An Adaptive Nonlinear Least-Squares Finite Element Method for a Pucci Equation in Two Dimensions

Susanne C. Brenner^{1,*}, Li-Yeng Sung¹ and Zhiyu Tan ²

Abstract. We present an adaptive nonlinear least-squares finite element method for a two dimensional Pucci equation. The efficiency of the method is demonstrated by a numerical experiment.

AMS subject classifications: 65N30, 65N50, 35J60, 90C30

Key words: Pucci equation, nonlinear least-squares, finite element, adaptive

1. Introduction

The Pucci equation is a fully nonlinear second order elliptic partial differential equation that first appeared in the study of linear uniformly elliptic equations in nondivergence form (cf. [13, 35, 36]) and has found applications in optimal designs (cf. [14]) and population models (cf. [12, 37]).

Let Ω be a bounded convex polygon in \mathbb{R}^2 . We consider in this paper the following Dirichlet boundary value problem for a Pucci equation:

$$\alpha \lambda_{\max}(D^2 u) + \lambda_{\min}(D^2 u) = \psi \quad \text{in } \Omega,$$

$$u = \phi \quad \text{on } \partial \Omega,$$
(1.1)

where $\alpha > 1$, $\lambda_{\max}(D^2u)$ (resp., $\lambda_{\min}(D^2u)$) is the maximum (resp., minimum) eigenvalue of D^2u (the Hessian of u), $\psi \in L^2(\Omega)$ and $\phi \in H^2(\Omega)$.

Remark 1.1. Throughout this paper we will follow the standard notation for differential operators, functions spaces and norms that can be found for example in [1,7,22].

*Corresponding author. *Email addresses:* brenner@math.lsu.edu (Susanne C. Brenner), sung@math.lsu.edu (Li-Yeng Sung), zhiyutan@xmu.edu.cn (Zhiyu Tan)

¹ Department of Mathematics and Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803, USA

² School of Mathematical Sciences and Fujian Provincial Key Laboratory on Mathematical Modeling and High Performance Scientific Computing, Xiamen University, Fujian, 361005, China

The numerical treatment of Pucci's equation began in [14, 19], followed by the work in [30]. The finite element methods in these papers were tested extensively but without convergence analysis. Finite difference methods for the viscosity solutions of the Pucci equation were investigated in [23, 34], where the convergence was established in the framework of [2] without convergence rate, and a second order consistent finite difference method was considered in [4].

Motivated by our work on the Monge-Ampère equation in [10], a nonlinear least-squares method was presented in [9] for the strong solutions of (1.1), where convergence with convergence rates was established. Our goal in this paper is to present an adaptive version of this nonlinear least-squares method and demonstrate its effectiveness through a numerical experiment.

The rest of the paper is organized as follows. We introduce the nonlinear least-squares method in Section 2 and briefly recall the theoretical results from [9]. The numerical result for the adaptive version is presented in Section 3. We end with some concluding remarks in Section 4.

2. A Nonlinear Least-Squares Finite Element Method

Let $S_{2\times 2}$ be the space of real 2×2 symmetric matrices and P(M) be the Pucci operator defined on $S_{2\times 2}$ given by

$$P(M) = \alpha \lambda_{\text{max}}(M) + \lambda_{\text{min}}(M)$$
 (2.1)

for a constant $\alpha > 1$. We can then write the boundary value problem (1.1) as

$$P(D^2u) = \psi$$
 in Ω ,
 $u = \phi$ on $\partial \Omega$. (2.2)

A unique strong solution $u \in H^2(\Omega)$ of (2.2) was established in [9] by using the uniform ellipticity of P(D), the Miranda-Talenti inequality

$$||D^2v||_{L^2(\Omega)} \le ||\Delta v||_{L^2(\Omega)} \qquad \forall v \in H^2(\Omega) \cap H_0^1(\Omega),$$

that holds on convex domains (cf. [24, 32, 38]) and the theory of Companato on near operators (cf. [15, 31]).

Let \mathscr{T}_h be a regular triangulation of Ω with mesh size h, $V_h \subset H^1(\Omega)$ be the cubic Lagrange finite element space (cf. [7,18]) associated with \mathscr{T}_h , and Π_h be the nodal interpolation operator from $C(\bar{\Omega})$ to V_h .

The nonlinear least-squares method in [9] is given by

$$u_h = \underset{v_h \in L_h}{\operatorname{argmin}} J_h(v_h), \tag{2.3}$$

where the constraint set L_h is defined by

$$L_h = \{ \nu_h \in V_h : \nu_h = \Pi_h \phi \text{ on } \partial \Omega \}, \tag{2.4}$$

and the objective function J_h is defined by

$$J_h(\nu_h) = \frac{h^4}{2} \|D_h^2 \nu_h\|_{L^2(\Omega)}^2 + \frac{1}{2} \sum_{e \in \mathcal{E}_h^i} |e|^{-1} \| [[\partial \nu_h / \partial n]] \|_{L^2(e)}^2 + \frac{1}{2} \|P(D_h^2 \nu_h) - \psi\|_{L^2(\Omega)}^2.$$
 (2.5)

Here $D_h^2 v_h$ is the piecewise defined Hessian of v_h , \mathcal{E}_h^i is the set of the interior edges of \mathcal{T}_h , $[\![\partial v_h/\partial n]\!]$ is the jump of the normal derivative of v_h across an interior edge, and |e| denotes the length of the edge e.

It follows from a Poincaré-Friedrichs inequality for piecewise H^2 functions (cf. [11]) that J_h has a global minimizer in L_h . Let $u_h \in L_h$ be a solution of the minimization problem defined by (2.3)–(2.5). It was shown in [9] that

$$||u - u_h||_h^2 \le C \left[J_h(\nu_h) + ||\phi - \phi_h||_h^2 \right] \qquad \forall \, \nu_h, \phi_h \in L_h, \tag{2.6}$$

where

$$\|\nu\|_h^2 = \|D_h^2 \nu\|_{L^2(\Omega)}^2 + \sum_{e \in \mathcal{E}_h^i} |e|^{-1} \| [\![\partial \nu / \partial n]\!] \|_{L^2(e)}^2$$

is the standard discrete norm that appears in C^0 interior penalty methods for fourth order problems (cf. [5,8,21]).

The quasi-optimal error estimate (2.6) and standard interpolation error estimates imply that

$$||u - u_h||_h \le Ch^{\min\{s - 2, 2\}} \tag{2.7}$$

if the solution u of (1.1)/(2.2) belongs to $H^s(\Omega)$ for some s > 2. It follows from (2.7) and the Poincaré-Friedrichs and Sobolev inequalities in [6,11] that

$$||u - u_h||_{L^2(\Omega)} + |u - u_h|_{H^1(\Omega)} + ||u - u_h||_{L^{\infty}(\Omega)} \le Ch^{\min\{s - 2, 2\}}.$$
 (2.8)

Remark 2.1. Numerical results in [9] indicate that the error estimate (2.7) is sharp, but the error estimate in (2.8) for the lower order norms is not. This can also be observed in the numerical results from Section 3.

Since the discrete problem defined by (2.3)–(2.5) is a nonlinear optimization problem, in general the outcome of an optimization algorithm is not guaranteed to be a global minimizer. However, we can monitor the convergence of the computed numerical solution according to the following estimate in [9].

Let $\tilde{u}_h \in L_h$ be an approximate solution of the discrete minimization problem. We have

$$||u - \tilde{u}_h||_h^2 \le C \Big[||P(D_h^2 \tilde{u}_h) - \psi||_{L^2(\Omega)} + \Big(\sum_{e \in \mathcal{E}_h^i} |e|^{-1} ||[[\partial \tilde{u}_h/\partial n]]||_{L^2(e)}^2 \Big)^{\frac{1}{2}} + Osc(\phi) \Big], \quad (2.9)$$

where $Osc(\phi) = \|\phi - \Pi_h \phi\|_h$ is the oscillation term (which is a higher order term if ϕ is smooth). Hence we can conclude that \tilde{u}_h is converging to u if the right-hand side of (2.9) is approaching zero.

On the other hand we also have

$$||P(D_h^2 \tilde{u}_h) - \psi||_{L^2(T)} = ||P(D^2 u) - P(D_h^2 \tilde{u}_h)||_{L^2(T)}$$

$$\leq \sqrt{2}\alpha ||D_h^2 (u - \tilde{u}_h)||_{L^2(T)} \qquad \forall T \in \mathcal{T}_h$$
(2.10)

by the Hoffman-Wielandt inequality (cf. [28]), and the obvious relation

$$\sum_{e \in \mathcal{E}_h^i} |e|^{-1} \| [\![\![\partial \tilde{u}_h / \partial n]\!]\!] \|_{L^2(e)}^2 = \sum_{e \in \mathcal{E}_h^i} |e|^{-1} \| [\![\![\partial (u - \tilde{u}_h) / \partial n]\!]\!] \|_{L^2(e)}^2. \tag{2.11}$$

It follows from (2.9)–(2.11) that the residual-based error estimator defined by

$$\eta_h(\tilde{u}_h) = \|P(D_h^2 \tilde{u}_h) - \psi\|_{L^2(\Omega)} + \left(\sum_{e \in \mathcal{E}_h^i} |e|^{-1} \| [[\partial \tilde{u}_h / \partial n]] \|_{L^2(e)}^2\right)^{\frac{1}{2}}$$
(2.12)

is both reliable and locally efficient and hence it can be used for adaptive mesh refinement.

3. The Adaptive Method

In the adaptive nonlinear least-squares method we use a local version of the objective function J_h in (2.5) defined by

$$\tilde{J}_{h}(v_{h}) = \sum_{T \in \mathcal{T}_{h}} h_{T}^{4} \|D_{h}^{2} v_{h}\|_{L^{2}(T)}^{2} + \frac{1}{2} \sum_{e \in \mathcal{E}_{h}^{i}} |e|^{-1} \| [[\partial v_{h} / \partial n]] \|_{L^{2}(e)}^{2} \\
+ \frac{1}{2} \|P(D_{h}^{2} v_{h}) - \psi\|_{L^{2}(\Omega)}^{2}, \tag{3.1}$$

where h_T is the diameter of T, and a local version of the error estimator η_h in (2.12) given by

$$\eta_T = \|P(D_h^2 u_h) - \psi_h\|_{L^2(T)} + \left(\sum_{e \in \mathcal{E}_T} |e|^{-1} \| [[\partial u_h/\partial n]] \|_{L^2(e)}^2\right)^{\frac{1}{2}} \quad \forall \ T \in \mathcal{T}_h,$$

where \mathcal{E}_T is the set of the three edges of T.

We adopt the Dörfler strategy (cf. [20]) to mark the elements, i.e., we define the marking set \mathcal{M} by the condition that

$$\sum_{T \in \mathcal{M}} \eta_T^2 \ge \theta \sum_{T \in \mathcal{T}_h} \eta_T^2$$

with $\theta = 0.4$. The meshes are refined by using the newest vertex bisection (cf. [29, 33]).

Below we present a numerical example of (1.1) on the unit square $(0,1) \times (0,1)$ that originates from [19]. We take $\psi = 0$ and $\phi = \phi_{\delta}$ defined by

$$\phi_{\delta} = \begin{cases} 1, & \text{if } 0 \leq x_{1} \leq 1/4 - \delta; \\ \cos^{2}[1/4(x_{1} - 1/4 + \delta)(\pi/\delta)], & \text{if } 1/4 - \delta \leq x_{1} \leq 1/4 + \delta; \\ 0, & \text{if } 1/4 + \delta \leq x_{1} \leq 3/4 - \delta; \\ \cos^{2}[1/4(x_{1} - 3/4 - \delta)(\pi/\delta)], & \text{if } 3/4 - \delta \leq x_{1} \leq 3/4 + \delta; \\ 1, & \text{if } 3/4 + \delta \leq x_{1} \leq 1, \end{cases}$$
(3.2)

on the edge $\{x = (x_1, x_2): 0 \le x_1 \le 1, x_2 = 0\}$, and similar definitions on the other three edges.

Remark 3.1. Note that ϕ_{δ} is a C^1 function along $\partial\Omega$ that is piecewise C^2 . Hence it is the trace of a function in $H^{3-\epsilon}(\Omega)$ for an arbitrarily small positive ϵ and therefore ϕ_{δ} satisfies the assumption on the boundary value in (1.1). On the other hand it also indicates that the solution u of (1.1) does not belong to $H^4(\Omega)$.

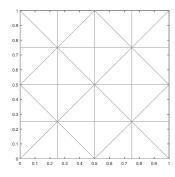
We choose $\delta = 1/16$ in (3.2) and $\alpha = 3$ in (1.1) for the numerical experiment. We are interested in the relative errors

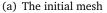
$$\begin{split} e^r_{2,h} &= \frac{\left(\sum_{T \in \mathscr{T}_h} |u - u_h|^2_{H^2(T)}\right)^{\frac{1}{2}}}{|u|_{H^2(\Omega)}}, \qquad e^r_{1,h} &= \frac{|u - u_h|_{H^1(\Omega)}}{|u|_{H^1(\Omega)}}, \\ e^r_{0,h} &= \frac{\|u - u_h\|_{L^2(\Omega)}}{\|u\|_{L^2(\Omega)}}, \qquad e^r_{\infty,h} &= \frac{\max\limits_{p \in \mathscr{V}_h} |u(p) - u_h(p)|}{\|u\|_{L^\infty(\Omega)}}, \end{split}$$

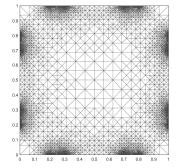
for uniform meshes and adaptive meshes, where \mathcal{V}_h is the set of all the vertices of the triangulation \mathcal{T}_h . Since the exact solution of this example is unknown, these relative errors are estimated by comparing the numerical solutions from two consecutive meshes.

Remark 3.2. The numerical experiments are carried out on a machine with (i) Processor: 2.1GHz 12-Core Intel Core i7; (ii) Memory: 16GB 4400 MHz DIMM. We use MATLAB (version R2023a v.9.14.0) in the computations.

The initial mesh and the adaptive mesh with 38575 degrees of freedom (dofs) are shown in Figure 1. The discrete problems are solved by a regularized version of the active set method in [25–27] and the profile of the numerical solution on the adaptive mesh is shown in Figure 2, which matches the ones in [19] and [9].







(b) The adaptive mesh

Figure 1: The initial mesh and the final adaptive mesh.

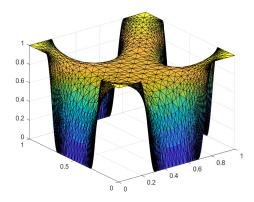


Figure 2: The numerical solution on the final adaptive mesh (38575 dofs).

The convergence histories of $e_{0,h}^r$, $e_{1,h}^r$, $e_{2,h}^r$ and $e_{\infty,h}^r$ on adaptive meshes and uniform meshes are presented in Figure 3, where N is the dimension of the finite element space associated with \mathcal{T}_h . It is observed that (i) the convergence in the piecewise H^2 seminorm is $O(N^{-1})$ (corresponding to $O(h^2)$ convergence for uniform meshes) and the error on the final adaptive mesh is roughly 250 times smaller than the error on a uniform mesh with a comparable number of degrees of freedom; (ii) the convergence in the L^2 norm is $O(N^{-2})$ (corresponding to $O(h^4)$ convergence for uniform meshes) and the error on the final adaptive mesh is roughly 20 times smaller than the error on a uniform mesh with a comparable number of degrees of freedom, (iii) the convergence in the H^1 and L^∞ norms are $O(N^{-3/2})$ (corresponding to $O(h^3)$ convergence for uniform meshes) and the errors on the final adaptive meshes are roughly 10 times smaller than the ones on a uniform mesh with a comparable number of degrees of freedom.

Remark 3.3. The convergence in all these norms are optimal in the sense that they agree with the interpolation errors on uniform meshes for a function in $H^4(\Omega)$, even though the exact solution u does not belong to $H^4(\Omega)$ (cf. Remark 3.1). The convergence rates in $L^2(\Omega)$, $H^1(\Omega)$ and $L^{\infty}(\Omega)$ are also better than the convergence predicted by (2.8).

The convergence history of the error estimator is depicted in Figure 4, where we can observe an asymptotic $O(N^{-1})$ convergence that agrees with the convergence history of the error in the H^2 seminorm.

Finally a comparison of the CPU time on adaptive meshes and uniform meshes is provided in Figure 5, where it is observed that eventually the computation on the adaptive meshes is roughly four times faster than the computation on uniform meshes.

4. Conclusions

We have demonstrated numerically the superior performance of an adaptive version of the nonlinear least-squares method in [9] for the Pucci equation. Even though the convergence analysis of the adaptive nonlinear least-squares method is outside the scope of the

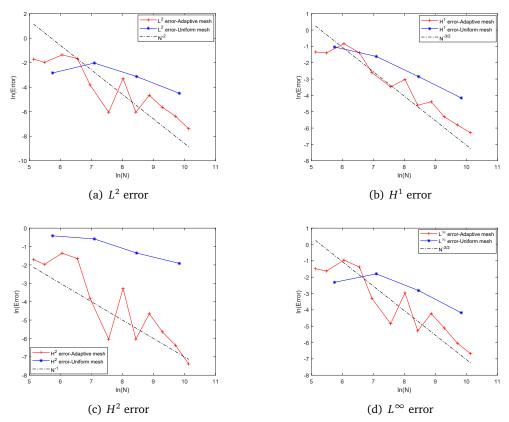


Figure 3: Comparison of various errors on adaptive meshes and uniform meshes.

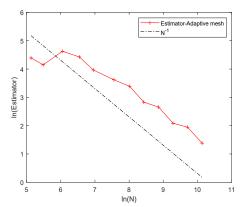


Figure 4: Convergence of the error estimator.

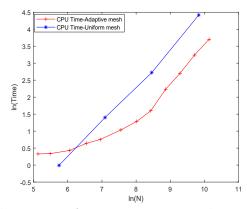


Figure 5: Comparison of the CPU time for computations using adaptive meshes and uniform meshes.

theory for adaptive methods for partial differential equations (cf. [3, 16, 17]), it is encouraging to see that the reliability and local efficiency of the error estimator can still lead to optimal convergence on adaptive meshes. We expect that adaptive nonlinear least-squares methods can also be developed for other nonlinear elliptic partial differential equations and they will play a useful computational role, especially in three dimensions.

Acknowledgments

The work of this paper is supported in part by the US National Science Foundation under Grant No. DMS-22-08404.

References

- [1] R.A. Adams and J.J.F. Fournier. *Sobolev Spaces (Second Edition)*. Academic Press, Amsterdam, 2003.
- [2] G. Barles and P.E. Souganidis. Convergence of approximation schemes for fully nonlinear second order equations. *Asymptotic Anal.*, 4:271–283, 1991.
- [3] A. Bonito and R.H. Nochetto. Quasi-optimal convergence rate of an adaptive discontinuous Galerkin method. *SIAM J. Numer. Anal.*, 48:734–771, 2010.
- [4] J.F. Bonnans, G. Bonnet, and J.-M. Mirebeau. Monotone and second order consistent scheme for the two dimensional Pucci equation. In *Numerical mathematics and advanced applications—ENUMATH 2019*, volume 139 of *Lect. Notes Comput. Sci. Eng.*, pages 733–742. Springer, Cham, 2021.
- [5] S.C. Brenner. C^0 Interior Penalty Methods. In J. Blowey and M. Jensen, editors, *Frontiers in Numerical Analysis-Durham 2010*, volume 85 of *Lecture Notes in Computational Science and Engineering*, pages 79–147. Springer-Verlag, Berlin-Heidelberg, 2012.
- [6] S.C. Brenner, M. Neilan, A. Reiser, and L.-Y. Sung. A *C*⁰ interior penalty method for a von Kármán plate. *Numer. Math.*, 135:803–832, 2017.
- [7] S.C. Brenner and L.R. Scott. *The Mathematical Theory of Finite Element Methods (Third Edition)*. Springer-Verlag, New York, 2008.

- [8] S.C. Brenner and L.-Y. Sung. C^0 interior penalty methods for fourth order elliptic boundary value problems on polygonal domains. *J. Sci. Comput.*, 22/23:83–118, 2005.
- [9] S.C. Brenner, L.-Y. Sung, and Z. Tan. A finite element method for a two-dimensional pucci equation. *Comptes Rendus Mécanique*, to appear.
- [10] S.C. Brenner, L.-Y. Sung, Z. Tan, and H. Zhang. A convexity enforcing C^0 interior penalty method for the Monge-Ampère equation on convex polygonal domains. *Numer. Math.*, 148:497–524, 2021.
- [11] S.C. Brenner, K. Wang, and J. Zhao. Poincaré-Friedrichs inequalities for piecewise *H*² functions. *Numer. Funct. Anal. Optim.*, 25:463–478, 2004.
- [12] L. Caffarelli, S. Patrizi, V. Quitalo, and M. Torres. Regularity of interfaces for a Pucci type segregation problem. *Ann. Inst. H. Poincaré C Anal. Non Linéaire*, 36:939–975, 2019.
- [13] L.A. Caffarelli and X. Cabré. *Fully Nonlinear Elliptic Equations*. American Mathematical Society, Providence, RI, 1995.
- [14] L.A. Caffarelli and R. Glowinski. Numerical solution of the Dirichlet problem for a Pucci equation in dimension two. Application to homogenization. *J. Numer. Math.*, 16:185–216, 2008.
- [15] S. Campanato. On the condition of nearness between operators. *Ann. Mat. Pura Appl.* (4), 167:243–256, 1994.
- [16] C. Carstensen, M. Feischl, M. Page, and D. Praetorius. Axioms of adaptivity. *Comput. Math. Appl.*, 67:1195–1253, 2014.
- [17] J.M. Cascon, C. Kreuzer, R.H. Nochetto, and K.G. Siebert. Quasi-optimal convergence rate for an adaptive finite element method. *SIAM J. Numer. Anal.*, 46:2524–2550, 2008.
- [18] P.G. Ciarlet. The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam, 1978.
- [19] E.J. Dean and R. Glowinski. On the numerical solution of a two-dimensional Pucci's equation with Dirichlet boundary conditions: a least-squares approach. *C. R. Math. Acad. Sci. Paris*, 341:375–380, 2005.
- [20] W. Dörfler. A convergent adaptive algorithm for Poisson's equation. *SIAM J. Numer. Anal.*, 33:1106–1124, 1996.
- [21] G. Engel, K. Garikipati, T.J.R. Hughes, M.G. Larson, L. Mazzei, and R.L. Taylor. Continuous/discontinuous finite element approximations of fourth order elliptic problems in structural and continuum mechanics with applications to thin beams and plates, and strain gradient elasticity. *Comput. Methods Appl. Mech. Engrg.*, 191:3669–3750, 2002.
- [22] L.C. Evans. *Partial Differential Equations (Second Edition)*. American Mathematical Society, Providence, RI, 2010.
- [23] B.D. Froese. Meshfree finite difference approximations for functions of the eigenvalues of the Hessian. *Numer. Math.*, 138:75–99, 2018.
- [24] P. Grisvard. Elliptic Problems in Non Smooth Domains. Pitman, Boston, 1985.
- [25] W.W. Hager and H. Zhang. A new active set algorithm for box constrained optimization. *SIAM J. Optim.*, 17:526–557, 2006.
- [26] W.W. Hager and H. Zhang. The limited memory conjugate gradient method. *SIAM J. Optim.*, 23:2150–2168, 2013.
- [27] W.W. Hager and H. Zhang. An active set algorithm for nonlinear optimization with polyhedral constraints. *Sci. China Math.*, 59:1525–1542, 2016.
- [28] R.A. Horn and C.R. Johnson. *Matrix analysis*. Cambridge University Press, Cambridge, second edition, 2013.
- [29] I. Kossaczký. A recursive approach to local mesh refinement in two and three dimensions. *J. Comput. Appl. Math.*, 55:275–288, 1994.
- [30] O. Lakkis and T. Pryer. A finite element method for nonlinear elliptic problems. SIAM J. Sci.

- Comput., 35:A2025-A2045, 2013.
- [31] A. Maugeri, D.K. Palagachev, and L.G. Softova. *Elliptic and parabolic equations with discontinuous coefficients*. Wiley-VCH Verlag Berlin GmbH, Berlin, 2000.
- [32] C. Miranda. Su di una particolare equazione ellittica del secondo ordine a coefficienti discontinui. *An. Şti. Univ. "Al. I. Cuza" Iaşi Secţ. I a Mat. (N.S.)*, 11B:209–215, 1965.
- [33] W.F. Mitchell. Adaptive refinement for arbitrary finite-element spaces with hierarchical bases. *J. Comput. Appl. Math.*, 36:65–78, 1991.
- [34] A.M. Oberman. Wide stencil finite difference schemes for the elliptic Monge-Ampère equation and functions of the eigenvalues of the Hessian. *Discrete Contin. Dyn. Syst. Ser. B*, 10:221–238, 2008.
- [35] C. Pucci. Un problema variazionale per i coefficienti di equazioni differenziali di tipo ellittico. *Ann. Scuola Norm. Sup. Pisa Cl. Sci.* (3), 16:159–172, 1962.
- [36] C. Pucci. Operatori ellittici estremanti. Ann. Mat. Pura Appl. (4), 72:141–170, 1966.
- [37] V. Quitalo. A free boundary problem arising from segregation of populations with high competition. *Arch. Ration. Mech. Anal.*, 210:857–908, 2013.
- [38] G. Talenti. Sopra una classe di equazioni ellittiche a coefficienti misurabili. *Ann. Mat. Pura Appl.* (4), 69:285–304, 1965.