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Field Programmable Gate Array (FPGA) is widely used in acceleration of deep learn-
ing applications because of its reconfigurability, flexibility, and fast time-to-market.
However, conventional FPGA suffers from the tradeoff between chip area and recon-
figuration latency, making efficient FPGA accelerations that require switching between
multiple configurations still elusive. In this paper, we perform technology-circuit-
architecture co-design to break this tradeoff with no additional area cost and lower
power consumption compared with conventional designs while providing dynamic

reconfiguration, which can hide the reconfiguration time behind the execution time.
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Leveraging the intrinsic transistor structure and non-volatility of ferroelectric FET (Fe-
FET), compact FPGA primitives are proposed and experimentally verified, including
1FeFET look-up table (LUT) cell, 1FeFET routing cell for connection blocks (CBs) and
switch boxes (SBs). To support dynamic reconfiguration, two local copies of primitives
are placed in parallel, which enables loading of arbitrary configuration without inter-
rupting the active configuration execution. A comprehensive evaluation shows that
compared with the SRAM-based FPGA, our dynamic reconfiguration design shows
63.0%/71.1% reduction in LUT/CB area and 82.7%/53.6% reduction in CB/SB power
consumption with minimal penalty in the critical path delay (9.6%). We further im-
plement a Super-Sub network model to show the benefit from the context-switching
capability of our design. We also evaluate the timing performance of our design over
conventional FPGA in various application scenarios. In one scenario that users switch
between two preloaded configurations, our design yields significant time saving by
78.7% on average. In the other scenario of implementing multiple configurations with

dynamic reconfiguration, our design offers time saving of 20.3% on average.

Introduction

Deep neural networks (DNNs) have dominated artificial intelligent (Al) applications due
to their cutting edge performance in a wide range of applications in many domains, such
as image classification?, object detection®*, and natural language processing>®. How-

ever, with more sophisticated models and more voluminous data to process 7 these DNN



workloads are becoming more compute-intensive and data-intensive, requiring hardware
accelerators to achieve lower latency, higher throughput, and higher energy efficiency.
FPGA devices, with the capabilities of flexible reconfiguration for arbitrary logic func-
tions while maintaining high performance, are gaining popularity as accelerators for such
complex deep learning applications®'°. The reconfigurability of FPGA is enabled by its
unique architecture, as illustrated in Fig. 1(a), which consists of a sea of configuration logic
blocks (CLBs), CBs, SBs, configuration memory, and I/O blocks!!. In particular, CLBs are
the main components that can be programmed to perform different logic operations and
CBs and SBs are controlled by configuration bits loaded from the configuration memory.
A variety of routing networks can be achieved through loading different configuration
bits. Above all, FPGA’s aforementioned properties including reconfigurability, flexibility,
high performance, and fast time-to-market makes it a promising choice for DNN acceler-

ators.
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Figure 1: Overview of the proposed context-switching FPGA and potential applica-
tions. Architectures of (a) a conventional SRAM-based FPGA, (b) SRAM-based FPGA
supporting partial reconfiguration, and (c) Our proposed FeFET-based context switching
FPGA supporting dynamic reconfiguration. (d) An example of deep learning network:

Two-stage Super-Sub network'?, where at first the superclass ‘Dog’ is identified and then



the subclass "Husky’ is identified. (e) Conventional FPGA incurs area overhead or signif-
icant reconfiguration latency. This figure shows two main approaches of implementing
the Super-Sub network in conventional FPGA. (f) Our approach provides fast reconfigu-

ration speed and compact solutions.

As a concrete and highly important example of DNN acceleration on FPGA, a two-
stage Super-Sub network is adopted for image classification'?. In this model, a superclass
is first inferred using a generalist superclass-level network and the network output is
then passed to a specialized network for final subclass-level classification. In this way, the
overall classification accuracy has been proved to increase over that of common inference
methods when evaluating on the “Superclassing ImageNet dataset”, which is a subset of
ImageNet' and consists of 10 superclasses, each containing 7-116 related subclasses (e.g.,
52 bird types, 116 dog types)'?. Fig. 1(d) shows one specific example of this framework.
In the first stage, the superclass ‘Dog’ is identified by the generalist superclass network.
Then, fine-grain inference in the subclass network is performed in the second stage and

outputs the final result "Husky’ of the target image.

Numerous hardware accelerators have been proposed to implement DNNSs, such
as customized application-specific integrated circuits (ASICs)'*'¢, application-driven op-
timization on graphics processing units (GPUs)'”/!8, and FPGAs!*?°. However, among

these various types of DNN accelerators, FPGA, which can provide more flexibility while



maintaining high performance, is particularly suitable for implementing the accelerators
of DNNs such as for the Super-Sub network model. Fig. 1(e) shows two main approaches
when considering to implement this Super-Sub network into FPGA. One distinguished
feature of the implementation is the requirement of multiple configurations in FPGA to
map the superclass and sub networks, respectively. The straightforward approach is to
use more than one chips to process different networks (i.e., configurations). As shown
in Fig. 1(e), Chip 1 is configured to process the general inference task for superclasses,
whose outputs are then sent to the Chip 2 which is configured to map the subclass net-
works to identify the specific subclass. This approach, although fast, incurs penalties in
chip area and cost. Another compact and cost-efficient approach is to leverage the re-
configuration capability of FPGA by simply reconfiguring Chip 1 to the subclass network
after it finishes execution of the superclass network. In this way, contexts, i.e., FPGA
configurations, can be swapped in or out of the FPGA upon the demands of application
requirements without the need of additional chips®!. Therefore, this approach saves the
area cost but comes with a penalty in the reconfiguration latency. Above all, although
FPGA offers an attractive choice for acceleration of Super-Sub network model (Fig. 1(e)),
an ideal implementation with high area efficiency and low latency is still elusive with

current FPGA technologies and architectures.

Many relevant works have explored design options to address the aformentioned is-
sues at different granularity of reconfiguration and from different angles of applications.

However, all of them are still limited by the dilemma or might incur other overheads.



For example, a full context-switching FPGA was first proposed as a time-multiplexer
FPGA based on the Xilinx XC4000E FPGA in 1997??, where eight configurations of the
FPGA are stored in on-chip memory and the contexts can be switched in a single cycle.
With pre-loaded contexts, reconfiguration is not needed but it comes with a large area
penalty. The more configurations to be supported, the more area overhead to store those
configurations. In order to save area while still speeding up the reconfiguration process,
dynamic partial reconfiguration appears as another solution to support multiple configu-
rations, by which only a portion of hardware region (called reconfigurable region) can be
reconfigured while the remainder is static®. Partial reconfiguration brings several advan-
tages over conventional context-switching FPGA?*, including less reconfiguration time
compared to full-region reconfiguration and smaller area with its increased logic density.
However, partial reconfiguration only provides a compromised solution between the area
cost and the reconfiguration latency, incapable of fundamentally solving the problem. At
the end, it is possible to support fine-grain reconfiguration at bit level, as demonstrated
by consecutive works on the 'NATURE’ FPGA architecture to support fine-grain temporal
logic folding®?*, which is either based on CMOS (e.g., logic and SRAM) and carbon nan-
otube random-access memory (NRAM)?, or based entirely on CMOS circuits %*. In the
former work, NRAM and SRAM work together to support dynamic reconfiguration for
temporal logic folding of circuits, which is to realize different logic functions in the same

logic elements through dynamic reconfiguration every few cycles, thereby significantly

increasing the logic density. In the latter work, the dynamic reconfiguration delay is hid-



den behind the computation delay through the use of shadow SRAM cells (i.e., two SRAM
copies). However, both works suffer from high area cost which is mainly caused by ex-
tra NRAM cells and 10T-SRAM cells respectively. Therefore, to date, a context-switching
FPGA that can break the trade-off between the area cost and the reconfiguration latency

remains elusive and the goal of the proposed research is to bridge the gap.

To mitigate the aforementioned issues in terms of area, latency and power, we pro-
pose a novel dynamic context-switching FPGA architecture based on FeFETs which can
implement DNN accelerators more efficiently. With joint innovations from technology,
circuit, and architecture levels, our proposed design has several advantages over prior
context-switching works. First, from technology’s perspective, FeFET is unique that it
behaves both as a transistor switch and a nonvolatile memory cell such that FPGA basic
logic circuits (e.g., LUTs) and routing elements (e.g., CBs and SBs) can be implemented
compactly. Moreover, these FPGA basic elements have no leakage power dissipation be-
cause of the non-volatility of FeFET, which hugely reduces the total power consumption
of the entire FPGA. Second, from circuit’s perspective, a new CB composed of two parallel
branches is proposed, which stores two configurations while still consuming much less
area than a single configuration SRAM-based CB. Third, the proposed FPGA is dynam-
ically reconfigurable with the capability to load one configuration without interrupting
execution of another configuration. As a result, the reconfiguration time can be com-
pletely hidden as long as it is smaller than the computation time of the current active

configuration. Therefore, our proposed solution can achieve dynamic context-switching



with zero penalty in reconfiguration latency and significant area reduction compared to
SRAM-based design, breaking the trade-off between area cost and reconfiguration latency

existed in conventional CMOS implementations.

With the proposed context-switching FPGA, the aforementioned Super-Sub network
can be efficiently implemented, as shown in Fig. 1(f). Considering one case that we are
interested in having an accurate classification of one specific superclass (e.g., Dog), the
proposed design can perfectly fit in it and reduce the reconfiguration latency. Specifi-
cally, these two configurations including superclass network and subclass network can
be preloaded into the FPGA. First, the general inference with the superclass network is
performed. As long as the output of the general inference is Dog, the configuration cor-
responding to Dog’s subclass network would be activated and executed for further infer-
ence. In this way, compared to long reconfiguration time, the switching time is much less
or even negligible, which leads to almost zero latency overhead. In addition, the total area
cost could also be heavily reduced by leveraging dense FeFETs. Note that the proposed
context-switching FPGA enables applications in various domains that need switching
between different contexts, beyond the Super-Sub network discussed here. The recon-
figuration functionality is especially helpful in various dynamic adaptation applications
such as changing communication encoders or decoders on demand to the appropriate
protocols?, changing the data rates to vary bandwidths?®, scaling the computation based
on available energy needs”. Moreover, with no limitation of the number of configura-

tions, our design can also be scaled to implement multiple configurations depending on



the demand of applications. Some potential applications are illustrated in Supplementary

Fig. S1.

Overview of the proposed FPGA architecture

For a deeper look into the design of the proposed context-switching FPGA, details of
the architecture and components to support multiple configurations are shown in Fig. 2.
Fig. 2(a) shows primitive components of the proposed context-switching FPGA which
supports dual configurations, including CLBs, CBs and SBs. For each component, it is
controlled by the configuration information stored in configuration memory. By load-
ing the configuration bits, the logic (LUT) and routing elements (CB/SB) can be con-
nected to form a functional circuit to perform the desired computation. In the proposed
context-switching FPGA, there are two local copies of each LUT, CB and SB, which corre-
sponds to two configurations. In this way, when one configuration is active for compu-
tation, any other configuration can be loaded without interrupting the execution, thereby
significantly reducing the reconfiguration latency. In contrast, in conventional context-
switching FPGA, they would either require hardware resources for supporting multiple
configurations on-chip or require long serial reconfiguration time. To support run-time
reconfiguration and reduce the area cost incurred by the need of an extra copy of FPGA
primitive components, FeFET technology, due to its programmability, nonvolatility, and
compactness, is chosen in this work to implement basic programmable FPGA compo-

nents such as LUTs, CBs and SBs.
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Figure 2: The proposed dynamic context-switching FPGA architecture. (a) Primitive

FPGA components with dual configuration support. (b) Existing memory technology-

based single configuration switch implementations. (c) Proposed FeFET-based switches.

In the multi-configuration switch, we achieve dynamic reconfiguration by turning the
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pass transistors on/off to select active branch/reconfigure branch. (d) Proposed FeFET-
based LUT for dual-configuration. Basically, it consists of two single configuration LUTs

and one extra multiplexer for selecting proper configuration when needed.

In recent years, the switches in FPGA can be realized with various embedded mem-
ory technologies as the basic elements of routing elements (CBs and SBs). Fig. 2(b) presents
existing mainstream memory technology-based single configuration switches including
SRAM, spin transfer torque magnetic RAM (STI-MRAM), Flash memory, resistive RAM
(ReRAM), phase change memory (PCM) and FeFET. Due to its logic-compatibility, supe-
rior write and read performance, and excellent reliability, SRAM is the most straightfor-
ward memory to use by combining a SRAM cell with an N-type pass transistor. How-
ever, SRAM-based switches suffer from two crucial overheads. One is low area density
due to its complex cell structure; the other is high leakage power, which accounts for

60% ~ 70% of total FPGA power dissipation due to long routing tracks®*>?

. Recently,
emerging embedded nonvolatile memory technologies have been actively investigated
as promising alternatives to SRAM due to their density, energy, and performance ad-
vantages. However, each of them comes with its own challenges. For example, a Flash
memory-based switch is nonvolatile and compact™, but memory programming is slow
(~ms) and requires a high programming voltage (~10 volts). Two terminal resistive

memories, including ReRAM, PCM, and STT-MRAM, are nonvolatile and dense, but usu-

ally require a large conduction current to program the devices, consuming a significant
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write power. Additionally, the limited on/off resistance ratio (~100 for ReRAM/PCM
and ~5 for STT-MRAM) usually requires additional circuitry, such as the 1T2R structure
for ReRAM/PCM *%¢ and an even more complex supporting structure for STT-MRAM

% to realize a single switch.

In this regard, we propose the FPGA architecture which adopts FeFETs to implement
logic and routing elements. Ever since the discovery of ferroelectricity in doped HfO,,
significant progress has been made in the integration of HfO, based FeFET due to its
nonvolatility, high density, large ON/OFF ratio, and excellent CMOS-compatibility® .
In addition, switching of ferroelectric polarization is induced by an applied electric field,
rather than a large conduction current, making FeFET a highly energy-efficient non-
volatile memory*. Since the ferroelectric film is integrated in the gate stack of a Fe-
FET, when its polarization is set to point at the channel/metal gate, the FeFET thresh-
old voltage (Vty) will be programmed to the low-V 1y /high-Vy, respectively, thus re-
alizing a compact nonvolatile routing element*'. Leveraging this technology, a mixed
FeFET/CMOS switch unit (i.e., 2T-1FeFET) has been proposed as a routing element in
FPGA*, which takes advantage of but does not fully exploit FeFET. In this work, lever-
aging the intrinsic nonvolatile switch structure of FeFET, we propose a 1FeFET routing
switch for single configuration FPGA and a 2T-2FeFET routing switch for dynamic re-
configuration context-switching FPGA, as shown in Fig. 2(c), which achieve optimal area

efficiency. For the context-switching FPGA, a serial CMOS transistor is added to each

branch, which is used to cutoff the branch that is loading a new configuration to mini-
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mize the disturb to the other active branch. Fig. 2(d) shows our proposed circuit of LUT
array for dual configuration. A compact LUT cell can be efficiently implemented using
a single FeFET such that the high-Vy/low-V 1y states of FeFET stores bit '1"/’0” for the
LUT cell, respectively. Besides, as shown in Fig. 2(d), the proposed LUT can support dy-
namic reconfiguration — when the branch of configuration 1 is operating, the branch of

configuration 2 can load new configuration.

Block Design and Functional Verification

In this section, experimental verification of the proposed LUT and routing elements (CB/SB)
for context-switching FPGA is performed. For experimental demonstration, FeFET de-
vices integrated on the 28 nm high-x metal gate (HKMG) technology are tested. Fig. 3(a)
and (b) show the transmission electron microscopy (TEM) and schematic cross-section of
the device, respectively. The device features an 8 nm thick doped HfO; as the ferroelectric
layer and around 1 nm SiO; as the interlayer in the gate stack. The FeFET memory perfor-
mance is characterized by standard pulsed Ip-V g measurements after applying £4 V, 1us
write pulses on the gate. Fig. 3(c) shows a memory window about 1.2V, i.e., the Vi sep-
aration between the low-V1y and high-V1y states, which enables a large ON/OFF con-
ductance ratio. It also exhibits a well-tempered cycle-to-cycle variation. Fig. 3(d) shows
the switching dynamics of the FeFET under different pulse amplitudes and pulse widths,
which also shows a trade-off between the write speed and pulse amplitude and that it is

possible to program FeFET with sub-10ns with 4V write amplitude. It follows the clas-
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38,43 where

sic nucleation-limited switching model in the thin film poly-crystalline HfO,
domain switching is mainly limited by the nucleation process and the nucleation time fol-
lows an exponential dependence on the applied electric field. These results suggest that

HfO; based FeFET exhibits a high performance, showing great promise of this technology

in many applications including the context-switching FPGA in this work.

Fig. 3(e) and (f) show the operation principle of our proposed LUT cells that store a
bit “1” and '0’, respectively. Each cell consists of one single FeFET and one PMOS transis-
tor, where the PMOS is shared among all the cells and is part of the sense amplifier used
to convert the read current to logic voltage levels. The bit "1” and ‘0" is stored by program-
ming the FeFET into the high-V 1y and low-V 1y state, respectively. Then in the LUT read
mode, the stored bit can be read by asserting appropriate read voltage, Vrgap, to the gate
terminal of the FeFET, as shown in Fig. 3(e). Due to the large ON/OFF resistance ratio of
FeFET at Vrgap, the output voltage will be close to Vpp and ground for bit "1” and ’0’, re-
spectively. This is achieved by choosing an appropriate PMOS gate bias (Vg) such that its
resistance is between the FeFET high-V 1y and low-V 1y states, thereby setting the output
voltage rail-to-rail. Fig. 3(g) demonstrates the main structure of the single configuration
LUT integrated with 2k FeFET-based bitcells (Cell 0"/ Cell '1"), different logic functions
can be successfully achieved by applying different combinations of select signals. In this
structure, a sense amplifier composed of one pull-up PMOS transistor and two inverters
is used for converting FeFET read current to voltage and amplifying the output voltage to

full swing. The LUT cell operation is then verified in experiment using the setup shown
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in Fig. 3(h), which includes the major components in Fig. 3(g). The operation waveforms
are presented in Fig. 3(i), which shows the write and read phases of the LUT cell. Af-
ter programming the FeFET into high-V1y/ low-V1y states using -4 V/+4 V, 1us write
pulse, the output voltage shows a logic high and low, respectively. This verifies the suc-
cessful cell operation, but due to the discrete experimental setup, performance is limited
by the parasitics. In order to predict the fully-integrated FeFET LUT performance, SPICE

simulations using a calibrated FeFET model*

and 45 nm Predictive Technology Model
for logic transistor (PTM*) are performed. Supplementary Fig. S2 shows the simulated
waveform, indicating that for a 6-input LUT cell, the read delay is 124.3ps and consumes
13.1 yW power. In the subsequent section, FeFET based primitive components, includ-

ing LUTs, CBs, and SBs, are also compared with other technology implementations using

consistent SPICE simulations, as will be studied in Fig.5.
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cross section. (c-d) Ip—V; characteristics for FeFET measured after +4 V, 1 us write pulses
and the switching dynamics of FeFET under different pulse amplitudes and pulse widths.
(e-f) Operations of the LUT cell for storage with bit ‘0’/’1” by exploiting the dynamic
LVT/HVT programming capability. (g) Proposed k-bit LUT. (h) The experimental setup
of functional verification of the LUT cell operation. (i) Experimental waveforms of pro-

posed LUT cells in (e-f). (j) The circuitry of a LUT array for multiple configuraitons.

To support dynamic reconfiguration, two LUTs forming an array are designed and
an additional multiplexer is used to select which configuration should be active in current
operating period, as shown in Fig. 3(j). Programming in a bulk planar single FeFET array
has been extensively investigated***’. The applicable programming schemes depend on
the number of accessible terminals during memory write. In the proposed FPGA archi-
tecture, the source/drain terminals are not simultaneously accessible from outside, which
limits the possibility of applying write schemes that need to apply the source/drain volt-
ages. In this case, a convenient solution is shown in Fig. 3(j), where the gate and the body
terminals are used for programming. The word line (WL) is shared among all FeFETs in
a configuration block and the body is shared across different configuration blocks. Two
step programming will then be performed where all the FeFETs in a configuration are set
to the low-V'1y states first by applying a positive write voltage (i.e., Vy) on the WL and
keep all the other terminals grounded. Then those FeFETs need to be in the high-Vy

states are applied with a negative gate-to-body voltage (i.e., -Vw). To avoid write dis-
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turb to those low-Vy states FeFETs during the second step, the standard inhibition bias

scheme (e.g., Vw/2) can be applied, which is verified in Supplementary Fig.S3
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Figure 4: Experimental verification of the multi-configuration CB operation. (a) The

structure of one 2x2 CB array. (b) By applying different read gate voltages, the swap
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between configurations can be achieved. (c) An example waveform applied to set the
branch 1/branch 2 to be at the low-V11/high-VTp states respectively without interrupt-
ing normal operation. (d) The circuitry of one CB test unit. (e) The experimental transient
waveforms of run-time context configuration and switching repeated for 3 cycles. (f)/(g)
The zoomed-in programming waveform for branch 1/branch 2 in tests, respectively. The

zoomed-in programming waveform is shown due to its small write pulse width.

Next the functionality of the routing elements is verified, as shown in Fig.4. Using
CB as an example, Fig.4(a) shows the array structure, where bit line (BL) and source line
(SL) route the actual signal, and WL and the column-wise body contact are used to pro-
gram FeFETs. As introduced in Fig.2(c), to support the run-time reconfiguration of one
branch without interrupting the normal operation of the other branch, a serial transistor
is added to each branch and is off/on during configuration loading/execution, respec-
tively. The swap between configurations can be easily and swiftly conducted by applying
corresponding read gate biases, as shown in Fig.4(b), such that when one configuration is
de-activated, the FeFET will be cut-off, irrespective of its states. Fig.4(c) shows an exam-
ple waveform applied on a testing unit (Fig.4(d)), where the branch 1 is first configured to
be the low-V 1y state while branch 2 is executed and then branch 1 is activated while the
branch 2 is configured to the high-Vy state using the two-step programming. Fig.4(e)
shows the experimental results applied the voltage sequence shown in Fig.4(c) for three

repeated cycles. The zoomed-in programming waveforms for branch 1 and branch 2 are

20



shown in Fig.2(f) and (g), respectively. Due to the configurations used in this testing sce-
nario, where the branch 1/branch 2 is in the low-V 111 /high-V1y states respectively, the
output signal will therefore switch between 0.7 V (i.e., when branch 1 is active) and 0 V
(i.e., when branch 2 is active). The experimental results therefore confirm successful op-
erations. Supplementary Fig. S4-Fig. S6 show experimental results of the other three con-
figuration combinations of two branches, which further verifies the successful run-time
reconfiguration operation. Similar to the LUT cell case, SPICE simulations are conducted
to predict the speed of a fully integrated CB, where the simulated transient waveform of

proposed multi-configuration CB is shown in Supplementary Fig. S7.

Evaluation and Application Case Study

To evaluate the feasibility and performance of the proposed FeFET-based context-switching
FPGA architecture, simulations are performed and a comprehensive comparison with
other relevant works based on different memory technologies is shown in terms of area,
delay and power consumption. Moreover, at the system level, the capability of the pro-
posed architecture to successfully achieve dynamic reconfiguration is demonstrated and
the evaluation results show that the design presents a significant power reduction and
area efficiency improvement with slightly increased critical path delay as the trade-off.
To estimate the area of FeFET-based CB and LUT cell and compare with other works, the
layouts are drawn and the area is calculated using lambda design rules in Supplementary

Fig,. S8. All relevant area numbers are shown in Fig. 5(a). Our layout analysis shows that
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the proposed CB and LUT cell are more compact compared to SRAM CBs and LUT cells.
For example, the proposed FeFET-based single configuration CB and LUT cell, occupy
area that is only 8.5% and 18.5% of their respective SRAM-based counterparts while the
prior FeFET-based CB and LUT cell* require 36.4% and 36.2% of that area, respectively.
Even the proposed multi-configuration FeFET CB and LUT cell area is only 28.9% and
37.0% of that of the SRAM-based single configuration design. Therefore, the proposed
design shows a significant area reduction compared to SRAM-based design and previous

FeFET-based design*?.

Fig. 5(b) summarizes the basic structures of 6-input LUT/CB/SB based on exist-
ing memory technologies (SRAM, STI-MRAM, RRAM and FeFET), and compares their
corresponding read delay and read power consumption. All circuits are simulated with
HSPICE. The 45nm Predictive Technology Model® is adopted for all MOSFETs in this
work and a calibrated FeFET model* is used for the proposed design. For resistive mem-
ories, the corresponding low resistance and high resitance levels are used for simulation*%.
According to the simulation results (Fig. 5(b)), we observe that for a 6-input LUT, the
proposed single configuration LUT shows the smallest read power consumption, which
is 13.1 uW, and for multiple configurations, this number increases slightly but still less
than the power consumed by MT]J-based single configuration LUT. This is due to the
large on/off ratio of FeFET obviating the need for a high read current to differentiate its

two states, unlike MT] designs. As for the read delay, RRAM-based single configura-

tion LUT has the longest latency. The proposed FeFET-based single configuration LUT
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shows the second best latency in all considered nonvolatile LUTs. Besides, the delay
of the proposed FeFET-based multi-configuration LUT is less than that of RRAM-based
single configuration LUT even though considering one extra multiplexer for selecting
configurations. The switching current through the sense amplifier for FeFET is larger
than RRAM due to its higher on/off ratio (lower Rop), resulting in less LUT delay than
RRAM. For CBs, our 1FeFET single configuration CB and 2T-2FeFET multi-configuration
CB show much less power consumption during operation, which consume ~95% /~85%
less power than the SRAM-based CB. For SBs, both FeFET-based single configuration SB
and multi-configuration SB show much less power consumption than others since our
circuit contains less transistors. However, the delay of 1FeFET CB is around 2x times of
that of a SRAM-based CB. The delay of FeFET-based SB is worst among different memory
technology based designs. That is becuause FeFET’s transmission speed is not so high as
a conventional MOSFET, resulting in poorer performance as CB. In conclusion, the pro-
posed FeFET-based designs (CB/SB) show significant advantages on power consumption
over SRAM/STT-MRAM/RRAM based designs but with the slight penalty in delay. Note
that the penalty in the routing elements’ (CB/SB) delay does not necessarily mean that
the overall system will be impacted as the routing delay may be a small portion of the

overall system delay, which is investigated below (Fig. 5(c)).
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Figure 5: Area comparison and simulation results. (a) Area impact of FeFET LUT cells

(storage) and CBs over SRAM based structures. (b) Delay and Power comparison of main
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components of FPGA based on different memory technologies. (c) Critical path delay of

different memory technology-based FPGA designs.

In order to investigate the impact of the primitive (i.e., LUT/SB/CB) delay on the
latency of the whole FPGA, the critical path delay is studied with the verilog-to-routing
(VTR) tool®. The VTR tool is a popular open source CAD tool for FPGA architecture
development and evaluation. For fair comparison, all the SRAM-/RRAM-/STT-MRAM-
/FeFET-based FPGAs employ a well-optimized and commercial FPGA architecture using
45nm technology in VTR. To get the critical path delay of different memory technology
based FPGAs, 7 circuitry benchmarks (stereovision0, blob_merger, sha, spree, boundtop,
diffeq2, and or1200) included in VTR are conducted®°!. These represent popular appli-
cations in diverse domains, such as image processing, math, cryptography and computer
vision. Fig. 5(c) compares the critical path delay measured from SRAM-/RRAM-/STT-
MRAM-/FeFET-based FPGAs. Compared with SRAM-based FPGA, the FeFET-based
single configuration FPGA presents 8.6% reduction in the critical path delay on average,
and it is also better than RRAM-based architecture. However, the proposed FeFET-based
multi-configuration FPGA shows 9.6% increment in the critical path delay compared to
SRAM-based FPGA. The simulation confirms that the delay of LUTs is dominant in the
overall delay of the entire FPGA, therefore explaining the aforementioned performance

of these FPGAs.
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In addition, to show the feasibility of implementing the whole design in deep learn-
ing applications, three case studies under different scenarios are investigated. The first
case is presented to show the benefit provided by dynamic reconfiguration in image clas-
sification. In the evaluation, two approaches of inference are considered — static infer-
ence and dynamic inference. For static inference, the input image is classified by the
generalist classifier. However, for dynamic inference, the input image is first classified
by the superclass classifier to identify the superclass. If the superclass is supported by
the specialist subclass classifier network, then the configuration of the subclass classifier
would be switched and executed for enhanced accuracy. Otherwise, a generalist classi-
tier is invoked to complete the subclass identification. The whole workflow is shown
in Fig. 6(a). Fig. 6(b) shows that dynamic inference for super class classification im-
proves the accuracy by up to 3.0% over static inference. Only context-switching FPGA
can efficiently realize dynamic inference. In last two cases, the feasibility and advan-
tages of the proposed design over the conventional FPGA design are evaluated in terms
of timing when considering various application scenarios. Basically, three neural net-
works (ResNet50, CNV, and MobileNetv1) are deployed into FPGA through Xilinx Vitis

Al platform®?

. In the second case study, a case scenario that needs to switch between
two neural networks frequently (Fig. 6(c)) is considered. In conventional FPGA, it is nec-
essary to load new configurations before switching contexts, which is time consuming.

However, for this context-switching design, our approach can preload two configura-

tions, and then freely switch between them without the reconfiguration latency. The
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switch time of the proposed design is less than 1 ns which is much smaller than re-
configuration time and the proposed design shows significant speed up (from 39.0% to
97.5% (Fig. 6(d))). The last case study is related to dynamic reconfiguration. It is as-
sumed that there are three different neural networks to implement and switch between.
Thus, in this case, there would be six situations corresponding to six combinations of
these three networks (ResNet50—CNV—MobileNetv1, ResNet50—MobileNetvl—CNYV,
CNV—ResNet50—MobileNetvl, CNV—MobileNetvl —ResNet50, MobileNetvl —ResN-
et50—CNYV, and MobileNetvl -CNV—ResNet50). As is well-known, latency is one of
the most critical criteria when evaluating a neural network accelerator. Hence, for all
these six situations, the total consumed time, including both the execution time and the
reconfiguration time for each network, is compared under two different conditions — one
is in conventional FPGA, the other is in the proposed architecture with dynamic recon-
tiguration. As shown in Fig. 6(e), as the capability of dynamic reconfiguration means
that the architecture is able to operate and reconfigure simultaneously, some parts of or
even the complete reconfiguration time of the following network can be overlapped and
hidden by the execution time of current network, which helps to reduce the total latency.
As shown in Fig. 6(f), the results demonstrate that the proposed design with dynamic re-
configuration offers time saving for all these situations which varies from 2.4% to 37.4%.
One thing should be noticed is that the maximum time saving of the ideal case would be
50%, in which the execution time of the first network is equal to the configuration time

of the second network. The maximum improvement of the proposed design (37.4%) is
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very close to this number. Additionally, the proposed FPGA architecture is adaptive to

implement more deep learning frameworks, and the relevant improvements and benefits

are investigated in Supplementary Fig. S9. Above all, the case studies demonstrate that

the proposed FeFET-based context-switching FPGA design shows the best adaptability in

various types of deep learning applications.
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Figure 6: Application case studies of the proposed multi-configuration FPGA for dif-

ferent application scenarios. (a) Image classification workflow. (b) Dynamic inference
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for image classification improves the accuracy. (c) A diagram shows the experimental
setup of the second case study: our design preloads two configurations in the FPGA, and
then switch between them as needed. (d) Compared to conventional FPGA, the capability
of switching between 2 configurations of our design yields significant time saving vary-
ing from 39.0% to 97.5% in our case (in an ideal case, the maximum time saving would
be 100%). (e) A diagram shows the experimental setup of the third case study: the pro-
posed FPGA implements and performs three different neural networks using dynamic
reconfiguration which achieves operating and reconfiguring simultaneously. (f) Switch-
ing between 3 neural networks with dynamic reconfiguration offers time saving varying
from 2.4% to 37.4% compared to traditional FPGA (in an ideal case, the time saving would

be 50%).

Conclusion

In summary, we propose a novel FeFET-based context-switching FPGA architecture with
the capability of dynamic reconfiguration, which can mitigate the tradeoff in conven-
tional FPGA between the chip area cost and reconfiguration latency. In addition, we
experimentally verify the functionality of the primitive blocks of the proposed FPGA.
The simulation results reveal that by leveraging FeFETs, the proposed primitives of the
FPGA show huge area and power reduction compared to conventional SRAM-based de-

sign. Moreover, three representative application scenarios are investigated and studied.
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The evaluation results show the proposed context-switching FPGA supporting dynamic
reconfiguration offers significant time saving in these application scenarios. Our design
provides an efficient solution to bridge the gap and makes FPGA more competitive in

accelerating complex deep learning applications.

Data availability

The data that support the plots within this paper and other findings of this study are

available from the corresponding author on reasonable request.
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Supplementary Materials

Device Fabrication

In this paper, the fabricated ferroelectric field effect transistor (FeFET) features a poly-
crystalline Si/TiN/doped HfO, /SiO, /p-Si gate stack. The devices were fabricated using
a 28nm node gate-first high-x metal gate CMOS process on 300 mm silicon wafers. De-
tailed information can be found in 3. The ferroelectric gate stack process module starts
with growth of a thin SiO; based interfacial layer, followed by the deposition of the doped
HfO; film. A TiN metal gate electrode was deposited using physical vapor deposition
(PVD), on top of which the poly-Si gate electrode is deposited. The source and drain n+
regions were obtained by phosphorous ion implantation, which were then activated by
a rapid thermal annealing (RTA) at approximately 1000 °C. This step also results in the
formation of the ferroelectric orthorhombic phase within the doped HfO,. For all the de-
vices electrically characterized, they all have the same gate length and width dimensions

of 0.5um x 0.5um, respectively.

Electrical Characterization

The experimental verification was performed with a Keithley 4200-SCS Semiconductor
Characterization System (Keithley system), a Tektronix TDS 2012B Two Channel Digital
Storage Oscilloscope (oscilloscope), and a Keysight 81150A Pulse Function Arbitrary Gen-
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erator (waveform generator). Two 4225-PMUs (pulse measurement units) were utilized
to generate proper waveforms. The FeFETs used in experimental verification were con-
nected with devices (inverters, p-type MOSFET, and/or n-type MOSFET) externally on
a breadboard. In the experimental verification of the LUT cell operation, Vpp was given
by the waveform generator. Output pulses were captured by the oscilloscope. Write and
read operations were provided by the Keithley system. In the experimental verification of
the multi-configuration CB operation, input voltage was given by the waveform genera-
tor. Output pulses were captured by the oscilloscope. WL and EN signals were generated
by the Keithley system. Three repeated cycles were performed for each configuration.
State initialization (+4V or -4V to both WL, and WL, with pulse width 1us) was added at

the beginning of the waveforms in order to generate a desired output in the first cycle.
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Potential Applications
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Figure S1: Two potential applications of the proposed FeFET-based context-switching
FPGA architecture. (a) Our design can be used in image classification and help to re-
duces processing time dramatically for processing a large number of images. (b) For
some large and complex neural networks which can’t completely fit in general FPGA, the
proposed FeFET-based context-switching FPGA architecture provides reliable solutions

through dynamic reconfiguration.

In addition to the Super-Sub network application mentioned before, there are still
a large number of deep learning applications which the proposed FeFET-based context-

switching FPGA architecture can be suitable for or provide reliable solutions. In Fig. S1,
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two potential application situations are presented. One is a derivative situation of the
Super-Sub network application. When there are a large number of images needed to be
classified, conventional FPGA without dynamic reconfiguration would inevitably require
a extremely long time to process all these images due to the serial process mechanism.
However, for the context-switching FPGA enabling dynamic reconfiguration, the pro-
cessing time can be reduced dramatically since the proposed design supports multiple
configurations and enables the capability of reconfiguring and executing simultaneously.
More specifically, as shown in Fig. S1(a), the proposed design only requires eight cycles
to finish the task of image classification of four images while conventional FPGA would

require more than sixteen cycles in the same situation.

The other potential application situation is for those large and complex neural net-
work implementation. In recent years, with the increasing demand of massive data and
complex computation, network models are becoming more and more complex and con-
tain more layers, which makes it much more difficult to implement them in hardware.
Aiming at alleviating this issue, the proposed FPGA architecture provides reliable so-
lutions through dynamic reconfiguration. Basically, part of the target network can be
implemented in firstly, and then the rest of layers can be loaded without interruption by
dynamic reconfiguration. In this way, those large network models can be successfully fit

in a normal-size FPGA.
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Simulation Details of LUT

Fig. S52(a) and (b) illustrate the simulation waveform of the select signal and the output
signal during read stage in the 6-input FeFET LUT, respectively. All the simulations are
done in HSPICE. As shown in Fig. S2(a), a pulse signal (1 V) is given to control the multi-
plexer and select LUT cells. During the read stage, different LUT cells would be selected
and the configuration bits stored in would be passed to Output as Fig. S2(b) presents.

According to the waveform and measurement, the average read delay is around 124.3 ps.
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Figure S2: Simulation waveform of the 6-input FeFET LUT. (a) The simulation wave-
form of select signal in proposed 6-input LUT. (b) The simulation waveform of output

signal in proposed 6-input LUT. The average read delay is around 124 ps.
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Two-Step Programming and Write Disturb of FeFETs

Fig.S3 illustrates the bias conditions for one configuration in the FeFET LUT during the
second step of the two-step programming. After the first step, all the FeFETs have been
programmed to the low-Vty state. Then depending on the stored information, those
FeFETs need to be at the high-V1y state will be applied an -4 V across the gate and the
body. For those FeFETs that need to stay at the low-V1 state, inhibition biases are applied
to the body such that the gate-to-body voltage drop is only -2V, not enough to disturb

state. Such a scheme has been successfully verified in the experiment.
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Figure S3: Illustrations of bias conditions for the second step of the two-step program-
ming and the Ip-Vg characteristics of the low-Vy and high-Vy states and the half-

selected cells (in blue). W/L=0.5um/0.5um.
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Multi-Configuration CB Validation

In addition to the one combination shown in the Fig.4, where the branch 1/branch 2 is in
the low-V 11 /high-V 11 states respectively, the other three combinations are also verified
experimentally. Fig.54 shows the results when the branch 1/branch 2 are both in the

high-VTy states. In this case, no signal propagation happens, so the output remains low.
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Figure S4: Experimental verification of the multi-configuration CB operation when
both branches are in the high-Vry states. (a) The circuitry of one CB test unit. (b) The
experimental transient waveforms of run-time context configuration and switching re-
peated for 3 cycles. (c)/(d) The zoomed-in programming waveform for branch 1/branch

2 to the high-Vy state, respectively.
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Fig.S5 shows the verification when the branch 1/branch 2 are both in the low-V 1y
states. In this case, except after the initialization, the output should remain high due to

the signal transmission, as also shown in the experimental results.
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Figure S5: Experimental verification of the multi-configuration CB operation when
both branches are in the low-Vty states. (a) The circuitry of one CB test unit. (b) The
experimental transient waveforms of run-time context configuration and switching re-
peated for 3 cycles. (c)/(d) The zoomed-in programming waveform for branch 1/branch

2 to the low-V'1y state, respectively.
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Fig.S6 shows the verification when the branch 1/branch 2 are in the high-V 111 /low-
Vth states, respectively. In this case, the output will switch between high and low and it
is high when the branch 2 is active. The first cycle is an exception because both branches

are initialized to the high-Vy states to begin with.
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Figure S6: Experimental verification of the multi-configuration CB operation when
branch 1/branch 2 are in the high-Vty/low-Vy states, respectively. (a) The circuitry of
one CB test unit. (b) The experimental transient waveforms of run-time context configura-
tion and switching repeated for 3 cycles. (c)/(d) The zoomed-in programming waveform

for branch 1/branch 2 to the high-V1/low-V 1y state, respectively.
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Simulation Details of Multi-Configuration CB

Fig. S7 illustrates the simulation waveform of the input signal and the output signal in
the multi-configuration FeFET CB, respectively. All the simulations are done in HSPICE.
In the simulation, a pulse input signal (0.8 V) is asserted to pass through the FeFET CB
(Fig. S7(a)). On the output terminal, the same pulse would be detected with the delay

(Fig. S7(b)), which is around 7.8 ps on average.
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Figure S7: Simulation waveform of the multi-configuration FeFET CB. (a) The simula-
tion waveform of input signal in proposed multi-configuration FeFET CB. (b) The simula-
tion waveform of output signal in proposed multi-configuration FeFET CB. The average

read delay is around 7.8 ps.
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Layout

Fig. S8(a) shows the layout of a single LUT cell. The cell has 10 A width and 18 A length.
The area is calculated as 180 A2. Fig. S8(b) shows the layout of a single cell of CB sup-
porting dynamic reconfiguration. The cell has 15 A width and 25 A length. The area is

calculated as 375 A2. Note, all the layouts follow the lambda design rules.
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Figure S8: Layout. (a) Layout of a single LUT cell. (b) Layout of a cell of multi-

configuration CB.
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Case Study

In this section, we will introduce more cases of implementing our FPGA design into deep

learning applications and show the benefits of our design.

The first case is regarding to dynamic configuration switching in DNN to show the
performance improvement provided by dynamic reconfiguration in deep learning appli-
cations. Basically, there are two systems used in our case. As illustrated in Fig. S9(a),
in System 1, we deploy a Xilinx DPU B1152 core with softmax for accelerating an entire
neural network. However, as a comparison, System 2 consists of a Xilinx DPU B2304
core without softmax for accelerating all but the last layer of a neural network, and a Xil-
inx DPU B1152 core with softmax for accelerating the last layer of the neural network and
softmax layer. The simulation results show that System 2 which employs dynamic switch-

ing of layer resources yields more throughput (~1.7x) in DNN applications (Fig. S9(b)).

The other case is shown in Fig. S9(c). Basically, in this case study we want to in-
vestigate the impact of dynamic reconfiguration on performance of FPGA in deep neu-
ral network domains. Hence, we implement 3 neural networks (ResNet50, CNV, and
MobileNetv1) into Xilinx Alveo U250 card via Xilinx Vitis AI’?. To get the reconfigu-
ration time of each network, we use the formula that the size of the bitstream over the
port throughput to calculate the reconfiguration time. And we assume the maximum
bandwidth is performed with the reconfiguration ports ICAP) which is 3.2 Gb/s*. In

addition, we run these built network models in Vitis Al and obtain the estimated latency
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reports which are the execution time of different networks in U250 board. In Fig. S9(c), we
do simulation for adding another condition as a supplementary of the case study shown
in Fig. 6(c)&(d) which is much more common in practical applications. In some applica-
tions performing multiple networks, we should firstly patch some of the networks before
switching to another. The reason is that the former networks need to learn from these
frames such that we can build a better network for current condition. In this situation,
the feature of run-time reconfiguration of our design is able to serve these kinds of ap-
plications perfectly. In Fig. S9(c), we show another time saving under the condition that
executes the first network 5 times, then switch to the second one. The total time saving
decreases a bit as it is expected, but still remains around 88.42% at maximum. In con-
clusion, our architecture which offers the capability of dynamic reconfiguration provides

significant benefit on latency for various deep learning applications.
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Figure S9: Case study. (a) In our case study of dynamically switching layer resources

for DNN, 2 systems are used for showing the benefit brought by dynamically switching
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layer resources. System 1: a Xilinx DPU B1152 core with softmax for accelerating an entire
neural network; System 2: a Xilinx DPU B2304 core without softmax for accelerating all
but the last layer of a neural network, and a Xilinx DPU B1152 core with softmax for
accelerating the last layer of the neural network and softmax layer. (b) Dynamic switching
of layer resources in FPGA yields more throughput in DNN applications. (c) For some
applications that need to be trained more, our design still shows significant time saving

varying from 11.32% to 88.42%.
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