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Abstract. We present an adaptive nonlinear least-squares finite element method for a
two dimensional Pucci equation. The efficiency of the method is demonstrated by a
numerical experiment.
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1. Introduction

The Pucci equation is a fully nonlinear second order elliptic partial differential equation
that first appeared in the study of linear uniformly elliptic equations in nondivergence form
(cf. [13,35,36]) and has found applications in optimal designs (cf. [14]) and population
models (cf. [12,37]).

Let  be a bounded convex polygon in R?. We consider in this paper the following
Dirichlet boundary value problem for a Pucci equation:

a?tmax(Dzu) + Amin(Dzu) =1 inQ,

u=¢ onadQ, (1.1)

where a > 1, A, (D?u) (resp., Ai,(D?1)) is the maximum (resp., minimum) eigenvalue
of D?u (the Hessian of u), 1 € L%(2) and ¢ € H%(Q).

Remark 1.1. Throughout this paper we will follow the standard notation for differential
operators, functions spaces and norms that can be found for example in [1,7,22].
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The numerical treatment of Pucci’s equation began in [14, 19], followed by the work
in [30]. The finite element methods in these papers were tested extensively but without
convergence analysis. Finite difference methods for the viscosity solutions of the Pucci
equation were investigated in [23, 34], where the convergence was established in the
framework of [2] without convergence rate, and a second order consistent finite difference
method was considered in [4].

Motivated by our work on the Monge-Ampere equation in [10], a nonlinear least-
squares method was presented in [9] for the strong solutions of (1.1), where convergence
with convergence rates was established. Our goal in this paper is to present an adaptive
version of this nonlinear least-squares method and demonstrate its effectiveness through a
numerical experiment.

The rest of the paper is organized as follows. We introduce the nonlinear least-squares
method in Section 2 and briefly recall the theoretical results from [9]. The numerical result
for the adaptive version is presented in Section 3. We end with some concluding remarks
in Section 4.

2. A Nonlinear Least-Squares Finite Element Method

Let Sy, be the space of real 2 x 2 symmetric matrices and P(M) be the Pucci operator
defined on S,,, given by
P(M) = aApax(M) + Apin(M) 2.1

for a constant a > 1. We can then write the boundary value problem (1.1) as

P(D*u)=1 ing,

u=¢ ondQ. (2.2)

A unique strong solution u € H2(2) of (2.2) was established in [9] by using the uniform
ellipticity of P(D), the Miranda-Talenti inequality

ID*Vl o) S NAVIl2y Vv EHA(Q)NH (),

that holds on convex domains (cf. [24,32,38]) and the theory of Companato on near op-
erators (cf. [15,31]).

Let J, be a regular triangulation of Q with mesh size h, Vj, ¢ H() be the cubic La-
grange finite element space (cf. [7,18]) associated with 7, and II;, be the nodal interpola-
tion operator from C() to V.

The nonlinear least-squares method in [9] is given by

uy, = argminJy(vy,), (2.3)
VhELh

where the constraint set L;, is defined by

L, = {Vh eVywy= Hh¢ on BQ}, 2.4)
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and the objective function J;, is defined by

h* 1 _ 1
Jp(vp) = EIIDﬁvhllfzm) + 3 Z le| lll[[avh/an]]I@Z(e) + EHP(D}%Vh)_"/)”%Z(Q)- (2.5)

i
eeé"h

Here Dﬁvh is the piecewise defined Hessian of vy, 6"}‘1 is the set of the interior edges of &,
[[@vy/dn]]is the jump of the normal derivative of v;, across an interior edge, and |e| denotes
the length of the edge e.

It follows from a Poincaré-Friedrichs inequality for piecewise H? functions (cf. [11])
that J, has a global minimizer in L;. Let u;, € L;, be a solution of the minimization problem
defined by (2.3)-(2.5). It was shown in [9] that

lu—upll? < ClIv) + l¢ — PullZ] Vi, dn € Ly, (2.6)

where
VIZ = ID2VIZ, ) + . lel M2 v/2n DI,

i
ecs,

is the standard discrete norm that appears in C° interior penalty methods for fourth order
problems (cf. [5,8,21]).
The quasi-optimal error estimate (2.6) and standard interpolation error estimates imply
that
llu—uyly, < Ch™ints—2:2) (2.7)

if the solution u of (1.1)/(2.2) belongs to H*(£2) for some s > 2. It follows from (2.7) and
the Poincaré-Friedrichs and Sobolev inequalities in [6,11] that

llu—upll 20y + It — uplggey + llu — upll oo gy < CR™PE22), (2.8)

Remark 2.1. Numerical results in [9] indicate that the error estimate (2.7) is sharp, but
the error estimate in (2.8) for the lower order norms is not. This can also be observed in
the numerical results from Section 3.

Since the discrete problem defined by (2.3)-(2.5) is a nonlinear optimization problem,
in general the outcome of an optimization algorithm is not guaranteed to be a global min-
imizer. However, we can monitor the convergence of the computed numerical solution
according to the following estimate in [9].

Let iij, € L;, be an approximate solution of the discrete minimization problem. We have

lu— g2 < C[IPDZi) —Pllieqey + ( ) el M NT2M,/2nll2 ) ) +Osc(@)], (2.9

i
eeé’h

where Osc(¢) = ||¢ — @]l is the oscillation term (which is a higher order term if ¢ is
smooth). Hence we can conclude that i, is converging to u if the right-hand side of (2.9)
is approaching zero.
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On the other hand we also have

IP(D i) — Yl 2cry = IIP(D*w) — P(Dti)ll 121y

< vV2a||DZ(u— i)l 21y VT e, (2.10)
by the Hoffman-Wielandt inequality (cf. [28]), and the obvious relation
D lel M T8, /anTIZ = D lel ™M ITA(w—ay)/anTlIZ, .. 2.11)
eeé” eeé”

It follows from (2.9)-(2.11) that the residual-based error estimator defined by

nw(iin) = IP(DFin) = Plliagey + ( D lel T 0a/anTlZ, ) )° (2.12)

i
eeé’h

is both reliable and locally efficient and hence it can be used for adaptive mesh refinement.

3. The Adaptive Method

In the adaptive nonlinear least-squares method we use a local version of the objective
function J;, in (2.5) defined by

T = 2 IOl + 5 =S e[ I av/on Tl

Teg, eeé“ (3.1)
1 2 2
+§||P(thh)_¢||L2(Q)!

where h; is the diameter of T, and a local version of the error estimator 7n;, in (2.12) given
by

Nl

nr = IPDZuy) = Pylliecry + ( D lel 8w/ onT%,,)" VT €,

e€ér
where &; is the set of the three edges of T.
We adopt the Dorfler strategy (cf. [20]) to mark the elements, i.e., we define the marking
set ./ by the condition that
Z n3 =6 Z %

Te# Te,

with 6 = 0.4. The meshes are refined by using the newest vertex bisection (cf. [29, 33]).
Below we present a numerical example of (1.1) on the unit square (0,1) x (0, 1) that
originates from [19]. We take 1) =0 and ¢ = ¢5 defined by

(1, if 0<x;<1/4-35;
cos’[1/4(x; —1/4+6)(n/58)], if 1/4—6<x; <1/4+56;
¢s =140, if 1/4+6<x,<3/4-56; (3.2)

cos’[1/4(x; —3/4—6)(n/5)], if 3/4—6 <x; <3/4+56;
L1, if 3/44+6<x;<1,
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on the edge {x = (x1,x5): 0 <x; <1, xy =0}, and similar definitions on the other three
edges.

Remark 3.1. Note that ¢5 is a C! function along 9 that is piecewise C2. Hence it is the
trace of a function in H>¢(Q) for an arbitrarily small positive € and therefore ¢4 satisfies
the assumption on the boundary value in (1.1). On the other hand it also indicates that the
solution u of (1.1) does not belong to H*(2).

We choose 6 =1/16 in (3.2) and a = 3 in (1.1) for the numerical experiment. We are
interested in the relative errors

Nl=

2
oo (ZTeyh |u—uh|H2(T)) o= [u—up |1
R |u|H2(Q) ’ Lk |u|H1(Q)
max |u(p) —u
. ”u_uh”LZ(Q) B pe%ll (p) h(p)l
eo,h =, eoo,h - )

||u||L2(Q) ||u||L°°(Q)

for uniform meshes and adaptive meshes, where ¥ is the set of all the vertices of the
triangulation J;,. Since the exact solution of this example is unknown, these relative errors
are estimated by comparing the numerical solutions from two consecutive meshes.

Remark 3.2. The numerical experiments are carried out on a machine with (i) Processor:
2.1GHz 12-Core Intel Core i7; (ii) Memory: 16GB 4400 MHz DIMM. We use MATLAB
(version R2023a v.9.14.0) in the computations.

The initial mesh and the adaptive mesh with 38575 degrees of freedom (dofs) are shown
in Figure 1. The discrete problems are solved by a regularized version of the active set
method in [25-27] and the profile of the numerical solution on the adaptive mesh is shown
in Figure 2, which matches the ones in [19] and [9].

0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1

(a) The initial mesh (b) The adaptive mesh

Figure 1: The initial mesh and the final adaptive mesh.
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Figure 2: The numerical solution on the final adaptive mesh (38575 dofs).

3 : r r r r : :
The convergence histories of €0 CLn €an and €oop ON adaptive meshes and uniform

meshes are presented in Figure 3, where N is the dimension of the finite element space
associated with ;. It is observed that (i) the convergence in the piecewise H? seminorm
is O(N™!) (corresponding to O(h?) convergence for uniform meshes) and the error on the
final adaptive mesh is roughly 250 times smaller than the error on a uniform mesh with a
comparable number of degrees of freedom; (ii) the convergence in the L? norm is O(N2)
(corresponding to O(h*) convergence for uniform meshes) and the error on the final adap-
tive mesh is roughly 20 times smaller than the error on a uniform mesh with a compa-
rable number of degrees of freedom, (iii) the convergence in the H 1 and L°° norms are
O(N~3/2) (corresponding to O(h®) convergence for uniform meshes) and the errors on the
final adaptive meshes are roughly 10 times smaller than the ones on a uniform mesh with
a comparable number of degrees of freedom.

Remark 3.3. The convergence in all these norms are optimal in the sense that they agree
with the interpolation errors on uniform meshes for a function in H*(2), even though the
exact solution u does not belong to H*(Q)) (cf. Remark 3.1). The convergence rates in
L2(Q), H'(Q2) and L°°(Q2) are also better than the convergence predicted by (2.8).

The convergence history of the error estimator is depicted in Figure 4, where we can
observe an asymptotic O(N 1) convergence that agrees with the convergence history of the
error in the H? seminorm.

Finally a comparison of the CPU time on adaptive meshes and uniform meshes is pro-
vided in Figure 5, where it is observed that eventually the computation on the adaptive
meshes is roughly four times faster than the computation on uniform meshes.

4. Conclusions

We have demonstrated numerically the superior performance of an adaptive version of
the nonlinear least-squares method in [9] for the Pucci equation. Even though the conver-
gence analysis of the adaptive nonlinear least-squares method is outside the scope of the
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Figure 3: Comparison of various errors on adaptive meshes and uniform meshes.
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Figure 4: Convergence of the error estimator.
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45
—+— CPU Time-Adaptive mesh
4 || —*— CPU Time-Uniform mesh
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Figure 5: Comparison of the CPU time for computations using adaptive meshes and uniform meshes.

theory for adaptive methods for partial differential equations (cf. [3,16,17]), it is encour-
aging to see that the reliability and local efficiency of the error estimator can still lead to
optimal convergence on adaptive meshes. We expect that adaptive nonlinear least-squares
methods can also be developed for other nonlinear elliptic partial differential equations and
they will play a useful computational role, especially in three dimensions.
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