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Abstract:We construct a symmetric interior penalty method for an elliptic distributed optimal control problem
with pointwise state constraints on general polygonal domains. The resulting discrete problems are quadratic
programs with simple box constraints that can be solved efficiently by a primal-dual active set algorithm. Both
theoretical analysis and corroborating numerical results are presented.
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1 Introduction

Let Ω ⊂ ℝ2 be a bounded polygonal domain, yd ∈ L2(Ω), g ∈ H4(Ω), and let β be a positive constant. The optimal
control problem (cf. [31]) is to find

(ȳ, ̄u) = argmin
(y,u)∈𝕂g

1
2 [‖y − yd‖

2
L2(Ω) + β‖u‖

2
L2(Ω)], (1.1)

where (y, u) ∈ H1(Ω) × L2(Ω) belongs to𝕂g if and only if

∫
Ω

∇y ⋅ ∇z dx = ∫
Ω

uz dx for all z ∈ H1
0(Ω), (1.2)

y = g on ∂Ω, (1.3)
y ≤ ψ a.e. in Ω. (1.4)

We assume that the function

ψ belongs toW3,p(Ω) for p > 2 and ψ > g on ∂Ω. (1.5)

Remark 1.1. Throughout this paper, we will follow the standard notation for differential operators, function
spaces and norms that can be found for example in [1, 23, 36].

Observe that (1.2)–(1.3) is equivalent to y ∈ g + ̊E(Δ; L2(Ω)), where

̊E(Δ; L2(Ω)) = {z ∈ H1
0(Ω) : Δz ∈ L2(Ω)}
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and Δz is understood in the sense of distributions. It is well known (cf. [37, 46]) that

̊E(Δ; L2(Ω)) ⊂ H1+α(Ω) for some α ∈ (1/2, 1] (1.6)

and
‖y‖H1+α(Ω) ≤ CΩ‖Δy‖L2(Ω) for all y ∈ ̊E(Δ; L2(Ω)). (1.7)

Hence functions in ̊E(Δ; L2(Ω)) are continuous by the Sobolev inequality (cf. [1]).
We can reformulate the optimal control problem (1.1)–(1.4) as the followingminimization problem that only

involves y: find
ȳ = argmin

y∈Kg

1
2 [‖y − yd‖

2
L2(Ω) + β‖Δy‖

2
L2(Ω)], (1.8)

where
Kg = {y ∈ g + ̊E(Δ; L2(Ω)) : y ≤ ψ in Ω}. (1.9)

Our goal is to solve the optimal control problem (1.1)–(1.4) by a symmetric interior penalty (SIP) method
(cf. [3, 61]) that is based on the reformulation (1.8)–(1.9). This reformulation was discussed in [56], and the first
numerical scheme based on this idea appeared in [53], where the analysis was carried out under certain ad hoc
assumptions on the free boundary from [8]. These assumptions were later removed in the new convergence
analysis in [24] by exploiting the regularity results in [30, 43, 44] for fourth-order elliptic variational inequalities.
Various finite element methods based on this new approach have appeared in [19–22, 26–29].

Comparing with themore traditional approach in [32, 35, 49, 52, 54, 55] that is based on reducing the optimal
control problem (1.1)–(1.4) to a problem that only involves the control, a distinct feature of the new approach
is that the convergence of the state can also be established in the L∞ norm. Another useful feature is that the
discrete problems are quadratic programs with simple box constraints where the systemmatrices are available
and consequently they can be solved efficiently bymany optimization algorithms. Moreover, general polygonal/
polyhedral domains can also be handled by the new approach (cf. [20, 22, 26]). These features are also shared
by the SIP method in this paper. Compared to the P1 finite element methods in [22, 26], the inverse of the block
diagonal mass matrix of the SIP method of any order can be evaluated exactly, and hence the system matrix is
available without mass lumping (cf. Remark 2.4 below).

The rest of the paper is organized as follows.We recall relevant results of the continuous problemand set up
the discrete problem in Section 2. Technical tools for the error analysis are collected in Section 3, followed by an
abstract error estimate in Section 4 and concrete error estimates in Section 5. Numerical results are presented
in Section 6, and we end with some concluding remarks in Section 7. A heuristic justification of some of the
numerical results is given in Appendix A.

Throughout the paper, we use C (with or without subscripts) to denote a generic positive constant indepen-
dent of the mesh size h. We also use A ≲ B to represent the statement that A ≤ (constant)B, where the positive
constant is independent of h.

2 Continuous and Discrete Problems

In this section, we recall relevant results of the continuous problem and construct the SIP method.

2.1 The Continuous Problem

It follows from the classical theory of calculus of variations (cf. [40, 51]) that (1.8)–(1.9) has a unique solution
ȳ ∈ g + ̊E(Δ; L2(Ω)) characterized by the variational inequality

∫
Ω

(ȳ − yd)(y − ȳ) dx + β∫
Ω

(Δȳ)Δ(y − ȳ) dx ≥ 0 for all y ∈ g + ̊E(Δ; L2(Ω)). (2.1)
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Remark 2.1. In the case where Ω is convex, the space ̊E(Δ; L2(Ω)) coincides with H2(Ω) ∩ H1
0(Ω) and (2.1) is

a fourth-order variational inequality.

The variational inequality (2.1) is equivalent to the following generalized Karush–Kuhn–Tucker conditions:

∫
Ω

(ȳ − yd)z dx + β∫
Ω

(Δȳ)(Δz) dx = ∫
Ω

z dμ for all z ∈ ̊E(Δ; L2(Ω)), (2.2)

where
μ is a nonpositive finite Borel measure (2.3)

and
∫
Ω

(ȳ − ψ) dμ = 0. (2.4)

Details for the derivation of (2.2)–(2.4) and for the regularity results below can be found in [24, 26] and the
references therein.

Remark 2.2. It follows from the complementarity condition (2.4) that μ is supported on the active setA for the
constraint (1.4) given byA = {x ∈ Ω̄ : ȳ(x) = ψ(x)}. Note thatA is a compact subset of Ω by the assumption that
ψ > g on ∂Ω.

We have
̄u = −Δȳ ∈ H1

0(Ω) (2.5)

and
ȳ ∈ H3

loc(Ω) ∩W
2,∞
loc (Ω) ∩ H

1+α(Ω), (2.6)

where α ∈ (1/2, 1] is the index of elliptic regularity as in (1.6).

Remark 2.3. In the case where Ω is convex, we can replace α in (2.6) with some ̃α ∈ (1, 2] by exploiting (2.5).

Finally, the Lagrange multiplier μ belongs to H−1(Ω), i.e.,

∫
Ω

z dμ ≤ C|z|H1(Ω) for all z ∈ H1(Ω). (2.7)

2.2 The Discrete Problem

Let Th be a triangulation of Ω, let k be a positive integer and

Yh = {y ∈ L2(Ω) : yT = y|T ∈ ℙk(T) for all T ∈ Th}

the discontinuous finite element space of degree at most k. The set of the edges of Th is denoted by Eh , Ebh(⊂ Eh)
is the set of the boundary edges and |e| is the diameter of an edge e.

The discrete Laplace operator Δh : (g + ̊E(Δ; L2(Ω))) + Yh → Yh is defined by

∫
Ω

(Δhζ )zh dx = −ah(ζ, zh) for all zh ∈ Yh , (2.8)

where, following the convention for jumps and averages in [4],

ah(y, z) = ∑
T∈Th

∫
T

∇y ⋅ ∇z dx − ∑
e∈Eh

∫
e

({{∇y}} ⋅ ⟦z⟧ + {{∇z}} ⋅ ⟦y⟧) ds + ∑
e∈Eh

σ
|e| ∫

e

⟦y⟧ ⋅ ⟦z⟧ ds

is the bilinear form for the SIP method with a sufficiently large penalty parameter σ.
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The SIP method is consistent (cf. [57]) in the sense that

ah(ζ, zh) = ∫
Ω

(−Δζ )zh dx + ∑
e∈Eb

h

σ
|e| ∫

e

gzh ds − ∑
e∈Eb

h

∫
e

g(∇zh ⋅ n) ds (2.9)

for all ζ ∈ g + ̊E(Δ; L2(Ω)) and zh ∈ Yh .
Let gh ∈ Yh be defined by

∫
Ω

ghzh dx = ∑
e∈Eb

h

∫
e

g(∇zh ⋅ n) ds − ∑
e∈Eb

h

σ
|e| ∫

e

gzh ds for all zh ∈ Yh . (2.10)

Then (2.8), (2.9) and (2.10) imply

gh + Δhy = Qh(Δy) for all y ∈ g + ̊E(Δ; L2(Ω)), (2.11)

where Qh is the orthogonal projection from L2(Ω) onto Yh .
The discrete problem is to find

ȳh = argmin
yh∈Kh

1
2 [‖yh − yd‖

2
L2(Ω) + β‖gh + Δhyh‖

2
L2(Ω)], (2.12)

where
Kh = {y ∈ Yh : yT (p) ≤ ψ(p) for all p ∈ VT and all T ∈ Th}. (2.13)

Here VT is the set of the three vertices of T .
The unique solution ȳh ∈ Kh of (2.12)–(2.13) is characterized by the discrete variational inequality

∫
Ω

(ȳh − yd)(yh − ȳh) dx + β∫
Ω

(gh + Δh ȳh)Δh(yh − ȳh) dx ≥ 0 for all yh ∈ Kh . (2.14)

Note that we can express the constraints in (2.13) concisely as

ITyT ≤ IT (ψ|T ) for all T ∈ Th , (2.15)

where IT is the nodal interpolation operator for the Lagrange ℙ1 finite element on T .

Remark 2.4. The discrete problem is a quadratic program with simple box constraints. Let Mh be the mass
matrix that represents the L2 inner product on Yh , and letAh be the stiffness matrix that represents the bilinear
form ah( ⋅ , ⋅ ) on Yh . The system matrix for the quadratic program is then given by Mh + βAhM−1h Ah , and M−1h
is available becauseMh is a block diagonal matrix. Therefore, the discrete problem can be solved efficiently by
the primal-dual active set algorithm in [9, 48].

For simplicity, we will focus on the analysis of the discrete problem for the case where g = 0. The extension to
the case of general g is straightforward.

3 Some Technical Tools

We collect the results for some finite element tools in this section.

3.1 Mesh-Dependent Norms

Let D be a subdomain of Ω. We will denote by Th(D) the collection of elements in Th that have a nonempty
intersection with D, i.e.,

Th(D) = {T ∈ Th : T ∩ D ̸= 0}. (3.1)
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The mesh-dependent semi-norm ⦀ ⋅ ⦀h,D is defined by

⦀z⦀h,D = ( ∑
T∈Th(D)
[|z|2H1(T) + ∑

e⊂∂T
(σ−1|e|‖{{∇z}} ⋅ ne‖2L2(e) + σ|e|

−1‖⟦z⟧‖2L2(e))])
1
2 , (3.2)

where ne is a unit vector normal to e, and ⦀ ⋅ ⦀h,Ω is simply denoted by ⦀ ⋅ ⦀h .
Note that

ah(y, z) ≤ ⦀y⦀h⦀z⦀h for all y, z ∈ ̊E(Δ; L2(Ω)) + Yh (3.3)

by the Cauchy–Schwarz inequality, and

⦀yh⦀2h ≤ Cah(yh , yh) for all yh ∈ Yh (3.4)

provided that σ is sufficiently large (cf. [57]).
There is also a bound for ⦀y⦀h .

Lemma 3.1. We have
⦀y⦀h ≤ C(|y|H1(Ω) + hα‖Δy‖L2(Ω)) for all y ∈ ̊E(Δ; L2(Ω)). (3.5)

Proof. Let y ∈ ̊E(Δ; L2(Ω)). It follows from (3.2) that

⦀y⦀2h = |y|
2
H1(Ω) + ∑

T∈Th

∑
e⊂∂T

σ−1|e|‖{{∇y}} ⋅ ne‖2L2(e) , (3.6)

and we have a trace inequality with scaling,

|e|‖{{∇y}} ⋅ ne‖2L2(e) ≤ C ∑
T∈Te

(|y|2H1(T) + h
2α|y|2H1+α(T)), (3.7)

where Te is the set of the triangles in Th that share e as a common edge.
Estimate (3.5) follows from (1.7), (3.6) and (3.7).

3.2 Triangulations

We will consider both quasi-uniform triangulations and triangulations that are graded around the reentrant
corners (cf. [2, 5, 6, 12, 45]).

Let D be a subdomain such that D ⋐ Ω, i.e., the closure of D is a compact subset of Ω. Note that Th is quasi-
uniform around D for both types of triangulations. Therefore, we have

⦀yh⦀h,D ≤ Ch−1‖yh‖L2(Ω) for all yh ∈ Yh (3.8)

by applying standard inverse estimates (cf. [23, 36]) to (3.2).
Moreover, we have

‖yh‖L∞(Ω) ≤ C(1 + |ln h|)
1
2 ⦀yh⦀h for all yh ∈ Yh (3.9)

by the discrete Sobolev inequality in [17].

Remark 3.2. Estimate (3.9) was established in [17] for quasi-uniform triangulations. But the proof in [17] is also
valid for meshes graded around the reentrant corners since the discrete Sobolev inequality for conforming
Lagrange elements holds for such meshes (cf. [59, Lemma 6.4] and [23, Lemma 4.9.2]).

3.3 The Interpolation Operator Πh

Let ΠT be the nodal interpolation operator for the ℙk Lagrange finite element on the triangle T . The following
estimates (cf. [23, 36]) are standard:

‖ζ − ΠT ζ‖L2(T) + hT |ζ − ΠT ζ |H1(T) + h2T |ζ − Πhζ |H2(T) ≤ Ch2T |ζ |H2(T) for all ζ ∈ H2(T), (3.10)
‖ζ − ΠT ζ‖L∞(T) + hT |ζ − ΠT ζ |W1,∞(T) ≤ Ch2T |ζ |W2,∞(T) for all ζ ∈ W2,∞(T). (3.11)
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Let Vh = Yh ∩ H1
0(Ω) be the conforming ℙk Lagrange finite element subspace of H

1
0(Ω) associated with Th .

The operator Πh : ̊E(Δ; L2(Ω))→ Vh is defined by

(Πhζ )|T = ΠT (ζ |T ) for all T ∈ Th .

It follows from (3.10) (cf. [18, 57]) that

‖ζ − Πhζ‖L2(Ω) + h‖ζ − Πhζ‖L∞(Ω) + h⦀ζ − Πhζ⦀h ≤ Ch1+τ‖Δζ‖L2(Ω) (3.12)

for all ζ ∈ ̊E(Δ; L2(Ω)), where

τ =
{
{
{

α if Th is quasi-uniform,
1 if Th is graded around the reentrant corners,

(3.13)

and α is the index of elliptic regularity as in (1.6).
In the case where ζ ∈ H2(Ω) ∩ H1

0(Ω), we have

‖ζ − Πhζ‖L2(Ω) + h‖ζ − Πhζ‖L∞(Ω) + h⦀ζ − Πhζ⦀h ≤ Ch2|ζ |H2(Ω) (3.14)

for both quasi-uniform and graded meshes. In particular, for a subdomain D ⋐ Ω, interior elliptic regularity
(cf. [42]) and (3.14) imply

‖ζ − Πhζ‖L2(D) + h‖ζ − Πhζ‖L∞(D) + h⦀ζ − Πhζ⦀h,D ≤ Ch2‖Δζ‖L2(Ω) (3.15)

for all ζ ∈ ̊E(Δ; L2(Ω)).
The following result provides an estimate of Δh ∘ Πh on smooth functions.

Lemma 3.3. Let ϕ be a C∞ function with compact support in Ω. There exists a positive constant C independent
of h such that ‖Δh(Πhϕ)‖L2(Ω) ≤ C‖ϕ‖H2(Ω).

Proof. Let D ⋐ Ω be an open neighborhood of the support of ϕ, and let zh ∈ Yh be arbitrary. It follows from (2.8),
(3.3), (3.8) and (3.14) that

∫
Ω

[Δh(ϕ − Πhϕ)]zh dx = −ah(ϕ − Πhϕ, zh)
≤ ⦀ϕ − Πhϕ⦀h⦀zh⦀h,D ≤ Ch|ϕ|H2(Ω)⦀zh⦀h,D ≤ C|ϕ|H2(Ω)‖zh‖L2(Ω) ,

which implies ‖Δh(ϕ − Πhϕ)‖L2(Ω) ≤ C|ϕ|H2(Ω). Consequently, we have, in view of (2.11) (with g = 0 = gh),

‖Δh(Πhϕ)‖L2(Ω) ≤ ‖Δh(ϕ − Πhϕ)‖L2(Ω) + ‖Δhϕ‖L2(Ω) ≤ C‖ϕ‖H2(Ω) .

3.4 The Ritz Operator Rh

The operator Rh : ̊E(Δ; L2(Ω))→ Yh is defined by

ah(Rhζ, zh) = ah(ζ, zh) for all zh ∈ Yh , (3.16)

and we have the following well-known error estimates for the SIP method (cf. [18, 57]):

⦀ζ − Rhζ⦀h ≤ Chτ‖Δζ‖L2(Ω) for all ζ ∈ ̊E(Δ; L2(Ω)), (3.17)
‖ζ − Rhζ‖L2(Ω) ≤ Ch2τ‖Δζ‖L2(Ω) for all ζ ∈ ̊E(Δ; L2(Ω)). (3.18)

Note that (2.8), (2.11) (with g = 0 = gh) and (3.16) imply

Δh(Rhζ ) = Δhζ = Qh(Δζ ) for all ζ ∈ ̊E(Δ; L2(Ω)). (3.19)
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3.5 Interior Estimates

Let D1 and D2 be subdomains of Ω such that D1 ⋐ D2 ⋐ Ω. We have an interior energy norm error estimate for
the SIP method (cf. [25, 34])

⦀ζ − Rhζ⦀h,D1 ≤ C(minzh∈Yh
⦀ζ − zh⦀h,D2 + ‖ζ − Rhζ‖L2(D2)) for all ζ ∈ ̊E(Δ; L2(Ω)), (3.20)

and also an interior maximum norm error estimate (cf. [25])

‖ζ − Rhζ‖L∞(D1) ≤ C(‖ζ − Πhζ‖L∞(D2) + h(1 + |ln h|)‖ζ − Πhζ‖W1,∞
h (D2) + ‖ζ − Rhζ‖L2(D2) + h⦀ζ − Πhζ⦀h) (3.21)

that is valid for all ζ ∈ ̊E(Δ; L2(Ω)), where the norm ‖ ⋅ ‖W1,∞
h (D) is given by

‖w‖W1,∞
h (D) = max

T∈Th(D)
[‖∇w‖L∞(T) +maxe⊂∂T

(‖{{∇w}} ⋅ ne‖L∞(e) + |e|−1‖⟦w⟧‖L∞(e))] (3.22)

for all w ∈ ̊E(Δ; L2(Ω)) + Yh .

3.6 The Connection Operator Ch

Recall Vh = Yh ∩ H1
0(Ω) is the conformingℙk Lagrange finite element subspace of H

1
0(Ω) associated with Th . We

can construct an operator Ch : Yh → Vh by averaging,

(Chyh)(p) =
1
|Th(p)|

∑
T∈Th(p)
(yh|T )(p) (3.23)

for any node p of the ℙk Lagrange finite element space interior to Ω, where Th(p) is the set of the triangles in
Th that share the node p.

It follows from (2.13) and (3.23) that

Chvh = vh for all vh ∈ Vh , (3.24)
Chyh ∈ Kh for all yh ∈ Kh , (3.25)

and for any subdomain D of Ω, we have (cf. [13, 14, 16])

h−2‖yh − Chyh‖2L2(D) + ∑
T∈Th(D)
|yh − Chyh|2H1(T) ≤ C ∑

T∈T∗
h (D)
∑
e⊂∂T
|e|−1‖⟦yh⟧‖2L2(e) , (3.26)

where
T ∈ Th belongs to T∗h (D) if and only if ST ∩ D ̸= 0. (3.27)

Here ST (the star of T) is the union of all the triangles in Th that share a common vertex with T .
Moreover, it follows from (3.23) and a scaling argument that

‖Chyh‖L∞(T) ≤ C‖yh‖L∞(ST ) for all T ∈ Th . (3.28)

3.7 The Smoothing Operator Eh

The operator Eh : Yh → ̊E(Δ; L2(Ω)) is defined by

Δ(Ehyh) = Δhyh . (3.29)

It follows from (2.9) (with g = 0), (3.16) and (3.29) that

yh = Rh(Ehyh). (3.30)
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Consequently, we have, by (3.17), (3.18) and (3.29),

⦀Ehyh − yh⦀h ≤ Chτ‖Δhyh‖L2(Ω) for all yh ∈ Yh , (3.31)
‖Ehyh − yh‖L2(Ω) ≤ Ch2τ‖Δhyh‖L2(Ω) for all yh ∈ Yh . (3.32)

Let G(A ) ⋐ Ω be an open neighborhood of the active set A . Putting (3.15), (3.18), (3.20) and (3.29) together,
we find

⦀Ehyh − yh⦀h,G(A ) ≤ Ch‖Δhyh‖L2(Ω) for all yh ∈ Yh . (3.33)
Note that (3.33) also holds if G(A ) is replaced by a subdomain D such that G(A ) ⋐ D ⋐ Ω. It then follows

from (3.2) that
∑

T∈T∗
h (G(A ))

∑
e⊂∂T
|e|−1‖⟦yh⟧‖2L2(e) ≤ Ch

2‖Δhyh‖2L2(Ω) for all yh ∈ Yh . (3.34)

3.8 The Operator Ih

The operator Ih : ̊E(Δ; L2(Ω))→ Vh is defined by (Ihζ )|T = IT (ζ |T ) for all T ∈ Th , where IT is the nodal interpo-
lation operator for the Lagrange ℙ1 finite element on T . It follows from the case k = 1 in Section 3.3 that all the
estimates for Πh in Section 3.3 can be applied to Ih .

In addition, we have an obvious estimate

‖Ihζ‖L∞(T) ≤ ‖ζ‖L∞(T) for all ζ continuous on ̄T , (3.35)

and, by standard inverse and interpolation estimates (cf. [23, 36]),

|q − Ihq|H1(T) ≤ Ch−1T |q − Ihq|L2(T) ≤ C|q|H1(T) for all q ∈ ℙk(T), (3.36)

where the positive constant C only depends on the shape regularity of T and k.

3.9 Estimates for ̄y

It follows from (2.5) and (3.19) and a standard interpolation error estimate (cf. [23, 36]) that

‖Δh(Rh ȳ) − Δȳ‖L2(Ω) = ‖Qh(Δȳ) − Δȳ‖L2(Ω) ≤ Ch|Δȳ|H1(Ω) . (3.37)

Let D ⋐ Ω. We have, by (2.6), (3.1), (3.11), (3.22) and (3.27),

‖ȳ − Πh ȳ‖L∞(D) ≤ Ch2 max
T∈Th(D)
|ȳ|W2,∞(T) , (3.38)

‖ȳ − Πh ȳ‖W1,∞
h (D)
≤ Ch max

T∈T∗
h (D)
|ȳ|W2,∞(T) . (3.39)

Combining (3.12), (3.18), (3.21), (3.38) and (3.39), we find

‖ȳ − Rh ȳ‖L∞(D) ≤ C((1 + |ln h|)h2 + h2τ) (3.40)

for any subdomain D ⋐ Ω.
The following lemma provides a simple global error estimate in the maximum norm.

Lemma 3.4. We have
‖ȳ − Rh ȳ‖L∞(Ω) ≤ C(1 + |ln h|)

1
2 hτ . (3.41)

Proof. According to (3.2) and (3.9),

‖ȳ − Rh ȳ‖L∞(Ω) ≤ ‖ȳ − Πh ȳ‖L∞(Ω) + ‖Πh ȳ − Rh ȳ‖L∞(Ω)

≲ ‖ȳ − Πh ȳ‖L∞(Ω) + (1 + |ln h|)
1
2 ⦀Πh ȳ − Rh ȳ⦀h , (3.42)

which together with (3.12) and (3.17) implies (3.41).

Remark 3.5. More sophisticated maximum norm error estimates for discontinuous Galerkin methods under
stronger assumptions can be found in [33, 34, 47].
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4 An Abstract Error Estimate

We will measure the error in terms of the mesh-dependent norm ‖ ⋅ ‖h defined by

‖y‖2h = ‖y‖
2
L2(Ω) + β‖Δhy‖

2
L2(Ω) . (4.1)

From here on, we also use ( ⋅ , ⋅ ) to denote the inner product on L2(Ω).
Our goal is to establish the abstract error estimate in the following theorem, where ȳ ∈ ̊E(Δ; L2(Ω)) is the

solution of (2.1) (with g = 0) and ȳh is the solution of (2.14) (with gh = 0).

Remark 4.1. For simplicity, we have absorbed various norms of y involved in the error analysis into the generic
constant C that appears in this section and Section 5.

Theorem 4.2. There exists a positive constant C independent of h such that

‖ȳ − ȳh‖h ≤ C(h + inf
yh∈Kh
[‖ȳ − yh‖h + ‖Ih(ȳ − Chyh)‖

1
2
L∞(A )]). (4.2)

Proof. Let yh ∈ K be arbitrary. It follows from (2.14), (4.1) and the Cauchy–Schwarz inequality that

‖yh − ȳh‖2h = (yh − ȳ, yh − ȳh) + β(Δh(yh − ȳ), Δh(yh − ȳh)) + (ȳ − yd , yh − ȳh)
+ β(Δh ȳ, Δh(yh − ȳh)) − (ȳh − yd , yh − ȳh) − β(Δȳh , Δ(yh − ȳh))

≤ ‖yh − ȳ‖h‖yh − ȳh‖h + (ȳ − yd , yh − ȳh) + β(Δh ȳ, Δh(yh − ȳh)). (4.3)

Since Eh(yh − ȳh) ∈ ̊E(Δ; L2(Ω)), we can use (2.2) and (3.29) to write

(ȳ − yd , yh − ȳh) + β(Δh ȳ, Δh(yh − ȳh)) = (ȳ − yd , (yh − ȳh) − Eh(yh − ȳh)) + (ȳ − yd , Eh(yh − ȳh))
+ β(Δȳ, Δ(Eh(yh − ȳh)))

= (ȳ − yd , (yh − ȳh) − Eh(yh − ȳh)) + ∫
Ω

Eh(yh − ȳh) dμ, (4.4)

and we have, by (3.32),

(ȳ − yd , (yh − ȳh) − Eh(yh − ȳh)) ≤ Ch2τ‖Δh(yh − ȳh)‖L2(Ω) . (4.5)

We can rewrite the last term on the right-hand side of (4.4) as

∫
Ω

Eh(yh − ȳh) dμ = ∫
Ω

[Eh(yh − ȳh) − Ch(yh − ȳh)] dμ + ∫
Ω

Ih(ψ − Ch ȳh) dμ

+ ∫
Ω

[IhCh(ȳh − yh) − Ch(ȳh − yh)] dμ + ∫
Ω

Ih(ȳ − ψ) dμ + ∫
Ω

Ih(Chyh − ȳ) dμ

= T1 + T2 + T3 + T4 + T5 . (4.6)

The estimates for T2, T4 and T5 are straightforward. In view of (2.3), (2.15) and (3.25), we immediately have

T2 = ∫
Ω

Ih(ψ − Ch ȳh) dμ ≤ 0. (4.7)

Using (1.5), (2.3), (2.4), (2.6) and (3.11) (applied to IT ), we obtain

T4 = ∫
Ω

[Ih(ȳ − ψ) − (ȳ − ψ)] dμ ≤ ‖Ih(ȳ − ψ) − (ȳ − ψ)‖L∞(A )|μ(Ω)| ≤ Ch2 , (4.8)

T5 = ∫
Ω

Ih(Chyh − ȳ) dμ ≤ ‖Ih(ȳ − Chyh)‖L∞(A )|μ(Ω)|. (4.9)
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Next we turn to T1. Let G(A ) ⋐ Ω be an open neighborhood of the active setA . We have, by (2.7), (3.1), (3.2)
and (3.26),

T1 = ∫
Ω

[Eh(yh − ȳh) − Ch(yh − ȳh)] dμ

≲ |Eh(yh − ȳh) − Ch(yh − ȳh)|H1(G(A ))

≲ ( ∑
T∈Th(G(A ))

|Eh(yh − ȳh) − (yh − ȳh)|2H1(T))
1
2 + ( ∑

T∈Th(G(A ))
|(yh − ȳh) − Ch(yh − ȳh)|2H1(T))

1
2

≲ ⦀Eh(yh − ȳh) − (yh − ȳh)⦀h,G(A ) + ( ∑
T∈T∗

h (G(A ))
∑
e⊂∂T
|e|−1‖⟦yh − ȳh⟧‖2L2(e))

1
2 ,

and hence
T1 ≤ Ch‖Δh(yh − ȳh)‖L2(Ω) (4.10)

by (3.33) and (3.34).
Finally, we consider T3. Let wh = IhEh(ȳh − yh). We have, by (2.7), (3.1), (3.2), (3.12) (applied to Ih), (3.26),

(3.33), (3.34) and (3.36),

T3 = ∫
Ω

[IhCh(ȳh − yh) − Ch(ȳh − yh)] dμ

≲ |IhCh(ȳh − yh) − Ch(ȳh − yh)|H1(G(A ))

= |Ih[Ch(ȳh − yh) − wh] − [Ch(ȳh − yh) − wh]|H1(G(A ))

≲ ( ∑
T∈Th(G(A ))

|Ch(ȳh − yh) − wh|2H1(T))
1
2

≲ ( ∑
T∈Th(G(A ))

|Ch(ȳh − yh) − (ȳh − yh)|2H1(T))
1
2

+ ( ∑
T∈Th(G(A ))

|(ȳh − yh) − Eh(ȳh − yh)|2H1(T))
1
2

+ ( ∑
T∈Th(G(A ))

|Eh(ȳh − yh) − IhEh(ȳh − yh)|2H1(T))
1
2

≲ h‖Δh(yh − ȳh)‖L2(Ω) . (4.11)

Putting (4.6)–(4.11) together, we find

∫
Ω

Eh(yh − ȳh) dμ ≤ C(h2 + h‖Δh(yh − ȳh)‖L2(Ω) + ‖Ih(ȳ − Chyh)‖L∞(A )),

which together with the inequality of arithmetic and geometric means, (4.1) and (4.3)–(4.5) implies

‖yh − ȳh‖h ≤ C(h + ‖yh − ȳ‖h + ‖Ih(ȳ − Chyh)‖
1
2
L∞(A )) for all yh ∈ Kh . (4.12)

Estimate (4.2) follows from (4.12) and the triangle inequality.

An Improved Abstract Error Estimate

Estimate (4.2), which is established under assumption (1.5), implies that ‖ȳ − ȳh‖h is at most O(h) in general.
However, it can be improved under the following additional regularity assumptions:

ψ ∈ H4(Ω), (4.13)
A has a smooth boundary, (4.14)
ȳ belongs to H4(D \A ), (4.15)
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for any D ⋐ Ω that is an open neighborhood of A . Note that it follows from the interior elliptic regularity for
the biharmonic operator and (2.4) that it suffices to assume (4.15) for just one such D.

Relations (2.2), (2.4) and integration by parts imply

∫
Ω

z dμ = ∫
A

(ȳ − yd)z dx + β( ∫
∂A

⟦∂(Δȳ)/∂n⟧z ds + ∫
A

(Δ2 ȳ)z dx) (4.16)

for all z ∈ ̊E(Δ; L2(Ω)), where n is the outer unit normal on ∂A and ⟦∂(Δȳ)/∂n⟧ equals ∂(Δȳ)/∂n from the
outside of A minus ∂(Δȳ)/∂n from the inside of A . Consequently, we have, by (4.16) and the trace theorem,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
Ω

z dμ
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ Cϵ‖z‖H 1

2 +ϵ(G(A )) for all z ∈ ̊E(Δ; L2(Ω)), (4.17)

for any ϵ > 0.
Moreover, assumptions (4.13)–(4.15) also imply the estimate

|ȳ(x) − ψ(x)| ≤ Cϵd3−ϵ , (4.18)

which holds for any ϵ > 0 and any x ∈ D whose distance to A is less than or equal to d (cf. [20, Lemma 5.5]).
For simplicity, we assume τ = 1 in (3.13) in the discussion below.
In view of (4.18), we can improve estimate (4.8) to

T4 ≤ Cϵh3−ϵ for all ϵ > 0 (4.19)

provided that we choose G(A ) so that
dist(Ω \ G(A ),A ) ≤ h. (4.20)

For the term T1, observe that we have the estimate

‖Eh(yh − ȳh) − Ch(yh − ȳh)‖L2(G(A )) ≤ ‖Eh(yh − ȳh) − (yh − ȳh)‖L2(G(A ))
+ ‖(yh − ȳh) − Ch(yh − ȳh)‖L2(G(A ))

≤ Ch2‖Δh(yh − ȳh)‖L2(Ω) (4.21)

by (3.26), (3.32) and (3.34). Consequently, it follows from (4.10), (4.17), (4.21) and interpolation between Sobolev
spaces (cf. [58]) that

T1 = ∫
Ω

[Eh(yh − ȳh) − Ch(yh − ȳh)] dμ ≤ Cϵ‖Eh(yh − ȳh) − Ch(yh − ȳh)‖H 1
2 +ϵ(G(A ))

≤ Cϵh
3
2−ϵ‖Δh(yh − ȳh)‖L2(Ω) . (4.22)

Note that we can assume G(A ) to be a smooth domain so that the interpolation between Sobolev spaces on
G(A ) can be handled without difficulty.

Similarly, using (4.11) (where wh = IhEh(ȳh − yh)) and a standard interpolation error estimate, we find

‖IhCh(ȳh − yh) − Ch(ȳh − yh)‖L2(G(A )) ≤ ( ∑
T∈Th(G(A ))

‖Ih[Ch(ȳh − yh) − wh] − [Ch(ȳh − yh) − wh]‖2L2(T))
1
2

≤ Ch( ∑
T∈Th(G(A ))

|Ch(ȳh − yh) − wh|2H1(T))
1
2

≤ Ch2‖Δh(yh − ȳh)‖L2(Ω) ,

which together with (4.11), (4.17) and interpolation between Sobolev spaces yields

T3 = ∫
Ω

[IhCh(ȳh − yh) − Ch(ȳh − yh)] dμ ≤ Cϵ‖IhCh(ȳh − yh) − Ch(ȳh − yh)‖H 1
2 +ϵ(G(A ))

≤ Cϵh
3
2−ϵ‖Δh(yh − ȳh)‖L2(Ω) . (4.23)

Putting (4.1), (4.3), (4.4), (4.5) (with τ = 1), (4.6), (4.7), (4.9), (4.19), (4.22) and (4.23) together, we arrive at the
improved abstract error estimate

‖ȳ − ȳh‖h ≤ Cϵ(h
3
2−ϵ + inf

yh∈Kh
[‖ȳ − yh‖h + ‖Ih(ȳ − Chyh)‖

1
2
L∞(A )]). (4.24)
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5 Concrete Error Estimates

The key to derive concrete error estimates is to bound the infimum in (4.2) by constructing a function y∗h ∈ Kh
with the desired properties.

Lemma 5.1. There exists y∗h ∈ Kh for h sufficiently small such that

‖ȳ − y∗h‖h + ‖Ih(ȳ − Chy
∗
h)‖

1
2
L∞(A ) ≤ C((1 + |ln h|)

1
2 h + hτ). (5.1)

Proof. Let G(A ) ⋐ Ω be an open neighborhood of the active set A . According to (3.40), we have

ϵh = ‖Rh ȳ − ȳ‖L∞(G(A )) ≤ C((1 + |ln h|)h2 + h2τ). (5.2)

Let ϕ be a nonnegative C∞ function with compact support in Ω such that ϕ = 1 on G(A ), and let y∗h ∈ Yh be
defined by

y∗h = Rh ȳ − ϵhΠhϕ. (5.3)

First we show that y∗h belongs to Kh for sufficiently small h. Indeed, we have ψ − ȳ ≥ δ > 0 on Ω \ G(A ) and
hence

y∗h ≤ Rh ȳ = ȳ + (Rh ȳ − ȳ) ≤ ψ − δ + (Rh ȳ − ȳ) on Ω \ G(A ),

which, in view of (3.41), implies

y∗h(p) ≤ ψ(p) for any vertex p of Th that belongs to Ω \ G(A )

provided that h is sufficiently small. On the other hand, for any vertex p of Th that belongs to G(A ), we have,
by (5.2) and (5.3),

y∗h(p) = (Rh ȳ)(p) − ϵh = ȳ(p) + (Rh ȳ − ȳ)(p) − ϵh ≤ ȳ(p) ≤ ψ(p).

Next we estimate the two terms that appear on the left-hand side of (5.1). According to Lemma 3.3, (3.18),
(3.19), (5.2) and (5.3), we have

‖ȳ − y∗h‖L2(Ω) ≤ ‖ȳ − Rh ȳ‖L2(Ω) + ϵh‖Πhϕ‖L2(Ω) ≤ Cϵh , (5.4)
‖Δh(ȳ − y∗h)‖L2(Ω) = ϵh‖Δh(Πhϕ)‖L2(Ω) ≤ Cϵh , (5.5)

and therefore, in view of (4.1) and (5.2),

‖ȳ − y∗h‖h ≤ C((1 + |ln h|)h
2 + h2τ). (5.6)

For the second term, we find, by (3.24), (3.27), (3.28) and (3.35),

‖Ih(ȳ − Chy∗h)‖L∞(A ) ≤ max
T∈Th(G(A ))

‖ȳ − Chy∗h‖L∞(T)

≤ max
T∈Th(G(A ))

(‖ȳ − Πh ȳ‖L∞(T) + ‖Ch(Πh ȳ − Rh ȳ)‖L∞(T) + ϵh‖Πhϕ‖L∞(T))

≲ max
T∈T∗

h (G(A ))
(‖ȳ − Πh ȳ‖L∞(T) + ‖Πh ȳ − Rh ȳ‖L∞(T)) + ϵh

≲ max
T∈T∗

h (G(A ))
(‖ȳ − Πh ȳ‖L∞(T) + ‖ȳ − Rh ȳ‖L∞(T)) + ϵh , (5.7)

and hence, in view of (3.38), (3.40) and (5.2),

‖Ih(ȳ − Chy∗h)‖
1
2
L∞(A ) ≤ C((1 + |ln h|)

1
2 h + hτ). (5.8)

Estimate (5.1) follows from (5.6)–(5.8).

We can now establish several concrete error estimates.
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Theorem 5.2. Let ȳh ∈ Kh be the solution of (2.12)–(2.13) and ̄uh = −Δh ȳh . There exists a positive constant C
independent of h such that

‖ ̄u − ̄uh‖L2(Ω) + ‖ȳ − ȳh‖L2(Ω) ≤ C((1 + |ln h|)
1
2 h + hτ). (5.9)

Proof. It follows from (4.1), Theorem 4.2 and Lemma 5.1 that

‖ȳ − ȳh‖L2(Ω) + ‖Δh(ȳ − ȳh)‖L2(Ω) ≤ C((1 + |ln h|)
1
2 h + hτ), (5.10)

which together with (2.11) (where g = 0 = gh) and (3.37) yields

‖ ̄u − ̄uh‖L2(Ω) ≤ ‖Δȳ − Δh ȳ‖L2(Ω) + ‖Δh(ȳ − ȳh)‖L2(Ω)
= ‖Δȳ − Qh(Δȳ)‖L2(Ω) + ‖Δh(ȳ − ȳh)‖L2(Ω) (5.11)

≤ C((1 + |ln h|)
1
2 h + hτ).

The following lemmas will enable us to establish estimates for ȳ − ȳh in other norms.

Lemma 5.3. There exists a positive constant C independent of h such that

⦀yh⦀h ≤ C‖Δhyh‖L2(Ω) for all yh ∈ Yh .

Proof. In view of (3.3), (3.4), (3.16), (3.30), we have

⦀yh⦀2h ≲ ah(yh , yh) = ah(Ehyh , yh) ≤ ⦀Ehyh⦀h⦀yh⦀h

and hence
⦀yh⦀h ≲ ⦀Ehyh⦀h ≲ ‖Δ(Ehyh)‖L2(Ω) = ‖Δhyh‖L2(Ω)

by (1.7), Lemma 3.1 and (3.29).

Lemma 5.4. There exists a positive constant C independent of h such that

‖yh‖L∞(Ω) ≤ C‖Δhyh‖L2(Ω) for all yh ∈ Yh . (5.12)

Proof. It follows from (3.9), (3.12), (3.29) and (3.31) that

‖yh − Ehyh‖L∞(Ω) ≤ ‖yh − Πh(Ehyh)‖L∞(Ω) + ‖Πh(Ehyh) − Ehyh‖L∞(Ω)

≲ (1 + |ln h|)
1
2 ⦀yh − Πh(Ehyh)⦀h + hτ‖Δ(Ehyh)‖L2(Ω)

≲ (1 + |ln h|)
1
2 (⦀yh − Ehyh⦀h + ⦀Ehyh − Πh(Ehyh)⦀h) + hτ‖Δ(Ehyh)‖L2(Ω)

≲ (1 + |ln h|)
1
2 hτ‖Δ(Ehyh)‖L2(Ω) = (1 + |ln h|)

1
2 hτ‖Δhyh‖L2(Ω) . (5.13)

Moreover, we have, by (1.7), (3.29) and the Sobolev inequality,

‖Ehyh‖L∞(Ω) ≲ ‖Ehyh‖H1+α(Ω) ≲ ‖Δh(Ehyh)‖L2(Ω) = ‖Δhyh‖L2(Ω) . (5.14)

Estimate (5.12) follows from (5.13) and (5.14).

Theorem 5.5. There exists a positive constant C independent of h such that

⦀ȳ − ȳh⦀h ≤ C((1 + |ln h|)
1
2 h + hτ), (5.15)

‖ȳ − ȳh‖L∞(Ω) ≤ C((1 + |ln h|)
1
2 h + hτ). (5.16)

Proof. In view of (3.19), (5.10) and Lemma 5.3, we have

⦀Rh ȳ − ȳh⦀h ≲ ‖Δh(Rh ȳ − ȳh)‖L2(Ω) = ‖Δh(ȳ − ȳh)‖L2(Ω) ≲ (1 + |ln h|)
1
2 h + hτ ,

and therefore
⦀ȳ − ȳh⦀h ≤ ⦀ȳ − Rh ȳ⦀h + ⦀Rh ȳ − ȳh⦀h ≲ (1 + |ln h|)

1
2 h + hτ

by (3.17).
According to (3.19), (5.10) and Lemma 5.4, we have

‖Rh ȳ − ȳh‖L∞(Ω) ≲ ‖Δh(Rh ȳ − ȳh)‖L2(Ω) = ‖Δh(ȳ − ȳh)‖L2(Ω) ≲ (1 + |ln h|)
1
2 h + hτ ,

which together with (3.41) and the triangle inequality implies (5.16).
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Improved Error Estimates

We can improve estimate (5.1) under additional regularity assumptions. For the discussion below, we assume
(4.13), (4.14) and strengthen (4.15) to

ȳ ∈ H4(Ω \A ). (5.17)

Combining ȳ ∈ H3
loc(Ω) with (4.13), (4.14) and (5.17), we see that ȳ belongs to C

2(Ω̄) and

ȳ ∈ H
7
2−ϵ(Ω) for all ϵ > 0. (5.18)

For simplicity, we assume τ = 1 in (3.13) and k = 2 in the discussion below.
It follows from (5.18) that

⦀ȳ − Πh ȳ⦀h ≤ Ch2|ȳ|H3(Ω) , (5.19)

and estimates (3.17) and (3.18) can then be improved to

‖ȳ − Rh ȳ‖L2(Ω) + h⦀ȳ − Rh ȳ⦀h ≤ Ch3|ȳ|H3(Ω) . (5.20)

Assumption (4.13) and the Sobolev inequality imply that ψ ∈ W3,p(Ω) for any p <∞ and hence

‖ψ − ΠTψ‖L∞(T) ≤ Cϵh3−ϵT for all T ∈ Th , ϵ > 0 (5.21)

by the Bramble–Hilbert lemma (cf. [11, 39]) and scaling. We can combine estimate (4.18) with (5.21) to obtain

‖ȳ − Πh ȳ‖L∞(G(A )) ≤ ‖(ȳ − ψ) − Πh(ȳ − ψ)‖L∞(G(A )) + ‖ψ − Πhψ‖L∞(G(A )) ≤ Cϵh3−ϵ (5.22)

provided that G(A ) satisfies (4.20). Similarly, the estimate

‖ȳ − Πh ȳ‖W1,∞
h (G(A )) ≤ Cϵh

2−ϵ (5.23)

follows from (3.22), (4.18) and (5.21). Combining (3.21) and (5.20)–(5.23), we have the estimate

ϵh = ‖Rh ȳ − ȳ‖L∞(G(A )) ≤ Cϵh3−ϵ (5.24)

that improves (5.2). Consequently, estimate (5.8) is improved to

‖Ih(ȳ − Chy∗h)‖
1
2
L∞(A ) ≤ C3h

3
2−ϵ (5.25)

by (5.7), (5.22) and (5.24). Putting (5.4), (5.5), (5.24) and (5.25) together, we obtain the estimate

‖ȳ − y∗h‖h + ‖Ih(ȳ − Chy
∗
h)‖

1
2
L∞(A ) ≤ Cϵh

3
2−ϵ (5.26)

that improves (5.1). Hence we have
‖ȳ − ȳh‖h ≤ Cϵh

3
2−ϵ

by (4.24) and (5.26), and estimate (5.10) becomes

‖ȳ − ȳh‖L2(Ω) + ‖Δh(ȳ − ȳh)‖L2(Ω) ≤ Cϵh
3
2−ϵ ,

and thus, in view of (5.18), estimate (5.11) becomes

‖ ̄u − ̄uh‖L2(Ω) ≤ ‖Δȳ − Δh ȳ‖L2(Ω) + ‖Δh(ȳ − ȳh)‖L2(Ω)

≤ ‖Δȳ − Qh(Δȳ)‖L2(Ω) + ‖Δh(ȳ − ȳh)‖L2(Ω) ≤ Cϵh
3
2−ϵ .

Therefore, we have the estimate

‖ ̄u − ̄uh‖L2(Ω) + ‖ȳ − ȳh‖L2(Ω) ≤ Cϵh
3
2−ϵ (5.27)

that improves (5.9). Similarly estimates (5.15) and (5.16) can be improved to

⦀ȳ − ȳh⦀h ≤ Cϵh
3
2−ϵ and ‖ȳ − ȳh‖L∞(Ω) ≤ Cϵh

3
2−ϵ

through (3.42), (5.19) and (5.20).



S. C. Brenner et al., SIP Method for an Elliptic Optimal Control Problem with State Constraints  579

6 Numerical Results

Wehave performednumerical experiments on the SIPmethod for k = 1 and k = 2, where the penalty parameter
σ = 3k(k + 1) (cf. [41]). The mesh parameter for the j-th level refinement is hj = 8/2j . The discrete problems are
solved by a primal-dual active set algorithm (cf. [7, 9, 48, 50]).

We report the errors of the optimal state in ‖ ⋅ ‖L2(Ω) and ⦀ ⋅ ⦀h , and the errors of the optimal control in
‖ ⋅ ‖L2(Ω). We also report the approximation of ‖ȳ − ȳh‖L∞(Ω) by ‖Πh ȳ − ȳh‖∞, which is the∞-norm of the finite
element coefficient vector representing Πh ȳ − ȳh .

The approximate solution ȳhj and the operator Πhj are denoted by ȳj and Πj , respectively, in all the tables.

Remark 6.1. We have also tested the SIP method based on the ℙ3 finite element. The results are similar to the
ones for the ℙ2 element for the examples in Section 6.1 and Section 6.2.

6.1 Square Example

Let Ω = (−4, 4)2. We consider the optimal control problem (1.1) with ψ(x) = |x|2 − 1, β = 1, g = 0 and

yd(x) =
{
{
{

Δ2 ȳ(x) + ȳ(x) if |x| > 1,
Δ2 ȳ(x) + ȳ(x) + 2 if |x| ≤ 1,

where the optimal state ȳ is given by

ȳ(x) =
{{{
{{{
{

|x|2 − 1 if |x| ≤ 1,
v(|x|) + [1 − ϕ(|x|)]w(x) if 1 ≤ |x| ≤ 3,
w(x) if |x| ≥ 3,

with
v(r) = (r2 − 1)(1 − r − 12 )

4
+
1
4 (r − 1)

2(r − 3)4 ,

ϕ(r) = [1 + 4( r − 12 ) + 10(
r − 1
2 )

2
+ 20( r − 12 )

3
](1 − r − 12 )

4
,

w(x) = 2 sin(π8 (x1 + 4)) sin(
π
8 (x2 + 4)).

This example from [26] is designed such that A is the disc defined by |x| ≤ 1, and ȳ and ̄u have zero traces
on the boundary. The numerical results for k = 1 and k = 2 are reported in Table 1 and Table 2, respectively.

Note that the additional regularity assumptions (4.13), (4.14) and (5.17) are satisfied for this example. In view
of (5.18), we have

̄u = −Δȳ ∈ H
3
2−ϵ(Ω) for all ϵ > 0, (6.1)

j ‖ ̄y − ̄yj‖L2(Ω) Order ⦀ ̄y − ̄yj⦀h Order ‖Πj ̄y − ̄yj‖∞ Order ‖ ̄u − ̄uj‖L2(Ω) Order

0 4.5810 × 101 — 5.3417 × 101 — 9.2024 × 100 — 1.8989 × 101 –
1 3.5379 × 101 0.37 3.6566 × 101 0.55 9.5624 × 100 −0.06 4.5579 × 101 −1.26
2 3.0432 × 100 3.54 4.0927 × 100 3.16 1.1012 × 100 3.12 7.5447 × 100 2.59
3 1.3713 × 100 1.15 2.7151 × 100 0.59 4.1099 × 10−1 1.42 6.1330 × 100 0.30
4 1.9044 × 10−1 2.85 1.1673 × 100 1.22 8.0634 × 10−2 2.35 2.9217 × 100 1.07
5 4.8280 × 10−2 1.98 5.5406 × 10−1 1.08 2.5790 × 10−2 1.64 1.0700 × 100 1.45
6 1.7648 × 10−2 1.45 2.7205 × 10−1 1.03 7.9764 × 10−3 1.69 3.6576 × 10−1 1.55
7 1.2534 × 10−2 0.49 1.3587 × 10−1 1.00 2.9755 × 10−3 1.42 1.6622 × 10−1 1.14
8 2.4529 × 10−3 2.35 6.7554 × 10−2 1.01 6.5540 × 10−4 2.18 5.8690 × 10−2 1.50
9 5.1696 × 10−4 2.25 3.3747 × 10−2 1.00 1.3571 × 10−4 2.27 2.0999 × 10−2 1.48

Table 1: Example on square (k = 1)
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j ‖ ̄y − ̄yj‖L2(Ω) Order ⦀ ̄y − ̄yj⦀h Order ‖Πj ̄y − ̄yj‖∞ Order ‖ ̄u − ̄uj‖L2(Ω) Order

0 3.7032 × 100 — 1.4658 × 101 — 1.1510 × 100 — 9.1462 × 100 –
1 8.3726 × 100 −1.18 7.3305 × 100 1.00 1.7694 × 100 −0.62 9.2196 × 100 −0.01
2 3.2350 × 100 1.37 5.3145 × 100 0.46 1.3622 × 100 0.38 1.4794 × 101 −0.68
3 8.3648 × 10−1 1.95 1.5522 × 100 1.78 2.6935 × 10−1 2.34 6.0855 × 100 1.28
4 1.2604 × 10−1 2.73 3.3384 × 10−1 2.22 5.7337 × 10−2 2.23 2.1357 × 100 1.51
5 2.8159 × 10−2 2.16 7.5093 × 10−2 2.15 6.8294 × 10−3 3.07 8.1279 × 10−1 1.39
6 7.2141 × 10−3 1.96 1.8852 × 10−2 1.99 2.2932 × 10−3 1.57 2.5827 × 10−1 1.65
7 1.2074 × 10−3 2.58 4.1633 × 10−3 2.18 4.1299 × 10−4 2.47 9.9289 × 10−2 1.38
8 4.1976 × 10−4 1.52 1.1245 × 10−3 1.89 1.3026 × 10−4 1.66 3.3727 × 10−2 1.56

Table 2: Example on square (k = 2)

and also the Hölder regularity
ȳ ∈ C2,

1
2−ϵ(Ω̄) for all ϵ > 0 (6.2)

by the Sobolev Embedding Theorem (cf. [60, Section 2.8]).
The following are the best possible results allowed by the regularity (5.18), (6.1) and (6.2):

‖ȳ − ȳh‖L2(Ω) ≤
{
{
{

Ch2 , k = 1,
Ch3 , k = 2,

(6.3)

⦀ȳ − ȳh⦀h ≤
{
{
{

Ch, k = 1,
Ch2 , k = 2,

(6.4)

‖ȳ − ȳh‖L∞(Ω) ≤
{
{
{

Ch2 , k = 1,
Cϵh

5
2−ϵ , k = 2,

(6.5)

‖ ̄u − ̄uh‖L2(Ω) ≤
{
{
{

Cϵh
3
2−ϵ , k = 1,

Cϵh
3
2−ϵ , k = 2.

(6.6)

The numerical results for ⦀ȳ − ȳh⦀h and ‖ ̄u − ̄uh‖L2(Ω) in Table 1 and Table 2 match exactly (6.4) and (6.6).
The orders of convergence for ‖ȳ − ȳh‖L2(Ω) and ‖Πh ȳ − ȳh‖L∞(Ω) are less stable, possibly due to the fact that the
free boundary is a circle that is not captured exactly by the mesh, and that the quality of the representation of
the circle by the meshes varies from refinement level to refinement level. Nevertheless, the numerical results
for ‖Πh ȳ − ȳh‖L∞(Ω) in Table 1 and in Table 2 (up to the seventh level refinement) indicate (6.5) asymptotically.
The order of convergence for ‖ȳ − ȳh‖L2(Ω) in Table 1 also agrees with (6.3). Finally, the order of convergence for
‖ȳ − ȳh‖L2(Ω) in Table 2 appears to be at most 5/2, which is less than the optimal order in (6.3) for k = 2.

Note that the O(h) convergence for ⦀ȳ − ȳh⦀h in Table 1 agrees with estimate (5.15) (for τ = 1), and the
O(h 3

2 ) convergence for ‖ ̄u − ̄uh‖L2(Ω) in Table 2 agrees with the estimate in (5.27). While these two estimates are
the only ones we can establish within our theoretical framework that match the numerical results exactly, we
have provided a heuristic justification of the other numerical results in Appendix A.

Pictures for the optimal state, the optimal control and the active set computed by the ℙ1 SIP method at
level 7 are depicted in Figure 1.

6.2 L-Shaped Domain Example

We extend the previous example to the L-shaped domain Ω = (−8, 8)2 \ ([0, 8] × [−8, 0]) by shifting the active
set to the center of the upper left quadrant (cf. Figure 2) and by adding the corner singular function

ψs(x) = r
2
3 sin(23 θ),

where (r, θ) are the polar coordinates of x.
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Figure 1: State, control and active set computed by a uniform mesh (k = 1, j = 7)

More precisely, we take β = 1, g ∈ H4(Ω) such that g = 4ψs on ∂Ω, x∗ = (−4, 4) (the center of the upper left
quadrant),

ψ(x) = |x − x∗|2 − 1 + 4ψs(x),
and

yd(x) =
{
{
{

Δ2 ȳ(x) + ȳ(x) if |x − x∗| > 1,
Δ2 ȳ(x) + ȳ(x) + 2 if |x − x∗| ≤ 1,

where

ȳ(x) = 4ψs(x) +
{{{
{{{
{

|x − x∗|2 − 1 if |x − x∗| ≤ 1,
v(|x − x∗|) + [1 − ϕ(|x − x∗|)]w(x − x∗) if 1 ≤ |x − x∗| ≤ 3,
w(x − x∗) if |x − x∗| ≥ 3,

with v, ϕ, w as in the previous example.
The numerical results for k = 1 and k = 2 on uniform and graded meshes are displayed in Tables 3 and 4

and Tables 5 and 6, respectively.
Due to the singularity at the reentrant corner, we observe O(h 2

3 ) convergence for ⦀ȳ − ȳh⦀h on uniform
meshes in Table 3 and Table 5, which agrees with estimate (5.15) for τ = 2

3 − ϵ. For graded mesh refinement
with grading parameter 0.6 for k = 1 and 0.3 for k = 2, the convergence of ⦀ȳ − ȳh⦀h is improved to O(h) and
O(h2), respectively, as in the square domain example of Section 6.1. The performance of other approximations
on graded meshes is also similar to the ones in Section 6.1.

The pictures of the optimal state, the optimal control and the active set computed by the ℙ1 SIP method on
the uniformmesh at level 6 are depicted in Figure 2.Wehave also included the picture of the active set computed
on the graded mesh, which shows a better approximation.

6.3 Cube Example

We have also tested the SIP method on a three-dimensional example, which is an extension of the example in
Section 6.1.
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j ‖ ̄y − ̄yj‖L2(Ω) Order ⦀ ̄y − ̄yj⦀h Order ‖Πj ̄y − ̄yj‖∞ Order ‖ ̄u − ̄uj‖L2(Ω) Order

0 3.9920 × 101 — 4.4007 × 101 — 9.4995 × 100 — 2.2870 × 101 –
1 3.9904 × 101 0.00 3.3403 × 101 0.40 1.0482 × 101 −0.14 4.0431 × 101 −0.82
2 3.4537 × 100 3.53 5.7522 × 100 2.54 1.4600 × 100 2.84 7.4429 × 100 2.44
3 1.4574 × 100 1.24 3.6802 × 100 0.64 9.7520 × 10−1 0.58 6.1192 × 100 0.28
4 2.1943 × 10−1 2.73 1.9689 × 100 0.90 6.1792 × 10−1 0.66 2.9231 × 100 1.07
5 5.7923 × 10−2 1.92 1.1369 × 100 0.79 3.8999 × 10−1 0.66 1.0723 × 100 1.45
6 1.8490 × 10−2 1.65 6.7892 × 10−1 0.74 2.4632 × 10−1 0.66 3.6672 × 10−1 1.55
7 1.4113 × 10−2 0.39 4.1360 × 10−1 0.72 1.5534 × 10−1 0.67 1.6617 × 10−1 1.14
8 2.7271 × 10−3 2.37 2.5482 × 10−1 0.70 9.7860 × 10−2 0.67 5.8672 × 10−2 1.50

Table 3: Example on L-shaped domain for uniform meshes (k = 1)

j ‖ ̄y − ̄yj‖L2(Ω) Order ⦀ ̄y − ̄yj⦀h Order ‖Πj ̄y − ̄yj‖∞ Order ‖ ̄u − ̄uj‖L2(Ω) Order

0 3.9920 × 101 — 4.4007 × 101 — 9.4995 × 100 — 2.2870 × 101 –
1 2.6192 × 101 0.61 2.8876 × 101 0.61 1.0147 × 101 −0.10 3.3432 × 101 −0.55
2 2.6055 × 100 3.33 4.4817 × 100 2.69 1.1320 × 100 3.16 7.5177 × 100 2.15
3 1.5013 × 100 0.80 2.9781 × 100 0.59 4.1680 × 10−1 1.44 6.1210 × 100 0.30
4 2.0284 × 10−1 2.89 1.3167 × 100 1.18 1.5541 × 10−1 1.42 2.9203 × 100 1.07
5 5.7017 × 10−2 1.83 6.3409 × 10−1 1.05 7.3336 × 10−2 1.08 1.0716 × 100 1.45
6 2.0081 × 10−2 1.51 3.1756 × 10−1 1.00 3.8830 × 10−2 0.92 3.6665 × 10−1 1.55
7 1.1602 × 10−2 0.79 1.5707 × 10−1 1.02 1.5405 × 10−2 1.33 1.6612 × 10−1 1.14
8 2.5718 × 10−3 2.17 7.8324 × 10−2 1.00 7.2773 × 10−3 1.08 5.8662 × 10−2 1.50

Table 4: Example on L-shaped domain for graded meshes with grading μ = 0.6 (k = 1)

j ‖ ̄y − ̄yj‖L2(Ω) Order ⦀ ̄y − ̄yj⦀h Order ‖Πj ̄y − ̄yj‖∞ Order ‖ ̄u − ̄uj‖L2(Ω) Order

0 4.2702 × 100 — 1.1243 × 101 — 2.2648 × 100 — 8.6780 × 100 –
1 8.2827 × 100 −0.96 7.3681 × 100 0.61 1.7615 × 100 0.36 9.1700 × 100 −0.08
2 3.3045 × 100 1.33 5.5664 × 100 0.40 1.3632 × 100 0.37 1.4789 × 101 −0.69
3 8.3352 × 10−1 1.99 1.8441 × 100 1.59 4.3771 × 10−1 1.64 6.0881 × 100 1.28
4 1.3230 × 10−1 2.66 7.0735 × 10−1 1.38 2.7683 × 10−1 0.66 2.1354 × 100 1.51
5 3.2286 × 10−2 2.03 3.9996 × 10−1 0.82 1.7469 × 10−1 0.66 8.1272 × 10−1 1.39
6 7.3717 × 10−3 2.13 2.4830 × 10−1 0.69 1.1000 × 10−1 0.67 2.5828 × 10−1 1.65
7 1.6831 × 10−3 2.13 1.5603 × 10−1 0.67 6.9299 × 10−2 0.67 9.9293 × 10−2 1.38

Table 5: Example on L-shaped domain for uniform meshes (k = 2)

j ‖ ̄y − ̄yj‖L2(Ω) Order ⦀ ̄y − ̄yj⦀h Order ‖Πj ̄y − ̄yj‖∞ Order ‖ ̄u − ̄uj‖L2(Ω) Order

0 4.2702 × 100 — 1.1243 × 101 — 2.2648 × 100 — 8.6780 × 100 –
1 1.2868 × 101 −1.59 1.7278 × 101 −0.62 5.9386 × 100 −1.39 2.4659 × 101 −1.51
2 3.3202 × 100 1.95 5.3727 × 100 1.69 1.4139 × 100 2.07 1.4917 × 101 0.73
3 8.3547 × 10−1 1.99 1.5466 × 100 1.80 2.6935 × 10−1 2.39 6.0817 × 100 1.29
4 1.2014 × 10−1 2.80 3.2962 × 10−1 2.23 5.7276 × 10−2 2.23 2.1342 × 100 1.51
5 2.7127 × 10−2 2.15 7.4216 × 10−2 2.15 6.8314 × 10−3 3.07 8.1287 × 10−1 1.39
6 8.0864 × 10−3 1.75 1.8834 × 10−2 1.98 2.3745 × 10−3 1.52 2.5826 × 10−1 1.65
7 1.4089 × 10−3 2.52 4.0875 × 10−3 2.20 4.8728 × 10−4 2.28 9.9273 × 10−2 1.38

Table 6: Example on L-shaped domain for graded meshes with grading μ = 0.3 (k = 2)
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Figure 2: State, control and active set computed by a uniform mesh and the active set computed by a graded mesh for the L-shaped
domain example (k = 1, j = 6)

Let Ω = (−4, 4)3. We consider the optimal control problem with ψ(x) = |x|2 − 1, β = 1, g = 0 and

yd(x) =
{
{
{

Δ2 ȳ(x) + ȳ(x) if |x| > 1,
Δ2 ȳ(x) + ȳ(x) + 2 if |x| ≤ 1,

where the optimal state ȳ is given by

ȳ(x) =
{{{
{{{
{

|x|2 − 1 if |x| ≤ 1,
v(|x|) + [1 − ϕ(|x|)]w(x) if 1 ≤ |x| ≤ 3,
w(x) if |x| ≥ 3,

with radial functions v, ϕ as in the two-dimensional example, and

w(x) = 2 sin(π8 (x1 + 4)) sin(
π
8 (x2 + 4)) sin(

π
8 (x3 + 4)).

The numerical results are reported in Table 7 for k = 1 and Table 8 for k = 2. The performance of the SIP
method is similar to that in Section 6.1.

j ‖ ̄y − ̄yj‖L2(Ω) Order ⦀ ̄y − ̄yj⦀h Order ‖Πj ̄y − ̄yj‖∞ Order ‖ ̄u − ̄uj‖L2(Ω) Order

0 1.6410 × 101 — 2.3815 × 101 — 9.7347 × 10−1 — 2.3152 × 101 –
1 7.5940 × 100 1.11 1.4455 × 101 0.72 1.1095 × 100 −0.19 2.0836 × 101 0.15
2 2.7130 × 100 1.48 4.8940 × 100 1.56 5.5711 × 10−1 0.99 9.4985 × 100 1.13
3 1.3542 × 100 1.00 3.3239 × 100 0.56 4.2026 × 10−1 0.41 7.6705 × 100 0.31
4 9.5533 × 10−2 3.83 1.5610 × 100 1.09 8.2658 × 10−2 2.35 3.4858 × 100 1.14
5 4.5772 × 10−2 1.06 7.7556 × 10−1 1.01 1.8483 × 10−2 2.16 1.3494 × 100 1.37

Table 7: Example on cube (k = 1)
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j ‖ ̄y − ̄yj‖L2(Ω) Order ⦀ ̄y − ̄yj⦀h Order ‖Πj ̄y − ̄yj‖∞ Order ‖ ̄u − ̄uj‖L2(Ω) Order

0 2.6455 × 101 — 4.8283 × 101 — 2.0914 × 100 — 2.8380 × 101 –
1 3.0710 × 100 3.11 3.9681 × 100 3.60 2.7922 × 10−1 2.90 7.0809 × 100 2.00
2 2.3105 × 100 0.41 2.9753 × 100 0.42 1.5391 × 100 −2.46 9.9390 × 100 −0.49
3 2.6989 × 10−1 3.10 6.1120 × 10−1 2.28 6.7021 × 10−2 4.52 3.1649 × 100 1.65
4 1.0293 × 10−2 4.71 1.6018 × 10−1 1.93 2.1690 × 10−2 1.63 9.7816 × 10−1 1.69
5 4.2952 × 10−3 1.26 4.5806 × 10−2 1.81 3.9147 × 10−3 2.47 3.8867 × 10−1 1.33

Table 8: Example on cube (k = 2)

7 Concluding Remarks

We have developed a SIP method for an elliptic distributed optimal control problem with pointwise state con-
straints on general polygonal domains. The resulting discrete problems are quadratic programs with box con-
straints that can be solved efficiently by a primal-dual active set method.

By using graded meshes, we can show O(h) convergence (up to a log factor) for the optimal control in the
L2 norm, and for the optimal state in the L2 norm, energy norm and L∞ norm under general assumptions on
the data. Better convergence can also be established under additional regularity assumptions.

We have tested the SIP method based on the ℙ1 and ℙ2 discontinuous finite element spaces. The numerical
results are better than our theoretical results. A heuristic justification of the numerical results is provided in
the appendix where an optimal control problem without the pointwise state constraints, but with the correct
assumption on the regularity of the data, is considered.

We expect the interior maximum norm estimate (3.21) can be extended to the other discontinuous Galerkin
methods in [4] along the lines taken in [47], in which case the analysis in this paper can also be applied to the
discretizations of (2.1) based on these methods.

Even though our theory is purely for two-dimensional domains, numerical results indicate that the SIP
method has similar performance in three dimensions. Therefore, the discontinuous Galerkin approach may
provide higher-order methods for the optimal control problem on general polyhedral domains where the dis-
crete problems are quadratic programs with box constraints that can be solved efficiently by a primal-dual
active set algorithm. A rigorous analysis of the SIP method in three dimensions will require an interior maxi-
mum norm error estimate for discontinuous Galerkin methods in three dimensions, which is still absent from
the literature.

A An Optimal Control ProblemWithout State Constraints

In order to give a heuristic justification of the numerical results observed in Section 6.1, we consider the elliptic
optimal control problem (1.1) without the state constraint (1.4) on a square Ω. The optimal control problem is
equivalent to the following problem after dropping the bars over y and u (cf. [52]): find (u, y) ∈ H1

0(Ω) × H
1
0(Ω)

such that
∫
Ω

yv dx + β∫
Ω

∇u ⋅ ∇v dx = ∫
Ω

ydv dx for all v ∈ H1
0(Ω), (A.1)

∫
Ω

∇y ⋅ ∇z dx − ∫
Ω

uz dx = 0 for all z ∈ H1
0(Ω). (A.2)

To match the regularity of the Lagrange multiplier in (4.17), we replace yd ∈ L2(Ω) by a linear functional F
that belongs to H− 12−ϵ(Ω) for any ϵ > 0 and rewrite (A.1)–(A.2) concisely as

B((u, y), (v, z)) = F(v) for all (v, z) ∈ H1
0(Ω) × H

1
0(Ω), (A.3)
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where
B((u, y), (v, z)) = β∫

Ω

∇u ⋅ ∇v dx + ∫
Ω

yv dx − ∫
Ω

uz dx + ∫
Ω

∇y ⋅ ∇z dx.

Remark A.1. Equation (2.2) is identical to (A.3) with

F(v) = ∫
Ω

ydv dx + ∫
Ω

v dμ,

where the Lagrange multiplier μ satisfies (4.17).

The bilinear formB( ⋅ , ⋅ ) is clearly bounded on H1
0(Ω) × H

1
0(Ω). It is also coercive because

B((v, z), (v, z)) = β|v|2H1(Ω) + |z|
2
H1(Ω) for all (y, z) ∈ H1

0(Ω) × H
1
0(Ω).

Since Ω is convex, elliptic regularity and (A.1) (with yd replaced by F) imply (cf. [37])

u ∈ H
3
2−ϵ(Ω) for any ϵ > 0, (A.4)

and then, since Ω is a square and u ∈ H 3
2−ϵ(Ω) ∩ H1

0(Ω), elliptic regularity and (A.2) imply (cf. [15, 38])

y ∈ H
7
2−ϵ(Ω) for any ϵ > 0. (A.5)

The SIP method for (A.3) is to find (uh , yh) ∈ Yh × Yh such that

∫
Ω

yhv dx + βah(uh , v) = F(v) for all v ∈ Yh , (A.6)

ah(yh , z) − ∫
Ω

uhz dx = 0 for all z ∈ Yh . (A.7)

Remark A.2. The discussion below can also be carried out for the SIP method defined by (A.6) and (A.7) that
involves additional technicalities. For simplicity, we consider instead conforming finite element methods
for (A.3).

Recall Vh = Yh ∩ H1
0(Ω) is the ℙk (k = 1, 2) Lagrange finite element space associated with a uniform triangula-

tion Th of Ω. The discrete problem is to find (uh , yh) ∈ Vh × Vh such that

∫
Ω

yhv dx + β∫
Ω

∇uh ⋅ ∇v dx = F(v) for all v ∈ Vh , (A.8)

∫
Ω

∇yh ⋅ ∇z dx − ∫
Ω

uhz dx = 0 for all z ∈ Vh , (A.9)

or equivalently,
B((uh , yh), (v, z)) = F(v) for all (v, z) ∈ Vh × Vh .

Comparing (A.1)–(A.2) (where yd is replaced by F) with (A.8)–(A.9), we have the Galerkin relations

∫
Ω

(y − yh)v dx + β∫
Ω

∇(u − uh) ⋅ ∇v dx = 0 for all v ∈ Vh , (A.10)

∫
Ω

∇(y − yh) ⋅ ∇z dx − ∫
Ω

(u − uh)z dx = 0 for all z ∈ Vh . (A.11)

Combing the boundedness and coercivity ofB( ⋅ , ⋅ ), the regularity (A.4)–(A.5), the Galerkin relations (A.10)–
(A.11) and standard interpolation error estimates, we obtain the error estimate

|u − uh|H1(Ω) + |y − yh|H1(Ω) ≤ C inf
(v,z)∈Vh×Vh

[|u − v|H1(Ω) + |y − z|H1(Ω)] ≤ Cϵh
1
2−ϵ , (A.12)
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which then implies
‖u − uh‖L2(Ω) + ‖y − yh‖L2(Ω) ≤ Cϵh

3
2−ϵ (A.13)

by a standard duality argument.
In the case where k = 1, we can improve the estimate for |y − yh|H1(Ω) in (A.12) through relation (A.11) with

z = Πhy − yh , which yields

∫
Ω

∇(y − yh) ⋅ ∇(y − yh) dx + ∫
Ω

∇(y − yh) ⋅ ∇(Πhy − y) dx

= ∫
Ω

(u − uh)(y − yh) dx + ∫
Ω

(u − uh)(Πhy − y) dx. (A.14)

It follows from (A.5), (A.13), (A.14) and standard interpolation error estimates that

|y − yh|2H1(Ω) ≤ C1h|y − yh|H1(Ω) + C2,ϵ1h3−ϵ1 + C3,ϵ2h
5
2−ϵ2 ,

which implies (with ϵ1 = 1 and ϵ2 = 1
2 )

|y − yh|H1(Ω) ≤ Ch. (A.15)

Remark A.3. The estimate in (A.13) for ‖u − uh‖L2(Ω) and estimate (A.15) for |y − yh|H1(Ω) match the results
observed in Table 1.

In the case where k = 2, we need to use a duality argument that is based on the equivalence of (A.3) with the
following fourth-order boundary value problem (cf. (2.2) and Remark A.1):

β∫
Ω

(Δy)(Δz) dx + ∫
Ω

yz dx = F(z) for all z ∈ H2(Ω) ∩ H1
0(Ω). (A.16)

Note that (A.3) can be interpreted as a mixed formulation of (A.16).
Let ϕ ∈ H2(Ω) ∩ H1

0(Ω) be defined by

β∫
Ω

(Δv)(Δϕ) dx + ∫
Ω

vϕ dx = ∫
Ω

v(y − yh) dx for all v ∈ H2(Ω) ∩ H1
0(Ω). (A.17)

Since Ω is a square, we have
‖ϕ‖H3−ϵ(Ω) ≤ Cϵ‖y − yh‖L2(Ω) (A.18)

by the elliptic regularity result in [10] for the biharmonic equation with the boundary conditions of simply
supported plates.

Let ̃yh ∈ H1
0(Ω) be defined by

∫
Ω

∇ ̃yh ⋅ ∇z dx = ∫
Ω

uhz dx for all z ∈ H1
0(Ω). (A.19)

Then we have
‖ ̃yh‖H3−ϵ(Ω) ≤ Cϵ‖uh‖H1(Ω) (A.20)

by the elliptic regularity for a square (cf. [37]).
In view of (A.9) and (A.19), yh ∈ Vh is precisely the approximation of ̃yh generated by the standard ℙ2

Lagrange finite element method. Consequently, we have

| ̃yh − yh|H1(Ω) ≤ Cϵh2−ϵ| ̃yh|H3−ϵ(Ω) ≤ Cϵh2−ϵ

by (A.20) and the fact that ‖uh‖H1(Ω) is uniformly bounded by (A.12), and then the estimate

‖ ̃yh − yh‖L2(Ω) ≤ Ch| ̃yh − yh|H1(Ω) ≤ Cϵh3−ϵ (A.21)

follows from a standard duality argument.
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Now we take v = y − ̃yh in (A.17) and then use (A.2) and (A.19) to obtain the relation

β∫
Ω

∇(u − uh)∇ϕ dx + ∫
Ω

(y − yh)ϕ dx + ∫
Ω

(yh − ̃yh)ϕ dx = ∫
Ω

(y − yh)2 dx + ∫
Ω

(yh − ̃yh)(y − yh) dx,

which implies, through (A.10),

‖y − yh‖2L2(Ω) = β∫
Ω

∇(u − uh) ⋅ ∇(ϕ − Πhϕ) dx + ∫
Ω

(y − yh)(ϕ − Πhϕ) dx

+ ∫
Ω

(yh − ̃yh)ϕ dx − ∫
Ω

(yh − ̃yh)(y − yh) dx

≤ β|u − uh|H1(Ω)|ϕ − Πhϕ|H1(Ω) + ‖y − yh‖L2(Ω)‖ϕ − Πhϕ‖L2(Ω)
+ ‖yh − ̃yh‖L2(Ω)‖ϕ‖L2(Ω) + ‖yh − ̃yh‖L2(Ω)‖y − yh‖L2(Ω) .

In view of (A.13), (A.18), (A.21) and standard interpolation error estimates, we conclude that

‖y − yh‖2L2(Ω) ≤ C1,ϵ1h
5
2−ϵ1‖y − yh‖L2(Ω) + C2,ϵ2h3−ϵ2‖y − yh‖L2(Ω) ,

and hence
‖y − yh‖L2(Ω) ≤ Cϵh

5
2−ϵ (A.22)

by the inequality of arithmetic and geometric means, which improves the estimate in (A.13).
Finally, we return to relation (A.14) and use (A.13), (A.22) to obtain the estimate

|y − yh|2H1(Ω) ≤ C1h
2|y − yh|H1(Ω) + C2,ϵ1h4−ϵ1 + C3,ϵ2h

9
2−ϵ2 ,

and hence
|y − yh|H1(Ω) ≤ Cϵh2−ϵ . (A.23)

Remark A.4. The estimate in (A.13) for ‖u − uh‖L2(Ω), the estimate in (A.22) for ‖y − yh‖L2(Ω) and the estimate in
(A.23) for |y − yh|H1(Ω) match the results observed in Table 2.
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