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Abstract—The advancement of new digital image sensors has
enabled the design of exposure multiplexing schemes where a single
image capture can have multiple exposures and conversion gains in
an interlaced format, similar to that of a Bayer color filter array. In
this article, we ask the question of how to design such multiplexing
schemes for adaptive high-dynamic range (HDR) imaging where
the multiplexing scheme can be updated according to the scenes.
We present two new findings. 1) We address the problem of design
optimality. We show that given a multiplex pattern, the conventional
optimality criteria based on the input/output-referred signal-to-
noise ratio (SNR) of the independently measured pixels can lead to
flawed decisions because it cannot encapsulate the location of the
saturated pixels. We overcome the issue by proposing a new concept
known as the spatially varying exposure risk (SVE-Risk) which is a
pseudo-idealistic quantification of the amount of recoverable pixels.
We present an efficient enumeration algorithm to select the optimal
multiplex patterns. 2) We report a design universality observation
that the design of the multiplex pattern can be decoupled from
the image reconstruction algorithm. This is a significant departure
from the recent literature that the multiplex pattern should be
jointly optimized with the reconstruction algorithm. Our finding
suggests that in the context of exposure multiplexing, an end-to-end
training may not be necessary.

Index Terms—High dynamic range imaging, spatially varying
exposure, exposure multiplexing, computational photography.

I. INTRODUCTION

D IGITAL image sensors today, at least for the majority of
them, pick and choose a global exposure and conversion

gain across the entire pixel array to control the amount of photon
flux reaching the sensor. For high dynamic range (HDR) scenes,
this global configuration requires the camera to capture a bracket
of exposures and use post-processing algorithms to fuse an HDR
image. However, in the presence of motion and noise, HDR
fusion is known to be difficult.

Approximately two decades ago, Nayar and Mitsunaga pro-
posed the idea of spatially multiplexing the exposure and con-
version gain [1]. The argument was that we could capture
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Fig. 1. Given an HDR scene, the choice of spatially-varying exposure pattern
significantly influences the quality of the reconstructed image. We propose a
new risk estimator to determine the optimal exposure pattern for capturing
high dynamic range scenes. [Left] HDR scene reconstruction using an arbitrary
spatially-varying exposure pattern. [Right] HDR scene reconstruction using the
optimal exposure pattern for the scene.

multiplexed exposures like color filter arrays in a single-shot to
avoid the motion problem. The reduction of the spatial resolution
can be, in principle, recovered by an appropriately designed
interpolation algorithm. Nayar and Mitsunaga’s idea led to a
series of very interesting work in coded exposures, including
adaptive control schemes [2], hardware multi-bucket sensor
designs [3], and some of the most recent works in co-optimizing
the multiplex pattern and the reconstruction algorithm via deep
learning [4], [5].

Despite the large number of prior work, we seldom ask
the question of how to design the multiplex pattern. This is a
meaningful question, because a poorly chosen multiplex pattern
can produce a substantially worse image than the optimal one, as
illustrated in Fig. 1. However, if we want to choose the optimal
pattern, we must first answer the question:

What is the optimality criteria for exposure multiplex?

“Optimality criteria” may seem trivial — just pick a pattern
that maximizes the signal-to-noise ratio (SNR)! But SNR of
what? If it is the SNR of the measured pixel values, then we need
a way to quantify the locations of the saturated pixels: a group of
sparsely located saturated pixels are easy to recover (think about
the color filter arrays) whereas a group of densely concentrated
pixels are hard to recover (think about inpainting a large hole in
an image). How about the SNR of the reconstructed image? This
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seems more plausible because if a final reconstruction has the
highest PSNR, then the pattern is optimal. However, to compare
the final reconstruction of every pattern, we need to first capture
the scene using every possible pattern. This exhaustive capturing
and reconstruction approach defeats the purpose of finding a
good multiplex pattern; if one already has all possible captures
and associated reconstructions, why bother finding the pattern
to be used? Therefore, as we can see, the above seemingly easy
task can quickly evolve into a challenging research problem.

The goal of this article is to clarify the difficulties and propose
solutions. Our two contributions are:
� We introduce the concept of spatially varying exposure

risk (SVE-Risk). SVE-Risk is customized to measure the
usefulness of a multiplex pattern. It is universal in the sense
that the risk does not require knowledge about a particular
image reconstruction algorithm but can still be used to
predict what pattern will likely yield the optimal final image
for the given scene. We also propose efficient computa-
tion methods for SVE-Risk and demonstrate practicality
of using our suite of algorithms for multiplex pattern
selection.

� We discover, through large-scale experiments, that a mul-
tiplex pattern and the image reconstruction algorithm do
not need to be co-optimized. This is a departure from prior
work that argue the necessity of co-optimization. We hope
that our finding can stimulate discussions about the future
sensor-algorithm co-design problems.

II. PROBLEM STATEMENT AND RELATED WORK

In this section we define notations, state the problem, and
comment on the related work.

A. Problem Statement and Notations

We let θ = [θ1, . . . , θN ] ∈ R
N be the ground truth image

denoting the incoming photon flux, and let y ∈ R
N be the

observed photoelectric signal produced by the sensor. If the
sensor uses a global exposure τ and a global gain α to capture
the image y, then y can be simulated according to the equation

y(α, τ) = ADC {Clip {CRF {(P[τθ · QE] + τμdark) · α}}
+N (0, σ2

read)
}
. (1)

We regard (1) as the first order approximation to the actual image
sensor. The symbols we used here are defined in Table I.

The concept of multiplexing is to assign, periodically, an
exposure pattern and a gain pattern such that each pixel will
be subject to a different exposure and gain. Mathematically, for
a 2× 2 exposure and gain pattern, we define

τ = {τ�} =

[
τ1 τ2

τ3 τ4

]
α = {α�} =

[
α1 α2

α3 α4

]
where each τ� is sampled from a set of exposure levels, e.g.,
{1, 2, 4, 8, . . .}. The same holds for the gain α�.

The core research question we ask in this article is the choice
of τ and α.

TABLE I
IMAGE SENSOR MODEL PARAMETERS

Given the scene radiance θ, how do we select τ = {τ�} and
α = {α�} to generate a y such that the reconstructed image
θ̂(y) has the highest PSNR?

Why limit to 2× 2 patterns? Readers coming from an
algorithmic perspective might think that limiting to 2× 2 is
too restrictive. Why not analyze 4× 4 or N ×N? The main
reason is that 2× 2 patterns are more hardware friendly than
other options1. However, even so, the purpose of this article is
not to argue that 2× 2 is the best option. Instead, the question we
ask is that given the problem of using 2× 2, how to determine
the optimal one? Having said that, and despite 2× 2 patterns
are the main subject of interest, we have included experiments
on other pattern sizes in Section IV-G.

What other options do we have for exposure control?
The theme of this article is exposure and gains controls. In the
literature, there are three mainstream approaches:

a) One fixed pattern for all: Mount a static mask with
spatially-varying light transmittance on top of the sen-
sor array. This requires minimal/no additional circuit as
compared with traditional CMOS sensors. However, the
spatially-varying exposure pattern is then fixed and can-
not be changed to adapt to the scene. Most traditional
work on spatially-varying exposure image reconstruction
explicitly/implicitly use this approach [1], [6], [7], [8],
[9], [10], [11], [12].

b) (This article) Periodic 2× 2, updated on-the-fly: Use
different signal lines to control the transfer timing (and
hence control the exposure time) of different pixels. This
approach allows the spatially-varying exposure pattern to
be set on-the-fly and adapt to the scene. However, the
number of signal lines increases linearly with the number
of independent controls, and so the number of signal lines
needs to be small. Overall, it is more functionally versatile
than mounted static mask at the cost of some additional
circuitry.

1An analogy worth mentioning is the color filter arrays: While we all agree
that the 2× 2 Bayer pattern is sub-optimal, today we only see a handful of
non-Bayer color filters in camera products. Even the latest 4-cell Quad-Bayer
patterns by Sony, Samsung and OmniVision are just variants of Bayer.
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TABLE II
COMPARISON OF PROBLEM SETTINGS

C) Per-pixel or per-block, updated on-the-fly: Two types
of hardware realizations are available, (1) add in-pixel
latches/flip-flops/logic circuit (also called digital pixel
sensor as compared with traditional active pixel sen-
sor), (2) use digital micromirrow device image sensor
(DMDIS) where the exposure of each pixel can be in-
dependently controlled. The downside of this approach is
that, for realization (1), the required additional circuitry is
gigantic and that it results in a low fill factor (as low as 6%
[13]) as well as higher circuit noise, and for realization
(2), the resolution, size, and form factor are limited and
it has only been demonstrated in lab environment so far.
Most of the focal plane coded exposure work adopt this
approach [13], [14], [15], [16], [17], [18], [19], [20], [21].

B. Related Work

Our work stands at the intersection of spatially-varying-
exposure (SVE) imaging and HDR imaging exposure control.
Some existing works are worth noting.

SVE Imaging: After Nayar and Mitsunaga [1], a number of
methods have been proposed to: improve image reconstruction
quality [6], improve reconstruction speed as well as robustness
against non-uniform noise strength [7], [22], adapt the applica-
tion of SVE HDR imaging from a single image to videos [8],
leverage the higher single frame dynamic range advantage of
SVE imaging to tackle motion registration problem of HDR
video capturing [9], extend the original concept of SVE to
the idea of generalized assorted pixel [10], in which image
resolution, dynamic range, and spectral profile can be balanced
post-capture by imaging with an optimized complex SVE mask.
Among these SVE imaging works, [10] is closest to our problem
and we emphasize the difference between their problem setting
and ours in Table II.

HDR Exposure Control: Exposure bracketing is a very popu-
lar HDR imaging technique, which fuses multiple LDR images
exposed at different levels to form one HDR image [23], [24],
[25], [26]. Despite its popularity, few studies focus on selecting
proper exposure levels for the LDR frames. These exposure
control algorithms devised for exposure bracketing mostly fall
into two groups: (1) algorithms focusing on design simplicity
and efficiency so as to be deployed on imaging devices [27], [28],
[29], [30], and (2) image formation modeling based algorithms
focusing on optimality, i.e., to find the optimal set of exposures
by some metric for reconstructing the scene [31], [32]. A recent
work also demonstrates the possibility of using reinforcement
learning to train an exposure bracketing selection network [33].
In terms of design, our SVE pattern selection algorithm is an
image formation modeling based algorithm; however, methods

Fig. 2. Two arrangements of saturated pixels share the same SNR-Risk; how-
ever, the image captured with arrangement A can be recovered by interpolation
while it is more challenging to recover that with arrangement B.

like [31], [32] cannot be migrated to our problem without signifi-
cant changes, in that spatial multiplexing and pixel interpolation
are not within their problem scopes. Imaging with other types
of image sensors, e.g., Quanta Image Sensors (QIS) [34], [35],
[36], are also candidate solutions to HDR imaging. It is further
suggested by [37], [38] that low bit-depth sensors provide wider
dynamic range. In this work, we use a general sensor model (1).

III. SVE PATTERN SELECTION FOR HDR

In this section we present the core idea of this article, which
is the concept of SVE-Risk and efficient methods to evaluate the
SVE-risk.

A. Limitations of SNR

To motivate the definition of the SVE-Risk, we first discuss
the limitations of the per-pixel output-referred2 signal-to-noise
ratio (SNR). In the context of our problem and image formation
model, the SNR at pixel i is

SNRi =

{
(αiτi)θi√

α2
i (τiθi+μdark)+σ2

read

, (αiτi)θi ≤ Vmax,

0, (αiτi)θi > Vmax,
(2)

where Vmax is the maximum voltage allowed by the ADC.
Intuitively, the SNR highlights two aspects of the expo-

sure/gain: (i) If the pixel is not saturated, then the SNR will
increase with αi and τi. (ii) If the pixel is saturated (so the signal
received by ADC exceeds Vmax), then the SNR is zero. The two
cases are consistent with the classical model in [1].

With the per-pixel SNRi defined, it is straightforward to define
the risk of adopting a particular (α, τ ) for capturing a given
scene using average SNR of all pixels:

SNR-Risk(α, τ ) =

(
1

N

N∑
i=1

SNRi

)−1

, (3)

where the reciprocal is used to convert the SNR to a risk.
SNR-Risk has two major drawbacks:
i) SNR-Risk is agnostic to how saturated pixels distribute in

the image. Consider the example shown in Fig. 2. While
the two patterns will give exactly the same SNR, only
pattern A is recoverable because neighboring pixels are

2In this article we are interested in full-well capacities that are sufficiently
large. For pixels with extremely small full-well capacity, e.g., Quanta Image
Sensors (QIS), one needs to use the more general formula known as the exposure-
referred SNR. We refer to the article by Chan [39] for details.

Authorized licensed use limited to: Purdue University. Downloaded on May 21,2024 at 01:40:31 UTC from IEEE Xplore.  Restrictions apply. 



264 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 10, 2024

available. Pattern B contains a large region of saturated
pixels, which is very difficult to recover.

ii) SNR is a pixelwise calculation without considering its
neighbors. Therefore, if there is a bright region, all four
control elements of the 2× 2 pattern will try to match
the scene without coordinating among themselves. The
consequence is that SNR-Risk will choose an all bright or
all dark pattern.

The SNR-Risk computes the risk for a pixel depending solely
on one pixel. This is in contrast to the fact that practical im-
age reconstruction algorithms almost always aggregate spatial
information before predicting a pixel’s output value. Hence,
SNR-Risk tends to over-estimate the risks associated with easily
recoverable pixels. To overcome this issue, we want to design
a risk with the neighborhood relations of pixels taken into
consideration. To summarize, SNR-Risk is not a good metric
because of the following.

SNR-Risk cannot comprehend the local structure of the ex-
posure, hence it cannot tell us whether the acquired image is
recoverable.

B. SVE-Risk

After explaining why SNR is not a good metric to assess the
multiplex patterns, in this subsection we introduce a new concept
called spatially varying exposure risk (SVE-Risk).

We first consider the definition of an ideal risk. Let y be
the sensor readout and estimator θ̂ = [θ̂1, . . . , θ̂N ] be the re-
construction mapping that produces an estimate θ̂(y,α, τ ) of
θ = [θ1, . . . , θN ]. The ideal risk is

Risk(α, τ ) = inf
̂θ

Ey

⎡⎣ 1

N

N∑
i=1

(
θ̂i(y,α, τ )− θi

θi

)2
⎤⎦ , (4)

where θi and θ̂i(·) denote the i-th element of the ground truth
radiance θ and the estimate θ̂(·), respectively. Note that if the
estimator θ̂ is a pixel-wise maximum likelihood (ML) estimator
using the forward model defined in (1), then the squared ratio
in (4) is exactly the inverse of pixel-wise output-referred SNR
for non-overflow pixels. From this perspective, the SNR-Risk
can be deemed as a special case of the ideal risk, in which the
estimator is predetermined to be a pixel-wise ML estimator.

The caveat of (4) is that an oracle estimator θ̂ for a scene is
never known and it is also impossible to obtain the infimum by
enumerating all possible reconstruction algorithms. To mitigate
this issue, we approximate the risk by using a hypothetical
ideal local estimator. This hypothetical estimator cannot be
constructed in practice (any reconstruction algorithm is likely
to be worse than the hypothetical estimator), but it can give us a
meaningful approximation to the infimum.

Definition 1 (Local estimator): A local estimator θ̂i at the
pixel i is a function that maps the neighborhood observations
yi = {yj | j ∈ Bi} to an estimate θ̂i(yi), where Bi denotes the
neighborhood around pixel i. If yi is saturated, θ̂i uses the
neighborhood without yi, i.e., y−i = {yj | j ∈ Bi}\{yi}.

As we define this hypothetical local estimator, we assume that
it has the perfect knowledge about inter-pixel correlations of its
neighborhood. Therefore, it allows us to achieve two things:
� When a pixel is not saturated, the estimator will return us

the same value as the SNR-Risk.
� When a pixel is saturated, the estimator will make an

interpolation. The interpolated pixel will have a risk no
higher than the largest risk within the neighborhood.

Based on these properties, we can define the SVE-Risk by
considering three situations:

The SVE-Risk of the i-th pixel is defined as

SVE-Riski(α, τ ) (5)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

θ2
i |B∗

i|
[
(θi+μdark)

τi
+

σ2
read

α2
i τ

2
i

]
, unsaturated,

max
j∈Bi\{i}

1
θ2
j |B∗

j |
[
(θj+μdark)

τj
+

σ2
read

α2
jτ

2
j

]
, sat.,�Bi,(

Vmax
αiτi

− θi

)2

, sat.,×Bi,

whereB∗
i = Bi \ S is the neighborhood around pixel iminus

the set of saturated pixels S .

Let’s elaborate on the three cases in the definition:
� Unsaturated: If a pixel is unsaturated, the risk is defined as

the variance of the measurement (which is the denominator
of (2), squared and normalized). The normalization is
necessary for preventing bright regions in the image from
dominating darker region risks and is crucial for HDR
imaging. For unsaturated pixels, the risk calculated in (5)
is essentially SNR-Risk value scaled by the number of
observations in the neighborhood.

� Saturated, �Bi: The neighborhood contains pixels that
can be used for interpolation. In this case, the risk is defined
as the worst variance in the neighborhood. The intuition is
that since SVE-Risk uses neighboring pixels to determine
the risk, it can be deemed as an extension of the SNR-Risk
where we combine independent exposures.

� Saturated, ×Bi: The neighborhood does not contain any
useful pixels. The risk is defined as the squared error
between the cutoff Vmax

αiτi
and expected radiance θi. Note

that this risk is worse than the second case because, in the
second case, the substitution comes from one of the un-
saturated pixels. For the third case, the difference between
Vmax
αiτi

and θi can be very large if θi is far from the cutoff.
With pixel-wise SVE-Risk defined, we define overall SVE-

Risk by taking sum of each pixel’s risk.

The SVE-Risk of the whole image is defined as

SVE-Risk(α, τ ) =

N∑
i=1

SVE-Riski(α, τ ). (6)
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Fig. 3. Our imaging pipeline is for dynamical control of the exposure. We
capture a low-resolution pilot image using a fixed 2× 2 exposure pattern (typi-
cally high-medium-medium-low) to construct a histogram. From the histogram
we compute the risk, and guide by the risk we capture the full image. Since
the SVE-Risk is calculated based on the histogram instead of the image, its
computational cost is very low.

C. Computing SVE-Risk

After defining the SVE-Risk, the next big question is how
to compute this seemingly “uncivilized” (5). However, before
we explain how we calculate the SVE-Risk, we first explain the
overall imaging pipeline outlined in Fig. 3.

Since our imaging goal is to dynamically control the exposure,
our decision on the 2× 2 pattern needs to be fast. As illustrated
in Fig. 3, the way we compute the SVE-Risk is based on
the histogram of the scene radiance. This histogram does not
need to be perfectly precise. Therefore, we can use a lower
resolution of the same scene, e.g., a 4× down-sampled capture
for a 1 megapixel sensor at a natural scene, and we can use
any average 2× 2 pattern such as high-medium-medium-low.
The purpose of the pilot capture is to construct a histogram
so that we can make decisions for choosing the 2× 2 pattern,
and the size of it depends on the spatial frequency of image
contents and the spatial resolution of the imaging devices. An
alternative way to think of this pilot capture is, in video cap-
turing, using the previous frame to guide the pattern selection
for the next frame. This saves dedicated captures and potentially
allows spatially-varying pattern-based HDR video on the fly at
a cost of some SVE-Risk computation and hardware control
overhead.

We now discuss the histogram. Assume we have collected
a pilot image. We denote the distribution of the radiance
as p(θ). An example is shown in Fig. 4. We stress again
that operating on the radiance distribution rather than indi-
vidual pixels is more efficient, because, once the histogram
is built, the complexity of pattern risk estimation becomes
proportional to the number of bins in the histogram (order of
magnitude is hundreds to thousands) instead of the number
of pixels (order of magnitude is hundreds of thousands to
millions).

Given a pattern {(τ�, α�) | � = 0, . . . , 3}, without loss of gen-
erality, we assume that the exposures/gains are sorted so that
α0τ0 ≤ α1τ1 ≤ α2τ2 ≤ α3τ3. The pattern gives us four cutoff
radiance levels Vmax

α�τ�
which partition the entire radiance range

into five intervals, as shown in Fig. 4.

Fig. 4. An example radiance histogram. The overall radiance histogram is
partitioned by the 4 exposures/gains into 5 intervals. For the unsaturated pixels
in intervals A to D, the risk associated with them corresponds to the unsaturated
case in (5). Pixels in the interval above the threshold Vmax/τ0α0 (interval E)
are all saturated and unlikely to be recovered. Their risks are computed as the
empirical mean squared error as the saturated,×Bi case in (5). Risks of saturated
pixels in intervals below Vmax/τ0α0 (intervals A to D) can be substituted with
the worst risks of their neighbors, which is the saturated, �Bi case in (5).

As shown in Fig. 4, a radiance level θ saturates an expo-
sure/gain element (τl, αl) if it is greater than the correspond-
ing cutoff Vmax

α�τ�
. For θ > Vmax

α0τ0
(interval E), they saturate all

exposure/gain elements and it is very likely that the pixels
corresponding to these radiance levels are not recoverable by
any reconstruction algorithm. In this case, risk associated with
these radiance levels is, according to Case 3 in (5):

SVE-Risknonrecoverable(α, τ , θ) =

(
Vmax

α0τ0
− θ

)2

. (7)

Now consider a radiance level between two cutoffs Vmax
α�τ�

<

θ < Vmax
α�−1τ�−1

(i.e., a radiance level in intervals B, C, D). The
radiance level θ saturates all exposure/gain elements below it;
however, since there are neighboring elements not saturated by
θ, it is likely that saturated pixels at this radiance level can be
recovered by exploring their neighbor pixels. The risk associated
with this radiance level is then, according to Case 1 and Case
2 in (5):

SVE-Riskrecoverable(α, τ , θ)

=
1

4

⎡⎢⎢⎢⎢⎣
�−1∑
j=0

1

Bjθ2

(
(θ + μdark)

τj
+

σ2
read

α2
jτ

2
j

)
︸ ︷︷ ︸

contribution from non-saturated elements

+

3∑
j=�

1

B0θ2

(
(θ + μdark)

τ0
+

σ2
read

α2
0τ

2
0

)
︸ ︷︷ ︸
saturated, use risk of worst non-saturated neighbor

⎤⎥⎥⎥⎥⎥⎦ , (8)

whereBj is the number of non-saturated pixels within the neigh-
borhood (with predetermined size) of exposure/gain element
(αl, τl). Note that, since we know how pattern is tiled across
the entire sensor array, Bl can be calculated for each saturation
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TABLE III
COMPARISON OF RISK ESTIMATOR RUN TIME FOR SENSORS OF DIFFERENT

RESOLUTIONS

scenario (i.e., 0 ,..., 3 exposure/gain elements saturated) before-
hand and be stored in memory (see supplementary).

The risk is therefore the sum of (7) and (8).

To numerically compute the SVE-Risk, we construct the
radiance histogram (like Fig. 4), and calculate

SVE-Risk(α, τ )

=

∫ ∞

Vmax
α0τ0

SVE-Risknonrecoverable(α, τ , θ)p(θ) dθ

+

∫ Vmax
α0τ0

0

SVE-Riskrecoverable(α, τ , θ)p(θ) dθ,

where p(θ) is the radiance histogram of the pilot capture.

We show a comparison of the run time of calculating the
SVE-Risk and the SNR-Risk in Table III. Since SVE-Risk is
calculated using the histogram, it is insensitive to the image
resolution. In contrast, since SNR needs to evaluate every single
pixel, its computation grows with the number of pixels.

D. Efficient Pattern Enumeration

There is one final design question we need to answer before
using the SVE-Risk. It is the problem of candidate patterns to
evaluate. Suppose we have 9 exposure levels for a 2× 2 pattern,
we will have a total of 94 = 6561 candidates. It will be too
much computation if we need to calculate the SVE-Risk for
each candidate pattern. Therefore, in this subsection, we present
a method to eliminate low priority patterns.

To remove the low-priority patterns, we made an observa-
tion that the majority of all candidate patterns are redundant.
For example, from the reconstruction point-of-view, an ex-
posure pattern τ = {1, 10, 10, 10} is almost identical to pat-
terns {10, 1, 10, 10}, {10, 10, 1, 10}, and {10, 10, 10, 1}. To
justify this claim, we experiment with three representative re-
construction algorithms on sensor readouts synthesized with
these four patterns. We test on a dataset containing 46 images
and show the results in Table IV. Across the four exposure
patterns, the reconstruction results are identical for any fixed
algorithm.

Based on the observations above, we define the concept of
pattern equivalence: two patterns are equivalent for capturing a
scene if they are permutations of each other. Our proposed strat-
egy is to enumerate on pattern equivalence classes and compute
canonical form of each class. The canonical pattern is the one

TABLE IV
μPSNR (DB) OF THE RECONSTRUCTED IMAGES FOR THE FOUR EQUIVALENT

MULTIPLEX PATTERNS

with maximum variation in the 2× 2 grid. Specifically, if the in-
put pattern is τ = [τ1, τ2, τ3, τ4], we sort the sequence to obtain
sort(τ ) = {τ[1], τ[2], τ[3], τ[4]} where τ[1] ≤ τ[2] ≤ τ[3] ≤ τ[4].
The canonical pattern is then defined as

canon(τ ) =

[
τ[1] τ[3]

τ[4] τ[2]

]
.

The intuition here is that since sort(τ ) is already sorted, the
alternating allocation of the exposure values will maximize the
variation within the 2× 2 grid. For example, the canonical forms
of the patterns τ = [8, 32, 1, 10] and τ = [1, 10, 1, 10] are

canon(τ ) =

[
1 10

32 8

]
and canon(τ ) =

[
1 10

10 1

]
,

respectively. Once all the patterns are converted to their canon-
ical forms, checking the equivalence is simplified to check
whether the two canonical forms are identical.

By enumerating on equivalence class instead of all realizable
patterns, we reduce the complexity to

∑min(L,m)
k=1

(
L
k

)(
m−1
k−1

)
while maintain same coverage of realizable pattern space.3

When L = 9 and m = 4, this reduces enumeration size from
6561 to 495.

Remark: Readers may ask: The proposed algorithm is largely
an exhaustive search and it requires knowledge about the radi-
ance distribution. Is it possible to improve the search? We note
that the pilot estimate is designed to be coarse. As long as the
shape of the radiance distribution is obtained, we can perform
the histogram-based calculation. For faster algorithms, we do
not think the typical gradient-based algorithm would work here
because our problem is discrete with many stationary points.
There might be some discrete optimization methods. We are
open to explore them in our future work.

IV. OPTIMALITY AND UNIVERSALITY

In the beginning of the paper, we mentioned two key findings
of this article. Firstly, we claim that for exposure multiplex-
ing, there exists a better optimality criteria than the SNR. We
have elaborated on the SVE-Risk in the previous section. In
this section, we evaluate SVE-Risk by justifying the following
statement.

3See supplementary for the derivation and pseudo-code.
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Optimality: The SVE-Risk optimal exposure multiplex pat-
tern can generate a raw image, if passed through a recon-
struction algorithm, with nearly the highest PSNR.

The second claim we made is universality. In this section, we
justify the following statement.

Universality: The optimal exposure multiplex pattern is
universally good for all image reconstruction algorithms.

Because of the empirical nature of both statements, we answer
them through experiments. Our experiments involve large-scale
datasets, several new ways of visualizing the results, and a
collection of real data.

A. Datasets

Before diving into experiment design and results, we describe
datasets and synthesis parameters in more details. We use lin-
earized ground truth 16-bit HDR images from NTIRE [42],
HDR-Eye [43], and SIGGRAPH17 [44] datasets as scene radi-
ance maps. These radiance maps are normalized such that, under
minimal exposure and unit gain, the photon flux corresponding
to 99 percentile is within the ADC range. This setting is practical
and realizable on hardware using modern auto-exposure control.
We do not attempt to accommodate for the brightest 1% of pixels,
because these pixels usually are light sources that directly shine
on the sensor. Each normalized radiance map is resized such that
the short edge has a length of 512 pixels. The radiance maps
are then used to synthesize raw sensor readout using image
formation model in Section II-A. We use HDR-Eye data for
reconstruction algorithms hyper-parameter tuning and model
training, SIGGRAPH17 data for hyper-parameter validation,
and NTIRE data for testing and empirical study.

B. Reconstruction Algorithms

An important task of our verification is to evaluate the quality
of the reconstructed image. Thus, it is necessary to consider im-
age reconstruction algorithms. However, given the sheer volume
of reconstruction methods, it would be impossible to evaluate
everyone. A surrogate we take here is to consider three repre-
sentative classes of algorithms. Within each class, we consider
a representative method which we can either implement or we
have access to the original source code.

i) Non-data-driven non-iterative: Algorithms in this class
do not require any training and usually make relatively
simple or even no assumptions about image structure.
During reconstruction, the estimation for each pixel is
only carried out once (hence non-iterative). Traditional
bi-linear/quadratic/cubic interpolation, median filters, fil-
ter banks and more fall into this class. We adopt and
implement a local polynomial approximation (LPA) [7]
as a representative of this class.

ii) Non-data-driven iterative: These are classical tools for
solving an inverse problem. Compared with non-iterative
approaches, algorithms in this class usually model both

the forward imaging process and underlying image struc-
ture/prior. This class of algorithms alternate between a
forward step to handle the data fidelity, and a backward
step that integrates the scene prior. Typical examples
include Plug-and-Play [40] and Piecewise Linear Esti-
mators [45], etc. We implement a Plug-and-Play ADMM
with total variation prior (ADMM-TV) to represent this
category.

iii) Data-driven: Dictionary learning [46] and neural
networks [41], [47], [48] based image reconstruc-
tion/restoration methods fall into this category. It should
be noted that although some non-data-driven iterative
approaches may also adopt a dictionary or network as
a sub-component (e.g., one may use a denoiser network
in Plug-and-Play framework as prior step), and there
has been numerous efforts [49], [50] to try to bring
together the best of both tools, we do not consider them
as purely data-driven approaches. We limit the scope of
this category to methods that are one-pass (i.e., non-
iterative) and trained directly for the inference task. We
use Restormer4 [41] as an example of this category.

C. Metrics

Because of the unique problem setting we have, there is no
prior standardized evaluation criterion. To this end, we consider
a few known metrics and introduce a few new ones.

i) μPSNR, μSSIM, μLPIPS: In high dynamic range im-
ages, high exposure regions can easily dominate losses
or metrics over low exposure regions; therefore, evaluat-
ing reconstruction quality in linear scale is usually less
meaningful. Similar to other HDR related works [33], we
evaluate reconstruction quality onμ-tone-mapped images,
which is defined as

xμ =
log(1 + x · μ)
log(1 + μ)

,

where x is a linear scale image normalized to [0, 1] and μ
is a hand-picked hyper-parameter controlling the strength
of dynamic range compression. In our experiment, we
set μ to the maximum reference level of ADC (see
Section II-A).
In tone-mapped space, we measure the PSNR (μPSNR,
higher is better), structural similarity (μSSIM, higher is
better) [51], and perceptual distance (μLPIPS, lower is
better) [52] between reconstructions and ground truth
images.

ii) SNR-Risk, SVE-Risk, and their variants: Since one
main objective of this article is to propose SVE-Risk, it
is necessary to compare it with SNR. In addition to the

4We discovered in our experiment that networks cannot be trained well when
the input to a network has a very high dynamic range, and this training failure
cannot be saved by input normalization. Therefore, instead of operating on raw
sensor readout in linear scale and predict a linear/log scale output (as most
of network-based HDR works do. Their inputs are usually LDR images and
their task is to combine LDR images into HDR images, so the domain of their
problems does not align exactly with ours), we take a log scale normalized sensor
readout as input and predict a log scale radiance map.
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standard SNR-Risk and SVE-Risk described in previous
sections, we also evaluate following two variants of the
risks, which arise naturally as one contemplate why one
risk works while the other does not. Thus, we have four
risk terms to consider:

� SNR-Risk, as defined in (3).
� SVE-Risk, as defined in (6).
� SNRMSE: SVE-Risk assigns coarse estimates of mean

squared error (MSE) as risk to unrecoverable pixels. Given
the close relationship between MSE and PSNR/SSIM, one
may wonder if this assignment gives SVE-Risk an unfair
advantage over SNR-Risk, as SNR-Risk is purely forward
model based. To answer this, we modify SNR-Risk by
assigning the actual MSE between the normalized sensor
readout (i.e., y/(ατ)) and the corresponding ground truth
to overflowing pixels. We denote this variant as SNRMSE

in results.
� SVEw/o: The idea of our SVE-Risk design is that it penal-

izes neighborhoods with too many saturated pixels through
an auto-tuned parameter |B|. We evaluate SVE-Risk with-
out the penalty term |B|, denoted SVEw/o in results, to show
that this idea is indeed imperative for achieving optimal
performance instead of being a dubious add-on.

D. Verify the Optimality of SVE-Risk

In this subsection we discuss our experiments to assess the
optimality of the SVE-Risk. We first discuss the protocol of the
experiment, and then the results.

Protocol of experiment: We would like to compare SNR-Risk
and SVE-Risk. The evaluation of SNR-Risk requires access to
the radiance map. For convenience, we directly use ground truth
radiance map as the input. The evaluation of SVE-Risk is easier
because we only need the histogram. We assume we have access
to 4 exposures evenly distributed across the total exposure levels.
The histogram is then built using all non-saturating pixels.

Given a set of candidate patterns (495 patterns in our exper-
iment), we define the oracle pattern as the one that gives the
highest PSNR. We do not have access to this oracle pattern. We
want to use a risk to estimate the best pattern and to rank all
patterns. Note that the ranked top-1 pattern by a risk is usually
not the oracle pattern.

To gauge the ranking power of a risk, it is not informative
to compare the rank of the oracle pattern rated by different
estimators, because the ranks do no reflect reconstruction quality
differences. It is also not enough to only look at the recon-
struction quality difference between the top-1 pattern and the
oracle pattern for two reasons. Firstly, a small quality difference
can be a coincidence due to specific textures or scenes being
insensitive to choices of pattern. Secondly, even a risk that rank
patterns poorly may find an acceptable pattern once in a while
(as illustrated in Fig. 6(d)).

Therefore, in our evaluation protocol, we propose to measure
two descriptive statistics of risk estimators:

A) Average quality difference between using the oracle and
the top-K patterns ranked by an estimator. This statistic
evaluates the absolute reconstruction quality drop when

Fig. 5. Scenes and their corresponding oracle patterns.

one uses top patterns selected by a risk estimator com-
pared to using the oracle pattern. Furthermore, if top-K
average difference is an increasing function ofK, then the
risk estimator likely has good ranking power on patterns.
Mathematically, we define

ΔK =
1

NK

N−1∑
n=0

K−1∑
i=0

⎛⎝ s∗n︸︷︷︸
oracle score

− sn,i︸︷︷︸
i-th score

⎞⎠ , (9)

where ΔK is the top-K average difference, s∗n is the
score of the oracle pattern on the n-th radiance map
(n = 0, 1, . . . , N − 1, withN = 1494 in this article), sn,i
is the score of the i-th top pattern as ranked by the risk.

B) Probability that the reconstruction quality difference be-
tween the oracle pattern and the top-1 pattern is above
certain pre-determined threshold. This statistic mea-
sures: given a threshold that one considers as critical,
what is the probability that using a particular risk es-
timator will not yield satisfactory results. Formally, we
define

Q(η) =
1

N

N−1∑
n=0

I

{
s∗n − sn,1

s∗n
> η

}
, (10)

where Q is the probability of having a difference above a
threshold η, I[·] is an indicator function.

Results: We show in Table V the top-K average differences
andQ scores at two thresholds across the pattern ranking dataset.
The full SVE-Risk is capable of selecting a pattern that will
yield a reconstruction with close to oracle performance, with
an average μPSNR drop for the top-1 pattern around 1 dB.
SVE-Risk without the neighborhood penalty term can still pick a
reasonably good pattern, but is almost always subpar compared
to pattern selected by full SVE-Risk. SNR-Risk as well as its
variant SNR-RiskMSE are incapable of picking a good pattern
in almost all scenarios, and equipping SNR-Risk with MSE for
overflowing pixels does not help SNR-Risk. This experiment
shows the significance of properly assigning surrogate risk to
recoverable overflowing pixels and exposure/gain control ele-
ment binding.

How do the Optimal Patterns Look Like? To give readers
an idea of how the optimal exposure/gain patterns look like,
we show in Fig. 5 four randomly selected scenes and their
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TABLE V
TOP-K AVERAGE DIFFERENCES AND Q SCORES AT THRESHOLDS

Fig. 6. Scatter plots of μPSNR of exposure patterns with their x-coordinates sorted. Each dot represents a pattern. (a) Exposure patterns sorted by their
corresponding μPSNR scores from low to high, representing what an ideal risk estimator should achieve. An ideal risk estimator always assigns lower risks to
patterns yielding higher μPSNR. (b)–(e) Exposure patterns sorted by their estimated risk values using various risk estimators. The y-coordinate of a dot is the
μPSNR of reconstruction using that pattern.

corresponding optimal exposure/gain patterns. As the radiance
of the scenes change from all dark to all bright, the optimal
patterns change from all-high to all-low. This variety of scenes
with the experimental results suggest that our proposed scheme
is able to adaptively select the exposure and gain based on the
radiance.

Visualize Ranking Power: To illustrate the ranking power of
SNR-Risk and SVE-Risk, we show a scatter plot of μPSNR of
a scene sorted by risk values in Fig. 6. We remark that this is a
novel visualization of the performance, as we have not seen a
similar plot in the literature.

To interpret the results of this plot, we note that the x-axis of
the plots is the risk ranked from high to low. There are four risks:
SNR, SVE, SVE w/o and SNRMSE. The ideal risk for our task is
μ PSNR. If we use μPSNR as the metric to rank the patterns,
we will have a scatter plot shown in Fig. 6(a). A better pattern
ranked by μPSNR will, of course, give a higher μPSNR. When
we evaluate other risks, we see that the proposed SVE-Risk has
the closest behavior to the ideal risk. In contrast, SNR-based
risks show an overlapped behavior. This means that if we use
SNR to pick the pattern, we will not be able to tell which pattern
is the best because for the same SNR (x-axis), we have multiple
patterns on the y-axis.

Staircase μPSNR Behavior: Readers may wonder about the
step-wise behavior. This is due to the image histogram, as the
scene may contain large flat regions of similar radiance values.
As the minimum exposure and gain go above certain thresholds,
the brightest large region of scene becomes completely saturated
and irrecoverable, causing significant quality drop. Such drop
is intrinsic to the scene itself and related to values that local
exposure and gain can take, but no pattern is guaranteed to be
in any particular cluster as the scene varies (i.e., no intrinsically
bad pattern).

Visualize the Patterns: A visualization of adopting the top
pattern selected by different risks for capturing is shown
in Fig. 7. In Fig. 8, we show an example of reconstruct-
ing simulated readouts captured with SVE-Risk top pat-
tern and SNR-Risk top pattern using different reconstruction
algorithms.

Can SNR-Risk Work if We Discard “Bad” Patterns? A
common question people ask is that would SNR-Risk perform
better if we throw away the bad patterns. Our answer is no.
Firstly, we simply cannot discard bad patterns when there is no
intrinsically bad pattern. Secondly, even if we analyze current
scene and discard all patterns that may yield large saturated
region, pixel-wise SNR will still not use nonuniform exposure
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Fig. 7. Qualitative comparisons of risk estimators. Images in the middle are the ground truth. Images on the sides are reconstructions using simulated readouts
captured with spatially-varying exposure patterns selected by different risk estimators. Oracle denotes the best possible pattern through exhaustive search.
(a) SNR-Risk is dominated by relatively darker regions, so it selects an exposure pattern such that the high-light textures are irrecoverable. SVE-Riskw/o fails to
retain low-light details, e.g., characters on the license plate. Oracle and SVE-Risk selections preserve most information across high dynamic ranges. (b) SNR-Risk
is unable to pick a spatially-varying exposure/gain, and therefore compromises texture in high-light regions and introduces irrecoverably heavy noise in low-light
region. SVE-Riskw/o loses details in medium exposure regions such as the human face and the white shirt. Oracle and SVE-Risk selections trade off high/low flux
regions differently: the oracle pattern better preserves the face but loses some details of the curtain, while SVE-Risk’s top pattern preserves all curtain details but
results in a slightly more blurry face. The reconstruction algorithm is restormer for all images. All images are tone-mapped.

Fig. 8. Images reconstructed by different algorithms. Using the sub-optimal spatially-varying exposure pattern selected by SNR-Risk, all three reconstruction
algorithms fail to recover the texture of the hardwood flooring.

levels. This can be seen in the μPSNR v.s. risk rank scatter plots
as shown Fig. 9.

E. Verify the Universality of Patterns

In this subsection, we describe our discovery that an expo-
sure/gain pattern is universal for many image reconstruction
algorithms. This is a significant departure from the recent trend
of camera-algorithm co-optimization where people have been

arguing that jointly optimizing the pattern and the algorithm
is essential (e.g., [53] finds better color filter patterns by back-
propagating through reconstruction networks). Our experiments
in this subsection show the opposite. We find that the design of
the exposure/gain pattern can be completely decoupled from the
design of the image reconstruction algorithm.

Spearman’s ranking correlation: To evaluate the dependency
of the pattern and the algorithm, we need some notion of corre-
lation between the two factors. The metric we consider in this
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TABLE VI
AVERAGE (STANDARD DEVIATION) AND MEDIAN CORRELATION COEFFICIENTS AND AVERAGE P-VALUE OF EACH CORRELATION COEFFICIENT ACROSS NTIRE

DATASET

Fig. 9. μPSNR versus risk rank scatter plots. Even if we throw away bad
pixels, SNR-Risk still cannot generate a smooth curve. In contrast, SVE-Risk
produces a largely smooth curve. Color code: (Blue: SVE, Orange: SNR).

article is the Spearman’s ranking correlation [54], although other
types of correlations can also be used.

For each ground truth radiance image θ, we synthesize
495 raw sensor readouts {x0, . . .,x494}, one for each pattern
equivalence class. For each readout, we use three distinct al-
gorithms {f0, f1, f2} to reconstruct the radiance image and
evaluate the reconstruction quality using three different metrics
MμPSNR,MμSSIM,MμLPIPS. We define a score as

si,j,k = Mk(fj(xi),θ), (11)

where si,j,k denotes the score using ith pattern, jth algorithm,
and metric k. The exhaustive evaluation results are collated to
create a pattern ranking data set. We assess whether a monotonic
relationship exists between a pair of reconstruction algorithms
as pattern varies by computing Spearman’s ranking correlation
coefficient [54] over scores of a metric

ρj,j′,k = Spearman({(si,j,k, si,j′,k) | i = 0, . . . , 494}),

where a tuple of scores (si,j,k, si,j′,k) is treated as an observa-
tion, associated with which a p-value describes the probability
that no monotonic relationship exists between them. The cor-
relation coefficients are computed for every pair of algorithms
over all 1494 images from NTIRE dataset.

Experiment Protocol: The overall procedure of the experi-
ments is as follows. Given a scene radiance map, we exhaustively
evaluate reconstruction quality of distinct reconstruction algo-
rithms on synthesized sensor readouts for all patterns returned by
our enumeration algorithm. Taking reconstruction quality scores
as data samples, we calculate Spearman’s ranking correlation co-
efficient for every pair of reconstruction algorithms. We conduct
hypothesis testing
� H0 : the reconstruction quality between two algorithms are

uncorrelated as exposure pattern varies,
� Ha : the reconstruction quality are positively correlated.

This procedure is repeated on every sample of NTIRE [42]
dataset. We report the average and median of correlation co-
efficients across 1494 images for each metric in Table VI .

Results: To give a sense of the reported value, we also show
scatter plots of μPSNR of pairs of reconstruction algorithms in
Fig. 10, with detailed numbers shown in Table VI.

The three scattered plots in Fig. 10 are worth discussing.
These three subplots are the μPSNR comparison between LPA,
ADMM-TV, and Restormer. The scattered plot shows a sur-
prisingly strong correlation between any pair of the methods:
If a 2× 2 pattern favors LPA, it also favors ADMM-TV, and
similarly for other pairs. Therefore, at least based on this limited
set of experiments, we find that if a pattern is good, it is
good for all reconstruction algorithms; if it is bad, it is bad
for all reconstruction algorithms. By inspecting the numbers
in Table VI, we further note that the Spearman’s correlation
coefficients are all in the range of 0.87 or above (for μPSNR).
For other evaluation metrics μSSIM and μLPIPS, we also see a
high correlation coefficient.

We believe that this finding is new and perhaps less expected.
The implication is that if we need to design the multiplexing
pattern, there is no need to consider the image reconstruction
algorithm. This is a good news from the point of a designer’s
perspective. Co-optimization is not always preferred because
we do not want the patterns to be dependent on a particular
algorithm. If we can modularize the designs of the two, the
debugging and analysis of the methods will be significantly
easier.

F. Real Experiments

In this section, we test the SVE-Risk and SNR-Risk on real
camera raw readouts and show the feasibility of the proposed risk
on real hardware for exposure pattern selection. Since no SVE
sensor is available to us, we interlace real camera raw readouts
to synthesize images captured with SVE patterns.

1) Experiment Settings and Procedure: For each high dy-
namic range scene, we use a Sony Alpha 7 II camera to capture
9 differently exposed LDR frames. We capture 5 HDR scenes
in total. For ease of camera parameter calibration, we keep the
camera ISO at 100 and gradually increased the exposure time
from 1/80 sec to 3.2 sec, doubling from one frame to the next. Our
imaging model based risks require knowledge of dark current
and read noise level. For these two parameters, we estimate them
by capturing three dark frames (ISO 100, exposure 1/80 sec,
0.2 sec, 1.6 sec). We generate a pseudo ground truth radiance
map by fusing all 9 frames. We synthesize all possible SVE
captures using following procedure:

A) Enumerate all possible SVE patterns with 9 different
exposures.

B) For each pattern, pick the corresponding frames from the
9 raw frames.
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Fig. 10. Tone-mapped ground truth HDR scene and cross comparisons between reconstruction algorithms in μPSNR. Each dot in the scatter plots represents an
exposure pattern. The x and y coordinates are μPSNR scores of the reconstructions by different algorithms on the image captured using that exposure pattern. The
average correlation coefficient of the three scatter plots is approximately ρ = 0.86.

TABLE VII
MEASURED PARAMETERS IN TERMS OF EQUIVALENT CHARGES FOR REAL

CAMERA EXPERIMENT

TABLE VIII
μPSNR OF IMAGES RECONSTRUCTED FROM RAW IMAGES INTERLACED

ACCORDING TO BEST POSSIBLE PATTERNS (ORACLE), PATTERNS SELECTED BY

SVE-RISK, AND PATTERNS SELECTED BY SNR-RISK, COMPARED TO THE

PSEUDO GROUND TRUTH

C) Interlace picked frames to generate an SVE frame by
taking every other pixel.

Then, we use our trained Restormer to reconstruct scene ra-
diance for every SVE captures and compare the reconstruction
against the pseudo ground truth. We build the empirical radiance
histogram of a scene by treating the SVE capture with exposure
(1/80 sec, 1/20 sec, 1/5 sec, 4/5 sec) as the pilot frame. We
use this histogram to calculate SVE-Risk for every pattern. For
SNR-Risk, we used the pseudo ground truth of a scene for
calculation.

The camera response function (CRF) of Sony Alpha 7 II
camera raw readout is close to linear at ISO 100 except when the
photon charge accumulated is near full well capacity. Therefore,
we use a linear CRF and aggregate the entire conversion from
charge to final ADC readout (voltage follower gain, column
amplifier gain, and output amplifier gain) into conversion gain
term α in (1). The final parameters used in this experiment are
listed in Table VII.

2) Results: We show the quantitative reconstruction quality
in terms of μPSNR in Table VIII and two sets of qualitative
results in Fig. 11. As evidenced in both quantitative and quali-
tative results, using top pattern selected by SVE-Risk can yield
near-optimal final reconstruction.

G. Generalization to N ×N and Color

In this section, we demonstrate the application of SVE-Risk
to larger multiplexing patterns and color imaging.

Experiment Settings. Larger multiplexing patterns: Our pre-
vious discussions and analyses are based on a fixed pattern size
of 2× 2. Here, we further test on 3× 3 and 4× 4 exposure/gain
patterns using the same procedure in Section IV-D. To compute
SVE-Risk, we previously use a 3× 3 neighborhoodBi for 2× 2
patterns, and here we use 5× 5 and 7× 7 neighborhoods for
3× 3 and 4× 4 pattern cases, respectively. For comparison
purposes, we used the same number of exposure-gain levels as
previous, resulting in a total of 24,310 and 735,471 possible
patterns in 3× 3 and 4× 4 cases. We use Restormer as the
reconstruction algorithm. We again illustrate the ranking power
of SVE-Risk with scatter plots and visualize the reconstruc-
tion results for all pattern sizes. We also report the average
performance measured by Δ1 and Q(1%) metrics calculated
for μPSNR for each size. Due to the volume of the possible
patterns, we do not carry out evaluation for all patterns. In-
stead, after ranking the patterns with SVE-Risk, we sample
100 patterns uniformly from the best to the worst in terms
of their ranks. If the SVE-Risk works for larger multiplexing
patterns, we should observe similar trend in the scatter plots as in
Fig. 6.

Color imaging: Capturing and reconstructing color images is
one of the most critical and challenging problems in imaging
today. It usually requires both a special design of hardware
such as color filter array and a corresponding software algorithm
such as demosaicking. Exploring these color imaging pipelines
or finding the optimal color reconstruction methods is beyond
the scope of this article. Yet, we demonstrate the possibility of
combining color filters and exposure multiplexing to reconstruct
HDR color images. We start with the Quad-Bayer coding, where
the four adjacent pixels are clustered with the same color using
one color filter of red, green, or blue. With this color filter
design, the periodic 2× 2 exposure and gain pattern control
can fit in such that each color channel has access to the full
sets of exposure and gain levels. Next, image reconstructions
can be applied on the captured signal to recover the color
and HDR information. In our experiment, we synthesize the
Quad-Bayer exposure-gain-multiplexed images as input, and we
train a Restormer model to reconstruct both the color and the
dynamic range. We demonstrate that this naive design is capable
of producing reasonable results, and we consider developing

Authorized licensed use limited to: Purdue University. Downloaded on May 21,2024 at 01:40:31 UTC from IEEE Xplore.  Restrictions apply. 



QU et al.: SPATIALLY VARYING EXPOSURE WITH 2-BY-2 MULTIPLEXING: OPTIMALITY AND UNIVERSALITY 273

Fig. 11. Reconstruction results on real images and experimental setup. Input images with spatially-varying patterns are generated by interlacing raw images
captured at various exposures. For (a) and (b), we show full frames of pseudo ground truth in both linear scale and tone-mapped scale (top-left and bottom-left,
respectively). The linear scales are clipped at 95 percentile radiance level and are normalized to [0, 255]. We also show zoomed-in regions of tone-mapped
reconstructions on the best possible spatially-varying pattern via exhaustive search (oracle), the best pattern selected by SVE-Risk (SVE), and the best by SNR-Risk
(SNR). The reconstruction algorithm is Restormer for all images. (a) The texts and textures at low light shown in the orange box are preserved equally well in all
three reconstructions, but SNR-Risk reconstruction loses all details of high-light regions. (b) The dark regions (QR code, wall, etc.) of all three reconstructions are
indistinguishable, but SNR-Risk reconstruction loses outdoor high-light details (red arrows). (c) Experimental setup. We capture real images of HDR scenes using
a Sony Alpha 7 II camera.

better exposure multiplexed color reconstruction a direction for
future works.

The details of risk computation in our color reconstruction
are as follows. We start by estimating the radiance distribution
and calculating SVE-Risk for each color channel independently.
Next, within each channel, all pixels of other colors are regarded
as pixels to be interpolated, and their risks are calculated by (8)
with usable non-saturated neighbors coming from other color
channels. Finally, we sum the risks across all color channels to
obtain the total risk.

Results. Larger multiplexing patterns: We show in Fig. 12
the reconstruction results and scatter plots of ranking power of
SVE-Risk. We also show make a comparison of the average
performance measured by Δ1 and Q(1%) in Table IX . Gener-
ally, SVE-Risk is capable of ranking SVE patterns for all tested
pattern sizes.

Theoretically, larger patterns correspond to better perfor-
mance, because the best 4× 4 pattern should be at least as good
as the best 2× 2 patterns as the set of all possible 4× 4 patterns
forms a superset of all possible 2× 2 patterns. However, the
improvement observed in the experiment does not fully support

TABLE IX
QUANTITATIVE RESULTS OF SVE-RISK ON DIFFERENT SIZES OF PATTERNS

TABLE X
QUANTITATIVE RESULTS OF SVE-RISK ON GRAYSCALE AND COLOR IMAGE

RECONSTRUCTION

this theoretical correspondence. We observe an improvement of
Δ1 from 2× 2 to 3× 3 but a drop going to 4× 4. In addition,
we observeQ(1%) gradually decreases as the size increases. We
believe this is due to the limitation of learning-based reconstruc-
tion instead of the risk. A larger pattern size means a much larger
set of possible patterns; therefore, to fit all of the patterns, the
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Fig. 12. [Top] Tone-mapped reconstructions for different SVE pattern size. [Bottom] Scatter plots of μPSNR ranked from high risk to low risk for different SVE
pattern size.

Fig. 13. Experimental results of SVE-Risk on color images. (a) tone-mapped ground truth, (b) tone-mapped reconstruction from the image captured with best
pattern selected by SVE-Risk, (c) scatter plot of μPSNR as sorted from highest risk to lowest risk ranked by SVE-Risk.

reconstruction model requires more training samples, a longer
training time, and a larger model capacity. Due to limited training
budget, we observe the model not fully converged in the cases
of larger patterns, especially for 4× 4.

Color imaging: The color image reconstruction results are
shown in Fig. 13, and the quantitative results evaluated with
μPSNR metric are reported in Table X. We find SVE-Risk also
works effectively for color images. Quantitative results show
better Q(1%) score for the color case than that in the grayscale
case, while the reconstruction quality drop Δ1 is higher.

V. CONCLUSION

In this article, we report two findings about the design of
a spatially varying exposure multiplexing scheme. Firstly, we
show that the pixel-wise SNR is a poor metric to quantify the
performance of a multiplex pattern because it fails to differ-
entiate the recoverable cases and the non-recoverable cases.
We circumvent the difficulty by proposing the SVE-Risk. Our
experiments show that the pattern ranking provided by the SVE-
Risk correlates extremely well with the ideal ranking. Secondly,

through a large-scale experiment, we find that for spatially-
varying-exposure imaging with tiled exposure patterns, it is not
necessary to design a pattern selection algorithm tailored for
specific reconstruction algorithm; the margin of improvement
for using tailored/co-designed pattern selection algorithm is
limited. Our finding is a significant departure from recent work in
computational photography that advocates for sensor-algorithm
co-optimization. To sensor designers, this could be good news
because sensor-algorithm co-design is significantly more costly
for production. However, our bigger hope is that this coun-
terexample can stimulate more discussions about the necessity
of sensor-algorithm co-optimization, and under what context
would it become beneficial not to co-optimize.
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