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Abstract. At the pinnacle of computational imaging is the
co-optimization of camera and algorithm. This, however, is not
the only form of computational imaging. In problems such as
imaging through adverse weather, the bigger challenge is how to
accurately simulate the forward degradation process so that we can
synthesize data to train reconstruction models and/or integrating
the forward model as part of the reconstruction algorithm. This
article introduces the concept of computational image formation
(CIF). Compared to the standard inverse problems where the goal
is to recover the latent image x from the observation y = G(x), CIF
shifts the focus to designing an approximate mapping Hg Ssuch
that Hg ~ G while giving a good image reconstruction result. The
word “computational” highlights the fact that the image formation
is now replaced by a numerical simulator. While matching Mother
Nature remains an important goal, CIF pays even greater attention to
strategically choosing an Hg so that the reconstruction performance
is maximized.

The goal of this article is to conceptualize the idea of CIF by
elaborating on its meaning and implications. The first part of the
article is a discussion on the four attributes of a CIF simulator:
accurate enough to mimic G, fast enough to be integrated as
part of the reconstruction, provides a well-posed inverse problem
when plugged into the reconstruction, and differentiable to allow
backpropagation. The second part of the article is a detailed case
study based on imaging through atmospheric turbulence. A plethora
of simulators, old and new ones, are discussed. The third part of the
article is a collection of other examples that fall into the category of
CIF, including imaging through bad weather, dynamic vision sensors,
and differentiable optics. Finally, thoughts about the future direction
and recommendations to the community are shared. © 2023
Society for Imaging Science and Technology.

[DOI: 10.2352/J.ImagingSci.Technol.2023.67.6.060405]

1. INTRODUCTION

The cameras we use today are largely a variant of the pinhole
camera which, according to some scientists, can be traced
back to nomadic tribes of North Africa thousands of years
ago. A pinhole camera is easy to understand. Many of
you have probably seen Gemma Frisius’s drawing [1] (See
Figure 1): Light is emitted from the source, propagating
through the medium, and finally arriving at a tiny pinhole.
Assuming that light travels along a straight line, a scaled and
inverted image is formed on the screen. Today’s cameras are
certainly more complicated but they arguably follow the same
principle, just with slightly more advanced optical elements
to bend light and a sensor to record the image intensity.
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Figure 1. A schematic drawing of the pinhole camera made by Gemma

Frisius in 1544 [1].

Over the past century, imaging has evolved to a much
more diverse form, which we now call computational
imaging [2, 3]. Unlike pinhole cameras that aim to produce
a sharp image, a computational imaging system co-designs
the sensing unit with the algorithm. The signal generated at
the junction of sensor and algorithm may not necessarily be a
sharp and clean image. It can be an unrecognizable signal, but
with the magic of the algorithm, we can recover the image.

However, computational imaging should not be
bounded to the co-design of a hardware and algorithm.
In this paper, I want to the concept of computational
image formation (CIF). CIE, in my mind, is a branch in
computational imaging with the focus on selecting and
optimizing the image formation process. This can be a
confusing (or even redundant) idea, because the image
formation process is defined by either Mother Nature or
hardware. If it is Nature, e.g., shot noise due to the Poisson
arrival process, we have a very precise equation describing
how images are formed. If it is hardware, we have already
seen many great examples such as coded aperture, coded
exposure, CT, MRI, etc. So, what does CIF mean?

The core substance of CIF is a simulator; a differentiable,
fast, and accurate simulator that can be integrated into
the image reconstruction framework. You may wonder: “A
simulator? We have a ton of simulators in physics, and they

Nov.-Dec. 2023



Chan: Computational image formation: Simulators in the deep learning era

are great. Why do we need your simulator?” The attributes of
the simulator(s) I like to discuss here are quite different from
what a physics simulator looks like. In physics, a simulator’s
only job is to mimic nature or processes we can observe
but cannot control. In CIE the focus of the simulator is not
about matching Mother Nature unconditionally, but about
maximizing the image quality of the image reconstruction
algorithm. To this end, a simulator in CIF needs to have four
properties:

(1) Accurate. It should be accurate enough to mimic the
true image formation process. The level of precision is
determined by the image reconstruction goal.

(2) Fast. It needs to be fast enough to be used to
synthesize training data and/or integrated in the image
reconstruction loop.

(3) Benefits reconstruction. It needs to improve the per-
formance of the image reconstruction. To do so, the
simulator’s parameters can be updated during inference.

(4) Differentiable. It needs to be differentiable, so that
the reconstruction neural network can be trained while
having the simulator in the loop.

My goal in this paper is to conceptualize CIF and
invite discussions from peers. I want to explain why CIF is
important in our time. I will use atmospheric turbulence as a
case study, but a few other examples will also be introduced to
support my discussions. I will conclude the paper with some
thoughts about moving the field forward.

2. CONCEPT OF COMPUTATIONAL IMAGE
FORMATION

2.1 Pinhole Camera

In a pinhole camera’, we can think of the camera being a

passive device. If we use x € R? to denote the ground truth

image in the object plane, and y € R™ to denote the observed

image in the image plane, the camera can be mathematically

described as a mapping H from x to y:

1

y = H (x).
~—— N——" ——
observedimage ~ €3Mera true image

(1)

The camera model H can involve lenses, color filter arrays,
image sensors, etc.

A post-processing image reconstruction algorithm for
a pinhole camera is to find the best estimate X by solving a
certain optimization (e.g., maximum likelihood estimation
or maximume-a-posteriori estimation) or running it through
a neural network. For generality, the reconstruction is
considered as an operator R:

x= R(y,H) . (2)
\—\f——/
reconstruction

I A distinction is made between a conventional camera and a
computational camera. As the spellings of the two appear similar,
the former is referred to as a pinhole camera.
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Figure 2. In a computational camera, the goal is to configure the camera
parameters and the reconstruction’s parameters so that the quality of the
final reconstructed image is maximized.

The reconstruction method requires two inputs; the mea-
surement y and the camera model . As a quick example, for
those who do image deconvolution, R can be a total variation
minimization:

X="TR(y, H) = argmin |Hx) —y|* +Alxllty, (3)

where #(x) denotes the blurring operation, and || - ||Tv
denotes the total variation norm. We can come up with many
other examples which I shall skip for brevity.

The key observation of the above equations is that in
a pinhole camera, we perform a capture-then-reconstruct
operation. The camera is pre-defined. While we use the model
‘H during reconstruction, we never send any feedback signal
to . Furthermore, the design of # is separated from the
reconstruction. If we ask a camera engineer to build a camera
H, he/she will never ask if we are using total variation
minimization or a generative adversarial network for image
reconstruction. With probability one, his/her goal is to make
a H that produces the ideal image, for good reasons.

2.2 Computational Camera

In a computational camera, it is well known that the above
isolation of the camera and the algorithm is replaced by a
co-design philosophy. To accomplish this goal, I parameterize
‘H with a state vector @ so that the model becomes Hyg.

The presence of the state vector 6§ makes the overall
design interesting, as shown in Figure 2. Instead of solving
a two-stage feed forward problem (design H and then design
R), the reconstructed image X will be used to guide the
design of H so that we can close the loop. By parameterizing
R as Ry, the end-to-end design can be written as

-~

(&, ) = argmin EX[ReconLoss(Rw (v, He), x)], (4)
V.0 —_—
X

where ReconLoss (X, x) denotes the reconstruction loss
between the predicted image X and the ground truth x. I keep
the definition of the loss function vague because the choice
of the loss function depends on applications. It can be the
squared loss, the cross-entropy loss, or any other loss that
would make sense for the application.

Example 1. (Coded aperture/lensless imaging) Consider a
coded aperture camera where we are interested in recovering
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the full signal x € R? from a coded measurement y € R™. The
coding scheme we use is a fat matrix H € R"™*¢ where m < d
so that the measured signal

def
y=He(x)=  Hx + n

encoded signal noise term

has a lower dimension than the true signal x.

o, tf
Update network

Yy

To reconstruct the signal, we create a reconstruction
algorithm (e.g., a neural network) that does

X= Rl/,(y).

Here, we can think of y being the weights of the neural network.
To train the neural network and simultaneously find the
optimal sensing matrix H, we perform the joint optimization
H , fﬁ =argmin Ey , [ReconLoss(Rw (Hx+n), x)].
H. ¢y

The expectation is taken with respect to both the signal x and
noise n because they are random.

If we consider the hardware feasibility, we can further pose
constraints on H. For example, we can require H to be binary
so that it can be implemented through the digital micro-mirror
devices (DMD).

2.3 Nature and Simulator
The biggest difference between a computational camera and
computational image formation (CIF) is the presence of a
simulator. To explain the idea it would be useful to consider
the problem of imaging through an undesirable environ-
ment, e.g., fog, haze, turbulence, or scattering medium.
Nature. The subject of CIF is often concerned with
nature. For the time being let this be called a general
degradation process, denoted by G:

=G (x). (5)
L N—— N——
observed image nature true image

The degradation process is unknown to us. We have no idea
of how each point in the object plane is mapped to a digital
value in the image plane. We can in theory run procedures
such as ray tracing to find out how each ray is distorted.
But there will be infinite rays to trace and so realistically we
can never perform such calculations. In some situations such
as random scattering medium, we cannot even trace rays
because it is impossible to know how each molecule affects
the light.

Example 2. (Modeling haze) One of the landmark papers in
imaging through weather is the dark channel prior by He et al.
published in CVPR 2009 [4], although the modeling can be
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traced back to Fattal [5], Rossum and Nieuwenhuizen [6] and
Koschmieder [7].

When light propagates through a scattering medium,
the water molecules along the propagation path will cause
attenuation of the light. The exact image formation process is
governed by nature, and is unknown. We denote it as G.

To simulate the image formation, people use the so-
called radiative transport equation by modeling the overall
degradation as a sum of the airlight term and the direct
attenuation term. This gives us a simulator He:

Ho(x) =xOt+A(1—1),

where the state vector 6 contains the airlight color A and
the transmission map t, with © defining the elementwise
multiplication. Note that Hg is a very good model for G, but
Ho #G.

nature G
[¢]
@ e oe
D ———— L
wmme e ® b oo
@ ~@ LB
simulator / SN
Ho(x)=x@t+A(l -t

direct attenuation airlight

Simulator. Since G is unknown, we need to approximate
it using a model Hy. I call it a simulator. A simulator, by
construction, reproduces part of the nature. Therefore, the
output of the simulator is not y but

Y="Hp(x). (6)

I emphasize that Hg is a parameterization of nature.
The parameterization is a dimensionality reduction of the
operator G from an infinite-dimensional space to a finite
(and often low) dimensional space. The choice of the
parametric model is often based on physics, but there are also
man-made parameterizations. The following is an example.

Example 3. (Environment parameterization) In Ref. [8],
Gnanasambandam et al. proposed the idea of optically
perturbing the appearance of an object by using structured
illumination. The concept was that given a ground truth image
x associated with a class label £, an optical system Hg can
be built such that the distorted image y = Hg(x) will be
misclassified as label ¢'. The optical system was implemented
using a projector-camera setup, where the projector illuminates
the real 3D object using a calculated pattern. This provides a
mechanism to test the resilience of the classifier to manipulated
attacks.

class ¢/

What is relevant to CIF is that the same optical setup
can be used to analyze the robustness against natural
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Figure 3. In Computational Image Formation (CIF), the frue image
formation process is defermined by nature G. The design task here is
to select and optimize a simulator Hy such that it not only achieves
a desirable modeling accuracy, but more importantly maximizes the
reconstruction quality.

perturbations, such as shadow or overcast. These natural
perturbations are G, of which the exact forms are unknown
to us. Some people use graphics rendering (e.g., for flight
simulator) to synthesize the scenes. With the projector-camera
system, we can use the multiple projectors to parameterize
nature by using a finite number of tunable knobs to reproduce
outdoor environment in a controlled setting, hence providing
an approximation He ~ G.

The presence of nature and a simulator changes the
problem scope from designing a hardware camera to
designing a numerical simulator as shown in Figure 3.
Because of its middle-person role between nature and
algorithm, the selection and optimization of the simulator
is significantly more complicated than configuring a camera
such as deciding which coded aperture pattern to use. An
analogy here is that selecting a simulator is like selecting a
neural network, whereas configuring a camera is like learning
the weight of the neural network.

2.4 Four Attributes of a CIF Simulator
In what follows, I will describe the four attributes of the
simulator in CIE.

Attribute 1: Accurate. The first attribute of a CIF
simulator Hy is that it is accurate enough to approximate
the true image formation process G. The form of Hg can
be anything. It can be a one-line equation, an algorithmic
procedure, or even a neural network. The performance of
Hp is measured in terms of how good the simulated image is
when compared to the true image. Mathematically, we define
the loss as

Exim (Ho) € By SimLoss(Hy 0, 6] ()

simulator loss

The equation says that for a given image x, the simulated
image Hg(x) needs to be sufficiently similar to G(x).
The goodness of Hg is measured according to the loss
function SimLoss. For example, in atmospheric turbulence,
SimLoss can be the pixelwise distance between the simulated
long/short exposure function and the measured (real)
long/short exposure function. It can also be the differential
tilt statistic or the z-tilt statistic between the simulation
and the theoretically derived statistical average. Or, SimLoss
can be measured using target patterns seen through a
heat chamber. There are also instrumentations such as the
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scintillometer to measure the turbulence profile. In any case,
SimLoss is an application specific metric(s).

Attribute 2: Fast. The second attribute of a CIF
simulator is that it needs to be fast so that we can integrate it
as a part of the reconstruction algorithm. But speed depends
on which computing platform we use. (See discussions in
the next paragraph.) A slightly better way is to measure the
complexity of the model, with the following notation

8c0mplexity (Heo) (8)

The definition of the complexity can take various forms.
If Hg is implemented using a deep neural network, then
the complexity can be measured in terms of the number of
hidden layers, width of hidden layers, number of parameters,
number of filters, size of the filters, etc. The complexity of Hg
can also be viewed at two levels: (1) The intrinsic capacity
of the model and (2) The effective model capacity given a
specific choice of 6.

Model complexity is usually linked to speed (aka
runtime), but some caveats should be noted. For example,
2D convolutions today can be efficiently implemented
because of the dedicated hardware architectures on graphics
processing units. In contrast, depth-wise 3D convolutions are
substantially slower even if the number of parameters is the
same as a 2D convolution because of the lack of specialized
hardware. While this problem will likely be solved in the near
future, the complexity is not translated to runtime directly.

Attribute 3: Benefits Reconstruction. The third at-
tribute of a CIF simulator is that it needs to benefit the
reconstruction performance because in CIFE, the ultimate goal
is to maximize the final image produced by the entire system.

The reconstruction loss is abstractly defined as

Erecon(He) dzefr%i;l EX[ReconLoss(va (y, Ho), x)] 9)

reconstruction loss

The reconstruction loss in Eq. (9) is reminiscent to Eq. (4),
but the goals are very different. In Eq. (4), the camera Hy
is already chosen except for its parameter 6. Thus, the joint
minimization in Eq. (4) is to simultaneously optimize for
the reconstruction (realized via a neural network) and the
state vector 6 of the camera. In contrast, the minimization
problem in Eq. (9) says that we do not even know which
simulator to use. Using atmospheric turbulence as an
example (see Section 3), the decision could be the choice
between two completely different models, e.g., the pixel-jitter
model or the deformable model. Therefore, in CIF simulator
selection, the difficulty is how to build a simulator that fulfills
the criteria instead of adjusting parameters of some simple
equations.

Attribute 4: Differentiable. The fourth attribute of a
simulator is that it needs to be differentiable. The metric for
differentiability can be a simple indicator function:

0, if Hg is differentiable,

def
Eaitt(He) = (10)
00, if Hy is not differentiable.
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Why do we need differentiability? The reason is that
most, if not all, image reconstruction algorithms today are
based on deep neural networks. For the simulator to be
part of the reconstruction framework, it is necessary that
the gradient of the loss function can be backpropagated
to the input. Therefore, being able to take the gradient of
the simulator with respect to its model parameters becomes
essential.

Enforcing differentiability can be realized in multiple
ways. The easiest way, of course, is to build a simulator
using a deep neural network. However, speaking from
experience, physics-based simulators often offer significantly
better guarantees of the theoretical properties and are
more interpretable. Yet, physics-based simulators are often
complicated. Enforcing differentiability is not a trivial task.
For example, iterative procedures such as Newton’s method,
which is widely used to find the intersection of a ray and the
lens surface, needs to be replaced by another method that is
non-iterative before we can make it differentiable.

2.5 Simulator Selection and Parameter Optimization
After stating the four attributes of the simulator, I would
like to elaborate on the simulator selection problem and
the parameter optimization problem. The two problems are
different. The former is more about building a simulator that
fulfills the criteria. The latter assumes that the candidate
simulator has already been decided, but during the inference
process, we would like to update the state vector to better
match with the observation. The simple analogy here is
that simulator selection picks the number of partitions in a
spatially varying blur system (i.e., how many pixels to share
one blur kernel), whereas the parameter update assumes that
the partition is already fixed but we need to estimate the
individual blur kernels.

Simulator Selection. The simulator selection problem
can be formulated as a constrained optimization.

argmin Erecon(Ho) + Eaiet(Ho)
Ho
subject to gcomplexity(HO) = Tcomplexity,

Esim(Hg) < Tsim (11)

The objective function of the problem is the reconstruction
loss Erecon(He) plus the indicator function Eqigr(Hg). Since
by construction the simulator needs to be differentiable,
the indicator function will serve the purpose of only
allowing differentiable simulators to be considered. The main
objective is therefore the reconstruction loss.

There are two constraints in the optimization. The
complexity constraint limits how complex the simulator can
be. The simulator loss constraint controls the match between
the simulator 7 and the ground truth model G. The reason
why these two criteria are listed as constraints instead of
the objective is that in practice, the simulator designer
would seldom navigate the four criteria simultaneously when
choosing the simulator. It is far more common to develop a
simulator with a certain level of complexity and simulation
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accuracy in mind, while leaving some design freedom to the
reconstruction algorithm.

I should stress that while the simulator selection
problem appears like an ordinary constrained optimization,
the problem is never solved using any gradient based
methods. In contrast, the problem is more often solved
manually based on experience and creativity. So it is more
of an art.

Parameter Optimization. To stimulate the parameter
update discussion, it is best to first consider an example.

Example 4. (Blind deconvolution) In the classical blind
image deconvolution problem, we are often interested in the
alternating minimization

ht! = argmin ||h ® xF — y||2 + prior(h),
h

X1 = argmin W' @ x — y||% + prior(x),
X

where prior(-) is a generic notation representation the prior
model of the respective variable.

The first equation, put into the CIF framework, can be
rewritten as

okt = argmin {SimLoss (7—[9 (xk), g(x)> }
0
Here, G is the true image formation process given by nature,

and He(x) =h ® x + n is the approximation. The second
equation can be written as

X1 = Ry (y, Hegr),

which is a generic form of the image reconstruction method.

@ = key point coordinates

\ Kernel Trajectory Network (KTN) /
.r. —3 Camera Trajector, ol
)

\>/ ¥ KeyPoints -

x

update Hg

To be precise about the state vector 6, one can think of
it as the parametric description of the forward model Hg.
For example, in Ref. [9], key points are used to characterize
the motion where a continuous curve is drawn to connect the
key points to generate a motion blur kernel. The key points
are coordinates in the 2D space, and the state vector 0 is the
collection of all key points.

The above example illustrates the typical procedure of
updating the simulator’s parameters and estimating the latent
image. These two steps can be summarized by the following
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Table I. Comparison between a physics simulator and CIF simulator.

Physics simulator (IF simulator
Goal Describe nature Help image reconstruction
Accurate? As much as possible because we need it to reproduce nature. 2]|?ul;eed 1o be osolutely accwrats. As long os t meefs o cortin lval, it s
Fasf? Fast is certainly welcome, but slow is also okay if it s justified by Need to be very fast, for synthesizing datasets and integrating with inverse
’ application. algorithms.

Benefits Reconstruction?
Differentiable?

Irrelevant because the simulator’s goal is to reproduce nature.

Irrelevant. No need

Simulator in the reconstruction loop is the key of CIF.

Needed, especially if we want to co-optimize reconstruction and simulator.

pair of iterative updates:

X =Ry (y, Hot) (12)

6%*! = argmin SimLoss(Hg (x*™!), G(x))
o

As mentioned earlier, this pair of equations are performed
after the simulator is selected.

(13)

2.6 Discussions

Ideal G ? At this point, it should be clear why a perfect
simulator g = G may not be a good simulator in CIE. If G
is intrinsically complicated, then matching it would require
a complex Hy. This will violate Attribute 2 (simple and
fast), and possibly Attribute 4 (differentiable). There is also
a possibility that Attribute 3 (improve reconstruction) can be
poor because a complex Hy often leads to an ill-posed inverse
problem. The reconstruction model R, has to be even more
complex in order to invert the effect of G. This means that we
have a good forward model, but we cannot solve the inverse
problem.

Compared to a physics simulator. Compared to a
pure physics simulator, a CIF simulator has additional
emphasis on speed, reconstruction, differentiability and
compatibility with the reconstruction algorithm. This leads
to the summary in Table I.

Compared to computational camera. How is CIF
different from a computational camera? In a computational
camera, the optimization variable is the hardware camera.
For example, we adjust the lens parameter, or the mask in
coded aperture, or the pattern of the exposure multiplexing
scheme. CIF can, in principle, be a superset because these
hardware elements can always be described by mathematical
models. However, the bigger difference (and also the problem
context) is that CIF is more relevant to situations where G is
not easily parameterized by simple equations. Weather is the
best example to think about. In those cases, choosing which
Hg is more relevant than optimizing for 6. In short, CIF is
not only about the co-optimization of the image formation
elements, but also about the selection of the image formation
model.

Compared to model selection literature. The subject of
simulator selection is in many ways similar to the classical
topic on model selection [10]. The core difference, however,
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»

Powerful simulator
Reconstruction too hard

Simulator too bad
Can't give good reconstruction

Simulator good
Reconstruction not easy

Simulator cheap
descent reconstruction

Simulator okay

Reconstruction okay I SimLoss or

» Complexity

tolerance level

Figure 4. A conceptual illustration of the fradeoff between the
performance of the simulator and the image reconstruction.

is that in model selection, the models are more or less
simple equations; for example, the £1-norm (LASSO) or the
£>-norm (ridge). In CIF, the selection of simulator can be
drastically more difficult. Often times, there may not be any
readily available simulators to “choose from”. The designer
needs to develop a simulator to match the complexity and
simulation loss, while maximizing the image reconstruction
performance. This is not a simple gradient search problem,
but more of a design problem.

Because of the different goals and different problem
settings, the methodologies used in model selection largely
do not apply. For example, tools such as the Akaike infor-
mation criterion (AIC) or the Bayesian information criterion
(BIC) are not applicable because (i) even though there is
an underlying probability distribution of the true data, we
do not know what it is, (ii) most simulators are complex
numerical procedures. Analyzing them and calculating in
the context of AIC and BIC is not feasible, (iii) there exist
domain-specific alternative assessment techniques that are
much more reliable and direct than AIC and BIC.

Trade-off. Because of the conflicting goals in the
simulator selection problem, it would be useful to see the
tension via the illustration in Figure 4. In this figure, the
y-axis defines the reconstruction loss whereas the x-axis
defines the simulator loss (or complexity). The question of
CIF is about which point on the trade-off curve to pick.
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On the far right of the figure, the simulator is too simple
to be of any use. Even though the reconstruction is easy,
the reconstructed image will not be good. Moving slightly to
the left, the simulator is improved and the reconstruction is
also improved, thanks to a more meaningful simulator. The
benefit can come from the data synthesis (i.e. to generate
a good training dataset), as well as in-the-loop inverse
algorithm. The optimal operating point is somewhere in
the middle, where the simulator is reasonably accurate and
the reconstruction is also decent. As the simulator moves
towards the left hand side, the reconstruction becomes more
difficult. Not only do we have a harder time to synthesize
enough data because the simulation can be time-consuming,
but we also have a harder time to put the simulator in the
reconstruction loop. As the simulator moves to the far left,
the simulator is extremely good but it offers little to no help
to the reconstruction. Thus, the performance can be very
bad. In Fig. 4, a colored region is marked with a cutoff
7. Any simulator that gives a performance better than t
will be inside the region. Therefore, among all the possible
simulators, only those that meet the simulator criteria can be
adopted for reconstruction.

3. CASE STUDY: IMAGING THROUGH TURBULENCE
Now that we have seen what CIF means, it is time to look
at a concrete example. I will use turbulence as an illustration
because of the richness of the literature. To give you an idea
of the accuracy of the model, I will use the number of stars »
is used to indicate how accurate the simulator is. A simulator
with one (x) means that it is cheap but inaccurate, whereas a
simulator with (* x x * x) means that it is extremely accurate.
The number of stars is partially objective because we can
measure the quality, but it is also partially subjective because
much of these are based on my experience.

3.1 Wave Propagation Physics
Our atmosphere is a complicated medium because of its
turbulent nature. Factors such as temperature, wind velocity,
humidity, and other weather conditions can affect the
strength of turbulence. Aslight propagates, the random index
of refraction will cause phase delays along the optical paths,
leading to pixel displacements and blurs [11, 12]. The exact
image formation for one specific turbulent instance cannot
be determined because it is stochastic.

Split-step (“Gold standard”) (x x x x x) Let me start
by discussing the most accurate model so that we have a
reference point. In physics, the most accurate model for
atmospheric turbulence, to date, is the split-step propagation
[13]. The model says that we can partition the propagation
path into a sequence of segments where each segment has a
random phase screen determining the phase distortion. The
propagation is performed by integrating the electromagnetic
field u of which the magnitude produces the image x = |u/?.

Without diving into the technical details, we can think
of the split-step propagation as a sequence of operations
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Turbulence is modeled as phase screens

object plane

Figure 5. The splitstep propagation model ’H;pm is considered as

the “gold standard” in modeling atmospheric turbulence. While the
model is accurate, ifs numerical wave propagation equation makes the
implementation extremely difficult and very slow. Thus, it is a good
simulator for mimicking nature, but not so much for image restoration.

along the light propagation path. At the ith segment, the
electromagnetic field propagates according to the equation

uj; | =Fresnel ( w; © &9 ), (14)

ith field ith phase screen

where © denotes elementwise multiplication, Fresnel(-) de-
notes the Fresnel diffraction integral [14, 15], and ¢; denotes
the ith phase screen drawn from the Kolmogorov power
spectral density [16-18]. (Assuming a “typical” situation with
a small to moderate Rytov number so that we can ignore
the amplitude effect and the power spectral density roughly
follows the 5/3-power law predicted by Kolmogorov [19].)
The process is nonlinear because for every pixel in the
object plane, the equation has to be evaluated repeatedly
(which includes Fourier transform, phase cropping, and
multiplication), as illustrated in Figure 5. For completeness,
the equation is written as

Y = |Fresnel(Kolmgrv(. . . (Fresnel(Kolmng(x)))))|2,

Hgsplit )

_ (15)
where H;Pht denotes the split-step model, with 6 defining the
random phase screens along the propagation path.

For decades, physicists have agreed that the split-step
propagation is very reliable and accurate for simulating
atmospheric turbulence. With a sufficient number of phase
screens along the path, and assuming that the turbulence is

at the most moderately strong, it is safe to say that
G0~ M (). (16)

Various simulation packages have been built [20-30], and
they are widely used to study the optical communication,
high energy beam propagation, and astronomical applica-
tions. There are also attempts to use these simulators for
image processing tasks, but scholars generally find split-step
too slow for any real-time applications. The bigger problem
arises if we want to use ’H;pht for image restoration. Let’s see
why.
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3.2 Image Restoration
Split-step propagation is never used as part of the image
restoration pipeline. I will illustrate this using two recon-
struction methods.

The first approach is the optimization approach. Using
total variation as one of the (many) examples, we have

~ . li
X =Ry (y) =argmin | Ky x) —ylI> +Alxltv.  (17)
X

But solving this problem can be difficult because H;pm

is complicated. If we perform variable-splitting techniques
such as the ADMM algorithm, we have no way of computing
the proximal map because the inverse (or regularized
inverse) (”H;l[)ht)_l is not possible to obtain. Note that I am
not even talking about estimating the state vector 6, which
will add more difficulties to the problem.

Another approach is deep learning. The idea is to train
a deep neural network R, that performs

=Ry (v, ™). (18)

However, the problem is in generating the clean-noisy pair
for training. We can send the clean image through H;P it and
repeat the process until we have created a dataset of training
samples. This is in theory doable, but since the simulator is
so slow, there is no way we can synthesize enough data [31].

There is one more issue about deep learning. If we want
to incorporate H;pht into the reconstruction neural network
Ry, the simulator needs to be differentiable. Since the
split-step simulation is a serial chain of complex operations
going back and forth with the Fourier transforms per pixel,
back propagating the gradient of the loss function through
the simulator is nearly impossible unless we introduce
additional approximations.

CIF Trade-off for Split-step.

o Eim: Extremely small, especially if we use
enough phase screens.

® Ccomplexity* Huge-

o Erecon: Unknown, because the only way split-
step can be used is to synthesize training data.
But even so, it is computationally infeasible
because split-step is too slow.

o Eaifr: Infinity, because split-step needs to per-
form a sequential chain of Fourier transforms of
phase functions per pixel.

3.3 Lightweight Simulators
Having discussed the “gold standard” split-step simulator, let
us move on to something faster.

Pixel Jitter Model [20]. (x) The simplest simulator
reported in the literature is the pixel shift + blur model. This
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model says that F=h® (jiter(x), (19)
—

X J;tter x)

where jitter(-) denotes the pixel jittering, where the
displacement is a random vector with an independent
and identically distribution (i.i.d). The operator h is a
spatially-invariant Gaussian blur, and ® is the convolution.

Figure 6 shows an example. Hgtter is very cheap and fast
- just draw a random ii.d. motion vector field (pick any
distribution, e.g., Gaussian), and convolve the image with an
invariant blur kernel. The state vector 6 contains the blur and
the motion vector field. B

Needless to say, inverting H;tter is easy, at least in the
non-blind case where we know the random vector field
and the blur; just remove the blur using any off-the-shelf
non-blind deconvolution algorithm, and then un-do the pixel
displacement. We can plug it into a neural network. We can
also plug it into a classical optimization so we can solve the
proximal map. The only caveat (and a big caveat) is that

o
H; “ % G, not even close.

,

CIF Trade-off for Pixel-Jitter Model.

e &im: Huge, because the simulator is too
simple.

o Ecomplexity: Extremely small.

o Erecon: Poor, because the simulator is too far
from reality although solving the reconstruction
problem is easy. Data synthesized by the model
will have a hard time generalizing to real
turbulence.

o Eaifr: Zero, because both pixel jitter and
blurring steps are differentiable.

. J

Deformable Model [32-36]. (xx) A slightly better
version of the simulator is the deformable grid model. Instead
of assuming an i.i.d. random displacement field, we select a
small set of anchor points in the image grid and perform a
non-rigid deformation. The overall equation is

Y =h® (deform(x)), (20)
—_—

H geform (x)

The benefit of the deformable model is that it is physically
more meaningful because the pixel displacement caused by
turbulence is spatially correlated. The deformable model
provides a way to enforce the spatial correlation. Figure 7
illustrates an example, where we can see that the deformable
grid is more structured. The sampling process is reasonably
easy because we only need to identify a few anchor points.

The deformable grid facilitates the estimation of the
pixel displacement because the number of anchor points
is finite. The drawback, though, is that the blur remains
spatially invariant. It is still valid for isoplanatic turbulence,
but definitely not true for anisoplanatic turbulence where the
blur must be spatially varying.
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Figure 6. Random jitter and spatially invariant Gaussian blur. The
simulated turbulence effect is quite far from the reality.
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Figure 7. Deformable field and spatially invariant Gaussian blur. The
simulated turbulence effect is better than the random fjitter, but sfill not
accurate enough to maftch the real turbulence.

CIF Trade-off for Deformable Model.

o Eim: Better than the pixel-jitter model.

o Ecomplexity: Small. Comparable to pixel-jitter.

o Erecon: Not great but better than pixel-jitter.
The simulator is still far from reality although
solving the reconstruction problem is easy. Data
synthesized by the model does not generalize to
real turbulence.

o Egiff: Zero. The model is differentiable.

Varying Blur Model. (x x x Incomplete) To model
anisoplanatic turbulence, people propose to adopt a spatially
varying blur. Keeping the deformable grid idea (which can
be replaced by other pixel displacement models), the output
image is defined in a per-pixel basis:

v =h; ® (deform(x)), (21)
—_—
H;arying x)

where i denotes the ith pixel of the imagey and h; denotes the
blur for the ith pixel. Because of the per-pixel blur, this model
can now describe a wider set of turbulence effects. However,
the generation of these per-pixel blurs remains unclear (that’s
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Figure 8. Spatially varying blur kernels used in ’Hzmymg. The kemels are
generafed using the phase-overaperture model. Note that the shape of
the blur changes from one location to another.

why I mark it as “incomplete”). In the example blur kernels
I show in Figure 8, I use the phase-over-aperture model (to
be discussed in the next subsection) to generate the spatially
varying blur. These blurs are then integrated into this model

H;arymg to perform the distortion.

The inverse problem associated with ”Hvarymg is not

easy, because spatially varying blurs do not have simple
inverses using standard tools such as the Fourier transform.
Therefore, additional approximations are needed to reduce
complexity.

CIF Trade-off for Varying Blur Model.

o &gim: Undetermined, because it is unclear how
the per-pixel blur kernels are defined while
satisfying the spatial correlation of the blur.

o Ecomplexity: Undetermined, because it depends
on how the kernels are generated. Assuming
that the covariance matrix is given, then
sampling from it is not too complicated.

o Erecon: Small if the spatial correlation of the
blur kernels are satisfied.

o Eiifi: Zero. The model is differentiable if the
blur kernels are predetermined and stored.

Flipped Model [35, 37, 38]. (x x x) Because of the
difficulty of inverting the spatially varying blur, a work-
around solution has been proposed by observing that
turbulence-distorted images exhibit a lucky effect. From
time to time, and from pixel to pixel, there are instants
where the turbulence distortion is weak. The lucky pixels
/ patches existing in the raw video input are blur-free and
displacement-free. Therefore, if we can identify these lucky
patches, then we can mitigate majority of the turbulence
effects, leaving only the diffraction limited blur. This two step
procedure can be summarized as

= deblur (lucky(y)). (22)
N ———

reconstruction

There are many variations of this approach, such as [32, 36,
39-41].
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Figure 9. Two models: Tiltthen-blur #, and blurthenilt ’Hﬂ‘pped

They generate similar result for most reg\ons but not for edge plxe\s As

shown in [42], H 2'pp6d has a tendency to “desfroy” the blurs.

The two-step procedure inspired researchers to consider
an alternative model where we flip the order of blur and
pixel displacement in the simulator. This gives us the flipped
model:

yi = deform(h; ® x), (23)
—

,H;hpped ®)

which according to [42], is called the blur-tilt model. The
blur-tilt model is not the same as the tilt-blur model because
it can be proved that wave propagation follows tilt-blur but
not blur-tilt. However, the blur-tilt model is easier from the
angle of inverse problem because inverting the deformation
can be realized by lucky imaging algorithms.

CIF Trade-off for Flipped Model.

o &im: Worse than the varying model because
we can theoretically prove that the order of blur
and tilt should be tilt-then-blur.

o Ecomplexity: Same complexity as the varying
model because it is the same composition of blur
and tilt.

e Erecon: Comparable to the varying blur model
but the flipped model is easier to implement and
hence it facilitates image reconstruction.

o Egiff: Zero. The model is differentiable.

J

Summary. As you can see, the consideration of which
He to use is not a simple question of matching physics.
If it was, then any of the cheap models would have no
value. But the fact that they have been used in the literature
and sometimes generated satisfactory results speak of their
validity. They are not justified from the angle of physics, but
the angle of image reconstruction.

3.4 Differentiable Simulator

Over the past few years, there is an increasing amount of
effort to build faster and more accurate turbulence simulators
with the goal of maximizing the image reconstruction

J. Imaging Sci. Technol.

local phase

Zernike Space

Figure 10. Phase-overaperture model assumes that every point spread
function has a corresponding phase function. Thus, as long as we can
generate the phase functions efficiently, we can consfruct the point spread
function without using numerical propagation techniques.

performance. One of these efforts is a series of work of
random sampling in the phase domain. In this subsection, I
briefly comment on their basic principles and highlight a few
key attributes, particularly, differentiability and scalability.

Phase-over-aperture [43] (x x x*, not differentiable)
One of the biggest hurdles of the spatially varying blur model
H;arymg is that there is no simple way of constructing the
spatially varying blur kernels while satisfying the turbulence
physics. In addition, the pixel displacement motion field is
also not a simple deformable grid. These two limitations
require a new method to model the turbulence.

The idea behind the phase-over-aperture model, pro-
posed in Ref. [43], was to recognize that the overall
distortion (blur+displacement) is constructed from the
Fourier magnitude square of the phase:

h; = |Fourier(e/) |2, (24)

where ¢; is the phase function of the ith pixel. The
displacement motion vector can be obtained by identifying
the centroid of h;. Any displacement from the centroid will
be marked as the pixel displacement vector. Therefore, for
every pixel i, there is a one-to-one mapping from the spatial
domain to the phase domain, as illustrated in Figure 10.

For any i, the phase function ¢; has a basis representation
using the Zernike polynomials:

\/l-’ Z u_:,]_.z u‘i_./

. ji=1
phase function  / coefficients

Zernike polynomials

Since the Zernike polynomials are known functions, the
blur kernel h; is constructed as soon as the coefficients
a={ajjli=1,...,N,j=1,..., M} become available.

The construction of the coefficient «;; can be done
by sampling it from an enormous covariance matrix if we
follow Tatarskii’s assumption that the underlying random
process is Gaussian [11]. In this case, by following the
tedious derivations shown in Ref. [43], the coefficients can
be obtained by

a = Sampling from (E[aaT]), (26)

where E[aa”] denotes the correlation matrix. The corre-
lation matrix can be derived from the turbulence statistics
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Figure 11. Phase-overaperture [43]. (a) The displacement motion field,
and (b) The resulting image. Note that the spatially varying blur in Figure @
is generated using this phase-overaperture model.

where there are formulae to employ. Depending on how
much turbulence statistics is utilized, & can maintain some
degree of spatial correlations from one pixel in the scene to
another pixel, and from one Zernike basis to another Zernike
basis. If the turbulence condition is changed, then the
correlation matrix will change and so the random coefficients
change too.

Figure 11 shows a random motion field generated by the
phase-over-aperture model, as well as the resulting image.

The bottomline of the simulator is that it turns the
split-step propagation equation into a random sampling
method. This gives us a model

Vi=h;®[tiox;], (27)
—_——

-

,thase x)

where t; is the pixel displacement vector that can be extracted
from the first two Zernike polynomial bases. The operator o
denotes the pixel displacement operation.

CIF Trade-off for Phase-Over-Aperture Model.

e Eim: Very close to ’H;pht except for ex-
treme turbulence levels beyond the Kolmogorov
regime.

o Ecomplexity: More complex than the deformable
model, but still much simpler than the split-step
propagation method.

h:
® Erecon: Small. However, the usage of Hj
is limited to generating training datasets. No

simulator in the loop because thase is not
differentiable.

e Egifr: Infinity. The model is not differentiable.

Phase to Space (x x xx, differentiable) [31]. The
improvement brought by the phase-over-aperture model is
substantial. But in order for it to become useful for image
restoration, the speed needs to be further improved and the
simulator needs to be differentiable.
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Figure 12. Phasetospace (P2S) simulator H;QS defines a mapping
from the phase domain fo the spatial domain using two different forms
of linear representations. The mapping is implemented using a shallow
neural network, and hence the model is differentiable.

To enable a differentiable simulator while being fast,
scholars recognized that the blur can be efficiently rep-
resented in a low-dimensional space using fixed and
pre-defined basis functions, as follows:

L
hi=Y" Bieor.
=1

Here, the functions ¢y is the £th basis function of the blur, and
Bi.¢ is the £th coefficient for the ith blur kernel. A common
choice of the basis functions is the Gaussian basis and its
derivatives, although the authors of [31] showed that one
can also perform principal component analysis (PCA) to
construct the basis functions.

Why do we need to write h; as a linear combination of
the basis functions? The reason is that we can now represent
all the h;’s using the coefficient vector B = {Bi¢|i =
I,....,N,¢=1,...,L}. Then, as long as the relationship
between o and B is established, we can go back and forth
between the representations.

(28)

Phase to Space

B (29)

The forward mapping from « to B is called the phase-to-
space transform (P2S) [31]2. P2S is implemented using a very
shallow neural network because the dimensionality of the
input is typically @ € R3¢ whereas that of the output is around
B € R Thus, a shallow 3-layer fully connected network
is sufficient to learn the mapping. Figure 12 illustrates the
conceptual diagram of P2S.

With P2S, the turbulence model is now fully differen-
tiable. This is because the distorted pixel can be obtained
through the linear equation

L
yi= Zﬂi,z[w ®X],
=1

Hy? (xi)

(30)

2 The inverse mapping from S to « is known as the space-to-phase
transform (S2P). The implementation of S2P remains an open
problem, as on date.

Nov.-Dec. 2023



Chan: Computational image formation: Simulators in the deep learning era

where § = . Aslongas § is known, the simulator only needs
to perform the basis convolutions. Since 8 <> « via P2S, the
simulation model is completely characterized by the Zernike
coefficient a. Moreover, since the P2S model ngs is linear
in B, any gradient with respect to 8 can be computed. Even if
we need to compute the gradient with respect to «, we can do
so by backpropagating the gradient through the P2S neural
network (which is a three-layer fully connected network.)

CIF Trade-off for Phase-to-Space (P2S) Model.

o Eim: Same simulation error as ’thase. P2S is
just a (much) faster version.

. 5comp1exityi Lower complexity than the phase-
over-aperture model.

Erecon: Small. Since ngs is significantly faster

h: .
than 7-[5 “°, it can generate a much larger

dataset. 7-[525 can be integrated into the recon-
struction model.

o Eqiff: Zero. The model is differentiable.

Further Improvements. There are additional points
scholars proposed to improve the speed and generality of
the P2S simulators. For example, in [44], it was shown that
the off-diagonal blocks of the correlation matrix EloaT]
can be truncated without hurting the performance. In [45],
it was shown that with a carefully designed reformulation,
the simulator can be generalized to an arbitrary turbulence
profile along the path (i.e., the structure constant C> changes
with respect to the distance). Both changes do not affect the
differentiability of the simulator, but they make the simulator
even faster and more accurate. Another modification is the
recognition of the scattering/gathering forms of convolution
in [46]. It was shown that for the physics to be valid, the
convolution needs to be implemented in the scattering form.

3.5 Simulator-in-Reconstruction

An important aspect of CIF is to use simulators in
reconstruction. The goal of this subsection is to explain how
this can be (has been) achieved.

Simulator as Synthesizer for Training Data. The most
straightforward application of the simulators is to use them
to synthesize training data. Starting with a collection of
clean images, the simulator generates the turbulence effect
to produce a distortion-clean pair.

One often overlooked usage of a simulator is its flexibility
in synthesizing data according to the needs of the training:

e Multiple scales: A simulator can synthesize turbulence
across different resolutions. For example, for a fixed
propagation distance and object size, a lower resolution
image would require a smaller displacement vector and
a smaller blur kernel. These images are often easier to
restore. If the simulator can produce multi-resolution
distortions, the overall restoration will be benefited.

o Tilt-free, blur-free, all-free: A simulator can generate
tilt-only distortions, blur-only distortions, or no distor-
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Input frames

(a) Ry trained with
data synthesized by
TSRWGAN [49]

(b) Ry trained with
data synthesized by
P2S + variants [47], [48]

Figure 13. How much difference does a simulator make? This figure
shows the reconstruction result of a network trained using datasets
generated by two different simulators: TSRWGAN [49] and P2S [47].

With a fixed network architecture, the effect of the simulator is evident.

tion. This provides a powerful way to disentangle the
coupling effects of the turbulence and object movement.
For approaches such as knowledge distillation or
student-teacher learning, the decoupling capability
offered by a simulator is the key enabler because there
is no alternative ways we can train those models.

How much improvement does a good simulator offer
when compared to a bad simulator? Various studies have
reported a consistent observation that the difference is
significant [47, 48]. Figure 13 shows a comparison between
TSRWGAN [49] and a variant of the P2S [47], reported in
[48]. A common neural network architecture is chosen, and
it is trained using two different datasets. TSRWGAN is a
more rudimentary simulator with simple deformable grid
and blurs, whereas P2S is more advanced. The results shown
in Fig. 13 provides a strong evidence that a better simulator
indeed makes a big difference in terms of image restoration.

Simulator inside a Generative Adversarial Network.
A simulator can be directly used in image restoration, for
example through the generative adversarial network (GAN)
[50, 51]. In the GAN setting, the simulator can be used as
part of the generative branch to synthesize what a distorted
image should look like. This mirrors nature where the image
formation is determined by physics and the image sensor.
The performance of the simulator has a direct impact on
the performance of the GAN. If the simulator fails to mimic
nature, then the simulated distorted image would not appear
similar to the true distorted image. This adds more burden to
the generator where it needs to compensate for the mismatch
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Figure 14. What happens when a simulator is not used? The image
reconstruction performance is significantly worse. The figure is adopted

from [52].

error caused by the simulator in addition to generating the
latent unknown image. An accurate split-step propagation
would not work either because it is simply too slow and it
is not differentiable.

Simulator for Re-degradation Loss. Besides GAN,
another approach to use simulator in the reconstruction loop
is to consider the consistency loss, defined as

Consistency(’Ha Ry (), G (x)) . (31)
e —
Heo %)
This is an additional loss put on top of the traditional
reconstruction loss ReconLoss(X, X).

The performance of the image reconstruction depends
on two factors: (i) How good is Hg compared to G ? (ii) How
good is X compared to the ground truth x? Many scholars
have asked why ReconLoss(X, x) is insufficient. The answer
is that the reconstruction loss never provides any explicit
knowledge about the forward model. Since G and Hg are
often ill-conditioned and so many x can be mapped to the
same vy, the consistency loss helps the reconstruction by
enforcing it not to create artifacts that cannot be explained
by the forward model. The benefit of the consistency loss is
supported by numerical evidence in Figure 14.

Looking Forward. The results of the latest reconstruc-
tion methods are promising. However, the full power of CIF
is yet to be explored. Here are a few observations:

e State vector 6 update. As I explained previously, the
state vector update is analogous to the blur kernel
estimation problem in blind deconvolution. Given a
distorted image, having the ability to estimate the
turbulence parameters could significantly reduce the
uncertainty of the reconstruction. However, as on date,
these ideas are yet to be developed.

e State encoding. The state vector 6 is often a high
dimensional vector, e.g., the collection of Zernike
coefficients over the entire image. However, it is likely
that 6 has a low dimensional representation. Presently,
there is little understanding of how these state vectors
can be encoded more efficiently.

o Bijective mapping from pixel space to embeddings.
An open problem today is the non-uniqueness of
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the low-dimensional representation. Using Zernike
coefficients as an example, it is possible that two sets
of Zernike coefficients can give the same pixel-level
image distortion. Therefore, while P2S is easy to do, the
inverse mapping S2P can be significantly harder. For
many problems dealing with optics through different
environments, such a bijective mapping is an important
technical challenge.

o Ultra-fast simulator. Advanced simulators such as P2S
can achieve 40 frames per second for a 512-by-512
image. However, for P2S to be used as part of an
iterative algorithm or used as an integral part of
the reconstruction neural network, the runtime would
probably need to be suppressed to a microsecond range.
This is a major challenge for both hardware (GPU) and
algorithm.

4. MORE EXAMPLES

In this section, I would like to elaborate more on how CIF
could fit other imaging problems by discussing a few other
examples in addition to the turbulence example above.

4.1 De-raining and de-hazing
Consider the problem of imaging through rain and haze. Like
imaging through atmospheric turbulence, the exact ground
truth image formation y = G(x) cannot be determined
exactly due to the stochastic nature of the process [53, 54].
In the literature, the degradation can be modeled in
different ways [55]. For example, if the distortion is caused
by rain streak, then

H;treak(x) —x+b, (32)

where b is a sparse vector representing the line streak effect
of the rain. If the distortion is caused by adherent raindrops,
[56] proposed a model
ind
,H;am rop (X) —

(1-M)Ox+d, (33)

where M is a binary mask indicating whether a pixel has
a raindrop, © is the elementwise multiplication, and d is
a sparse vector with localized scattering raindrops. If the
distortion is caused by haze and rain streak, then the model
is

HE™(x) =x O t+A(1 —t) +b, (34)

where t is the transmission map (see Example 2), A is
the airlight color transformation, and b is a sparse vector
representing the streak.

In recent years, there has been increased efforts to use
neural networks to learn the model so that Hy can be more
similar to G. For example, [57] proposed the model

denamlc( ) =x+b; +ny, (35)

where ¢t denotes the time, and n; ~ Gaussian(0, o2) is the
noise vector. The rain model b; is defined through some
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Optics

Camera ISP

Image reconstruction

£

Figure 15. Differentiable optics. In a conventional camera system, there is
an optical component, an image signal processing (ISP} unit which controls
the exposure, color filter, efc, and an image reconsfruction algorithm.
Differentiable optics aims at approximating the physical optics module
and the ISP with neural networks so that the entire system is differentiable.
This will enable end-fo-end training of the image reconstruction algorithm.

variations of the Markov process such that

b; = Ay (bi—1), (36)

where A, is a neural network that provides a memoryless up-
date based on previous time stamps. Because 4, is a neural
network, it inherits several desired properties such as being
differentiable. Since the simulator is co-optimized with the
reconstruction algorithm, the reconstruction performance is
evidently better.

Besides these examples, the general direction of imaging
through adverse weather today is to inject more physics into
the problem [58]. In the area of rain, snow, and fog, there is an
increasing amount of high quality physics-based simulators
that can simulate these optical effects [59, 60]. The usage
highlights the relevance of CIE

4.2 Differentiable Optics

While CIF is mostly concerned with degradation processes
arising from nature, the concept can be applied to other
forms of optics-algorithm co-design problems such as the
one summarized in Figure 15.

(1) Differentiable optics for lens systems [61-64].
Traditional lens design is a standalone process where
people use ray-tracing tools such as Zemax to optimize
the parameters of the lenses. If one wants to design
the downstream image reconstruction algorithm, these ray
tracing tools, however, would be incompatible with the
reconstruction. To overcome the difficulty, various methods
have been proposed to approximate the true lens system G
with neural networks Hy. Since the reconstruction is usually
aneural network, having a neural network Hy will give us an
end-to-end differentiable camera system.

Today, Hgp is mainly used to improve the image
reconstruction. There is relatively little work on co-designing
the lens parameters. The reason is that co-designing the lens
parameters would require a method to “translate” the weights
of the neural network 7{y to the lens parameters. This is
largely an open problem.
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(2) Metasurface design [65, 66]. Another usage of CIF
is the design of the metasurfaces. Metasurfaces are nanoscale
materials where each element can be engineered to perform
a specific phase operation. Compared to traditional glass-
based lenses which are bulky, metasurfaces are substantially
thinner while achieving a competitive optical performance.
The design of metasurfaces is often performed together
with the image reconstruction algorithm. This is because
metasurfaces today still have many limitations in terms of
chromatic aberration control and spatially varying points
spread functions. Therefore, it is necessary to co-design a
deconvolution algorithm.

(3) Differentiable rendering or computational light
transport [67-69]. The problem here is more concerned with
a realistic rendering of objects in computer graphics. For
example, as light propagates through milk and wax, how
does the image look like? Or, if the light source is located
at a certain position in the room, how will the light bounce
among the walls and eventually reach the camera? Because of
the complexity of the actual environment and the underlying
image formation process (which sometimes requires us
solving partial differential equations), newer approaches
attempt the problem by approximating the ground truth G
with a neural network Hy.

4.3 Image Sensor Circuit Model

Thus far I have been mainly talking about optics. But CIF
can be extended to other components such as the circuit level
modeling of image sensors from photo diodes, comparator,
capacitors to the output signal.

The top row of Figure 16 shows the circuit diagram
of a dynamic vision sensor (DVS) [70]. The exact signal
formation process y = G(x) is both stochastic and complex.
However, it is possible to approximate the transient behavior
using an ordinary differential equation and the probabilistic
events by drawing samples from a pre-defined covariance
matrix. This leads to the bottom row of Fig. 16 where
there are two ordinary differential equation blocks and two
autoregressive blocks. Simpler models have been proposed
[71], but it was shown that the performance is not sufficient.

Besides DVS, there is also a growing interest in novel
digital image sensors including photon counting devices,
quanta image sensors (QIS), and single-photon avalanche
diodes. Using QIS as an example, a series of 1-bit and multi-
bit models have been proposed [72-74] and analyzed [75,
76], together with various image reconstruction algorithms
[77-81] and applications [82, 83].

5. THOUGHTS AND DISCUSSIONS
In this section I summarize a few commonly asked questions
about CIE.

Is CIF = model-based image reconstruction (MBIR)?
My view is that CIF and MBIR are aiming for two different
goals. In MBIR, the premise of the problem is that someone
has given us a model ¥ = Hg(x). Our job is to find the
best algorithm to solve for x, by exploiting various signal
priors such as sparsity or generative models. CIF, in contrast,
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Figure 16. What happens when a simulator is not used? The image
reconstruction performance will be significantly worse. The figure is

adopted from [70].

primarily focuses on the design of Hy. As illustrated in the
previous sections, there are accurate but complex Hy and less
accurate but effective Hg for the inverse solver. Constructing
a meaningful Hy while maintaining the computational
efficiency is what CIF is about.

Why not just use neural networks to approximate G?
With the growth of building deep neural networks to mimic
the optics, we might be tempted to think that a good CIF
simulator must be a neural network (so that everything is
differentiable). I personally think that this is not the best
(nor the only) direction. While I completely acknowledge
the power of a neural network, I do not think today’s neural
networks have advanced to the stage that it can perform every
task without using a much larger model. For some specialized
tasks such as solving an ordinary differential equation, a
neural network could offer a powerful approximation. But for
equations such as Fresnel propagation, Fourier transforms
are much more efficient.

I envision that future CIF simulators will most likely
be a hybrid model where neural networks are used as one
of the building blocks to complete some specific sub-tasks.
Differentiability can be ensured without a neural network.
For example, in the turbulence case study described above,
the differentiability is enabled by a different representation
of the phase function. Even for tasks such as ray tracing,
it will be far more interesting (and impactful) to derive
new equations that preserves differentiability without using
automatic differentiation of computational graph of any sort.

Is sensor-algorithm co-optimization always needed?
As T follow past few year’s of publications in computational
imaging, I observe a trend that whenever we see a sensor and
an algorithm, it will be sensor-algorithm co-optimization.
I can see the necessity of co-optimization if the goal
is to maximize the systems performance unconditionally.
However, from a practical point of view, we should not
forget about the feasibility and physical constraints. In a
recent paper [84], it was shown that co-optimization brings
negligible benefits to the actual performance in some specific
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problems. This counter example is perhaps a good reminder
to us about the reality.

6. CONCLUSION

Computational imaging is the intersection of image acqui-
sition, signal prior, and numerical algorithm. Forty years
ago when we were still in the beginning of solving inverse
imaging problems, our attention was mostly spent on
developing better and more powerful priors (ie., regular-
ization functions such as £; norm, total variation, Markov
random field, etc) together with faster numerical algorithms
(e.g., gradient descent, alternating minimization, operator
splitting, etc). As we continue to advance computational
imaging in 2023, it is perhaps time to rethink about the role
of the forward model that describes the image acquisition
process.

This article describes the concept of computational
image formation (CIF). CIF highlights the choice of a
simulator Hg that approximates the true image formation
process G. Unlike a physics simulator whose goal is to
match G unconditionally, the simulator Hg in CIF needs
to maximize the image reconstruction performance while
matching G up to some level. Moreover, the simulator needs
to be very fast so that it can be used to generate data,
and it needs to be differentiable so that it can be used in
the reconstruction loop. Several examples are elaborated to
explain CIE

We all stand on the shoulder of giants. CIF is no
exception. It is a concept summarizing decades of collective
efforts of the computational imaging community. As we
look forward to the future of imaging, it is I envision that
simulators will play an unprecedented role in the deep
learning era.
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