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We consider 𝐶0 interior penalty methods for a linear-quadratic elliptic distributed optimal control problem with 
pointwise state constraints in two spatial dimensions, where the cost function tracks the state at points, curves 
and regions of the domain. Error estimates and numerical results that illustrate the performance of the methods 
are presented.
1. Introduction

Let Ω ⊂ℝ2 be a bounded convex polygon, 𝛽 be a positive constant, 
𝒫 = {𝑝1, … , 𝑝𝐽 } be a finite set of points in Ω, and 𝒞 =

⋃𝐿
𝓁=1𝒞𝓁 ⊂Ω be 

the union of the curves 𝒞1, … , 𝒞𝐿, where each curve is parametrized by 
a Lipschitz continuous function defined on [0, 1]. The weight functions 
𝑤0, 𝑤1 and 𝑤2 are bounded nonnegative Borel measurable functions 
defined on 𝒫, 𝒞 and Ω respectively. The desired/observed states 𝑦0, 
𝑦1 and 𝑦2 are Borel measurable functions defined on 𝒫, 𝒞 and Ω such 
that

𝐽∑
𝑗=1

𝑦0(𝑥𝑗 )2𝑤0(𝑥𝑗 ) +
𝐿∑

𝓁=1
∫
𝒞𝓁

𝑦21𝑤1𝑑𝑠+ ∫
Ω

𝑦22𝑤2𝑑𝑥 <∞. (1.1)

The optimal control problem is to find

(𝑦̄, 𝑢̄) = argmin
(𝑦,𝑢)∈𝕂

1
2
[
𝐺(𝑦) + 𝛽‖𝑢‖2

𝐿2(Ω)
]
, (1.2)

where

𝐺(𝑦) =
𝐽∑
𝑗=1

(𝑦(𝑝𝑗 ) − 𝑦0(𝑝𝑗 ))2𝑤0(𝑝𝑗 ) +
𝐿∑

𝓁=1
∫
𝒞𝓁

(𝑦− 𝑦1)2𝑤1 𝑑𝑠

✩ This work was supported in part by the National Science Foundation under Grant No. DMS-19-13035 and Grant No. DMS-22-08404.
* Corresponding author.
E-mail addresses: brenner@math.lsu.edu (S.C. Brenner), sjeong5@lsu.edu, sj20bk@fsu.edu (S. Jeong), sung@math.lsu.edu (L.-y. Sung), ztan@cct.lsu.edu, 

zhiyutan@xmu.edu.cn (Z. Tan).
1 Current address: Department of Mathematics, Florida State University, Tallahassee, FL 32306, USA.
2 Current address: School of Mathematical Sciences and Fujian Provincial Key Laboratory on Mathematical Modeling and High Performance Scientific Computing, 
Xiamen University, Fujian, 361005, China.

+ ∫
Ω

(𝑦− 𝑦2)2𝑤2𝑑𝑥, (1.3)

𝕂 ⊂ 𝐻1
0 (Ω) × 𝐿2(Ω), and (𝑦, 𝑢) ∈ 𝐻1

0 (Ω) × 𝐿2(Ω) belongs to 𝕂 if and 
only if

∫
Ω

∇𝑦 ⋅∇𝑧𝑑𝑥 = ∫
Ω

𝑢𝑧𝑑𝑥 ∀𝑧 ∈𝐻1
0 (Ω), (1.4)

𝜓− ≤ 𝑦 ≤ 𝜓+ a.e. in Ω. (1.5)

We assume that the functions 𝜓± satisfy

𝜓± ∈𝑊 3,𝑞(Ω) for 𝑞 > 2, (1.6)

𝜓− < 𝜓+ on Ω̄, (1.7)

𝜓− < 0 < 𝜓+ on 𝜕Ω. (1.8)

Here and below we will follow the standard notation for differential 
operators, function spaces and norms that can be found for example in 
[36,1,18].

Remark 1.1. Since Ω is convex, the partial differential equation con-
straint (1.4) implies through elliptic regularity (cf. [43,37,51]) that 
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𝑦 ∈ 𝐻2(Ω) if (𝑦, 𝑢) ∈ 𝕂. Therefore the function 𝐺 is well-defined by 
the Sobolev embedding 𝐻2(Ω) ⊂ 𝐶(Ω̄) (cf. [1]).

Remark 1.2. In the case where 𝑤0 = 𝑤1 = 0 and 𝑤2 = 1, the function 
𝐺 reduces to a standard tracking function (cf. [45,55]), and the opti-
mal control problem with pointwise state constraints was introduced in 
[31]. In the case where 𝑤1 =𝑤2 = 0, it becomes a point-tracking func-
tion (cf. [28,33,27,6,4,5,3]).

Remark 1.3. In general the last term on the right-hand side of (1.3)
defines tracking on the region that is the support of 𝑤2.

Remark 1.4. The optimal control problem defined by (1.2)–(1.5) can 
be interpreted as a heat conduction problem (cf. [55]), where 𝑦 is the 
temperature, 𝑢 is the heat source, 𝑦0 (resp., 𝑦1 and 𝑦2) is the desired 
temperature at the points (resp., curves and regions), and 𝜓± are the 
constraints on the temperature in Ω. The weights 𝑤0, 𝑤1 and 𝑤2 allow 
preferences for the desired temperature.

In the case where 𝑦0, 𝑦1 and 𝑦2 satisfy the constraints in (1.5) and 
the points, curves and regions are disjoint, the optimal control problem 
can also be interpreted as a least-squares data fitting problem for a 
mathematical model that connects the input 𝑢 to the output 𝑦 through 
(1.4). In this interpretation 𝑦0, (resp., 𝑦1 and 𝑦2) is the observed output 
at the points (resp., curves and regions), the constraints in (1.5) provide 
a priori modeling information, and the weights 𝑤0, 𝑤1 and 𝑤2 allow 
preferences in the data fitting.

Remark 1.5. By introducing the Radon measure 𝜈 on Ω̄ defined by

∫
Ω

𝑓𝑑𝜈 =
𝐽∑
𝑗=1

𝑓 (𝑝𝑗 )𝑤0(𝑝𝑗 ) +
𝐿∑

𝓁=1
∫
𝒞𝓁

𝑓𝑤1𝑑𝑠+ ∫
Ω

𝑓𝑤2𝑑𝑥, (1.9)

we can write

𝐺(𝑦) = ∫
Ω

(𝑦− 𝑦𝑑 )2𝑑𝜈 = ‖𝑦− 𝑦𝑑‖2𝐿2(Ω;𝜈)
, (1.10)

where

𝑦𝑑 =
⎧⎪⎨⎪⎩
𝑦0 on 𝒫

𝑦1 on 𝒞 ⧵𝒫
𝑦2 on Ω ⧵ (𝒞 ∪𝒫)

, (1.11)

and the condition (1.1) becomes ‖𝑦𝑑‖2𝐿2(Ω;𝜈)
<∞.

The optimal control papers with point-tracking mentioned in Re-
mark 1.2 are concerned with control constraints. For optimal control 
problems with the standard tracking function and pointwise state con-
straints, the traditional approach (cf. [49,52,45,34,32,53]) is based on 
reducing the optimal control problem to a problem that only involves 
the control. Here we adopt the opposite approach where the optimal 
control problem is reduced to a problem that only involves the state, 
which can be reformulated as a fourth order variational inequality.

This reformulation was discussed in [54], and the first numeri-
cal scheme based on this idea appeared in [50], where the analysis 
was carried out under the ad hoc assumptions from [7] on the free 
boundary. These assumptions were later removed by the new conver-
gence analysis in [20], where the regularity results in [41,42,29] for 
fourth order elliptic variational inequalities were exploited. Various fi-
nite element methods based on this new approach have appeared in 
[24,11,16,12,25,13,17,22].

Comparing with the traditional approach, a distinct feature of the 
new approach is that the convergence of the state can also be estab-
lished in the 𝐿∞ norm. Another important feature is that the discrete 
problems are quadratic programs with simple box constraints where the 
81
system matrices are available and consequently they can be solved effi-
ciently by the primal-dual active set algorithm in [8,44]. These features 
are also shared by the 𝐶0 interior penalty methods in the current paper.

The rest of the paper is organized as follows. We discuss the refor-
mulation of the continuous problem in Section 2 and present the 𝐶0

interior penalty methods in Section 3. The convergence analysis is car-
ried out in Section 4, followed by numerical results in Section 5. We end 
the paper with some concluding remarks in Section 6. The appendix A
contains the construction of an exact solution for a problem with point-
tracking.

Throughout the paper we will use 𝐶 (with or without subscripts) to 
denote a generic positive constant that is independent of the mesh size.

2. The continuous problem

As mentioned in Remark 1.1, the constraint (1.4) implies that 𝑦 ∈
𝐻2(Ω) ∩𝐻1

0 (Ω) ⊂ 𝐶(Ω̄). In view of (1.10) and the relation 𝑢 = −Δ𝑦 from 
(1.4), the optimal control problem defined by (1.2)–(1.5) is equivalent 
to the following minimization problem:

Find 𝑦̄ = argmin
𝑦∈𝐾

1
2

[
𝛽‖Δ𝑦‖2

𝐿2(Ω)
+ ‖𝑦− 𝑦𝑑‖2𝐿2(Ω;𝜈)

]
, (2.1)

where

𝐾 = {𝑦 ∈𝐻2(Ω) ∩𝐻1
0 (Ω) ∶ 𝜓− ≤ 𝑦 ≤ 𝜓+ inΩ}. (2.2)

It follows from the standard theory of calculus of variations (cf. 
[48,39]) that the minimization problem defined by (2.1) and (2.2) has 
a unique solution 𝑦̄ ∈ 𝐾 characterized by the fourth order variational 
inequality

𝛽 ∫
Ω

(Δ𝑦̄)(Δ𝑦−Δ𝑦̄)𝑑𝑥+ ∫
Ω

(𝑦̄− 𝑦𝑑 )(𝑦− 𝑦̄)𝑑𝜈 ≥ 0 ∀𝑦 ∈𝐾,

which in turn is equivalent to the following generalized Karush-Kuhn-
Tucker conditions (cf. [47, Chapter 1, Theorem 1.6]):

𝛽 ∫
Ω

(Δ𝑦̄)(Δ𝑧)𝑑𝑥+ ∫
Ω

(𝑦̄− 𝑦𝑑 )𝑧𝑑𝜈 = ∫
Ω

𝑧𝑑𝜇 ∀𝑧 ∈𝐻2(Ω) ∩𝐻1
0 (Ω),

(2.3)

where 𝜇 is a regular Borel measure, such that

𝜇 ≥ 0 if 𝑦̄ = 𝜓−, (2.4)

𝜇 ≤ 0 if 𝑦̄ = 𝜓+, (2.5)

𝜇 = 0 otherwise. (2.6)

Remark 2.1. It follows from (2.4)–(2.6) that the support of 𝜇 is the 
union of the active sets 𝒜± defined by

𝒜± = {𝑥 ∈Ω ∶ 𝑦̄(𝑥) = 𝜓±(𝑥)}. (2.7)

Note that 𝒜± are compact subsets of Ω by the assumption (1.8). There-
fore 𝜇 is a bounded measure.

We can also rewrite (2.3) as

(𝑦̄, 𝑧) − ∫
Ω

𝑦𝑑𝑧𝑑𝜈 = ∫
Ω

𝑧𝑑𝜇, (2.8)

where

(𝑦, 𝑧) = 𝛽𝑎(𝑦, 𝑧) + ∫
Ω

𝑦𝑧𝑑𝜈 (2.9)

and (cf. [43, Section 4.3])

𝑎(𝑦, 𝑧) = ∫ (Δ𝑦)(Δ𝑧)𝑑𝑥 = ∫ 𝐷2𝑦 ∶𝐷2𝑧𝑑𝑥 ∀𝑦, 𝑧 ∈𝐻2(Ω)∩𝐻1
0 (Ω).
Ω Ω
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(2.10)

Here 𝐷2𝑦 is the Hessian matrix of 𝑦 and 𝐷2𝑦 ∶ 𝐷2𝑧 is the Frobenius 
inner product of 𝐷2𝑦 and 𝐷2𝑧.

2.1. Regularity of 𝑦̄

Let the adjoint state 𝑝̄ ∈𝐿2(Ω) be defined by

∫
Ω

𝑝̄(−Δ𝑧)𝑑𝑥 = ∫
Ω

(𝑦̄− 𝑦𝑑 )𝑧𝑑𝜈 − ∫
Ω

𝑧𝑑𝜇 (2.11)

for all 𝑧 ∈𝐻2(Ω) ∩𝐻1
0 (Ω). Then we have (cf. [30, Theorem 1])

𝑝̄ ∈𝑊 1,𝑠
0 (Ω) ∀ 𝑠 < 2. (2.12)

Remark 2.2. Since 𝒞 ∪𝒫 and the support of 𝜇 are compact subsets 
of Ω, the adjoint state 𝑝̄ belongs to 𝐻2 in a neighborhood of 𝜕Ω and 
vanishes on 𝜕Ω.

It follows from (2.3) and (2.11) that

𝑢̄ = −Δ𝑦̄ = −(1∕𝛽)𝑝̄ ∈𝑊 1,𝑠
0 (Ω) ∀ 𝑠 < 2, (2.13)

and, in view of Remark 2.2, 𝑢̄ belongs to 𝐻2 in a neighborhood of 𝜕Ω
and 𝑢̄ = 0 on 𝜕Ω.

According to (2.13), the solution 𝑦̄ ∈ 𝐾 ⊂ 𝐻2(Ω) ∩𝐻1
0 (Ω) of (2.1)

satisfies

Δ𝑦̄ = 𝑝̄∕𝛽 in Ω and 𝑦̄ = 0 on 𝜕Ω. (2.14)

It then follows from (2.12), (2.14) and interior elliptic regularity (cf. 
[2, Section 14] and [46, Lemma 17.1.1]) that

𝑦̄ ∈𝑊 3,𝑠
𝑙𝑜𝑐

(Ω) ∀ 𝑠 < 2. (2.15)

Moreover we can conclude from Remark 2.2, (2.14), (2.15) and the 
elliptic regularity theory for polygonal domains (cf. [43,37]) that glob-
ally

𝑦̄ ∈𝐻2+𝛼(Ω) (2.16)

for some 𝛼 ∈ (0, 1), where the index of elliptic regularity 𝛼 is determined 
by the angles at the corners of Ω.

Remark 2.3. In the absence of point-tracking (the case where 𝑤0 = 0
in (1.3)), the index 𝛼 in (2.16) can equal 1 by the regularity result for 
fourth order variational inequalities in [41]. In this paper we always 
assume that point-tracking is present and therefore 𝛼 < 1 because of 
(2.15).

2.2. Regularity of 𝜇

In view of (2.7) and the assumption (1.7), we have

𝒜− ∩𝒜+ = ∅. (2.17)

The Hahn decomposition of 𝜇 is given by

𝜇 = 𝜇− + 𝜇+ (2.18)

where 𝜇− is the finite nonnegative Borel measure (cf. (2.5)) defined by

𝜇−(𝐵) = 𝜇(𝐵 ∩𝒜−) for all Borel subsets 𝐵 of Ω, (2.19)

and 𝜇+ is the finite nonpositive Borel measure (cf. (2.4)) defined by

𝜇+(𝐵) = 𝜇(𝐵 ∩𝒜+) for all Borel subsets 𝐵 of Ω. (2.20)

Since the support of 𝜇+ (resp., 𝜇−) is a subset of the active set 𝒜+
(resp., 𝒜−), we have
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∫
Ω

(𝑦̄−𝜓+)𝑑𝜇+ = 0 and ∫
Ω

(𝑦̄−𝜓−)𝑑𝜇− = 0. (2.21)

Let 𝑧 ∈𝐻2(Ω) ∩𝐻1
0 (Ω) be arbitrary. Because of (2.17) we can con-

struct 𝜙 ∈ 𝐶∞
𝑐 (Ω) such that 𝜙 = 1 in a neighborhood of 𝒜+ and 𝜙 = 0 in 

a neighborhood of 𝒜−. It follows from (1.9), (1.11), (2.3), (2.15), (2.18)
and integration by parts that

∫
Ω

𝑧𝑑𝜇+ = ∫
Ω

𝜙𝑧𝑑𝜇

= 𝛽 ∫
Ω

(Δ𝑦̄)[Δ(𝜙𝑧)]𝑑𝑥+ ∫
Ω

(𝑦̄− 𝑦𝑑 )(𝜙𝑧)𝑑𝜈

= 𝛽 ∫
Ω

∇(Δ𝑦̄) ⋅∇(𝜙𝑧)𝑑𝑥+
𝐽∑
𝑗=1

𝑤0(𝑝𝑗 )[𝑦̄(𝑝𝑗 ) − 𝑦0(𝑝𝑗 )]𝜙(𝑝𝑗 )𝑧(𝑝𝑗 )

+
𝐿∑

𝓁=1
∫
𝒞𝓁

𝑤1(𝑦̄− 𝑦1)(𝜙𝑧)𝑑𝑠+ ∫
Ω

𝑤2(𝑦̄− 𝑦2)(𝜙𝑧)𝑑𝑥,

and hence, by (2.15), the trace theorem and the Sobolev embedding 
𝐻1+𝜖(Ω) ⊂ 𝐶(Ω̄), we have

|||∫
Ω

𝑧𝑑𝜇+
||| ≤ 𝐶𝜖‖𝑧‖𝐻1+𝜖 (Ω) ∀𝑧 ∈𝐻2(Ω) ∩𝐻1

0 (Ω) (2.22)

and for any 𝜖 > 0.
Given any 𝑧 ∈𝐻1+𝜖(Ω), we can construct a sequence 𝑧𝑛 ∈𝐻2(Ω) ∩

𝐻1
0 (Ω) such that 𝑧𝑛𝜙 converges to 𝑧𝜙 in 𝐻1+𝜖(Ω) as 𝑛 →∞. Hence we 

can extend the definition of the integral ∫
Ω

𝑧 𝑑𝜇+ to 𝑧 ∈𝐻1+𝜖(Ω) such 

that the estimate in (2.22) remains valid. In other words, we have

|||∫
Ω

𝑧𝑑𝜇+
||| ≤ 𝐶𝜖‖𝑧‖𝐻1+𝜖 (Ω) ∀𝑧 ∈𝐻1+𝜖(Ω), (2.23)

which holds in particular if 𝑧 ∈𝐻1
0 (Ω) is a finite element function.

Similarly, the estimate (2.23) also holds if 𝜇+ is replaced by 𝜇−.

3. 𝑪𝟎 interior penalty methods

Let ℎ be a simplicial triangulation of Ω. We will denote the set of 
the vertices of ℎ by ℎ and the set of the edges of ℎ interior to Ω by 
 𝑖
ℎ
. The diameter of 𝑇 ∈ ℎ is denoted by ℎ𝑇 and the mesh parameter 

ℎ equals max𝑇∈ℎ ℎ𝑇 . The nodal interpolation operator for the 𝑃1 finite 
element space associated with ℎ is denoted by 𝐼ℎ.

Let 𝑉ℎ ⊂ 𝐻1
0 (Ω) be the 𝑃𝑘 (𝑘 ≥ 2) Lagrange finite element space 

associated with ℎ (cf. [36,18]). The discrete problem is to find

𝑦̄ℎ = argmin
𝑦ℎ∈𝐾ℎ

1
2

[
𝛽𝑎ℎ(𝑦ℎ, 𝑦ℎ) + ‖𝑦ℎ − 𝑦𝑑‖2𝐿2(Ω;𝜈)

]
, (3.1)

where

𝐾ℎ ={𝑦ℎ ∈ 𝑉ℎ ∶ 𝐼ℎ𝜓− ≤ 𝐼ℎ𝑦ℎ ≤ 𝐼ℎ𝜓+}, (3.2)

𝑎ℎ(𝑦ℎ, 𝑧ℎ) =
∑
𝑇∈ℎ ∫𝑇

𝐷2𝑦ℎ ∶𝐷2𝑧ℎ 𝑑𝑥+
∑
𝑒∈ 𝑖

ℎ

𝜎ℎ−1𝑒 ∫
𝑒

[[𝜕𝑦ℎ∕𝜕𝑛]][[𝜕𝑧ℎ∕𝜕𝑛]]𝑑𝑠

(3.3)

+
∑
𝑒∈ 𝑖

ℎ

∫
𝑒

[
{{𝜕2𝑦ℎ∕𝜕𝑛2}}[[𝜕𝑧ℎ∕𝜕𝑛]] + {{𝜕2𝑧ℎ∕𝜕𝑛2}}[[𝜕𝑦ℎ∕𝜕𝑛]]

]
𝑑𝑠,

ℎ𝑒 is the diameter of the edge 𝑒, and 𝜎 > 0 is a penalty parameter.
The bilinear form 𝑎ℎ(⋅, ⋅) defined by (3.3) is the 𝐶0 interior penalty 

bilinear form (cf. [40,19,10]) that approximates the bilinear form 𝑎(⋅, ⋅)
defined in (2.10). Given a unit normal 𝑛 of an edge 𝑒 ∈  𝑖

ℎ
, the jump 

[ [𝜕𝑣∕𝜕𝑛] ] and the mean { {𝜕2𝑣∕𝜕𝑛2} } across 𝑒 are defined by
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[[𝜕𝑣∕𝜕𝑛]] =
𝜕𝑣+
𝜕𝑛

−
𝜕𝑣−
𝜕𝑛

and {{𝜕2𝑣∕𝜕𝑛2}} = 1
2

( 𝜕2𝑣+
𝜕𝑛2

+
𝜕2𝑣−
𝜕𝑛2

)
,

where 𝑣± is the restriction of 𝑣 to 𝑇±, the two triangles that share 𝑒 as 
a common edge, and the vector 𝑛 points from 𝑇− to 𝑇+. Note that these 
definitions are independent of the choice of 𝑛, and they are well-defined 
on any function 𝑣 that is piecewise 𝐻2 with respect to ℎ.

We can describe the properties of 𝑎ℎ(⋅, ⋅) in terms of the norm | ⋅|𝐻2(Ω,ℎ) defined by

|𝑣|2
𝐻2(Ω,ℎ) =

∑
𝑇∈ℎ

|𝑣|2
𝐻2(𝑇 ) +

∑
𝑒∈ 𝑖

ℎ

ℎ−1𝑒 ‖[[𝜕𝑣∕𝜕𝑛]]‖2
𝐿2(𝑒)

. (3.4)

The derivations of the following estimates can be found in [19,10]: 
there exist positive constants 𝐶† and 𝐶‡ such that

𝑎ℎ(𝑦ℎ, 𝑧ℎ) ≤ 𝐶†|𝑦ℎ|𝐻2(Ω,ℎ)|𝑧|𝐻2(Ω,ℎ) ∀𝑦ℎ, 𝑧ℎ ∈ 𝑉ℎ, (3.5)

𝑎ℎ(𝑦ℎ, 𝑦ℎ) ≥ 𝐶‡|𝑦ℎ|2𝐻2(Ω,ℎ) ∀𝑦ℎ ∈ 𝑉ℎ, (3.6)

provided 𝜎 is sufficiently large (which is assumed to be the case from 
here on).

Remark 3.1. It follows from the Poincaré-Friedrichs inequality for 
piecewise 𝐻2 function in [26] that

‖𝑣‖𝐿2(Ω) ≤ 𝐶|𝑣|𝐻2(Ω,ℎ) (3.7)

for all 𝑣 ∈𝐻1
0 (Ω) that is piecewise 𝐻

2 with respect to ℎ, where the 
positive constant 𝐶 only depends on the shape regularity of ℎ.

The analysis of the 𝐶0 interior penalty method defined by (3.1)–(3.3)
relies on the regularity of 𝑦̄ and 𝜇 presented in Section 2 and two linear 
operators Πℎ and 𝐸ℎ.

3.1. The operator Πℎ

The operator Πℎ ∶𝐻2(Ω) ∩𝐻1
0 (Ω) ⟶ 𝑉ℎ is the Lagrange nodal in-

terpolation operator. It follows from (2.2) and (3.2) that

Πℎ maps 𝐾 into 𝐾ℎ. (3.8)

In particular, 𝐾ℎ is nonempty and hence the minimization problem 
(3.1) has a unique solution 𝑦̄ℎ ∈𝐾ℎ characterized by the discrete varia-
tional inequality

𝛽𝑎ℎ(𝑦̄ℎ, 𝑦ℎ − 𝑦̄ℎ) + ∫
Ω

(𝑦̄ℎ − 𝑦𝑑 )(𝑦ℎ − 𝑦̄ℎ)𝑑𝜈 ≥ 0 ∀𝑦ℎ ∈𝐾ℎ,

which can be written as

ℎ(𝑦̄ℎ, 𝑦ℎ − 𝑦̄ℎ) − ∫
Ω

𝑦𝑑 (𝑦ℎ − 𝑦̄ℎ)𝑑𝜈 ≥ 0 ∀𝑦ℎ ∈𝐾ℎ, (3.9)

where the bilinear form

ℎ(𝑦ℎ, 𝑧ℎ) = 𝛽𝑎ℎ(𝑦ℎ, 𝑧ℎ) + ∫
Ω

𝑦ℎ𝑧ℎ𝑑𝜈 (3.10)

approximates the bilinear form (⋅, ⋅) in (2.9).
The following error estimates for Πℎ𝑦̄, which are based on the 

Bramble-Hilbert lemma (cf. [9,38]) and the regularity estimates (2.15)–
(2.16), can be found in [19,23].

We have

‖𝑦̄−Πℎ𝑦̄‖𝐿2(Ω) ≤ 𝐶ℎ2+𝜏 , (3.11)

|𝑦̄−Πℎ𝑦̄|𝐻1(Ω) ≤ 𝐶ℎ1+𝜏 , (3.12)

‖𝑦̄−Πℎ𝑦̄‖𝐿∞(Ω) ≤ 𝐶ℎ1+𝜏 , (3.13)

( ∑
𝑇∈

|𝑦̄−Πℎ𝑦̄|2𝐻2(𝑇 )

) 1
2 ≤ 𝐶ℎ𝜏 , (3.14)
ℎ
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where

𝜏 =

⎧⎪⎪⎨⎪⎪⎩

𝛼 if ℎ is quasi-uniform
1 − 𝜖 if ℎ is graded around the corners of Ω where the interior

angles are > (𝜋∕2)

.

(3.15)

Here 𝛼 is the index of elliptic regularity in (2.16) and 𝜖 can be any 
positive number.

Remark 3.2. Details of the graded mesh can be found in [24, Sec-
tion 2.1]. Since the singularities around the corners of Ω (with respect 
to 𝐻3 regularity) are resolved by the graded meshes, the interpolation 
error estimates for Πℎ𝑦̄ are determined by the interior regularity (2.15)
which leads to 𝜏 = 1 − 𝜖, and the constant 𝐶 in (3.11)–(3.14) increases 
to ∞ as 𝜖 decreases to 0. This dependence on 𝜖 also holds for the con-
stants in the estimates in the rest of the paper where 𝜏 = 1 − 𝜖.

Remark 3.3. In the case where Ω is a square, the optimal control 𝑦̄
is 𝐻3 near 𝜕Ω and hence its overall regularity is determined by the 
𝐻3−𝜖

𝑙𝑜𝑐
(Ω) interior regularity. Therefore for such a domain the estimates 

in (3.11)–(3.14) (and the results in Section 4) hold for 𝜏 = 1 − 𝜖 on 
quasi-uniform meshes.

There are two simple consequences of (3.11)–(3.14). We have, by 
(3.12), (3.14) and the trace inequality with scaling,

( ∑
𝑒∈ 𝑖

ℎ

ℎ−1𝑒 ‖(𝜕𝑦̄∕𝜕𝑛) − (𝜕(Πℎ𝑦̄)∕𝜕𝑛)‖2𝐿2(𝑒)

) 1
2 ≤ 𝐶ℎ𝜏 . (3.16)

Moreover it follows from (1.9) and (3.11)–(3.13) that

‖𝑦̄−Πℎ𝑦̄‖𝐿2(Ω;𝜈) ≤ 𝐶ℎ1+𝜏 . (3.17)

3.2. The operator 𝐸ℎ

Let 𝑊ℎ ⊂𝐻2(Ω) ∩𝐻1
0 (Ω) be the Hsieh-Clough-Tocher finite element 

space (cf. [35]) associated with ℎ. One can define an operator 𝐸ℎ ∶
𝑉ℎ ⟶𝑊ℎ by averaging (cf. [14,10]) such that

(𝐸ℎ𝑦ℎ)(𝑝) = 𝑦ℎ(𝑝) ∀𝑝 ∈ ℎ (3.18)

and

∑
𝑇∈ℎ

(
ℎ−4
𝑇
‖𝑦ℎ −𝐸ℎ𝑦ℎ‖2𝐿2(𝑇 )

+ ℎ−2
𝑇
|𝑦ℎ −𝐸ℎ𝑦ℎ|2𝐻1(𝑇 ) + |𝐸ℎ𝑦ℎ|2𝐻2(𝑇 )

)

≤ 𝐶|𝑦ℎ|2𝐻2(Ω,ℎ), (3.19)

where the positive constant 𝐶 depends only on the shape regularity of 
ℎ.

It follows from (1.9), (3.19), the trace theorem and a discrete 
Sobolev inequality (cf. [18, Section 4.9]) that

‖𝑦ℎ −𝐸ℎ𝑦ℎ‖𝐿2(Ω;𝜈) ≤ 𝐶ℎ(1 + | lnℎ|) 12 |𝑦ℎ|𝐻2(Ω,ℎ) ∀𝑦ℎ ∈ 𝑉ℎ. (3.20)

Remark 3.4. There is no need to invoke the discrete Sobolev inequality 
if the tracking points 𝑝1, … , 𝑝𝐽 belong to ℎ. In this case the term (1 +
| lnℎ|) 12 in (3.20) can be removed. This observation is important for the 
analogous optimal control problem in three spatial dimensions.

The derivations of the following estimates that connect Πℎ and 𝐸ℎ, 
which rely on the regularity of 𝑦̄ in (2.15)–(2.16) and the Bramble-
Hilbert lemma, can be found in [19,23,20]. We have
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‖𝑦̄−𝐸ℎΠℎ𝑦̄‖𝐿2(Ω) ≤ 𝐶ℎ2+𝜏 , (3.21)

|𝑦̄−𝐸ℎΠℎ𝑦̄|𝐻1(Ω) ≤ 𝐶ℎ1+𝜏 , (3.22)

‖𝑦̄−𝐸ℎΠℎ𝑦̄‖𝐿∞(Ω) ≤ 𝐶ℎ1+𝜏 , (3.23)

|𝑦̄−𝐸ℎΠℎ𝑦̄|𝐻2(Ω) ≤ 𝐶ℎ𝜏 , (3.24)

and

𝑎ℎ(Πℎ𝑦̄, 𝑦ℎ) − 𝑎(𝑦̄,𝐸ℎ𝑦ℎ) ≤ 𝐶ℎ𝜏 |𝑦ℎ|𝐻2(Ω,ℎ) ∀𝑦ℎ ∈ 𝑉ℎ, (3.25)

where 𝜏 is given by (3.15).

Remark 3.5. The estimates (3.21)–(3.24) indicate that 𝐸ℎΠℎ behaves 
like a quasi-interpolation operator. The estimate (3.25) indicates that 
𝐸ℎ and Πℎ are approximate adjoint operators with respect to the bilin-
ear forms 𝑎(⋅, ⋅) and 𝑎ℎ(⋅, ⋅).

4. Convergence analysis

We will carry out the convergence analysis in terms of the mesh-
dependent norm ‖ ⋅ ‖ℎ defined by
‖𝑣‖2

ℎ
= 𝛽|𝑣|2

𝐻2(Ω,ℎ) + ‖𝑣‖2
𝐿2(Ω;𝜈)

. (4.1)

In view of (3.4)–(3.6), (3.10) and (4.1), there exist positive constants 
𝐶♯ and 𝐶♭ such that

ℎ(𝑦ℎ, 𝑧ℎ) ≤ 𝐶♯‖𝑦ℎ‖ℎ‖𝑧ℎ‖ℎ ∀𝑦ℎ, 𝑧ℎ ∈ 𝑉ℎ, (4.2)

ℎ(𝑦ℎ, 𝑦ℎ) ≥ 𝐶♭‖𝑦ℎ‖2ℎ ∀𝑦ℎ ∈ 𝑉ℎ. (4.3)

Moreover (3.14)–(3.17) and (4.1) imply

‖𝑦̄−Πℎ𝑦̄‖ℎ ≤ 𝐶ℎ𝜏 . (4.4)

It follows from (3.8), (3.9), (4.3) and (4.4) that

‖𝑦̄− 𝑦̄ℎ‖2ℎ ≤ 2‖𝑦̄−Πℎ𝑦̄‖2ℎ + 2‖Πℎ𝑦̄− 𝑦̄ℎ‖2ℎ
≤ 𝐶1ℎ

2𝜏 +𝐶2ℎ(Πℎ𝑦̄− 𝑦̄ℎ,Πℎ𝑦̄− 𝑦̄ℎ) (4.5)

≤ 𝐶1ℎ
2𝜏 +𝐶2

[ℎ(Πℎ𝑦̄,Πℎ𝑦̄− 𝑦̄ℎ) − ∫
Ω

𝑦𝑑 (Πℎ𝑦̄− 𝑦̄ℎ)𝑑𝜈
]
.

The key is to bound the second term on the right-hand side of (4.5). 
We will show that

ℎ(Πℎ𝑦̄,Πℎ𝑦̄− 𝑦̄ℎ) − ∫
Ω

𝑦𝑑 (Πℎ𝑦̄− 𝑦̄ℎ)𝑑𝜈 ≤ 𝐶
(
ℎ2𝜏 + ℎ𝜏‖Πℎ𝑦̄− 𝑦̄ℎ‖ℎ),

(4.6)

and then the convergence analysis is completed as follows.

Theorem 4.1. There exists a positive constant 𝐶 independent of ℎ such that

‖𝑦̄− 𝑦̄ℎ‖ℎ ≤ 𝐶ℎ𝜏 , (4.7)

where 𝜏 is given by (3.15).

Proof. We have, by (4.4)–(4.6),

‖𝑦̄− 𝑦̄ℎ‖2ℎ ≤ 𝐶
[
ℎ2𝜏 + ℎ𝜏

(‖Πℎ𝑦̄− 𝑦̄‖ℎ + ‖𝑦̄− 𝑦̄ℎ‖ℎ)]
≤ 𝐶

[
ℎ2𝜏 + ℎ𝜏‖𝑦̄− 𝑦̄ℎ‖ℎ],

which implies (4.7) through the inequality of arithmetic and geometric 
means. □

We will establish (4.6) by reducing it to an estimate at the continu-
ous level.
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4.1. Reducing (4.6) to the continuous level

We begin with an analog of (3.25).

Lemma 4.2. There exists a positive constant 𝐶 independent of ℎ such that

ℎ(Πℎ𝑦̄, 𝑦ℎ) −(𝑦̄,𝐸ℎ𝑦ℎ) ≤ 𝐶ℎ𝜏‖𝑦ℎ‖ℎ ∀𝑦ℎ ∈ 𝑉ℎ. (4.8)

Proof. According to (2.9) and (3.10), we have

ℎ(Πℎ𝑦̄, 𝑦ℎ) −(𝑦̄,𝐸ℎ𝑦ℎ) = 𝛽
[
𝑎ℎ(Πℎ𝑦̄, 𝑦ℎ) − 𝑎(𝑦̄,𝐸ℎ𝑦ℎ)

]
+ ∫

Ω

(Πℎ𝑦̄− 𝑦̄)𝑦ℎ 𝑑𝜈 − ∫
Ω

𝑦̄(𝑦ℎ −𝐸ℎ𝑦ℎ)𝑑𝜈,

which together with (3.7), (3.15), (3.17), (3.20), (3.25) and (4.1) im-
plies (4.8). □

It follows from (4.2) and Lemma 4.2 that

ℎ(Πℎ𝑦̄,Πℎ𝑦̄− 𝑦̄ℎ) =ℎ(𝑦̄,Πℎ𝑦̄− 𝑦̄ℎ) +ℎ(Πℎ𝑦̄− 𝑦̄,Πℎ𝑦̄− 𝑦̄ℎ) (4.9)

≤(
𝑦̄,𝐸ℎ(Πℎ𝑦̄− 𝑦̄ℎ)

)
+𝐶ℎ𝜏‖Πℎ𝑦̄− 𝑦̄ℎ‖ℎ.

Furthermore, the estimate (3.20) implies

−∫
Ω

𝑦𝑑 (Πℎ𝑦̄− 𝑦̄ℎ)𝑑𝜈 ≤ −∫
Ω

𝑦𝑑𝐸ℎ(Πℎ𝑦̄− 𝑦̄ℎ)𝑑𝜈 +𝐶ℎ𝜏‖Πℎ𝑦̄− 𝑦̄ℎ‖ℎ.
(4.10)

Putting (4.9) and (4.10) together, we arrive at

ℎ(Πℎ𝑦̄,Πℎ𝑦̄− 𝑦̄ℎ) − ∫
Ω

𝑦𝑑 (Πℎ𝑦̄− 𝑦̄ℎ)𝑑𝜈 (4.11)

≤ [(
𝑦̄,𝐸ℎ(Πℎ𝑦̄− 𝑦̄ℎ)

)
− ∫

Ω

𝑦𝑑𝐸ℎ(Πℎ𝑦̄− 𝑦̄ℎ)𝑑𝜈
]
+𝐶ℎ𝜏‖Πℎ𝑦̄− 𝑦̄ℎ‖ℎ.

Comparing (4.6) and (4.11), we see that the proof of (4.6) has been 
reduced to an estimate for the first term on the right-hand side of (4.11), 
which does not involve the discrete bilinear form ℎ(⋅, ⋅). Therefore we 
can use (2.8) and (2.18) to write

(
𝑦̄,𝐸ℎ(Πℎ𝑦̄− 𝑦̄ℎ)

)
− ∫

Ω

𝑦𝑑𝐸ℎ(Πℎ𝑦̄− 𝑦̄ℎ)𝑑𝜈 (4.12)

= ∫
Ω

𝐸ℎ(Πℎ𝑦̄− 𝑦̄ℎ)𝑑𝜇+ + ∫
Ω

𝐸ℎ(Πℎ𝑦̄− 𝑦̄ℎ)𝑑𝜇−.

4.2. Completing the proof of (4.6)

We will focus on the first integral on the right-hand side of (4.12). 
The other integral can be bounded analogously.

In view of (2.21), we can write

∫
Ω

𝐸ℎ(Πℎ𝑦̄− 𝑦̄ℎ)𝑑𝜇+ = ∫
Ω

(𝐸ℎΠℎ𝑦̄− 𝑦̄)𝑑𝜇+ + ∫
Ω

(𝜓+ − 𝐼ℎ𝜓+)𝑑𝜇+

(4.13)

+ ∫
Ω

(𝐼ℎ𝜓+ − 𝐼ℎ𝐸ℎ𝑦̄ℎ)𝑑𝜇+

+ ∫
Ω

(𝐼ℎ𝐸ℎ𝑦̄ℎ −𝐸ℎ𝑦̄ℎ)𝑑𝜇+.

For the first term on the right-hand side of (4.13), we have

∫ (𝐸ℎΠℎ𝑦̄− 𝑦̄)𝑑𝜇+ ≤ |𝜇+(𝒜+)| ‖𝐸ℎΠℎ𝑦̄− 𝑦̄‖𝐿∞(Ω) ≤ 𝐶ℎ1+𝜏 (4.14)
Ω
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by (3.23), and we can use a standard interpolation error estimate for 𝐼ℎ
(cf. [36,18]) to bound the second term by

∫
Ω

(𝜓+ − 𝐼ℎ𝜓+)𝑑𝜇+ ≤ |𝜇+(𝒜+)| ‖𝜓+ − 𝐼ℎ𝜓+‖𝐿∞(Ω) ≤ 𝐶ℎ2 (4.15)

because 𝜓+ belongs to 𝑊 2,∞(Ω) by the assumption (1.6) and the 
Sobolev embedding 𝑊 1,𝑞(Ω) ⊂ 𝐶(Ω̄) for 𝑞 > 2.

Since 𝜇+ is nonpositive, the third term satisfies

∫
Ω

(𝐼ℎ𝜓+ − 𝐼ℎ𝐸ℎ𝑦̄ℎ)𝑑𝜇+ = ∫
Ω

(𝐼ℎ𝜓+ − 𝐼ℎ𝑦̄ℎ)𝑑𝜇+ ≤ 0 (4.16)

by (3.2) and (3.18).
We can split the last term on the right-hand side of (4.13) as

∫
Ω

(𝐼ℎ𝐸ℎ𝑦̄ℎ −𝐸ℎ𝑦̄ℎ)𝑑𝜇+ (4.17)

= ∫
Ω

[
𝐼ℎ(𝐸ℎ𝑦̄ℎ − 𝑦̄) − (𝐸ℎ𝑦̄ℎ − 𝑦̄)

]
𝑑𝜇+ + ∫

Ω

(𝐼ℎ𝑦̄− 𝑦̄)𝑑𝜇+,

and we have

∫
Ω

(𝐼ℎ𝑦̄− 𝑦̄)𝑑𝜇+ ≤ |𝜇+(𝒜+)| ‖𝐼ℎ𝑦̄− 𝑦̄‖𝐿∞(𝒜+) ≤ 𝐶𝜖ℎ
2−𝜖 (4.18)

by (2.15) and a standard interpolation error estimate for 𝐼ℎ.
Finally, it follows from (2.23), (3.19), (3.24) and a standard inter-

polation error estimate for 𝐼ℎ that

∫
Ω

[
𝐼ℎ(𝐸ℎ𝑦̄ℎ − 𝑦̄) − (𝐸ℎ𝑦̄ℎ − 𝑦̄)

]
𝑑𝜇+

≤ 𝐶|𝐼ℎ(𝐸ℎ𝑦̄ℎ − 𝑦̄) − (𝐸ℎ𝑦̄ℎ − 𝑦̄)|𝐻1+𝜖 (Ω)

≤ 𝐶ℎ1−𝜖|𝐸ℎ𝑦̄ℎ − 𝑦̄|𝐻2(Ω)

≤ 𝐶ℎ1−𝜖
(|𝐸ℎ(𝑦̄ℎ −Πℎ𝑦̄)|𝐻2(Ω) + |𝐸ℎΠℎ𝑦̄− 𝑦̄|𝐻2(Ω)

)
(4.19)

≤ 𝐶ℎ1−𝜖
(‖𝑦̄ℎ −Πℎ𝑦̄‖ℎ + ℎ𝜏

)
.

Combining (4.13)–(4.19), we have

∫
Ω

𝐸ℎ(Πℎ𝑦̄− 𝑦̄ℎ)𝑑𝜇+ ≤ 𝐶
(
ℎ1+𝜏 +ℎ2 +ℎ2−𝜖 +ℎ1+𝜏−𝜖 +ℎ1−𝜖‖Πℎ𝑦̄− 𝑦̄ℎ‖ℎ)

and hence, in view of (3.15),

∫
Ω

𝐸ℎ(Πℎ𝑦̄− 𝑦̄ℎ)𝑑𝜇+ ≤ 𝐶
(
ℎ2𝜏 + ℎ𝜏‖Πℎ𝑦̄− 𝑦̄ℎ‖ℎ). (4.20)

Similarly, we have

∫
Ω

𝐸ℎ(Πℎ𝑦̄− 𝑦̄ℎ)𝑑𝜇− ≤ 𝐶
(
ℎ2𝜏 + ℎ𝜏‖Πℎ𝑦̄− 𝑦̄ℎ‖ℎ). (4.21)

The estimate (4.6) follows from (4.11), (4.12), (4.20) and (4.21).

4.3. Other convergence results

We can approximate the optimal control 𝑢̄ by 𝑢̄ℎ = −Δℎ𝑦̄ℎ, where 
Δℎ is the piecewise defined Laplacian with respect to ℎ. The following 
result is a direct consequence of (4.1) and Theorem 4.1.

Corollary 4.3. There exists a positive constant 𝐶 independent of ℎ such 
that

‖𝑢̄− 𝑢̄ℎ‖𝐿2(Ω) ≤ 𝐶ℎ𝜏 .

We can also establish error estimates for 𝑦̄− 𝑦̄ℎ in lower order norms.
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Corollary 4.4. There exists a positive constant 𝐶 independent of ℎ such 
that

‖𝑦̄− 𝑦̄ℎ‖𝐿2(Ω) + |𝑦̄− 𝑦̄ℎ|𝐻1(Ω) + ‖𝑦̄− 𝑦̄ℎ‖𝐿∞(Ω) ≤ 𝐶ℎ𝜏 .

Proof. The estimates for ‖𝑦̄− 𝑦̄ℎ‖𝐿2(Ω) and ‖𝑦̄− 𝑦̄ℎ‖𝐻1(Ω) follow imme-
diately from (4.1), Theorem 4.1 and the Poincaré-Friedrichs inequality 
for piecewise 𝐻2 functions in [26].

Similarly the estimate for ‖𝑦̄ − 𝑦̄ℎ‖𝐿∞(Ω) follows from (4.1), Theo-
rem 4.1 and the Sobolev inequality for piecewise 𝐻2 functions in [15, 
Appendix]. □

Remark 4.5. Numerical results in Section 5 indicate that the estimates 
in Corollary 4.4 are not sharp.

5. Numerical results

In this section we report the results for two numerical examples on 
square domains where the computations were carried out on uniform 
meshes. Consequently 𝜏 equals 1 − 𝜖 for any 𝜖 > 0 in Theorem 4.1, 
Corollary 4.3 and Corollary 4.4 (cf. Remark 3.3). The first example only 
involves point tracking and region tracking, and the exact solution is 
constructed through the procedure in Appendix A. The second example 
involves all three types of tracking functions, where the exact solution 
is not available.

The discrete problems are solved by the PDAS algorithm in [8,44].

Example 5.1. We follow the procedure in Appendix A to obtain an 
exact solution for (2.1)–(2.2) on Ω = (−4, 4)2, where 𝑤1 = 0, 𝑤2 = 1, 
𝛽 = 1, 𝜓− = −∞ and

𝜓+(𝑥) = |𝑥|2 − 1.

The active set 𝒜 is the disk {𝑥 ∶ |𝑥| ≤ 1} and we use the function 𝑣 in 
[13, Example 7.1].

We track the state at the following points that do not belong to ℎ :

𝑝1 = (−2.49,2.51), 𝑝2 = (2.51,−2.51), 𝑝3 = (2.49,2.51),

𝑝4 = (−2.51,2.49),

with the weights 𝑤0(𝑝1) =𝑤0(𝑝2) =𝑤0(𝑝3) =𝑤0(𝑝4) = 100.
The function Φ ∈ 𝐶3

𝑐 (Ω) that satisfies (A.5) is given by Φ(𝑥) =
𝜁 (𝑥1)𝜁 (𝑥2), where

𝜁 (𝑡) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if 𝑑2 ≤ 𝑡,

𝜂( 𝑡−𝑐2
𝑑2−𝑐2

) if 𝑐2 ≤ 𝑡 ≤ 𝑑2,

1 if 𝑏2 ≤ 𝑡 ≤ 𝑐2,

𝜂( 𝑏2−𝑡
𝑏2−𝑎2

) if 𝑎2 ≤ 𝑡 ≤ 𝑏2,

0 if 𝑑1 ≤ 𝑡 ≤ 𝑎2,

𝜂( 𝑡−𝑐1
𝑑1−𝑐1

) if 𝑐1 ≤ 𝑡 ≤ 𝑑1,

1 if 𝑏1 ≤ 𝑡 ≤ 𝑐1,

𝜂( 𝑏1−𝑡
𝑏1−𝑎1

) if 𝑎1 ≤ 𝑡 ≤ 𝑏1,

0 if 𝑡 ≤ 𝑎1,

with

𝑎1 = −7∕2, 𝑏1 = −3, 𝑐1 = −2, 𝑑1 = −3∕2,

𝑎2 = 3∕2, 𝑏2 = 2, 𝑐2 = 3, 𝑑2 = 7∕2,

and

𝜂(𝑡) = (1 + 4𝑡+ 10𝑡2 + 20𝑡3)(1 − 𝑡)4.

The exact solution 𝑦̄ is then defined by (A.6), where 𝜃 = 0.1. The 
targets 𝑦0(𝑝𝑗 ) for 1 ≤ 𝑗 ≤ 4 are given by (A.8) and the target 𝑦2 is given 
by (A.9).
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Table 5.1

Relative errors of the state versus mesh size ℎ and orders of convergence (𝑃2 element) for 
Example 5.1.

ℎ 𝑒𝑟
ℎ

order 𝑒𝑟1,ℎ order 𝑒𝑟0,ℎ order 𝑒𝑟∞,ℎ
order

2−1 9.6413e-1 – 5.4460e-1 – 2.0670e-1 – 3.4617e-1 –

2−2 6.1450e-1 0.65 2.5521e-1 1.09 8.5745e-2 1.27 1.4600e-1 1.25

2−3 5.1126e-1 0.27 1.6734e-1 0.61 4.6488e-2 0.88 1.4090e-1 0.05

2−4 2.6839e-1 0.93 7.1839e-2 1.22 1.7819e-2 1.38 5.7271e-2 1.30

2−5 1.3523e-1 0.99 2.8121e-2 1.35 5.8638e-3 1.60 2.1555e-2 1.41

2−6 6.4002e-2 1.08 9.1345e-3 1.62 1.6972e-3 1.79 6.7055e-3 1.68

Table 5.2

Relative errors of the control versus mesh size ℎ and orders of convergence (𝑃2 element) for Example 5.1.
ℎ 2−1 2−2 2−3 2−4 2−5 2−6

‖𝑢̄− 𝑢̄ℎ‖𝐿2 (Ω)∕‖𝑢̄‖𝐿2 (Ω) 9.8501e-1 6.2449e-1 5.2082e-1 2.7151e-1 1.3591e-1 6.3854e-2

Order – 0.66 0.26 0.94 1.00 1.09

Table 5.3

Relative errors of the state versus mesh size ℎ and orders of convergence (𝑃3 element) for 
Example 5.1.

ℎ 𝑒𝑟
ℎ

order 𝑒𝑟1,ℎ order 𝑒𝑟0,ℎ order 𝑒𝑟∞,ℎ
order

21 2.8861e0 – 5.6489e0 – 4.5143e0 – 3.4806e0 –

20 1.7906e0 0.69 3.7298e0 0.60 3.6158e0 0.32 3.2830e0 0.08

2−1 8.4475e-1 1.08 3.8210e-1 3.29 1.3201e-1 4.78 2.0883e-1 3.97

2−2 4.7260e-1 0.84 9.9812e-2 1.94 1.7288e-2 2.93 2.6302e-2 2.99

2−3 1.6540e-1 1.51 2.2119e-2 2.17 3.1072e-3 2.48 1.1167e-2 1.24

2−4 7.2488e-2 1.19 4.9158e-3 2.17 1.2571e-3 1.31 2.7623e-3 2.02

Table 5.4

Relative errors of the control versus mesh size ℎ and orders of convergence (𝑃3 element) for Exam-
ple 5.1.

ℎ 21 20 2−1 2−2 2−3 2−4

‖𝑢̄− 𝑢̄ℎ‖𝐿2 (Ω)∕‖𝑢̄‖𝐿2 (Ω) 2.8807e0 1.7714e0 8.6255e-1 4.8265e-1 1.6892e-1 7.4030e-2

Order – 0.70 1.04 0.84 1.51 1.19
We discretize (2.1)–(2.2) by the 𝑃2 (resp., 𝑃3) Lagrange finite ele-
ment on uniform meshes with penalty parameter 𝜎 = 100 (resp., 1000). 
The numerical results are presented in Tables 5.1–5.4, where the rela-
tive errors of the state are defined by

𝑒𝑟
ℎ
= ‖𝑦̄− 𝑦̄ℎ‖ℎ∕‖𝑦̄‖𝐻2(Ω), 𝑒𝑟1,ℎ = ‖𝑦̄− 𝑦̄ℎ‖𝐻1(Ω)∕‖𝑦̄‖𝐻1(Ω),

𝑒𝑟0,ℎ = ‖𝑦̄− 𝑦̄ℎ‖𝐿2(Ω)∕‖𝑦̄‖𝐿2(Ω), 𝑒𝑟∞,ℎ
= max

𝑝∈ℎ
|𝑦̄(𝑝) − 𝑦̄ℎ(𝑝)|∕‖𝑦̄‖𝐿∞(Ω).

The convergence for the state in the ‖ ⋅ ‖ℎ norm (resp., the conver-
gence of the control in the 𝐿2 norm) agrees with Theorem 4.1 (resp., 
Corollary 4.3) where 𝜏 = 1 −𝜖. The convergence of the state in the other 
norms is better than the convergence predicted by Corollary 4.4.

It is also observed that the relative errors for the 𝑃3 finite element 
method at ℎ = 2−4 are comparable to the relative errors for the 𝑃2 finite 
element method at ℎ = 2−6. Therefore the cubic 𝐶0 interior penalty 
method is more efficient for this example.

The graphs for the optimal states, optimal controls and active sets 
are displayed in Fig. 5.1 and Fig. 5.2.

Example 5.2. We consider an optimal control problem on Ω = (0, 1)2
that involves all three types of tracking functions. We take 𝛽 = 1, 𝜓− =
−∞ and

𝜓+ = 5 − [(𝑥1 − 0.5)2 + (𝑥2 − 0.5)2].

The point tracking occurs at 𝑝1 = (0.375, 0.625) and 𝑝2 = (0.625,
0.625) (cf. Fig. 5.3), and we take 𝑦0(𝑝1) = 4.8, 𝑦0(𝑝2) = 4.6, 𝑤0(𝑝1) =
2000 and 𝑤0(𝑝2) = 500.
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The curve tracking takes place at the boundary of the square with 
rtices (0.125, 0.125), (0.875, 0.125), (0.875, 0.875) and (0.125, 0.875)
. Fig. 5.3), and we take 𝑦1 = 4.5 and 𝑤1 = 700.
For the region tracking we choose 𝑤2 = 1000𝜒𝑅, where 𝜒𝑅 is the 
aracteristic function of the rectangle 𝑅 with vertices (0.375, 0.25), 
625, 0.25), (0.625, 0.375), and (0.375, 0.375) (cf. Fig. 5.3) and we take 
= 4.7.
Note that for this example the pointwise state constraints are satis-
d by the target functions 𝑦0, 𝑦1 and 𝑦2. Therefore it can be interpreted 
a least-squares data fitting problem (cf. Remark 1.4).
The optimal control problem is solved by the quadratic 𝐶0 finite 
ment method with 𝜎 = 100. The numerical results are reported in 
ble 5.5 and Table 5.6, where the relative errors of the state are de-
ed by

𝑟
ℎ
= ‖𝑦̄ℎ∕2 − 𝑦̄ℎ‖ℎ∕‖𝑦̄2−9‖ℎ,

,ℎ
= ‖𝑦̄ℎ∕2 − 𝑦̄ℎ‖𝐻1(Ω)∕‖𝑦̄2−9‖𝐻1(Ω),

,ℎ
= ‖𝑦̄ℎ∕2 − 𝑦̄ℎ‖𝐿2(Ω)∕‖𝑦̄2−9‖𝐿2(Ω),

,ℎ
= max

𝑝∈ℎ
|𝑦̄ℎ∕2(𝑝) − 𝑦̄ℎ(𝑝)|∕max

𝑝∈ℎ
|𝑦̄2−9 (𝑝)|.

The convergence for the state in the ‖ ⋅ ‖ℎ norm (resp., the conver-
nce of the control in the 𝐿2 norm) agrees with Theorem 4.1 (resp., 
rollary 4.3), where 𝜏 = 1 − 𝜖. The convergence of the state in the 
er norms is better than the convergence predicted by Corollary 4.4.
The graphs for the optimal state, optimal control and active set at 
2−7 are displayed in Fig. 5.4 and Fig. 5.5.
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Fig. 5.1. Graphs of optimal states and optimal controls for Example 5.1.

Fig. 5.2. Active sets for Example 5.1.

Fig. 5.3. Point, line and region tracking.

6. Concluding remarks

We have constructed 𝐶0 interior penalty methods for a linear 
quadratic elliptic distributed optimal control problem with pointwise 
state constraints and a general cost function that involves tracking at 
points, curves and regions of the domain. It is based on reformulating 
the optimal control problem as a minimization problem that only in-
volves the state. The results in this paper can be extended to problems 
with both pointwise state and pointwise control constraints by using a 
cubic 𝐶0 interior penalty method (cf. [21]).

For simplicity we have performed numerical experiments on rect-
angular domains with uniform meshes which is sufficient to guarantee 
𝑂(ℎ1−𝜖) estimates for the errors that appear in Theorem 4.1, Corol-
lary 4.3 and Corollary 4.4. These 𝑂(ℎ1−𝜖) error estimates are also valid 
for a general convex domain provided we use local mesh refinements 
87



S.C. Brenner, S. Jeong, L.-y. Sung et al. Computers and Mathematics with Applications 155 (2024) 80–90

Table 5.5

Relative errors of the state versus mesh size ℎ and orders of convergence for Example 5.2.
ℎ 𝑒𝑟

ℎ
order 𝑒𝑟1,ℎ order 𝑒𝑟0,ℎ order 𝑒𝑟∞,ℎ

order

2−3 9.5382e-2 9.8750e-2 6.0017e-2 6.4915e-2

2−4 4.8085e-2 0.99 4.2391e-2 1.22 2.5509e-2 1.23 3.4311e-2 0.92

2−5 2.3055e-2 1.06 1.4364e-2 1.56 7.7981e-3 1.71 1.1588e-2 1.57

2−6 1.1124e-2 1.05 4.6165e-3 1.64 2.1994e-3 1.83 3.6465e-3 1.67

2−7 5.3350e-3 1.06 1.3428e-3 1.78 5.8472e-4 1.91 1.0256e-3 1.83

2−8 2.6061e-3 1.03 3.6717e-4 1.87 1.5988e-4 1.87 2.7192e-4 1.92

Table 5.6

Relative errors of the control versus mesh size ℎ and order of convergence for Example 5.2.
ℎ 2−3 2−4 2−5 2−6 2−7 2−8

‖𝑢̄ℎ∕2 − 𝑢̄ℎ‖𝐿2 (Ω)∕‖𝑢̄2−9‖𝐿2 (Ω) 2.70e-1 1.41e-1 7.03e-2 3.44e-2 1.65e-2 8.04e-3

order - 0.93 1.01 1.03 1.06 1.04

Fig. 5.4. Graphs of optimal state (left) and optimal control (right) for Example 5.2 at ℎ = 2−7.
Fig. 5.5. Active set for Example 5.2 at ℎ = 2−7.

around the corners where the interior angles are strictly larger than 
𝜋∕2.

One can consider an analogous optimal control problem on three 
dimensional domains, where the cost function also includes tracking on 
surfaces inside the domain in addition to tracking on points, curves and 
regions. In this case the regularity estimate (2.12) for the adjoint state 
𝑝̄ becomes (cf. [30, Theorem 1])

𝑝̄ ∈𝑊 1,𝑠
0 (Ω) ∀ 𝑠 < 3

2
,

and hence the regularity estimate (2.15) for the optimal state 𝑦̄ becomes

𝑦̄ ∈𝑊 3,𝑠
𝑙𝑜𝑐

(Ω) ∀ 𝑠 < 3
2
.

Consequently the error estimates on uniform meshes are 𝑂(ℎ(1∕2)−𝜖) 
even for a rectangular parallelepiped. However, since the deterioration 
of the elliptic regularity is due to the existence of point tracking at 
known positions, one can include these points in ℎ and use local mesh 
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refinement around them (and around 𝜕Ω for a general convex Ω) to 
recover 𝑂(ℎ1−𝜖) error estimates.

Data availability

Data will be made available on request.

Appendix A. The construction of an exact solution

We will construct an exact solution to the problem (2.1)–(2.2) where 
𝑤1 = 0 in (1.3) (i.e., there is no tracking on curves), 𝑤2 = 1 (i.e., stan-
dard tracking for the domain), and 𝜓− = −∞ (i.e., there is only an upper 
constraint on the state).

Let Ω = (−4, 4) × (−4, 4), 𝜓+(𝑥) = |𝑥|2 − 1 and 𝒜 = {𝑥 ∶ |𝑥| ≤ 1}. 
The starting point is a function 𝑣 ∈ 𝐻3(Ω) that is piecewise smooth 
with respect to 𝒜 and has the following properties:

𝑣 = 𝜓 on 𝒜 and 𝑣 < 𝜓 on Ω ⧵𝒜, (A.1)

𝑣 =Δ𝑣 = 0 on 𝜕Ω, (A.2)

[[𝜕(Δ𝑣)∕𝜕𝑛]] ≥ 0 on 𝜕𝒜. (A.3)

The construction of such a function can be found in [13, Example 7.1].
Next we choose the points 𝑝1, … , 𝑝𝐽 ∈Ω ⧵𝒜 and define

𝜙𝑗 (𝑥) =
1
8𝜋

|𝑥− 𝑝𝑗 |2 ln |𝑥− 𝑝𝑗 |
Note that

𝜙𝑗 (𝑝𝑗 ) = 0, Δ𝜙𝑗 =
1
2𝜋

(
ln |𝑥− 𝑝𝑗 |+ 1

)
and Δ2𝜙𝑗 = 𝛿𝑝𝑗 , (A.4)

where 𝛿𝑝 is the Dirac point measure associate with the point 𝑝𝑗 .
𝑗
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Let Φ ∈ 𝐶3
𝑐 (Ω) such that

Φ= 1 near 𝑝1,… , 𝑝𝐽 and Φ= 0 in a neighborhood of 𝒜. (A.5)

The exact solution 𝑦̄ is given by

𝑦̄ = 𝑣+ 𝜃

𝐽∑
𝑗=1

𝜙𝑗Φ, (A.6)

where 𝜃 is sufficiently small so that (cf. (A.1))

𝑦̄ = 𝜓 on 𝒜 and 𝑦̄ < 𝜓 on Ω ⧵𝒜. (A.7)

Now we choose positive weights 𝑤0(𝑝1), … , 𝑤0(𝑝𝐽 ) and set the tar-
gets 𝑦0(𝑝1), … , 𝑦0(𝑝𝐽 ) by

𝑦0(𝑝𝑗 ) = 𝑦̄(𝑝𝑗 ) +
𝜃𝛽

𝑤0(𝑝𝑗 )
= 𝑣(𝑝𝑗 ) + 𝜃

( 𝐽∑
𝑖=1

𝜙𝑖(𝑝𝑗 ) +
𝛽

𝑤0(𝑝𝑗 )

)

for 1 ≤ 𝑗 ≤ 𝐽. (A.8)

Finally we set the target function 𝑦2 ∈𝐿2(Ω) by

𝑦2 =

⎧⎪⎪⎨⎪⎪⎩

𝐿𝑣+ 𝜃𝛽
∑𝐽

𝑗=1𝑅(𝜙𝑗,Φ) + 𝜃
∑𝐽

𝑗=1 𝜙𝑗Φ on Ω ⧵𝒜

𝐿𝑣+ 𝛾 on 𝒜

, (A.9)

where 𝐿 is the differential operator 𝛽Δ2 + 1, 𝑅(⋅, ⋅) is the bilinear form 
defined by

𝑅(𝑓, 𝑔) = 4∇(Δ𝑓 ) ⋅∇𝑔 + 2(Δ𝑓 )(Δ𝑔) + 4𝐷2𝑓 ∶𝐷2𝑔

+ 4∇𝑓 ⋅∇(Δ𝑔) + 𝑓 (Δ2𝑔),

and 𝛾 is a nonnegative constant.
A key observation is that

∫
Ω

[
Δ(𝜙𝑗Φ)

]
(Δ𝑧)𝑑𝑥 = 𝑧(𝑝𝑗 ) + ∫

Ω

𝑅(𝜙𝑗,Φ)𝑧𝑑𝑥, (A.10)

which follows from (A.4), (A.5) and integration by parts.
Combining (A.1)–(A.3), (A.6)–(A.10) and integration by parts, we 

find

𝛽 ∫
Ω

(Δ𝑦̄)(Δ𝑧)𝑑𝑥+ ∫
Ω

(𝑦̄− 𝑦2)𝑧𝑑𝑥+
𝐽∑
𝑗=1

𝑤0(𝑝𝑗 )[𝑦̄(𝑝𝑗 ) − 𝑦0(𝑝𝑗 )]𝑧(𝑝𝑗 )

(A.11)

= −𝛾 ∫
𝒜

𝑧𝑑𝑥− 𝛽 ∫
𝜕𝒜

[[𝜕(Δ𝑣)∕𝜕𝑛]]𝑧𝑑𝑠 ∀𝑧 ∈𝐻2(Ω) ∩𝐻1
0 (Ω),

which verifies that 𝑦̄ is the exact solution of (2.1)–(2.2) (cf. (2.3), (2.5)
and (2.6)).
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