetic offsets, we used a subsampling

approach to test whether genetic offsets were sensitive to individual

offsets across climate change scenarios. For each species, we esti-

mated genetic offsets of populations under 54 future climate sce-

narios and calculated pairwise rank correlations of genetic offsets
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order1
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order15
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order18
order19

(a) pop_5

(c) pop_15

Nº BIO weight
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0

Nº BIO weight
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720

480

240

0

(b) pop_10

(d) pop_20

Nº BIO weight
800

640

480

320

160

0

Nº BIO weight
2500

2000

1500

1000

500

0

Reference Reference

F I G U R E 2 Detection sensitivity of the most important bioclimatic variables to varying sampling intensity. The heat maps depict the
number of times a bioclimatic variable was selected to have a specific weight (importance) in the construction of the GF model. These maps
interrogate across the five species, with separate maps for subsampled (a) 5, (b) 10, (c) 15 and (d) 20 populations. The x axis shows the rank
order of variables obtained with the reference datasets and the y-axis the rank order obtained with the replicates. Warmer colours indicate
that a variable was identified more frequently in a given rank order across replicates. Warmer colours across the diagonal indicate a similar
rank order of variables in the replicates and the reference. To compare among species, the 19 bioclimatic variables were anonymized and
renamed (e.g. order1, order19) according to their weights (importance) in the reference analysis (see Section 2).

among scenarios (Figure 4). Overall, our results indicated that using

data from different future climate scenarios did not have a substan-

tial effect on the estimation of genetic offsets. For most species,

the use of different circulation models had a marginal impact on the

estimation of genetic offsets across populations. However, these

impacts also appeared to be species- or region-specific. More spe-

cifically, we found weak deviations of genetic offsets from the refer-

ence under different models: only 0%–8.73% of replicates (for all

species except F. sylvatica) had median rank correlations <0.5 under

distinct future scenarios. For F. sylvatica, the rank correlations among

standard deviation (sd) in correlation statistics for each variable and

summed the sd across variables (Σsd) for each species. In principle,

higher Σsd reflected an overall greater uncertainty among future

climate models. We found F. sylvatica had the highest Σsd, which ex-

plained, to some extent, the high estimation sensitivity of genetic

offsets to future climatic models for this species (Figure S4F). The

higher variance across climate models for this species did not appear

to be explained by either elevation or latitude (Figures S4G and S5).

climatic scenarios were highly variable, with 51.9% less than 0.5. This 4 | DISCUSSION
suggests that, at least in some cases, the uncertainty associated with

future climate scenarios propagated into the estimation of genetic

offsets.

Finally, we explored variations in the projected bioclimatic

variables under the 54 climate models for each species. Overall,

we found that present-day conditions were strongly correlated to

future conditions across all models (Figure S4A–E) but with some

variation among variables and species; this pattern could partly ex-

plain the high uncertainty in genetic offsets observed across climate

models for F. sylvatica. To further explore this idea, we estimated the

Genetic offsets have become an important metric to evaluate how

vulnerable or maladapted populations might respond to ongo-ing

climate change (Aguirre-Liguori et al., 2019; Bay et al., 2018;

Capblancq, Fitzpatrick, et al., 2020; Ruegg et al., 2018). In this re-

spect, they have become useful to assess priorities for conservation,

to design schemes for assisted migrations (Meek et al., 2023) and to

implement genetic crosses that may help populations adapt to

climate change (Rhoné et al., 2020). However, genetic offsets have

not been sufficiently validated, and it remains unclear whether these
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(a) Individual samples (N1 to N10)
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Z. parviglumis E. trailli
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(b) Extrapopulations with 1 individual sampled
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Z. parviglumis E. trailli
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(7,006)

F I G U R E 3 Estimation sensitivity of genetic offsets to varying sampling intensity of individuals. In each panel, the boxplots depict
the distribution of the rank correlation of genetic offsets between replicates and the reference datasets for each of the four species.
Boxplots depict the distribution of the rank correlation of genetic offsets between replicates and the reference datasets for five species. Rank
correlations estimated for the sampling replicates using (a) varying the number of sampled individuals per population, based on 20
populations, and (b) varying the number of added singletons—that is, populations with a single sampled individual. One thousand replicates
were performed for each test. Rank correlations closer to 1.0 indicate that populations' ranks are similar to those estimated for the reference
and also that genetic offsets were less sensitive to inputs. Species are ordered from left to right according to decreasing number of loci (loci).
The boxes show the first and third quartiles. The upper and lower whisker show values that are at the limit of 1.5 times the interquartile
range. The rest of the dots show the outliers.

metrics are robust and work as intended (Rellstab et al., 2021). In

this study we used multiple genomic datasets of species collected

across different regions (Figure S1) and with different life-history

traits (Table 1), to test how sampling intensity (i.e. the number of

Supplementary Text S2) that can be used to perform evaluations of

sampling adequacy.

populations and individuals) impacts the estimation of genetic off- 4.1.1 | Number of populations
sets and, ultimately, our capacity to set conservation priorities and

management strategies.                                                                                      We first tested the effect of sampling different numbers of popula-

tions on the estimation of genetic offsets. We have found that sam-

pling more populations increases the rank correlation between the

4.1 | Sampling recommendations reference and replicate genetic offsets. The effect of increased pop-

ulation sampling is especially prominent for species with complex

Our results allow us to outline several sampling recommendations

and suggest possible avenues to evaluate the estimation sensitiv-

ity of genetic offsets in real-life situations. Below we discuss these

recommendations and present a markdown file with code (See

genetic structures, typified in this study by high FST (Table 1). These

results are not surprising, since many simulation and sampling studies

have shown that sampling a higher number of populations decreases

sensitivity in the estimation of populations genetic parameters
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Rank correlations between layers

F I G U R E 4 Uncertainty in the estimation of genetic offset under future climate scenarios. Heat maps depict the rank correlation of
genetic offsets across populations, compared between pairs of 54 future climate scenarios. Warmer colours reflect higher rank correlations
between genetic offsets estimated under different models. White squares depict rank correlations <0.5. Climate models in the y and x axis
are coded according to Table S5.

(Aguirre-Liguori et al., 2020; Landguth & Schwartz, 2014; Schwartz

& McKelvey, 2008; Willing et al., 2012). It has also been shown that

sampling more populations is necessary to identify outlier SNPs and

to discard potential false positives (De Mita et al., 2013). Importantly,

for all species, we have found that sampling more than 15 popula-

tions was enough to retrieve median rank correlations above 0.5

between the reference and replicate datasets (Table 2 shows a

summary of the results found and our sampling recommendations).

Interestingly, for species with low FST sampling fewer than 15 popu-

lations was enough to converge on the reference patterns of genetic

offsets across populations (Figure 1).

Our results also indicate that sampling fewer than 10 popula-

tions generated negative or close to zero rank correlations between

replicates and the reference dataset, especially in species with

high genetic structure. We recognize that gathering such extensive

samples can be prohibitive, especially for nonmodel or endangered

species or for research groups with limited funding. We therefore

have also examined whether an explicit sampling scheme encom-

passing high geographic or environmental variation, but few pop-

ulations reduce the bias in genetic offset estimations. We were

surprised that this more systematic sampling of populations did not

have a major effect on the estimation of genetic offsets (Figure S3). In

other words, based on our analyses, maximizing geographic or

environmental sampling is not a convenient shortcut that obviates

the need for extensive population sampling. We nonetheless rec-

ommend that sampling should be designed to maximize the ecolog-

ical and geographic distributions of populations, because these do

impact the ability to detect local adaptation and estimate genetic

structure. When only a few populations can be (or are) sampled, we

recommend that the limitations of genetic offsets be considered,
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TA B L E 2 Main observations and recommendations for sampling design.

Test Main observation Recommendation

Number of populations

Number of individuals

Climatic models

Sampling more populations:
• Reduces the sensitivity of genetic offsets, making

them more repeatable
• Increases the power to extrapolate genetic offsets
• Improves detection of relevant bioclimatic variables

• Sampling more individuals has a marginal effect on
genetic offset estimates

• Adding singleton populations did not decrease the
sensitivity in the estimation of genetic offsets

For some species, different climatic scenarios predict
different rank ordination of genetic offsets among
populations

At least 15 populations should be sampled to: (1)
attain robust estimates of genetic offsets, (2)
extrapolate genetic offsets to unsampled locations
and (3) identify the most important bioclimatic
variables. If genetic structure is high, more
populations need to be sampled. A subsampling
procedure can be used to evaluate if a plateau of
genomic offset is reached; if not, results should
recognize this caveat

At least 4–5 individuals per population should be
sampled, with the number of individuals similar
across populations. If new singleton populations
are added, it should be tested whether this
increase/decrease the sensitivity in the estimation
of genetic offsets

Evaluate the uncertainty associated with different
climatic models. Uncertainty should be reported
and discussed

especially when implementing conservation and management strat-

egies. In such cases, it may prove more informative to incorporate

additional layers of information to inform conservation priorities of

populations (e.g. factors associated with life-history traits, demog-

raphy, niche) (Thurman et al., 2020). Also, for critically endangered

species, it might not even be necessary to estimate the genetic

offsets of populations, because the goal may be to protect all the

known populations of the species.

GF models can project the present and future genetic turnover

as a function of bioclimatic variables and thus genetic offsets can be

estimated for any geographic area, even when populations have not

been sampled. This permits extrapolating to unsampled geographic

locations, with the potential to identify areas that are more or less

vulnerability to future climate change (Aguirre-Liguori et al., 2021;

Capblancq, Fitzpatrick, et al., 2020; Fitzpatrick & Keller, 2015) or

that may serve as areas for potential future re-settlement (Aguirre-

Liguori et al., 2021; Gougherty et al., 2021; Rhoné et al., 2020).

This feature of genetic offsets is particularly attractive because it

can be used to design assisted migration programme while avoid-

ing outbreeding depression and maladaptation during the migra-

tion process (Aguirre-Liguori et al., 2021; Aitken & Whitlock, 2013;

Allendorf et al., 2010). However, we have found that the extrap-

olation of genetic offsets to unsampled populations is highly sen-

15 populations were needed to be able to accurately identify the

most important bioclimatic variables driving allelic turnover across

species ranges (Figure 2), but the identification of these variables

was consistent with >15 population samples.

Overall, we found that for most species, and particularly for

species with complex genetic structures (as defined by increasingly

higher FST values), sampling more than 15 populations serves three

purposes: (1) decreases the sensitivity in the estimation of genetic

offsets; (2) increases the capacity to extrapolate genetic offsets to

unsampled locations; and (3) consistently identifies the most import-

ant bioclimatic variables for climate adaptation.

The markdown and code provided in Supporting Text S2 show

how to implement our sampling strategy both to evaluate whether

the number of sampled populations is sufficient to make a robust

estimation of genetic offsets and to identify important bioclimatic

variables. Briefly, when the estimation sensitivity of genetic offsets is

high (i.e. rank correlations do not converge to 1.0) and the rank

order of bioclimatic variables does not maximize the number of val-

ues across the diagonal (as in Figure 2), this might be an indication

that the number of sampled populations is likely not sufficient, and

that caution is warranted for interpreting genetic offsets.

sitive to sampling intensity; more than 15 populations are needed 4.1.2 | Number of individuals
to produce robust estimations of extrapolated genetic offsets with

our datasets. This conclusion is especially important in species with

complex genetic structures (Figure 1c).

Finally, GF models have the potential to identify bioclimatic

variables that are important for the structure of adaptive variation

across species ranges (Fitzpatrick & Keller, 2015). Identifying these

variables can be valuable to assess the sensitivity of populations to

climate change. Therefore, we also tested the capacity of GF

models to identify the most important bioclimatic variables under

varying levels of sampling intensity. Again, we found that at least

With the development of landscape genomics, it has become evident

that sampling a greater number of populations is more important

than sampling more individuals to adequately identify outlier SNPs

(Nazareno et al., 2017; Willing et al., 2012). There is a clear tradeoff

between the number of individuals and populations that can be sam-

pled at finite sequencing costs. We have tested if sampling different

numbers of individuals affected the estimation of genetic offsets

and, as previously suggested by Aguirre-Liguori et al. (2022), found

that increasing the number of individuals does not have an important
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effect on the estimation of genetic offsets (Figure 3). However, for

the two species (E. trailli and F. sylvatica) with the lowest number of

SNPs, we found that sampling more than four individuals per popu-

lation is needed for high correlations to reference genetic offsets.

Moreover, we have examined whether sampling additional pop-

ulations, but with only single individuals (singleton populations), in-

creases the estimation sensitivity of genetic offsets. Interestingly,

increasing the number of singleton populations does not result in a

substantial decrease in estimation sensitivity in our datasets. By

contrast, for F. sylvatica we have found that increasing the number

of singleton populations not only did not decrease the sensitivity

but even increased it, with estimated genetic offsets deviating more

substantially from the reference. Assuming a tradeoff between the

| 13

shows that this source of uncertainty should be tested and discussed

(Table 2). A high genetic offset under a particular climate model may

suggest future maladaptation, even if other models yield low genetic

offsets. Altogether, the use of multiple climate models to estimate

genetic offsets may help identify populations or localities that are

consistently projected to be highly vulnerable.

The markdown in Supplementary Text S2 describes a way to es-

timate the rank correlation between different climatic models and

to identify the climate model with consistently high correlations to

other models. The model with high correlations can then be used as

a reference climatic model.

number of sampled populations and the number of sampled indi- 4.2 | Caveats of our study
viduals per population, our recommendation is to increase the num-

ber of populations even if fewer individuals are sampled, as long as

at least 4–5 individuals are sampled per population. In addition, we

recommend that when additional singleton populations are ob-

tained (i.e. museum specimens or accessions), one should evaluate

whether adding samples decreases the sensitivity in the estimation

of genetic offsets. The markdown in Supporting Text S2 describes a

way to evaluate whether estimation sensitivities decrease with more

individuals per population or additional singleton populations. Again,

when the estimation sensitivity of genetic offsets remains high or

even increases, this would indicate that either more individuals per

population are needed or that adding singletons is not advisable.

Here we were not interested in identifying biological signals, but

rather identifying how sampling intensity affects the estimation of

genetic offsets. Therefore, the results herein presented should only

be interpreted methodologically. Below, we list five caveats that

should be considered while interpreting our results. Although it is

likely that our results are affected by some of the issues outlined

below, in general, we found consistent patterns among datasets.

First, we used the complete datasets to represent reference

(or ‘true’) values of genetic offsets, and thus, our reference pa-

rameters are impacted by ‘unknown’ sampling biases imposed by

the original sampling design and sequencing specifications. It is

highly likely that the reference datasets do not include all the indi-

viduals, genotypes and populations that best describe the genetic

4.1.3 | Climatic models                                                          composition, geographic range and climatic tolerance of the spe-

cies (e.g. the F. sylvatica dataset only contains a small proportion

Finally, a common problem in studies evaluating the genetic offsets

of populations is that different climatic models are rarely incorpo-

rated into analyses. This is potentially problematic because future

climates can be modelled with different global circulation models

and different socioeconomic pathways (Sanderson et al., 2015). This

variation leads to intermodel uncertainty that should be explicitly

considered, especially in conservation studies (Foden et al., 2019).

For most of our species, we found that using different climatic

models to estimate genetic offsets had a negligible effect on the es-

timation uncertainty of genetic offsets. For most species, we found

high rank correlations between genetic offsets estimated using

different climatic models (Figure 4). However, for F. sylvatica, we

observed that more than 50% of the models had pairwise rank cor-

relations below 0.5, indicating that climatic models identify different

populations with high climate vulnerability. This uncertainty can-

not be explained by the geographic and orographic distribution of

F. sylvatica, which grows at high latitudes and altitudes (Capblancq,

Morin, et al., 2020) (Figures S4G and S5). Instead, we found that cor-

relations between present and future bioclimatic variables were par-

ticularly variable for this species, partially explaining the sensitivity

of genetic offsets to climate models for F. sylvatica (Figure S4F). Even

when genetic offsets of most species were not substantially affected

using different circulation models, the odd behaviour in F. sylvatica

of populations in the South of France). To reduce misinterpreta-

tions and to be able to compare both among species and among

realistic sampling scenarios, we decided to perform our replicate

samples of individuals and populations based on absolute numbers

(Npop = 5, 10, 15, 20, 25 and 30) instead of the percentage of sam-

pled populations. This allowed us to compare realistic sampling

sizes and directly compare observed patterns among datasets. We

found that, under the same sampling intensity, the estimation sen-

sitivity of genetic offsets was higher for species with more pop-

ulations originally sampled (e.g. A. lyrata with 47 populations vs.

Z. mays mexicana with 23 populations). This result likely reflects

the varying percentage of populations sampled in the replicates

(e.g. Npop = 20 corresponds to 48% of A. lyrata populations but cor-

responds to 87% of Z. mays mexicana populations). However, the

observed impact of lowering sampling intensity was consistent

across datasets, supporting previous simulation results suggesting

the impacts of sampling design on the estimation of genetic off-

sets (Láruson et al., 2022).

Second, the design of our study has included thousands of rep-

licates for the estimation of outlier loci and GF models. For each

species, we performed more than 20,000 replicates, therefore it

was impossible to perform detailed analyses to identify the most

supported outlier SNPs while avoiding false positives (De Mita
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et al., 2013; Tiffin & Ross-Ibarra, 2014). Instead, we selected the

100 SNPs with the lowest p-value according to LFMM2 analyses.

However, we believe that the misidentification of outlier SNPs will

not affect our conclusions due to the low sensitivity to the se-

lection of SNPs (Figure 1b). Moreover, while studies are needed to

show that randomly selected SNPs are representative of the

genomic landscape, previous studies have shown that randomly

selected SNPs can be sufficient to estimate genetic offsets and

identify patterns associated with changes in fitness (Aguirre-

Liguori et al., 2019; Fitzpatrick et al., 2021; Rhoné et al., 2020).

Along these lines, we did not attempt to perform robust SNP

AGUIRRE-L IGUORI e t  a l .

plasticity or standing genetic variation, which are not considered by

the approach to estimate genetic offsets.

AUTHOR CONTRIBUTIONS

JAAL and SRB conceived the idea and designed the experiments.

JAAL and AMC wrote the code and performed the analyses. JAAL

wrote the first draft of the manuscript with contributions from SRB.

All authors interpreted the results and contributed to the writing of

the final draft of the manuscript.

ACKNOWLEDG EMENTS

callings and instead employed the widely used stacks pipeline         This manuscript was supported by the Consejo Nacional

to identify SNPs (Catchen et al., 2013). Our approach to identify         de     Ciencia     y     Tecnología     (CONACYT)     Project     FORDECYT-

SNPs has the advantage that it can be used to obtain polymorphic

SNPs for nonmodel species without a reference genome (Catchen

et al., 2013).

A third caveat is that we were limited by the type of data avail-

able to perform the analyses. We downloaded data obtained with

different genomic tools and with varying ascertainment biases.

Ascertainment bias has been found to affect the estimation of de-

mographic parameters estimated from the site frequency spectrum,

yet it appears that FST is not strongly affected by ascertainment bias

(Albrechtsen et al., 2010). It is interesting to note that both E. trailli

and A. lyrata had few low-frequency SNPs (Figure S6). These might

explain why estimation of genetic offsets in E. trailli and A. lyrata was

highly sensitive to individual and population sampling, respectively

(Figures 1 and 3a). However, we currently have no information to

make inferences about the sensitivity of genetic offsets to ascer-

tainment bias.

Fourth, the genetic structure and genetic diversity of popula-

tions can depend on the life-history traits of species (Aguinagalde

et al., 2005; Nybom, 2004). While the data that we analysed did not

allow us to conclude life-history traits could be important in the es-

timation of genetic offsets, it will be interesting to test whether gen-

eration time, range sizes, dispersal, reproductive system and other

life-history traits affect the sensitivity in the estimation of genetic

offsets.

Finally, genetic offsets have a more profound limitation. These

are measures of the predicted level of the future maladaptation of

populations (Capblanc et al., 2021), but assume that maladapta-

tion occurs because of deviations from the optimum fitness values.

PRONACES/263962/2020 granted to SRB. JAAL received funding

from CONACYT in the form of a postdoctoral fellowship (Project:

FORDECYT-PRONACES/263962/2020 register number 28416). We

also thank the editor and two anonymous reviewers that helped im-

prove the manuscript.

CONFLIC T OF INTERE ST S TATEMENT

The authors declare no conflicts of interest.

DATA AVAIL AB ILIT Y S TATEMENT

All analyses were performed using published datasets. Sequences

from (1) the Arabidopsis lyrata dataset were downloaded from the

European National Archive under Bioproject ID: PRJEB19338 and

(2) the Empidonax traillii dataset were downloaded from the NCBI

under Bioproject: PRJNA453612. The genotypes of Fagus sylvat-

ica were downloaded from the dryad link: https://datadryad.org/

stash/dataset/doi:10.5061/dryad.pc866t1k5. The genotypes from

the Zea mays ssp. mexicana and Zea mays ssp. parviglumis were

downloaded from the dryad link: https://datadryad.org/stash/

dataset/doi:10.5061/dryad.tf556. All codes used to perform the

analyses are available at https://github.com/spiritu-santi/Gradi

entForest_Sampling.

BENEFIT-SHARING S TATEMENT

The data analysed were downloaded from published data, so the

benefit-sharing statement does not apply.

ORCID

However, local adaptation to climate change is a very complex pro- Jonás A. Aguirre-Liguori https://orcid.

cess in which fitness is affected by other nonselective processes, org/0000-0003-1763-044X

such as inbreeding, genetic drift and genomic load, all of which are Brandon S. Gaut https://orcid.org/0000-0002-1334-5556

more impactful on small populations (Aguirre-Liguori et al., 2021; Santiago Ramírez-Barahona https://orcid.

Willi et al., 2022). In general, these small populations are the focus of

conservation priorities but potentially have low adaptive capac-ity

that limits the utility of genomic offsets (Meek et al., 2023).

Moreover, it is increasingly being reported that species-climate

relationships vary across space or time (Schultz et al., 2022; Smith et

al., 2019), and therefore, different populations could be affected by

different processes. Finally, populations can tolerate changes in

climate before suffering reductions in fitness through phenotypic

org/0000-0003-3999-6952

R EFE R EN C E S

Aguinagalde, I., Hampe, A., Mohanty, A., Martin, J. P., Duminil, J., & Petit,
R. J. (2005). Effects of life-history traits and species distribution
on genetic structure at maternally inherited markers in European
trees and shrubs. Journal of Biogeography, 32(2), 329–339. https://
doi.org/10.1111/j.1365-2699.2004.01178.x

https://doi.org/10.5061/dryad.pc866t1k5
https://doi.org/10.5061/dryad.pc866t1k5
https://doi.org/10.5061/dryad.tf556
https://doi.org/10.5061/dryad.tf556
https://github.com/spiritu-santi/GradientForest_Sampling
https://github.com/spiritu-santi/GradientForest_Sampling
https://orcid.org/0000-0003-1763-044X
https://orcid.org/0000-0003-1763-044X
https://orcid.org/0000-0002-1334-5556
https://orcid.org/0000-0003-3999-6952
https://orcid.org/0000-0003-3999-6952
https://doi.org/10.1111/j.1365-2699.2004.01178.x
https://doi.org/10.1111/j.1365-2699.2004.01178.x


17550998, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13828, W

iley O
nline L

ibrary on [20/05/2024]. S
ee the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

AGUIRRE-LIGUORI e t  a l .

Aguirre-Liguori, J. A., Luna-Sánchez, J. A., Gasca-Pineda, J., & Eguiarte,
L. E. (2020). Evaluation of the minimum sampling design for pop-
ulation genomic and microsatellite studies: An analysis based on
wild maize. Frontiers in Genetics, 11, 870. https://doi.org/10.3389/
fgene.2020.00870

Aguirre-Liguori, J. A., Morales-Cruz, A., & Gaut, B. S. (2022). Evaluating
the persistence and utility of five wild Vitis species in the context
of climate change. Molecular Ecology, 31, 6457–6472. https://doi.
org/10.1111/mec.16715

Aguirre-Liguori, J. A., Ramírez-Barahona, S., & Gaut, B. S. (2021). The evo-
lutionary genomics of species' responses to climate change. Nature
Ecology & Evolution, 10(5), 1350–1360. https://doi.org/10.1038/
s41559-021-01526-9

Aguirre-Liguori, J. A., Tenaillon, M. I., Vázquez-Lobo, A., Gaut, B.
S., Jaramillo-Correa, J. P., Montes-Hernandez, S., Souza, V., &
Eguiarte, L. E. (2017). Connecting genomic patterns of local adap-
tation and niche suitability in teosintes. Molecular Ecology, 16(26),
4226–4240.

Aguirre-Liguori, J. A., Ramírez-Barahona, S., Tiffin, P., & Eguiarte, L. E.
(2019). Climate change is predicted to disrupt patterns of local
adaptation in wild and cultivated maize. Proceedings of the Royal
Society B: Biological Sciences, 286(1906), 20190486. https://doi.
org/10.1098/rspb.2019.0486

Aitken, S. N., & Whitlock, M. C. (2013). Assisted gene flow to facili-
tate local adaptation to climate change. Annual Review of Ecology,
Evolution, and Systematics, 44, 367–388. https://doi.org/10.1146/
annurev-ecolsys-110512-135747

Albrechtsen, A., Nielsen, F. C., & Nielsen, R. (2010). Ascertainment biases
in SNP chips affect measures of population divergence. Molecular
Biology and Evolution, 27(11), 2534–2547. https://doi.org/10.1093/
molbev/msq148

Allendorf, F. W., Hohenlohe, P. A., & Luikart, G. (2010). Genomics and the
future of conservation genetics. Nature Reviews. Genetics, 11(10),
697–709. https://doi.org/10.1038/nrg2844

Barrett, R. D. H., & Schluter, D. (2007). Adaptation from standing genetic
variation. Trends in Ecology and Evolution, 23(1), 38–44. https://doi.
org/10.1016/j.tree.2007.09.008

Bay, R. A., Harrigan, R. J., Le Underwood, V., Gibbs, H. L., Smith, T. B., &
Ruegg, K. (2018). Genomic signals of selection predict climate-
driven population declines in a migratory bird. Science, 359(6401),
83–86. https://doi.org/10.1126/science.aat7956

Bradburd, G. S., Ralph, P. L., & Coop, G. M. (2013). Disentangling the
effects of geographic and ecological isolation on genetic differ-
entiation. Evolution, 67(11), 3258–3273. https://doi.org/10.1111/
evo.12193

Capblancq, T., Fitzpatrick, M. C., Bay, R. A., Exposito-Alonso, M., & Keller,
S. R. (2020). Genomic prediction of (mal)adaptation across current
and future climatic landscapes. Annual Review of Ecology, Evolution,
and Systematics, 51, 245–269. https://doi.org/10.1146/annurev-
ecolsys-020720-042553

Capblancq, T., Morin, X., Gueguen, M., Renaud, J., Lobreaux, S., & Bazin,
E. (2020). Climate-associated genetic variation in Fagus sylvatica and
potential responses to climate change in the French Alps. Journal
of Evolutionary Biology, 33(6), 783–796. https://doi.org/10.1111/
jeb.13610

Catchen, J. M., Hohenlohe, P. A., Bassham, S., Amores, A., & Cresko,
W. A. (2013). Stacks: An analysis tool set for population genom-
ics. Molecular Ecology, 22(11), 3124–3140. https://doi.org/10.1111/
mec.12354

Caye, K., Jumentier, B., Lepeule, J., & François, O. (2019). LFMM 2:
Fast and accurate inference of gene-environment associations in
genome-wide studies. Molecular Biology and Evolution, 36(4), 852–
860. https://doi.org/10.1093/molbev/msz008

Ceballos, G., Ehrlich, P. R., & Dirzo, R. (2017). Biological annihilation via
the ongoing sixth mass extinction signaled by vertebrate popu-
lation losses and declines. Proceedings of the National Academy of

| 15

Sciences of the United States of America, 114(30), E6089–E6096.
https://doi.org/10.1073/pnas.1704949114

De Mita, S., Thuillet, A. C., Gay, L., Ahmadi, N., Manel, S., Ronfort, J., &
Vigouroux, Y. (2013). Detecting selection along environmental gra-
dients: Analysis of eight methods and their effectiveness for out-
breeding and selfing populations. Molecular Ecology, 22(5), 1383–
1399. https://doi.org/10.1111/mec.12182

Eckert, C. G., Samis, K. E., & Lougheed, S. C. (2008). Genetic variation
across species' geographical ranges: The central-marginal hypoth-
esis and beyond. Molecular Ecology, 17(5), 1170–1188. https://doi.
org/10.1111/j.1365-294X.2007.03659.x

Ellis, N., Smith, S. J., & Roland Pitcher, C. (2012). Gradient forests:
Calculating importance gradients on physical predictors. Ecology,
93(1), 156–168. https://doi.org/10.1890/11-0252.1

Exposito-Alonso, M., Burbano, H. A., Bossdorf, O., Nielsen, R., & Weigel,
D. (2019). Natural selection on the Arabidopsis thaliana genome in
present and future climates. Nature, 573(7772), 126–129. https://
doi.org/10.1038/s41586-019-1520-9

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R.
J., & Taylor, K. E. (2016). Overview of the coupled model
Intercomparison project phase 6 (CMIP6) experimental design and
organization. Geoscientific Model Development, 9(5), 1937–1958.
https://doi.org/10.5194/gmd-9-1937-2016

Fick, S. E., & Hijmans, R. J. (2017). WorldClim 2: New 1-km spatial reso-
lution climate surfaces for global land areas. International Journal of
Climatology, 37(12), 4302–4315. https://doi.org/10.1002/joc.5086

Fitzpatrick, M. C., Chhatre, V. E., Soolanayakanahally, R. Y., & Keller, S.
R. (2021). Experimental support for genomic prediction of climate
maladaptation using the machine learning approach gradient for-
ests. Molecular Ecology Resources, 21(8), 2749–2765. https://doi.
org/10.1111/1755-0998.13374

Fitzpatrick, M. C., & Keller, S. R. (2015). Ecological genomics meets
community-level modelling of biodiversity: Mapping the genomic
landscape of current and future environmental adaptation. Ecology
Letters, 18(1), 1–16. https://doi.org/10.1111/ele.12376

Fitzpatrick, M. C., Keller, S. R., & Lotterhos, K. E. (2018). Comment on
“Genomic signals of selection predict climate-driven population
declines in a migratory bird.”. Science, 361(6401), eaat7956. https://
doi.org/10.1126/science.aat7956

Foden, W. B., Young, B. E., Akçakaya, H. R., Garcia, R. A., Hoffmann, A. A.,
Stein, B. A., Thomas, C. D., Wheatley, C. J., Bickford, D., Carr, J. A.,
Hole, D. G., Martin, T. G., Pacifici, M., Pearce-Higgins, J. W., Platts,
P. J., Visconti, P., Watson, J. E. M., & Huntley, B. (2019). Climate
change vulnerability assessment of species. Wiley Interdisciplinary
Reviews: Climate Change, 10(1), e551. https://doi.org/10.1002/
wcc.551

Forester, B. R., Beever, E. A., Darst, C., Szymanski, J., & Funk, W. C. (2022).
Linking evolutionary potential to extinction risk: Applications and
future directions. Frontiers in Ecology and the Environment, 20(9),
507–515. https://doi.org/10.1002/fee.2552

Frankham, R. (2005). Genetics and extinction. Biological Conservation,
126(2), 131–140. https://doi.org/10.1016/j.biocon.2005.05.002

Frichot, E., & François, O. (2015). LEA: An R package for landscape and
ecological association studies. Methods in Ecology and Evolution,
6(8), 925–929. https://doi.org/10.1111/2041-210X.12382

Gougherty, A. V., Keller, S. R., & Fitzpatrick, M. C. (2021). Maladaptation,
migration and extirpation fuel climate change risk in a forest
tree species. Nature Climate Change, 11(2), 166–171. https://doi.
org/10.1038/s41558-020-00968-6

Hampe, A., & Petit, R. J. (2005). Conserving biodiversity under climate
change: The rear edge matters. Ecology Letters, 8(5), 461–467.
https://doi.org/10.1111/j.1461-0248.2005.00739.x

IPCC. (2022). Climate change 2022: Impacts, adaptation and vulnerabil-
ity. In H.-O. Pörtner, D. C. Roberts, M. Tignor, E. S. Poloczanska, K.
Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V.
Möller, A. Okem, & B. Rama (Eds.), Contribution of working group II

https://doi.org/10.3389/fgene.2020.00870
https://doi.org/10.3389/fgene.2020.00870
https://doi.org/10.1111/mec.16715
https://doi.org/10.1111/mec.16715
https://doi.org/10.1038/s41559-021-01526-9
https://doi.org/10.1038/s41559-021-01526-9
https://doi.org/10.1098/rspb.2019.0486
https://doi.org/10.1098/rspb.2019.0486
https://doi.org/10.1146/annurev-ecolsys-110512-135747
https://doi.org/10.1146/annurev-ecolsys-110512-135747
https://doi.org/10.1093/molbev/msq148
https://doi.org/10.1093/molbev/msq148
https://doi.org/10.1038/nrg2844
https://doi.org/10.1016/j.tree.2007.09.008
https://doi.org/10.1016/j.tree.2007.09.008
https://doi.org/10.1126/science.aat7956
https://doi.org/10.1111/evo.12193
https://doi.org/10.1111/evo.12193
https://doi.org/10.1146/annurev-ecolsys-020720-042553
https://doi.org/10.1146/annurev-ecolsys-020720-042553
https://doi.org/10.1111/jeb.13610
https://doi.org/10.1111/jeb.13610
https://doi.org/10.1111/mec.12354
https://doi.org/10.1111/mec.12354
https://doi.org/10.1093/molbev/msz008
https://doi.org/10.1073/pnas.1704949114
https://doi.org/10.1111/mec.12182
https://doi.org/10.1111/j.1365-294X.2007.03659.x
https://doi.org/10.1111/j.1365-294X.2007.03659.x
https://doi.org/10.1890/11-0252.1
https://doi.org/10.1038/s41586-019-1520-9
https://doi.org/10.1038/s41586-019-1520-9
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.1002/joc.5086
https://doi.org/10.1111/1755-0998.13374
https://doi.org/10.1111/1755-0998.13374
https://doi.org/10.1111/ele.12376
https://doi.org/10.1126/science.aat7956
https://doi.org/10.1126/science.aat7956
https://doi.org/10.1002/wcc.551
https://doi.org/10.1002/wcc.551
https://doi.org/10.1002/fee.2552
https://doi.org/10.1016/j.biocon.2005.05.002
https://doi.org/10.1111/2041-210X.12382
https://doi.org/10.1038/s41558-020-00968-6
https://doi.org/10.1038/s41558-020-00968-6
https://doi.org/10.1111/j.1461-0248.2005.00739.x


17550998, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13828, W

iley O
nline L

ibrary on [20/05/2024]. S
ee the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

16 |

to the sixth assessment report of the intergovernmental panel on cli-
mate change (p. 3056). Cambridge University Press. https://doi.
org/10.1017/9781009325844

Landguth, E. L., & Schwartz, M. K. (2014). Evaluating sample allocation
and effort in detecting population differentiation for discrete and
continuously distributed individuals. Conservation Genetics, 15(4),
981–992. https://doi.org/10.1007/s10592-014-0593-0

Láruson, Á. J., Fitzpatrick, M. C., Keller, S. R., Haller, B. C., & Lotterhos, K. E.
(2022). Seeing the forest for the trees: Assessing genetic offset
predictions from gradient forest. Evolutionary Applications, 15(3),
403–416. https://doi.org/10.1111/eva.13354

LeDee, O. E., Handler, S. D., Hoving, C. L., Swanston, C. W., & Zuckerberg,
B. (2021). Preparing wildlife for climate change: How far have we
come? Journal of Wildlife Management, 85(1), 7–16. https://doi.
org/10.1002/jwmg.21969

Lira-Noriega, A., & Manthey, J. D. (2014). Relationship of genetic diver-
sity and niche centrality: A survey and analysis. Evolution, 68(4),
1082–1093. https://doi.org/10.1111/evo.12343

Meek, M. H., Beever, E. A., Barbosa, S., Fitzpatrick, S. W., Fletcher, N. K.,
Mittan-Moreau, C. S., Reid, B. N., Campbell–Staton, S. C., Green,
N. F., & Hellmann, J. J. (2023). Understanding local adaptation to

AGUIRRE-L IGUORI e t  a l .

Systematics, 43(43), 23–43. https://doi.org/10.1146/annurev-ecols
ys-110411-160248

Schultz, E. L., Hülsmann, L., Pillet, M. D., Hartig, F., Breshears, D. D.,
Record, S., Shaw, J. D., DeRose, R. J., Zuidema, P. A., & Evans, M.
E. K. (2022). Climate-driven, but dynamic and complex? A reconcil-
iation of competing hypotheses for species' distributions. Ecology
Letters, 25(1), 38–51. https://doi.org/10.1111/ele.13902

Schwartz, M. K., & McKelvey, K. S. (2008). Why sampling scheme mat-
ters: The effect of sampling scheme on landscape genetic results.
Conservation Genetics, 10(2), 441–452. https://doi.org/10.1007/
s10592-008-9622-1

Smith, A. B., Beever, E. A., Kessler, A. E., Johnston, A. N., Ray, C., Epps, C.
W., Lanier, H. C., Klinger, R. C., Rodhouse, T. J., Varner, J., Perrine,
J. D., Seglund, A., Hall, L. E., Galbreath, K., MacGlover, C., Billman,
P., Blatz, G., Brewer, J., Castillo Vardaro, J., & Yandow, L. (2019).
Alternatives to genetic affinity as a context for within-species re-
sponse to climate. Nature Climate Change, 9(10), 787–794. https://
doi.org/10.1038/s41558-019-0584-8

Stapley, J., Reger, J., Feulner, P. G., Smadja, C., Galindo, J., Ekblom,
R., Bennison, C., Ball, A. D., Beckerman, A. P., & Slate, J. (2010).
Adaptation genomics: The next generation. Trends in Ecology

prepare populations for climate change. Bioscience, 73(1), 36–47. and      Evolution,      25(12),      705–712.      https://doi.org/10.1016/j.
https://doi.org/10.1093/biosci/biac101

Meirmans, P. G. (2015). Seven common mistakes in population genet-ics
and how to avoid them. Molecular Ecology, 24(13), 3223–3231.
https://doi.org/10.1111/mec.13243

Nazareno, A. G., Bemmels, J. B., Dick, C. W., & Lohmann, L. G. (2017).
Minimum sample sizes for population genomics: An empirical study
from an Amazonian plant species. Molecular Ecology Resources,
17(6), 1136–1147. https://doi.org/10.1111/1755-0998.12654

Nybom, H. (2004). Comparison of different nuclear DNA mark-

tree.2010.09.002
Thompson, L. M., Thurman, L. L., Cook, C. N., Beever, E. A., Sgrò, C.

M., Battles, A., Botero, C. A., Gross, J. E., Hall, K. R., Hendry, A.
P., Hoffmann, A. A., Hoving, C., LeDee, O. E., Menglet, C., Nicotra,
A. B., Niver, R. A., Pérez-Jvostov, F., Quiñones, R. M., Schuurman,
G. W., … Whiteley, A. (2023). Connecting research and practice
to enhance the evolutionary potential of species under climate
change. Conservation science and practice. Conservation Science
and Practice, 5, e12855. https://doi.org/10.1111/csp2.12855

ers      for      estimating      intraspecific      genetic      diversity      in          Thurman, L. L., Gross, J. E., Mengelt, C., Beever, E. A., Thompson, L. M.,
plants.      Molecular      Ecology,      13(5),      1143–1155.      https://doi.                   Schuurman, G. W., Hoving, C. L., & Olden, J. D. (2022). Applying
org/10.1111/j.1365-294X.2004.02141.x

Parmesan, C. (2006). Ecological and evolutionary responses to re-
cent climate change. Annual Review of Ecology, Evolution, and
Systematics, 37(1), 637–669. https://doi.org/10.1146/annurev.ecols
ys.37.091305.110100

Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of cli-
mate change. Nature, 421, 37–42. https://doi.org/10.1038/natur
e01286

Peterson, A. T., Soberón, J., Richard G. P., Robert P. A., Martínez-Meyer,
E., Nakamura, M., & Araújo, M. B. (2011). Ecological niches and geo-
graphic distributions. Princeton University Press.

assessments of adaptive capacity to inform natural-resource man-
agement in a changing climate. Conservation Biology, 36(2), e13838.
https://doi.org/10.1111/cobi.13838

Thurman, L. L., Stein, B. A., Beever, E. A., Foden, W., Geange, S. R., Green,
N., Gross, J. E., Lawrence, D. J., LeDee, O., Olden, J. D., Thompson,
L. M., & Young, B. E. (2020). Persist in place or shift in space?
Evaluating the adaptive capacity of species to climate change.
Frontiers in Ecology and the Environment, 18(9), 520–528. https://
doi.org/10.1002/fee.2253

Tiffin, P., & Ross-Ibarra, J. (2014). Advances and limits of using popu-
lation genetics to understand local adaptation. Trends in Ecology

Rellstab, C., Dauphin, B., & Exposito-Alonso, M. (2021). Prospects and      Evolution,      29(12),      673–680.      https://doi.org/10.1016/j.
and limitations of genomic offset in conservation management.
Evolutionary Applications, 14(5), 1–11. https://doi.org/10.1111/
eva.13205

Rhoné, B., Defrance, D., Berthouly-Salazar, C., Mariac, C., Cubry, P.,
Couderc, M., Dequincey, A., Assoumanne, A., Kane, N. A., Sultan,
B., Barnaud, A., & Vigouroux, Y. (2020). Pearl millet genomic vul-
nerability to climate change in West Africa highlights the need for
regional collaboration. Nature Communications, 11(1), 5274. https://
doi.org/10.1038/s41467-020-19066-4

Ruegg, K., Bay, R. A., Anderson, E. C., Saracco, J. F., Harrigan, R. J.,
Whitfield, M., Paxton, E. H., & Smith, T. B. (2018). Ecological ge-
nomics predicts climate vulnerability in an endangered south-
western songbird. Ecology Letters, 21(7), 1085–1096. https://doi.
org/10.1111/ele.12977

Sanderson, B. M., Knutti, R., & Caldwell, P. (2015). A representative de-
mocracy to reduce interdependency in a multimodel ensemble.
Journal of Climate, 28(13), 5171–5194. https://doi.org/10.1175/
JCLI-D-14-00362.1

Schoville, S. D., Bonin, A., Francois, O., Lobreaux, S., Melodelima, C.,
& Manel, S. (2012). Adaptive genetic variation on the landscape:
Methods and cases. Annual Review of Ecology, Evolution, and

tree.2014.10.004
Tobón-Niedfeldt, W., Mastretta-Yanes, A., Urquiza-Haas, T., Goettsch,

B., Cuervo-Robayo, A. P., & Urquiza-Haas, E. (2022). Incorporating
evolutionary and threat pro- cesses into crop wild relatives conser-
vation. Nature Communications, 13, 6254. https://doi.org/10.1038/
s41467-022-33703-0

Waldvogel, A., Rellstab, C., Bataillon, T., Feldmeyer, B., Rolshausen,
G., Exposito-alonso, M., Rellstab, C., Kofler, R., Mock, T., Schmid,
K., Schmitt, I., Bataillon, T., Savolainen, O., Bergland, A., Flatt,
T., Guillaume, F., & Pfenninger, M. (2019). Evolutionary genom-
ics can improve prediction of species’ responses to climate
change. Evoution Letters, 4(1), 4–18. https://doi.org/10.1002/
evl3.154

Willi, Y., Fracassetti, M., Zoller, S., & Van Buskirk, J. (2018). Accumulation
of mutational load at the edges of a species range. Molecular Biology
and Evolution, 35(4), 781–791. https://doi.org/10.1093/molbev/
msy003

Willi, Y., Kristensen, T. N., Sgro, C. M., Weeks, A. R., Ørsted, M., &
Hoffmann, A. A. (2022). Conservation genetics as a management
tool: The five best-supported paradigms to assist the manage-
ment of threatened species. Proceedings of the National Academy

https://doi.org/10.1017/9781009325844
https://doi.org/10.1017/9781009325844
https://doi.org/10.1007/s10592-014-0593-0
https://doi.org/10.1111/eva.13354
https://doi.org/10.1002/jwmg.21969
https://doi.org/10.1002/jwmg.21969
https://doi.org/10.1111/evo.12343
https://doi.org/10.1146/annurev-ecolsys-110411-160248
https://doi.org/10.1146/annurev-ecolsys-110411-160248
https://doi.org/10.1111/ele.13902
https://doi.org/10.1007/s10592-008-9622-1
https://doi.org/10.1007/s10592-008-9622-1
https://doi.org/10.1038/s41558-019-0584-8
https://doi.org/10.1038/s41558-019-0584-8
https://doi.org/10.1016/j.tree.2010.09.002
https://doi.org/10.1093/biosci/biac101
https://doi.org/10.1111/mec.13243
https://doi.org/10.1111/1755-0998.12654
https://doi.org/10.1016/j.tree.2010.09.002
https://doi.org/10.1111/csp2.12855
https://doi.org/10.1111/j.1365-294X.2004.02141.x
https://doi.org/10.1111/j.1365-294X.2004.02141.x
https://doi.org/10.1146/annurev.ecolsys.37.091305.110100
https://doi.org/10.1146/annurev.ecolsys.37.091305.110100
https://doi.org/10.1038/nature01286
https://doi.org/10.1038/nature01286
https://doi.org/10.1111/cobi.13838
https://doi.org/10.1002/fee.2253
https://doi.org/10.1002/fee.2253
https://doi.org/10.1016/j.tree.2014.10.004
https://doi.org/10.1111/eva.13205
https://doi.org/10.1111/eva.13205
https://doi.org/10.1038/s41467-020-19066-4
https://doi.org/10.1038/s41467-020-19066-4
https://doi.org/10.1111/ele.12977
https://doi.org/10.1111/ele.12977
https://doi.org/10.1175/JCLI-D-14-00362.1
https://doi.org/10.1175/JCLI-D-14-00362.1
https://doi.org/10.1016/j.tree.2014.10.004
https://doi.org/10.1038/s41467-022-33703-0
https://doi.org/10.1038/s41467-022-33703-0
https://doi.org/10.1002/evl3.154
https://doi.org/10.1002/evl3.154
https://doi.org/10.1093/molbev/msy003
https://doi.org/10.1093/molbev/msy003


17550998, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/1755-0998.13828, W

iley O
nline L

ibrary on [20/05/2024]. S
ee the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

AGUIRRE-LIGUORI e t  a l .

of Sciences of the United States of America, 119(1), 1–10. https://doi.
org/10.1073/pnas.2105076119

Willing, E.-M., Dreyer, C., & van Oosterhout, C. (2012). Estimates of
genetic differentiation measured by fst do not necessarily require
large sample sizes when using many snp markers. PLoS One, 7(8),
e42649. https://doi.org/10.1371/journal.pone.0042649

Wuest, S. E., Peter, R., & Niklaus, P. A. (2021). Ecological and evolu-
tionary approaches to improving crop variety mixtures. Nature
Ecology and Evolution, 5(8), 1068–1077. https://doi.org/10.1038/
s41559-021-01497-x

Zamora-Gutiérrez, V., Rivera-Villanueva, A. N., Martínez Balvanera, S.,
Castro-Castro, A., & Aguirre-Gutiérrez, J. (2021). Vulnerability of
bat-plant pollination interactions due to environmental change.
Global Change Biology, 27(14), 3367–3382. https://doi.org/10.1111/
gcb.15611

| 17

SUPPORTING IN FORMATION

Additional supporting information can be found online in the

Supporting Information section at the end of this article.

How to cite this article: Aguirre-Liguori, J. A., Morales-Cruz,

A., Gaut, B. S., & Ramírez-Barahona, S. (2023). Sampling

effect in predicting the evolutionary response of populations

to climate change. Molecular Ecology Resources, 00, 1–17.

https://doi.org/10.1111/1755-0998.13828

https://doi.org/10.1073/pnas.2105076119
https://doi.org/10.1073/pnas.2105076119
https://doi.org/10.1371/journal.pone.0042649
https://doi.org/10.1038/s41559-021-01497-x
https://doi.org/10.1038/s41559-021-01497-x
https://doi.org/10.1111/gcb.15611
https://doi.org/10.1111/gcb.15611
https://doi.org/10.1111/1755-0998.13828

