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Abstract—Non-blind image deconvolution has been studied for
several decades but most of the existing work focuses on blur in-
stead of noise. In photon-limited conditions, however, the excessive
amount of shot noise makes traditional deconvolution algorithms
fail. In searching for reasons why these methods fail, we present
a systematic analysis of the Poisson non-blind deconvolution algo-
rithms reported in the literature, covering both classical and deep
learning methods. We compile a list of five “secrets” highlighting the
do’s and don’ts when designing algorithms. Based on this analysis,
we build a proof-of-concept method by combining the five secrets.
We find that the new method performs on par with some of the
latest methods while outperforming some older ones.

Index Terms—Photon-limited, deconvolution, inverse problems,
deblurring, shot noise.

I. INTRODUCTION

A. From Gaussian to Poisson Deconvolution

I
MAGE deconvolution is one of the most fundamental prob-

lems in image restoration. When the blur kernel is fixed and

given, the problem is known as non-blind deconvolution. For

spatially invariant blur and additive i.i.d. Gaussian noise, the

goal of deconvolution is to recover x ∈ R
N from the equation

y = Hx+ n, (1)

where n ∈ R
N is the i.i.d. Gaussian noise, and H ∈ R

N×N is

the blur kernel represented as a convolution matrix [1], [2]. The

inverse problem associated with (1) has been studied for a few

decades, with an extensive list of methods, both classical [3],

[4], [5], [6], [7], [8], [9], [10], [11] and deep-learning based [12],

[13], [14], [15], [16], [17], [18].

With such a large volume of prior work, it would appear that

the problem is solved. However, as we push the limit of image

deconvolution to low-light conditions, the problem remains wide

open. Moreover, the growth of advanced photon counting image

sensors and the need for extreme low light imaging applica-

tions [19], [20], [21], [22], [23], [24] makes the problem even
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more interesting than before. As people have shown in [25],

even an ideal image sensor with zero read noise cannot escape

from the photon shot noise. Thus, signal processing at this limit

remains critical.

The change from a well-illuminated condition to a low-light

condition is not just about switching the Gaussian model to a

Poisson model 1

y = Poisson{αHx}, (2)

where α is the average number of photons in the scene [26] and

the clean image x is assumed to be normalized to [0, 1]. The

increased difficulty is not associated with the unbounded-below

and the non-differentiable-at-origin property of the Poisson

negative-log-likelihood, but the magnitude of the noise exhibited

in the data. In a typical low light condition, the mean photon

count can be as low as ten photons per pixel. At this photon

level, the random fluctuation of the signal would cause many

algorithms to fail.

The impact of noise in Poisson deconvolution is noticeable in

every step of a deconvolution algorithm. Since there is noise,

it becomes much harder for an algorithm to invert the blur

(usually in the Fourier space) and remove the noise. Deep learn-

ing algorithms also suffer from heavy noise because extracting

features from the image becomes more difficult. In fact, Poisson

deconvolution has only been discussed in a few deep-learning

papers [28], [29], [30], [31].

B. Scope and Contributions

Given the success of Gaussian-noise based image deconvolu-

tion algorithms, we believe that the lessons learned in the past

can shed light on understanding the Poisson problem. To this

end, we analyze a large collection of non-blind deconvolution

algorithms reported in the literature. We look into the design

details of each method and compile a list of do’s and don’ts we

learned from these methods.

As a preview of our results, we show in Fig. 1 the image

reconstruction results of three methods published in the lit-

erature: PURE-LET [27] (T-IP, 2017), DWDN [14] (T-PAMI,

2022), and USRNet [18] (CVPR, 2020). All three methods

are fine-tuned using Poisson data. In the same figure, we

also report a proof-of-concept method by combining the “se-

crets” we learned in this paper. We stress that this proof-

of-concept method is not meant to become a state-of-the-art

1The Poisson model we study in this paper is a simplification of the actual
image formation process which should involve dark current, read noise, etc..
However, given that the Poisson problem is already difficult enough, we decided
to focus on it in this paper.
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Fig. 1. Overview. The goal of this paper is to identify factors that will
benefit Poisson image deblurring. Shown in this example are a simulated blurry
and noisy image (where the noise is Poisson), and the corresponding image
reconstruction results. The proposed method (to be discussed in Section IV) is
just a combination of the five factors we identified, without introducing any new
architectures.

but rather a confirmation of ideas described in the paper. In-

terestingly, the performance of this proof-of-concept is quite

satisfactory.

So, what are our observations? We found the following five

“secrets” of non-blind Poisson deconvolution:

i) Wiener filter is recommended: While some networks per-

form deconvolution and denoising simultaneously, we find

that it is better to decouple the deconvolution part using

a Wiener filter so that we can leverage the fact that the

blur kernel is known. Of course, we assume that the blur

is spatially invariant.

ii) Iteration is recommended: Many networks estimate the

image in a single shot. We find that iterative algorithms

are more effective. For deep neural networks, the it-

erative algorithms can be implemented via algorithm

unrolling.

iii) Feature space is recommended: It is better to perform

deconvolution in the feature space than in the spatial

domain.

iv) Poisson likelihood is not needed: When handling Poisson

noise, there is no need to use customized tools such as vari-

ance stabilizing transform or the Poisson likelihood. Any

architecture for Gaussian noise also works for Poisson.

v) Learning the hyper-parameters is recommended: Some

algorithms estimate the hyperparameters using an off-

the-shelf method or a heuristic rule. We find that

end-to-end learning of the hyperparameters helps the

performance.

This paper focuses on non-generative methods. Our analysis

does not cover generative models (e.g., generative adversarial

networks or denoising diffusion probabilistic models) because

they belong to a different category of approaches. We do not

consider blind deconvolution algorithms because we do not

estimate the blur kernel.

II. ANALYSIS OF PRIOR METHODS

Given the large number of papers published for non-blind

image deconvolution, it would be unrealistic to comment on

every single method. The approach we take here is to focus on

a representative subset of existing methods. However, the se-

lection of the representative methods would require some work.

In what follows, we first list a number of Poisson deconvolution

methods. We group them, and discuss their attributes. Afterward,

we select the representative methods and discuss their design

philosophies.

A. Prior Methods

To help readers visualize the methods being studied in this

paper, we summarize them in Table I. These methods can be

categorized into two main classes:

Classical Methods: By classical methods, we mean methods

that do not require learning. These methods are typically devel-

oped before the deep-learning era. In this paper, we select three

representative methods with code publicly available:
� PURE-LET, by Li and Blu [27], is a non-iterative deblur-

ring algorithm that uses the Poisson unbiased risk estimator

(PURE) as a metric to guide the steps in linear expansion

thresholding (LET). The thresholding idea used here is

similar to several other paper [36], [37], [38], [39].
� VSTP, by Azzari and Foi [32], uses the variance stabi-

lization transform (VST) to equalize the variance of the

Poisson random variable. Then, a deblurring algorithm is

applied to handle the blur.
� Deconvtv, by Chan et al. [33], uses total variation for

Gaussian noise removal. Its performance is not necessarily

the best compared to other total variation solvers such

as [40], [41], [42], [43], [44], [45], [46], but its code is

readily available for experiments.

We acknowledge that there are plenty of other classical

methods, such as [11], [47], [48], [49], [50], [51], [52], [53],

[54]. These papers made great contributions in improving the

prior models of the images so that deblurring and denoising

can be more effective. Some of these methods perform very

well whereas some are similar to the three abovementioned

methods. For the concreteness of this paper and considering the

availability of their codes, we decided to focus on the ones we

mentioned above.

Deep-Learning Methods: While deep learning based decon-

volution algorithms are abundant, many of them are blind algo-

rithms. For non-blind methods, we consider nine of them.
� Deep Wiener Deconvolution Network (DWDN) [14] is a

deep neural network that performs Wiener deconvolution

in the feature space followed by a decoder. Similarly, [55]

performs Wiener deconvolution followed by an artifact re-

movoval network and INFWIDE [56] adds a cross-residual

fusion module. In this paper, we focus on DWDN for clarity

and simplicity.
� KerUnc [16], CPCR [34], USRNet [18], PhDNet [29],

and [15], [57], [58] perform fixed iteration unrolling of

alternating direction method of multipliers (ADMM), half

Authorized licensed use limited to: Purdue University. Downloaded on May 21,2024 at 01:42:06 UTC from IEEE Xplore.  Restrictions apply. 



GNANASAMBANDAM et al.: SECRETS OF NON-BLIND POISSON DECONVOLUTION 345

TABLE I
WE STUDY A COMPREHENSIVE LIST OF METHODS AS SHOWN IN THE TABLE BELOW

quadratic splitting or gradient descent methods followed

by end-to-end training.
� DPIR [35] uses the plug-and-play (PnP) based ADMM

optimization to solve the problem.
� DWKF [17] is an iterative method that uses kernel predic-

tion networks for imposing the image priors.

B. Attributes of the Methods

With more than ten methods listed in Table I, it would be

helpful if we could further categorize them according to their

attributes. The attributes we highlight here will be used to inform

the do’s and don’ts of designing an algorithm.
� Neural network? This attribute asks if the method uses

a neural network - either trained end-to-end [13] or as a

pretrained block [18]. By definition, all classical meth-

ods are treated as non-neural network methods in this

paper.
� Decoupling? Decoupling means that a method handles

the deblurring step and the denoising step separately.

The decoupling can be realized via variable splitting

(e.g., in ADMM), or via a two-stage operation (e.g., in

PURE-LET). For neural networks, we say that it em-

ploys a decoupling strategy if there are modules ex-

plicitly performing deblurring and are separated from

denoising.
� Poisson likelihood? If a method explicitly uses the Poisson

likelihood in an algorithm, then this attribute is satisfied.

Some methods, usually deep neural networks, do not in-

corporate the Poisson likelihood in its algorithm design,

for example [14], [34]
� Iterative? Both classical and deep learning methods can

be iterative. The iteration can occur in the form of an actual

iteration (as in optimization steps) or algorithm unrolling

in deep learning methods.
� Learned parameters? All restoration methods have a set

of hyperparameters. If these hyperparameters are picked

manually, we say that the parameters are not learned.

In contrast, if the hyper-parameters are simultaneously

selected by the learning algorithm, then we say that the

parameters are learned.
� Feature space? For some deep learning methods, the de-

convolution does not take place in the spatial domain [27]

but in the feature space [13], [56]. We check this box to

reflect the property.

C. Design Principles

We now discuss the design principles of the methods shown in

Table I. To narrow down the discussion to a smaller set of meth-

ods, we compared the methods’ performance on a testing dataset.

The execution of the experiment is described in Section III when

we discuss the five secrets of Poisson deconvolution. For the sake

of brevity, the detailed numbers are reported in the Supplemen-

tary Material. Based on the performance of the methods, we

select five leading methods that cover four categories. They are:

1) Traditional, non-iterative: PURE-LET [27]

2) Traditional, iterative: VSTP [32]

3) Neural-network, non-iterative: DWDN [14]

4) Neural-network, iterative: USRNet [18], PhDNet [28].

Two methods were chosen because of their similar per-

formance.

1) PURE-LET [27]: The core idea of PURE-LET is to con-

struct multiple initial estimates using the Wiener filter, which is

essentially a Fast-Fourier transform (FFT) based deconvolution.

Given the blur matrix H, PURE-LET estimates a set of K initial

guesses via

x̂Wiener
k = Wavelet

[(
HTH+ λkI

)−1

HTy
]
, (3)

wherek = {1, 2, . . . K}denotes thekth Wiener estimate, andλk

is the kth hyperparameter. The operator Wavelet denotes the

wavelet thresholding, which is the method PURE-LET used to

clean up the estimates. The estimates are then linearly combined

in such a way that they minimize the mean square error, i.e.,

x̂ =
K∑

k=1

ak · x̂Wiener
k , (4)

where {ak | k = 1, . . . ,K} are the optimal combination weights

determined by minimizing the Poisson unbiased risk estimate

(PURE).

A conceptual diagram of PURELET is shown in Fig. 2.

Referring to Table I, PURELET employs a decoupling strategy

by separating the deconvolution step and the denoising step. The

Poisson likelihood is used to compute the risk estimate, but it

was not used for the deconvolution step which is a filter bank of

Wiener filters.

2) DWDN [14]: DWDN has many similarities to PURE-

LET. Instead of applying the Wiener filter on the images, DWDN

applies it to the features:

x̂feature
k =

(
HTH+ λkI

)−1

HTF feature
k (y), (5)
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Fig. 2. PURE-LET [27] constructs a bank of Wiener filters to deblur the image,
followed by image denoisers.

Fig. 3. DWDN [14]. While it shares similarities with PURELET, it performs
Wiener deconvolution in the feature space instead of the image space.

where F feature
k (·) is a neural network trained to produce features.

The estimated deblurred features {x̂feature
1

, x̂feature
2

, . . . , x̂feature
K }

are then fed to another neural network for refinement Frefine to

obtain the final output x̂:

x̂ = Frefine

{
x̂feature
1

, x̂feature
2

, . . . , x̂feature
K

}
. (6)

The feature networks {F feature
k | k = 1, . . . ,K} and the refine-

ment network Frefine are trained end-to-end. When the mean

squared error (MSE) loss is used, DWDN and PURE-LET both

aim to find the MMSE estimate.

A schematic diagram of DWDN is shown in Fig. 3. If we

compare DWDN with PURE-LET, we recognize that the overall

multi-channel filter bank idea is the same. The only difference is

that DWDN performs the deconvolution operations in the feature

space. The denoisers are also replaced by neural networks.

Moreover, since DWDN does not need to estimate the risk (as

in PURE-LET), the Poisson likelihood is not considered.

3) VSTP [32]: VSTP extends the idea of PURE-LET to

make it iterative. VSTP starts with a single estimate of the

deblurred image x̂Wiener instead of the multiple estimates used

in PURE-LET. However, the overall concept of decoupling the

deconvolution and the denoising steps remain the same.

An interesting idea of VSTP is to iteratively update the

denoising step so that each denoising step can be “mild”. To

do so, a linear combination of x̂Wiener and the denoised estimate

from the previous iteration x̂t−1 is obtained via

x̂data
t = λtx̂t + (1− λt)x̂

Wiener (7)

A variance stabilizing transform (VST) is then used to stabi-

lize the spatially varying noise strength of x̂data
t , which is then

denoised with Denoiser,

x̂t = Denoiser

[
VST

(
x̂data
t

)]
. (8)

The iteration continues until the stopping criteria are met.

In VSTP, the variance stabilizing transform is more of a tech-

nical need because the noise is spatially varying. The rationale

of using VST is that when the photon level is not too low, VST is

Fig. 4. VSTP [32] applies variance stabilizing transform and a denoiser for
the denoising step. The denoising step is also repeated in an iterative manner to
improve the performance.

Fig. 5. USRNet [18], PhDNet [28] is an optimization-based algorithm where
the problem is decoupled into deconvolution, Poisson data, and image denoising.
The method is iterative; in deep neural networks, the iterations are realized via
algorithm unrolling.

able to stabilize the variance so that the spatially varying variance

will become invarying.

A schematic diagram of VSTP is shown in Fig. 4. In the

literature, people sometimes refer the denoising module as

transform-denoise [19].

4) PhDNet [28] and USRNet [18]: Both methods are based

on maximizing the posterior probability (hence they are a

maximum-a-posteriori (MAP) estimator). More specifically, the

estimate is obtained by solving the optimization:

x̂ = argmax
x

[logP (y|x) + logP (x)] , (9)

where P (y|x) is the likelihood term and P (x) is the natural

image prior. USRNet models the problem by assuming that the

noise is Gaussian (without considering the fact that the true noise

distribution is Poisson). Thus, in USRNet, the likelihood term

is

logP (y|x) = −‖y − αHx‖2. (10)

PhDNet explicitly takes into consideration of the Poisson noise,

which leads to the following likelihood term

logP (y|x) = −α1THx+ yT log(αHx), (11)

where 1 is a vector with all ones.

Both methods solve the optimization using an unrolled neural

network. Two steps are common for both methods:
� The inversion module is similar to a Wiener filter. For

iteration t, it is given by

x̂data
t =

(
HTH+ αI

)−1 (
HTy + αx̂t−1

)
. (12)

� The Gaussian denoising module, which can be considered

as a refinement step:

x̂t = F refine
(
x̂data
t

)
(13)

PhDNet has an additional step in each iteration to deal with

the Poisson noise.

A schematic diagram of the methods is shown in Fig. 5. On

neural networks, the iterations are implemented via algorithm
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TABLE II
COMPARISON OF DECONVOLUTION METHODS IN THE SPATIAL DOMAIN OR THE

FEATURE SPACE

TABLE III
COMPARISON OF TWO UNROLLED ITERATIVE ALGORITHMS

TABLE IV
EFFECT OF VST TO A LOW-LIGHT DENOISING TASK

TABLE V
IMPACT OF LEARNING HYPERPARAMETERS

unrolling. That is, we unfold the optimization algorithm into

a fixed number of blocks where each block is implemented

via a neural network. When looping through this fixed number

of blocks, effectively we perform an iterative algorithm. For

additional details about algorithm unrolling, we refer the readers

to [28], [29], [59].

III. THE SECRETS

In Section II we analyzed the structures of the prior methods,

but this alone does not tell us much about the secrets of Poisson

deconvolution. In this section, our goal is to dive into the details

by conducting a series of experiments. From the experimental

results, we then draw conclusions about the influencing factors

for Poisson deconvolution. Some of the discussions are based

on the main experimental result Table VI, which are presented

in Section V.

A. Experimental Setting

Our approach to analyzing the performance of the prior

methods is based on a series of carefully designed experiments.

Since this is an empirical approach, we first state the background

experimental settings.

First of all, we consider classical methods and deep learn-

ing methods separately, because deep learning methods require

training. To make sure that the comparisons are fair, we retrain

all the deep learning methods with the exact same training

dataset, same training loss, and fine-tune the hyper-parameters

to maximize their performances.

For training, we use images from the Flickr2K [60] dataset.

We generate 500 random kernels based on [61]. These 500

kernels consist of five groups of sizes and each group has 100.

The sizes are 9× 9, 18× 18, 27× 27, 36× 36, and 45× 45. In

addition, we generate 64 Gaussian kernels of varying anisotropy

with the blur parameter σ between 0.1 and 5. Images of size

128× 128 are cropped randomly from the dataset and then each

image is blurred using a random kernel among these 500+64 =
564 kernels assuming circular boundary conditions. For noise,

we assume that the photons per pixel (ppp) ranged between 5

and 80, which can be adjusted by varying α in (2). The input

images are then downscaled by alpha to make sure that the range

of the input images remains roughly the same.

y = Poisson{αHx}/α. (14)

During training, we use the �1 loss between the reconstructed

image x̂ and the ground truth image x to train the networks. The

loss function is defined by

L(x̂,x) = ‖x̂− x‖1, (15)

where ‖ · ‖1 denotes the �1 norm. We train all the networks

for 500 epochs, with the Adam optimizer. The learning rate is

initialized as 10−4 which gets halved every 100 epochs. The

batch size was set to 2 for all the methods. We do so to ensure

a fair comparison because some methods consume more GPU

power. We used a NVIDIA GeForce RTX 2080 Ti graphics card

for both training and inference of all the methods. The inputs to

the networks include the degraded image y and the blur kernel

h. Some methods like [18], [28] take the noise level as inputs.

In such cases, the photon level α corresponding to each image

was sent as the input.

For testing, we evaluate the methods using synthetically

degraded images obtained by blurring 100 images from the

BSD300 dataset [62]. We use 3 different sets of 5 motion kernels

of size 9× 9 (Small), 27× 27 (Medium), 45× 45 (Large) us-

ing [61]. Each combination of the image and motion is evaluated

at three different photon levels (10, 30, and 50).

B. Secret 1: Using Wiener Filters is Recommended

We observe that the five methods discussed in Section II-C all

have a separate Fourier-based deconvolution module - irrespec-

tive of whether they are traditional methods or deep learning-

based methods. The presence of the Fourier-based deconvolution

module hints that a black-box neural network might have some

limitations.

Authorized licensed use limited to: Purdue University. Downloaded on May 21,2024 at 01:42:06 UTC from IEEE Xplore.  Restrictions apply. 



348 IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, VOL. 10, 2024

TABLE VI
PERFORMANCE OF THE 5 METHODS OF INTEREST ON THE TEST DATASET

Fig. 6. How Wiener filters are used. We consider two neural networks, where
in (a) we decouple the inversion step by a Fourier-based deconvolution module
which is the Wiener filter, and in (b) we use only a neural network. The added
computational complexity of the Wiener filter is minimal because it is a simple
inversion in the Fourier space.

The decoupling approach makes sense in classical methods.

In these methods, Poisson deconvolution is often posed as

MAP-based optimization. Since it is very difficult for a simple

optimization step to simultaneously handle blur and noise, it

makes sense to decouple them.

How about deep neural networks? One would expect that

since they have a large capacity, they wouldn’t need to adopt

a decoupling strategy. To examine the need for decoupling, we

compare the two configurations as shown in Fig. 6 - neural

networks with and without a Wiener filter.

In this experiment, we use the ResUNet from [18] for the task

shown in Fig. 6(b). We train the network at a particular light level

of 10 photons per pixel (ppp). To ensure that there is no domain

gap, we train the network for one single blur kernel and test it

for the exact same blur kernel. For the configuration shown in

Fig. 6(a), we use a single-iteration USRNet. A single-iteration

USRNet is nothing but a deconvolution module followed by a

refinement network. We train the network with a large range of

photon levels and blur kernels, as described in Section III-A.

Our argument is that if a specialized network in Fig. 6(b) cannot

beat a generic network in Fig. 6(a), then there must be some

fundamental limits in the network itself.

The results are shown in Fig. 7. We observe that the black-box

neural network cannot handle blur and noise simultaneously. In

contrast, a network with an explicit deconvolution step performs

much better. Our conjecture is that since we know the blur kernel,

it is better to incorporate this forward model in the solution when

deblurring the image.

C. Secret 2: Iterations are Recommended

Iterative methods, regardless if they are traditional or neural-

network-based, tend to perform better according to Table VI.

Let us explain why this is the case.
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Fig. 7. Secret 1: Wiener filter is recommended (a) Clean. (b) Degraded image.
(c) Blur kernel. (d) A deconvolution U-Net trained on a variety of kernels. (e) A
deconvolution U-Net trained on the specific blur kernel defined in (b). Note that
even if we train the network specifically for the blur kernel, the result is still not
satisfactory. (f) Deconvolution when the Wiener step is included in the U-Net.

Fig. 8. Secret 2: Iteration is recommended. We plot the PSNR of the estimates
at each iteration of USRNet. We can notice that ignoring the first iteration, the
plot aligns with our claim - A better deconvolution leads to a better refinement,
which turn again leads to a better deconvolution.

Consider USRNet as an example: It is an iterative algorithm

where the iterations are given by (12) and (13). The first step

(12) is the deconvolution module which produces an estimate

x̂data
t , and the second step (13) is a neural network denoiser

that refines the estimate to generate x̂t. The performance of a

denoiser is directly related to the input quality. The noisier the

input is, the worse the reconstruction performance will be [63].

In a single-shot low-light deconvolution, we need to have a very

good estimate from (12), and this needs to be computed directly

from the noisy image itself. In iterative schemes, even though

the initial estimate x̂data
0

is not good, the mild refinement steps

will gradually improve the image quality because they use both

the previous estimate x̂data
t−1

and the current estimate.

Fig. 8 shows a typical per-iteration PSNR of an iterative

scheme USRNet. Putting aside the initial estimate (which shows

a downward PSNR trend), the performance generally goes up

as the number of iterations increases. Specifically, we see that

after each pair of x̂t and x̂data
t , the performance improves. The

exact dynamics of the PSNR is difficult to track because it is

Fig. 9. Number of iterations. We retrain USRNet with different numbers of
iterations. We can see that we obtain a performance boost by increasing the
number of iterations.

Fig. 10. What kind of iterations help? By comparing USRNet and VSTP, we
observe two types of iterations. (a) USRNet sends x̂ back to the data module
iteratively to improve the estimate. (b) VSTP uses x̂ to form a linear combination
with the Wiener filter outputs. We find that iteration in (a) is more effective.

image-dependent. However, the trend confirms our hypothesis

that iterations are helpful.

For unrolled algorithms, the number of iterations is realized

by the number of blocks. A natural question is the number of

such iterative blocks — will more blocks improves the overall

deconvolution result? Fig. 9 shows the results of four USRNets

trained at different number of iterative blocks. It is clear from

the result that more iterations leads to a better final performance,

although there is a diminishing return after several blocks.

Another question we ask is the type of iterations. Among the

methods reported in Table VI, there are two different kinds of

iterative schemes as shown in Fig. 10. The first one is the USRNet

where the estimate x̂ is fed back to the data module (i.e., the

inversion module), and is combined with the raw input y and

kernel h to construct a new intermediate estimate. The second

iterative scheme is the one used in VSTP. In this scheme, the

estimate x̂ is used to form a linear combination with the output

of the Wiener filter.

To evaluate the performance of the two schemes, we modify

USRNet to incorporate the VSTP mechanism. We argue that

this is a fairer comparison than directly using VSTP because

VSTP uses a traditional denoiser BM3D. In our modification,

we ensure that the two networks are trained with the same type

and same amount of data. The results are shown in Fig. 11,
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Fig. 11. What kind of iterations help? This figure is a follow-up of Fig. 10
where here we plot the PSNR as a function of the photon level.

where we see that the iterative scheme by USRNet has a clear

advantage over the VSTP scheme.

Based on the above experiments, our recommendation regard-

ing the iterative scheme is that iterative schemes offer better per-

formance than one-shoot methods. Among the different iterative

schemes, we recommend feeding back the estimate x̂ directly

to the inversion module so that the features of x̂ will be utilized

better.

D. Secret 3: Feature Space is Recommended

The next secret about Poisson deconvolution is that it is better

to deconvolve the image in the feature space instead of the

image space. This observation is based on the difference between

PURE-LET and DWDN in Table VI. Both PURE-LET and

DWDN use multiple Wiener filters. PURE-LET uses different

deblurring strengths (as specified by the hyper-parameter λ),

whereas DWDN uses the same Wiener filter for different feature

maps. But the biggest difference is that PURE-LET performs the

deconvolution in the image space whereas DWDN performs the

deconvolution in the feature space. We show in this subsection

that the superior performance of DWDN is partially driven by

feature space deconvolution.

To prove the usefulness of feature space deconvolution instead

of image space, we consider the following four modifications of

DWDN by placing the Wiener filters in different ways.

1) Configuration I in Fig. 12(a) uses a single Wiener filter

followed by a refinement network. This is the vanilla

network for baseline analysis.

2) Configuration II in Fig. 12(b) uses three Wiener filters

as in PURE-LET. Each Wiener filter uses a different

regularization parameter λ. We use a deep neural network

as the refinement step so that it is a fair comparison with

DWDN.

3) Configuration III in Fig. 12(c) uses a feature extraction

unit to pull the features before sending them to Wiener

filters. This is the same as DWDN. In our experiment,

there are 16 feature maps. The regularization parameter λ

is the same across the 16 Wiener filters.

4) Configuration IV in Fig. 12(d) uses 16 Wiener fil-

ters where each has three sub-configurations. Each sub-

configuration uses a different λ. We regard Configuration

Fig. 12. Secret 3: Feature space is recommended. The two types of decon-
volutions: image space and feature space. (a)–(b) perform deconvolution in the
spatial domain, whereas (c)–(d) perform deconvolution in the feature space.

IV as the ultimate modification we can make within the

context of our analysis.

The comparisons between these configurations are shown

in Table II. We see that across the different photon levels,

the ones that perform deconvolution in the feature space are

significantly better. Our intuitive argument is that in the fea-

ture space, the signals are already decomposed. If the feature

extraction unit is powerful, signals will be captured in a few

leading feature dimensions whereas noise will be concentrated

in the other dimensions. Therefore, the strong signal features

will be deconvolved well by the Wiener filter with a smaller λ,

whereas the noise features will be attenuated by a large λ. As a

result, the overall deconvolution will be better. As for how much

regularization λ is needed, Configuration III and IV tell us that

the benefit is marginal.

Based on these findings, our recommendation here is that

whenever possible, deconvolution should be performed in the

feature space. Using different regularization parameter λ does

not seem to have a significant difference.

E. Secret 4: Poisson Likelihood is Not Needed

By virtue of Poisson deconvolution, the likelihood function

should be Poisson. However, several observations make us be-

lieve that the Poisson likelihood is not needed in a neural network

based solution.
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Fig. 13. Secret 4: Poisson likelihood is not needed. USRNet and PhDNet are
both iterative unrolled networks. The difference is that in PhDNet, an explicit
Poisson module is used to handle the Poisson noise.

Our first observation is the comparison between USRNet

and PhDNet in Table VI. USRNet uses a Gaussian likelihood

whereas PhDNet uses a Poisson likelihood. Because of the Pois-

son likelihood, PhDNet needs to introduce a variable splitting

technique to specifically handle the Poisson part, see the added

Poisson module illustrated in Fig. 13. However, from Table III

we observe that the difference in performance between the two

methods is negligible.

Readers may argue that the vanishing performance gap is due

to the iterations, i.e., as the number of iterations increases, the

network capacity increases and hence they are more capable

of handling the Poisson statistics. To prove that this is not the

case, we train four versions of USRNet and PhDNet with a

fixed number of 1, 2, 4, and 8 iterative blocks in their unrolled

networks. We can see from Table III that irrespective of the

number of iterations used by the method, USRNet performs as

well as PhDNet. Therefore, whether or not we use an explicit

Poisson module does not matter.

Another “indirect” observation is about the design of PURE-

LET. In PURE-LET, the Poisson statistics is used to estimate

the PURE score which is an unbiased risk estimator of the

mean squared error. However, the actual deconvolution step is

performed by a bank of Wiener filters - which is derived from

Gaussian statistics.

If Poisson modules are not needed, we expect that techniques

associated with the Poisson likelihood would not have any signif-

icance to the restoration problem. This observation is supported

by inspecting methods using the variance stabilizing transform

(VST). Fig. 14 shows a typical VST-based image denoising

algorithm. In the VST case, we first apply VST to stabilize the

Poisson variance. We then denoise the image, and transform

back via the inverse VST. In our experiment, we use the ResUNet

from [18] as the denoiser.

Table IV shows the performance between using VST or not.

We oberve that using VST does not offer the denoiser any ad-

vantage. The network without VST even marginally outperforms

the denoiser with VST. This finding is consistent with what was

reported in [20] for binomial noise.

Fig. 14. Variance Stabilizing Transform. VSTs are often used in Poisson noise.
(a) A denoising method using VST. (b) A denoising method without VST.

Fig. 15. Secret 4: As long as λ is not too small, the Poisson can be well
approximated by the Gaussian. This combined with the expressivity of neural
networks make Poisson likelihood unnecessary for network design.

An intuitive explanation of why Poisson likelihood might

not be needed is as follows. In the range of photon levels we

are considering (α ∈ [5, 80]), the Poisson distribution can be

approximated by a Gaussian distribution [64, Lemma 3]

λ
ke−λ

k!
≈ 1√

2πλ
e−

(k−λ)2

2λ , λ � 1. (16)

In Fig. 15, we plot the cumulative distribution function (CDF)

of Gaussian and Poisson. We see that when λ is not too small,

the Poisson can be well approximated by the Gaussian although

its variance is signal-dependent. This Gaussian approximation

works sufficiently well for Poisson noise with λ � 1. For the

signal-dependent noise variance, our results in the variance

stabilizing transform show that the neural networks have enough

expressiveness to learn the spatially varying noise variance. If

the photon level is extremely low, e.g., in some very low-light

microscope applications, then we might need to use the full

Poisson likelihood.

Based on the above analysis, our conclusion is that when

handling the Poisson noise in low-light, network architectures

designed for Gaussian likelihood will work just as well. There

is no clear advantage of using the more complicated Poisson

likelihood and/or variance stabilizing transforms. As long as the
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Fig. 16. Secret 5: Hyper-parameter learning is recommended. We can use
heuristics or train a network to select the hyper-parameters.

photon level is not extreme, the explicit Poisson modules are not

required.

F. Secret 5: Learning Hyperparameters is Recommended

Among the learning-based methods, USRNet and PhDNet

use networks to learn the hyperparameters that get used in the

data module, Poisson module and the refinement net. However,

DWDN uses a heuristic method for estimating this parameter.

To understand if it is important to learn the hyperparameters, we

modify DWDN and learn the hyperparameter that is being input

to the Wiener filters using the same network structure used by

PhDNet to learn its parameters. Fig. 16 illustrates the conceptual

difference between the two.

The result of this experiment can be found in Table V. We

notice that when DWDN is augmented with a small network for

learning the hyperparameters, it performs slightly better than

using a heuristic for finding the parameters. The improvement

is less than 0.1 dB which is not very noticeable. However, since

the computational cost of adding a hyper-parameter learning

module is so small compared to the whole network, it does not

hurt to include it.

Based on the above experiments, we conclude that hyper-

parameter learning is helpful but it is not necessary. We still

recommend it because it saves us from hand-tuning the hyper-

parameters.

IV. COMBINING THE SECRETS

After presenting the five secrets, a natural question is: “what

if we combine these ideas?” To this end, we create a method

called the Five-in-One Network (FIO-Net) as shown in Fig. 17.

We make two remarks before we discuss this network: 1. We

do not regard FIO-Net as a novel invention or claim it to

be a state-of-the-art. We view FIO-Net a check point of the

five secrets. We are more interested in checking whether its

performance is consistent with the five secrets, rather than

expecting it to beat other methods by a big margin. 2. Although

FIO-Net is a combination of the five secrets, it would still

require some design because otherwise there is no guarantee

it should work. We will present a way to integrate these five

ideas.

To elaborate on the design principle of the FIO-Net, we first

use Secret 4 to replace Poisson likelihood with the Gaussian

likelihood. This implies that as far as the network structure is

concerned, we can focus on the Gaussian forward model:

y = αHx+ n, (17)

where α defines the photon level. We remark that this is not

the original Poisson deconvolution problem that we want to

solve. However, since Secret 4 tells us that utilizing the Poisson

likelihood is not needed, we consider the Gaussian model when

designing the neural network. When training the model, we

take blurred images and add synthetic Poisson noise instead of

Gaussian noise.

Remark: The concept using a sub-optimal forward model

in exchange of better reconstruction performance is perhaps

counter-intuitive. The general line of argument is known as

computational image formation which we refer readers to [65]

for detailed elaborations.

Our next step is to use Secret 3, which suggests us to perform

the deconvolution in the feature space. To this end, we consider

a set of linear filters {Fi | i = 1, 2, . . . ,M} and apply them to

Fiy = αFiHx+ Fin. (18)

Since Fi and H represent convolutional operations in matrix

form, we can switch the order using the commutative property

of convolution to obtain

Fiy = αHFix+ Fin. (19)

The question now becomes how to recover x.

Solving (19) would require an optimization. In FIO-Net, we

consider a generic regularized least squares:

x̂ = argmin
x

M∑

i=1

‖Fiy − αHFix‖2 + λg(x). (20)

where g(x) is the prior. Since an unconstrained optimization

problem with a sum of two different functions is difficult to

optimize, we split the original problem into two simpler sub-

problems. We introduce a set of new variables {zi = Fix, i =
1, 2, . . .M}, and collectively define z = {z1, . . . , zM}. The

new constrained optimization problem now becomes

{x̂, ẑ} = argmin
x,z

M∑

i=1

{
‖Fiy − αHzi‖2 + λg(x)

}

subject to zi = Fix, i = 1, 2, . . . ,M. (21)

Equation (21) is a standard optimization that can be solved

using the half-quadratic splitting (HQS) [18]. HQS formulates

an alternative optimization:

{x̂, ẑ} = argmin
x,z

M∑

i=1

{
‖Fiy − αHzi‖2 + λg(x)

+ µi‖Fix− zi‖2
}
, (22)

where µi is the penalty strength.

In what follows, we briefly summarize the equations to solve

(22). During the discussion, we will explain how the secrets are

used. The algorithm to solve (22) involve two steps:

zki = argmin
zi

‖Fiy −Hzi‖2 + µk
i ‖Fix

k−1 − zi‖2 (23)
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Fig. 17. Schematic diagram of FIO-Net. The Five-in-One Network (FIO-Net) utilizes all the five secrets we observed in the previous section. It is an iterative
scheme performing deconvolution in the feature space. It uses Wiener filter, but no Poisson likelihood. Hyperparameters are automatically tuned.

xk = argmin
x

M∑

i=1

µk
i ‖Fix− zki ‖2 + λg(x), (24)

where we use the fact that the optimization of zi in (22) is

separable so that we can solve for individual zi’s.

Next, we apply Secret 5 which says that we should learn the

hyperparameters end-to-end. Thus, we replace the penalty µi

with µk
i so that they change over iterations. Similar to [28], we

use a small fully connected neural network for estimating the

hyperparamaters µk
i with the kernel H and the photon level α

used as the input.

Let’s solve (23) and (24). (23) is a least squares minimization

problem, and it has a closed form expression given by

zki =
(
I + µk

iH
TH

)−1 (
Fix

k−1 + µk
iH

TFiy
)
. (25)

Assuming that the convolution operation represented by H is

carried out with circular boundary conditions, (25) has a FFT

based solution given by

zki = F−1

[
F(Fix

k−1) + µk
iF(H) · F(Fiy)

1 + µk
i |F(H)|2

]
, (26)

where F(·) and F−1(·) denote the FFT and inverse FFT respec-

tively, and (·) denotes the complex conjugate function. Follow-

ing the idea of [14], we replace the linear filters with learnable

non-linear convolutional neural networkDfeat(·). Similar to [14],

we note that while the solution (26) was obtained for linear

filters, using non-linear neural networks works well and even

better than linear filters. Therefore, (26) is modified as

zki = F−1

[
F(Dfeat

i (xk−1)) + µk
iF(H) · F(Dfeat

i (y))

1 + µk
i |F(H)|2

]
,

(27)

where {Dfeat
1

(·), . . . ,Dfeat
M (·)} = Dfeat(·) represents the features

generated by the neural network.

The other subproblem in (24), in the absence of the filters Fi,

can be thought of as a image denoising problem [66]. However,

the presence of the filters makes this problem not so straight-

forward. However, we can still think of (24) as a restoration task

where we want to recover the image x from a set of features zi.

We want to minimize the residue between the input features and

Algorithm 1: FIO-Net: Fixed Iteration Unrolling.

1: Input: Degraded Image y, Kernel H, Photon level α
2: x0 ← y

3: {Fy

i }i=1,...,M = Dfeat(y) � Feature extraction from y
4: {µk}k=1,...,K = Dhyp(H, α) �Hyperparameters

from Dhyp(·)
5: for k = 1, 2, · · ·,K do

6: Update zki using Equation (26)

7: Update xk using Equation (28)

8: end for

9: return xK

the features generated from x, while enforcing the prior g(x).
Given the complex nature of restoring the image from a set of

features, and the difficulty of defining a good prior term g(x),
we propose to solve this problem using a convolutional neural

network as

xk = Drefine

(
zk
1
, . . . , zkM ,

λ

µk

)
, (28)

where we have assumed that the penalties µk
i = µk do not

vary over the features. The entire algorithm is summarized in

Algorithm 1.

The method is iterative, based on unrolled optimization that

uses the convolutional neural networks only for image refine-

ment and a traditional FFT based method is used for deconvolu-

tion. The iterative scheme described in Algorithm 1 is unrolled

for K = 8 iterations and then trained end-to-end using the same

training process as that described in Section III-A. The training

of FIO-Net took roughly 24 hours on a GeForce RTX 2080 Ti

graphics card. Both Feature Net and Refinement Net is trained

during this. The method incorporates the idea of deconvolving in

the feature space, and does not have any specific Poisson design.

V. EXPERIMENTS

After elaborating on the proposed method, we present the

quantitative results on BSD300 dataset in Table VI. We use

the same testing process as described in Section III-A so that

the testing conditions are fair to all methods. We make three

comments:
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Fig. 18. Experimental results comparing the proposed FIO-Net with several other Poisson deconvolution methods.

� Compared to classical methods such as PURE-LET and

VSTP, FIO-Net outperforms by a big margin. This should

not be a surprise, because all deep learning methods out-

perform these two classical methods.
� Compared to a single-pass deep learning method DWDN,

the performance of FIO-Net is substantially better, espe-

cially for bigger blur kernels. This stresses the importance

of iterative methods.
� Compared to PhD-Net and USR-Net, the performance

of FIO-Net is marginal. This is caused by the fact that

some of the attributes have overlapping influences, e.g.,

feature space and iteration. While Secret 3 says that feature

space deconvolution could help single-iteration methods,

its impact may be diminished when more iterations are

used. This does not make Secret 3 redundant. For example,

when operating with a strict computational budget we may

choose to have fewer iterations and in such a scenario

Secret 3 will become more important.

In Fig. 18 we show the visual comparisons. The visual com-

parisons apparently show another perspective of FIO-Net. If we

compare USRNet, PhDNet, and FIO-Net, we see that all three

perform similarly. However, as we zoom in to see the details, e.g.,

the lines on the roof in the first image, the bars on the windows in

the second image, and the tail of the alphabet in the third image,

we can see the visual improvement of FIO-Net. We remark that

all models are trained using the exact same training dataset and

tested on the same testing dataset. Therefore, the restored details

are due to the network itself rather than data overfitting.

VI. CONCLUSION

With the growth of photon-limited imaging applications, we

recognize the importance of understanding the performance lim-

its of Poisson deconvolution algorithms. To this end, we present

a systematic analysis of a large number of existing non-blind

Poisson deconvolution methods. Based on this analysis, we
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deduce five “secrets” that are needed for an effective non-blind

Poisson deconvolution algorithm design:

1) Use Wiener filter for spatially invariant blur

2) Use iterative neural networks instead of single forward-

pass neural networks

3) Use feature space deblurring instead of image space de-

blurring

4) No need to use Poisson likelihood in the network archi-

tecture design

5) Learn hyperparameters for iterative algorithms in an end-

to-end manner.

By combining these five secrets, we obtain a proof-of-concept

named the Five-In-One Network (FIO-Net). The results offered

by FIO-Net are consistent with the five secrets we presented.

Considering that FIO-Net is not a novel design but a combi-

nation of five existing ideas, the consistency and the on-par

performance with the state-of-the-art result provide additional

support to our findings.
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