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ARTICLE INFO ABSTRACT
Keywords: We consider C? interior penalty methods for a linear-quadratic elliptic distributed optimal control problem with
Elliptic distributed optimal control problems pointwise state constraints in two spatial dimensions, where the cost function tracks the state at points, curves

General tracking function

; and regions of the domain. Error estimates and numerical results that illustrate the performance of the methods
C" interior penalty methods

are presented.

1. Introduction +/(y—y2)2w2dx, (1.3)
Q

Let Q C R? be a bounded convex polygon, # be a positive constant,

1 1 :
P ={py,...,py} be afinite set of points in Q, and € = U§=1 @, CQbe K C H; (€)X Ly(Q), and (y.u) € Hy(Q) X L, (L) belongs to K if and

the union of the curves 6, ..., ¢, , where each curve is parametrized by only if
a Lipschitz continuous function deﬁnedvon [0, 1]. The weight funct%ons / Vy.Vzdx= / uzdx Vze H (i @, (1.4)
wy, wy and w, are bounded nonnegative Borel measurable functions
defined on &, € and Q respectively. The desired/observed states y,, Q Q
¥ and y, are Borel measurable functions defined on &, € and Q such v_<y<y, a.e. in Q. (1.5)
that We assume that the functions y satisfy
J L
Zyo(xj)zwo(xj)+ Z/y%wlds+/y§w2dx<oo. (1.1) y/ieW3"’(Q) for ¢>2, (1.6)
j=1 o=z 5 _
4 y_<wy, on Q 1.7)
The optimal control problem is to find
y_<0<y, on 0Q. (1.8)
- .1
(7.) = argmin = [G(y) + llull: (Q)]’ 1.2) Here and below we will follow the standard notation for differential
(aeK 2 2 . )
operators, function spaces and norms that can be found for example in
where [36,1,18].
J L
G(y)= Z(y(pj) — yO(pj))zwo(pj) + Z /(y— yl)zwl ds Remark 1.1. Since Q is convex, the partial differential equation con-
j=1 f=l(gf straint (1.4) implies through elliptic regularity (cf. [43,37,51]) that
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y € H3(Q) if (y,u) € K. Therefore the function G is well-defined by
the Sobolev embedding H2(Q) € C(Q) (cf. [1]).

Remark 1.2. In the case where w, = w; =0 and w, = 1, the function
G reduces to a standard tracking function (cf. [45,55]), and the opti-
mal control problem with pointwise state constraints was introduced in
[31]. In the case where w; = w, =0, it becomes a point-tracking func-
tion (cf. [28,33,27,6,4,5,3]).

Remark 1.3. In general the last term on the right-hand side of (1.3)
defines tracking on the region that is the support of w,.

Remark 1.4. The optimal control problem defined by (1.2)-(1.5) can
be interpreted as a heat conduction problem (cf. [55]), where y is the
temperature, u is the heat source, y, (resp., y; and y,) is the desired
temperature at the points (resp., curves and regions), and y are the
constraints on the temperature in Q. The weights w, w; and w, allow
preferences for the desired temperature.

In the case where y,, y; and y, satisfy the constraints in (1.5) and
the points, curves and regions are disjoint, the optimal control problem
can also be interpreted as a least-squares data fitting problem for a
mathematical model that connects the input u to the output y through
(1.4). In this interpretation y,, (resp., y; and y,) is the observed output
at the points (resp., curves and regions), the constraints in (1.5) provide
a priori modeling information, and the weights w,, w; and w, allow
preferences in the data fitting.

Remark 1.5. By introducing the Radon measure v on Q defined by

J L
/fdv:Zf(pj)wo(pj)+Z/fwlds+/fw2dx, 1.9)
Q =1 =g, Q
we can write
GOy = / 0= 32 dv =1y =34l (110)
Q

where
Yo on P

Ya =N on%\ P , (1.11)
¥ onQ\ (FuUP)

and the condition (1.1) becomes ”yd”iz(ﬂ'v) < 0.

The optimal control papers with point-tracking mentioned in Re-
mark 1.2 are concerned with control constraints. For optimal control
problems with the standard tracking function and pointwise state con-
straints, the traditional approach (cf. [49,52,45,34,32,53]) is based on
reducing the optimal control problem to a problem that only involves
the control. Here we adopt the opposite approach where the optimal
control problem is reduced to a problem that only involves the state,
which can be reformulated as a fourth order variational inequality.

This reformulation was discussed in [54], and the first numeri-
cal scheme based on this idea appeared in [50], where the analysis
was carried out under the ad hoc assumptions from [7] on the free
boundary. These assumptions were later removed by the new conver-
gence analysis in [20], where the regularity results in [41,42,29] for
fourth order elliptic variational inequalities were exploited. Various fi-
nite element methods based on this new approach have appeared in
[24,11,16,12,25,13,17,22].

Comparing with the traditional approach, a distinct feature of the
new approach is that the convergence of the state can also be estab-
lished in the L norm. Another important feature is that the discrete
problems are quadratic programs with simple box constraints where the
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system matrices are available and consequently they can be solved effi-
ciently by the primal-dual active set algorithm in [8,44]. These features
are also shared by the C? interior penalty methods in the current paper.

The rest of the paper is organized as follows. We discuss the refor-
mulation of the continuous problem in Section 2 and present the C°
interior penalty methods in Section 3. The convergence analysis is car-
ried out in Section 4, followed by numerical results in Section 5. We end
the paper with some concluding remarks in Section 6. The appendix A
contains the construction of an exact solution for a problem with point-
tracking.

Throughout the paper we will use C (with or without subscripts) to
denote a generic positive constant that is independent of the mesh size.

2. The continuous problem

As mentioned in Remark 1.1, the constraint (1.4) implies that y €
HXQ)n H(; (Q) € C(Q). In view of (1.10) and the relation u = —Ay from
(1.4), the optimal control problem defined by (1.2)-(1.5) is equivalent
to the following minimization problem:

Find y=argmin l 2.1)

2 2
frare ) ﬂ”Ay”LZ(Q) + ”y_yd”Lz(.Q;v) B

where

K={ye H*QnH)Q):y_<y<y, inQ}. (2.2)

It follows from the standard theory of calculus of variations (cf.
[48,39]) that the minimization problem defined by (2.1) and (2.2) has
a unique solution y € K characterized by the fourth order variational
inequality

ﬂ/(A)")(Ay—A)”)dx+/()7—yd)(y—)7)d\/20 VyeKk,
Q Q

which in turn is equivalent to the following generalized Karush-Kuhn-
Tucker conditions (cf. [47, Chapter 1, Theorem 1.6]):

ﬂ/(Ay)(Az)dx+/(i—yd)zdvz/zdu Vze HX(Q)n Hy(Q),
Q Q

Q
2.3)
where y is a regular Borel measure, such that
u>0 if y=yw_, 2.4
u<0 if y=y,, (2.5)
u= otherwise. (2.6)

Remark 2.1. It follows from (2.4)-(2.6) that the support of u is the
union of the active sets &/, defined by

A, ={xe€Q: jx)=w, (0} 2.7)

Note that o/, are compact subsets of Q by the assumption (1.8). There-
fore yu is a bounded measure.

We can also rewrite (2.3) as

A(i,z)—/ydzdv=/zdy, (2.8)
Q Q

where

.A(y,z):ﬁa(y,z)+/yzdv 2.9

Q
and (cf. [43, Section 4.3])

a(y,z)=/(Ay)(Az)dx=/D2y :D’zdx  Vy,ze H(Q)NH)(Q).
Q Q
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(2.10)

Here D?y is the Hessian matrix of y and D?y : D%z is the Frobenius
inner product of D%y and D?z.

2.1. Regularity of y

Let the adjoint state p € L,(£2) be defined by

/p(—Az)dx:/()'z—yd)zdv—/zdu (2.11)
Q Q Q

forall ze H*(Q)n Hé (). Then we have (cf. [30, Theorem 1])
PEW’(Q  Vs<2. (2.12)

Remark 2.2. Since € U & and the support of u are compact subsets
of Q, the adjoint state j belongs to H? in a neighborhood of dQ and
vanishes on 0Q.

It follows from (2.3) and (2.11) that

i=-Ay=—(1/PpEW, Q) Vs<2, (2.13)

and, in view of Remark 2.2, i belongs to H? in a neighborhood of 0Q
and & =0 on 0Q.

According to (2.13), the solution j € K C H*(Q) n Hy(Q) of (2.1)
satisfies

Ay=p/pinQandjy=0 on oQ. (2.14)

It then follows from (2.12), (2.14) and interior elliptic regularity (cf.
[2, Section 14] and [46, Lemma 17.1.1]) that

W3,S(Q)

loc

ye Vs<2. (2.15)
Moreover we can conclude from Remark 2.2, (2.14), (2.15) and the
elliptic regularity theory for polygonal domains (cf. [43,37]) that glob-

ally

je H™(Q) (2.16)

for some a € (0, 1), where the index of elliptic regularity a is determined
by the angles at the corners of Q.

Remark 2.3. In the absence of point-tracking (the case where w, =0
in (1.3)), the index « in (2.16) can equal 1 by the regularity result for
fourth order variational inequalities in [41]. In this paper we always
assume that point-tracking is present and therefore @ < 1 because of
(2.15).

2.2. Regularity of u

In view of (2.7) and the assumption (1.7), we have

d_ngd, =0. (2.17)
The Hahn decomposition of yu is given by
H=p_+p, (2.18)

where yu_ is the finite nonnegative Borel measure (cf. (2.5)) defined by

u_(By=u(Bng_) for all Borel subsets B of Q, (2.19)

and y, is the finite nonpositive Borel measure (cf. (2.4)) defined by

u,(B)y=uBnd,) for all Borel subsets B of Q.

Since the support of u, (resp., u_) is a subset of the active set &/,
(resp., &/_), we have

(2.20)
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Jo-voan=0 and [ G-voau =0 (2.21)
Q Q

Let z€ H*(Q)n H é (Q) be arbitrary. Because of (2.17) we can con-
struct ¢ € C°(Q) such that ¢ = 1 in a neighborhood of &/, and ¢ =0 in
a neighborhood of &/_. It follows from (1.9), (1.11), (2.3), (2.15), (2.18)
and integration by parts that

/zdy+=/¢zd/4
Q

Q

=p /(Ai)[A(d)Z)]dx + /(Y —Ya)(p2)dv
Q Q

J
> woe)IFp;) = y0p1b(P)z(p))
o

J

=ﬁ/V(A)7)~V(¢z)dx+
Q

/ wy(¥ — y)(pz)dx,

Q

L
+Y / wy (5= y))(p2)ds +
f:l%af

and hence, by (2.15), the trace theorem and the Sobolev embedding
H'*¢(Q) c C(Q), we have

)/zdmjgcenznmﬂ@) Vze HXQ)n H)(Q) (2.22)
Q

and for any ¢ > 0.
Givenany z€ H I+e(Q), we can construct a sequence z, € H 2@ n
Hé(Q) such that z,¢ converges to z¢ in H'¢(Q) as n — 0. Hence we

can extend the definition of the integral / zdu, to z € H'*¢(Q) such
Q
that the estimate in (2.22) remains valid. In other words, we have

)/Zd/q,’SCEllZHHHe(Q) Vze H'*(Q), (2.23)
Q

which holds in particular if z € H(;(Q) is a finite element function.
Similarly, the estimate (2.23) also holds if y, is replaced by u_.

3. C interior penalty methods

Let 7}, be a simplicial triangulation of Q. We will denote the set of
the vertices of 7, by V,, and the set of the edges of 7}, interior to Q by
& ;, The diameter of T € 7, is denoted by A, and the mesh parameter
h equals maxrcy, hy. The nodal interpolation operator for the P, finite
element space associated with 7}, is denoted by I;,.

Let V, C H(; (€2) be the P, (k > 2) Lagrange finite element space
associated with 7}, (cf. [36,18]). The discrete problem is to find

) 1 5
yp = argmin 5 [ﬂah(yh,yh) +1yn—ya ||L2(Q;v)]’ 3.1

yh€Kp

where

Ky={y,€Vy: Liw_ <Ly, <Ipy,}, 3.2)

ah(yh,zh)=z ‘/Dzy;l : D2zh dx + Z ahe_l
T

TET, e€E)

/[[dyh/dn]][[azh/dn]] ds
’ (3.3)

+y [{{02yh/6n2}}llazh/6n]]+ {{62zh/0n2}}[[dyh/6n]]]ds,

e€E, %

h, is the diameter of the edge e, and ¢ > 0 is a penalty parameter.

The bilinear form a(-,-) defined by (3.3) is the CY interior penalty
bilinear form (cf. [40,19,10]) that approximates the bilinear form a(-, )
defined in (2.10). Given a unit normal » of an edge e € £ i the jump
[0v/0n]] and the mean {d%v/dn?} across e are defined by
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v, v v, v
ovfon]] = — — — + — )

Lov/an] on on on? on?
where v, is the restriction of v to T, the two triangles that share e as
a common edge, and the vector n points from 7_ to T, . Note that these
definitions are independent of the choice of n, and they are well-defined
on any function v that is piecewise H? with respect to 7},.

We can describe the properties of a,(-,-) in terms of the norm | -
le(QsTh) defined by

and {0%v/on*} = %(

|v] 3.4

2 ket ov/ondl .

2 _ Z 2
war = 24 eyt
TeT), eES"l

The derivations of the following estimates can be found in [19,10]:
there exist positive constants C; and C; such that

Y Yz € Vs (3.5)

(3.6)

ap(yp, 2p) < Cilyp |H2(Q,Th) |Z|H2(Q,Th)

2

H2(Q,T}) V3n € Vi

ap(Yp,yp) 2 Celypl
provided o is sufficiently large (which is assumed to be the case from

here on).

Remark 3.1. It follows from the Poincaré-Friedrichs inequality for
piecewise H 2 function in [26] that

||U||L2(Q) < C|U|H2(Q’Th) (3.7)

for all v e Hé (Q) that is piecewise H? with respect to 7, where the

positive constant C only depends on the shape regularity of 7;,.

The analysis of the Y interior penalty method defined by (3.1)-(3.3)
relies on the regularity of y and y presented in Section 2 and two linear
operators I, and Ej,.

3.1. The operator I1,,

The operator I1;, : H 2@)n Hé (Q) — V, is the Lagrange nodal in-
terpolation operator. It follows from (2.2) and (3.2) that

I1, maps K into K. (3.8)

In particular, K, is nonempty and hence the minimization problem
(3.1) has a unique solution jy, € K, characterized by the discrete varia-
tional inequality

ﬁah()_/h,yh—)_ih)+/()7h—yd)(yh—)_)h)deO Vy, € Ky,
Q

which can be written as

Ah(ﬁh,yh—ﬁh)—/yd(yh - ypdv=0 Vyy € Kp, (3.9)
Q

where the bilinear form

Ah(yh,zh)=ﬂah(yh,zh)+/yhzhdv (3.10)

Q

approximates the bilinear form A(:,-) in (2.9).

The following error estimates for Il,y, which are based on the
Bramble-Hilbert lemma (cf. [9,38]) and the regularity estimates (2.15)-
(2.16), can be found in [19,23].

We have
||}_’_Hh}_’||L2(Q) SCh2+T, (3.11)
17 =31 g1y <cn't, (3.12)
15— T1,7ll ;@) < Ch'™, (3.13)
1
- 12 2 z
(X 15-Mit,, ) <cn, (3.14)

TET,
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where
a if 7}, is quasi-uniform
T=Y1-¢€ ifT,is graded around the corners of Q where the interior -

angles are > (7 /2)

(3.15)

Here « is the index of elliptic regularity in (2.16) and € can be any
positive number.

Remark 3.2. Details of the graded mesh can be found in [24, Sec-
tion 2.1]. Since the singularities around the corners of Q (with respect
to H?3 regularity) are resolved by the graded meshes, the interpolation
error estimates for I,y are determined by the interior regularity (2.15)
which leads to 7 =1 — ¢, and the constant C in (3.11)-(3.14) increases
to oo as € decreases to 0. This dependence on ¢ also holds for the con-
stants in the estimates in the rest of the paper where 7 =1 —e.

Remark 3.3. In the case where Q is a square, the optimal control y
is H> near 0Q and hence its overall regularity is determined by the
H 130;6(9) interior regularity. Therefore for such a domain the estimates
in (3.11)-(3.14) (and the results in Section 4) hold for =1 — € on
quasi-uniform meshes.

There are two simple consequences of (3.11)-(3.14). We have, by
(3.12), (3.14) and the trace inequality with scaling,

(3wt I@s/om - @ar,n/oml )" <ch. (316)
eeé'z

Moreover it follows from (1.9) and (3.11)-(3.13) that

17 = 1,70 Ly < CRF (3.17)

3.2. The operator E,,

Let W), C H*(Q)n H,j(Q) be the Hsieh-Clough-Tocher finite element
space (cf. [35]) associated with 7},. One can define an operator Ej, :
V, — W}, by averaging (cf. [14,10]) such that
(3.18)

(Epyp)@)=yp(p) VpeE),

and

—4 2 -2 2 2
> (h v = Bl + 7210 = Envl o, + 1By )
TET,

SC|yh|2

H2(Q.T;)’ (3.19)

where the positive constant C depends only on the shape regularity of
T

It follows from (1.9), (3.19), the trace theorem and a discrete
Sobolev inequality (cf. [18, Section 4.9]) that
Vyh S Vh'

1
lyh = Epyall Lyny < CAA + 1 InRD2 |4l 2o 77 (3.20)

Remark 3.4. There is no need to invoke the discrete Sobolev inequality
if the tracking points p(, ..., p; belong to V,. In this case the term (1 +

1
|Inh|)Z in (3.20) can be removed. This observation is important for the
analogous optimal control problem in three spatial dimensions.

The derivations of the following estimates that connect I1, and E,,
which rely on the regularity of y in (2.15)-(2.16) and the Bramble-
Hilbert lemma, can be found in [19,23,20]. We have
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17 = EpT1, 30l 1,0y < CH**, (3.21)
7 = EpIL, 5] 1) < CR'™, (3.22)
17— Exllp3ll L@ < CA'*T, (3.23)
15— E1, 5] o) < ChT, (3.24)
and
a, (3, y0) = a3, Epyy) <CR vl prory VY0 € Vs (3.25)

where 7 is given by (3.15).

Remark 3.5. The estimates (3.21)-(3.24) indicate that E,II, behaves
like a quasi-interpolation operator. The estimate (3.25) indicates that
E, and II, are approximate adjoint operators with respect to the bilin-
ear forms a(-,-) and a,(:,-).

4. Convergence analysis

We will carry out the convergence analysis in terms of the mesh-
dependent norm || - ||, defined by

2 2
llolly, = Alv]

2
P [ “.1)

In view of (3.4)—(3.6), (3.10) and (4.1), there exist positive constants
Cy and C,, such that

Apn>z0) S Cyllypllpllzplly, Y yps 24 € Vs (4.2)
ApGneyn) 2 Gollyall? Yy, €V (4.3)

Moreover (3.14)—(3.17) and (4.1) imply

|7 =11, 31, < Ch®. (4.9)
It follows from (3.8), (3.9), (4.3) and (4.4) that

15 =517 <2115 = T, 3117 + 210,53 = 5,17

< C R + G Ay (1,5 = 34, 11,5 = ) (4.5)
< C R + Gy A (5,11, 5 - 5) - / 51,5 = 7)dv].
Q

The key is to bound the second term on the right-hand side of (4.5).
We will show that

Ah(HhJ_’7HhJ_’_J7h)_/yd(nhl_’_yh)d‘/ﬁc(hzr+hT||HhJ_’_J_’h||h)a
Q
(4.6)

and then the convergence analysis is completed as follows.
Theorem 4.1. There exists a positive constant C independent of h such that
l7 = yully <ChT, 4.7

where 7 is given by (3.15).

Proof. We have, by (4.4)-(4.6),
7= Full; < C[R* + A7 (I3 = 3l + 17— Fln) ]
< C[R*" +h71|y = Fyll]-
which implies (4.7) through the inequality of arithmetic and geometric

means. []

We will establish (4.6) by reducing it to an estimate at the continu-
ous level.
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4.1. Reducing (4.6) to the continuous level

We begin with an analog of (3.25).

Lemma 4.2. There exists a positive constant C independent of h such that

A3, yp) = AG Epyp) SCR yplly, - Yy, €V (4.8)

Proof. According to (2.9) and (3.10), we have
Ay 3, yp) = AG, Epyy) = Blag(@1, 3, yy) — a(3, Epyy)]

+/(Hh)7—)7)yh dv—/ﬁ(yh—Ehyh)dv,
Q Q

which together with (3.7), (3.15), (3.17), (3.20), (3.25) and (4.1) im-
plies (4.8). [

It follows from (4.2) and Lemma 4.2 that
ALy, 11,5 - 3,) = A3 10,5 — ) + AL,y — 3,1,y - 3,)  (4.9)
< A(J, Ep(T,5 = 3p)) + ChT 11,5 = Fyll-
Furthermore, the estimate (3.20) implies

—/yd(l'[h)?—)'ih)dvS—/ydEh(Hh)?—)'Jh)dv+ChT||Hh)7—)7hI|h.
Q Q

(4.10)
Putting (4.9) and (4.10) together, we arrive at
ALy, 11,5 — 3,) — / (1,3 = yp)dv (4.11)
Q
< [A(J_’, E @, 5 -75) — / Vo En(Mpy = 3p)dv| + Ch™ ||, 3 =yl .

Q

Comparing (4.6) and (4.11), we see that the proof of (4.6) has been
reduced to an estimate for the first term on the right-hand side of (4.11),
which does not involve the discrete bilinear form A, (-, -). Therefore we
can use (2.8) and (2.18) to write

A3, E (01,5 - 3,)) — / Yo Ep(, 5 — 5,)dv (4.12)
Q
=/E,,(H,,y—y,,)d;4++/Eh(H,,y—y,,)dy_.
Q Q

4.2. Completing the proof of (4.6)
We will focus on the first integral on the right-hand side of (4.12).

The other integral can be bounded analogously.
In view of (2.21), we can write

/Eh(nhf’_f’h)dMZ /(Ehnh)_’—f’)dm"'/(%,—Ihl//+)d/4+
o a o
(4.13)

+/(Ih‘l/+—IhEhJ7h)dl4+
o

+ /(IhEh)'zh —Epypdu,.
Q
For the first term on the right-hand side of (4.13), we have

/(Ehnh)—’ = Pdpy < | p(ADNE, 5= 3l < Ch'** (4.14)
Q
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by (3.23), and we can use a standard interpolation error estimate for I,
(cf. [36,18]) to bound the second term by

/(W+ - IhW+)d/4+ < |/4+('Qf+)| ”l//+ - Ihl//+”Lm(Q) < Ch2 (4-15)
Q

because y, belongs to W2’°°(Q)_ by the assumption (1.6) and the
Sobolev embedding whaQ) c C(Q) for ¢ > 2.
Since y, is nonpositive, the third term satisfies

/(Ihlll+ — L Epyp)du, = /(Ihll/+ —Iyyp)du, <0 (4.16)
Q Q
by (3.2) and (3.18).
We can split the last term on the right-hand side of (4.13) as
4.17)

/(IhEh)_’h —Epyp)du,
o

:/[Ih(EhJ_’h—J_’)—(Eh)_’h—)_’)]dlh.+/(1h}7—)_’)d/4+,
Q Q

and we have

/(IhJ_’ —Wdpy < pu (D)7 - J_’||Lw(9¢+) < Cehz_e (4.18)
Q

by (2.15) and a standard interpolation error estimate for I,.
Finally, it follows from (2.23), (3.19), (3.24) and a standard inter-
polation error estimate for I, that
/ [TW(Ep3h — 9) — (Ey 3y, — D] d s,
Q
SC W (Epy, — ) — (Epyy — )_’)|Hl+s(g)
< Ch"™|Ey3h — Pl 2o
< Ch]7€(|Eh(J7h - HhJ_’)|H2(Q) + |EhHhJ_’ - J_"HZ(Q))
< Ch' (15 = T3l + A7)
Combining (4.13)-(4.19), we have

(4.19)

/ Ep(,5=p)duy < C(h™T+ 2+ 127+ h* 7+ 0=, 5= 4 l15)
Q

and hence, in view of (3.15),

/ Ep(T5 - 5)du, < C(R + h¥ 1T, = 5y l)- (4.20)
Q

Similarly, we have
/ E,(I,5 - p)du_ < C(R* + 1,5 = 74l5)- (4.21)

Q
The estimate (4.6) follows from (4.11), (4.12), (4.20) and (4.21).

4.3. Other convergence results
We can approximate the optimal control & by &, = —A,j,, where

A, is the piecewise defined Laplacian with respect to 7;,. The following
result is a direct consequence of (4.1) and Theorem 4.1.

Corollary 4.3. There exists a positive constant C independent of h such
that

i =yl Ly < ChT.

We can also establish error estimates for j— j, in lower order norms.
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Corollary 4.4. There exists a positive constant C independent of h such
that

17 = Pull L, + 17 = Prlgrg + 17— Pl @ < Ch".

Proof. The estimates for ||7— ¥yl ., ) and |17 =yl 1 () follow imme-
diately from (4.1), Theorem 4.1 and the Poincaré-Friedrichs inequality
for piecewise H 2 functions in [26].

Similarly the estimate for ||y — y,ll;_q) follows from (4.1), Theo-
rem 4.1 and the Sobolev inequality for piecewise H? functions in [15,
Appendix]. []

Remark 4.5. Numerical results in Section 5 indicate that the estimates
in Corollary 4.4 are not sharp.

5. Numerical results

In this section we report the results for two numerical examples on
square domains where the computations were carried out on uniform
meshes. Consequently 7 equals 1 — ¢ for any € > 0 in Theorem 4.1,
Corollary 4.3 and Corollary 4.4 (cf. Remark 3.3). The first example only
involves point tracking and region tracking, and the exact solution is
constructed through the procedure in Appendix A. The second example
involves all three types of tracking functions, where the exact solution
is not available.

The discrete problems are solved by the PDAS algorithm in [8,44].

Example 5.1. We follow the procedure in Appendix A to obtain an
exact solution for (2.1)~(2.2) on Q = (—4,4)?, where w; =0, w, =1,
p=1,y_=-o0and

w0 =Ix* - L

The active set & is the disk {x : |[x| < 1} and we use the function v in
[13, Example 7.1].
We track the state at the following points that do not belong to V;:

p1 =(=2.49,2.51), p, = (2.51,-2.51), py =(2.49,2.51),
pa =(~=2.51,2.49),

with the weights wy(p,) = wy(p,) = wy(ps) = wy(py) = 100.
The function ® € CS(Q) that satisfies (A.5) is given by ®(x) =
{(x1)¢(x,), where

0 if d, <1,
'7(;_—65) if ¢, <t<d,,
276
1 if by <1<c,,
nGEs) i ay<i<b,
2742
Zt)=40 if d;<t<a,,
n(-—=) if ¢ <r<dy,
17¢1
1 if b <t<ec,
by—t .
n(bll_al) if a<1r<by,
0 if t<ay,
with
a;=-7/2, by =-3, ¢ =-2, dy=-3/2,
ay =3/2, by =2, ¢ =3, dy=1/2,
and

n(t) = (1 + 41 + 102 +2023)(1 — ™.

The exact solution j is then defined by (A.6), where 6 = 0.1. The
targets yo(p;) for 1 < j <4 are given by (A.8) and the target y, is given
by (A.9).
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Table 5.1
Relative errors of the state versus mesh size 4 and orders of convergence (P, element) for
Example 5.1.
h e, order €y order e(’)'h order e, order
2-! 9.6413e-1 - 5.4460e-1 - 2.0670e-1 - 3.4617e-1 -
22 6.1450e-1 0.65 2.5521e-1 1.09 8.5745e-2 1.27 1.4600e-1 1.25
23 5.1126e-1 0.27 1.6734e-1 0.61 4.6488e-2 0.88 1.4090e-1 0.05
274 2.6839%e-1 0.93 7.1839e-2 1.22 1.7819e-2 1.38 5.7271e-2 1.30
2-3 1.3523e-1 0.99 2.8121e-2 1.35 5.8638e-3 1.60 2.1555e-2 1.41
26 6.4002e-2 1.08 9.1345e-3 1.62 1.6972e-3 1.79 6.7055e-3 1.68
Table 5.2
Relative errors of the control versus mesh size 4 and orders of convergence (P, element) for Example 5.1.
h 2-! 272 273 274 2-5 26
g -l /lill g~ 9.850lel  6.2449-1 5.2082-1  2.715le-l1  1.359le-1  6.3854e-2
Order - 0.66 0.26 0.94 1.00 1.09
Table 5.3
Relative errors of the state versus mesh size 4 and orders of convergence (P; element) for
Example 5.1.
h e, order eq'h order e(’)'h order en order
2! 2.8861e0 - 5.6489e0 - 4.5143e0 - 3.4806e0 -
20 1.7906e0 0.69 3.7298e0 0.60 3.6158e0 0.32 3.2830e0 0.08
2-1 8.4475e-1 1.08 3.8210e-1 3.29 1.3201e-1 4.78 2.0883e-1 3.97
22 4.7260e-1 0.84 9.9812e-2 1.94 1.7288e-2 2.93 2.6302e-2 2.99
273 1.6540e-1 1.51 2.2119e-2 2.17 3.1072e-3 2.48 1.1167e-2 1.24
24 7.2488e-2 1.19 4.9158e-3 217 1.2571e-3 1.31 2.7623e-3 2.02
Table 5.4
Relative errors of the control versus mesh size 4 and orders of convergence (P; element) for Exam-
ple 5.1.
h ol 20 9-1 0-2 23 o4
la—ayll 2/l 2y 2.8807€0  1.7714e0  8.6255e-1  4.8265e-1  1.6892e-1  7.4030e-2
Order - 0.70 1.04 0.84 1.51 1.19

We discretize (2.1)-(2.2) by the P, (resp., P;) Lagrange finite ele-
ment on uniform meshes with penalty parameter ¢ = 100 (resp., 1000).
The numerical results are presented in Tables 5.1-5.4, where the rela-
tive errors of the state are defined by

e;, =|y- )_’h”h/”J_’”HZ(Q), eﬁ,h =|y- J_’h”Hl(Q)/”)_’”Hl(g)s

eon =17 = Full 2y /I3 202 Coon = pné% [3(p) = 7N/ 1P|l oo ()

The convergence for the state in the || - ||, norm (resp., the conver-
gence of the control in the L, norm) agrees with Theorem 4.1 (resp.,
Corollary 4.3) where 7 = 1 —e. The convergence of the state in the other
norms is better than the convergence predicted by Corollary 4.4.

It is also observed that the relative errors for the Py finite element
method at 2 =2~ are comparable to the relative errors for the P, finite
element method at h = 27%, Therefore the cubic C° interior penalty
method is more efficient for this example.

The graphs for the optimal states, optimal controls and active sets
are displayed in Fig. 5.1 and Fig. 5.2.

Example 5.2. We consider an optimal control problem on Q = (0, 1)?
that involves all three types of tracking functions. We take f =1, w_ =
—oo0 and

W, =5—1[(x; —0.5)% + (x, — 0.5].

The point tracking occurs at p; = (0.375,0.625) and p, = (0.625,
0.625) (cf. Fig. 5.3), and we take yy(p;) = 4.8, yy(py) = 4.6, wy(p;) =
2000 and wy(p,) = 500.

86

The curve tracking takes place at the boundary of the square with
vertices (0.125,0.125), (0.875,0.125), (0.875,0.875) and (0.125,0.875)
(cf. Fig. 5.3), and we take y; =4.5 and w, = 700.

For the region tracking we choose w, = 1000y,, where y, is the
characteristic function of the rectangle R with vertices (0.375,0.25),
(0.625,0.25), (0.625,0.375), and (0.375,0.375) (cf. Fig. 5.3) and we take
¥, =47.

Note that for this example the pointwise state constraints are satis-
fied by the target functions y,, y; and y,. Therefore it can be interpreted
as a least-squares data fitting problem (cf. Remark 1.4).

The optimal control problem is solved by the quadratic C° finite
element method with ¢ = 100. The numerical results are reported in
Table 5.5 and Table 5.6, where the relative errors of the state are de-
fined by

¢y = 13n2 = ulla/ 52 lln»
eih = IIJ7h/2 - J_’h”Hl(Q)/”)_’z—9 ”HI(Q)s
e(r),h = IIJ_)h/2 - a‘_’h”Lz(Q)/”,‘_’zf‘) ||L2(Q),
oo = max [Fp2(p) = J_’h(P)Vpﬁé%t [72-0 (D).

The convergence for the state in the || - ||, norm (resp., the conver-
gence of the control in the L, norm) agrees with Theorem 4.1 (resp.,
Corollary 4.3), where 7 = 1 — €. The convergence of the state in the
other norms is better than the convergence predicted by Corollary 4.4.

The graphs for the optimal state, optimal control and active set at
h =27 are displayed in Fig. 5.4 and Fig. 5.5.
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State with h = 27* (P5 element)
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P

4

Control with h =274 (P; element)

Fig. 5.1. Graphs of optimal states and optimal controls for Example 5.1.

-4 3 2 1 0 1

2 3 4

Active set with h = 2% (P, element)

Fig. 5.3. Point, line and region tracking.

4r

-4

-4 3 2 1 0 1 2 3 4

Active set with h = 27* (P3 element)

Fig. 5.2. Active sets for Example 5.1.
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6. Concluding remarks

We have constructed C° interior penalty methods for a linear
quadratic elliptic distributed optimal control problem with pointwise
state constraints and a general cost function that involves tracking at
points, curves and regions of the domain. It is based on reformulating
the optimal control problem as a minimization problem that only in-
volves the state. The results in this paper can be extended to problems
with both pointwise state and pointwise control constraints by using a
cubic C° interior penalty method (cf. [21]).

For simplicity we have performed numerical experiments on rect-
angular domains with uniform meshes which is sufficient to guarantee
O(h'=¢) estimates for the errors that appear in Theorem 4.1, Corol-
lary 4.3 and Corollary 4.4. These O(h'~¢) error estimates are also valid
for a general convex domain provided we use local mesh refinements
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Table 5.5

Relative errors of the state versus mesh size 4 and orders of convergence for Example 5.2.
h e, order e} h order  ej, order el " order
273 9.5382e-2 9.8750e-2 6.0017e-2 6.4915e-2
24 4.8085e-2 0.99 4.2391e-2 1.22 2.5509e-2 1.23 3.4311e-2 0.92
273 2.3055e-2 1.06 1.4364e-2 1.56 7.7981e-3 1.71 1.1588e-2 1.57
276 1.1124e-2 1.05 4.6165e-3 1.64 2.1994e-3 1.83 3.6465e-3 1.67
277 5.3350e-3 1.06 1.3428e-3 1.78 5.8472e-4 1.91 1.0256e-3 1.83
278 2.6061e-3 1.03 3.6717e-4 1.87 1.5988e-4 1.87 2.7192e-4 1.92

Table 5.6

Relative errors of the control versus mesh size & and order of convergence for Example 5.2.
h 273 274 273 2°6 277 278
lans —nllo/ ol @ — 270e1  14lel  7.03e2  3.44e2  165e-2  8.04e-3
order - 0.93 1.01 1.03 1.06 1.04

0 o

Fig. 5.4. Graphs of optimal state (left) and optimal control (right) for Example 5.2 at h=2"".
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Fig. 5.5. Active set for Example 5.2 at h =27".

around the corners where the interior angles are strictly larger than
/2.

One can consider an analogous optimal control problem on three
dimensional domains, where the cost function also includes tracking on
surfaces inside the domain in addition to tracking on points, curves and
regions. In this case the regularity estimate (2.12) for the adjoint state
p becomes (cf. [30, Theorem 1])

loc

_ Ls 3

PEW, (L) Vs < 7

and hence the regularity estimate (2.15) for the optimal state j becomes
FEWH(Q Vs< %

Consequently the error estimates on uniform meshes are O(h(!/2-¢)
even for a rectangular parallelepiped. However, since the deterioration
of the elliptic regularity is due to the existence of point tracking at
known positions, one can include these points in V), and use local mesh
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refinement around them (and around 0Q for a general convex Q) to
recover O(h!~€) error estimates.

Data availability
Data will be made available on request.
Appendix A. The construction of an exact solution

We will construct an exact solution to the problem (2.1)-(2.2) where
w; =01in (1.3) (i.e., there is no tracking on curves), w, =1 (i.e., stan-
dard tracking for the domain), and y_ = —oo (i.e., there is only an upper
constraint on the state).

Let Q = (—4,4) x (=4,4), y,(x) = |x|> — 1 and o = {x : |x| < 1}.
The starting point is a function v € H3(Q) that is piecewise smooth
with respect to ¢/ and has the following properties:

v=yong andv<yonQ\ , (A.1)
v=Av=0o0n0Q, (A.2)
[d(Av)/dn]) =0 on 0. (A.3)

The construction of such a function can be found in [13, Example 7.1].
Next we choose the points p,...,p; € Q\ & and define

1
;0= c—lx=p;PInlx = p,]|

Note that

1
¢;()=0. A¢;=5—(Inlx=p;|+1) and A’¢; =5, (A.4)

where 6pj is the Dirac point measure associate with the point p;.
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Let ® € Cc3 () such that

@ =1 near py,...,p; and ® =0 in a neighborhood of <. (A.5)
The exact solution j is given by
J
F=v+0) ¢, (A.6)
j=1
where 0 is sufficiently small so that (cf. (A.1))
y=wong and y<y on Q\ . (A.7)

Now we choose positive weights wy(p), ..., wy(py) and set the tar-
gets yo(py), ..., ¥o(ps) by

J
5 B
)= D+ =uv(p;)+6 (p)+

yO(pJ y(pj wO(p]) (p/ ( ; ¢t(pj wO(pj) )

for 1<j<J. (A.8)
Finally we set the target function y, € L,(€2) by

Lo+0pY) R, ®)+0%)_ & onQ\d

2= , (A.9)

Lvo+y on &

where L is the differential operator A2 + 1, R(:,-) is the bilinear form
defined by

R(f.8)=4V(Af)- Vg +2Af)(Ag) +4D%f : D’g
+4VS - V(Ag) + £ (A%),
and y is a nonnegative constant.
A key observation is that

/ [A(g;®)|(Az)dx = z(p;) + / R(¢p;, @)z dx, (A.10)

Q Q

which follows from (A.4), (A.5) and integration by parts.
Combining (A.1)-(A.3), (A.6)-(A.10) and integration by parts, we
find

J
ﬂ/(A.]_’)(AZ)dx+/(J7_YZ)de+2wO(Pj)[J_’(Pj)_YO(Pj)]Z(Pj)
Q Q =1
(A.11)

=—y / zdx — ﬂ/[[a(Av)/an]]z ds  VzeHQ)nH(Q),
o oo

which verifies that y is the exact solution of (2.1)—(2.2) (cf. (2.3), (2.5)
and (2.6)).
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