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1 Introduction

Let Q ¢ R? be a bounded polygonal domain, y4 € Ly(Q), g € H*(®Q), and let 8 be a positive constant. The optimal
control problem (cf. [31]) is to find

o .1
(5, @) = argmin [y - Yal q) + Blul ) §5)
Y, u)ekKy

where (y, u) € H1(Q) x Ly(Q) belongs to K, if and only if

JVy .Vzdx = J uzdx forallz e Hy(Q), (1.2)
2 Q
y=g on 99, (1.3
y<y a.e.in Q. (1.4)
We assume that the function
1 belongs to WP (Q) for p > 2 and i) > g on Q. 1.5)

Remark 1.1. Throughout this paper, we will follow the standard notation for differential operators, function
spaces and norms that can be found for example in [1, 23, 36].

Observe that (1.2)-(1.3) is equivalenttoy € g + E(A; Ly(Q)), where
E(A;Ly(Q)) = {z € HY(Q) : Az € Ly(Q)}
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and Az is understood in the sense of distributions. It is well known (cf. [37, 46]) that
E(A; Ly(Q)) c HYY(Q) for some a € (1/2,1] (1.6)

and
IYlz+ace) < CallAYllL,@ forally e E(A; Ly(R)). (1.7)

Hence functions in E(A; L,(Q)) are continuous by the Sobolev inequality (cf. [1]).
We can reformulate the optimal control problem (1.1)—(1.4) as the following minimization problem that only
involves y: find

_ 1
y = argmin o {lly - yallf, o) + BIAYI o)), (18)
yeKyg
where
Kg=1{y € g+E(5;Ly(Q):y < ¢ in Q). 1.9)

Our goal is to solve the optimal control problem (1.1)-(1.4) by a symmetric interior penalty (SIP) method
(cf. [3, 61]) that is based on the reformulation (1.8)—(1.9). This reformulation was discussed in [56], and the first
numerical scheme based on this idea appeared in [53], where the analysis was carried out under certain ad hoc
assumptions on the free boundary from [8]. These assumptions were later removed in the new convergence
analysis in [24] by exploiting the regularity results in [30, 43, 44] for fourth-order elliptic variational inequalities.
Various finite element methods based on this new approach have appeared in [19-22, 26-29].

Comparing with the more traditional approach in [32, 35, 49, 52, 54, 55] that is based on reducing the optimal
control problem (1.1)-(1.4) to a problem that only involves the control, a distinct feature of the new approach
is that the convergence of the state can also be established in the L., norm. Another useful feature is that the
discrete problems are quadratic programs with simple box constraints where the system matrices are available
and consequently they can be solved efficiently by many optimization algorithms. Moreover, general polygonal/
polyhedral domains can also be handled by the new approach (cf. [20, 22, 26]). These features are also shared
by the SIP method in this paper. Compared to the P; finite element methods in [22, 26], the inverse of the block
diagonal mass matrix of the SIP method of any order can be evaluated exactly, and hence the system matrix is
available without mass lumping (cf. Remark 2.4 below).

The rest of the paper is organized as follows. We recall relevant results of the continuous problem and set up
the discrete problem in Section 2. Technical tools for the error analysis are collected in Section 3, followed by an
abstract error estimate in Section 4 and concrete error estimates in Section 5. Numerical results are presented
in Section 6, and we end with some concluding remarks in Section 7. A heuristic justification of some of the
numerical results is given in Appendix A.

Throughout the paper, we use C (with or without subscripts) to denote a generic positive constant indepen-
dent of the mesh size h. We also use A < B to represent the statement that A < (constant)B, where the positive
constant is independent of h.

2 Continuous and Discrete Problems

In this section, we recall relevant results of the continuous problem and construct the SIP method.

2.1 The Continuous Problem

It follows from the classical theory of calculus of variations (cf. [40, 51]) that (1.8)—(1.9) has a unique solution
¥ € g+ E(A; Ly(Q)) characterized by the variational inequality

J(j} -yo)y-y)dx+p J(Ay)A(y -y)dx>0 forallyeg+ E(0; Ly(R)). 2.1
Q Q



DE GRUYTER S. C. Brenner et al., SIP Method for an Elliptic Optimal Control Problem with State Constraints === 567

Remark 2.1. In the case where Q is convex, the space E‘(A; Ly(Q)) coincides with H2(Q) n H(l)(Q) and (2.1) is
a fourth-order variational inequality.

The variational inequality (2.1) is equivalent to the following generalized Karush—-Kuhn-Tucker conditions:

J(y —ya)zdx+ B J(Ay)(Az) dx = j zdu forall z e E(A: Ly(Q)), 2.2)
Q Q Q
where
U is a nonpositive finite Borel measure (2.3)
and
j()‘) - ) du=0. (2.4)
Q

Details for the derivation of (2.2)—-(2.4) and for the regularity results below can be found in [24, 26] and the
references therein.

Remark 2.2. It follows from the complementarity condition (2.4) that u is supported on the active set <7 for the
constraint (1.4) given by & = {x € Q : y(x) = Y(x)}. Note that .7 is a compact subset of Q by the assumption that
Y > gonoQ.

We have
a=-Ay e Hy(Q) (2.5)

and
y e HS (Q)n W2 (Q) n H*(Q), 2.6)

loc
where a € (1/2,1] is the index of elliptic regularity as in (1.6).
Remark 2.3. In the case where Q is convex, we can replace « in (2.6) with some a € (1, 2] by exploiting (2.5).
Finally, the Lagrange multiplier u belongs to H1(Q), i.e.,

szy < Clzlggy forallz e HY(Q). @.7)
B

2.2 The Discrete Problem

Let J5, be a triangulation of Q, let k be a positive integer and
Yn={yeLyRQ):yr=ylr € Pp(T) forall T e Ty}

the discontinuous finite element space of degree at most k. The set of the edges of T, is denoted by &, EZ(C En)
is the set of the boundary edges and |e] is the diameter of an edge e.
The discrete Laplace operator Ay : (g + E(A; Ly(Q))) + Yy — Yy, is defined by

J(Ah()zh dx = —ap({,zp) forall zp € Yy, (2.8)
Q

where, following the convention for jumps and averages in [4],

g

w02 = ¥ [Wy-vzax- ¥ [Aoy)- 120+ 492 DDas+ Y % [1-Lz1ds

TeTy 7 eclhy g ecey e

is the hilinear form for the SIP method with a sufficiently large penalty parameter o.
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The SIP method is consistent (cf. [57]) in the sense that

ah((,zh):j(—A()zh ax+ Y %ngh ds- ) Ig(vzh.n)ds
ece? eceh e

Q e

forall { € g+ E(A; Ly(Q)) and zj, € Yy
Let g5 € Yy be defined by

Jghzhdx: z Jg(Vzh-n)ds— z inghds for all zy € Yp,.

e
a ecel e ecel lel e

Then (2.8), (2.9) and (2.10) imply

gn+Any =Qn(Ay) forallyeg+ E(A; Ly(Q)),

where Qy, is the orthogonal projection from L,(Q) onto Yp,.
The discrete problem is to find

_ 1
In = argmin > [y - Yal, o) + Blgn + Anynlz, o))
Yn€Kn

where
Kn={yeYy:yr(p) <y(p)forallp e Vrandall T € Tp}.

Here V7 is the set of the three vertices of T.

DE GRUYTER

(2.9)

(2.10)

(211

(2.12)

(2.13)

The unique solution yj € Kj of (2.12)-(2.13) is characterized by the discrete variational inequality

J()_’h -YO)On-Yn)dx +pB J(gh + Ay AR (YR - Yr) dx = 0 for all y, € Kp.

Q Q

Note that we can express the constraints in (2.13) concisely as
Iryr <Ir(y|r) forall T € Ty,

where I7 is the nodal interpolation operator for the Lagrange IP; finite element on T.

(2.14)

(2.15)

Remark 2.4. The discrete problem is a quadratic program with simple box constraints. Let My be the mass
matrix that represents the L, inner product on Yy, and let Ay, be the stiffness matrix that represents the bilinear
form ap(-,-) on Y. The system matrix for the quadratic program is then given by My, + ,BAhM;lAh, and M#
is available because M, is a block diagonal matrix. Therefore, the discrete problem can be solved efficiently by

the primal-dual active set algorithm in [9, 48].

For simplicity, we will focus on the analysis of the discrete problem for the case where g = 0. The extension to

the case of general g is straightforward.

3 Some Technical Tools

We collect the results for some finite element tools in this section.

3.1 Mesh-Dependent Norms

Let D be a subdomain of Q. We will denote by 75,(D) the collection of elements in 7} that have a nonempty

intersection with D, i.e.,
Th(D) ={T € Tp: TND # 0}.

(3.1
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The mesh-dependent semi-norm || - ||, p is defined by
1
Nzlino = (Y [lzBpe + X (07 1elV2Y - nel ) + ole 12012 )] ) (3.2)
TeTr(D) ecoT

where n, is a unit vector normal to e, and || - [I5,¢ is simply denoted by || - [ll-
Note that
an(y, z) < llylinlizlln ~ forally,z € E(A; La(R)) + Yn (33

by the Cauchy-Schwarz inequality, and
Iyrlli < Can(yn,yn) forallyy € Yy (34)

provided that o is sufficiently large (cf. [57]).
There is also a bound for [|y/||x.

Lemma 3.1. We have

Iylle < CUYlai) + hIAYIL,@)  for ally € E(A; Ly(Q). (3.5
Proof. Lety € E(A; Ly(Q)). 1t follows from (3.2) that
WG = Wik + Y. D, o7 1ellEVy} - nellf, o), (3.6)
TeTy ecoT

and we have a trace inequality with scaling,

€lIVYY - nel, o) < € Y. Wiy + KW ) 3.7)
TeT,

where T, is the set of the triangles in 7}, that share e as a common edge.
Estimate (3.5) follows from (1.7), (3.6) and (3.7). O

3.2 Triangulations

We will consider both quasi-uniform triangulations and triangulations that are graded around the reentrant
corners (cf. [2, 5, 6, 12, 45]).

Let D be a subdomain such that D € Q, i.e., the closure of D is a compact subset of Q. Note that T3, is quasi-
uniform around D for both types of triangulations. Therefore, we have

Iynllnp < Ch~tynllL,@ forallyy € Yy (3.8)

by applying standard inverse estimates (cf. [23, 36]) to (3.2).
Moreover, we have
1
YrlLe@ < CA+InADZ|lyplln  forall yp € Yy 3.9

by the discrete Sobolev inequality in [17].

Remark 3.2. Estimate (3.9) was established in [17] for quasi-uniform triangulations. But the proof in [17] is also
valid for meshes graded around the reentrant corners since the discrete Sobolev inequality for conforming
Lagrange elements holds for such meshes (cf. [59, Lemma 6.4] and [23, Lemma 4.9.2]).

3.3 The Interpolation Operator I,

Let IT1 be the nodal interpolation operator for the IPx Lagrange finite element on the triangle T. The following
estimates (cf. [23, 36]) are standard:

1 = Tr ¢y + Al = Trllmen + B3 = Tnlleeen < Ch3IC I forall ¢ e HX(T), (3.10)
1§ = M7l + hrl = Trllwieo(ry < ChEI|w2eo(ry  forall ¢ € W2(T). (3.11)
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LetVp=Ynn Hé(sz) be the conforming Py Lagrange finite element subspace of H%(Q) associated with Tp,.
The operator ITj,: E(A; Ly(Q)) — Vp is defined by
(IpOlr =7 (¢|r) forall T € Tp.
It follows from (3.10) (cf. [18, 57]) that

1€ = T llzyc0) + RIS = Tndllz@) + hllS = Trdlln < CRYTIAL L, 0 (3.12)

forall { € E(A; Ly(Q)), where

_]a if Ty, is quasi-uniform, 3.13)
1 if Tp is graded around the reentrant corners, '
and a is the index of elliptic regularity as in (1.6).
In the case where { € H2(Q) N H(l)(Q), we have
1¢ = My + RIS = TRl @) + Al = Tndlln < CR*|{ 52 (3.14)

for both quasi-uniform and graded meshes. In particular, for a subdomain D € Q, interior elliptic regularity
(cf. [42]) and (3.14) imply

1¢ = T,y + R = TGl ) + R = TTllnp < CRAIAL L, (0 3.15)

for all { € E(A; Ly(R)).
The following result provides an estimate of Ay, o I on smooth functions.

Lemma 3.3. Let ¢ be a C* function with compact support in Q. There exists a positive constant C independent
of h such that |Ap(TrP)lz,@) < ClOla2(0)-

Proof. Let D e Qbe an open neighborhood of the support of ¢, and let z, € Y}, be arbitrary. It follows from (2.8),
(3.3), (3.8) and (3.14) that

[ 1806 - )12 dx = ~an(6 - g 22)
2 <@ = Tp@linlizrlln,p < Chlglmz@zrllnp < Cl@lm@)llzrlL, @),

which implies [|Ar(¢ — @)l @) < Cl¢lm2(9). Consequently, we have, in view of (2.11) (with g = 0 = gp),

1A (TIp D)z, 0) < AR — Tp@)lr,@) + 1Ar DN, 0) < ClOlE2(g)- O

3.4 The Ritz Operator R

The operator Rp: E(A; Ly(Q)) — Yy, is defined by
ap(Rnq, zn) = ap(¢, zy) forall zp € Yy, (3.16)
and we have the following well-known error estimates for the SIP method (cf. [18, 57]):

¢ = Radlln < ChTIAL N,  forall { € E(A; Ly(Q)), (317
1€ = RudllLy@) < Ch¥NIAL L0y forall ¢ € E(A; Ly(RQ)). (3.18)

Note that (2.8), (2.11) (with g = 0 = gp) and (3.16) imply

An(RyQ) = Ap = Qu(AQ) forall { € E(A; Ly(Q)). (3.19)
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3.5 Interior Estimates

Let D, and D; be subdomains of Q such that D; € D, € Q. We have an interior energy norm error estimate for
the SIP method (cf. [25, 34])

1€ = Rrdllnp, < C(zmeig ¢ = zallnp, + 1 = RullL,my) forall { € E(A; Ly(R)), (3.20)
h&Xh

and also an interior maximum norm error estimate (cf. [25])

1€ = Ri¢llLown < CIE = TMhlLgws) + R+ IADIE = Tndllyteop,) + 1S = RaCllLowy) + R = TTalln) (3.2

that is valid for all { € E(A; Ly(RQ)), where the norm || - ||W;1:°°(D> is given by
1,00 = . -1 .22
Iwlwtep) Tg}i‘é)["VW"Lm(T) + MAX(I{VW} - NellLg,e) + lel ™ I1[W] ILeoce))] 3.22)

for all w € E(A; Ly(Q)) + Yi.

3.6 The Connection Operator &,

Recall Vy = Y N H},(sz) is the conforming Py Lagrange finite element subspace of H})(sz) associated with Tj. We
can construct an operator ¢, : Y, — Vj by averaging,

Y nln®) 3.23)

Tr(p)

1
(Chyn)(p) = m Te

for any node p of the IPx Lagrange finite element space interior to Q, where T, (p) is the set of the triangles in
Tp that share the node p.
It follows from (2.13) and (3.23) that

Cpvp =vp forallvy € Vi, (3.24)
Cnyn € Ky forallyy € Kp, (3.25)

and for any subdomain D of Q, we have (cf. [13, 14, 16])

W2y = Caynlli, )+ Y, Wn=Cwnlingy <C ) Y lel ™ Iyall, ), (3.26)
TeTh(D) TeT; (D) ecdT
where
T € Ty belongs to T; (D) if and only if St N D # 9. 3.27)

Here St (the star of T) is the union of all the triangles in 7}, that share a common vertex with T.
Moreover, it follows from (3.23) and a scaling argument that

1€ynlrem < Clynlr, s, forall T e Tp. (3.28)

3.7 The Smoothing Operator Ej,

The operator Ep: Yy, — E(A; Ly(Q)) is defined by
AEnyn) = Apyn. (3.29)
It follows from (2.9) (with g = 0), (3.16) and (3.29) that

Yh = Rp(Enyn). (3.30)
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Consequently, we have, by (3.17), (3.18) and (3.29),
NEryn — Yulln < ChT|ARYRIL, @) forallyy € Y, (3.3D
IEryh = YrllLy@) < Ch* | Anyall,@ forallys € Ya. (3.32)

Let G(«7) € Q be an open neighborhood of the active set .«7. Putting (3.15), (3.18), (3.20) and (3.29) together,
we find

WEnYn = Ynlln,cery < ChlARYRIL, @) forallyn € Yh. (3.33)

Note that (3.33) also holds if G(«) is replaced by a subdomain D such that G(«7) € D € Q. It then follows
from (3.2) that

> Y el Myall, ) < CR*IARYIZ, o, forallyp € Y. (3.34)
TeT;(G(<7)) ecoT

3.8 The Operator I,

The operator Ij: E(A; Ly(Q)) — Vy, is defined by (InQ)|r = I7({|r) for all T € Ty, where I7 is the nodal interpo-
lation operator for the Lagrange P finite element on T. It follows from the case k = 1 in Section 3.3 that all the
estimates for II; in Section 3.3 can be applied to Iy.

In addition, we have an obvious estimate

1 ¢lLecry < Il for all ¢ continuous on T, (3.35)
and, by standard inverse and interpolation estimates (cf. [23, 36]),
1q — Inqle(ry < Chitlq — Ingliy(m < Clqlmry  for all q € Pr(D), (3.36)

where the positive constant C only depends on the shape regularity of T and k.

3.9 Estimates for y

It follows from (2.5) and (3.19) and a standard interpolation error estimate (cf. [23, 36]) that
[AR(RRY) = AYlIL,9) = 1Qn(AY) = AV, @) < ChIAY|g1(q). (3.37)
Let D € Q. We have, by (2.6), (3.1), (3.11), (3.22) and (3.27),

y — Iy < Ch?* max |J|wzeo(r), 3.38
Iy = Iyl o) TeTh(D)D’lwz %) (3.38)
19 = Tty < Ch A%, [l (3.39)

Combining (3.12), (3.18), (3.21), (3.38) and (3.39), we find
19 - Rullz., oy < C((1 + In h|)A? + h?) (3.40)

for any subdomain D e Q.
The following lemma provides a simple global error estimate in the maximum norm.

Lemma 3.4. We have
1
Iy — Ryl < C(L+|Inhl)zh". (3.41)

Proof. According to (3.2) and (3.9),
Iy = RiylL@ < 1Y — Ul @ + Iy — RiYllL. @)

< 1y = HnPllzee) + (1 + I ADE TS — RuFlin, (3.42)
which together with (3.12) and (3.17) implies (3.41). O

Remark 3.5. More sophisticated maximum norm error estimates for discontinuous Galerkin methods under
stronger assumptions can be found in [33, 34, 47].
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4 An Abstract Error Estimate

We will measure the error in terms of the mesh-dependent norm | - ||, defined by

Wl = W, @) + BIAYIE, ) 4.)

From here on, we also use (-, -) to denote the inner product on Ly(Q).
Our goal is to establish the abstract error estimate in the following theorem, where y € E(A; Ly(Q)) is the
solution of (2.1) (with g = 0) and y, is the solution of (2.14) (with g5 = 0).

Remark 4.1. For simplicity, we have absorbed various norms of y involved in the error analysis into the generic
constant C that appears in this section and Section 5.

Theorem 4.2. There exists a positive constant C independent of h such that
1
Iy = Iulln < C(h +in€11f( (Y =yl + Mr@ = EyL_ o)) 4.2)
h h
Proof. Let yy € K be arbitrary. It follows from (2.14), (4.1) and the Cauchy-Schwarz inequality that

Wyr = Iul} = On =3, 30 = I1) + BARWR = 9), ben = 1)) + 3 = Y Y — In)
+ B(AnY, An(Yn = 1)) = On = Ya> Yh = In) = B(AYn, A(Yn — 1))
< vk = Ylulyn = Iulln + @ = Ya, yn = In) + B(AnY, AaYr = In)). 4.3)
Since Ep(yn — Vn) € E‘(A; Ly(Q)), we can use (2.2) and (3.29) to write
3 =Y Yh = In) + B(ArY, MaOh = In)) = (9 = Ya, On = ) = ExWr = In)) + (7 = Yar En(Yn — In))
+ B(Ay, A En(Yn —Fn)))

= -Ya On = Yn) = En(yn = yn)) + JEh()’h -yn)du, (4.4
and we have, by (3.32), ©
(= Ya, On = In) = Enn = In)) < CRT AR Yn = I1) Ly 0)- (4.5)

We can rewrite the last term on the right-hand side of (4.4) as

th(yh yndu = j (En(n - Fn) — Chn — )] dit + jw — e du

Q Q Q
. j[fhch@h ) — Ch O —yw)] it + jIh@ _yp)du+ jIh(chyh Py dy
Q Q Q
=T1+Ty+ T3+ Ts+Ts. (4.6)

The estimates for Ty, T4 and Ts are straightforward. In view of (2.3), (2.15) and (3.25), we immediately have

T, = th(lp — &) du <0, @7
Q

Using (1.5), (2.3), (2.4), (2.6) and (3.11) (applied to IT), we obtain

T, = juh@ ) - G- D d < MG - ) - G — Yl @ lu(@)] < Ch2, 48)
Q
Ts = jlh(ehyh 9) i < 10 - Syl (@) 4.9)

Q
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Next we turn to Ty. Let G(«7) € Q be an open neighborhood of the active set .«7. We have, by (2.7), (3.1), (3.2)
and (3.26),

Ty = J[Eh()’h =Vn) = Cu(yn —yn)l du
2

S|EpnYh = Yn) = ChYn = Yn)lm 6wy
(Y B -0n-I0n) (Y 10m =30 - Can - I )

TeTh(G()) TeTh(G())

< NERYR = Y1) = Oh = Y)llnc(er) + ( > Y lelMlyn —yhﬂ||]%2(e))§,

TeT,(G(gr)) ecoT
and hence
T1 < ChllAR(YR = Y1)z, (9) (4.10)

by (3.33) and (3.34).
Finally, we consider Ts. Let wy = InEn(yn — yn). We have, by (2.7), (3.1), (3.2), (3.12) (applied to Iy), (3.26),
(3.33), (3.34) and (3.36),

T3 = J[Ihﬁ‘h()_’h =yn) — Cn(n —yn)l du
)
< HR€h(Vn = Yn) = CaVn — Yl Hi(G())
= Ix[ChPn —Yn) = Wil = [Cn(Pn = Yr) = WrllH1 Gy

< ( Z |¢h(5)h __yh)_Vl/hl%.[l(]‘))i

TeT(G(e7))
1
s( Y 1eOn-y0 - Gn -yl
TeT(G(e/))
1
+ ( Y |G —yn) - En(n —)’h)|12q1m)z
TeT)(G(0))
1
+ ( Y |Ex@n —yn) - InEn(7n —)’h)lipm)z
TeT(G(=)
< hllAR(Yn = )Ly @)- (4.11)

Putting (4.6)—(4.11) together, we find

th(yh ~ym) di < C(h + hIBAOR — Il + IThG — Chym) ),
Q

which together with the inequality of arithmetic and geometric means, (4.1) and (4.3)-(4.5) implies
1
yn = Inla < CCh+ Iy = Fln + Mn@ = Cywl;_ () forallys € Kn. (4.12)

Estimate (4.2) follows from (4.12) and the triangle inequality. O

An Improved Abstract Error Estimate

Estimate (4.2), which is established under assumption (1.5), implies that ||y — y|l» is at most O(h) in general.
However, it can be improved under the following additional regularity assumptions:
¥ € HY(Q), (4.13)
</ has a smooth boundary, (4.14)
¥ belongs to H*(D \ «7), (4.15)



DE GRUYTER S. C. Brenner et al., SIP Method for an Elliptic Optimal Control Problem with State Constraints === 575

for any D e Q that is an open neighborhood of 7. Note that it follows from the interior elliptic regularity for
the biharmonic operator and (2.4) that it suffices to assume (4.15) for just one such D.
Relations (2.2), (2.4) and integration by parts imply

j zdu = j()‘/ -Ya)z dx + ﬁ( J [o(Ay)/on]zds + j(Azy)z dx) (4.16)
o o

Q o

for all z € E(A; Ly(Q)), where n is the outer unit normal on 9.7 and [o(Ay)/on] equals 0(Ay)/dn from the
outside of &7 minus 0(Ay)/on from the inside of 7. Consequently, we have, by (4.16) and the trace theorem,

U z dy’ < Celzllzrd =Gy forall z € E(A; Ly(Q)), 4.17)
)

for any € > 0.
Moreover, assumptions (4.13)—(4.15) also imply the estimate
Y00 - (0| < Ced®™, 4.18)

which holds for any € > 0 and any x € D whose distance to .« is less than or equal to d (cf. [20, Lemma 5.5]).
For simplicity, we assume 7 = 1 in (3.13) in the discussion below.
In view of (4.18), we can improve estimate (4.8) to

Ty < Cch®€ foralle>0 (4.19)
provided that we choose G(.7) so that
dist(Q \ G(«7), &) < h. (4.20)
For the term T4, observe that we have the estimate
VErYr = Y1) = ChOr = YL, 6(er)) < WERQYR = Y1) — On = YL, 6
+1Vn = In) = CaYn = YL, Gery)
< Ch*|ARh = Y1) lLy@) (4.21)

by (3.26), (3.32) and (3.34). Consequently, it follows from (4.10), (4.17), (4.21) and interpolation between Sobolev
spaces (cf. [58]) that

Ty = [(EnOn ~50) = €4On - 1)) dt < ClEROn ~I1) = €4 On = Il *(a(ery
° < Ceh 1A h ~ In)lzace). 4.22)
Note that we can assume G(</) to be a smooth domain so that the interpolation between Sobolev spaces on
G(«7) can be handled without difficulty.
Similarly, using (4.11) (where wy = IyEr(yn — yr)) and a standard interpolation error estimate, we find

1

Hr€h(Fn = Yn) = Cn(Yh = YW)llLy(6(ar)) < ( Y Inl€nGn - yn) = whl - [€n(Tn = yn) - Wh]llizm)7

TeTh(G()) .

< Ch( Z |€h(n —Yn) - W’l'fztﬂm)z
TeTh(G(A)

< Ch21Ar (W = I Iz,
which together with (4.11), (4.17) and interpolation between Sobolev spaces yields

T3 = J[Ihﬂih()_/h - Yn) = Ch(n =yl du < ClInCh(Pn — Yn) — Cnr — Yl (6(wr)

© < Ceh? ™ An(yn - 1)L, @)- (4.23)

Putting (4.1), (4.3), (4.4), (4.5) (with 7 = 1), (4.6), (4.7), (4.9), (4.19), (4.22) and (4.23) together, we arrive at the
improved abstract error estimate

3 . — - 1
Iy = Inln < Ce(h2™¢ +y1r€1}f{ (Y = yalln + 10 = Cyml;_ o)) (4.24)
h h



576 —— S.C.Brenner et al., SIP Method for an Elliptic Optimal Control Problem with State Constraints DE GRUYTER

5 Concrete Error Estimates
The key to derive concrete error estimates is to bound the infimum in (4.2) by constructing a function y; € Kp
with the desired properties.

Lemma 5.1. There existsy, € Ky for h sufficiently small such that

1
15 - yiln + Mn@ = €YIE_ (o < C((L+ I RDER + B7). 5.1
Proof. Let G(«/) € Q be an open neighborhood of the active set /. According to (3.40), we have
en = IR — Yl Gy < C((1+ I ADA* + h*T). (5.2)

Let ¢ be a nonnegative C* function with compact support in Q such that ¢ = 1 on G(«/), and let y; € Y, be
defined by
Y5 = Rpy - epIlng. (5.3

First we show that y, belongs to Kj, for sufficiently small h. Indeed, we have ) —y > § > 0on Q \ G(«/) and
hence
Yo <SR =y+Rny-y) <y -8+ (Rpy-y) onQ\G(),

which, in view of (3.41), implies
Yr(p) < ¥(p) for any vertex p of Ty that belongs to Q \ G(.«/)

provided that h is sufficiently small. On the other hand, for any vertex p of Ty that belongs to G(«7), we have,
by (5.2) and (5.3),
Yr(P) = (RY)(p) — €n =Y(p) + (RrY = Y)(P) — €n < Y(P) < Y(p).

Next we estimate the two terms that appear on the left-hand side of (5.1). According to Lemma 3.3, (3.18),
(3.19), (5.2) and (5.3), we have

Y = yillz@) < 1V = RaYllz, @) + €nlllngllz, @) < Cen, (54)
1A = Y)llz@) = erllAR(TTR )L, @) < Cen, (5.5)

and therefore, in view of (4.1) and (5.2),
19 = Yiln < C((1 + I hR® + K. 56)
For the second term, we find, by (3.24), (3.27), (3.28) and (3.35),
Hh@ = Chyplie(e) < max [y - Cpypll.m

TeTn(G())

< max (I - Tyl + 1€ IRY = Rid) iy + €@l (n)

TeTh(G())

< max y — Iy + [[IIpyY — Rpy +€
TGT;(G(M)(HY WL + TRy = RpYlLo(n) + €n

< max y — Iy + |y — Rpy + €p, 5.7
Te?zw(m)(lb’ Wl + IV = Ryl (m) + €n (5.7

and hence, in view of (3.38), (3.40) and (5.2),
1
In@ = €ypl;_ oy < (A + I RDER+ HT). (.8)

Estimate (5.1) follows from (5.6)—(5.8). O

We can now establish several concrete error estimates.
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Theorem 5.2. Let y, € Ky, be the solution of (2.12)-(2.13) and iy, = —Apyn. There exists a positive constant C
independent of h such that

@ — Tnllz,@) + IV = Vrllzy@) < C((1 + In hl)h + h"). (5.9
Proof. 1t follows from (4.1), Theorem 4.2 and Lemma 5.1 that
1Y = nllz,@) + 180 = Iz, < C((1 + In h))2h + h7), (5.10)
which together with (2.11) (where g = 0 = gp) and (3.37) yields
i - GnllL,@ < IAY = ApYliL,@) + 1A = YL (@)
= Ay = Qr(AV)lL, (@) + 1R (Y = Yr)lLy(@) (5.11)
< C((1+Inh|)? h + hY). O
The following lemmas will enable us to establish estimates for y — y in other norms.
Lemma 5.3. There exists a positive constant C independent of h such that
ynlln < ClARYRIL, @) forallyn € Yp.
Proof. Inview of (3.3), (3.4), (3.16), (3.30), we have
yrlly < an@n,yn) = anErynyn) < IEwrlirllynlin

and hence
lyrlln < WERYRIR < NAERY Ly @) = IARYRIIL,(2)
by (1.7), Lemma 3.1 and (3.29). O

Lemma 5.4. There exists a positive constant C independent of h such that
Inllze @ < ClARYRIL,@) forallyy € Y. (5.12)
Proof. It follows from (3.9), (3.12), (3.29) and (3.31) that
Ivh = Enynllze@) < 1yn = Tr(ERyn)llze @) + I (Enyn) = EnynllL @)
< (1+ I AD? llyn ~ Ta(Enymlin + RENAERYR) L, (2)
< (1+ I AD (llyn — Enyrlla + NERY — Ta(Erym)lin) + RIIAER R L.@)

< (L+ I ADERTIAERY W Izy@ = (1 + I RDERTIARY L) (5.13)

Moreover, we have, by (1.7), (3.29) and the Sobolev inequality,
IErynllze, @) < IErYrllate@) < 1A(ERYlz,@) = 1AnYrllL,@)- (5.14)
Estimate (5.12) follows from (5.13) and (5.14). O

Theorem 5.5. There exists a positive constant C independent of h such that
5 - Fnlla < (L + I AD2h + ), (5.15)
19 - ¥alli@ < C((1+ Inh))zh + h7). (5.16)
Proof. Inview of (3.19), (5.10) and Lemma 5.3, we have
NRRY — Fnlln < 188 RS — IWis@) = 10K ~ Iy < (1 + I ADZR + AT,
and therefore
_ — — — — — 1
Iy = Yrlln < Y = Reylin + IRRY = Ynlln < (1 + [Inhl)2h + h®
by (3.17).
According to (3.19), (5.10) and Lemma 5.4, we have
IRRY = Vrlre@) < 1ARRRY = YL@ = 18h Y = I)llz,@) < (1 +]In h))h + k7,
which together with (3.41) and the triangle inequality implies (5.16). O
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Improved Error Estimates

We can improve estimate (5.1) under additional regularity assumptions. For the discussion below, we assume
(4.13), (4.14) and strengthen (4.15) to
ye HY(Q\ &). (5.17)

Combining y € Hfoc(gz) with (4.13), (4.14) and (5.17), we see that y belongs to C>(Q) and
yeH Q) foralle > 0. (5.18)

For simplicity, we assume 7 = 11in (3.13) and k = 2 in the discussion below.
It follows from (5.18) that

Iy - Tyl < Ch2 (o), (5.19)
and estimates (3.17) and (3.18) can then be improved to
Iy — Rillz,c@) + Rl — Rilln < CR3|91a3(0y- (5.20)

Assumption (4.13) and the Sobolev inequality imply that i € W*P(Q) for any p < co and hence
I - MrYllr () < Cehy € forall T € Tp, € >0 (5.21)
by the Bramble—Hilbert lemma (cf. [11, 39]) and scaling. We can combine estimate (4.18) with (5.21) to obtain
¥ = Wil eieiary < 10 =) = Ta@ = Y)li6an + 1% = Tiplliy, ey < Ceh®™* (5.22)
provided that G(.«) satisfies (4.20). Similarly, the estimate
Iy - DyllwreGeery < Cch*® (5.23)
follows from (3.22), (4.18) and (5.21). Combining (3.21) and (5.20)—(5.23), we have the estimate
€n = IRRY = YL oGy < Ceh® (5.24)
that improves (5.2). Consequently, estimate (5.8) is improved to
1hG = CYDIE .y, < CshE~e (5.25)
by (5.7), (5.22) and (5.24). Putting (5.4), (5.5), (5.24) and (5.25) together, we obtain the estimate
9 = Vil + Mh = Syl oy, < CehE~e (526)

that improves (5.1). Hence we have
o 3_
Iy = Vnln < Cch2™*

by (4.24) and (5.26), and estimate (5.10) becomes
19 = Fnllzae + 18R - In)llLyce) < Ceh? ™,
and thus, in view of (5.18), estimate (5.11) becomes
@ - tnllz,@) < 1AV = AnYllz,@) + 1An (Y = Yr)llLy(@)

< 149 - Qu(AP)lzy(@) + 180T — In)lz(@) < Cehi~e.
Therefore, we have the estimate

I = @nllz,@) + 19 = InllLae) < Ceh? (5.27)
that improves (5.9). Similarly estimates (5.15) and (5.16) can be improved to

Iy = Fnlln < Ceh? ™ and [y - Palso@) < Ceh?™

through (3.42), (5.19) and (5.20).
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6 Numerical Results

We have performed numerical experiments on the SIP method for k = 1 and k = 2, where the penalty parameter
0 = 3k(k + 1) (cf. [41]). The mesh parameter for the j-th level refinement is h; = 8/2. The discrete problems are
solved by a primal-dual active set algorithm (cf. [7, 9, 48, 50]).

We report the errors of the optimal state in || - |z,@) and || - I, and the errors of the optimal control in
I lL,0). We also report the approximation of |y — Vallz. (@) by 1115y — Y1 lleo, which is the co-norm of the finite
element coefficient vector representing Iy — yp.

The approximate solution y; and the operator Iy, are denoted by y; and II;, respectively, in all the tables.

Remark 6.1. We have also tested the SIP method based on the IP3 finite element. The results are similar to the
ones for the IP; element for the examples in Section 6.1 and Section 6.2.

6.1 Square Example
Let Q = (-4, 4)%. We consider the optimal control problem (1.1) with ¥(x) = |x|* -1, =1, g = 0 and

A0 +300 x> 1,
Yalx) = {Azy(x) +y0+2 iflx] <1,

where the optimal state y is given by

x> -1 if |x] < 1,
YX) = qvlxD) + [1 - d(xDIw(x) if1<|x] <3,
w(x) if |x] > 3,

with

_ 4
) = (1% - 1)(1 _ rTl) + }L(r C12(r-3)%,

s =[5 1o ) (5 Jo- 5’
w(x) = Zsin<g(x1 + 4)) sin(%(xz + 4)).

This example from [26] is designed such that .<7 is the disc defined by |x| < 1, and y and @ have zero traces
on the boundary. The numerical results for k = 1 and k = 2 are reported in Table 1 and Table 2, respectively.

Note that the additional regularity assumptions (4.13), (4.14) and (5.17) are satisfied for this example. In view
of (5.18), we have

i=-Ay e H¢(Q) foralle >0, 6.1)
iy =¥ill,e Order Iy - yjlla Order  [IN;¥ - Jjllco Order  [ld - @l Order
0 4.5810 x 10° —  5.3417 x 10" — 9.2024 x 10° —  1.8989 x 10' -
1 3.5379x 10 0.37 3.6566 x 10 0.55  9.5624 x 10° -0.06  4.5579 x 10 -1.26
2 3.0432x10° 3.54  4.0927 x 100 3.16  1.1012 x 10° 312 7.5447 x 10° 2.59
3 1.3713x 10° 115  2.7151 x 10° 0.59  4.1099 x 107" 142 6.1330 x 10° 0.30
4 1.9044 x 107" 2.85  1.1673 x 10° 122  8.0634x 1072 235 2.9217 x 100 1.07
5  4.8280 x 1072 1.98  5.5406x 10" 1.08  2.5790 x 1072 1.64  1.0700 x 10° 1.45
6 1.7648 x 1072 1.45  2.7205x 107" 1.03  7.9764 x 1073 1.69 3.6576 x 107" 1.55
7 1.2534x1072 0.49 1.3587x 107" 1.00 2.9755x 1073 142 1.6622 x 107" 1.14
8 2.4529x 1073 235  6.7554 x 1072 1.01  6.5540 x 10~ 218 5.8690 x 1072 1.50
9 5.1696x 107 2.25 3.3747x 1072 1.00  1.3571x107* 227 2.0999 x 1072 1.48

Table 1: Example on square (k = 1)
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Jjo 1y =¥il@ Order |y - y;lln Order |7 - ¥jllo Order  ||a - djlli,(0) Order
0 3.7032 x10° —  1.4658 x 10! —  1.1510x10° —  9.1462 x 10° -
1 8.3726x10° -1.18  7.3305 x 10° 1.00  1.7694 x 10° -0.62  9.2196 x 10° -0.01
2 3.2350 x 10° 137  5.3145x 10° 0.46  1.3622 x 10° 038 1.4794x 10’ -0.68
3 8.3648 x 107" 1.95  1.5522 x 10° 178  2.6935x 107" 234 6.0855x 10° 1.28
4 1.2604 x 107" 2.73  3.3384x 107" 222  5.7337x 1072 223 2.1357 x 10° 1.51
5 2.8159x 1072 216 7.5093 x 1072 215 6.8294x 1073 3.07 8.1279x 107" 1.39
6 7.2141x1073 1.96  1.8852x 1072 1.99  2.2932x 1073 1.57  2.5827 x 107" 1.65
7 1.2074x 1073 258 4.1633x 1073 218 41299 x 1074 247  9.9289 x 1072 1.38
8 4.1976 x 107 152 1.1245x 1073 1.89  1.3026 x 1074 1.66  3.3727 x 1072 1.56

Table 2: Example on square (k = 2)

and also the Holder regularity
yect Q) foralle>0 6.2)

by the Sobolev Embedding Theorem (cf. [60, Section 2.8]).
The following are the best possible results allowed by the regularity (5.18), (6.1) and (6.2):

5=l - Ch?, k=1, (6.3)
Ilrate) = Ch®, k=2, '

Iy = yall rok=l (6.4)
= Yhlln < :

4 Ch?, k=2,

Iy =yl < " =1 (6.5)
Ilheote) = Cehi¢, k=2, ‘
u-u < .

M Cehi ¢, k=2

The numerical results for ||y — yalln and [ — @nllz, @) in Table 1 and Table 2 match exactly (6.4) and (6.6).
The orders of convergence for ||y - yallz,(@) and [IIny — yallz. (o) are less stable, possibly due to the fact that the
free boundary is a circle that is not captured exactly by the mesh, and that the quality of the representation of
the circle by the meshes varies from refinement level to refinement level. Nevertheless, the numerical results
for |IIny — Yl (@) in Table 1 and in Table 2 (up to the seventh level refinement) indicate (6.5) asymptotically.
The order of convergence for ||y — yallz, (o) in Table 1 also agrees with (6.3). Finally, the order of convergence for
|V = ¥nllz,(@) in Table 2 appears to be at most 5/2, which is less than the optimal order in (6.3) for k = 2.

Note that the O(h) convergence for ||y — yx|ln in Table 1 agrees with estimate (5.15) (for 7 = 1), and the
O(h%) convergence for ||&t - @inll, () in Table 2 agrees with the estimate in (5.27). While these two estimates are
the only ones we can establish within our theoretical framework that match the numerical results exactly, we
have provided a heuristic justification of the other numerical results in Appendix A.

Pictures for the optimal state, the optimal control and the active set computed by the P; SIP method at
level 7 are depicted in Figure 1.

6.2 L-Shaped Domain Example

We extend the previous example to the L-shaped domain Q = (-8, 8)% \ ([0, 8] x [-8, 0]) by shifting the active
set to the center of the upper left quadrant (cf. Figure 2) and by adding the corner singular function

Ps(x) = rs sin(%@),

where (r, 8) are the polar coordinates of x.
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Figure 1: State, control and active set computed by a uniform mesh (k =1, =7)

More precisely, we take f = 1, g € H*(Q) such that g = 415 on 0Q, x. = (-4, 4) (the center of the upper left
quadrant),
YxX) = X = Xa [ = 1+ 495(x),

and
A%H(x) + J(X) if |x —x,| > 1,
Yalx) = z)_l 7 .
Ay(x)+y(x)+2 if [ x—x.]| <1,
where
Ix—x.>-1 if | x —x,| <1,
YOO =4Ps() + v(Ix - x.]) + [1 = ¢(Ix — x. DIw(x — x,) if1<|x—x.| <3,
WX — X,) if |x — x4 >3,

with v, ¢, w as in the previous example.

The numerical results for k = 1 and k = 2 on uniform and graded meshes are displayed in Tables 3 and 4
and Tables 5 and 6, respectively.

Due to the singularity at the reentrant corner, we observe O(hg) convergence for ||y — ynlln on uniform
meshes in Table 3 and Table 5, which agrees with estimate (5.15) for 7 = % — €. For graded mesh refinement
with grading parameter 0.6 for k = 1 and 0.3 for k = 2, the convergence of ||y — ¥zl is improved to O(h) and
0(h?), respectively, as in the square domain example of Section 6.1. The performance of other approximations
on graded meshes is also similar to the ones in Section 6.1.

The pictures of the optimal state, the optimal control and the active set computed by the IP; SIP method on
the uniform mesh atlevel 6 are depicted in Figure 2. We have also included the picture of the active set computed
on the graded mesh, which shows a better approximation.

6.3 Cube Example

We have also tested the SIP method on a three-dimensional example, which is an extension of the example in
Section 6.1.
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Jjo 1y =¥il@ Order |y - y;lln Order |7 - ¥jllo Order  ||a - djlli,(0) Order
0 3.9920 x 10 —  4.4007 x 10 — 9.4995 x 10° —  2.2870 x 10' -
1 3.9904 x 10! 0.00  3.3403 x 10 0.40  1.0482 x 10 -0.14  4.0431x 10 -0.82
2 3.4537 x10° 3.53  5.7522 x 10° 2.54  1.4600 x 10° 2.84  7.4429 x 10° 2.44
3 1.4574 x10° 1.24  3.6802 x 10° 0.64 9.7520 x 107" 0.58 6.1192 x 10° 0.28
4 21943 x 107" 273 1.9689 x 10° 090 6.1792x 107" 0.66 2.9231 x 10° 1.07
5 5.7923x 1072 192 1.1369 x 10° 0.79 3.8999 x 10" 0.66 1.0723 x 10° 1.45
6 1.8490 x 1072 1.65 6.7892 % 107" 0.74 2.4632x 107" 0.66 3.6672x 107" 1.55
7 1.4113x1072 039 4.1360 x 107" 072  1.5534x 107" 0.67 1.6617 x 107" 1.14
8 2.7271x1073 237  2.5482x 107" 0.70  9.7860 x 1072 0.67 5.8672x 1072 1.50
Table 3: Example on L-shaped domain for uniform meshes (k = 1)

i 1y =il Order |ly - yjlla Order [Ny - Jillo Order  [|d — djlli, ) Order
0 3.9920 x 10 —  4.4007 x 10 — 9.4995 x 10° —  2.2870 x 10’ -
1 2.6192x 10! 0.61 2.8876 x 10 0.61 1.0147 x 10 -0.10  3.3432x 10’ -0.55
2 2.6055x10° 3.33  4.4817 x10° 2.69 1.1320x 10° 316  7.5177 x 10° 2.15
3 1.5013x10° 0.80 2.9781 x 10° 059 4.1680 x 107" 144  6.1210 x 10° 0.30
4 2.0284x107" 289  1.3167 x 10° 118  1.5541x 107" 142 2.9203 x 10° 1.07
5 5.7017 x 1072 1.83  6.3409 x 107" 1.05 7.3336x 1072 1.08  1.0716 x 10° 1.45
6 2.0081x 1072 151 3.1756 x 107" 1.00 3.8830x 1072 0.92 3.6665x 107" 1.55
7 1.1602x 1072 079 1.5707 x 107" 1.02  1.5405x 1072 133 1.6612x 107" 1.14
8 25718x1073 217  7.8324x1072 1.00 7.2773x 1073 1.08 5.8662 x 1072 1.50

Table 4: Example on L-shaped domain for graded meshes with grading p = 0.6 (k = 1)

i1y =yile Order |ly - yjlla Order [Ny - ¥jllo Order  [|d - djlli, 0 Order
0 4.2702x10° —  1.1243x10' —  2.2648 x 10° —  8.6780x10° -
1 8.2827 x10° -0.96 7.3681 x 10° 0.61 1.7615x10° 0.36 9.1700 x 10° -0.08
2 3.3045 x 10° 133 5.5664 x 10° 0.40  1.3632x 100 037 1.4789 x 10 -0.69
3 8.3352x 107" 1.99  1.8441 x 10° 1.59  4.3771x 107" 1.64 6.0881 x 10° 1.28
4 1.3230x 107" 266 7.0735x 107" 138  2.7683x 107" 0.66 2.1354 x 10° 1.51
5 3.2286x 1072 2.03  3.9996 x 107" 0.82  1.7469 x 107" 0.66 8.1272x 107" 1.39
6 7.3717x 1073 213 2.4830x 107" 0.69 1.1000 x 107" 0.67 2.5828 x 107" 1.65
7 1.6831x1073 213 1.5603 x 107" 0.67 6.9299 x 1072 0.67 9.9293 x 1072 1.38
Table 5: Example on L-shaped domain for uniform meshes (k = 2)

JoNy =Yl Order Iy —yjlln Order |y -Jjlo  Order & -0l  Order
0 4.2702x10° —  1.1243x 10’ —  2.2648 x10° —  8.6780x10° -
1 1.2868 x 10! -1.59  1.7278 x 10' -0.62 5.9386 x 10° -139  2.4659 x 10 -1.51
2 3.3202x 100 1.95 5.3727 x 10° 1.69  1.4139 x 10° 207  1.4917 x 10 0.73
3 8.3547x 107" 1.99  1.5466 x 10° 1.80  2.6935x 107" 239  6.0817 x 10° 1.29
4 1.2014x 107" 2.80  3.2962 x 107" 223 5.7276 x 1072 223 2.1342 % 10° 1.51
5 27127 %1072 215 7.4216 x 1072 215 6.8314x 1073 3.07 8.1287x 107" 1.39
6 8.0864x 1073 175 1.8834x 1072 1.98 2.3745x 1073 152 2.5826 x 107" 1.65
7 1.4089x 1073 252  4.0875x 1073 220 4.8728x10™* 228  9.9273x 1072 1.38

Table 6: Example on L-shaped domain for graded meshes with grading p = 0.3 (k = 2)

DE GRUYTER
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25 - 2+

20

-5 = 10 -7 = 10

Figure 2: State, control and active set computed by a uniform mesh and the active set computed by a graded mesh for the L-shaped
domain example (k =1,/ = 6)

Let Q = (-4, 4)%. We consider the optimal control problem with ¥(x) = [x|> -1, =1, g = 0 and

Va0 = A%(X) + J(X) if [x] > 1,
A?H(x) +y(x) +2 if|x] <1,

where the optimal state y is given by

x> -1 if x| <1,
YOO = qvlx) + [1 - o(IxDIw(x) if1<|x| <3,
w(x) if |x| > 3,

with radial functions v, ¢ as in the two-dimensional example, and
w(x) =2 sin(%(xl + 4)) sin(j—sr(xz + 4)) sin(%(xs + 4)).

The numerical results are reported in Table 7 for k = 1 and Table 8 for k = 2. The performance of the SIP
method is similar to that in Section 6.1.

17 - Yl Order Iy - gjlla Order |N;y-Jjleo  Order ||d - djll,  Order
1.6410 x 10 —  2.3815x 10 —  9.7347x 107" —  2.3152x 10 -
7.5940 x 10° 111 1.4455 x 10' 072 1.1095x10°  -0.19  2.0836 x 10" 0.15

2.7130 x 10° 1.48  4.8940 x 10° 1.56 5.5711x 107" 0.99  9.4985 x 10° 113
1.3542 x 10° 1.00 3.3239 x 10° 0.56 4.2026 x 10" 0.41  7.6705x 10° 0.31
9.5533 x 1072 3.83  1.5610 x 10° 1.09  8.2658 x 1072 2.35 3.4858 x 10° 114
4.5772 x 1072 1.06  7.7556 x 107" 1.01  1.8483x 1072 216 1.3494 x 10° 1.37

U WN = O

Table 7: Example on cube (k = 1)
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Jjo 1y =¥il@ Order |y - y;lln Order |7 - ¥jllo Order  ||a - djlli,(0) Order
0 2.6455x 10’ —  4.8283x 10 —  2.0914 x 10° —  2.8380x 10’ -
1 3.0710 x 10° 311 3.9681 x 100 3.60 2.7922x 107" 290  7.0809 x 10° 2.00
2 2.3105x10° 0.41  2.9753 x 10° 0.42  1.5391 x10° -2.46  9.9390 x 10° -0.49
3 2.6989 x 107" 3.10  6.1120x 107" 228  6.7021x 1072 452  3.1649 x 10° 1.65
4 1.0293 x 1072 471  1.6018 x 107" 1.93  2.1690 x 1072 1.63  9.7816 x 107" 1.69
5  4.2952x 1073 126 4.5806 x 1072 1.81  3.9147x 1073 247 3.8867 x 107" 1.33

Table 8: Example on cube (k = 2)

7 Concluding Remarks

We have developed a SIP method for an elliptic distributed optimal control problem with pointwise state con-
straints on general polygonal domains. The resulting discrete problems are quadratic programs with box con-
straints that can be solved efficiently by a primal-dual active set method.

By using graded meshes, we can show O(h) convergence (up to a log factor) for the optimal control in the
L, norm, and for the optimal state in the L, norm, energy norm and L, norm under general assumptions on
the data. Better convergence can also be established under additional regularity assumptions.

We have tested the SIP method based on the IP; and PP, discontinuous finite element spaces. The numerical
results are better than our theoretical results. A heuristic justification of the numerical results is provided in
the appendix where an optimal control problem without the pointwise state constraints, but with the correct
assumption on the regularity of the data, is considered.

We expect the interior maximum norm estimate (3.21) can be extended to the other discontinuous Galerkin
methods in [4] along the lines taken in [47], in which case the analysis in this paper can also be applied to the
discretizations of (2.1) based on these methods.

Even though our theory is purely for two-dimensional domains, numerical results indicate that the SIP
method has similar performance in three dimensions. Therefore, the discontinuous Galerkin approach may
provide higher-order methods for the optimal control problem on general polyhedral domains where the dis-
crete problems are quadratic programs with box constraints that can be solved efficiently by a primal-dual
active set algorithm. A rigorous analysis of the SIP method in three dimensions will require an interior maxi-
mum norm error estimate for discontinuous Galerkin methods in three dimensions, which is still absent from
the literature.

A An Optimal Control Problem Without State Constraints

In order to give a heuristic justification of the numerical results observed in Section 6.1, we consider the elliptic
optimal control problem (1.1) without the state constraint (1.4) on a square Q. The optimal control problem is
equivalent to the following problem after dropping the bars over y and u (cf. [52]): find (u, y) € H(l)(sz) X H(l) (Q)
such that

Jyv dx+ﬁjVu-Vv dx = Jydv dx forallv e Hy(Q), (A1)
) ) o
J Vy - Vzdx - J uzdx =0 for all z € Hy(Q). (A2)
2 o

To match the regularity of the Lagrange multiplier in (4.17), we replace yq € Ly(R) by a linear functional F
that belongs to H ~17¢(Q) for any € > 0 and rewrite (A.1)-(A.2) concisely as

B((w,y), (v,2)) = F(v) forall (v,z) € HY(Q) x Hy(RQ), (A3)
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where
B((u,y), (v,2)) :ﬁIVu~Vvdx+ jyvdx— J’ uzdx+IVy-Vzdx.
Q Q Q Q

Remark A.1. Equation (2.2) is identical to (A.3) with

F(v) = Jydv dx + J vdy,
Q Q

where the Lagrange multiplier u satisfies (4.17).

The bilinear form B( -, -) is clearly bounded on H(l](Q) X H(l)(Q). It is also coercive because
B((v, 2), (v, 2)) = BV q) + 1230, forall (v, 2) € Hy(Q) x Hy(Q).
Since Q is convex, elliptic regularity and (A.1) (with y4 replaced by F) imply (cf. [37])
ue H%‘G(Q) for any € > 0, (A4)
and then, since Q is a square and u € H 3¢ Q)n H(l)(Q), elliptic regularity and (A.2) imply (cf. [15, 38])
ye HT¢(Q) for any € > 0. (A5)

The SIP method for (A.3) is to find (up, yn) € Yi x Yy such that

jyhv dx + Bap(up,v) = F(v) forallv e Yy, (A.6)
Q
an(Yn, z) - j upzdx =0 forall z € Yp. (A7)
Q

Remark A.2. The discussion below can also be carried out for the SIP method defined by (A.6) and (A.7) that
involves additional technicalities. For simplicity, we consider instead conforming finite element methods
for (A.3).

Recall V = Y n Hé(Q) is the Py (k = 1, 2) Lagrange finite element space associated with a uniform triangula-
tion T of Q. The discrete problem is to find (uy, yr) € Vi x Vj, such that

Jyhv dx +p J Vup -Vvdx =F(v) forallve Vy, (A.8)
Q Q
J Vyn-Vzdx - J upzdx =0 forall z € Vy, (A9)
Q Q

or equivalently,
B((un, yn), (v,z)) = F(v) forall (v,z) € Vj x Vp.

Comparing (A.1)-(A.2) (where yq is replaced by F) with (A.8)-(A.9), we have the Galerkin relations

J(y —ypvdx +f J V(u-up)-Vvdx =0 forallve Vp, (A.10)
Q Q
JV(y —yh)-Vzdx—J(u—uh)zdx:O forall z € Vp. (A1)
Q Q

Combing the boundedness and coercivity of B(-, - ), the regularity (A.4)-(A.5), the Galerkin relations (A.10)-
(A.11) and standard interpolation error estimates, we obtain the error estimate

. 1_
Iu — uh|H1(Q) + ly _yh|H1(Q) <C inf [Iu - lel(Q) + ly - ZlHl(Q)] < Cghz e, (A].Z)
(v,2)eVpxVy
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which then implies
3
lu = unl,@) + Iy = Yl < Cch2™¢ (A13)

by a standard duality argument.
In the case where k = 1, we can improve the estimate for |y — yalm(g) in (A.12) through relation (A.11) with
z = IIy — yp, which yields

[vo-y-v0 -y axs [vo -y - vy -y ax
0 Q

= j(u = up)(y —yn) dx + I(u = up)(py - y) dx. (A14)
Q Q

It follows from (A.5), (A.13), (A.14) and standard interpolation error estimates that

= Yhling) < CLhY - yali@) + Coeh* + Cae, ki,
which implies (with e; = 1and e; = % )

[V = Yulme) < Ch. (A15)

Remark A.3. The estimate in (A.13) for ||u — uplz,(q) and estimate (A.15) for |y — ynlm () match the results
observed in Table 1.

In the case where k = 2, we need to use a duality argument that is based on the equivalence of (A.3) with the
following fourth-order boundary value problem (cf. (2.2) and Remark A.1):
B J(Ay)(Az) dx + J yzdx=F(z) forallz e HAQ)n Hi(Q). (A16)
Q Q
Note that (A.3) can be interpreted as a mixed formulation of (A.16).
Let ¢ € HX(Q) n Hy(Q) be defined by
B J(Av)(Aqb) dx + J Vo dx = J vy —yndx forallv e HAQ)n H(Q). (A17)
Q Q Q

Since Q is a square, we have
Dlles-c(@) < Celly = Yrllr, @ (A.18)

by the elliptic regularity result in [10] for the biharmonic equation with the boundary conditions of simply
supported plates.
Let i € Hy(RQ) be defined by

J Vyn-Vzdx = J upzdx forall z e Hy(Q). (A19)
Q Q

Then we have
Vnllms-e@) < Cellunlmg) (A.20)

by the elliptic regularity for a square (cf. [37]).
In view of (A.9) and (A.19), y, € V}, is precisely the approximation of y, generated by the standard P,
Lagrange finite element method. Consequently, we have

Vh — Yrlm(o) < Ceh® €|Jnlps-e(@) < Ceh* ™€
by (A.20) and the fact that [upl g1 () is uniformly bounded by (A.12), and then the estimate
¥r - yalzy@) < ChlYn - Yalmi() < Ceh® (A.21)

follows from a standard duality argument.
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Now we take v = y — y, in (A.17) and then use (A.2) and (A.19) to obtain the relation

ﬁjvw _un)Vdx+ j(y Y dx + j(yh ~Jn)¢ dx = J(y Cywldx + j(yh ~ )y - yn) dx,

Q Q Q Q Q

which implies, through (A.10),
-yl = B [ V= un) - V(@ - gy dr+ [ (9 - 36 - Tng) dx
Q Q

N j(yh e dx - j(yh O - yn) dx

o o
< Blu — unlg@)l@ — Mndla) + Iy = Yrll,@Id — Drdllr,@)
+1Vn = Ynlr,@ ol + 1y —Ynl,@lly —yali@)-

In view of (A.13), (A.18), (A.21) and standard interpolation error estimates, we conclude that

5_ -
y = yrl} @) < Creh? Y = YL@ + Coe, 1Y = YallLoco),

and hence
5
Iy = yhllz,@) < Ceh?™® (A.22)

by the inequality of arithmetic and geometric means, which improves the estimate in (A.13).
Finally, we return to relation (A.14) and use (A.13), (A.22) to obtain the estimate

—_ 9
D’ —J’h|2 1 < C1h2[y )’h|H1(Q) + 2’€1h4—e‘1 C3,e2 5—6‘2’
HY(Q) C + h

and hence
v = Yalm(e) < Ceh* e (A.23)

Remark A.4. The estimate in (A.13) for [[u — upllz,(), the estimate in (A.22) for |y — yallz,(o) and the estimate in
(A.23) for |y — yrlmi () match the results observed in Table 2.
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