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The Secrets of Non-Blind Poisson Deconvolution

Abhiram Gnanasambandam
and Stanley H. Chan

Abstract—Non-blind image deconvolution has been studied for
several decades but most of the existing work focuses on blur in-
stead of noise. In photon-limited conditions, however, the excessive
amount of shot noise makes traditional deconvolution algorithms
fail. In searching for reasons why these methods fail, we present
a systematic analysis of the Poisson non-blind deconvolution algo-
rithms reported in the literature, covering both classical and deep
learning methods. We compile a list of five ““secrets’ highlighting the
do’s and don’ts when designing algorithms. Based on this analysis,
we build a proof-of-concept method by combining the five secrets.
We find that the new method performs on par with some of the
latest methods while outperforming some older ones.

Index Terms—Photon-limited, deconvolution, inverse problems,
deblurring, shot noise.

I. INTRODUCTION
A. From Gaussian to Poisson Deconvolution

MAGE deconvolution is one of the most fundamental prob-

lems in image restoration. When the blur kernel is fixed and
given, the problem is known as non-blind deconvolution. For
spatially invariant blur and additive i.i.d. Gaussian noise, the
goal of deconvolution is to recover x € R¥ from the equation

(D

where n € RY is the i.i.d. Gaussian noise, and H € RV*V is
the blur kernel represented as a convolution matrix [1], [2]. The
inverse problem associated with (1) has been studied for a few
decades, with an extensive list of methods, both classical [3],
[4],[51, [6],[7],[8], [9], [10], [11] and deep-learning based [12],
[13], [14], [15], [16], [17], [18].

With such a large volume of prior work, it would appear that
the problem is solved. However, as we push the limit of image
deconvolution to low-light conditions, the problem remains wide
open. Moreover, the growth of advanced photon counting image
sensors and the need for extreme low light imaging applica-
tions [19], [20], [21], [22], [23], [24] makes the problem even

y = Hx + n,
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more interesting than before. As people have shown in [25],
even an ideal image sensor with zero read noise cannot escape
from the photon shot noise. Thus, signal processing at this limit
remains critical.

The change from a well-illuminated condition to a low-light
condition is not just about switching the Gaussian model to a
Poisson model !

y = Poisson{aHx}, ()

where « is the average number of photons in the scene [26] and
the clean image x is assumed to be normalized to [0, 1]. The
increased difficulty is not associated with the unbounded-below
and the non-differentiable-at-origin property of the Poisson
negative-log-likelihood, but the magnitude of the noise exhibited
in the data. In a typical low light condition, the mean photon
count can be as low as ten photons per pixel. At this photon
level, the random fluctuation of the signal would cause many
algorithms to fail.

The impact of noise in Poisson deconvolution is noticeable in
every step of a deconvolution algorithm. Since there is noise,
it becomes much harder for an algorithm to invert the blur
(usually in the Fourier space) and remove the noise. Deep learn-
ing algorithms also suffer from heavy noise because extracting
features from the image becomes more difficult. In fact, Poisson
deconvolution has only been discussed in a few deep-learning
papers [28], [29], [30], [31].

B. Scope and Contributions

Given the success of Gaussian-noise based image deconvolu-
tion algorithms, we believe that the lessons learned in the past
can shed light on understanding the Poisson problem. To this
end, we analyze a large collection of non-blind deconvolution
algorithms reported in the literature. We look into the design
details of each method and compile a list of do’s and don’ts we
learned from these methods.

As a preview of our results, we show in Fig. 1 the image
reconstruction results of three methods published in the lit-
erature: PURE-LET [27] (T-IP, 2017), DWDN [14] (T-PAMI,
2022), and USRNet [18] (CVPR, 2020). All three methods
are fine-tuned using Poisson data. In the same figure, we
also report a proof-of-concept method by combining the “se-
crets” we learned in this paper. We stress that this proof-
of-concept method is not meant to become a state-of-the-art

The Poisson model we study in this paper is a simplification of the actual
image formation process which should involve dark current, read noise, etc..
However, given that the Poisson problem is already difficult enough, we decided
to focus on it in this paper.

2333-9403 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Fig. 1. Overview. The goal of this paper is to identify factors that will
benefit Poisson image deblurring. Shown in this example are a simulated blurry
and noisy image (where the noise is Poisson), and the corresponding image
reconstruction results. The proposed method (to be discussed in Section IV) is
just a combination of the five factors we identified, without introducing any new
architectures.

but rather a confirmation of ideas described in the paper. In-
terestingly, the performance of this proof-of-concept is quite
satisfactory.

So, what are our observations? We found the following five
“secrets” of non-blind Poisson deconvolution:

i) Wiener filter is recommended: While some networks per-
form deconvolution and denoising simultaneously, we find
that it is better to decouple the deconvolution part using
a Wiener filter so that we can leverage the fact that the
blur kernel is known. Of course, we assume that the blur
is spatially invariant.

il) Iteration is recommended: Many networks estimate the
image in a single shot. We find that iterative algorithms
are more effective. For deep neural networks, the it-
erative algorithms can be implemented via algorithm
unrolling.

iii) Feature space is recommended: It is better to perform
deconvolution in the feature space than in the spatial
domain.

iv) Poisson likelihood is not needed: When handling Poisson
noise, there is no need to use customized tools such as vari-
ance stabilizing transform or the Poisson likelihood. Any
architecture for Gaussian noise also works for Poisson.

v) Learning the hyper-parameters is recommended: Some
algorithms estimate the hyperparameters using an off-
the-shelf method or a heuristic rule. We find that
end-to-end learning of the hyperparameters helps the
performance.

This paper focuses on non-generative methods. Our analysis
does not cover generative models (e.g., generative adversarial
networks or denoising diffusion probabilistic models) because
they belong to a different category of approaches. We do not
consider blind deconvolution algorithms because we do not
estimate the blur kernel.
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II. ANALYSIS OF PRIOR METHODS

Given the large number of papers published for non-blind
image deconvolution, it would be unrealistic to comment on
every single method. The approach we take here is to focus on
a representative subset of existing methods. However, the se-
lection of the representative methods would require some work.
In what follows, we first list a number of Poisson deconvolution
methods. We group them, and discuss their attributes. Afterward,
we select the representative methods and discuss their design
philosophies.

A. Prior Methods

To help readers visualize the methods being studied in this
paper, we summarize them in Table I. These methods can be
categorized into two main classes:

Classical Methods: By classical methods, we mean methods
that do not require learning. These methods are typically devel-
oped before the deep-learning era. In this paper, we select three
representative methods with code publicly available:

e PURE-LET, by Li and Blu [27], is a non-iterative deblur-
ring algorithm that uses the Poisson unbiased risk estimator
(PURE) as a metric to guide the steps in linear expansion
thresholding (LET). The thresholding idea used here is
similar to several other paper [36], [37], [38], [39].

e VSTP, by Azzari and Foi [32], uses the variance stabi-
lization transform (VST) to equalize the variance of the
Poisson random variable. Then, a deblurring algorithm is
applied to handle the blur.

e Deconvty, by Chan et al. [33], uses total variation for
Gaussian noise removal. Its performance is not necessarily
the best compared to other total variation solvers such
as [40], [41], [42], [43], [44], [45], [46], but its code is
readily available for experiments.

We acknowledge that there are plenty of other classical
methods, such as [11], [47], [48], [49], [50], [51], [52], [53],
[54]. These papers made great contributions in improving the
prior models of the images so that deblurring and denoising
can be more effective. Some of these methods perform very
well whereas some are similar to the three abovementioned
methods. For the concreteness of this paper and considering the
availability of their codes, we decided to focus on the ones we
mentioned above.

Deep-Learning Methods: While deep learning based decon-
volution algorithms are abundant, many of them are blind algo-
rithms. For non-blind methods, we consider nine of them.

e Deep Wiener Deconvolution Network (DWDN) [14] is a

deep neural network that performs Wiener deconvolution
in the feature space followed by a decoder. Similarly, [55]
performs Wiener deconvolution followed by an artifact re-
movoval network and INFWIDE [56] adds a cross-residual
fusion module. In this paper, we focus on DWDN for clarity
and simplicity.

e KerUnc [16], CPCR [34], USRNet [18], PhDNet [29],
and [15], [57], [58] perform fixed iteration unrolling of
alternating direction method of multipliers (ADMM), half
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TABLE I
WE STUDY A COMPREHENSIVE LIST OF METHODS AS SHOWN IN THE TABLE BELOW

Classical Methods

Deep Learning Methods

PURE-LET VSTP Deconvtv.  DWDN SVMAP KerUnc CPCR RGDN PhDNet USRNet DPIR DWKF

[27] [32] [33] [14] [12] [16] [34] [15] [29] [18] [35] [17]

Neural Network? X X X v v v v v v v v v
Decoupling? v v v v v v v v v v v 4
Poisson Likelihood? v v X X X X X X v X X X
Iterative? X v v X v X v v v v v v
Learned parameter? X X X X X X X X v v X X
Feature space? X X X v X X X X X X X X

The gray-colored methods are selected for further analysis to identify the “secrets” of poisson deconvolution.

quadratic splitting or gradient descent methods followed
by end-to-end training.

e DPIR [35] uses the plug-and-play (PnP) based ADMM
optimization to solve the problem.

e DWKF [17] is an iterative method that uses kernel predic-
tion networks for imposing the image priors.

B. Attributes of the Methods

With more than ten methods listed in Table I, it would be
helpful if we could further categorize them according to their
attributes. The attributes we highlight here will be used to inform
the do’s and don’ts of designing an algorithm.

® Neural network? This attribute asks if the method uses
a neural network - either trained end-to-end [13] or as a
pretrained block [18]. By definition, all classical meth-
ods are treated as non-neural network methods in this
paper.

Decoupling? Decoupling means that a method handles
the deblurring step and the denoising step separately.
The decoupling can be realized via variable splitting
(e.g., in ADMM), or via a two-stage operation (e.g., in
PURE-LET). For neural networks, we say that it em-
ploys a decoupling strategy if there are modules ex-
plicitly performing deblurring and are separated from
denoising.

Poisson likelihood? If a method explicitly uses the Poisson
likelihood in an algorithm, then this attribute is satisfied.
Some methods, usually deep neural networks, do not in-
corporate the Poisson likelihood in its algorithm design,
for example [14], [34]

Iterative? Both classical and deep learning methods can
be iterative. The iteration can occur in the form of an actual
iteration (as in optimization steps) or algorithm unrolling
in deep learning methods.

Learned parameters? All restoration methods have a set
of hyperparameters. If these hyperparameters are picked
manually, we say that the parameters are not learned.
In contrast, if the hyper-parameters are simultaneously
selected by the learning algorithm, then we say that the
parameters are learned.

Feature space? For some deep learning methods, the de-
convolution does not take place in the spatial domain [27]
but in the feature space [13], [56]. We check this box to
reflect the property.

C. Design Principles

We now discuss the design principles of the methods shown in
Table I. To narrow down the discussion to a smaller set of meth-
ods, we compared the methods’ performance on a testing dataset.
The execution of the experiment is described in Section III when
we discuss the five secrets of Poisson deconvolution. For the sake
of brevity, the detailed numbers are reported in the Supplemen-
tary Material. Based on the performance of the methods, we
select five leading methods that cover four categories. They are:

1) Traditional, non-iterative: PURE-LET [27]

2) Traditional, iterative: VSTP [32]

3) Neural-network, non-iterative: DWDN [14]

4) Neural-network, iterative: USRNet [18], PhDNet [28].
Two methods were chosen because of their similar per-
formance.

1) PURE-LET [27]: The core idea of PURE-LET is to con-
struct multiple initial estimates using the Wiener filter, which is
essentially a Fast-Fourier transform (FFT) based deconvolution.
Given the blur matrix H, PURE-LET estimates a set of K initial
guesses via

KYener — yavelet [(HTH + Agl) - HTy} , 3)
where k = {1, 2, ... K} denotes the kth Wiener estimate, and A,
is the kth hyperparameter. The operator Wavelet denotes the
wavelet thresholding, which is the method PURE-LET used to
clean up the estimates. The estimates are then linearly combined
in such a way that they minimize the mean square error, i.e.,

K
ﬁ — 2 :ak . i};\hener,
k=1

where {ay | k = 1,..., K} are the optimal combination weights
determined by minimizing the Poisson unbiased risk estimate
(PURE).

A conceptual diagram of PURELET is shown in Fig. 2.
Referring to Table I, PURELET employs a decoupling strategy
by separating the deconvolution step and the denoising step. The
Poisson likelihood is used to compute the risk estimate, but it
was not used for the deconvolution step which is a filter bank of
Wiener filters.

2) DWDN [14]: DWDN has many similarities to PURE-
LET. Instead of applying the Wiener filter on the images, DWDN
applies it to the features:

“

ﬁgceature — (HTH + kkﬂ)*l HTJ;-]tc'eature(y)7 (5)
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Fig.2. PURE-LET [27] constructs a bank of Wiener filters to deblur the image,
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Fig. 3. DWDN [14]. While it shares similarities with PURELET, it performs
Wiener deconvolution in the feature space instead of the image space.

where Fiaure(.) is a neural network trained to produce features.
The estimated deblurred features {xfcavre gfeature | spfeature}
are then fed to another neural network for refinement Fefpe to

obtain the final output X:

Sfeature feature Sfeature
X—]:reﬁne{ ) X2 yoy XK } (6)

The feature networks {F®e |k =1,..., K} and the refine-
ment network Frefine are trained end-to-end. When the mean
squared error (MSE) loss is used, DWDN and PURE-LET both
aim to find the MMSE estimate.

A schematic diagram of DWDN is shown in Fig. 3. If we
compare DWDN with PURE-LET, we recognize that the overall
multi-channel filter bank idea is the same. The only difference is
that DWDN performs the deconvolution operations in the feature
space. The denoisers are also replaced by neural networks.
Moreover, since DWDN does not need to estimate the risk (as
in PURE-LET), the Poisson likelihood is not considered.

3) VSTP [32]: VSTP extends the idea of PURE-LET to
make it iterative. VSTP starts with a single estimate of the
deblurred image XV"*" instead of the multiple estimates used
in PURE-LET. However, the overall concept of decoupling the
deconvolution and the denoising steps remain the same.

An interesting idea of VSTP is to iteratively update the
denoising step so that each denoising step can be “mild”. To
do so, a linear combination of XV'"" and the denoised estimate
from the previous iteration X;_; is obtained via

igata _ A‘tﬁt + (1 _ )Lt)QWiener 7

A variance stabilizing transform (VST) is then used to stabi-
lize the spatially varying noise strength of X2, which is then
denoised with Denoiser,

X; = Denoiser [VST (Adata)] ) 8)

The iteration continues until the stopping criteria are met.

In VSTP, the variance stabilizing transform is more of a tech-
nical need because the noise is spatially varying. The rationale
of using VST is that when the photon level is not too low, VST is

IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 10, 2024
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Fig. 4. VSTP [32] applies variance stabilizing transform and a denoiser for
the denoising step. The denoising step is also repeated in an iterative manner to
improve the performance.
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Fig. 5. USRNet [18], PhDNet [28] is an optimization-based algorithm where
the problem is decoupled into deconvolution, Poisson data, and image denoising.
The method is iterative; in deep neural networks, the iterations are realized via
algorithm unrolling.
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able to stabilize the variance so that the spatially varying variance
will become invarying.

A schematic diagram of VSTP is shown in Fig. 4. In the
literature, people sometimes refer the denoising module as
transform-denoise [19].

4) PhDNet [28] and USRNet [18]: Both methods are based
on maximizing the posterior probability (hence they are a
maximum-a-posteriori (MAP) estimator). More specifically, the
estimate is obtained by solving the optimization:

X = argmax [log P(y|x) + log P(x)], )

where P (y|x) is the likelihood term and P(x) is the natural
image prior. USRNet models the problem by assuming that the
noise is Gaussian (without considering the fact that the true noise
distribution is Poisson). Thus, in USRNet, the likelihood term
is

~ly — aHx|*.

log P (y|x) = (10)

PhDNet explicitly takes into consideration of the Poisson noise,
which leads to the following likelihood term

log P(y|x) = —a1THx + y T log(aHx), (11)

where 1 is a vector with all ones.
Both methods solve the optimization using an unrolled neural
network. Two steps are common for both methods:
® The inversion module is similar to a Wiener filter. For
iteration ¢, it is given by
= (H"H+al)

stdta "HTy +0%4). (12)

® The Gaussian denoising module, which can be considered
as a refinement step:

ﬁt _ freﬁne (ﬁ(tiata) (13)

PhDNet has an additional step in each iteration to deal with
the Poisson noise.

A schematic diagram of the methods is shown in Fig. 5. On
neural networks, the iterations are implemented via algorithm
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TABLE II
COMPARISON OF DECONVOLUTION METHODS IN THE SPATIAL DOMAIN OR THE
FEATURE SPACE

Config. | Config I Config III Config IV
Features X X v v
3 Wieners X 4 X 4
10 ppp 22.08/0.66 22.13/0.66 2243/0.68 22.47/0.68
30 ppp 23.09/0.70 23.11/0.70 23.41/0.71 23.47/0.72
50 ppp 2359/0.71 23.64/0.71 2391/0.73 23.97/0.73

The numbers represent PSNR(dB)/SSIM.

TABLE III
COMPARISON OF TWO UNROLLED ITERATIVE ALGORITHMS

1 Itr. 2 Itr. 4 Ttr. 8 Itr.

USRNet [18] 24.40/0.70 24.79 /0.74 24.88/0.76 24.89/0.76
PhDNet [28] 24.40/0.69 24.77/0.73 24.87/0.76 24.87 /0.76

USRNET uses a gaussian likelihood whereas phDNet uses a poisson likelihood. The
medium photon level of the images in this experiment is set to 30 PPP. The numbers
represent PSNR(dB)/SSIM.

TABLE IV
EFFECT OF VST TO A LOW-LIGHT DENOISING TASK

pPPP w/ VST w/o VST
10 ppp 28.28 /0.81 28.34/0.81
30 ppp 30.61/0.85 30.67/0.86
50 ppp 31.77/0.88 31.82/0.89

In this experiment, the denoiser is resunet [18].The
numbers represent PSNR(dB)/SSIM.

TABLE V
IMPACT OF LEARNING HYPERPARAMETERS

PPP DWDN

10 22.43/0.68
30 23.41/70.71
50 2392/0.73
The numbers represent PSNR(dB)/SSIM.

w/ DWDN + learned para.

22.50 / 0.69
23.49 / 0.72
23.99 / 0.74

unrolling. That is, we unfold the optimization algorithm into
a fixed number of blocks where each block is implemented
via a neural network. When looping through this fixed number
of blocks, effectively we perform an iterative algorithm. For
additional details about algorithm unrolling, we refer the readers
to [28], [29], [59].

III. THE SECRETS

In Section II we analyzed the structures of the prior methods,
but this alone does not tell us much about the secrets of Poisson
deconvolution. In this section, our goal is to dive into the details
by conducting a series of experiments. From the experimental
results, we then draw conclusions about the influencing factors
for Poisson deconvolution. Some of the discussions are based
on the main experimental result Table VI, which are presented
in Section V.

A. Experimental Setting

Our approach to analyzing the performance of the prior
methods is based on a series of carefully designed experiments.
Since this is an empirical approach, we first state the background
experimental settings.

First of all, we consider classical methods and deep learn-
ing methods separately, because deep learning methods require
training. To make sure that the comparisons are fair, we retrain
all the deep learning methods with the exact same training
dataset, same training loss, and fine-tune the hyper-parameters
to maximize their performances.

For training, we use images from the Flickr2K [60] dataset.
We generate 500 random kernels based on [61]. These 500
kernels consist of five groups of sizes and each group has 100.
The sizesare 9 x 9, 18 x 18, 27 x 27,36 x 36, and 45 x 45.In
addition, we generate 64 Gaussian kernels of varying anisotropy
with the blur parameter o between 0.1 and 5. Images of size
128 x 128 are cropped randomly from the dataset and then each
image is blurred using a random kernel among these 500+64 =
564 kernels assuming circular boundary conditions. For noise,
we assume that the photons per pixel (ppp) ranged between 5
and 80, which can be adjusted by varying « in (2). The input
images are then downscaled by alpha to make sure that the range
of the input images remains roughly the same.

y = Poisson{aHx} /a. (14)

During training, we use the ¢; loss between the reconstructed
image X and the ground truth image x to train the networks. The
loss function is defined by

L(x,%) = [[x = x[1,

15)

where || - ||; denotes the ¢; norm. We train all the networks
for 500 epochs, with the Adam optimizer. The learning rate is
initialized as 10~% which gets halved every 100 epochs. The
batch size was set to 2 for all the methods. We do so to ensure
a fair comparison because some methods consume more GPU
power. We used a NVIDIA GeForce RTX 2080 Ti graphics card
for both training and inference of all the methods. The inputs to
the networks include the degraded image y and the blur kernel
h. Some methods like [18], [28] take the noise level as inputs.
In such cases, the photon level o corresponding to each image
was sent as the input.

For testing, we evaluate the methods using synthetically
degraded images obtained by blurring 100 images from the
BSD300 dataset [62]. We use 3 different sets of 5 motion kernels
of size 9 x 9 (Small), 27 x 27 (Medium), 45 x 45 (Large) us-
ing [61]. Each combination of the image and motion is evaluated
at three different photon levels (10, 30, and 50).

B. Secret 1: Using Wiener Filters is Recommended

We observe that the five methods discussed in Section II-C all
have a separate Fourier-based deconvolution module - irrespec-
tive of whether they are traditional methods or deep learning-
based methods. The presence of the Fourier-based deconvolution
module hints that a black-box neural network might have some
limitations.
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TABLE VI
PERFORMANCE OF THE 5 METHODS OF INTEREST ON THE TEST DATASET

Kernel Size  ppp PURE-LET [27] VSTP [32] DWDN [14] PhDNet [28] USRNet [18] Proposed
PSNR (dB) 22.64 24.93 25.13 25.20 25.26 25.27
10 SSIM 0.672 0.733 0.771 0.775 0.775 0.778
LPIPS 0.509 0.413 0.403 0.398 0.400 0.397
PSNR (dB) 2321 2571 26.11 26.24 26.30 26.32
Small 30 SSIM 0.694 0.770 0.805 0.809 0.810 0.813
LPIPS 0.463 0.370 0.358 0.356 0.356 0.355
PSNR (dB) 23.57 26.58 26.17 26.74 26.79 26.84
50 SSIM 0.702 0.779 0.820 0.824 0.826 0.828
LPIPS 0.432 0.351 0.338 0.334 0.333 0.331
PSNR (dB) 20.91 22.93 23.06 23.24 23.25 23.28
10 SSIM 0.621 0.649 0.700 0.704 0.705 0.707
LPIPS 0.549 0.496 0.485 0.480 0.479 0.479
) PSNR (dB) 21.71 23.69 24.07 2430 24.32 24.36
Medium 30 SSIM 0.644 0.691 0.737 0.744 0.744 0.747
LPIPS 0.511 0.450 0.440 0.435 0.437 0.432
PSNR (dB) 22.14 24.08 24.57 24.86 24.88 24.92
50 SSIM 0.661 0.708 0.755 0.763 0.764 0.767
LPIPS 0.500 0.429 0.418 0.414 0.413 0.413
PSNR (dB) 20.53 22.40 22.43 22.60 22.63 22.65
10 SSIM 0.588 0.642 0.679 0.683 0.684 0.685
LPIPS 0.598 0.533 0.520 0.515 0.515 0.514
PSNR (dB) 21.22 23.18 23.41 23.65 23.69 23.71
Large 30 SSIM 0.613 0.649 0.714 0.721 0.722 0.723
LPIPS 0.537 0.470 0.459 0.453 0.455 0.453
PSNR (dB) 21.60 23.56 2391 24.19 24.22 24.25
50 SSIM 0.625 0.676 0.732 0.740 0.741 0.742
LPIPS 0.512 0.452 0.441 0.439 0.437 0.437

PURE-LET [27], and VSTP [32] are traditional methods and do not use any neural networks. DWDN [14] is neural network-based but non-iterative.
PhDNet [28] and USRNET [18] are unrolled neural network-based solutions. The best-performing method is shown in bold and the second best
method is underlined.

Neural
Network

Wiener

Filter
-I FFT-Based
Deconvolution

(a) Neural network w/ Wiener Filter

Neural
Network

(b) Neural network w/o Wiener Filter

Fig. 6. How Wiener filters are used. We consider two neural networks, where
in (a) we decouple the inversion step by a Fourier-based deconvolution module
which is the Wiener filter, and in (b) we use only a neural network. The added
computational complexity of the Wiener filter is minimal because it is a simple
inversion in the Fourier space.

The decoupling approach makes sense in classical methods.
In these methods, Poisson deconvolution is often posed as
MAP-based optimization. Since it is very difficult for a simple
optimization step to simultaneously handle blur and noise, it
makes sense to decouple them.

How about deep neural networks? One would expect that
since they have a large capacity, they wouldn’t need to adopt
a decoupling strategy. To examine the need for decoupling, we

compare the two configurations as shown in Fig. 6 - neural
networks with and without a Wiener filter.

In this experiment, we use the ResUNet from [18] for the task
shown in Fig. 6(b). We train the network at a particular light level
of 10 photons per pixel (ppp). To ensure that there is no domain
gap, we train the network for one single blur kernel and test it
for the exact same blur kernel. For the configuration shown in
Fig. 6(a), we use a single-iteration USRNet. A single-iteration
USRNet is nothing but a deconvolution module followed by a
refinement network. We train the network with a large range of
photon levels and blur kernels, as described in Section III-A.
Our argument is that if a specialized network in Fig. 6(b) cannot
beat a generic network in Fig. 6(a), then there must be some
fundamental limits in the network itself.

The results are shown in Fig. 7. We observe that the black-box
neural network cannot handle blur and noise simultaneously. In
contrast, a network with an explicit deconvolution step performs
much better. Our conjecture is that since we know the blur kernel,
itis better to incorporate this forward model in the solution when
deblurring the image.

C. Secret 2: Iterations are Recommended

Iterative methods, regardless if they are traditional or neural-
network-based, tend to perform better according to Table VI.
Let us explain why this is the case.
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(d) w/o Wiener
(general)

(e) w/o Wiener
(specific)

(f) w/ Wiener
(general)

Fig.7. Secret 1: Wiener filter is recommended (a) Clean. (b) Degraded image.
(c) Blur kernel. (d) A deconvolution U-Net trained on a variety of kernels. (e) A
deconvolution U-Net trained on the specific blur kernel defined in (b). Note that
even if we train the network specifically for the blur kernel, the result is still not
satisfactory. (f) Deconvolution when the Wiener step is included in the U-Net.
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Fig.8.  Secret 2: Iteration is recommended. We plot the PSNR of the estimates
at each iteration of USRNet. We can notice that ignoring the first iteration, the
plot aligns with our claim - A better deconvolution leads to a better refinement,
which turn again leads to a better deconvolution.

Consider USRNet as an example: It is an iterative algorithm
where the iterations are given by (12) and (13). The first step
(12) is the deconvolution module which produces an estimate
ﬁgafa, and the second step (13) is a neural network denoiser
that refines the estimate to generate X;. The performance of a
denoiser is directly related to the input quality. The noisier the
input is, the worse the reconstruction performance will be [63].
In a single-shot low-light deconvolution, we need to have a very
good estimate from (12), and this needs to be computed directly
from the noisy image itself. In iterative schemes, even though
the initial estimate X33 is not good, the mild refinement steps
will gradually improve the image quality because they use both
the previous estimate X{* and the current estimate.

Fig. 8 shows a typical per-iteration PSNR of an iterative
scheme USRNet. Putting aside the initial estimate (which shows
a downward PSNR trend), the performance generally goes up
as the number of iterations increases. Specifically, we see that
after each pair of X; and X%, the performance improves. The
exact dynamics of the PSNR is difficult to track because it is
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Fig. 9. Number of iterations. We retrain USRNet with different numbers of
iterations. We can see that we obtain a performance boost by increasing the

number of iterations.
ﬁ
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(a) USRNet
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(b) USRNet modified with VSTP type iterations.

Fig. 10.  What kind of iterations help? By comparing USRNet and VSTP, we
observe two types of iterations. (a) USRNet sends X back to the data module
iteratively to improve the estimate. (b) VSTP uses X to form a linear combination
with the Wiener filter outputs. We find that iteration in (a) is more effective.

image-dependent. However, the trend confirms our hypothesis
that iterations are helpful.

For unrolled algorithms, the number of iterations is realized
by the number of blocks. A natural question is the number of
such iterative blocks — will more blocks improves the overall
deconvolution result? Fig. 9 shows the results of four USRNets
trained at different number of iterative blocks. It is clear from
the result that more iterations leads to a better final performance,
although there is a diminishing return after several blocks.

Another question we ask is the type of iterations. Among the
methods reported in Table VI, there are two different kinds of
iterative schemes as shown in Fig. 10. The first one is the USRNet
where the estimate X is fed back to the data module (i.e., the
inversion module), and is combined with the raw input y and
kernel h to construct a new intermediate estimate. The second
iterative scheme is the one used in VSTP. In this scheme, the
estimate X is used to form a linear combination with the output
of the Wiener filter.

To evaluate the performance of the two schemes, we modify
USRNet to incorporate the VSTP mechanism. We argue that
this is a fairer comparison than directly using VSTP because
VSTP uses a traditional denoiser BM3D. In our modification,
we ensure that the two networks are trained with the same type
and same amount of data. The results are shown in Fig. 11,
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Fig. 11.  What kind of iterations help? This figure is a follow-up of Fig. 10
where here we plot the PSNR as a function of the photon level.

where we see that the iterative scheme by USRNet has a clear
advantage over the VSTP scheme.

Based on the above experiments, our recommendation regard-
ing the iterative scheme is that iterative schemes offer better per-
formance than one-shoot methods. Among the different iterative
schemes, we recommend feeding back the estimate X directly
to the inversion module so that the features of X will be utilized
better.

D. Secret 3: Feature Space is Recommended

The next secret about Poisson deconvolution is that it is better
to deconvolve the image in the feature space instead of the
image space. This observation is based on the difference between
PURE-LET and DWDN in Table VI. Both PURE-LET and
DWDN use multiple Wiener filters. PURE-LET uses different
deblurring strengths (as specified by the hyper-parameter 1),
whereas DWDN uses the same Wiener filter for different feature
maps. But the biggest difference is that PURE-LET performs the
deconvolution in the image space whereas DWDN performs the
deconvolution in the feature space. We show in this subsection
that the superior performance of DWDN is partially driven by
feature space deconvolution.

To prove the usefulness of feature space deconvolution instead
of image space, we consider the following four modifications of
DWDN by placing the Wiener filters in different ways.

1) Configuration I in Fig. 12(a) uses a single Wiener filter
followed by a refinement network. This is the vanilla
network for baseline analysis.

2) Configuration II in Fig. 12(b) uses three Wiener filters
as in PURE-LET. Each Wiener filter uses a different
regularization parameter 1. We use a deep neural network
as the refinement step so that it is a fair comparison with
DWDN.

3) Configuration III in Fig. 12(c) uses a feature extraction
unit to pull the features before sending them to Wiener
filters. This is the same as DWDN. In our experiment,
there are 16 feature maps. The regularization parameter A
is the same across the 16 Wiener filters.

4) Configuration IV in Fig. 12(d) uses 16 Wiener fil-
ters where each has three sub-configurations. Each sub-
configuration uses a different A. We regard Configuration
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Fig. 12.  Secret 3: Feature space is recommended. The two types of decon-
volutions: image space and feature space. (a)—(b) perform deconvolution in the
spatial domain, whereas (c)—(d) perform deconvolution in the feature space.

IV as the ultimate modification we can make within the
context of our analysis.

The comparisons between these configurations are shown
in Table II. We see that across the different photon levels,
the ones that perform deconvolution in the feature space are
significantly better. Our intuitive argument is that in the fea-
ture space, the signals are already decomposed. If the feature
extraction unit is powerful, signals will be captured in a few
leading feature dimensions whereas noise will be concentrated
in the other dimensions. Therefore, the strong signal features
will be deconvolved well by the Wiener filter with a smaller A,
whereas the noise features will be attenuated by a large A. As a
result, the overall deconvolution will be better. As for how much
regularization A is needed, Configuration IIT and IV tell us that
the benefit is marginal.

Based on these findings, our recommendation here is that
whenever possible, deconvolution should be performed in the
feature space. Using different regularization parameter A does
not seem to have a significant difference.

E. Secret 4: Poisson Likelihood is Not Needed

By virtue of Poisson deconvolution, the likelihood function
should be Poisson. However, several observations make us be-
lieve that the Poisson likelihood is not needed in a neural network
based solution.
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Fig. 13.  Secret 4: Poisson likelihood is not needed. USRNet and PhDNet are
both iterative unrolled networks. The difference is that in PhDNet, an explicit
Poisson module is used to handle the Poisson noise.

(a) USRNet

Poisson
Module

(b) PhDNet

Our first observation is the comparison between USRNet
and PhDNet in Table VI. USRNet uses a Gaussian likelihood
whereas PhDNet uses a Poisson likelihood. Because of the Pois-
son likelihood, PhDNet needs to introduce a variable splitting
technique to specifically handle the Poisson part, see the added
Poisson module illustrated in Fig. 13. However, from Table III
we observe that the difference in performance between the two
methods is negligible.

Readers may argue that the vanishing performance gap is due
to the iterations, i.e., as the number of iterations increases, the
network capacity increases and hence they are more capable
of handling the Poisson statistics. To prove that this is not the
case, we train four versions of USRNet and PhDNet with a
fixed number of 1, 2, 4, and 8 iterative blocks in their unrolled
networks. We can see from Table III that irrespective of the
number of iterations used by the method, USRNet performs as
well as PhDNet. Therefore, whether or not we use an explicit
Poisson module does not matter.

Another “indirect” observation is about the design of PURE-
LET. In PURE-LET, the Poisson statistics is used to estimate
the PURE score which is an unbiased risk estimator of the
mean squared error. However, the actual deconvolution step is
performed by a bank of Wiener filters - which is derived from
Gaussian statistics.

If Poisson modules are not needed, we expect that techniques
associated with the Poisson likelihood would not have any signif-
icance to the restoration problem. This observation is supported
by inspecting methods using the variance stabilizing transform
(VST). Fig. 14 shows a typical VST-based image denoising
algorithm. In the VST case, we first apply VST to stabilize the
Poisson variance. We then denoise the image, and transform
back via the inverse VST. In our experiment, we use the ResUNet
from [18] as the denoiser.

Table IV shows the performance between using VST or not.
We oberve that using VST does not offer the denoiser any ad-
vantage. The network without VST even marginally outperforms
the denoiser with VST. This finding is consistent with what was
reported in [20] for binomial noise.
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Fig. 14.  Variance Stabilizing Transform. VSTs are often used in Poisson noise.
(a) A denoising method using VST. (b) A denoising method without VST.
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Fig. 15.  Secret 4: As long as A is not too small, the Poisson can be well
approximated by the Gaussian. This combined with the expressivity of neural
networks make Poisson likelihood unnecessary for network design.

An intuitive explanation of why Poisson likelihood might
not be needed is as follows. In the range of photon levels we
are considering (« € [5,80]), the Poisson distribution can be
approximated by a Gaussian distribution [64, Lemma 3]

Ake—2 o1 w2
kT 2

e 20
In Fig. 15, we plot the cumulative distribution function (CDF)
of Gaussian and Poisson. We see that when A is not too small,
the Poisson can be well approximated by the Gaussian although
its variance is signal-dependent. This Gaussian approximation
works sufficiently well for Poisson noise with A > 1. For the
signal-dependent noise variance, our results in the variance
stabilizing transform show that the neural networks have enough
expressiveness to learn the spatially varying noise variance. If
the photon level is extremely low, e.g., in some very low-light
microscope applications, then we might need to use the full
Poisson likelihood.

Based on the above analysis, our conclusion is that when
handling the Poisson noise in low-light, network architectures
designed for Gaussian likelihood will work just as well. There
is no clear advantage of using the more complicated Poisson
likelihood and/or variance stabilizing transforms. As long as the

A1 (16)
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Fig. 16.  Secret 5: Hyper-parameter learning is recommended. We can use
heuristics or train a network to select the hyper-parameters.
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photon level is not extreme, the explicit Poisson modules are not
required.

F. Secret 5: Learning Hyperparameters is Recommended

Among the learning-based methods, USRNet and PhDNet
use networks to learn the hyperparameters that get used in the
data module, Poisson module and the refinement net. However,
DWDN uses a heuristic method for estimating this parameter.
To understand if it is important to learn the hyperparameters, we
modify DWDN and learn the hyperparameter that is being input
to the Wiener filters using the same network structure used by
PhDNet to learn its parameters. Fig. 16 illustrates the conceptual
difference between the two.

The result of this experiment can be found in Table V. We
notice that when DWDN is augmented with a small network for
learning the hyperparameters, it performs slightly better than
using a heuristic for finding the parameters. The improvement
is less than 0.1 dB which is not very noticeable. However, since
the computational cost of adding a hyper-parameter learning
module is so small compared to the whole network, it does not
hurt to include it.

Based on the above experiments, we conclude that hyper-
parameter learning is helpful but it is not necessary. We still
recommend it because it saves us from hand-tuning the hyper-
parameters.

IV. COMBINING THE SECRETS

After presenting the five secrets, a natural question is: “what
if we combine these ideas?” To this end, we create a method
called the Five-in-One Network (FIO-Net) as shown in Fig. 17.
We make two remarks before we discuss this network: 1. We
do not regard FIO-Net as a novel invention or claim it to
be a state-of-the-art. We view FIO-Net a check point of the
five secrets. We are more interested in checking whether its
performance is consistent with the five secrets, rather than
expecting it to beat other methods by a big margin. 2. Although
FIO-Net is a combination of the five secrets, it would still
require some design because otherwise there is no guarantee
it should work. We will present a way to integrate these five
ideas.

To elaborate on the design principle of the FIO-Net, we first
use Secret 4 to replace Poisson likelihood with the Gaussian
likelihood. This implies that as far as the network structure is
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concerned, we can focus on the Gaussian forward model:

y = aHx + n, a7

where « defines the photon level. We remark that this is not
the original Poisson deconvolution problem that we want to
solve. However, since Secret 4 tells us that utilizing the Poisson
likelihood is not needed, we consider the Gaussian model when
designing the neural network. When training the model, we
take blurred images and add synthetic Poisson noise instead of
Gaussian noise.

Remark: The concept using a sub-optimal forward model
in exchange of better reconstruction performance is perhaps
counter-intuitive. The general line of argument is known as
computational image formation which we refer readers to [65]
for detailed elaborations.

Our next step is to use Secret 3, which suggests us to perform
the deconvolution in the feature space. To this end, we consider
a set of linear filters {F; | i = 1,2,..., M} and apply them to

Since F; and H represent convolutional operations in matrix
form, we can switch the order using the commutative property
of convolution to obtain

The question now becomes how to recover x.
Solving (19) would require an optimization. In FIO-Net, we
consider a generic regularized least squares:
M
X = argminz |F;y — oHF;x||? 4+ Ag(x).

X =1

(20)

where ¢g(x) is the prior. Since an unconstrained optimization
problem with a sum of two different functions is difficult to
optimize, we split the original problem into two simpler sub-
problems. We introduce a set of new variables {z; = F;x,i =

.M}, and collectively define z = {z1,...,zp}. The
new constrained optimization problem now becomes

M
(x,2} = argmm > {IIFiy — aHz,||* + 1g(x) }

1=1

subjectto z; =F;x, i =1,2,... M. (21)

Equation (21) is a standard optimization that can be solved
using the half-quadratic splitting (HQS) [18]. HQS formulates
an alternative optimization:

M
(%2} = argmin 3 {HFJ —aHz|?+  Ag(x)
=1
+ il Fax - 2}, @)

where 1, is the penalty strength.

In what follows, we briefly summarize the equations to solve
(22). During the discussion, we will explain how the secrets are
used. The algorithm to solve (22) involve two steps:

zf = argmin ||F;y — Hz2-||2 + ,ufHFixk’l — zZ-||2 (23)
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Schematic diagram of FIO-Net. The Five-in-One Network (FIO-Net) utilizes all the five secrets we observed in the previous section. It is an iterative

scheme performing deconvolution in the feature space. It uses Wiener filter, but no Poisson likelihood. Hyperparameters are automatically tuned.

M
xF = argminz L[ Fix — 22 + rg(x),
X =1

(24)

where we use the fact that the optimization of z; in (22) is
separable so that we can solve for individual z;’s.

Next, we apply Secret 5 which says that we should learn the
hyperparameters end-to-end. Thus, we replace the penalty p;
with 1% so that they change over iterations. Similar to [28], we
use a small fully connected neural network for estimating the
hyperparamaters ;¥ with the kernel H and the photon level
used as the input.

Let’s solve (23) and (24). (23) is a least squares minimization
problem, and it has a closed form expression given by

2= (14 HTH) ' (PP + P HT Fry) . (25)

Assuming that the convolution operation represented by H is
carried out with circular boundary conditions, (25) has a FFT
based solution given by

2 — F1 F(Fx 1) + pf F(H) - F(Fiy)
' 1+ pf | F(H) 2 ’

(26)

where F(-) and F~!(-) denote the FFT and inverse FFT respec-
tively, and (-) denotes the complex conjugate function. Follow-
ing the idea of [14], we replace the linear filters with learnable
non-linear convolutional neural network Dyey(-). Similar to [14],
we note that while the solution (26) was obtained for linear
filters, using non-linear neural networks works well and even

better than linear filters. Therefore, (26) is modified as

F(DE (xk1)) + pf F(H) - (D (y))

k -1
z. = F ,
' 1+ pf| F(H)[?
27
where {DIat(.), ... DA (.)} = Dat(.) represents the features

generated by the neural network.

The other subproblem in (24), in the absence of the filters F;,
can be thought of as a image denoising problem [66]. However,
the presence of the filters makes this problem not so straight-
forward. However, we can still think of (24) as a restoration task
where we want to recover the image x from a set of features z;.
We want to minimize the residue between the input features and

Algorithm 1: FIO-Net: Fixed Iteration Unrolling.
1: Input: Degraded Image y, Kernel H, Photon level o

2: X"y

3: {FY}ic1,. m = D®%(y) > Feature extraction from y

4: {prtr=1,. x =D (H,«) >Hyperparameters
from DMP(.)

5: fork=1,2,---,K do

6:  Update z* using Equation (26)

7:  Update x* using Equation (28)

8: end for

9: return x¥

the features generated from x, while enforcing the prior g(x).
Given the complex nature of restoring the image from a set of
features, and the difficulty of defining a good prior term ¢(x),
we propose to solve this problem using a convolutional neural
network as

x* = Drefine (z’f7 e ,zﬂ“w, )\k) , (28)
o

where we have assumed that the penalties pF = p* do not
vary over the features. The entire algorithm is summarized in
Algorithm 1.

The method is iterative, based on unrolled optimization that
uses the convolutional neural networks only for image refine-
ment and a traditional FFT based method is used for deconvolu-
tion. The iterative scheme described in Algorithm 1 is unrolled
for K = 8 iterations and then trained end-to-end using the same
training process as that described in Section III-A. The training
of FIO-Net took roughly 24 hours on a GeForce RTX 2080 Ti
graphics card. Both Feature Net and Refinement Net is trained
during this. The method incorporates the idea of deconvolving in

the feature space, and does not have any specific Poisson design.

V. EXPERIMENTS

After elaborating on the proposed method, we present the
quantitative results on BSD300 dataset in Table VI. We use
the same testing process as described in Section III-A so that
the testing conditions are fair to all methods. We make three
comments:
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e Compared to classical methods such as PURE-LET and

VSTP, FIO-Net outperforms by a big margin. This should
not be a surprise, because all deep learning methods out-
perform these two classical methods.

Compared to a single-pass deep learning method DWDN,
the performance of FIO-Net is substantially better, espe-
cially for bigger blur kernels. This stresses the importance
of iterative methods.

Compared to PhD-Net and USR-Net, the performance
of FIO-Net is marginal. This is caused by the fact that
some of the attributes have overlapping influences, e.g.,
feature space and iteration. While Secret 3 says that feature
space deconvolution could help single-iteration methods,
its impact may be diminished when more iterations are
used. This does not make Secret 3 redundant. For example,
when operating with a strict computational budget we may
choose to have fewer iterations and in such a scenario
Secret 3 will become more important.

PURE-LET [27]
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Experimental results comparing the proposed FIO-Net with several other Poisson deconvolution methods.

In Fig. 18 we show the visual comparisons. The visual com-
parisons apparently show another perspective of FIO-Net. If we
compare USRNet, PhDNet, and FIO-Net, we see that all three
perform similarly. However, as we zoom in to see the details, e.g.,
the lines on the roof in the first image, the bars on the windows in
the second image, and the tail of the alphabet in the third image,
we can see the visual improvement of FIO-Net. We remark that
all models are trained using the exact same training dataset and
tested on the same testing dataset. Therefore, the restored details
are due to the network itself rather than data overfitting.

VI. CONCLUSION

With the growth of photon-limited imaging applications, we
recognize the importance of understanding the performance lim-
its of Poisson deconvolution algorithms. To this end, we present
a systematic analysis of a large number of existing non-blind
Poisson deconvolution methods. Based on this analysis, we
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deduce five “secrets” that are needed for an effective non-blind
Poisson deconvolution algorithm design:

1)
2)

3)
4)

5)

Use Wiener filter for spatially invariant blur

Use iterative neural networks instead of single forward-
pass neural networks

Use feature space deblurring instead of image space de-
blurring

No need to use Poisson likelihood in the network archi-
tecture design

Learn hyperparameters for iterative algorithms in an end-
to-end manner.

By combining these five secrets, we obtain a proof-of-concept
named the Five-In-One Network (FIO-Net). The results offered
by FIO-Net are consistent with the five secrets we presented.
Considering that FIO-Net is not a novel design but a combi-
nation of five existing ideas, the consistency and the on-par
performance with the state-of-the-art result provide additional
support to our findings.
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