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Abstract: Climate change and human activities may alter the structure and function of boreal
peatlands by warming waters and changing their hydrology. Diatoms can be used to assess or
track these changes. However, effective biomonitoring requires consistent, reliable identification. To
address this need, this study developed a diatom voucher flora of species found across a boreal fen
gradient (e.g., vegetation) in interior Alaskan peatlands. Composite diatom samples were collected
bi-weekly from three peatland complexes over the 2017 summer. The morphological range of each
taxon was imaged. The fens contained 184 taxa across 38 genera. Eunotia (45), Gomphonema (23), and
Pinnularia (20) commonly occurred in each peatland. Tabellaria was common in the rich and moderate
fen but sparse in the poor fen. Eunotia showed the opposite trend. Approximately 11% of species
are potentially novel and 25% percent matched those at risk or declining in status on the diatom
Red List (developed in Germany), highlighting the conservation value of boreal wetlands. This
voucher flora expands knowledge of regional diatom biodiversity and provides updated, verifiable
taxonomic information for inland Alaskan diatoms, building on Foged’s 1981 treatment. This flora
strengthens the potential to effectively track changes in boreal waterways sensitive to climate change
and anthropogenic stressors.

Keywords: algae; Bacillariophyceae; biofilm; climate change; freshwater; microalgal diversity;
periphyton; voucher specimens

1. Introduction

A number of diatom (Bacillariophyceae) taxa respond quickly to environmental change
and have been used as effective indicators of climate in the circumpolar Arctic [1]. Their
specific range preferences, along with the morphologically distinct features of their frustules,
allow for taxonomic differentiation to the species level. The durability of their silica cell
wall is valuable for the examination of present as well as past environments [2,3]. However,
to successfully investigate diatom ecology, determine patterns in biogeography, and use
species identity as indicators of environmental condition, their identification must be as
unambiguous as possible and verifiable (i.e., documented with images and traceable back
to archived material and references) [4]. The lack of complete and accessible taxonomic
guides for species-level identification makes this particularly challenging [5].

An accepted technique for verifying taxonomic identity in biological surveys is to create
and maintain permanent archives of voucher specimens for use as reference guides [6]. For
diatoms, permanent microscope slides are deposited in public herbaria and maintained
for federal and state programs at entities such as the Diatom Herbarium at the Academy
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of Natural Sciences of Drexel University (ANS—Philadelphia, Pennsylvania, USA) or
other museum collections. However, the labor-demanding and cost-prohibitive efforts
to document individual specimens often prevent research teams from comprehensively
designating representatives on slides (via circling individual diatom specimens) of all
observed taxa in their samples [7]. When made accessible, documentation of project-
specific morphological species boundaries (through digital images) can aid in taxonomic
harmonization with current and future monitoring data, maximize data use, and maintain
informative long-term records [8].

A voucher flora is a document that records specimens through images and their nomen-
clatural designations. It creates a visual record for a given project. Taxonomic voucher floras
are tied to specimens made publicly available in herbaria. They help align taxonomists” mor-
phological species concepts during analysis in large studies involving multiple taxonomists.
This allows for taxonomic verification of specimens through representative images, grants
reinterpretation of names applied to specimens in future investigations, and facilitates
taxonomic continuity in identification over time, especially in long-term ecological stud-
ies [9,10]. Voucher floras are collaborative documents that facilitate taxonomic discussions
and interpretations within and between labs. Long-term diatom studies often require
multiple taxonomists; voucher floras provide complete documentation for taxonomists
to overcome hurdles to directly communicate with each other to align their concepts of
morphological species boundaries used in a project. Without documentation of taxa in a
voucher flora, extensive post hoc harmonization may be required to reduce data errors,
usually at the cost of losing species information [11,12]. Voucher floras provide a series of
digital images that document the full morphological range of voucher specimens as well as
complete reference information. This is not only more information than a list of taxa, but
is also more practical than a set of circled specimens (though, when available, archives of
permanent slides remain important resources) [9]. Given the expeditious development of
freshwater diatom taxonomy, coupled with high degrees of endemism and species diversity,
no single taxonomic reference adequately supports species-level identification of all taxa
in a given project [13]. Thus, developing taxonomic reference voucher floras for localized
regions becomes vital for supporting long-term records, promoting efficient verification of
species richness and the assessment of diatom assemblage structure.

Information on diatom taxonomy is not ubiquitous across all areas, with some regions
better represented in the literature than others. Floristic studies of freshwater diatom taxa
in North America remain sparse relative to the size and diversity of habitats [14] compared
to floristic studies of Europe, for example. Boreal regions in North America are especially
underrepresented despite the amount of open water areas present at northern latitudes [15].
In Alaska alone, open water environments comprise more than half of the state’s total
surface area [15]. Thus, an increased demand for regional voucher floras is emerging
as taxonomists attempt to harmonize identification across broader spatial scales [4,9,11].
Diatomists often rely on taxonomic information from European references despite this
information being applied to European waters. This further highlights the need for region-
specific floras in other areas of the world, especially with the growing descriptions of
species new to science [16-18], documentation of endemic taxa [19-21], and establishment
of new species records [22,23] within North America. Furthermore, there is no diatom “Red
List” of threatened species currently available for Alaska or the United States as a whole;
thus, referencing the diatom Red List developed in Germany [24,25] can help further the
conversation around imperiled diatom taxa and the urgent need to conserve their habitats.

Approximately 85% of the open water areas of Alaska are classified as wetlands [15].
Peatlands are a common type of wetland habitat in Alaska. Peat forms and accumulates
through a complex biogeochemical process, driven by the slow decomposition of dead
plant matter due to cold, nutrient-poor, anaerobic conditions related to water saturation [26].
Traditionally, diagnostic tools based on plants distinguish wetland types in Alaska where
sharp vegetative boundaries between bogs and fens emerge from contrasting hydrologic
properties [27]. Recent studies in boreal peatlands reveal that diatoms and other microalgae
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can be abundant [28-30] and can regulate many aspects of biogeochemical cycling [31,32].
Floras of microalgae complement these ecological studies, especially to inform future
studies in boreal peatlands about biological changes in response to climate change and
other anthropogenic stressors.

This study aims to document the species richness of diatom assemblages across a
gradient of boreal peatlands to build an image-rich voucher flora for use as a diagnostic tool
in future studies. We investigated diatom species composition in three peatland complexes
just outside the Bonanza Creek Experimental Forest in interior Alaska. We expected to find
diatom assemblages containing characteristic minerotrophic, acidophilous, and epiphytic
taxa, based on recent studies in other high-latitude wetlands [33]. We aimed to capture
the full morphological size range of each species encountered, known as their operational
taxonomic unit (OTU), when arranged on voucher plates [11]. This size diminution series
documents how species’ morphological characteristics change across their life cycle, provid-
ing valuable information about the morphological variation expected during identification
and enumeration. This localized voucher flora of boreal peatlands in interior Alaska is
hereafter referred to as the Alaskan Peatland Project (APP). It answers the recent call to
action for more region-specific diatom floras and aligns with modern taxonomic efforts
to communicate taxonomic practice and to provide accessible identification resources for
taxonomic consistency at federal, state, and local levels [4]. This study provides a focused,
image-rich look at diatom species assemblages in an area of the world that is changing
owing to anthropogenic activities.

2. Materials and Methods
2.1. Study Sites

This study was conducted in three peatlands (a rich, moderate, and poor fen) located
within a wetland complex in the Tanana River floodplain just outside the 12,486-acre
Bonanza Creek Experimental Forest (35 km southeast of Fairbanks) in interior Alaska, USA
(64°42' N, 148°18’ W). This area is part of the circumpolar range of boreal forest, with
the Tanana River valley positioned 150-250 km south of the Arctic Circle. Minerotrophic
peatlands with distinctive vegetation communities and water chemistry are referred to as
fens [34]. Rich fens, the most common boreal peatland type in North America [34], have
a pH that ranges from 6.8-8 and high concentrations of dissolved minerals to support
a diversity of vegetation types, including sedges, shrubs, and brown mosses. Moderate
fens have a pH range of 5-7 and are moderately rich in dissolved minerals and vegetation
diversity, including sedges and brown mosses with sparsely distributed Sphagnum moss.
Poor fens, with a pH range of 4-5.5 and low concentrations of dissolved minerals, are
dominated by Sphagnum moss, a species capable of acidifying the surrounding environment
and thereby inhibiting many vascular plants [34].

Each fen site selected for this study was classified prior to this study using natural
transitions in vegetation community structure and water chemistry [35,36]. A full de-
scription of fen characteristics is presented in Ferguson et al. [30], but briefly, the rich
fen was approximately 200 m? in size and comprised of brown moss species (families
Amblystegiaceae and Brachytheciaceae) and emergent vascular plants (Carex atherodes,
Equisetum fluviatile, and Potentilla palustris). The moderate fen was approximately 100 m? in
size and contained both brown moss and Sphagnum species with vegetation comprised of
C. atherodes, E. fluviatile, and P. palustris. The poor fen was 30 m? in size and was primarily
composed of Sphagnum species with E. fluviatile, P. palustris, and Eriophorum vaginatum. The
fens in our study were not directly connected but were located within ~1 km distance from
one another. Each fen site was completely saturated with standing water for the entirety
of the growing season [30], which is reflected in fen physical and chemical characteristics
present at the time of sampling (Table 1).
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Table 1. The overall sampling season (5 sampling dates X 4 replicate plots per fen = 20) mean and +1
standard deviation (SD) for physiochemical characteristics of the rich, moderate, and poor fen sites.
Ranges represent the minimum and maximum of measurements taken across the growing season
(May-August 2017).

Rich Moderate Poor
Characteristic Mean SD Range Mean SD Range Mean SD Range
Water depth (cm) 27.5 7.95 20-35 34.0 11.4 20-46 26.6 8.86 16-34
Water temperature (°C) 18.5 2.29 15-21 18.0 2.88 14-21 15.2 3.53 11-20
Water column pH 6.46 1.29 5.4-8.9 6.42 1.32 5.3-8.5 5.77 1.03 4.8-7.6
DO (mg L™ 1) 3.92 1.95 2.0-7.0 5.71 1.49 4.3-7.8 3.81 2.42 1.0-7.1
Conductivity (1S) 39.0 5.53 31-45 25.4 2.69 24-28 40.8 5.75 34-48
TDN (mg LY 1.51 0.19 1.3-1.8 1.35 0.26 1.0-1.6 1.65 0.29 1.2-2.0
NO3;~ (ugL™1) 7.66 2.14 6.2-8.9 13.2 7.39 7.2-26.0 15.8 9.59 7.4-27
PO, (ugL™h) 8.56 3.40 6.4-14 7.54 2.95 4.3-10.7 20.9 6.21 15-28
DOC (mg L1 32.6 4.32 26-37 29.7 3.14 27-35 62.4 9.41 51-77

PAR (umol cm? s~ 1)

2544 246.6 38-448 266.1 225.1 84-672 242.3 207.0 27-484

Note: DO = dissolved oxygen, TDN = total dissolved nitrogen, NO3~ = nitrate, PO,~ = phosphate,
DOC = dissolved organic carbon, PAR = photosynthetically active radiation.

2.2. Experimental Design and Sample Processing

Diatom samples were collected during the growing season of 2017 (29 May-1 August
2017) from each of the three fen sites every 10-14 days at four locations (1 m? plots). The
one-meter-squared plots each consisted of four 25 cm? areas. Samples from each of the
four areas were composited into a single vial. Each sample consisted of loosely attached
algae and periphyton collected with a syringe from the peat surface (when present), and
the submersed portions of four stems of the dominant emergent macrophyte were scraped
with a toothbrush then combined to form a total of 72 composite samples (24 per fen). The
samples were preserved in a 2% formalin solution, transported back to the laboratory, and
stored for processing and analysis.

Prior to identification, samples for diatom identification were acid-cleaned by adding
hydrochloric acid and boiling to remove organic matter from within the diatom valves
and rinsing the samples with distilled water until the acid was neutralized [7]. Cleaned,
concentrated siliceous material was then dripped onto three separate 18 x 18 mm coverslips
per sample and allowed to air dry. Each coverslip was visually inspected for the appropriate
density of cells (15-30 visible valves per field of view at 400 x magnification following
NAWQA protocol) prior to permanent fixation to microscope slides with Naphrax™
(Brunel Microscopes Ltd., Chippenham, UK) mounting medium [7]. All slides were visually
scanned transect after transect to completion (to include each of the triplicate slides for
each sample) with adjustments to see entire specimens (if part of it was in the transect)
and digitally photomicrographed using a 100x oil immersion objective on a Leica DM6B
light microscope with 19-mm sCMOS camera (Leica Microsystems, Wetzlar, Germany).
Diatom measurements (length, width, and stria density) were taken with ImageJ 1.53e
(NIH, Bethesda, MD, USA) software [37] and diatom size diminution series were organized
into morphological operational taxonomic units (OTU). No valve counts or enumeration
were conducted during the construction of the voucher flora. Efforts were made to image
all suitable valves encountered for future research.

Initial species identification and nomenclature followed Kramer and Lange-Bertalot [38—41],
Patrick and Reimer [42,43], Krammer [44], Lange-Bertalot and Kramer [45], Lange-Bertalot
et al. [46], Lange-Bertalot et al. [47], and Diatoms of North America [4]. Literature specific
to Western North America and Alaska: Bahls [16], Bahls et al. [48], Bahls and Luna, [49] and
Foged [50] allowed for critical evaluation of taxonomy and refinement of species complexes
to sensu stricto taxa (see Supplementary Materials, File S1: taxonomic authority references).
Images for publication of the regional voucher flora were produced using Leica LAS X 5.1.0
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5.1.0 imaging software and Adobe Photoshop v 24.7. Images of specimens were imported as
layers and apranged by QTIU;onfg plates but were npt manipulated or altered in Photoshap.
Eggﬁae}ggl%@g%ed by OTU onto plates but were not manipulated or altered in Photoshop.

2.3. Dy céhaijated similarity in assemblage composition between all site pair combina-
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Table 2. List of taxa documented in this study, with authorship, dimension range, voucher image references to plates and figures, fen type, accessioned samples at

Ball State University, and taxa status in the Red List developed in Germany [25]: 1 = threatened with extinction; 2 = highly threatened; 3 = threatened; G = threat of

unknown extent; R = extremely rare; V = near threatened; D = data deficient; * = not threatened; 4 = not evaluated.

Taxon/Author Dimensions Plates and Figure Fen Type Sample [25]
Achnanthidium alpestre

(R. L. Lowe and Kociolek) R. L. Lowe and Kociolek  L: 15.0-15.2, W: 3.8 Plate 3, Figures 26 and 27 Poor 25000 ¢
inJ. R. Johans. et al. 2004

Achnanthidium cf. gracillimum . o . g -

(F. Meister) Lange-Bert. 2004 L:8.2-13.6, W: 2.5-3.1 Plate 3, Figures 28-31 Rich; Poor 25002 2
Achnanthidium minutissimum .

var. jackii (Rabenh.) Lange-Bert. 1989 L:11.7, W: 2.4 Plate 3, Figure 32 Poor 25003a D
Achnanthidium sp. 1 APP L:7.6, W:4.1,S: 18-20 Plate 3, Figure 33 Poor 25001 ¢
Amphora copulata . . . . “
(Kiitz.) Schoeman and R. E. M. Archibald 1986 L:21.0,W:5.2,S: 14-15 Plate 4, Figure 4 Moderate 25005a

Amphora ovalis L:34.3-43.9, W: 8.5-10.8, . . .
(Kiitz.) Kiitz. 1844 S 11-13 Plate 4, Figures 1-3 Rich; Moderate 25006

Amphora pediculus L:6.5-17.1, W: 1.5-3.7, . g . "
(Kiitz.) Grunow 1875 S 1325 Plate 4, Figures 5-9 Moderate; Poor 25007a

Aulacoseira ambigua D: 4.7-7.5, MH: 9.2-11.9, . - .
(Grunow) Simonsen 1979 A: 18-20 Plate 1, Figures 6 and 7 Rich; Poor 25008

Caloneis schroederoides L: 23.3-35.8, W: 5.2-6.0, .

Foged 1981 S 11-15 Plate 15, Figures 12-14 Moderate 25102 ¢
Cocconeis pediculus L:20.0-33.2, W:16.3-23.7, . . ) .
Ehrenb. 1838 S 1420 Plate 3, Figures 1-11 Rich; Moderate; Poor 25009

Cocconeis placentula sensu lato L:11.9-23.2, W: 6.6-12.9, . — ) .
Fhrenb. 1838 S 1625 Plate 3, Figures 11-19 Rich; Moderate; Poor 25010

Denticula cf. kuctzingii L:18.55:16-19 F: 6 Plate 2, Figure 44 Rich 25092b ¢

Grunow 1862
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Taxon/Author Dimensions Plates and Figure Fen Type Sample [25]
Diadesmis sp. 1 APP ]‘; 11 3;72_218'5’ W:5.9-74, Plate 8, Figures 6 and 7 Moderate 25087b ¢
Diatoma ehrenbergii L:40.9, W: 6.1, . "
Kiitz, 1844 C:11-13 Plate 2, Figure 40 Poor 25004b
Diatoma moniliformis . . . . - .
(Kiitz.) D.M.Williams 2012 L:16.2-25.7, W: 5.5, C: 6-8 Plate 2, Figures 41 and 42 Rich; Poor 25012
Diatoma vulgaris L: 36.8-45.6, W: 11.2-12.8, . .
Bory 1824 C:7-9 Plate 2, Figures 38 and 39 Moderate 25013a
Encyonema groenlandica L:28.6-29.6, W:5.4-5.8, . .
(Foged) Kulikovskiy and Lange-Bert. 2009 S: 6-8 Plate 5, Figures 34 and 36 Rich; Moderate 25014a ¢
Encyonema cf. groenlandica L:18.2-19.3, W:4.9-5.2, . .
(Foged) Kulikovskiy and Lange-Bert. 2009 S 10-12 Plate 5, Figures 38 and 39 Rich; Moderate 25015a ¢
Encyonema lunatum ) .
var. alaskaense (Foged) Metzeltin and Lange-Bert. ]g 2?'1%_39'7’ W:48-5.0, Plate 5, Figures 30-32 Rich; Moderate 25016a ¢
2009 '
Encyonema montana L:14.1-17.3, W: 5.5-7.0, . .
Bahls 2017 S 12-14 Plate 5, Figures 43-45 Rich; Poor 25017a ¢
Encyonema neogracile L:31.5-44.7, W: 4.7-6.3, . Rich; Moderate;
Krammer 1997 S 11-15 Plate 5, Figures 16-29 Poor 25018a 3
Encyonema paucistriatum L:22.1-42.8, W: 5.4-6.5, . _ Rich; Moderate;
(A. Cleve) D. G. Mann 1990 S: 8-11 dorsal, 12-13 ventral Plate 5, Figures 1-14 Poor 25019a 2
Encyonema procerum L:31.4, W: 6.8, S: 10-12 Plate 5, Figure 34 Moderate 25015b 1
Krammer 1997
Encyonema schimanskii L:17.4-20.0, W: 4.5-5.0, . .
Krammer 1997 S 1415 Plate 5, Figures 4042 Rich; Moderate 25016b G
Encyonema silesiacum L:36.4, W: 8.8,S: 11-12 Plate 5, Figure 33 Moderate 25007b *

(Bleisch in Rabenh.) D. G. Mann 1990
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Table 2. Cont.

Taxon/Author Dimensions Plates and Figure Fen Type Sample [25]
Ereonapt o iyt e *
i’:;zfr’r"l‘éf Z‘;g;"gg’c‘ﬁ; 461997 L:12.3, W: 3.4 Plate 6, Figure 67 Poor 25003b D
g;’ﬁi";’gf’; is montana L: 43.6, W: 7.1, S: 19-20 Plate 6, Figure 64 Poor 25020 'y
ﬁ”"y"""" sis thumensis L:14.7, W: 3.1, S: 20-22 * Plate 6, Figure 66 Poor 25004c G
rammer 1997
fgﬁgﬁgfﬁglﬁzuavemi 2011 é:: 11;9&_;51%-11:! A Plate 21, Figures 6-10 Rich 25022 G
gﬁfgﬁ;‘;r’lg’i’é; éf 125'_51_252'9' Ik Plate 24, Figures 19-20 Rich 25023 v
LELEOWIN s e :
Eﬁ;’é’;{;”efg’ﬁ’z 1L3_716 4'2' W:13.9,5:9-10¢, Plate 24, Figure 22 Rich 25024 G
g‘;’r‘;’g;’ ’S'z‘}’l’:;r’schm 1881 é; fg’ﬂ;m'l’ Il Plate 23, Figures 7-11 Rich; Moderate 25025 *
ﬂg:;feilus?}lgiggzﬁiange-Bert. 1996 é; 59'102"29'6’ W:7.0-9.8, Plate 24, Figures 13-18 Rich; Moderate 25026a G
f:ﬁgé’%i‘;;’g f’;’;’;"f(uhkovskiy 2010 L:40.7, W: 9.4, 5: 11-14 Plate 24, Figure 11 Rich 25048 R
B rlts LETSTNAAT e s S e :
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Table 2. Cont.

Taxon/Author Dimensions Plates and Figure Fen Type Sample [25]

Eunotia flexuosa L: 147.6-246.7, W: 3.8-4.5, . .

(Brébisson ex Kutz.) Kiitz. 1849 $:10-13c; 13-15a Plate 20, Figures 1-6 Moderate; Poor 25028a 2

Eunotia cf. glacialispinosa L:43.9-46.9, W: 4.5-4.6, . .

Lange-Bert. and Cantonati 2010 S:12-14 Plate 23, Figures 17-19 Rich 2034a G

Eunotia cf. groenlandica

(Grunow) Norpel-Schempp and L:50.2, W:5.2,5:11-12 Plate 23, Figure 20 Moderate 25029 G

Lange-Bert. nom inval. 1996

Eunotia cf. intermedia .

(Krasske ex Hust.) Norpel and Lange-Bert. 1993 L:39.1, W:3.1,S: 18-19 Plate 25, Figure 38 Moderate 25019b 2

Eunotia juettnerae L:108.6, W: 4.0, .

Lange-Bert. 2011 S 15-17 Plate 23, Figure 1 Poor 25031 G

Eunotia cf. julma ) . . .

Lange-Bert. 2011 L: 155.8, W: 4.5, S: 15-16 Plate 21, Figure 8 Poor 25032 ¢

Eunotia julma L:93.0-219.2, W: 3.8-5.0, . .

Lange-Bert. 2011 S 13-18 Plate 21, Figures 1-7 Moderate; Poor 25033 ¢

Eunotia krammeri

Kulikovskiy, Lange-Bertalot, ]S“ !155'_52658'8’ W:24-25, Plate 23, Figures 2-3 Poor 25031 ¢

Genkal, and Witkowski 2010 ’

Eunotia cf. major . . . .

(W. Smith) Rabenh. 1864 L: ~55.1, W:13.5,S: 11-15 Plate 25, Figure 28 Moderate 25035 2

Eunotia cf. mucophila . .

(Lange-Bert., Norpel-Schempp, and Alles) L:59.3-68.5, W:3.2-3.2, Plate 20, Figures 12 and 13 Poor 25036a G
S:21-23

Lange-Bert. 2007

Eunotia mucophila . :

(Lange-Bert., Norpel-Schempp, and Alles) L:16147.1, W:27-3.1, Plate 20, Figures 1422 Poor 25037a G

Lange-Bert. 2007

S:18-22
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Table 2. Cont.

Taxon/Author Dimensions Plates and Figure Fen Type Sample [25]
f/[”igf’tl’gogaegelii é; }33187;1213;}23;] 1273, Plate 22, Figures 1-5 Poor 25038 3
f/}‘:y"at‘ni’a”fgog"g mpacta g 20A D01 WS 852, Plate 25, Figures 1-13 Moderate; Poor 25039 2
5::‘;2?02::;;::5 iztr?ge—Ber ¢ 2011 ]§:: 55;61_830'8’ W:3.9-47, Plate 25, Figures 14-17 Moderate; Poor 25040a G
gzzto"fv'i‘;é’;d”“ E; 52;12318.9, W:30-35, Plate 25, Figures 29-36 Moderate; Poor 25041 %
é’:ﬁg’:‘i C1f8 g;uludosu é‘; 12;1'_82531'3’ W:29-32, Plate 22, Figures 45 and 46 Rich; Moderate 25030 A\
f 1{22312 z ﬁgde. Johans 2014 ]g:: 132'_71_781'1’ W:3.8-4.0, Plate 23, Figures 4-6 Moderate; Poor 25042 ¢
Eﬁ:leorf]i‘;g tllgzgp ta ]‘;:: 2;4_65'6’ W:13.6-14.8, Plate 24, Figures 1-6 Moderate; Poor 25043 2
fc";’li’rfé”iv’;’gfggt‘;g"zf inflata g o228 S WS TG, Plate 24, Figures 7-10 Moderate; Poor 25044 ¢
Eﬂﬁ:ﬁ F{;ngoﬂ exuosa ]S“; 19 ;'_91_5114'6’ W:3.9-57, Plate 20, Figures 7-9 Moderate 25045 ¢
LN e ey ro :
iﬁéﬁ:ﬁﬁ;ﬁ;ﬁdap arallela IS‘:: 16 ;1'_91_5117'9’ W:8.8-11.3, Plate 19, Figures 1-13 Moderate; Poor 25047 ¢
R R sV —— :
Eunotia cf. scandiorussica

Kulikovskiy, Lange-Bert., L:19.0, W:5.2,S: 16-17 Plate 23, Figure 22 Moderate 25050 ¢

Genkal, and Witkowski 2010
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Table 2. Cont.

Taxon/Author Dimensions Plates and Figure Fen Type Sample [25]
Eunotia scandiorussica .

Kulikovskiy, Lange-Bertalot, ]S“ 19 é(J__l?;4'8’ W:46-59, Plate 22, Figures 11-27 IIEIOCO};’ Moderate; 25051a ¢
Genkal, and Witkowski 2010 ’

Eunotia sedina L:28.2-50.3, W:5.3-7.1, . .

Lange-Bert,, Bak, and Witkowski 2011 S:10-16¢, 17-18a Plate 25, Figures 19-27 Rich; Moderate 25052a G
Eunotia septentrionalis L:23.7-24.3, W: 6.5-6.8, .

Ostrup 1897 S 13-14 Plate 24, Figures 23-24 Poor 25028b ¢
Eunotia cf. silesioscandica . .

Lange-Bert. and Sienkiewicz 2011 L:36.4,W:54,S:16-17 Plate 23, Figure 21 Rich 25052b ¢
Eunotia subcapitata . . - .

Kulikovskiy, Lange-Bert., ]g f g;()2698.9, W:3.1-3.6, Plate 22, Figures 6-10 Elc}l’ Moderate; 25053 ¢
Genkal, and Witkowski 2010 ’ 00

Eunotia superbidens L: 69.5, W: 14.7,S: 10-11 Plate 24, Figure 21 Moderate 25054 G
Lange-Bert. 2011

Eunotia superpaludosa . . . .

Lange-Bert. 2011 L:40.5, W:4.9,S: 19-20 Plate 25, Figure 18 Poor 25055 1
Eunotia cf. trinacria .

Krasske 1929 L:39.7, W:3.7,5:17-18 Plate 25, Figure 37 Poor 25057 3
Eunotia ursamaioris L:16.0-39.2, W: 4.3-5.6, .

Lange-Bert. and Norpel-Schempp 1999 S: 14-16¢; 17-18a Plate 21, Figures 12-23 Poor 25058 G
Eunotia valida L:70.0-107.5, W: 5.6-5.8, . _—

Hust. 1930 S 13-14 Plate 20, Figures 10 and 11 Rich; Moderate 25059 G
Eunotia sp. 1 APP (teratology) L:17.8, W:5.6,5: 16-18 Plate 24, Figure 12 Poor 25060 ¢
Eunotia sp. 2 APP L:67.2,W:7.0,S:13-14 Plate 23, Figure 23 Moderate 25061 ¢
Eunotia sp. 3 APP L:18.3, W:3.1, S: 18-19 Plate 25, Figure 43 Poor 25062 ¢
Eunotia sp. 4 APP ]§: 10.1-22.1, W: 2.9-54, Plate 25, Figures 44 and 45 Poor 25051b ¢

:14-20
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Table 2. Cont.

Taxon/Author Dimensions Plates and Figure Fen Type Sample [25]
Fragilaria rumpens . . . . .
(Kiitz.) G. W. F. Carlson 1913 L:26.1, W:4.3,S: 18-19 Plate 2, Figure 45 Moderate 25013b
Gomphoneis herculeana ) : ) .
(Ehrenb.) Cleve 1894 L:87.4,W:255,S: 11-14 Plate 6, Figure 1 Poor 25063 ¢
Gomphonema barrowiana . . . . .
R. M. Patrick and Freese 1961 L:30.4,W:44,S:16-17 Plate 5, Figure 65 Rich 25064 ¢
Gomphonema brebissonii L:32.1-51.2, W: 5.3-7.6, . . "
Kiitz. 1849 S 9-13 Plate 6, Figures 54-63 Rich; Moderate 25065
Gomphonema cf. clavatulum L:17.6, W: 4.1, S: 14-16 Plate 5, Figure 54 Rich 25021b *
E. Reichardt 1999 PO R +H18
Gomphonema cf. consector L:15.4-20.3, W: 3.8-4.3, . .
Hohn and Hellerman 1963 S 13-16 Plate 5, Figures 63 and 64 Rich 25066a ¢
Gomphonema cf. frigidum ) .
(Lange-Bert.) Lange-Bert. and Reichardt in ]g 115_01 621'8’ W:35-4.2, Plate 5, Figures 55-58 Rich; Moderate 25067 ¢
Lange-Bert. and Genkal 1999 '
Gomphonema cf. himalayaense . . . .
(Jiittner) Jiittner et al., 2018 L:17.1, W:5.7,S: 12-13 Plate 5, Figure 67 Moderate 25013c¢ ¢
Gomphonema italicum L:26.4, W: 10.8,S: 11-12 Plate 5, Figure 69 Moderate 25040b *
Kiitz. 1844
Gomphonema lagerheimii L: 33.3-55.5, W: 4.3-7.0, . -
A Cleve 1895 S 12-18 Plate 6, Figures 28-46 Rich; Moderate 25068 2
Gomphonema lateripunctatum L:51.5, W:5.2,5: 12-14 Plate 6, Figure 14 Rich 25069 A%
E. Reichardt and Lange-Bert. 1991 o T P18
Gomphonema montanum . .
var. minutum ]S“ ;f.l(;—Zl.S, W:3.8-39, Plate 5, Figures 61 and 62 Rich 25014b ¢
(Skvortzow) Z. X. Shi 2014 ’
Gomphonema olivaceunt L:16.2, W: 6.2, S: 12-14 Plate 5, Figure 68 Poor 25003¢ s
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Table 2. Cont.

Taxon/Author Dimensions Plates and Figure Fen Type Sample [25]

Gomphonema cf. parvulum L:31.4-32.7, W: 6.0-6.9, . . .

(Kiitz.) Kiitz. 1849 S 13-14 Plate 6, Figures 12 and 13 Rich 25070a

Gomphonema parvulum L: 21.7-25.0, W: 6.3-8.5, . - .

(Kiitz.) Kiitz. 1849 S: 15-20 Plate 6, Figures 48-50 Rich; Moderate 25071

Gomphonema parvulum

f. saprophilum L:18.0, W: 6.9, S: 14-15 Plate 5, Figure 66 Moderate 25005b ¢

Lange-Bert. and E. Reichardt 1993

Gomphonema cf. parapygmaeum L:18.5-23.2, W:3.64.1, . -

(Jiittner) Jiittner and Kociolek 2018 S 11-14 Plate 5, Figures 59 and 60 Rich; Poor 25028c ¢

Gomphonema cf. raraense L:21.9-29.2, W:3.4-4.3, . .

Jittner and S. Gurung 2018 S 12-15 Plate 6, Figures 15-27 Rich; Moderate 25072 ¢

Gomphonema sp. 1 APP é 163'_51‘274'5' W:85-89, Plate 6, Figures 2—4 Rich 25073 ¢

Gomphonema sp. 2 APP L:55.8, W: 6.6, S: 15-16 Plate 6, Figure 5 Moderate 25018b ¢

Gomphonema sp. 3 APP ]é 52;21_638'2’ W:51-52, Plate 6, Figures 6-8 Moderate 25074a

Gomphonema sp. 4 APP ]S“ 13(7)'_2_934'1’ W:51-54, Plate 6, Figures 9-11 Moderate 25075a

Gomphonema sp. 5 APP L:46.4,W:5.7,5:11-13 Plate 6, Figure 5 Rich 25076 ¢

Gomphonema sp. 6 APP L:36.5, W:54,S: 15-16 Plate 6, Figure 51 Rich 25017b ¢

Gomphonema sp. 7 APP L:38.7, W:5.6,S: 13-14 Plate 6, Figure 52 Rich 25077a ¢

Gomphonema sp. 8 APP L:40.9, W:7.3,S5:13-14 Plate 6, Figure 53 Rich 25021c ¢

Hantzschia cf. bar%izz‘ . . L:69.5 W:7.3, . .

Lange-Bert., Cavacini, Tagliaventi, and ) ) Plate 18, Figure 6 Rich 25078a ¢
.. S:24-25F: 4-6

Alfinito 2003

Hantzschia calcifuga L:70.2, W: 7.5, . .

E. Reichardt and Lange-Bert. 2004 S:18-20 Plate 18, Figure 5 Rich 25070b D
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Table 2. Cont.

Taxon/Author Dimensions Plates and Figure Fen Type Sample

Hantzschia elongata . . . . .

(Hantzsch) Grunow 1877 L:213.3, W:95,S:17-18 Plate 18, Figure 8 Rich 25079

Hantzschia spectabilis L: 196.4-215.6, W: 9.5-10.7, . .

(Ehrenb.) Hust. 1959 S 15-18 Plate 18, Figures 1-3 Rich 25080

Hantzschia vivacior L:105.9, W: 8.5, . .

Lange-Bert. 1993 5:17-18, F: 6-7 Plate 18, Figure 4 Rich 25081
. L:54.7, W:10.9, . .

Hantzschia sp. 1 APP S:18-19, F: 4-6 Plate 18, Figure 7 Rich 25022b

Hippodonta pseudopinnularia L:17.9, W: 4.6, .

Lange-Bert. 2001 S:9-10 Plate 9, Figure 11 Poor 25036b

Kobayasiella parasubtilissima

(H. Kobayasi and T. Nagumo) L:29.8-34.6, W:4.1-4.8 Plate 9, Figures 1-10 Moderate; Poor 25082

Lange-Bert. 1999

Lindavia ocellata D: 6.2-15.6,S/C: 16.3-25.0 Plate 1, Figures 8-19 Moderate 25083

(Pantocsek) Nakov et al. 2015 o - T ’ 18

Melosira varians . .

C.Agardh 1827 D: 14.2-22.3 Plate 1, Figures 1-4 Rich 25084a

Microcostatus sp. 1 APP L:99,W:3.9,S:24-25 Plate 9, Figure 13 Poor 25004a

Navicula antonii L:19.1-20.1, W: 6.9-7.5, . .

Lange-Bert. 2000 S 11-14 Plate 8, Figures 15 and 16 Rich 25066b

Navicula cf. catalanogermanica L:151, W:7.5, . .

Lange-Bert. and G. Hofmann 1993 S:12-12 Plate 8, Figure 10 Rich 25034b

Navicula caterva L:15.2, W:5.2, . .

Hohn and Hellermann 1963 S:18-19 Plate §, Figure 11 Rich 25034c

Navicula cf. cincta L:16.3, W: 4.0, .

(Ehrenb.) Ralfs 1861 S 9-10 Plate 9, Figure 12 Poor 25036¢
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Table 2. Cont.

Taxon/Author Dimensions Plates and Figure Fen Type Sample [25]
f:f;‘;’fé’;rczyl’;g%te"e”“ é; 122'_71'5W: 51 Plate 8, Figure 8 Poor 25028d *
D g o Weod Plate 8, Figure 14 Poor 25028¢ ‘
?’ ;‘_;”‘C/\‘f‘;ﬁ & Z’I’g“ggii éf fZ'_‘*l'SW’ 81, Plate 8, Figure 2 Rich 25084b .
ggz;("l'r‘ll‘ll é%’fg“’i“ é; 125'_61‘929'1' W:63-68, Plate 8, Figures 3-5 Rich; Poor 250120 +
y::;zgtz'rf.aise\c/&etﬂlszski 2000 ;:: gii% D Plate & Figure 13 Foor 25086 '
N ﬁzché‘; ;e”e”"ides é; 12;)'_11'7W: 40, Plate 8, Figure 17 Rich 25085¢ .
?gﬁcﬂglfgﬁ Ig;igligzz 15:: fg'j_244'1’ W:78-88, Plate 8, Figures 1 and 12 Rich, Moderate 25085a *
e s s ot *
Neidium bisulcatum L: 28.6-69.3, W: 5.6-9.6 Plate 9, Figures 14-23 Moderate; Poor 25088 3
(Lagerstedt) Cleve 1894

‘é:fidsi:flﬁrl;i;;lif:;;nli(rammer 1985 15:: gg—g’4w o Plate 9, Figure 24 Poor 25089a 3
Nitzschia alpina PN Plate 17, Figure 7 Rich 25085d 3
g I_ngﬁ:ﬁgggp hibia IS“:: %2_81’7‘,/\;513’ Plate 17, Figure 6 Moderate 25087¢ *
Zs\’ itzschia cf. columbiana L: 741, W: 35, F: 9 Plate 17, Figure 17 Rich 25014c I

overeign 1960

agzzc)hl‘{“a gé;sﬁf”ll;’go ; ;‘_)'120‘38'4' W:4.5-54, Plate 17, Figures 1-5 Rich 25034d *
Nitzschia inconspicua 11; 7.0-7.8, W:2.6-2.7, Plate 17, Figures 15-16 Moderate 25090 ¢

Grunow 1862

14
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Table 2. Cont.

Taxon/Author Dimensions Plates and Figure Fen Type Sample [25]
f;;?:_’g:rifi é‘;g””m L:10.9, W: 2.4 Plate 17, Figure 13 Rich 25034e G
‘Z?Z:Z;ZZ;ZE e é:: ;;'_%_02715:6'12:1;'9_3'6' Plate 17, Figures 8-12 Ilfifohr Moderate; 25091 *
(Kiitz.) Grunow 1880 !

é\gfzjgl‘:; ’éiffggig in Van Heurck 1881 ]1; ﬁ._ol—458.2, W:1.8-3.0, Plate 17, Figures 18-21 Rich; Moderate 25016¢ *
g lfsﬁé‘ﬁaﬁiﬁtﬁfﬁ L Vis 2007 L: 8.4, W: 3.0, F: 12 Plate 17, Figure 14 Poor 25001b .
g{‘i‘t’}’:)t’l‘(isf: i’gﬁ”“le é; 52;92’8‘/3 i‘i Plate 2, Figure 43 Poor 25092a I
Ef'ﬂ?’é’lﬁiﬁeg:ggi‘;gi 961 ]éz: g}ﬁ’)—n'l’ W:8.6, Plate 13, Figures 18-19 Moderate 25026b ¢
var interrapta (Hosted) A. Cleve 1934 S0 ota Plate 13, Figures 1-17  Richy Moderate 25093 ¢
g;’;:ﬁé“’l’g g"mlis é; f;' WL, Plate 15, Figure 8 Rich 25094 *
if@ltgirilug ?c)zuciﬁzru I; gf.l%—129.1, W:10.8-14.6, Plate 14, Figures 1-11 IIE;CO};; Moderate; 25095 ¢
E’;’;’ggg‘;gg’é"“rw E; 9753'160' W: L0, Plate 12, Figure 12 Rich 25078b R
Ilz’r';:’;’zg‘; ﬁg"{‘grlge_]ser . 2000 é; ;f§'4’131'1’ W:16.3-19.5, Plate 11, Figures 1-3 Moderate 25096 'y
Ig"ﬁf’%ﬁﬁam‘flgz; Liu, and Taxbéck 2022 é:: 824_97'2’ W:108-12.6, Plate 12, Figures 1-7 Rich; Moderate 25097 ¢
E;’:gggigﬁ?iﬂ:inggg S rae ]S“; 5266;161_%&16’ W:13.2-158, Plate 11, Figures 4-5 Rich; Moderate 25026¢ ¢
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Table 2. Cont.

Taxon/Author Dimensions Plates and Figure Fen Type Sample [25]
Ilzi’;:’;’rfg“z—oigg’l"ens“ é; 3?'192"55 6, W:6.6-68, Plate 15, Figures 9-11 Rich 25098 ¢
E’r’;’;’l‘r’r’f;“l ;’;;”"“f or é; 232'5‘181'3' W:17.0-210, Plate 10, Figures 1-6 Rich; Moderate 25099 G
Z':;:ﬁzrfg;;b“”m éf 1217'_21_328'0' W:52-55, Plate 14, Figures 11-12 Rich; Moderate 25100a *
gﬁ::}l)a{’g; ;mlchm I§:: 39.13346.6, W:5.2-6.6, Plate 14, Figures 20-31 ?;CO};; Moderate; 25101 ¢
g:;lel)a{'g; 7cf. pulchra IS_:: i’:é._ll—232.8, W:5.9-6.2, Plate 14, Figures 32-34 1132::011.; Moderate; 25103 ¢
g:’v’gll‘gg’g spitsbergensis éf fi'_sl' 4W‘ 97, Plate 12, Figure 13 Rich 25093b ¢
fgi;l;mlaria subcapitata var. elongata Krammer I‘;:: fg._éll,lW: 4.9, Plate 14, Figure 19 Rich 25104 .
5;:":;52’: ;’:f;ﬁg;ﬁﬁler 1992 ]éz: f ;'_61;42'7’ W:5.3-57, Plate 14, Figures 1-18 Moderate 25105 D
Pt s a1 Fgess Nodea 2 :
\I::rm:;:g;;adf;;tu{; e é ;9'1‘;"69'9' W:65-8.0, Plate 12, Figures 8-10 Rich; Moderate 25106 'y
(Ant.Mayer) R. M. Patrick 1966 ’

Pinnularia viridiformis var. minor Krammer 2000 ]‘;:: 7720_124'0’ W:11.8-148, Plate 15, Figures 1-7 Rich; Moderate 25107 D
Pinnularia sp.1 APP L:71.6, W:9.8,5:9-10 Plate 12, Figure 11 Rich 25077b ¢
Pinnularia sp. 2 APP L:58.8-100.8, W:7.5-117, Plate 12, Figures 14-19 Rich; Moderate 25108 'y

S:

7-10
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Table 2. Cont.

Taxon/Author Dimensions Plates and Figure Fen Type Sample [25]
ggggﬁg:ﬁf;ﬁg]@Ziri.s%ggi ]‘;:: 17 5(:_1184'4' W05, Plate 3, Figures 22-24 Moderate 25040c *
*
f?ﬁé’fﬁﬁff;’f‘é%ﬁfgo";ﬁfg“"” tcum L: 8.8, W: 3.9, 5: 20-24 Plate 3, Figure 35 Rich 25034e D
gf["g‘;re’g)sgggzek - nd Stoermer 1987 L:14.2, W: 4.0, S: 12-14 Plate 5, Figure 53 Poor 25028 *
FC,fﬁ;iifilﬁénﬁzr?;ﬁg:;fiu%o 15:: 11 3;21_326'3’ W:50-52, Plate 5, Figures 48-52 Moderate; Poor 25109a *
gh“/’v‘cgff) ’Iﬁ:;’;flfi ffgff;?jfzm 5 L:333,5: 10-11 Plate 5, Figure 47 Rich 25110 ¢
ﬁzzg’é’t‘%‘gﬁ ?Z:fg”éikh tiyarova 1996 L:15.0, W: 4.1 Plate 3, Figure 34 Poor 25028g 'y
(Sli‘“g’lfvce’;egjﬁ’z 3;?;?53 Lange-Bert, 2015 L:15.9, W: 8.5,S: 14-18 Plate 3, Figures 20-21 Poor 25089b v
IS{tz::olngeSi; borrichii f. subcapitata (J. B. Petersen) Ig:: 12(7)_1l gm, W: 6.0 um, Plate 16, Figure 6 Moderate 25026d ¢
i:;”ge"_’éi":th;’gi(rammer 1999 L: 157.6, W: 30.2, S: 13-16 Plate 16, Figure 1 Moderate 25111 'y
gg‘;’g"z’é‘i’g indianopsis L: 124, W: 24.8,S: 17-17 Plate 16, Figure 3 Moderate 25112 s
iﬁ?ﬁﬁ'ﬁiﬁ;"{’ayfgl-gert., Witkowski, and g s W27 Plate 16, Figure 4 Poor 25001c ¢
Dorofeyuk 2010 T

Stauroncis subborealis L: 106.6, W: 16.8, S: 18-19 Plate 16, Figure 5 Moderate 25026e 'y

Bahls 2010
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Table 2. Cont.
Taxon/Author Dimensions Plates and Figure Fen Type Sample [25]
153:;7:02168115 superkuelbsii ]‘;:: 11 ;1}220, W:263, Plate 16, Figure 2 Moderate 25100c ¢
Stauroneis sp. 1 APP L:73.2, W: ~13.1, S: 19-20 Plate 16, Figure 7 Moderate 25075b ¢
g;’iz;‘f’;‘gg construens L:7.8, W:4.6,5: 15-16 Plate 2, Figure 52 Moderate; Poor 25074b *
fgﬁ;‘gg;’;‘}fg“ﬁ;ﬁ”i;;‘g venter L:57, W:45,5: 12-14 Plate 2, Figure 51 Rich 25114 ¢
(S];ﬁ;lé’ggf;’eg“ l\fle.p\f\?ﬂslizgso an Round 1988 ]g:: ;3.181_15.5, aod Plate 2, Figures 4647 Moderate; Poor 213 ¢
fgﬁrgng;egé I\I/ol.ir‘l/’\;ﬁfgms and Round 1987 ]‘;:: 57.—99_10.7’ Weo A Plate 2, Figures 48-50 Moderate 25109b ¢
f;exr;f;:zl;;%?gg.eZi Van Heurck 1896 ]éz: ;418—52.;_150.2, Wea 7 Plate 7, Figures 1 and 2 Rich 25016¢ ¢
Sk el e LRITOWASS i o :
(SIZ’;Z‘)’"Igsz‘:gss'l’(’fy"eéi’;’;;“l”:; 4 Kociolek 2022 D:11.9,5/C: 6.5 Plate 1, Figure 5 Moderate 25011 *
il it LECROWADSL iy el v
{;{l(l;:}gaKﬂiﬁg olcgziosu ]§:: 11;'_(1_952'7’ W:45-67, Plate 2, Figures 19-28 Rich; Moderate; Poor 25117 *
Tabellaria sp. 1 APP ]éz: ? ;'_81;82'915\:\;0656_8'2’ Plate 2, Figures 16-18 Moderate 25118 ¢
Tabellaria sp. 2 APP é; 17;'_61;93 1 W:3.651, Plate 2, Figures 29-37 Rich; Moderate 25119 ¢
bt r’;‘;"ig;“” iculata SO AR Plate 17, Figure 22 Rich 25085 ¢

Dimension notes: All length and width units are um. L = valve length, W = valve width, S = stria number in 10 pm (“c” being measured at central area; “a” being measured at apices),
MH = mantle height, A = areolae in 10 um, F = fibulae in 10 um, S/C = striae by circumference in 10 pm, D = diameter, C = costa number in 10 um and ~ = best estimation for a broken or

distorted valve.
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Plate 2. Light micrographs of araphid taxa. Figs. 1-15: Tabellaria fenestrata. Figs. 16-18: T. sp.1 APP.
Plate,2. thightmyissagsap syl seaphicfxos g sHsdballeia fungsiratmighigsiolb-18sel. sp.1
APRr¥iighigh942842T [flovonlbfmniighigie-33: QimapidiAPhydiigs. Bg30:44)iGtodle viekyailenigiare 40:
D. ehrenbergii. Figs. 41-42: D. moniliformis. Figure 43: Odontidium hyemale. Figure 44, Girdle view:
Denticula cf. kuetzingii? Figure 45: Fragilaria rumpens. Figs. 46-47: Staurosirella leptostauron. Figs. 48-50:

S. pinnata. Figure 51: Staurosira construens var. venter. Figure 52: Staurosira cf. construens. Scale bars:
10 pm.
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cf. kuekzingii? Figure 45: Fragilaria rumpens. Figs. 46-47: Staurosirella leptostauron. Figs. 48-50: S. pin-
nata. Figure 51: Staurosira construens var. venter. Figure 52: Staurosira cf. construens. Scale bars: 10 pm.

12 3 4 5 6

26 27 2899
N m30 1 3I2 33
Plajgy e P VO GEEDS RS ER I AT G180 5;’2;;11 AT A iR 19

placgrini 38.nﬂigtl@t@h&:@@néier.Zlhg&kz%vhm&kmmﬁtrmw;ﬁtgamg’&%%ﬂmathWﬁvﬁweﬁgszmum.
Figdke QB1iPubisstrtoholnrioiciFigBig$320-95:1 AR EighidithRalsstiidiPiget ases Fig. oF; Roawillimum.
Water 2023, 15, x FOR PEER REVI%%&*!%%W%{%%%& 626 L3 A0 ®3: A. sp.1 APP. Figure 34: Rossithidium petersenjj. Fig, 35:

Psammothidium cfmicroscopicum. Scale bars: 10 ym
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3.1. Distribution of Common Taxa

Tabellaria, including undescribed species (T. sp.1 APP and T. sp.2 APP), was frequently
encountered in the rich and moderate fens (Plate 2, Figs. 1-37). Tabellaria flocculosa (Roth)
Kiitzing 1844 (p. 127) was encountered in each fen on every sampling date. Though
T. flocculosa was the most common species in the rich fen, populations of Eunotia pseud-
oflexuosa Hustedt 1949 (p. 71) and Tabellaria fenestrata (Lyngbye) Kiitzing 1844 (p. 127) also
frequently occurred. Navicula (pl. 8) and Nitzschia (pl. 17), both encountered infrequently
in all fens, were more speciose where present, particularly within the rich fen. The rich
fen also contained infrequent populations of Cocconeis Ehrenberg 1838 (p. 194), of which
C. pediculus Ehrenberg 1838 (p. 194) was the most common. Encyonema neogracile Krammer
1997 (p. 177) and E. paucistriatum (Cleve-Euler) D.G. Mann 1990 (p. 667) were the most
commonly encountered species of the nine representative species of Encyonema Kiitzing
1834 (p. 583) (Plate 5, Figs. 1-45). For a few of these taxa (Pl. 5, Figure 15. E. sp.1 APP; P1. 5,
Figure 46. E. sp.2 APP; Pl. 24, Figure 12. Eunotia sp.1 APP), teratological form is suspected
owing to morphological abnormalities and infrequency of detection (discussed below).

Pinnularia pulchra @strup 1897 (p. 253), along with Eunotia pseudoparallela Cleve-Euler
1934 (p. 24), were common in the moderate fen. Of the 20 represented species of the genus
Pinnularia (Plate 12, Figs. 14-20) a number remain undescribed (P. sp.1 APP and P. sp.2
APP). The moderate fen also supported 23 distinct OTUs of Gomphonema. Initial scans
for the voucher flora frequently detected Gomphonema hebridense Gregory 1854 (p. 607),
Gomphonema brebissonii Kiitzing 1849 (p. 66), and Gomphonema cf. raraense Jiittner and S.
Gurung 2018 (p. 301) in the moderate and rich fens, but not in the poor fen. The genus
Stauroneis Ehrenberg 1843 (p. 311) was rarely detected; however, the majority of species
within the genus occurred in the moderate fen. Though centric taxa were infrequently
observed during scanning, the genus Lindavia occurred in the greatest quantity. Lindavia
ocellata (Pantocsek) Nakov et al. 2015 (p. 256) had the narrowest spatial and temporal
distribution but was only detected in the moderate fen on one sampling date.

The most speciose genus found, Eunotia, had the greatest number of distinct morpho-
logical forms across all peatlands, with the greatest concentration occurring in the poor
fen. For example, Plates 19-25 show 45 OTUs. Of these morphological groupings, 11
were assigned cf. designations and 4 remained at a genus-level designation. The species
most frequently encountered in the poor fen survey were Eunotia naegelii Migula 1905
(p. 205) and Eunotia mucophila (Lange-Bertalot, Norpel-Schempp, and Alles) Lange-Bertalot
2007 (p. 111).

The Serensen coefficient was used based on presence-absence data across fen types
revealing 41% of species were similar between the rich and moderate fen, 37% were similar
between the moderate and poor fen, and only 27% were similar between the rich and
poor fens. Comparison of the taxa encountered in this study (Table 2) with other recently
published taxa lists revealed 78% dissimilarity with recently recorded diatom species from
floras developed for selected southeast rivers in the United States [9], 60% dissimilarity
with species from the continental United States checklist [14], and 53% dissimilarity with
the species checklist of diatoms from the northwest United States [52]. When compared to
the conservation status of taxa in Germany [25], 47 of the 183 fen species encountered in
this study (Table 2) matched those considered near threatened (V) or more imperiled status
R,G,3,2,0r1).

3.2. Red List and Rare Taxa

For selected taxa identified as rare, we provide references used for identification,
morphological features within the bounds of the specimens encountered in this study,
ecological information, and known distribution records. The taxa detailed below were
chosen based on their status in the diatom Red Lists (discussed below) for Germany [24,25]
and/or lack of listing in the checklist of diatoms from the continental U.S. [14] and/or the
checklist of diatoms from the northwest U.S. [52]. For 44% of the species encountered in
our study of these three Alaskan fens, the German Red List had not evaluated their status.
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Encyonema neogracile Krammer 1997 (pp. 177-178). Synonym: Encyonema gracile
Rabenhorst 1853 (p. 25, pl. 10, Figure 1). Reported as Cymbella lunata Patrick and Reimer
1975 (p. 46, Plate 7, Figs. 11-14); Reported as Cymbella gracilis Krammer and Lange-Bertalot
1986 (p. 308, Figure 120: 3-5).

Observations: (Plate 5, Figs. 16—29) The valves are 31.5-44.7 um long and 4.7-6.3 pm
wide, and stria density is 11-15 in 10 pm. Valves are asymmetric about the longitudinal
axis, being narrowly cymbelloid, with a moderately arched dorsal margin and weakly
convex to flat ventral margin. The apices are narrowly rounded, the raphe is positioned
laterally, with proximal raphe ends deflecting dorsally terminating into central pores, and
the distal raphe ends curve ventrally. Striae are parallel to slightly radiate, being slightly
less dense on the dorsal side and the shorter ventral stria become slightly convergent near
the apices.

Distribution: In the United States, Bahls [52] reported 169 prior records (CA, ID, MT,
OR, WA, WY) in the Montana Diatom Database and Bahls [53] reports it as widespread
(in waters low in nutrients, electrical conductance, and having circumneutral pH) and
common in lakes, fens, and mossy seeps in the mountains of the northwest United States.
This taxon is reported as presumed endangered [24] and reported as threatened [25] but
was not uncommon in our samples from the fens of Alaska.

Encyonema paucistriatum (Cleve-Euler) D. G. Mann 1990 (p. 667). Reported as
Cymbella paucistriata Krammer and Lange-Bertalot 1986 (p. 305, pl. 119, Figures 14-16);
Cleve-Euler 1934 (p. 77: pl. 5, Figure 127).

Observations: (Plate 5, Figs. 1-14) The valves are 22.1-42.8 pm long and 5.4-6.5 um
wide, and stria density is 8-11 in 10 um. The valve outline is lunate with a flat to slightly
tumid ventral margin, moderately arched dorsal margin, and rounded apices. Striae are
slightly radiate to parallel, and density is variable with some specimens having irregularly
spaced striae (Plate 5, Figure 12).

Distribution: In the US, this taxon was not listed in recent checklists [14,52]. It was
described from Finnish Lapland [54] and has been reported from northern Sweden and
the European Alps in oligotrophic waters [38] and wetland habitats (pH: circumneutral;
conductivity: low; nutrients: low) on the tundra in Nunavut, Canada [53]. This taxon is
reported as highly threatened and rare [25]; however, it was not uncommon in our samples
from the fens of Alaska.

Encyonema procerum Krammer 1997 (p. 169, pl. 32: Figures 9-19) Reported as Ency-
onema droseraphilum Bahls et al. 2013 (p. 36, Figures 3-10).

Observation: (Plate 5, Figure 34) The valve is 31.4 um long and 6.8 um wide, with a
stria density of 8-11 in 10 um dorsally and 12-13 in 10 um ventrally. The valve is cymbelloid,
with a weakly convex to flat ventral margin and a moderately arched dorsal margin. Striae
of the dorsal side are slightly radiate to parallel, being slightly less dense than ventral striae,
which are short and parallel to convergent nearing the apices. The proximal raphe ends
are inflated slightly and deflected dorsally, and distal raphe ends are curved towards the
ventral margin.

Distribution: In the United States, Bahls et al. [55] reported it (as E. droseraphilum) from
a floating mat fen (pH: 6.7; conductance: 257 uS/cm) and a shallow lake in the forested
mountains of northwestern Montana. It was originally described from the freshwaters of
Heinersreuth in Upper Franconia in Bavaria, Germany [56]. This taxon was not reported
in Lange-Bertalot [24], reported as extremely rare, threatened with extinction in the Ger-
man Red List [25], and in our initial screening for this voucher production, it was only
encountered once.

Eunotia naegelii Migula 1905 (p. 203). Available in Lange-Bertalot et al. 2011 (p. 167:
pl. 21, Figures 1-23; pl. 22, Figures 1-13); Furey [57].

Observations: (Plate 22, Figs. 1-5) The valves are 103.8-123.1 um long and 2.7-3.1 pm
wide, with a stria density of 15-17 in 10 pm near the center and 17-20 in 10 pm in the
apices. Valves are moderately arched with dorsal and ventral margins nearly parallel in the
center and narrowing to slightly dorsally deflected, barely inflated apices. The distal raphe
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fissures curve onto the valve face, bending 180° and continuing a short distance toward the
proximal raphe ends.

Distribution: In the United States it was reported in the Laurentian Great Lakes [58],
in the Northwest checklist from California, Oregon, and Montana [52], and detected in
the South Saluda River, Cleveland, South Carolina [9]. It was reported in a checklist for
the British Isles and adjoining coastal waters [59], a checklist of the Gulf of Mexico and
coastal waters [60], and as infrequent in the Holarctic, Eurasia, and North America being
abundant in few places [46] (see discussion for autecology). This taxon is reported as at
risk [24], reported as rare and threatened [25], but was not uncommon in our samples from
the fens of Alaska.

Gomphonema lagerheimii A. Cleve 1895 (p. 22, pl. 1: Figure 15). Specimens with
similar morphology were reported as Gomphonema hebridense Gregory 1854 in Cantonati
et al. 2017, Bahls [52], and Bahls et al. [55], but none of the specimens bear a resemblance to
Gregory’s (1854) original drawings of G. hebridense. The specimens do match the original
description and drawing of G. largerheimii A. Cleve 1895.

Observations: (Plate 6, Figs. 28-46) The valves are 33-55 pm long and 4.3-7 um
wide, and stria density is 12-18 in 10 um. The valve outline is nearly symmetrical about
the longitudinal axis with a slightly tumid center and a linear-lanceolate shape, having
one stigma lying at the end of a short median stria in the central area, appearing slightly
cymbelloid in partial valve view.

Distribution: In the United States, Bahls [52] (as G. hebridense) reported low numbers
in nine streams (pH: 6.8; mean conductance: 247 pS/cm) in western Montana and western
Oregon and Bahls et al. [55] (as G. hebridense) detected populations in the floating mat fens
of the Indian Meadows Research Natural Area, 90 km northwest of Helena, Montana. In
Austria, Germany, and Finland it has been reported as a northern-alpine species [61,62].
This taxon is reported as declining [24], reported as near threatened [25], but was not
uncommon in our samples from the fens of Alaska.

Kobayasiella parasubtilissima (Kobayasi and Nagumo) Lange-Bertalot 1999 (p. 268).
Synonym: Navicula parasubtilissima Kobayasi and Nagumo 1988 (pp. 245, 247, Figures 19-37).

Observations: (Plate 9, Figs. 1-10) The valves are 29.8-34.6 um long and 4.1-4.8 um
wide. Stria density was not resolvable in LM but has been reported as 4042 in 10 pm [55].
The valve outline is linear-lanceolate with slightly convex margins, apices are capitate, and
the axial area is narrow.

Distribution: In the United States, it has been reported in low alkalinity lakes in the
Northeast [63], 19 lakes and streams (mean pH: 7.5; mean conductance: 116 uS/cm) in
Montana and Washington [52] (as Kobayasiella subtilissima), and detected populations in
floating mat fens near Helena, Montana [55]. This taxon has also been reported from Lake
Imandra, Russian Lapland, Cleve [64] (p. 37); high moors in the Alps and Scandinavia, in
association with Sphagnum species [38]; and lakes in northern Québec and Labrador [65]
(as Navicula parasubtilissima). This taxon is reported as declining [24], rare, and near
threatened [25], but was not uncommon in our samples of the fens of Alaska.

Stauroneis heinii Lange-Bertalot and Krammer 1999 (p. 91, pl. 27, Figures 1-4).

Observations: (Plate 16, Figure 1) The valve is 157.6 um long and 30.2 um wide, with
a striae density of 15-16 in 10 pm and areolae number 1617 in 10 um. The valve outline is
elliptic lanceolate with protracted ends and external proximal raphe fissures are strongly
inflated and strongly curved.

Distribution: In the United States, it has been reported from Alaska [66] and western
Montana, where it prefers slightly acidic to circumneutral waters with low concentrations of
electrolytes [52] and in the floating mat fens of the Indian Meadows Research Natural Area,
90 km northwest of Helena, Montana [16,55]. It has been reported as bipolar, being detected
from Siberia [67], Greenland [68], the Andes Mountains from Venezuela to Patagonia [69],
South Georgia Island [70], and the Canadian Arctic [71]. It was not encountered in the
Kociolek [14] contiguous United States checklist; therefore, it was first reported for the
contiguous United States in Bahls [16,54]. This taxon was not reported in the German
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diatom Red Lists [24,25] and in our initial screening for this voucher production, it was
only encountered once.

Stauroneis indianopsis Bahls 2010 (pp. 85-86).

Observations: (Plate 16, Figure 3) The valve is 124 um long and 24.8 pm wide, with a
stria density of 16-17 in 10 pm, and 16-18 areolae in 10 um. The valve is linear-lanceolate,
the apices are slightly protracted, the axial area narrow, the striae radiate, the stauros
narrow (linear or slightly expanded toward the valve margins), the raphe fissures lateral,
the proximal ends strongly curved and weakly inflated, and the terminal raphe fissures
are hooked.

Distribution: In the United States, Bahls [16] described it from floating mat fens from
the Indian Meadows Research Natural Area, 90 km northwest of Helena, Montana [55],
and from a small lake (pH: 7.5; conductance: 10 uS/cm) in Missoula County, Montana [16].
It was not encountered in the Kociolek [14] contiguous United States checklist; therefore, it
was first reported for the contiguous United States in Bahls [16], and this may be the first
report for Alaskan fens. This taxon was not reported in the German diatom Red Lists [24,25]
and in our initial screening for this voucher production, it was only encountered once.

Stauroneis subborealis Bahls 2010 (pp. 151-152).

Observations: (Plate 16, Figure 5) The valve is 106.6 um long and 16.8 um wide, with a
stria density of 18-19 in 10 um and 19-21 areolae in 10 pm. The valves are linear-lanceolate,
the apices are protracted and broadly rounded, the axial area is narrow (slightly widening
near the central area), the striae radiate, the stauros narrow (slightly expanded toward the
valve margins), the raphe fissures lateral, the proximal ends curved and inflated, and the
terminal raphe fissures are hooked.

Distribution: In the United States, Bahls [16] described it from material collected at
Indian Meadows Research Natural Area and encountered it in a few ponds, fens, and
small lakes (appearing tolerant of a wide range of pH and low to moderate concentrations
of electrolytes) in western Montana [55]. It was not encountered in the Kociolek [14]
contiguous United States checklist; therefore, it was first reported for the contiguous United
States in Bahls [16] and this may be the first report for the Alaskan fens. This taxon was
not reported in the German Red Lists [24,25] and in our initial screening for this voucher
production, it was only encountered once.

Stenopterobia delicatissima (F. W. Lewis) Brébisson ex van Heurck, 1896 (p. 374; pl.
1, Figures 19-51). Synonym: Surirella delicatissima f. delicatissima Lewis 1864. Available in
Krammer and Lange-Bertalot 1988 (2/2, p. 210, pl. 170: 5, 6; pl. 173: 1-8; pl. 174: 1-12).

Observations: (Plate 7, Figs. 3-12) The valves are 53.2-76.0 pm long and 4.0-4.6 um
wide, stria density is 18-28 in 10 pm, and fibulae is 4-7 in 10 um. Valves are lightly silicified
and linear-lanceolate, parallel to slightly convex towards the center, then tapering into
attenuate apices. Striae are parallel throughout, slightly off-set from one another at the
central sternum which may be difficult to discern in light microscopy (LM). The raphe is
circumferential, raised onto a clearly discernable keel.

Distribution: In the United States, it has been reported in Kociolek [14] referencing its
detection in southern Alabama swamps (pH: ~5.0) colonizing the mucilage of Ophrydium
where it was found to be abundant [72]. Siver et al. [73] examined materials from the type
locality, Saco Pond (an acidic spring-fed waterbody), New Hampshire, and it has been
reported from Montana [52]. It has been reported as widespread and cosmopolitan in
humic acidic waters but rare in grassy plains [39]. This taxon is reported as threatened [24],
rare, and highly threatened [25], but was not uncommon in our samples from the fens
of Alaska.

4. Discussion
4.1. Assemblage Analysis

As anticipated, we found diatom assemblages consistent with recent studies [22,49,55]
in other high-latitude wetlands containing characteristic minerotrophic, acidophilous, and
epiphytic taxa such as Eunotia, Gomphonema, and Pinnularia. Bahls [55] found intact relict
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assemblages comprised of 49 taxa that included arctic, sub-arctic, and boreal diatom species
in two undisturbed floating-mat fens in Montana. Of those, 27 are considered at risk or
declining according to the diatom Red List developed in Germany [25] which they inferred
to be appropriate designations for the cold-loving, rare, northern fen diatoms within the
United States. Here, we found similar results, with 46 of our 184 species matching those
listed as near threatened, extremely rare, threatened, at risk or declining, highly threatened,
or threatened with extinction in the Red List developed in Germany [25]. Many diatom
floristic studies of peatlands in North America have frequently documented rare or new
species [74,75], yet information on the biodiversity of peatland diatoms remains sparse
compared with other aquatic environments [76]. The northern boreal region has been
shown to possess a unique diatom flora, with characteristic taxa and high species richness
in the rivers, lakes, and streams across Alaska [48,49]. The present study also updates and
expands regional knowledge building on Foged’s 1981 treatment of Alaskan diatom flora
to include a gradient of peatlands that are home to many rare, threatened, and potentially
new species of diatoms [50].

Tabellaria flocculosa, which was common in all peatlands in our study, is cosmopolitan,
often found in a wide range of water types (ranging from acidic to alkaline), frequently
occurring in northern latitudes, and is commonly found in lakes, running water, and peat
bogs [4]. Over time, authors distinguished T. flocculosa in several ways owing to its high
variability in morphological forms [77]. For example, Knudson [78] described four varieties
based primarily on colony morphology, and Koppen [79] described three “strains” based on
size range and autecology. Our understanding of the species concept follows the variability
noted in the United States, which includes strains III, IIlp, and IV together when defining
T. flocculosa [78,79]. Reported as abundant only in low-nutrient, soft waters [47], T. flocculosa
is considered “not threatened” and is moderately common [25].

In the rich fen, populations of Eunotia pseudoflexuosa and Tabellaria fenestrata frequently
occurred in addition to the high density of T. flocculosa. Foged [50] reported E. pseudoflexuosa
as halophobic and acidophilic in three samples from Alaska. Additional distribution records
detected E. pseudoflexuosa in Central Africa, South Africa, Europe, Canada, and a Sphagnum
bog complex in Russia [46]. As a known associate of T. flocculosa, T. fenestrata often occurs
in lower relative abundance [80]. T. fenestrata’s described ecological range varies in the
literature; however, detection in circumneutral waters, especially mesotrophic-eutrophic
ponds and lakes, occurs often [81]. T. fenestrata can be planktonic [40] but is often found
growing attached to hard substrates and vegetation such as Sphagnum [78-80]. T. fenestrata
is distinguished by colonies that form long straight chains, two to four septa in girdle
view, and approximately equal width inflations [78-80], and is rarely observed in stellate
formations or zig-zag colonies.

The most frequently encountered species in the moderate fen, Pinnularia pulchra and
Eunotia pseudoparallela, are described as epipelic in oligotrophic waters with low electrolyte
content in East Greenland and northern Finland and are reported as absent from Europe [44].
Han et al. [82] found P. pulchra as one dominant diatom species in herbaceous peatlands
in the northern Greater Khingan Mountains, China, tolerant of neutral-alkaline habitats.
Likewise, the moderate fen conditions align as suitable to support P. pulchra. Similarly,
E. pseudoparallela rarely occurs in the Holarctic, central Europe, or southern Europe, yet
appears abundant in Scandinavian minerotrophic peatlands or comparable moderately
acidic, electrolyte-poor habitats [46].

As expected, species of Eunotia, including E. naegelii and E. mucophila, were common in
the acidic waters of the poor fen. Similar to the majority of Eunotioid taxa, the autecological
preferences of E. naegelii are dystrophic, nutrient-poor, moderately acidic fens, lakes, and
springs with low specific conductivity [46]. E. mucophila, reported as highly abundant in
Sphagnum peat bogs and dystrophic lakes, remains infrequently reported in the Holarctic
flora, Eurasia, and North America [46]. In the United States, E. mucophila has been observed
in the Adirondack Mountains of New York [63]; South Carolina [83]; Cape Cod, Mas-
sachusetts [84]; and in the acidic lakes of Acadia National Park, Maine [85]. The German
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Red List reported E. mucophila as rare and under ‘Threat of Unknown Extent” because
the available information is not sufficient to allow a precise assignment to categories one
to three [25].

We encountered a few diatom valves we consider to be teratological forms (i.e., abnor-
mal physiological development) (P1. 5, Figure 15. E. sp.1 APP; P1. 5, Figure 46. E. sp.2 APP;
PL. 24, Figure 12. E. sp.1 APP). Deformities are observed in natural diatom assemblages,
but their prevalence is relatively low (<0.5%) [86]. Taxa disposed to teratological forms
(e.g., Fragilaria, Eunotia) under natural conditions may falsely indicate contamination; thus,
abnormalities in these genera alone within an assemblage should be interpreted accord-
ingly [87]. The minimal anthropogenic impacts on the studied peatland complex suggest
these teratological forms do not indicate contamination. Just as we included the few valves
of rare taxa, we chose to include the few teratological forms (rather than exclude them,
which is typical) to reflect the full diatom assemblage composition.

4.2. Ecology Inferred

Historically, diatoms were underexplored in ecological monitoring studies of peatlands
despite being a commonly employed tool in other environments [88]. Diatoms occur
in abundance in surveyed peatlands, including those reported from the early work of
Reimer [74] and Stoermer [75]. Later, Kingston [89] subsequently identified characteristic
peatland diatom assemblages concluding diatoms are sensitive to microhabitat conditions
(e.g., water table position, macro-vegetation type, and trophic status) and good indicators
of environmental gradients in peatlands. More recently, diatoms have been identified as
one of the most widely represented algal groups in peat bogs and fens [29,90] and were
found to alter their assemblage composition significantly, in kind with subtle shifts in
moss species assemblage composition [91]. Diatoms readily respond to changes in pH and
moisture content [92]. We report differences in diatom assemblage composition among our
peatlands to further emphasize their potential biomonitoring power applied within these
wetland environments. Furthermore, our findings of approximately 10% of the documented
species across all fens being potentially new to science highlight the uniqueness of peatland
diatom communities.

The distinctiveness of peatland habitats (i.e., rarity, stability, and extreme conditions)
explain the unique vascular plant flora, as well as the high concentrations of rare species
restricted there [34]. Similarly, these unique conditions support new species and rare
diatoms found in peatland floristic studies [22,55,74,75]. Some diatom species capitalize on
the changing environment in boreal wetlands [93] and are sensitive enough to use as a proxy
to assess the magnitude of past hydrological changes [94]. Diatom species that are often rare
and strictly bound to fens have adapted to withstand selection pressures such as extended
periods of desiccation, thermal fluctuations, low nutrient concentrations (particularly
nitrogen), and low pH [55]. For example, genera such as Eunotia and Pinnularia, commonly
observed in this study, exhibit higher species diversity in wetland environments [95]. The
minimal number of species from the order Centrales was expected owing to the shallow
fen waters which prevent suspension of planktonic taxa [4]. The unique conditions typical
of peat bogs and fens [22,55] likely supported a number of the rare taxa observed in this
study. This diatom voucher flora, produced as a practice in taxonomic transparency, will
support the use of diatoms as bioindicators in these distinctive wetlands.

5. Conclusions

Renewing commitment to the development of region-specific voucher floras is imper-
ative to better understand the biodiversity of diatoms, the ecosystem services they provide
(e.g., oxygen production, foundation of the food web), and their application in solving
ecological problems [14]. The way in which diatoms will be employed as bioindicators
in Alaska peatlands will depend on several factors, such as the questions being asked,
along with the need to balance precision, speed, and fiscal responsibility. For example,
studies interested in exploring biodiversity may consider different counting methods to



Water 2023, 15, 2803 48 of 52

capture more taxa [96], and ongoing work will use this diatom flora to build a predictive
model. Rare diatom taxa can be perceived as noise during data analysis for ecological
bioassessments. This perception can lead to the exclusion of as many as 70% of diatoms in
a data set (1028 out of 1461 taxa) prepped for analysis [97]. Therefore, voucher floras that
include rare species should be strongly considered during ecological assessment. The data
presented here could be used to expand species concepts, distribution records, and aute-
cological information relating certain taxa of diatoms with environmental parameters of
fens. Despite diatoms being acknowledged as important for biodiversity /species richness
assessments, there is still a need for further investigation into their role as bioindicators
e.g., [98] in these unique wetland ecosystems. This voucher flora of the boreal peatlands of
interior Alaska is part of a collective effort to provide accessible taxonomic identification
resources for localized areas to support wetland conservation.

Supplementary Materials: The following supporting information can be downloaded at: https:
/ /www.mdpi.com/article/10.3390/w15152803/s1, File S1: taxonomic authority references; Table S1:
species information.
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