
Journal of Imaging Science and Technology R© 67(6): 1–17, 2023.
c© Society for Imaging Science and Technology 2023

Computational Image Formation: Simulators in the Deep
Learning Era

Stanley H. Chan
School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907

E-mail: stanchan@purdue.edu

Abstract. At the pinnacle of computational imaging is the

co-optimization of camera and algorithm. This, however, is not

the only form of computational imaging. In problems such as

imaging through adverse weather, the bigger challenge is how to

accurately simulate the forward degradation process so that we can

synthesize data to train reconstruction models and/or integrating

the forward model as part of the reconstruction algorithm. This

article introduces the concept of computational image formation

(CIF). Compared to the standard inverse problems where the goal

is to recover the latent image x from the observation y = G(x), CIF

shifts the focus to designing an approximate mapping Hθ such

that Hθ ≈ G while giving a good image reconstruction result. The

word “computational” highlights the fact that the image formation

is now replaced by a numerical simulator. While matching Mother

Nature remains an important goal, CIF pays even greater attention to

strategically choosing an Hθ so that the reconstruction performance

is maximized.

The goal of this article is to conceptualize the idea of CIF by

elaborating on its meaning and implications. The first part of the

article is a discussion on the four attributes of a CIF simulator:

accurate enough to mimic G, fast enough to be integrated as

part of the reconstruction, provides a well-posed inverse problem

when plugged into the reconstruction, and differentiable to allow

backpropagation. The second part of the article is a detailed case

study based on imaging through atmospheric turbulence. A plethora

of simulators, old and new ones, are discussed. The third part of the

article is a collection of other examples that fall into the category of

CIF, including imaging through bad weather, dynamic vision sensors,

and differentiable optics. Finally, thoughts about the future direction

and recommendations to the community are shared. c© 2023

Society for Imaging Science and Technology.

[DOI: 10.2352/J.ImagingSci.Technol.2023.67.6.060405]

1. INTRODUCTION
The cameras we use today are largely a variant of the pinhole
camera which, according to some scientists, can be traced
back to nomadic tribes of North Africa thousands of years
ago. A pinhole camera is easy to understand. Many of
you have probably seen Gemma Frisius’s drawing [1] (See
Figure 1): Light is emitted from the source, propagating
through the medium, and finally arriving at a tiny pinhole.
Assuming that light travels along a straight line, a scaled and
inverted image is formed on the screen. Today’s cameras are
certainlymore complicated but they arguably follow the same
principle, just with slightly more advanced optical elements
to bend light and a sensor to record the image intensity.
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Figure 1. A schematic drawing of the pinhole camera made by Gemma
Frisius in 1544 [1].

Over the past century, imaging has evolved to a much

more diverse form, which we now call computational

imaging [2, 3]. Unlike pinhole cameras that aim to produce

a sharp image, a computational imaging system co-designs

the sensing unit with the algorithm. The signal generated at

the junction of sensor and algorithmmay not necessarily be a

sharp and clean image. It can be an unrecognizable signal, but

with the magic of the algorithm, we can recover the image.

However, computational imaging should not be

bounded to the co-design of a hardware and algorithm.

In this paper, I want to the concept of computational

image formation (CIF). CIF, in my mind, is a branch in

computational imaging with the focus on selecting and

optimizing the image formation process. This can be a

confusing (or even redundant) idea, because the image

formation process is defined by either Mother Nature or

hardware. If it is Nature, e.g., shot noise due to the Poisson

arrival process, we have a very precise equation describing

how images are formed. If it is hardware, we have already

seen many great examples such as coded aperture, coded

exposure, CT, MRI, etc. So, what does CIF mean?

The core substance of CIF is a simulator ; a differentiable,

fast, and accurate simulator that can be integrated into

the image reconstruction framework. You may wonder: ‘‘A

simulator? We have a ton of simulators in physics, and they
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are great.Why do we need your simulator?’’ The attributes of
the simulator(s) I like to discuss here are quite different from
what a physics simulator looks like. In physics, a simulator’s
only job is to mimic nature or processes we can observe
but cannot control. In CIF, the focus of the simulator is not
about matching Mother Nature unconditionally, but about
maximizing the image quality of the image reconstruction
algorithm. To this end, a simulator in CIF needs to have four
properties:

(1) Accurate. It should be accurate enough to mimic the
true image formation process. The level of precision is
determined by the image reconstruction goal.

(2) Fast. It needs to be fast enough to be used to
synthesize training data and/or integrated in the image
reconstruction loop.

(3) Benefits reconstruction. It needs to improve the per-
formance of the image reconstruction. To do so, the
simulator’s parameters can be updated during inference.

(4) Differentiable. It needs to be differentiable, so that
the reconstruction neural network can be trained while
having the simulator in the loop.

My goal in this paper is to conceptualize CIF and
invite discussions from peers. I want to explain why CIF is
important in our time. I will use atmospheric turbulence as a
case study, but a few other examples will also be introduced to
support my discussions. I will conclude the paper with some
thoughts about moving the field forward.

2. CONCEPT OF COMPUTATIONAL IMAGE

FORMATION

2.1 Pinhole Camera

In a pinhole camera1, we can think of the camera being a
passive device. If we use x ∈ R

d to denote the ground truth
image in the object plane, and y ∈R

m to denote the observed
image in the image plane, the camera can be mathematically
described as a mappingH from x to y:

y︸︷︷︸
observed image

= H︸︷︷︸
camera

( x︸︷︷︸
true image

). (1)

The camera model H can involve lenses, color filter arrays,
image sensors, etc.

A post-processing image reconstruction algorithm for
a pinhole camera is to find the best estimate x̂ by solving a
certain optimization (e.g., maximum likelihood estimation
or maximum-a-posteriori estimation) or running it through
a neural network. For generality, the reconstruction is
considered as an operatorR:

x̂= R(y,H)︸ ︷︷ ︸
reconstruction

. (2)

1 A distinction is made between a conventional camera and a

computational camera. As the spellings of the two appear similar,

the former is referred to as a pinhole camera.

Figure 2. In a computational camera, the goal is to configure the camera
parameters and the reconstruction’s parameters so that the quality of the
final reconstructed image is maximized.

The reconstruction method requires two inputs; the mea-
surement y and the cameramodelH. As a quick example, for
thosewho do image deconvolution,R can be a total variation
minimization:

x̂=R(y,H)= argmin
x

‖H(x)− y‖2 + λ‖x‖TV, (3)

where H(x) denotes the blurring operation, and ‖ · ‖TV
denotes the total variation norm.We can come upwithmany
other examples which I shall skip for brevity.

The key observation of the above equations is that in
a pinhole camera, we perform a capture-then-reconstruct
operation. The camera is pre-defined.While we use themodel
H during reconstruction, we never send any feedback signal
to H. Furthermore, the design of H is separated from the
reconstruction. If we ask a camera engineer to build a camera
H, he/she will never ask if we are using total variation
minimization or a generative adversarial network for image
reconstruction. With probability one, his/her goal is to make
aH that produces the ideal image, for good reasons.

2.2 Computational Camera

In a computational camera, it is well known that the above
isolation of the camera and the algorithm is replaced by a
co-design philosophy. To accomplish this goal, I parameterize
H with a state vector θ so that the model becomesHθ .

The presence of the state vector θ makes the overall
design interesting, as shown in Figure 2. Instead of solving
a two-stage feed forward problem (designH and then design
R), the reconstructed image x̂ will be used to guide the
design ofH so that we can close the loop. By parameterizing
R asRψ , the end-to-end design can be written as

(ψ̂, θ̂ )= argmin
ψ,θ

Ex

[
ReconLoss

(
Rψ (y, Hθ )︸ ︷︷ ︸

x̂

, x
)]
, (4)

where ReconLoss (̂x, x) denotes the reconstruction loss
between the predicted image x̂ and the ground truth x. I keep
the definition of the loss function vague because the choice
of the loss function depends on applications. It can be the
squared loss, the cross-entropy loss, or any other loss that
would make sense for the application.

Example 1. (Coded aperture/lensless imaging) Consider a
coded aperture camera where we are interested in recovering
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the full signal x ∈R
d from a coded measurement y ∈R

m. The
coding scheme we use is a fat matrixH ∈R

m×d where m� d
so that the measured signal

y=Hθ (x)
def
= Hx︸︷︷︸

encoded signal

+ n︸︷︷︸
noise term

has a lower dimension than the true signal x.

To reconstruct the signal, we create a reconstruction
algorithm (e.g., a neural network) that does

x̂=Rψ (y).

Here, we can think ofψ being theweights of the neural network.
To train the neural network and simultaneously find the

optimal sensing matrix H , we perform the joint optimization

Ĥ , ψ̂ = argmin
H ,ψ

Ex,n

[
ReconLoss(Rψ (Hx+n), x)

]
.

The expectation is taken with respect to both the signal x and
noise n because they are random.

If we consider the hardware feasibility, we can further pose
constraints on H . For example, we can require H to be binary
so that it can be implemented through the digital micro-mirror
devices (DMD).

2.3 Nature and Simulator

The biggest difference between a computational camera and
computational image formation (CIF) is the presence of a
simulator. To explain the idea it would be useful to consider
the problem of imaging through an undesirable environ-
ment, e.g., fog, haze, turbulence, or scattering medium.

Nature. The subject of CIF is often concerned with
nature. For the time being let this be called a general
degradation process, denoted by G:

y︸︷︷︸
observed image

= G︸︷︷︸
nature

( x︸︷︷︸
true image

). (5)

The degradation process is unknown to us. We have no idea
of how each point in the object plane is mapped to a digital
value in the image plane. We can in theory run procedures
such as ray tracing to find out how each ray is distorted.
But there will be infinite rays to trace and so realistically we
can never perform such calculations. In some situations such
as random scattering medium, we cannot even trace rays
because it is impossible to know how each molecule affects
the light.

Example 2. (Modeling haze) One of the landmark papers in
imaging through weather is the dark channel prior by He et al.
published in CVPR 2009 [4], although the modeling can be

traced back to Fattal [5], Rossum and Nieuwenhuizen [6] and
Koschmieder [7].

When light propagates through a scattering medium,
the water molecules along the propagation path will cause
attenuation of the light. The exact image formation process is
governed by nature, and is unknown. We denote it as G.

To simulate the image formation, people use the so-
called radiative transport equation by modeling the overall
degradation as a sum of the airlight term and the direct
attenuation term. This gives us a simulatorHθ :

Hθ (x)= x� t+A(1− t),

where the state vector θ contains the airlight color A and
the transmission map t, with � defining the elementwise
multiplication. Note that Hθ is a very good model for G, but
Hθ 6= G.

Simulator. SinceG is unknown, we need to approximate
it using a model Hθ . I call it a simulator. A simulator, by
construction, reproduces part of the nature. Therefore, the
output of the simulator is not y but

ŷ=Hθ (x). (6)

I emphasize that Hθ is a parameterization of nature.
The parameterization is a dimensionality reduction of the
operator G from an infinite-dimensional space to a finite
(and often low) dimensional space. The choice of the
parametricmodel is often based on physics, but there are also
man-made parameterizations. The following is an example.

Example 3. (Environment parameterization) In Ref. [8],
Gnanasambandam et al. proposed the idea of optically
perturbing the appearance of an object by using structured
illumination. The concept was that given a ground truth image
x associated with a class label `, an optical system Hθ can
be built such that the distorted image ŷ = Hθ (x) will be
misclassified as label `′. The optical system was implemented
using a projector-camera setup, where the projector illuminates
the real 3D object using a calculated pattern. This provides a
mechanism to test the resilience of the classifier to manipulated
attacks.

What is relevant to CIF is that the same optical setup
can be used to analyze the robustness against natural
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Figure 3. In Computational Image Formation (CIF), the true image
formation process is determined by nature G. The design task here is
to select and optimize a simulator Hθ such that it not only achieves
a desirable modeling accuracy, but more importantly maximizes the
reconstruction quality.

perturbations, such as shadow or overcast. These natural
perturbations are G, of which the exact forms are unknown
to us. Some people use graphics rendering (e.g., for flight
simulator) to synthesize the scenes. With the projector-camera
system, we can use the multiple projectors to parameterize

nature by using a finite number of tunable knobs to reproduce
outdoor environment in a controlled setting, hence providing
an approximationHθ ≈ G.

The presence of nature and a simulator changes the
problem scope from designing a hardware camera to
designing a numerical simulator as shown in Figure 3.
Because of its middle-person role between nature and
algorithm, the selection and optimization of the simulator
is significantly more complicated than configuring a camera
such as deciding which coded aperture pattern to use. An
analogy here is that selecting a simulator is like selecting a
neural network,whereas configuring a camera is like learning
the weight of the neural network.

2.4 Four Attributes of a CIF Simulator

In what follows, I will describe the four attributes of the
simulator in CIF.

Attribute 1: Accurate. The first attribute of a CIF
simulator Hθ is that it is accurate enough to approximate
the true image formation process G. The form of Hθ can
be anything. It can be a one-line equation, an algorithmic
procedure, or even a neural network. The performance of
Hθ is measured in terms of how good the simulated image is
when compared to the true image.Mathematically, we define
the loss as

Esim(Hθ )
def
= Ex

[
SimLoss(Hθ (x),G(x))

]

︸ ︷︷ ︸
simulator loss

. (7)

The equation says that for a given image x, the simulated
image Hθ (x) needs to be sufficiently similar to G(x).
The goodness of Hθ is measured according to the loss
function SimLoss. For example, in atmospheric turbulence,
SimLoss can be the pixelwise distance between the simulated
long/short exposure function and the measured (real)
long/short exposure function. It can also be the differential
tilt statistic or the z-tilt statistic between the simulation
and the theoretically derived statistical average. Or, SimLoss
can be measured using target patterns seen through a
heat chamber. There are also instrumentations such as the

scintillometer to measure the turbulence profile. In any case,
SimLoss is an application specific metric(s).

Attribute 2: Fast. The second attribute of a CIF
simulator is that it needs to be fast so that we can integrate it
as a part of the reconstruction algorithm. But speed depends
on which computing platform we use. (See discussions in
the next paragraph.) A slightly better way is to measure the
complexity of the model, with the following notation

Ecomplexity(Hθ ) (8)

The definition of the complexity can take various forms.
If Hθ is implemented using a deep neural network, then
the complexity can be measured in terms of the number of
hidden layers, width of hidden layers, number of parameters,
number of filters, size of the filters, etc. The complexity ofHθ

can also be viewed at two levels: (1) The intrinsic capacity
of the model and (2) The effective model capacity given a
specific choice of θ .

Model complexity is usually linked to speed (aka
runtime), but some caveats should be noted. For example,
2D convolutions today can be efficiently implemented
because of the dedicated hardware architectures on graphics
processing units. In contrast, depth-wise 3D convolutions are
substantially slower even if the number of parameters is the
same as a 2D convolution because of the lack of specialized
hardware.While this problemwill likely be solved in the near
future, the complexity is not translated to runtime directly.

Attribute 3: Benefits Reconstruction. The third at-
tribute of a CIF simulator is that it needs to benefit the
reconstruction performance because inCIF, the ultimate goal
is tomaximize the final image produced by the entire system.

The reconstruction loss is abstractly defined as

Erecon(Hθ )
def
= min

Rψ

Ex

[
ReconLoss

(
Rψ (y, Hθ ), x

)]

︸ ︷︷ ︸
reconstruction loss

. (9)

The reconstruction loss in Eq. (9) is reminiscent to Eq. (4),
but the goals are very different. In Eq. (4), the camera Hθ

is already chosen except for its parameter θ . Thus, the joint
minimization in Eq. (4) is to simultaneously optimize for
the reconstruction (realized via a neural network) and the
state vector θ of the camera. In contrast, the minimization
problem in Eq. (9) says that we do not even know which
simulator to use. Using atmospheric turbulence as an
example (see Section 3), the decision could be the choice
between two completely differentmodels, e.g., the pixel-jitter
model or the deformable model. Therefore, in CIF simulator
selection, the difficulty is how to build a simulator that fulfills
the criteria instead of adjusting parameters of some simple
equations.

Attribute 4: Differentiable. The fourth attribute of a
simulator is that it needs to be differentiable. The metric for
differentiability can be a simple indicator function:

Ediff(Hθ )
def
=





0, ifHθ is differentiable,

∞, ifHθ is not differentiable.
(10)
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Why do we need differentiability? The reason is that
most, if not all, image reconstruction algorithms today are
based on deep neural networks. For the simulator to be
part of the reconstruction framework, it is necessary that
the gradient of the loss function can be backpropagated
to the input. Therefore, being able to take the gradient of
the simulator with respect to its model parameters becomes
essential.

Enforcing differentiability can be realized in multiple
ways. The easiest way, of course, is to build a simulator
using a deep neural network. However, speaking from
experience, physics-based simulators often offer significantly
better guarantees of the theoretical properties and are
more interpretable. Yet, physics-based simulators are often
complicated. Enforcing differentiability is not a trivial task.
For example, iterative procedures such as Newton’s method,
which is widely used to find the intersection of a ray and the
lens surface, needs to be replaced by another method that is
non-iterative before we can make it differentiable.

2.5 Simulator Selection and Parameter Optimization

After stating the four attributes of the simulator, I would
like to elaborate on the simulator selection problem and
the parameter optimization problem. The two problems are
different. The former is more about building a simulator that
fulfills the criteria. The latter assumes that the candidate
simulator has already been decided, but during the inference
process, we would like to update the state vector to better
match with the observation. The simple analogy here is
that simulator selection picks the number of partitions in a
spatially varying blur system (i.e., how many pixels to share
one blur kernel), whereas the parameter update assumes that
the partition is already fixed but we need to estimate the
individual blur kernels.

Simulator Selection. The simulator selection problem
can be formulated as a constrained optimization.

argmin
Hθ

Erecon(Hθ )+ Ediff(Hθ )

subject to Ecomplexity(Hθ )≤ τcomplexity,

Esim(Hθ )≤ τsim (11)

The objective function of the problem is the reconstruction
loss Erecon(Hθ ) plus the indicator function Ediff(Hθ ). Since
by construction the simulator needs to be differentiable,
the indicator function will serve the purpose of only
allowing differentiable simulators to be considered. Themain
objective is therefore the reconstruction loss.

There are two constraints in the optimization. The
complexity constraint limits how complex the simulator can
be. The simulator loss constraint controls the match between
the simulatorHθ and the ground truth model G. The reason
why these two criteria are listed as constraints instead of
the objective is that in practice, the simulator designer
would seldomnavigate the four criteria simultaneously when
choosing the simulator. It is far more common to develop a
simulator with a certain level of complexity and simulation

accuracy in mind, while leaving some design freedom to the
reconstruction algorithm.

I should stress that while the simulator selection
problem appears like an ordinary constrained optimization,
the problem is never solved using any gradient based
methods. In contrast, the problem is more often solved
manually based on experience and creativity. So it is more
of an art.

Parameter Optimization. To stimulate the parameter
update discussion, it is best to first consider an example.

Example 4. (Blind deconvolution) In the classical blind
image deconvolution problem, we are often interested in the
alternating minimization

hk+1 = argmin
h

‖h~ xk − y‖2 + prior(h),

xk+1 = argmin
x

‖hk+1
~ x− y‖2 + prior(x),

where prior(·) is a generic notation representation the prior
model of the respective variable.

The first equation, put into the CIF framework, can be
rewritten as

θk+1 = argmin
θ

{
SimLoss

(
Hθ (x

k),G(x)
) }
.

Here, G is the true image formation process given by nature,
and Hθ (x) = h ~ x + n is the approximation. The second
equation can be written as

xk+1 =Rψ (y,Hθk),

which is a generic form of the image reconstruction method.

To be precise about the state vector θ , one can think of
it as the parametric description of the forward model Hθ .
For example, in Ref. [9], key points are used to characterize
the motion where a continuous curve is drawn to connect the
key points to generate a motion blur kernel. The key points
are coordinates in the 2D space, and the state vector θ is the
collection of all key points.

The above example illustrates the typical procedure of
updating the simulator’s parameters and estimating the latent
image. These two steps can be summarized by the following
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Table I. Comparison between a physics simulator and CIF simulator.

Physics simulator CIF simulator

Goal Describe nature Help image reconstruction

Accurate? As much as possible because we need it to reproduce nature.
No need to be absolutely accurate. As long as it meets a certain level, it is
okay.

Fast?
Fast is certainly welcome, but slow is also okay if it is justified by
application.

Need to be very fast, for synthesizing datasets and integrating with inverse
algorithms.

Benefits Reconstruction? Irrelevant because the simulator’s goal is to reproduce nature. Simulator in the reconstruction loop is the key of CIF.

Differentiable? Irrelevant. No need Needed, especially if we want to co-optimize reconstruction and simulator.

pair of iterative updates:

xk+1 =Rψ (y, Hθk) (12)

θk+1 = argmin
θ

SimLoss(Hθ (x
k+1),G(x)) (13)

As mentioned earlier, this pair of equations are performed
after the simulator is selected.

2.6 Discussions

Ideal G ? At this point, it should be clear why a perfect
simulator Hθ = G may not be a good simulator in CIF. If G
is intrinsically complicated, then matching it would require
a complex Hθ . This will violate Attribute 2 (simple and
fast), and possibly Attribute 4 (differentiable). There is also
a possibility that Attribute 3 (improve reconstruction) can be
poor because a complexHθ often leads to an ill-posed inverse
problem. The reconstruction modelRψ has to be even more
complex in order to invert the effect of G. This means that we
have a good forward model, but we cannot solve the inverse
problem.

Compared to a physics simulator. Compared to a
pure physics simulator, a CIF simulator has additional
emphasis on speed, reconstruction, differentiability and
compatibility with the reconstruction algorithm. This leads
to the summary in Table I.

Compared to computational camera. How is CIF
different from a computational camera? In a computational
camera, the optimization variable is the hardware camera.
For example, we adjust the lens parameter, or the mask in
coded aperture, or the pattern of the exposure multiplexing
scheme. CIF can, in principle, be a superset because these
hardware elements can always be described by mathematical
models. However, the bigger difference (and also the problem
context) is that CIF is more relevant to situations where G is
not easily parameterized by simple equations. Weather is the
best example to think about. In those cases, choosing which
Hθ is more relevant than optimizing for θ . In short, CIF is
not only about the co-optimization of the image formation
elements, but also about the selection of the image formation
model.

Compared tomodel selection literature. The subject of

simulator selection is in many ways similar to the classical

topic on model selection [10]. The core difference, however,

Figure 4. A conceptual illustration of the trade-off between the
performance of the simulator and the image reconstruction.

is that in model selection, the models are more or less

simple equations; for example, the `1-norm (LASSO) or the

`2-norm (ridge). In CIF, the selection of simulator can be

drastically more difficult. Often times, there may not be any

readily available simulators to ‘‘choose from’’. The designer

needs to develop a simulator to match the complexity and

simulation loss, while maximizing the image reconstruction

performance. This is not a simple gradient search problem,

but more of a design problem.

Because of the different goals and different problem

settings, the methodologies used in model selection largely

do not apply. For example, tools such as the Akaike infor-

mation criterion (AIC) or the Bayesian information criterion

(BIC) are not applicable because (i) even though there is

an underlying probability distribution of the true data, we

do not know what it is, (ii) most simulators are complex

numerical procedures. Analyzing them and calculating in

the context of AIC and BIC is not feasible, (iii) there exist

domain-specific alternative assessment techniques that are

much more reliable and direct than AIC and BIC.

Trade-off. Because of the conflicting goals in the

simulator selection problem, it would be useful to see the

tension via the illustration in Figure 4. In this figure, the

y-axis defines the reconstruction loss whereas the x-axis

defines the simulator loss (or complexity). The question of

CIF is about which point on the trade-off curve to pick.
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On the far right of the figure, the simulator is too simple

to be of any use. Even though the reconstruction is easy,

the reconstructed image will not be good. Moving slightly to

the left, the simulator is improved and the reconstruction is

also improved, thanks to a more meaningful simulator. The

benefit can come from the data synthesis (i.e. to generate

a good training dataset), as well as in-the-loop inverse

algorithm. The optimal operating point is somewhere in

the middle, where the simulator is reasonably accurate and

the reconstruction is also decent. As the simulator moves

towards the left hand side, the reconstruction becomes more

difficult. Not only do we have a harder time to synthesize

enough data because the simulation can be time-consuming,

but we also have a harder time to put the simulator in the

reconstruction loop. As the simulator moves to the far left,

the simulator is extremely good but it offers little to no help

to the reconstruction. Thus, the performance can be very

bad. In Fig. 4, a colored region is marked with a cutoff

τ . Any simulator that gives a performance better than τ

will be inside the region. Therefore, among all the possible

simulators, only those that meet the simulator criteria can be

adopted for reconstruction.

3. CASE STUDY: IMAGING THROUGH TURBULENCE

Now that we have seen what CIF means, it is time to look

at a concrete example. I will use turbulence as an illustration

because of the richness of the literature. To give you an idea

of the accuracy of the model, I will use the number of stars ?

is used to indicate how accurate the simulator is. A simulator

with one (?) means that it is cheap but inaccurate, whereas a

simulator with (? ? ? ? ?) means that it is extremely accurate.

The number of stars is partially objective because we can

measure the quality, but it is also partially subjective because

much of these are based on my experience.

3.1 Wave Propagation Physics

Our atmosphere is a complicated medium because of its

turbulent nature. Factors such as temperature, wind velocity,

humidity, and other weather conditions can affect the

strength of turbulence. As light propagates, the random index

of refraction will cause phase delays along the optical paths,

leading to pixel displacements and blurs [11, 12]. The exact

image formation for one specific turbulent instance cannot

be determined because it is stochastic.

Split-step (‘‘Gold standard’’) (? ? ? ? ?) Let me start

by discussing the most accurate model so that we have a

reference point. In physics, the most accurate model for

atmospheric turbulence, to date, is the split-step propagation

[13]. The model says that we can partition the propagation

path into a sequence of segments where each segment has a

random phase screen determining the phase distortion. The

propagation is performed by integrating the electromagnetic

field u of which the magnitude produces the image x= |u|2.
Without diving into the technical details, we can think

of the split-step propagation as a sequence of operations

Figure 5. The split-step propagation model H
split
θ

is considered as
the ‘‘gold standard’’ in modeling atmospheric turbulence. While the
model is accurate, its numerical wave propagation equation makes the
implementation extremely difficult and very slow. Thus, it is a good
simulator for mimicking nature, but not so much for image restoration.

along the light propagation path. At the ith segment, the

electromagnetic field propagates according to the equation

ui+1 = Fresnel ( ui︸︷︷︸
ith field

� ejφi︸︷︷︸
ith phase screen

), (14)

where � denotes elementwise multiplication, Fresnel(·) de-

notes the Fresnel diffraction integral [14, 15], and φi denotes

the ith phase screen drawn from the Kolmogorov power

spectral density [16–18]. (Assuming a ‘‘typical’’ situationwith

a small to moderate Rytov number so that we can ignore

the amplitude effect and the power spectral density roughly

follows the 5/3-power law predicted by Kolmogorov [19].)

The process is nonlinear because for every pixel in the

object plane, the equation has to be evaluated repeatedly

(which includes Fourier transform, phase cropping, and

multiplication), as illustrated in Figure 5. For completeness,

the equation is written as

ŷ= |Fresnel(Kolmgrv(. . . (Fresnel(Kolmgrv(x)))))︸ ︷︷ ︸
H
θsplit(x)

|2,

(15)

whereH
split
θ

denotes the split-stepmodel, with θ defining the

random phase screens along the propagation path.

For decades, physicists have agreed that the split-step

propagation is very reliable and accurate for simulating

atmospheric turbulence. With a sufficient number of phase

screens along the path, and assuming that the turbulence is

at the most moderately strong, it is safe to say that

G(x)≈H
split
θ
(x). (16)

Various simulation packages have been built [20–30], and

they are widely used to study the optical communication,

high energy beam propagation, and astronomical applica-

tions. There are also attempts to use these simulators for

image processing tasks, but scholars generally find split-step

too slow for any real-time applications. The bigger problem

arises if we want to useH
split
θ

for image restoration. Let’s see

why.
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3.2 Image Restoration

Split-step propagation is never used as part of the image

restoration pipeline. I will illustrate this using two recon-

struction methods.

The first approach is the optimization approach. Using

total variation as one of the (many) examples, we have

x̂ =Rψ (y)= argmin
x

‖H
split
θ
(x)− y‖2 + λ‖x‖TV. (17)

But solving this problem can be difficult because H
split
θ

is complicated. If we perform variable-splitting techniques

such as the ADMM algorithm, we have no way of computing

the proximal map because the inverse (or regularized

inverse) (H
split
θ
)−1 is not possible to obtain. Note that I am

not even talking about estimating the state vector θ , which

will add more difficulties to the problem.

Another approach is deep learning. The idea is to train

a deep neural networkRψ that performs

x̂=Rψ (y,H
split
θ
). (18)

However, the problem is in generating the clean-noisy pair

for training.We can send the clean image throughH
split
θ

, and

repeat the process until we have created a dataset of training

samples. This is in theory doable, but since the simulator is

so slow, there is no way we can synthesize enough data [31].

There is one more issue about deep learning. If we want

to incorporateH
split
θ

into the reconstruction neural network

Rψ , the simulator needs to be differentiable. Since the

split-step simulation is a serial chain of complex operations

going back and forth with the Fourier transforms per pixel,

back propagating the gradient of the loss function through

the simulator is nearly impossible unless we introduce

additional approximations.

3.3 Lightweight Simulators

Having discussed the ‘‘gold standard’’ split-step simulator, let

us move on to something faster.

Pixel Jitter Model [20]. (?) The simplest simulator

reported in the literature is the pixel shift + blur model. This

model says that
ŷ= h~ (jitter(x))︸ ︷︷ ︸

H
jitter
θ

(x)

, (19)

where jitter(·) denotes the pixel jittering, where the
displacement is a random vector with an independent
and identically distribution (i.i.d). The operator h is a
spatially-invariant Gaussian blur, and ~ is the convolution.

Figure 6 shows an example. H
jitter
θ

is very cheap and fast
– just draw a random i.i.d. motion vector field (pick any
distribution, e.g., Gaussian), and convolve the image with an
invariant blur kernel. The state vector θ contains the blur and
the motion vector field.

Needless to say, inverting H
jitter
θ

is easy, at least in the
non-blind case where we know the random vector field
and the blur; just remove the blur using any off-the-shelf
non-blind deconvolution algorithm, and thenun-do the pixel
displacement. We can plug it into a neural network. We can
also plug it into a classical optimization so we can solve the
proximal map. The only caveat (and a big caveat) is that

H
jitter
θ

6≈ G, not even close.

Deformable Model [32–36]. (??) A slightly better
version of the simulator is the deformable gridmodel. Instead
of assuming an i.i.d. random displacement field, we select a
small set of anchor points in the image grid and perform a
non-rigid deformation. The overall equation is

ŷ= h~ (deform(x))︸ ︷︷ ︸
Hdeform

θ
(x)

, (20)

The benefit of the deformable model is that it is physically
more meaningful because the pixel displacement caused by
turbulence is spatially correlated. The deformable model
provides a way to enforce the spatial correlation. Figure 7
illustrates an example, where we can see that the deformable
grid is more structured. The sampling process is reasonably
easy because we only need to identify a few anchor points.

The deformable grid facilitates the estimation of the
pixel displacement because the number of anchor points
is finite. The drawback, though, is that the blur remains
spatially invariant. It is still valid for isoplanatic turbulence,
but definitely not true for anisoplanatic turbulence where the
blur must be spatially varying.
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Figure 6. Random jitter and spatially invariant Gaussian blur. The
simulated turbulence effect is quite far from the reality.

Figure 7. Deformable field and spatially invariant Gaussian blur. The
simulated turbulence effect is better than the random jitter, but still not
accurate enough to match the real turbulence.

Varying Blur Model. (? ? ? Incomplete) To model
anisoplanatic turbulence, people propose to adopt a spatially
varying blur. Keeping the deformable grid idea (which can
be replaced by other pixel displacement models), the output
image is defined in a per-pixel basis:

ŷi = hi~ (deform(x))︸ ︷︷ ︸
H

varying
θ

(x)

, (21)

where i denotes the ith pixel of the image ŷ and hi denotes the
blur for the ith pixel. Because of the per-pixel blur, this model
can now describe a wider set of turbulence effects. However,
the generation of these per-pixel blurs remains unclear (that’s

Figure 8. Spatially varying blur kernels used in H
varying
θ

. The kernels are
generated using the phase-over-aperture model. Note that the shape of
the blur changes from one location to another.

why I mark it as ‘‘incomplete’’). In the example blur kernels

I show in Figure 8, I use the phase-over-aperture model (to

be discussed in the next subsection) to generate the spatially

varying blur. These blurs are then integrated into this model

H
varying
θ

to perform the distortion.

The inverse problem associated with H
varying
θ

is not

easy, because spatially varying blurs do not have simple

inverses using standard tools such as the Fourier transform.

Therefore, additional approximations are needed to reduce

complexity.

Flipped Model [35, 37, 38]. (? ? ?) Because of the

difficulty of inverting the spatially varying blur, a work-

around solution has been proposed by observing that

turbulence-distorted images exhibit a lucky effect. From

time to time, and from pixel to pixel, there are instants

where the turbulence distortion is weak. The lucky pixels

/ patches existing in the raw video input are blur-free and

displacement-free. Therefore, if we can identify these lucky

patches, then we can mitigate majority of the turbulence

effects, leaving only the diffraction limited blur. This two step

procedure can be summarized as

x̂= deblur
(
lucky(y)

)
︸ ︷︷ ︸

reconstruction

. (22)

There are many variations of this approach, such as [32, 36,

39–41].
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Figure 9. Two models: Tilt-then-blur H
varying
θ

and blur-then-tilt H
flipped
θ

.
They generate similar result for most regions but not for edge pixels. As

shown in [42], H
flipped
θ

has a tendency to ‘‘destroy’’ the blurs.

The two-step procedure inspired researchers to consider
an alternative model where we flip the order of blur and
pixel displacement in the simulator. This gives us the flipped
model:

ŷi = deform(hi~ x)︸ ︷︷ ︸
H

flipped
θ

(x)

, (23)

which according to [42], is called the blur-tilt model. The
blur-tilt model is not the same as the tilt-blur model because
it can be proved that wave propagation follows tilt-blur but
not blur-tilt. However, the blur-tilt model is easier from the
angle of inverse problem because inverting the deformation
can be realized by lucky imaging algorithms.

Summary. As you can see, the consideration of which
Hθ to use is not a simple question of matching physics.
If it was, then any of the cheap models would have no
value. But the fact that they have been used in the literature
and sometimes generated satisfactory results speak of their
validity. They are not justified from the angle of physics, but
the angle of image reconstruction.

3.4 Differentiable Simulator

Over the past few years, there is an increasing amount of
effort to build faster andmore accurate turbulence simulators
with the goal of maximizing the image reconstruction

Figure 10. Phase-over-aperture model assumes that every point spread
function has a corresponding phase function. Thus, as long as we can
generate the phase functions efficiently, we can construct the point spread
function without using numerical propagation techniques.

performance. One of these efforts is a series of work of
random sampling in the phase domain. In this subsection, I
briefly comment on their basic principles and highlight a few
key attributes, particularly, differentiability and scalability.

Phase-over-aperture [43] (? ? ? ?, not differentiable)
One of the biggest hurdles of the spatially varying blur model

H
varying
θ

is that there is no simple way of constructing the
spatially varying blur kernels while satisfying the turbulence
physics. In addition, the pixel displacement motion field is
also not a simple deformable grid. These two limitations
require a new method to model the turbulence.

The idea behind the phase-over-aperture model, pro-
posed in Ref. [43], was to recognize that the overall
distortion (blur+displacement) is constructed from the
Fourier magnitude square of the phase:

hi = |Fourier(ejφi)|2, (24)

where φi is the phase function of the ith pixel. The
displacement motion vector can be obtained by identifying
the centroid of hi. Any displacement from the centroid will
be marked as the pixel displacement vector. Therefore, for
every pixel i, there is a one-to-one mapping from the spatial
domain to the phase domain, as illustrated in Figure 10.

For any i, the phase functionφi has a basis representation
using the Zernike polynomials:

φi︸︷︷︸
phase function

=

M∑

j=1

αi,j︸ ︷︷ ︸
coefficients

· Zj︸ ︷︷ ︸
Zernike polynomials

. (25)

Since the Zernike polynomials are known functions, the
blur kernel hi is constructed as soon as the coefficients
α = {αi,j | i= 1, . . . ,N , j= 1, . . . ,M} become available.

The construction of the coefficient αi,j can be done
by sampling it from an enormous covariance matrix if we
follow Tatarskii’s assumption that the underlying random
process is Gaussian [11]. In this case, by following the
tedious derivations shown in Ref. [43], the coefficients can
be obtained by

α = Sampling from (E[ααT ]), (26)

where E[ααT ] denotes the correlation matrix. The corre-
lation matrix can be derived from the turbulence statistics
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Figure 11. Phase-over-aperture [43]. (a) The displacement motion field,
and (b) The resulting image. Note that the spatially varying blur in Figure 9
is generated using this phase-over-aperture model.

where there are formulae to employ. Depending on how

much turbulence statistics is utilized, α can maintain some

degree of spatial correlations from one pixel in the scene to

another pixel, and from one Zernike basis to another Zernike

basis. If the turbulence condition is changed, then the

correlationmatrixwill change and so the randomcoefficients

change too.

Figure 11 shows a randommotion field generated by the

phase-over-aperture model, as well as the resulting image.

The bottomline of the simulator is that it turns the

split-step propagation equation into a random sampling

method. This gives us a model

ŷi = hi~ [ti ◦ xi]︸ ︷︷ ︸
H

phase
θ

(xi)

, (27)

where ti is the pixel displacement vector that can be extracted

from the first two Zernike polynomial bases. The operator ◦

denotes the pixel displacement operation.

Phase to Space (? ? ? ?, differentiable) [31]. The

improvement brought by the phase-over-aperture model is

substantial. But in order for it to become useful for image

restoration, the speed needs to be further improved and the

simulator needs to be differentiable.

Figure 12. Phase-to-space (P2S) simulator HP2S
θ

defines a mapping
from the phase domain to the spatial domain using two different forms
of linear representations. The mapping is implemented using a shallow
neural network, and hence the model is differentiable.

To enable a differentiable simulator while being fast,
scholars recognized that the blur can be efficiently rep-
resented in a low-dimensional space using fixed and
pre-defined basis functions, as follows:

hi =

L∑

`=1

βi,`ϕ`. (28)

Here, the functionsϕ` is the `th basis function of the blur, and
βi,` is the `th coefficient for the ith blur kernel. A common
choice of the basis functions is the Gaussian basis and its
derivatives, although the authors of [31] showed that one
can also perform principal component analysis (PCA) to
construct the basis functions.

Why do we need to write hi as a linear combination of
the basis functions? The reason is that we can now represent
all the hi’s using the coefficient vector β = {βi,` | i =

1, . . . ,N , ` = 1, . . . , L}. Then, as long as the relationship
between α and β is established, we can go back and forth
between the representations.

α
Phase to Space

−→ β (29)

The forward mapping from α to β is called the phase-to-
space transform (P2S) [31]2. P2S is implemented using a very
shallow neural network because the dimensionality of the
input is typicallyα ∈R

36 whereas that of the output is around
β ∈ R

100. Thus, a shallow 3-layer fully connected network
is sufficient to learn the mapping. Figure 12 illustrates the
conceptual diagram of P2S.

With P2S, the turbulence model is now fully differen-
tiable. This is because the distorted pixel can be obtained
through the linear equation

ŷi =

L∑

`=1

βi,`

[
ϕ`~ x

]

︸ ︷︷ ︸
HP2S

θ
(xi)

, (30)

2 The inverse mapping from β to α is known as the space-to-phase

transform (S2P). The implementation of S2P remains an open

problem, as on date.
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where θ = β . As long as β is known, the simulator only needs
to perform the basis convolutions. Since β ↔ α via P2S, the
simulation model is completely characterized by the Zernike
coefficient α. Moreover, since the P2S model HP2S

θ
is linear

in β , any gradient with respect to β can be computed. Even if
we need to compute the gradient with respect to α, we can do
so by backpropagating the gradient through the P2S neural
network (which is a three-layer fully connected network.)

Further Improvements. There are additional points
scholars proposed to improve the speed and generality of
the P2S simulators. For example, in [44], it was shown that
the off-diagonal blocks of the correlation matrix E[ααT ]

can be truncated without hurting the performance. In [45],
it was shown that with a carefully designed reformulation,
the simulator can be generalized to an arbitrary turbulence
profile along the path (i.e., the structure constant C2

n changes
with respect to the distance). Both changes do not affect the
differentiability of the simulator, but theymake the simulator
even faster and more accurate. Another modification is the
recognition of the scattering/gathering forms of convolution
in [46]. It was shown that for the physics to be valid, the
convolution needs to be implemented in the scattering form.

3.5 Simulator-in-Reconstruction

An important aspect of CIF is to use simulators in
reconstruction. The goal of this subsection is to explain how
this can be (has been) achieved.

Simulator as Synthesizer for Training Data. The most
straightforward application of the simulators is to use them
to synthesize training data. Starting with a collection of
clean images, the simulator generates the turbulence effect
to produce a distortion-clean pair.

One often overlooked usage of a simulator is its flexibility
in synthesizing data according to the needs of the training:

• Multiple scales: A simulator can synthesize turbulence
across different resolutions. For example, for a fixed
propagation distance and object size, a lower resolution
image would require a smaller displacement vector and
a smaller blur kernel. These images are often easier to
restore. If the simulator can produce multi-resolution
distortions, the overall restoration will be benefited.

• Tilt-free, blur-free, all-free: A simulator can generate
tilt-only distortions, blur-only distortions, or no distor-

Figure 13. How much difference does a simulator make? This figure
shows the reconstruction result of a network trained using datasets
generated by two different simulators: TSRWGAN [49] and P2S [47].
With a fixed network architecture, the effect of the simulator is evident.

tion. This provides a powerful way to disentangle the
coupling effects of the turbulence and objectmovement.
For approaches such as knowledge distillation or
student-teacher learning, the decoupling capability
offered by a simulator is the key enabler because there
is no alternative ways we can train those models.

How much improvement does a good simulator offer
when compared to a bad simulator? Various studies have
reported a consistent observation that the difference is
significant [47, 48]. Figure 13 shows a comparison between
TSRWGAN [49] and a variant of the P2S [47], reported in
[48]. A common neural network architecture is chosen, and
it is trained using two different datasets. TSRWGAN is a
more rudimentary simulator with simple deformable grid
and blurs, whereas P2S is more advanced. The results shown
in Fig. 13 provides a strong evidence that a better simulator
indeed makes a big difference in terms of image restoration.

Simulator inside a Generative Adversarial Network.
A simulator can be directly used in image restoration, for
example through the generative adversarial network (GAN)
[50, 51]. In the GAN setting, the simulator can be used as
part of the generative branch to synthesize what a distorted
image should look like. This mirrors nature where the image
formation is determined by physics and the image sensor.
The performance of the simulator has a direct impact on
the performance of the GAN. If the simulator fails to mimic
nature, then the simulated distorted image would not appear
similar to the true distorted image. This addsmore burden to
the generator where it needs to compensate for themismatch
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Figure 14. What happens when a simulator is not used? The image
reconstruction performance is significantly worse. The figure is adopted
from [52].

error caused by the simulator in addition to generating the
latent unknown image. An accurate split-step propagation
would not work either because it is simply too slow and it
is not differentiable.

Simulator for Re-degradation Loss. Besides GAN,
another approach to use simulator in the reconstruction loop
is to consider the consistency loss, defined as

Consistency
(
Hθ (Rψ (y))︸ ︷︷ ︸

Hθ (̂x)

, G(x)
)
. (31)

This is an additional loss put on top of the traditional
reconstruction loss ReconLoss(̂x, x).

The performance of the image reconstruction depends
on two factors: (i) How good isHθ compared to G ? (ii) How
good is x̂ compared to the ground truth x? Many scholars
have asked why ReconLoss(̂x, x) is insufficient. The answer
is that the reconstruction loss never provides any explicit
knowledge about the forward model. Since G and Hθ are
often ill-conditioned and so many x can be mapped to the
same y, the consistency loss helps the reconstruction by
enforcing it not to create artifacts that cannot be explained
by the forward model. The benefit of the consistency loss is
supported by numerical evidence in Figure 14.

Looking Forward. The results of the latest reconstruc-
tion methods are promising. However, the full power of CIF
is yet to be explored. Here are a few observations:

• State vector θ update. As I explained previously, the
state vector update is analogous to the blur kernel
estimation problem in blind deconvolution. Given a
distorted image, having the ability to estimate the
turbulence parameters could significantly reduce the
uncertainty of the reconstruction. However, as on date,
these ideas are yet to be developed.

• State encoding. The state vector θ is often a high
dimensional vector, e.g., the collection of Zernike
coefficients over the entire image. However, it is likely
that θ has a low dimensional representation. Presently,
there is little understanding of how these state vectors
can be encoded more efficiently.

• Bijective mapping from pixel space to embeddings.
An open problem today is the non-uniqueness of

the low-dimensional representation. Using Zernike
coefficients as an example, it is possible that two sets
of Zernike coefficients can give the same pixel-level
image distortion. Therefore, while P2S is easy to do, the
inverse mapping S2P can be significantly harder. For
many problems dealing with optics through different
environments, such a bijective mapping is an important
technical challenge.

• Ultra-fast simulator. Advanced simulators such as P2S
can achieve 40 frames per second for a 512-by-512
image. However, for P2S to be used as part of an
iterative algorithm or used as an integral part of
the reconstruction neural network, the runtime would
probably need to be suppressed to a microsecond range.
This is a major challenge for both hardware (GPU) and
algorithm.

4. MORE EXAMPLES

In this section, I would like to elaborate more on how CIF
could fit other imaging problems by discussing a few other
examples in addition to the turbulence example above.

4.1 De-raining and de-hazing

Consider the problemof imaging through rain and haze. Like
imaging through atmospheric turbulence, the exact ground
truth image formation y = G(x) cannot be determined
exactly due to the stochastic nature of the process [53, 54].

In the literature, the degradation can be modeled in
different ways [55]. For example, if the distortion is caused
by rain streak, then

Hstreak
θ

(x)= x+ b, (32)

where b is a sparse vector representing the line streak effect
of the rain. If the distortion is caused by adherent raindrops,
[56] proposed a model

H
raindrop
θ

(x)= (1 −M)� x+ d, (33)

where M is a binary mask indicating whether a pixel has
a raindrop, � is the elementwise multiplication, and d is
a sparse vector with localized scattering raindrops. If the
distortion is caused by haze and rain streak, then the model
is

Hhaze
θ

(x)= x� t+A(1 − t)+ b, (34)

where t is the transmission map (see Example 2), A is
the airlight color transformation, and b is a sparse vector
representing the streak.

In recent years, there has been increased efforts to use
neural networks to learn the model so that Hθ can be more
similar to G. For example, [57] proposed the model

yt =H
dynamic
θ

(xt )= x+ bt +nt , (35)

where t denotes the time, and nt ∼ Gaussian(0, σ 2) is the
noise vector. The rain model bt is defined through some
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Figure 15. Differentiable optics. In a conventional camera system, there is
an optical component, an image signal processing (ISP) unit which controls
the exposure, color filter, etc, and an image reconstruction algorithm.
Differentiable optics aims at approximating the physical optics module
and the ISP with neural networks so that the entire system is differentiable.
This will enable end-to-end training of the image reconstruction algorithm.

variations of the Markov process such that

bt =Aα(bt−1), (36)

whereAα is a neural network that provides amemoryless up-

date based on previous time stamps. Because Aα is a neural

network, it inherits several desired properties such as being

differentiable. Since the simulator is co-optimized with the

reconstruction algorithm, the reconstruction performance is

evidently better.

Besides these examples, the general direction of imaging

through adverse weather today is to inject more physics into

the problem [58]. In the area of rain, snow, and fog, there is an

increasing amount of high quality physics-based simulators

that can simulate these optical effects [59, 60]. The usage

highlights the relevance of CIF.

4.2 Differentiable Optics

While CIF is mostly concerned with degradation processes

arising from nature, the concept can be applied to other

forms of optics-algorithm co-design problems such as the

one summarized in Figure 15.

(1) Differentiable optics for lens systems [61–64].

Traditional lens design is a standalone process where

people use ray-tracing tools such as Zemax to optimize

the parameters of the lenses. If one wants to design

the downstream image reconstruction algorithm, these ray

tracing tools, however, would be incompatible with the

reconstruction. To overcome the difficulty, various methods

have been proposed to approximate the true lens system G

with neural networksHθ . Since the reconstruction is usually

a neural network, having a neural networkHθ will give us an

end-to-end differentiable camera system.

Today, Hθ is mainly used to improve the image

reconstruction. There is relatively little work on co-designing

the lens parameters. The reason is that co-designing the lens

parameters would require amethod to ‘‘translate’’ the weights

of the neural network Hθ to the lens parameters. This is

largely an open problem.

(2) Metasurface design [65, 66]. Another usage of CIF
is the design of the metasurfaces. Metasurfaces are nanoscale
materials where each element can be engineered to perform
a specific phase operation. Compared to traditional glass-
based lenses which are bulky, metasurfaces are substantially
thinner while achieving a competitive optical performance.
The design of metasurfaces is often performed together
with the image reconstruction algorithm. This is because
metasurfaces today still have many limitations in terms of
chromatic aberration control and spatially varying points
spread functions. Therefore, it is necessary to co-design a
deconvolution algorithm.

(3) Differentiable rendering or computational light
transport [67–69]. The problem here is more concerned with
a realistic rendering of objects in computer graphics. For
example, as light propagates through milk and wax, how
does the image look like? Or, if the light source is located
at a certain position in the room, how will the light bounce
among the walls and eventually reach the camera? Because of
the complexity of the actual environment and the underlying
image formation process (which sometimes requires us
solving partial differential equations), newer approaches
attempt the problem by approximating the ground truth G

with a neural networkHθ .

4.3 Image Sensor Circuit Model

Thus far I have been mainly talking about optics. But CIF
can be extended to other components such as the circuit level
modeling of image sensors from photo diodes, comparator,
capacitors to the output signal.

The top row of Figure 16 shows the circuit diagram
of a dynamic vision sensor (DVS) [70]. The exact signal
formation process y = G(x) is both stochastic and complex.
However, it is possible to approximate the transient behavior
using an ordinary differential equation and the probabilistic
events by drawing samples from a pre-defined covariance
matrix. This leads to the bottom row of Fig. 16 where
there are two ordinary differential equation blocks and two
autoregressive blocks. Simpler models have been proposed
[71], but it was shown that the performance is not sufficient.

Besides DVS, there is also a growing interest in novel
digital image sensors including photon counting devices,
quanta image sensors (QIS), and single-photon avalanche
diodes. Using QIS as an example, a series of 1-bit and multi-
bit models have been proposed [72–74] and analyzed [75,
76], together with various image reconstruction algorithms
[77–81] and applications [82, 83].

5. THOUGHTS ANDDISCUSSIONS
In this section I summarize a few commonly asked questions
about CIF.

Is CIF = model-based image reconstruction (MBIR)?
My view is that CIF and MBIR are aiming for two different
goals. In MBIR, the premise of the problem is that someone
has given us a model ŷ = Hθ (x). Our job is to find the
best algorithm to solve for x, by exploiting various signal
priors such as sparsity or generative models. CIF, in contrast,
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Figure 16. What happens when a simulator is not used? The image
reconstruction performance will be significantly worse. The figure is
adopted from [70].

primarily focuses on the design of Hθ . As illustrated in the

previous sections, there are accurate but complexHθ and less

accurate but effectiveHθ for the inverse solver. Constructing

a meaningful Hθ while maintaining the computational

efficiency is what CIF is about.

Why not just use neural networks to approximate G ?

With the growth of building deep neural networks to mimic

the optics, we might be tempted to think that a good CIF

simulator must be a neural network (so that everything is

differentiable). I personally think that this is not the best

(nor the only) direction. While I completely acknowledge

the power of a neural network, I do not think today’s neural

networks have advanced to the stage that it can perform every

taskwithout using amuch largermodel. For some specialized

tasks such as solving an ordinary differential equation, a

neural network could offer a powerful approximation. But for

equations such as Fresnel propagation, Fourier transforms

are much more efficient.

I envision that future CIF simulators will most likely

be a hybrid model where neural networks are used as one

of the building blocks to complete some specific sub-tasks.

Differentiability can be ensured without a neural network.

For example, in the turbulence case study described above,

the differentiability is enabled by a different representation

of the phase function. Even for tasks such as ray tracing,

it will be far more interesting (and impactful) to derive

new equations that preserves differentiability without using

automatic differentiation of computational graph of any sort.

Is sensor-algorithm co-optimization always needed?

As I follow past few year’s of publications in computational

imaging, I observe a trend that whenever we see a sensor and

an algorithm, it will be sensor-algorithm co-optimization.

I can see the necessity of co-optimization if the goal

is to maximize the system’s performance unconditionally.

However, from a practical point of view, we should not

forget about the feasibility and physical constraints. In a

recent paper [84], it was shown that co-optimization brings

negligible benefits to the actual performance in some specific

problems. This counter example is perhaps a good reminder
to us about the reality.

6. CONCLUSION

Computational imaging is the intersection of image acqui-
sition, signal prior, and numerical algorithm. Forty years
ago when we were still in the beginning of solving inverse
imaging problems, our attention was mostly spent on
developing better and more powerful priors (i.e., regular-
ization functions such as `1 norm, total variation, Markov
random field, etc) together with faster numerical algorithms
(e.g., gradient descent, alternating minimization, operator
splitting, etc). As we continue to advance computational
imaging in 2023, it is perhaps time to rethink about the role
of the forward model that describes the image acquisition
process.

This article describes the concept of computational
image formation (CIF). CIF highlights the choice of a
simulator Hθ that approximates the true image formation
process G. Unlike a physics simulator whose goal is to
match G unconditionally, the simulator Hθ in CIF needs
to maximize the image reconstruction performance while
matching G up to some level. Moreover, the simulator needs
to be very fast so that it can be used to generate data,
and it needs to be differentiable so that it can be used in
the reconstruction loop. Several examples are elaborated to
explain CIF.

We all stand on the shoulder of giants. CIF is no
exception. It is a concept summarizing decades of collective
efforts of the computational imaging community. As we
look forward to the future of imaging, it is I envision that
simulators will play an unprecedented role in the deep
learning era.
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