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Abstract. We present an adaptive nonlinear least-squares finite element method for a
two dimensional Pucci equation. The efficiency of the method is demonstrated by a
numerical experiment.

AMS subject classifications: 65N30, 65N50, 35J60, 90C30

Key words: Pucci equation, nonlinear least-squares, finite element, adaptive

1. Introduction

The Pucci equation is a fully nonlinear second order elliptic partial differential equation
that first appeared in the study of linear uniformly elliptic equations in nondivergence form
(cf. [13, 35, 36]) and has found applications in optimal designs (cf. [14]) and population
models (cf. [12,37]).

Let Ω be a bounded convex polygon in R2. We consider in this paper the following
Dirichlet boundary value problem for a Pucci equation:

αλmax(D
2u) +λmin(D

2u) =ψ in Ω,

u= φ on ∂Ω,
(1.1)

where α > 1, λmax(D2u) (resp., λmin(D2u)) is the maximum (resp., minimum) eigenvalue
of D2u (the Hessian of u), ψ ∈ L2(Ω) and φ ∈ H2(Ω).

Remark 1.1. Throughout this paper we will follow the standard notation for differential
operators, functions spaces and norms that can be found for example in [1,7,22].
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The numerical treatment of Pucci’s equation began in [14, 19], followed by the work
in [30]. The finite element methods in these papers were tested extensively but without
convergence analysis. Finite difference methods for the viscosity solutions of the Pucci
equation were investigated in [23, 34], where the convergence was established in the
framework of [2] without convergence rate, and a second order consistent finite difference
method was considered in [4].

Motivated by our work on the Monge-Amp̀ere equation in [10], a nonlinear least-
squares method was presented in [9] for the strong solutions of (1.1), where convergence
with convergence rates was established. Our goal in this paper is to present an adaptive
version of this nonlinear least-squares method and demonstrate its effectiveness through a
numerical experiment.

The rest of the paper is organized as follows. We introduce the nonlinear least-squares
method in Section 2 and briefly recall the theoretical results from [9]. The numerical result
for the adaptive version is presented in Section 3. We end with some concluding remarks
in Section 4.

2. A Nonlinear Least-Squares Finite Element Method

Let S2×2 be the space of real 2× 2 symmetric matrices and P(M) be the Pucci operator
defined on S2×2 given by

P(M) = αλmax(M) +λmin(M) (2.1)

for a constant α > 1. We can then write the boundary value problem (1.1) as

P(D2u) =ψ in Ω,

u= φ on ∂Ω.
(2.2)

A unique strong solution u ∈ H2(Ω) of (2.2) was established in [9] by using the uniform
ellipticity of P(D), the Miranda-Talenti inequality

‖D2v‖L2(Ω) ≤ ‖∆v‖L2(Ω) ∀ v ∈ H2(Ω)∩ H1
0(Ω),

that holds on convex domains (cf. [24, 32, 38]) and the theory of Companato on near op-
erators (cf. [15,31]).

Let Th be a regular triangulation of Ω with mesh size h, Vh ⊂ H1(Ω) be the cubic La-
grange finite element space (cf. [7,18]) associated with Th, and Πh be the nodal interpola-
tion operator from C(Ω̄) to Vh.

The nonlinear least-squares method in [9] is given by

uh = argmin
vh∈Lh

Jh(vh), (2.3)

where the constraint set Lh is defined by

Lh = {vh ∈ Vh : vh = Πhφ on ∂Ω}, (2.4)
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and the objective function Jh is defined by

Jh(vh) =
h4

2
‖D2

h vh‖2L2(Ω) +
1
2

∑

e∈E i
h

|e|−1‖[[∂ vh/∂ n]]‖2L2(e) +
1
2
‖P(D2

h vh)−ψ‖2L2(Ω). (2.5)

Here D2
h vh is the piecewise defined Hessian of vh, E i

h is the set of the interior edges of Th,
[[∂ vh/∂ n]] is the jump of the normal derivative of vh across an interior edge, and |e| denotes
the length of the edge e.

It follows from a Poincaré-Friedrichs inequality for piecewise H2 functions (cf. [11])
that Jh has a global minimizer in Lh. Let uh ∈ Lh be a solution of the minimization problem
defined by (2.3)–(2.5). It was shown in [9] that

‖u− uh‖2h ≤ C
�

Jh(vh) + ‖φ −φh‖2h
�

∀ vh,φh ∈ Lh, (2.6)

where
‖v‖2h = ‖D

2
h v‖2L2(Ω) +
∑

e∈E i
h

|e|−1‖[[∂ v/∂ n]]‖2L2(e)

is the standard discrete norm that appears in C0 interior penalty methods for fourth order
problems (cf. [5,8,21]).

The quasi-optimal error estimate (2.6) and standard interpolation error estimates imply
that

‖u− uh‖h ≤ Chmin{s−2,2} (2.7)

if the solution u of (1.1)/(2.2) belongs to Hs(Ω) for some s > 2. It follows from (2.7) and
the Poincaré-Friedrichs and Sobolev inequalities in [6,11] that

‖u− uh‖L2(Ω) + |u− uh|H1(Ω) + ‖u− uh‖L∞(Ω) ≤ Chmin{s−2,2}. (2.8)

Remark 2.1. Numerical results in [9] indicate that the error estimate (2.7) is sharp, but
the error estimate in (2.8) for the lower order norms is not. This can also be observed in
the numerical results from Section 3.

Since the discrete problem defined by (2.3)–(2.5) is a nonlinear optimization problem,
in general the outcome of an optimization algorithm is not guaranteed to be a global min-
imizer. However, we can monitor the convergence of the computed numerical solution
according to the following estimate in [9].

Let ũh ∈ Lh be an approximate solution of the discrete minimization problem. We have

‖u− ũh‖2h ≤ C
�

‖P(D2
h ũh)−ψ‖L2(Ω) +

�∑

e∈E i
h

|e|−1‖[[∂ ũh/∂ n]]‖2L2(e)

�
1
2 +Osc(φ)
�

, (2.9)

where Osc(φ) = ‖φ −Πhφ‖h is the oscillation term (which is a higher order term if φ is
smooth). Hence we can conclude that ũh is converging to u if the right-hand side of (2.9)
is approaching zero.
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On the other hand we also have

‖P(D2
h ũh)−ψ‖L2(T ) = ‖P(D2u)− P(D2

h ũh)‖L2(T )

≤
p

2α‖D2
h (u− ũh)‖L2(T ) ∀ T ∈ Th (2.10)

by the Hoffman-Wielandt inequality (cf. [28]), and the obvious relation
∑

e∈E i
h

|e|−1‖[[∂ ũh/∂ n]]‖2L2(e) =
∑

e∈E i
h

|e|−1‖[[∂ (u− ũh)/∂ n]]‖2L2(e). (2.11)

It follows from (2.9)–(2.11) that the residual-based error estimator defined by

ηh(ũh) = ‖P(D2
h ũh)−ψ‖L2(Ω) +

�∑

e∈E i
h

|e|−1‖[[∂ ũh/∂ n]]‖2L2(e)

�
1
2

(2.12)

is both reliable and locally efficient and hence it can be used for adaptive mesh refinement.

3. The Adaptive Method

In the adaptive nonlinear least-squares method we use a local version of the objective
function Jh in (2.5) defined by

J̃h(vh) =
∑

T∈Th

h4
T‖D

2
h vh‖2L2(T ) +

1
2

∑

e∈E i
h

|e|−1‖[[∂ vh/∂ n]]‖2L2(e)

+
1
2
‖P(D2

h vh)−ψ‖2L2(Ω),

(3.1)

where hT is the diameter of T , and a local version of the error estimator ηh in (2.12) given
by

ηT = ‖P(D2
h uh)−ψh‖L2(T ) +

� ∑

e∈ET

|e|−1‖[[∂ uh/∂ n]]‖2L2(e)

�
1
2 ∀ T ∈ Th,

where ET is the set of the three edges of T .
We adopt the Dörfler strategy (cf. [20]) to mark the elements, i.e., we define the marking

setM by the condition that
∑

T∈M
η2

T ≥ θ
∑

T∈Th

η2
T

with θ = 0.4. The meshes are refined by using the newest vertex bisection (cf. [29,33]).
Below we present a numerical example of (1.1) on the unit square (0, 1)× (0, 1) that

originates from [19]. We take ψ= 0 and φ = φδ defined by

φδ =



























1, if 0≤ x1 ≤ 1/4−δ;

cos2[1/4(x1 − 1/4+δ)(π/δ)], if 1/4−δ ≤ x1 ≤ 1/4+δ;

0, if 1/4+δ ≤ x1 ≤ 3/4−δ;

cos2[1/4(x1 − 3/4−δ)(π/δ)], if 3/4−δ ≤ x1 ≤ 3/4+δ;

1, if 3/4+δ ≤ x1 ≤ 1,

(3.2)
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on the edge {x = (x1, x2) : 0≤ x1 ≤ 1, x2 = 0}, and similar definitions on the other three
edges.

Remark 3.1. Note that φδ is a C1 function along ∂Ω that is piecewise C2. Hence it is the
trace of a function in H3−ε(Ω) for an arbitrarily small positive ε and therefore φδ satisfies
the assumption on the boundary value in (1.1). On the other hand it also indicates that the
solution u of (1.1) does not belong to H4(Ω).

We choose δ = 1/16 in (3.2) and α = 3 in (1.1) for the numerical experiment. We are
interested in the relative errors

er
2,h =

�

∑

T∈Th
|u− uh|2H2(T )

�
1
2

|u|H2(Ω)
, er

1,h =
|u− uh|H1(Ω)

|u|H1(Ω)
,

er
0,h =
‖u− uh‖L2(Ω)

‖u‖L2(Ω)
, er

∞,h =
max
p∈Vh
|u(p)− uh(p)|

‖u‖L∞(Ω)
,

for uniform meshes and adaptive meshes, where Vh is the set of all the vertices of the
triangulation Th. Since the exact solution of this example is unknown, these relative errors
are estimated by comparing the numerical solutions from two consecutive meshes.

Remark 3.2. The numerical experiments are carried out on a machine with (i) Processor:
2.1GHz 12-Core Intel Core i7; (ii) Memory: 16GB 4400 MHz DIMM. We use MATLAB
(version R2023a v.9.14.0) in the computations.

The initial mesh and the adaptive mesh with 38575 degrees of freedom (dofs) are shown
in Figure 1. The discrete problems are solved by a regularized version of the active set
method in [25–27] and the profile of the numerical solution on the adaptive mesh is shown
in Figure 2, which matches the ones in [19] and [9].
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(a) The initial mesh (b) The adaptive mesh

Figure 1: The initial mesh and the final adaptive mesh.
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Figure 2: The numerical solution on the final adaptive mesh (38575 dofs).

The convergence histories of er
0,h, er

1,h, er
2,h and er

∞,h on adaptive meshes and uniform
meshes are presented in Figure 3, where N is the dimension of the finite element space
associated with Th. It is observed that (i) the convergence in the piecewise H2 seminorm
is O(N−1) (corresponding to O(h2) convergence for uniform meshes) and the error on the
final adaptive mesh is roughly 250 times smaller than the error on a uniform mesh with a
comparable number of degrees of freedom; (ii) the convergence in the L2 norm is O(N−2)
(corresponding to O(h4) convergence for uniform meshes) and the error on the final adap-
tive mesh is roughly 20 times smaller than the error on a uniform mesh with a compa-
rable number of degrees of freedom, (iii) the convergence in the H1 and L∞ norms are
O(N−3/2) (corresponding to O(h3) convergence for uniform meshes) and the errors on the
final adaptive meshes are roughly 10 times smaller than the ones on a uniform mesh with
a comparable number of degrees of freedom.

Remark 3.3. The convergence in all these norms are optimal in the sense that they agree
with the interpolation errors on uniform meshes for a function in H4(Ω), even though the
exact solution u does not belong to H4(Ω) (cf. Remark 3.1). The convergence rates in
L2(Ω), H1(Ω) and L∞(Ω) are also better than the convergence predicted by (2.8).

The convergence history of the error estimator is depicted in Figure 4, where we can
observe an asymptotic O(N−1) convergence that agrees with the convergence history of the
error in the H2 seminorm.

Finally a comparison of the CPU time on adaptive meshes and uniform meshes is pro-
vided in Figure 5, where it is observed that eventually the computation on the adaptive
meshes is roughly four times faster than the computation on uniform meshes.

4. Conclusions

We have demonstrated numerically the superior performance of an adaptive version of
the nonlinear least-squares method in [9] for the Pucci equation. Even though the conver-
gence analysis of the adaptive nonlinear least-squares method is outside the scope of the
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Figure 3: Comparison of various errors on adaptive meshes and uniform meshes.
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Figure 5: Comparison of the CPU time for computations using adaptive meshes and uniform meshes.

theory for adaptive methods for partial differential equations (cf. [3,16,17]), it is encour-
aging to see that the reliability and local efficiency of the error estimator can still lead to
optimal convergence on adaptive meshes. We expect that adaptive nonlinear least-squares
methods can also be developed for other nonlinear elliptic partial differential equations and
they will play a useful computational role, especially in three dimensions.
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