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Abstract—A spatially varying blur kernel h(x,u) is specified
by an input coordinate u∈R

2 and an output coordinate x∈R
2.

For computational efficiency, we sometimes write h(x,u) as a
linear combination of spatially invariant basis functions. The
associated pixelwise coefficients, however, can be indexed by
either the input coordinate or the output coordinate. While
appearing subtle, the two indexing schemes will lead to two
different forms of convolutions known as scattering and gathering,
respectively. We discuss the origin of the operations. We discuss
conditions under which the two operations are identical. We
show that scattering is more suitable for simulating how light
propagates and gathering is more suitable for image filtering
such as denoising.

Index Terms—Spatially varying blur, basis representation,
scattering, gathering.

I. INTRODUCTION

I
N two-dimensional space, the convolution between an input
image J(x) and a shift-invariant kernel h(x) produces an

output image I(x) via the well-known integral

I(x) =

∫

R2

h(x− u)J(u) du. (1)

In this equation, x ∈ R
2 is a two-dimensional coordinate in the

output space and u ∈ R
2 is a coordinate in the input space. This

definition is ubiquitous in all shift-invariant systems.
If the kernel h is spatially varying, then it is no longer a

function of the coordinate difference x− u but a function of
two variables x and u. The resulting kernel h(x,u) will give
the input-output relationship via the integral

I(x) =

∫

R2

h(x,u)J(u) du, (2)

also known as the superposition integral.
While spatially varying kernels are more difficult to analyze

because they cannot be directly handled by Fourier transforms
[1], they are common in image formation and image processing
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which are twins in many situations, such as in the case of kernel
estimation [2], [3], [4] or image restoration [5], [6], [7]. In
image formation, spatially varying kernels are used to model
how light propagates from the object plane to the image plane.
These kernels are known as point spread functions (PSFs) which
may be spatially varying due to various degradations in the
medium or aberrations in the imaging system (such as spherical
aberration). In image processing, spatially varying kernels are
used to filter the input image for applications such as denoising
or interpolation. The spatially varying nature in these situations
come from examples such as non-local edge-aware filters where
the shapes and orientations of the filters change depending on
the image.

The theme of this paper is about the decomposition of the
kernel in terms of basis functions. If h is spatially invariant,
we may express it via the equation

h(x− u) =
M∑

m=1

amϕm(x− u), (3)

where {ϕ1, ϕ2, . . . , ϕM} are orthogonal basis functions. These
functions could be as simple as the derivatives of Gaussians,
or they can be learned from a dataset of kernels via principal
component analysis (PCA). The scalars {a1, a2, . . . , aM} are
the basis coefficients, often constructed according the local
image statistics or the underpinning physics.

In the case of spatially varying kernels, the subject of this
paper, the basis representation in (3) needs to be modified so
that it can take the two variables x and u into account. However,
there is an ambiguity due to the existence of two options which
we call gathering and scattering:

(Gathering) h(x,u) =
M∑

m=1

ax,mϕm(x− u), (4)

(Scattering) h(x,u) =

M∑

m=1

au,mϕm(x− u). (5)

In both options, the spatially varying kernel h(x,u) is writ-
ten as a combination of invariant kernels {ϕ1, ϕ2, . . . , ϕM}.
These ϕm’s are spatially invariant, so they can be written as
ϕm(x− u). The difference between the two options lies in the
coefficient ax,m and au,m. Both possibilities have utility; this
paper is aimed at describing their appropriateness.

Remark: Readers may wonder if we can define h(x,u) using
a global am instead of a pixelwise ax,m or au,m. If we do so,
for example by defining h(x,u) =

∑M

m=1 amϕm(x− u), then
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h(x,u) will be invariant because it is a linear combination of
invariant basis functions. This will defeat the purpose studying
a set of varying kernels. �

At first glance, the two choices above seem subtle to an extent
that one may expect a minor difference in terms image quality.
However, the two equations have two fundamentally different
physical meanings. To give readers a preview of the main claims
of the paper, we summarize as follows:

• Gathering: ax,m is for image processing such as denois-
ing filter, interpolation filter, etc.

• Scattering: au,m is for image formation such as modeling
motion blur or atmospheric turbulence.

The study of time variant systems goes back to classical
time-variant filter banks, wavelets, or Kalman filtering/state-
space applications [8], [9], [10], [11], [12], [13]. The study
of spatially varying kernels as a sum of invariant ones has
been performed in works such as [14], [15], [16], [17], [18],
[19] as applied models but often do not address the reason for
the forward model chosen. The role of this work is to clearly
highlight the difference between the two approximations from
the side of modeling and describing where each one is more
appropriately applied.

II. THE OPERATIONS OF GATHERING AND SCATTERING

A. Understanding Gathering

To present the operation of gathering, we can substitute the
basis representation of (4) into (2), resulting in

I(x)
by (2)
=

∫

R2

h(x,u)J(u) du

by (4)
=

∫

R2

(
M∑

m=1

ax,mϕm(x− u)

)
J(u) du

=

M∑

m=1

ax,m

(∫

R2

ϕm(x− u)J(u) du

)
.

Recognizing that the integral is a spatially invariant convolu-
tion, we can show that

I(x) =
M∑

m=1

ax,m (ϕm∗J)(x)︸ ︷︷ ︸
invariant blur︸ ︷︷ ︸

linear combination of invariant blurs

. (6)

Therefore, spatially varying convolution is replaced by a sum
of M spatially invariant convolutions. Each term in the sum
(ϕm∗J)(x) is the convolution between the image J(u) and the
basis functions ϕm(u).

In terms of computation, we start with the image J(u), pre-
compute the filtered images (ϕm∗J)(x), then form a weighted
sum of these images to construct the output I(x). The weights
are pixelwise, and so the resulting blur is spatially varying.
Fig. 1 illustrates how this idea can be implemented. Because

Fig. 1. Gathering is for image processing. In gathering, we construct
a set of convolved images (ϕm∗J)(x) and gather them via pixelwise
multiplication. The process offers a significant saving in terms of computation.

Fig. 2. The operation derived in (6) follows the intuitive argument that a
neighboring input pixels are mapped to an output. Thus, each h(x,u) is
defined based on the output coordinate x: At every x, there is a set of basis
functions that define h(x,u).

of the ordering of operations, this has also been referred to as
convolution-product [20] in the more mathematical literature.

The illustration in Fig. 1 should remind readers of many
classical signal processing techniques. For example, the steer-
able filters by Freeman and Adelson [21] employed the idea to
detect image edges using a bank of Laplacian filters. The idea
was also used in applied mathematics literature. For example,
Nagy and O’Leary [22] used the idea to decompose the spa-
tially varying kernels using non-overlapped blocks. Nagy and
O’Leary’s formulation is a special case of our model by making
the coefficients ax,m as a binary mask. In [23], Popkin et al.
used the idea to perform fast computation of spatially varying
blurs with the basis functions computed via PCA.

To readers who prefer the perspective of deep learning, gath-
ering as in (4) is what we call convolution in deep neural
networks. To see why gathering is identical to the convolution
(in deep-learning), we can refer to Fig. 2. Starting with a lo-
cal neighborhood in the input space, we assign each pixel a
weight which is specified by the kernel and map the sum to the
output coordinate.

We summarize our findings here:

What is gathering (convolution-product)?
• We apply spatially invarying kernels first, and then

combine the results with weights.
• Consistent with convolution presented in Oppen-

heim and Wilsky [24], “flip, shift, and integrate”.
• Equivalent to the “convolution” in deep neural

networks.
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Fig. 3. Scattering is for image formation. Here we show a modified
version of Mao et al’s phase-to-space (P2S) transform [25] by switching
the order of multiplication and convolution. The new formulation follows
the derivation in (7). We argue that this formulation is the better (and the
physically valid) approach when modeling how light propagates from the
object plane to the image plane.

B. Understanding Scattering

For scattering, we follow the same approach as we did for
gathering. Substituting (5) into (2), we see that

I(x)
by (2)
=

∫

R2

h(x,u)J(u) du

by (5)
=

∫

R2

(
M∑

m=1

au,mϕm(x− u)

)
J(u) du

=
M∑

m=1

(∫

R2

ϕm(x− u) ·
(
au,mJ(u)

)
du

)
.

The last equation is trickier to understand. For a fixed index m,
the product term au,mJ(u) is a pixelwise multiplication of the
coefficient map au,m and the input image J(u). Therefore, if
we express it using the elementwise multiplication �, we can
write the equation as

I(x) =
M∑

m=1

(
ϕm ∗

(
am � J

)

︸ ︷︷ ︸
pixelwise weighted input

)
(x)

︸ ︷︷ ︸
linear combination of invariant blurs

. (7)

Again thinking in terms of computation, we need to first
construct the M coefficient maps {au,1, . . . , au,M} where each
au,m is a value in an array of the same size as the image J . We
multiply J with each coefficient map to obtain M “weighted
images” J̃m(u) = au,mJ(u). Then we convolve these M inter-
mediate images through (ϕm∗J̃m)(u). Finally, summing over
the M images will give us the final result.

The process is summarized in Fig. 3. Comparing it with
Fig. 1, we notice that the difference is order of multiplication
and convolution. In Fig. 1, the pixelwise multiplication is done
after the convolutions whereas in Fig. 3, it is done before the
convolutions. Since the two processes involve the same number
of convolutions and multiplications, the complexity of execut-
ing the computation is identical.

The role of scattering has been considered in a variety of
mathematical studies, such as in Busby et al. [20] or Escande
et al. [26] in which various bounds can be placed on the

Fig. 4. The operation behind the scattering equation: a point source δ(u)
emits light which propagates to the object plane. The point spread function
(aka the blur kernel h) seen in the object plane is centered at u. At each fixed
u, the pixel values h(x,u) are determined by how the propagation medium
affects the amplitude and phase at coordinate x.

approximation of a product-convolution for a general operator
(2). Alger et al. [27] demonstrated that product-convolution
arises naturally in the case of locally-invariant kernels and
proposes an adaptive scheme for the coefficients.

The situation described in (7) is the mirror of Fig. 2. Instead
of having a local neighborhood whose pixels are mapped to
a common output coordinate, the input pixel distributes its
influence to a local neighborhood in the output space, as shown
in Fig. 4. In deep learning, we call it the transposed convolution,
which is typically used to upsample the features in tasks such
as image super-resolution.

We summarize our findings here:

What is scattering (product-convolution)?
• We apply weighted averaging first, and then filter the

weighted averages, and finally add.
• Consistent with how light propagates. See Good-

man’s Fourier Optics [28] and our next section.
• Equivalent to the “transposed convolution” in deep

neural networks.

C. Conditions for Equivalence

After elaborating on the computations of gathering and scat-
tering, we now explain the conditions under which the two are
equivalent. As expected, the two are only equivalent in highly
special cases.

Let us look at the equations more carefully through the lens
of matrices and vectors. Let H ∈ R

N×N be the matrix repre-
sentation of the spatially varying blur kernel h(x,u). We as-
sume that there is a set of circulant matrices H1,H2, . . . ,HM

representing the set of M spatially invariant basis functions
{ϕ1, ϕ2, . . . , ϕM}.

We consider two sets of diagonal matrices. For every index
m, we define

D
(g)
m = diag

⎧
⎪«
⎪¬

£
¤¥
ax1,m

...
axN ,m

¦
§̈
«
⎪¬
⎪­
, D

(s)
m = diag

⎧
⎪«
⎪¬

£
¤¥
au1,m

...
auN ,m

¦
§̈
«
⎪¬
⎪­
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Then, the gathering and scattering equations are

(Gathering) : H
(g) =

M∑

m=1

D
(g)
m Hm (8)

(Scattering) : H
(s) =

M∑

m=1

HmD
(s)
m (9)

In other words, the difference lies in how we order the diagonal
matrices and the spatially invariant convolution matrices. We
now present a theorem that can be used to show gathering and
scattering are mutually exclusive in a wide range of cases.

Theorem 1: Let H ∈ R
N×N be a circulant matrix formed

by [h0, . . . , hN−1] with at least two consecutive non-zero el-
ements, hm �= 0 and hm+1 �= 0. Let A= diag[a0, . . . , aN−1]
and B= diag[b0, . . . , bN−1] be two diagonal matrices. Then,
AH=HB if and only if A=B= λI for some constant λ
where I is the identity matrix.

Proof: For the forward direction, we begin by writing out
the (i, j)th element of each matrix product

[AH]ij = aihij = aih(j−i) mod N ,

[HB]ij = bjhij = bjh(j−i) mod N .

Suppose hm �= 0, then for any pair (i, j) in the set
M= {(i∗, j∗)|(j∗ − i∗) mod N =m}, the following holds
true: aihm = bjhm =⇒ ai = bj . The set M can be written
in terms of m as M= {(0,m), (1, (m+ 1) mod N), . . . ,
(N − 1, (m+N − 1) mod N)}, with a similar set M′ for
m+ 1 corresponding to hm+1 �= 0. Through M and M′ we
have ak = b(m+k) modN and al = b(m+1+l) modN .

Observing that a0 = bm mod N = b(m+1) mod N and in gen-
eral ak = b(m+k) mod N = b(m+k+1) mod N , we set a se-
quence pk = (m+ k) mod N for k = 0, . . . N − 1. Since it
can be observed pk does not repeat within a cycle of N ,
we can establish bp0

= · · ·= bpN−1
=⇒ b0 = · · ·= bN−1 =⇒

a0 = · · ·= aN−1, and finally that all ai and bj are equal.
For the reverse direction, A=B= λI can be used to show

AH= λIH= λH=HλI=HB.
The result of the previous theorem implies that if we have a

convolution matrix Hm (which is circulant by definition) that
satisfies the consecutive non-zero property, for the scattering
and gathering operations to be equivalent, we need

D
(g)
m Hm =HmD

(s)
m , for all m.

Theorem 1 asserts that we need D
(g)
m =D

(s)
m = λI. But if

D
(g)
m =D

(s)
m = λI, then the underlying blur must be spatially

invariant.
Another consequence of Theorem 1 is that

M∑

m=1

D
(g)
m Hm �=

M∑

m=1

HmD
(s)
m . (10)

Therefore, the gathering and scattering equations (4) and (5)
are mutually exclusive under the conditions stated in Theorem
1. If we say that h(x,u) can be exactly represented by the
gathering equation, then there will be an approximation error
when representing h(x,u) using the scattering equation, and
vice versa.

Under what conditions would scattering = gathering?
• When the underlying blur is spatially invariant or

does not satisfy the consecutive non-zero property.
• Scattering and gathering are mutually exclusive. We

cannot simultaneously have (4) and (5) for a spatially
varying blur. If one is the correct representation, the
other will have approximation error.

D. Normalization

When performing a convolution, it is often necessary to
ensure that the image intensity is not amplified or attenuated
due to an improper normalization. For example, in a spatially
invariant blur, we almost always require that

∫

R2

h(u)du= 1,

assuming that h(u)≥ 0 for all u. Otherwise, if the integral is
less than unity, the resulting (convolved) image will appear to
be dimmer. Translated to matrices and vectors, this is equivalent
to H1 = 1 for an all-one vector 1, assuming that H is circulant.

Suppose that we have a sequence of spatially invariant blurs
H1,H2, . . . ,HM satisfying the property that Hm1 = 1 for all
m. We want the diagonal matrices D

x
1 ,D

x
2 , . . . ,D

(g)
m to be

defined in such a way that the gathering equation (8) will give us

1
(we want)

= H
x1 =

(
M∑

m=1

D
(g)
m Hm

)
1 =

M∑

m=1

D
(g)
m 1.

Therefore, as long as we can ensure that the sum of the M di-
agonal matrices {D(g)

m |m= 1, . . . ,M} is a vector of all one’s,
we are guaranteed to have Hx to have unit rows. Converting this
into the basis representation, it is equivalent to asking

M∑

m=1

ax,m = 1, for all m, (11)

which is reasonably easy to satisfy. For implementation, if Hx

does not have rows sum to the unity such that Hx1 �= 1, the
simplest approach is to define a diagonal matrix D such that
D

−1
H

x1 = 1. From the derivations above, it is clear that the
diagonal matrix should have the elements

D= diag

{
M∑

m=1

D
(g)
m Hm1

}
. (12)

Therefore, the overall operation applied to an image is

Î= diag

{
M∑

m=1

D
(g)
m Hm1

}−1(
M∑

m=1

D
(g)
m HmJ

)
, (13)

where J ∈ R
N is the vector representation of the input, and Î ∈

R
N is the output.
The normalization of the scattering equation is more com-

plicated because the diagonal matrices do not commute with
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Fig. 5. The coordinate system of a typical optical system, in the presence
of a random medium.

the spatially invariant blurs, and so we are not able to simplify
the equation:

1
(we want)

= H
u1 =

M∑

m=1

Hm

(
D

(s)
m 1

)
.

The only work around solution is to define a diagonal matrix
D such that D−1

H
u1 = 1. This would require that

D= diag

{
M∑

m=1

HmD
(s)
m 1

}
. (14)

In other words, when computing the scattering equation and
if normalization is required, then we need to compute the set
of convolutions twice: once for the input, and once for the
normalization constant,

Î= diag

{
M∑

m=1

HmD
(g)
m 1

}−1(
M∑

m=1

HmD
(g)
m J

)
. (15)

To summarize the normalization:

If normalization is needed, then
• For gathering: Either ensure

∑M

m=1 ax,m = 1 for all
x, or perform the calculation in (13).

• For scattering: Perform the calculation in (15).
The cost is twice the number of convolutions than
gathering.

III. ORIGIN OF THE SCATTERING EQUATION

In this section, we explain the origin of the scattering equa-
tion from a physics point of view. To make our discussions con-
crete, the running example we use is a point source propagating
a random medium as shown in Fig. 5.

We follow the coordinate system defined in Fig. 5. The object
plane uses the coordinate u ∈ R

2. We can think of it as the input

coordinate. As light propagates through the random medium, it
reaches at the aperture of a lens. The coordinate on the lens is
denoted by ρ ∈ R

2. The image plane uses coordinate x ∈ R
2,

which is also the output coordinate. Deriving the PSF equation
from the Rayleigh-Sommerfeld integral will be too lengthy
for our paper. Therefore, we skip the derivation and refer the
readers to [28, Ch. 4 & 5] or [29]. Our approach is to highlight
the four components of Fig. 5.

Source to Aperture. The propagation of a point source
from the object plane to the aperture, in the absence of the
random medium, is characterized by the free-space propagation.
The electromagnetic field defined upon the aperture is given by
[28, Eq 5-25]

U(u,ρ) =
1

jλz1
exp

{
j

k

2z1
|u− ρ|2

}
, (16)

where k = 2π/λ is the wave number, and z1 is the distance from
the source to the aperture. The notation |u− ρ| denotes the
Euclidean distance between the two coordinates u and ρ. This
equation describes a parabolic wave propagating outward from
u. The farther apart u and ρ is, the weaker the field U(u,ρ)
will become.

Aperture and lens. Right at the lens, the incident field will
be imparted by the pupil function of the lens and its phase
response. For a lens with a focal length of f , the field at the
exit of the aperture is [28, Eq 5-26]

U ′(u,ρ) = U(u,ρ)P (ρ) exp

{
j
k

2f
|ρ|2

}
, (17)

where P (ρ) is the pupil function, typically chosen to be a
circular indicator function.

Aperture to image. When the incident field exits the lens, it
propagates via Fresnel diffraction to the image plane. Referring
to [28, Eq 5-27], we can show that

U ′′(x,u)︸ ︷︷ ︸
=h(x,u)

=
1

jλz2

∫

R2

U ′(u,ρ) exp

{
j

k

2z2
|x− ρ|2

}
dρ.

(18)

Notice that the final electromagnetic field U ′′(x,u) arriving at
the image plane is originated from a point source. As such,
U ′′(x,u) is the point spread function h(x,u).

The PSF h(x,u) can be expressed (with some approxima-
tion) as [28, Eq 5-36]:

h(x,u) = κ

∫

R2

P (ρ) exp

{
−j

k

z2
(x− Su)Tρ

}
dρ

︸ ︷︷ ︸
=h(x−u) if S=1

, (19)

where S =−z2/z1 is the magnification factor and κ=
1/(λ2z1z2). If, for simplicity, we assume z1 =−z2 so that
S = 1, then h(x,u) is completely characterized by the coor-
dinate difference x− u. This will give us h(x,u) = h(x− u),
and so h(x,u) represents a spatially invariant kernel.

Random medium. The fourth element we need to discuss,
which is also the source of the problem, is the random medium.
The random medium introduces a random amplitude and phase
distortion as

Ru(ρ) = Au(ρ)︸ ︷︷ ︸
amplitude

× exp{−jφu(ρ)︸ ︷︷ ︸
phase

}. (20)

Notice that in this definition, the distortion has a coordinate pair
(u,ρ). The position x is not present and has no impact at this
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stage. Since the impact of the random medium takes place from
the source-to-aperture, we append (20) to (16) to find

U(u,ρ) =
Au(ρ)

jλz1
exp {−jφu(ρ)} exp

{
j

k

2z1
|u− ρ|2

}
.

Consequently, the point spread function is

h(x,u) = κ

∫

R2

gu(ρ) exp

{
−j

k

z2
(x− u)Tρ

}
dρ (21)

where again we assumed S = 1 and defined

gu(ρ)
def
= Au(ρ) exp {−jφu(ρ)}P (ρ).

Therefore, (21) can be seen as the Fourier transform of the
random medium and the pupil function via

h(x,u) = Fourier
{
gu(ρ)

}∣∣∣
x−u

λz2

, (22)

where we specify that the transform is evaluated at the coor-
dinate (x− u)/(λz2). This indicates that the PSF h(x,u) is,
in part, written as a function of x− u. However, since gu(ρ)
is indexed by u, the resulting PSF h(x,u) should inherit the
index u. This will give us

h(x,u) = some function of (x− u), index by u,

=
M∑

m=1

au,mϕm(x− u), (23)

where in the last step we use the linear combination of basis
functions as the model for such h(x,u). The basis function
ϕm here captures the spatial invariance, whereas the coefficients
au,m capture the spatially varying indices.

This derivation explains why in optics simulation, such as
imaging through random media, one must follow the scattering

equation if we choose to represent the PSF using a set of spa-
tially invariant basis functions. This is due to the source location
determining the response of the system. This extends to other
optical distortions where the source location parameterizes the
system error.

IV. DO THESE ACTUALLY MATTER?

The question to ask now is: given the gathering equation and
the scattering equation, does it really matter if we choose the
“wrong” one? The goal of this section is to answer this question
through a few examples.

A. Scattering Works for Optical Simulation

Our first example considers the problem of simulating the
resulting image given an incoherent light source. The light
source J(u) we consider here consists of two delta functions:

J(u) = δ(u+∆) + δ(u−∆),

where ∆ is a small displacement. For convenience, we define
a plane with two halves; relative to the separation, δ(u+∆) is
on the left and δ(u−∆) is on the right.

(a) (b)

Fig. 6. Visualization of an example with (a) J(u) and (b) a grid of spatially
varying blur kernels.

Fig. 7. Thought experiment with two points on the object plane, diffracting
through two different metasurfaces. The resulting image should, in principle,
be one superimposed diffraction pattern.

Imagine that in front of the light source, we put two trans-
parent sheets with different phase profiles (which can be en-
gineered using a meta-material ). This will give us a spatially
varying blur kernel h(x,u). By design of the transparent sheet,
if light is emitted on the left hand side the blur has a smaller
radius; if the light is emitted on the right hand side, then the
blur has a larger radius. Thus, we write

h(x,u) =

⎧
⎪⎪⎪«
⎪⎪⎪¬

1

2πσ2
1

e
−

‖x−u‖2

2σ2
1

def
= ϕ1(x− u), u ∈ left,

1

2πσ2
2

e
−

‖x−u‖2

2σ2
2

def
= ϕ2(x− u), u ∈ right,

(24)

where σ1 < σ2. Fig. 6(b) illustrates these spatially varying blur
kernels. For visualization purposes, we show only the PSFs at
a grid of points. In reality, the PSFs are defined continuously
over u.

Before we do any calculus, we can perform a thought ex-
periment. Fig. 7 illustrates a hypothetical experimental setup.
On the object plane there are two points emitting light through
a meta surface with two different phase profiles. As the light
propagates outward from the source through diffraction, the
electromagnetic fields superimpose over each other. When the
light reaches the aperture, the two diffraction patterns overlap.
Therefore, the resulting image I(x), without any calculation,
should be one big diffraction pattern. It is impossible to obtain
a sharp cutoff and two diffraction patterns.
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(a) (b)

Fig. 8. Comparison between gathering and scattering for the setup in Fig. 7.
Notice that for this optical experiment, we should expect the resulting image
to contain one big diffraction pattern. However, only the scattering equation
demonstrates this.

With this in mind, we can write the PSF in terms of scattering
and gathering as

hgather(x,u) = I{x ∈ left}︸ ︷︷ ︸
=ax,1

× ϕ1(x− u)

+ I{x ∈ right}︸ ︷︷ ︸
=ax,2

× ϕ2(x− u), (25)

hscatter(x,u) = I{u ∈ left}︸ ︷︷ ︸
=au,1

× ϕ1(x− u)

+ I{u ∈ right}︸ ︷︷ ︸
=au,2

× ϕ2(x− u), (26)

where we replaced ax,m by au,m and I{·} is the indicator func-
tion. By comparing the gathering equation (25) and the scat-
tering equation (26) with the original spatially varying h(x,u)
in (24), it is clear that only the scattering equation will match
with the original h(x,u) because they are both indexed by u.
However, to confirm that this is indeed the case, it would be
helpful to look at the resulting image, as illustrated in Fig. 8.

We can also mathematically describe the images through use
of the kernel h(x,u) in either case in the superposition integral.
The gathering kernel results in

Igather(x) =

∫
(ax,1ϕ1(x− u) + ax,2ϕ2(x− u)) J(u) du.

=

⎧
«
¬
ϕ1(x+∆) + ϕ1(x−∆), x ∈ left,

ϕ2(x+∆) + ϕ2(x−∆), x ∈ right.
(27)

If we draw Igather(x), we will obtain the figure shown in
Fig. 8(a). For scattering, we can carry out the same derivation
and show that

Iscatter(x) =

∫
∞

−∞

(au,1ϕ1(x− u) + au,2ϕ2(x− u)) J(u) du

= ϕ1(x+∆) + ϕ2(x−∆). (28)

Similar to gathering, if we draw the resulting image, we will
obtain the figure shown in Fig. 8(b). This is consistent with
what we expect from Fig. 7 and the theoretical derivation in
Section III.

(a) (b)

Fig. 9. Thought experiment of two noisy regions in an image. To denoise
this image, ideally we would want to apply to different filters with a sharp
boundary at the transition.

Fig. 10. Thought experiment with two noisy half-planes. As we perform
the denoising step, we would hope that the sharp boundary is preserved.

B. Gathering Works for Image Filtering

In the second example, we consider the problem of image

filtering. The scenario is that we are given a noisy image J(u)
that contains two regions:

J(u) =

{
θ1 + Gauss(0, σ2

1), u ∈ left,

θ2 + Gauss(0, σ2
2), u ∈ right,

(29)

with two signal levels θ1 and θ2, and two noise stan-
dard deviations σ1 and σ2 such that σ1 > σ2. In this equa-
tion, W1(u)∼ Gauss(0, σ2

1) and W2(u)∼ Gauss(0, σ2
2) denote

Gaussian noise. For illustration, we show in Fig. 9(a) the case
where θ1 = 0.8, θ2 = 0.2, σ1 = 0.1 and σ2 = 0.02.

To denoise this image, we consider the simplest approach
assuming that we knew the partition of the two regions. Suppose
that we want to denoise the left side. Since we know that the
noise is stronger, we shall apply a stronger filter. As illustrated
in Fig. 10, for this filter to be effective along the boundary, we
should apply a mask after the filtering is done.

The spatially varying filter we propose here takes the form

h(x,u) =

⎧
⎪⎪⎪«
⎪⎪⎪¬

1√
2πs21

e
−

‖x−u‖2

2s2
1

def
= ϕ1(x− u), x ∈ left,

1√
2πs22

e
−

‖x−u‖2

2s2
2

def
= ϕ2(x− u), x ∈ right,

where we assume that s1 > s2. We are careful about the index
in this equation, remarking that the conditions are applied to x

instead of u. We will illustrate what will happen if the condi-
tions are applied to u.
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(a) (b)

Fig. 11. Comparison between gathering and scattering for the setup in
Fig. 9. Notice that for this denoising experiment, the better method should
produce a sharp transition along the boundary.

The gathering and the scattering equation for this example
are identical to those in (25) and (26). Most importantly, the
coefficients ax,m and au,m are binary masks indicating whether
the pixel x (or u) is on the left / right hand side.

The resulting images Igather(x) and Iscatter(x) follow a similar
derivation as in (27) and (28). It can be shown that the two
possible approximations reduce to

Igather(x) =

{
(J ∗ ϕ1)(x), x< 0,

(J ∗ ϕ2)(x), x≥ 0,
(30)

Iscatter(x) = [(J × I{x ∈ left})∗ϕ1](x)

+ [(J × I{x ∈ right})∗ϕ2](x). (31)

This shows that gathering contains a sharp transition in its
output while scattering is a sum of the two convolutions over
partitions. We visualize the results in Fig. 11. While both of
them can offer denoising to some extent, the gathering ap-
proach handles the boundary much better because the masking
is performed after the filtering. If the masking is performed
before the filtering, then (31) tells us that we are summing two
convolutions of the same image. Therefore, the edge is blurred.

C. Decompositions for Pixel-Wise PSFs

While the two previous examples illustrate the cases of binary
masks, we now use a toy model of imaging through turbulence
to demonstrate a case of a PSF per-pixel, requiring a more
general approach than partitioning. Our toy model is Gaussian
kernels with random shifts:

hu(x)∝ exp

{
−
(x− t(u))T (x− t(u))

b(u)2

}
. ( 32)

Here t(u) is a random vector field comprised of two indepen-
dent fields X and Y as t(u) = [X(u), Y (u)]T . Furthermore b
is a scalar random field which parameterizes the blur. While the
exact details of the fields are not critical, we show the result of
a grid of point sources distorted by our toy turbulence model in
Fig. 12. For this example we primarily stick to mild blur and
stronger geometric distortions, demonstrating some utility for
motion-blur modeling.

Relying on per-pixel partitioning would require an entire
convolution per-pixel and is therefore very computationally
expensive. We instead represent each kernel as a sum of bases
obtained via PCA. If an accurate PCA representation requires
K 
M basis functions, where M is the number of pixels
in an image, this corresponds to a meaningful reduction in

(a) (b)

Fig. 12. Visualizing the effect of our toy turbulence model for point sources.
We note the primary distortion given our chosen parameters is geometric
distortion.

Fig. 13. A visual comparison of the oracle case and scattering and gathering
for our toy turbulence model. We can see the oracle case matches scattering,
but has some visual difference with gathering.

complexity. To achieve this, given that we have access to all
the PSFs, we can take a PCA over the entire dataset:

PCA ({hu}u∈R2)→{ϕm, au,m}m=1,2,...M . ( 33)

By this, we can encode the information of each PSF into the
invariant bases and spatially varying coefficients.

Continuing with our toy turbulence example, we can (te-
diously) simulate the “oracle” by using a partition per-pixel.
We regard this as the correct result. We then apply the scatter-
ing and gathering approximations, facilitated by PCA, and see
how they compare to the oracle. The comparison is shown in
Fig. 13 where we can see that scattering (product-convolution)
matches the oracle while gathering (convolution-product) has
some errors, particularly near boundaries.

V. DISCUSSIONS

As we write this paper, two underpinning questions are con-
stantly asked: (1) what utility does it bring? (2) How does it
affect how we solve an inverse problem? In this section, we
briefly share our findings.

A. Which Decomposition Should I Choose?

In the examples presented, we have considered both partition
and modal interpretations. We consider the following as guide-
lines regarding which to use:

1) Partition-like decomposition: Suitable for a small
amount of invariant kernels across the image.
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2) Modal decomposition: Appropriate for systems which
require a PSF per-pixel.

The partitioning approach can represent the scene with no
error. To illustrate this, consider the superposition integral (2).
Since we can partition this any way we like, we can partition
it in a way such that each partition corresponds to an invariant
convolution. For partitions {Pm}m=1,2,...,M we can write

∫

R2

h(x,u)J(u)du=
M∑

m=1

∫

Pm

hm(x− u)J(u)du ( 34)

where hm(x− u) is the kernel associated with Pm. We utilized
partition-like decompositions in Sections IV-A and IV-B.

Although we can consider a per-pixel partition (as done for
the oracle of Section IV-C), it is often computationally infeasi-
ble. In these cases it is often preferable to represent each kernel
as a sum of bases, such as a modal representation (e.g. PCA).
Having previously discussed the computational benefit of a
PCA decomposition, we introduce another interesting question,
where can error arise in partition-like or modal decompositions?
We highlight two errors which can arise in either case:

1) Using a sub-optimal basis: If one uses a poor basis,
there may be errors representing each h(x,u) faithfully.

2) Using the wrong model: If one uses the wrong model the
result will be wrong. The degree of mismatch is related
to the manner in which the kernel changes.

First, we illustrate how a sub-optimal basis can impact our
representation. For non-negative functions J(u) and h(x,u),
we can compute the relative approximation error for a scattering
representation as follows:

L=

∣∣∣∣∣

∫

R2

J(u)

(
h(x,u)−

∑

m

au,mϕm(u− x)

)∣∣∣∣∣ du

≤

∫

R2

J(u)

∣∣∣∣∣h(x,u)−
∑

m

au,mϕm(u− x)

∣∣∣∣∣ du, (35)

with a similar result for a gathering approximation. Inspecting
the difference term in (35), we note this is just the error in basis
representation. Thus, the upper bound of the error is related to
the basis representation error.

For a partition-like decomposition, this error arises from
choosing the wrong function ϕm for partition Pm. This may
stem from approximating a slowly varying kernel as an invariant
one over a partition. For a modal decomposition, each kernel
must be captured by the basis decomposition. We note that if all
kernels come from the same distribution, a bound can likely be
placed on the decomposition and one can say with confidence
that the approximation holds.

The other noted listed possible source of error is incorrectly
choosing scattering or gathering. Although we have already
discussed their mutual exclusivity, consider their equality:

M∑

m=1

ax,m(ϕm∗J)(x)
?
=

M∑

m=1

(
ϕm∗(am � J)

)
(x). (36)

Are there any conditions which scattering and gathering are
approximately equal? To illustrate a possibility, we provide a
version of the example from Section IV-A in Fig. 14, where

(a) (b)

Fig. 14. Visualizing when gathering can approximate scattering. Each row
increasingly considers a more slowly changing PSF. Although we do not show
it here, the error between the two outputs shown monotonically decreases.

TABLE I
COMPARISON ON THE TURBULENCE-TEXT DATASET

Model Simulator in [31] New Simulator
CRNN / DAN / ASTER CRNN / DAN / ASTER

TSRWGAN 57.75 / 71.45 / 73.10 60.30 / 73.90 / 74.40
ESTRNN 84.50 / 96.25 / 95.45 87.10 / 97.80 / 96.95

TMT 79.25 / 85.20 / 88.00 80.90 / 87.25 / 88.55

the kernel becomes increasingly invariant as we move toward
the bottom of the five rows. The top row corresponds to a sharp
transition (equivalent to a partition), while each increasing row
uses a more gradual transition.

As the coefficients become nearly invariant over the support
of the kernels, the error in choosing the wrong model lessens.
Mathematically, as the coefficients approach approximate in-
variance (relative to kernel support size) we can justify factoring
out the coefficients am on the RHS of (36). Thus, the two
become increasingly close, with them being exact when we
achieve effectively invariant convolution.

The choice in a partition or modal decomposition and the
source of errors is highly contextual, depending on various
characteristics of the problem. Furthermore, there is noth-
ing restricting us from blending approximations (partition and
modal) and scattering and gathering depending on the problem.
One such example is adaptively choosing the weights in a
blended partition and modal fashion [27]. Thus, researchers
have some flexibility in choosing the proper approximation for
their problem.

B. Utility: Simulating Atmospheric Turbulence

Scattering can be applied to the simulation of atmospheric
turbulence. The latest turbulence simulators, based on phase-
over-aperture [30], phase-to-space (P2S) transform [25], and
dense-field P2S (DF-P2S) [31], are all using the gathering

equation, having some mismatch with nature.
Table I shows a comparison between the DF-P2S simulator

[31], and a new simulator implemented using the scattering
equation.1 Our testing dataset is based on the text recognition
dataset released in the UG2+ challenge [32]. We tested three

1The new simulator contains a few other modifications including expanding
the parameter space, and expanding the kernel supports. However, the biggest
change is the adoption of the scattering equation.
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image reconstruction models: TSRWGAN [33], ESTRNN [34],
and TMT [35]. We report the recognition accuracy in terms of
CRNN / DAN / ASTER from the restored images.

As we can see in this table, the new simulator indeed offers
a sizable amount of improvement over the previous simulator.
Since the change from the gathering to the scattering equation
attributes to a substantial portion of the simulator update, the
utility of our study is evident.

C. We Have an Inverse Problem, Which Model to Use?

Solving an inverse often requires an optimization. For a spa-
tially varying blur problem, the typical formulation is

Ĵ= argmin
J

‖I−HJ‖2 + λR(J), (37)

for some regularization functions R(J). Since we know that
the scattering formulation applies to image formation, we can
instead write this as

Ĵ= argmin
J

∥∥∥∥∥I−
(

M∑

m=1

HmD
(s)
m

)
J

∥∥∥∥∥

2

+ λR(J). (38)

This problem is extremely difficult to solve. Even if D
u
m is

binary, we cannot solve for individual regions and combine
them. Furthermore, the blurs Hm are summed which further
complicates the problem. Although we accurately describe the
forward model, the inverse problem becomes challenging.

On the other hand, the gathering equation will give us

Ĵ= argmin
J

∥∥∥∥∥I−
(

M∑

m=1

D
(g)
m Hm

)
J

∥∥∥∥∥

2

+ λR(J). (39)

IfD(g)
m is binary (as in Nagy and O’Leary [22]), we can partition

the image into M smaller regions and solve them individually
or through overlapping partitions such as in [36] or by recurrent
neural networks with spatially varying weights as in [37]. The
parallelism offered by the model is computationally appealing,
and it has been proven useful. The caveat is that there is a model
mismatch, and thus is a proxy to the original problem. However,
if one can justify an assumption of approximate spatial invari-
ance, one can utilize the fact that gathering may approximate
scattering. In a general sense for arbitrary D

(g)
m , any solution

we obtain, regardless if we can prove convergence of the opti-
mization algorithm, will not resemble the true solution to (37).

Our advice to practitioners, when solving an inverse problem
related to the spatially varying blur, is to have the sense of
awareness for this kind of mismatch. For deep neural networks,
the mismatch is often less of an issue when the capacity of the
network is large enough. However, the training data needs to
capture enough of the physics in order to generalize well.

VI. CONCLUSION

The approximations of gathering and scattering for a spatially
varying blur were discussed in this work. They are mutually
exclusive, in the sense that if one is the exact representation

of the original blur, the other one can only be an approxi-
mation. They become identical if the underlying blur kernel
is spatially invariant. In summary, we recognize the following
key points:

Gathering has an origin of image filtering. It is an
effective approach to speed up the spatially varying blur via a
small set of invariant blurs. The approach is to filter the image
first, and then combine the filtered images through a pixelwise
mask. Gathering offers better edge awareness in tasks such as
image denoising.

Scattering is originated from light propagation physics.

It is an accurate description according to the scalar diffrac-
tion theory in Fourier optics. The approach is to weigh the
images and then perform filtering afterward. Scattering is
the model for describing how light propagates through a
random medium.
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