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Abstraci—In-memory computing (IMC) has been pro-
posed to overcome the von Neumann bottleneck in data-
intensive applications. However, existing IMC solutions
could not achieve both high parallelism and high flexibility,
which limits their application in more general scenarios:
As a highly parallel IMC design, the functionality of a MAC
crossbar is limited to the matrix-vector multiplication; An-
other IMC method of logic-in-memory (LiM) is more flexible
in supporting different logic functions, but has low par-
allelism. To improve the LiM parallelism, we are inspired
by investigating how the single-instruction, multiple-data
(SIMD) instruction set in conventional CPU could poten-
tially help to expand the number of LiM operands in one
cycle. The biggest challenge is the inefficiency in handling
non-continuous data in parallel due to the SIMD limitation
of (i) continuous address, (ii) limited cache bandwidth, and
(iii) large full-resolution parallel computing overheads. This
article presents GRAPHIC, the first reported in-memory
SIMD architecture that solves the parallelism and irregular
data access challenges in applying SIMD to LiM. GRAPHIC
exploits content-addressable memory (CAM) and row-wise-
accessible SRAM. By providing the in-situ, full-parallelism,
and low-overhead operations of address search, cache
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read-compute-and-update, GRAPHIC accomplishes high-
efficiency gather and aggregation with high parallelism,
high energy efficiency, low latency, and low area overheads.
Experiments in both continuous data access and irregular
data pattern applications show an average speedup of 5x
over iso-area AVX-like LiM, and 3-5x over the emerging
CAM-based accelerators of CAPE and GaaS-X in advanced
techniques.

Index Terms—Associative memory, single instruction
multiple data, FAST SRAM, in-memory computing, logic in
memory.

[. INTRODUCTION

N-MEMORY computing (IMC) attempts to improve the

performance and energy efficiency by reducing the data
movement in the conventional von Neumann architecture [1],
[2]. While the IMC concept has been proposed decades ago,
a majority of the IMC efforts today try to apply IMC in two
categories of computing [3]: logic operations [4], [5], [6], [ 7], [8]
and MAC operations [9], [10], [11], [12], [13]. Logic in mem-
ory (LiM) design aims at more general-purpose applications.
Typically, two or three rows will be activated simultaneously on
bitlines. The output results of the logic operation are obtained by
peripheral circuits that support flexible algorithms. Differently,
MAC-oriented design serves as a matrix-vector multiplication
(MVM) accelerator. The outputs are usually obtained by com-
parators [14], ADCs [15], or adder-trees [16], [17], which can
deal with dozens (or even far more) rows concurrently. Unfortu-
nately, it is challenging to achieve both flexible logic operations
and high parallelism. The MAC-oriented design is limited to
bit-wise accumulation, making it impossible to perform more
computation tasks. Meanwhile, it is difficult to apply LiM
computing to more rows in an array at a time, which limits the
inherent parallelism of LiM.

Therefore, there is a critical question: how fo enable both
flexibility and parallelism in IMC?

Notably, single instruction, multiple data (SIMD) [18], [19]
as an instruction set architecture (ISA) could inspire the LiM de-
sign to improve parallelism by extending the access bandwidth.
However, it faces several challenges, as shown in Fig. 1(a).
First, the speedup from expanding bandwidth requires that the
operands must be contiguous in the memory, which is not
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Fig. 1. Comparison between (a) conventional single-instruction
multiple-data (SIMD) in CPU, and (b) SIMD in the proposed GRAPHIC
cache.

applicable to irregular parallel data, e.g., graph processing [20],
[21], [22]. Second, the access bandwidth is limited by the
peripheral circuits. Due to the on-chip memory access interface,
the parallelism improvement from higher access bandwidth is
limited. Finally, due to the increase in the number of operands,
massive full-precision computing is limited by the power wall
and area efficiency bottleneck.

In this paper, we propose GRAPHIC, an in-memory SIMD
architecture, to overcome the challenges in flexible and paral-
lel computing with irregular data. As illustrated in Fig. 1(b),
GRAPHIC consists of content-addressable memory (CAM) [7],
[23] and a recently proposed fully-concurrent row-wise-access
SRAM, namely the FAST SRAM [24]. There are a few intriguing
new features of GRAPHIC. First, the data matching mechanism
of CAM provides an opportunity for parallel computation of
discontinuous data in the memory. Second, the in situ comput-
ing method supported by FAST SRAM introduces an efficient
way of parallel computing without data readout. Third, the
parallel computing architecture provides high-area-efficiency
processing in the memory. In addition to the regular vector
operations in the SIMD instruction set, GRAPHIC also supports
parallel aggregation in the whole memory, showing more advan-
tages in certain applications, such as single-source shortest path
(SSSP).

The key contributions of this paper include:

® GRAPHIC, a versatile SIMD accelerator that efficiently
enables high parallel in-situ IMC with the support of
discontinuous data access.

® A compiling process that converts the serial execution
codes into a parallel operation stream in the proposed
GRAPHIC.

e Demonstration of mapping of two different data access
types in graph processing and image processing onto
GRAPHIC.

e Full-stack application performance evaluations of
GRAPHIC, in comparison with the SIMD ISA in
CPU and recent CAM-based accelerators [25][26], in
which GRAPHIC shows 6x and 4x performance over
the CPU SIMD with irregular and continuous data,

. Vector SIMD Supported SIMD Unfriendly
al0] + bo] SN
[bfo] [ b[1] [ bf2] [ bf3] | an —bon oy

Memory Address a[2] Xb[2] pasepessgeepeasy
EEEEEEEE a3 + b3l

AR
CONGOCIAEY
\
SIMD Controller

(a) SIMD Architecture

Irregu\ar:l»Jnn‘friendly

Regular: Realignment
(b) SIMD Programming

Fig. 2. Basics of SIMD (a) architecture, and (b) programming.

respectively, along with a 3x-5x average speedup over
prior custom accelerator designs.

In the rest of this paper, Section II reviews the background
of SIMD and CAM-based accelerators. Section III shows the
details of the proposed GRAPHIC based on CAM and FAST
SRAM. Section IV presents the method of deploying applica-
tions on GRAPHIC. Section V evaluates the proposed designs
from the circuit level to the application level. Section VI dis-
cusses the overhead and future work. Section VII concludes this
work.

Il. BACKGROUND

This section briefly introduces the basics of SIMD program-
ming. The building blocks of GRAPHIC, including content-
addressable memory (CAM) and fully-concurrent access SRAM
(FAST SRAM) are also introduced.

A. SIMD Programming

The SIMD ISA, a compatible parallel computing technique,
performs the same operation in multiple data simultaneously.
Generally, SIMD in modern CPU is designed with respect to
vector computation. As shown in Fig. 2(a), SIMD instructions
still follow the von Neumann architecture. Taking SSE-128
instructions as an example, 2 sets of four 32-bit data as vectors
stored continuously in the memory are loaded into registers
of corresponding processing units (PUs). After executing the
corresponding calculation in four 32-bit width arithmetic logic
units, the results are written back to the data memory. Thus, it
achieves up to 4x speedup compared to a single-core CPU.

Benefiting from vector computing in parallel, the modern
CPU with SIMD aims to improve the performance of multimedia
processing. However, there is not always such performance
improvement by SIMD. It depends on how the data are orga-
nized in the memory and which algorithm is performed. As
shown in Fig. 2(b), SIMD excels in processing homogeneous
data, but it is not friendly to sparse, heterogeneous computing.
As a typical application with regular data distribution, image
processing can get a high-performance boost from SIMD, with
data realignment. However, graph, as an efficient data structure
to describe relationships in many emerging applications such
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as social, biological, and information systems, faces difficulty
when applying SIMD due to the irregular data access.

B. Content-Addressable Memory (CAM) Based
Accelerator

There is a challenge in simultaneous access to irregular data
for high-concurrency computing. Recently, our work GaaS-X
[26] reveals a chance to utilize CAM for irregular access. Single-
cell and array structures of typical SRAM-based CAM are shown
inFig. 3(a). During a search in the CAM, the search vector and its
inverted value are fed into SL and SLB, respectively. The match
line (ML) will be discharged if there is one or more mismatch
cell loaded on it. A priority encoder is used to output the address
of the first row that matches the input.

Based on the functionality of matching, GaaS-X combines the
CAM with MAC-oriented CiM to perform accumulation with
certain selected rows in the CiM crossbar, as shown in Fig. 3(b).
Various graph algorithms are implemented, such as PageR-
ank, SSSP, BFS, and collaborative filtering. GaaS-X relieves
the bottleneck of sparse-to-dense conversion to perform graph
computing in CiM. However, the limitation of GaaS-X is also
obvious. Only MAC calculations can be performed by the CiM.
Although the special function unit (SFU) can perform some
other operations, the overall area efficiency will be extremely
low due to the redundant ADCs.

The content-addressable parallel processing paradigm
(CAPP) [27] and associative computing (ASC) [28], [29] also
provide a chance for in-situ computing in memory by CAM.
A full-stack design based on the associative computing named
CAPE [25] was proposed recently as a SIMD architecture,
as shown in Fig. 3(c). The atomic operation of CAPE is to
match and update the corresponding value in CAM columns.
Based on this operator, bit-serial algorithms can be performed
on CAPE. During the bit-serial calculation, only 1-bit of data
will be computed in one cycle. In each step, CAPE searches for
possible cases and updates the bits at the matched positions to
the data obtained from the arithmetic unit. After a number of
cycles, single full-precision computing could be completed for
the entire array. Though CAPE could achieve high-performance
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improvement in densely formatted data computing, the difficulty
of CAPE is long-term cycling. Using addition as an example,
CAPE consumes 8x more time compared to the typical bit-serial
algorithm. The performance deteriorates further with sparse data
due to the parallelism decrease.

C. Fully-Concurrent Access SRAM (FAST SRAM)

Recently, a fully-concurrent access SRAM (FAST SRAM)
[24] for the bit-serial algorithm was proposed and experimen-
tally verified to perform high-parallel in-situ computing, as
shown in Fig. 4.

FAST SRAM behaves as a memory that can cyclically shift
independently in rows. The basic cell structure is shown in
Fig. 4(a). Based on the conventional 6T SRAM, the FAST
SRAM inserts two switches in the inverter ring controlled by P5
and P»4. Meanwhile, each two adjacent SRAMs are connected
with a switch controlled by P;. It is noted that the inverter ring
can be broken during a write, which makes the single-ended read
and write possible. This 10T FAST SRAM offers dual-port read
and write functionality, i.e., simultaneous read and written in
one cycle.

The fully concurrent shift operation steps of FAST SRAM are
shown in Fig. 4(b). In phase 1, the inverter ring is broken and
the inter-cell switches controlled by P; are closed to transfer the
data between two adjacent SRAMs. In phase 2 and phase 3, the
inter-cell switches are turned off and the switches controlled by
P2 and Py will be turned on in sequence to recover the inverter
ring and maintain the data. This leads to a 1-bit right shift in
a single cycle. Notably, P5 and P; are generated by a 2-phase
non-overlapping clock, and Pog is set to Py with a slight delay
to provide sufficient time to set up.

As shown in Fig. 4(c), the MSB and LSB are connected with a
1-bit processing unit (PU) to form a bit-serial computing unit. A
folded interleaving layout connection is adopted to minimize the
critical path delay of the interconnections between FAST SRAM
cells. With this method, the longest interconnect line shrinks to
at most two SRAM cells instead of all SRAM cells in the row.
The arithmetic units of two adjacent rows of FAST SRAM can
reuse the same PU. This allows the critical path of the binary
operators to be minimized.
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I1l. GRAPHIC ARCHITECTURE

This section presents the proposed in-memory SIMD ac-
celerator, GRAPHIC. To understand the support of full-array-
parallel data processing, this section will introduce the overall
GRAPHIC architecture, the merge operation, and the aggrega-
tion operation. The architecture and operations exploit CAM and
FAST SRAM to leverage the high-parallelism computation of
data matching and in-situ bit-serial computing to support various
algorithms and applications.

A. Overall Architecture

Fig. 5 shows the overall architecture of GRAPHIC. To obtain
compatibility with existing platforms, GRAPHIC serves as both
the L1 data cache and SIMD units of the CPU. In the cache
mode, the data transferred between the CPU and GRAPHIC
is conducted through the read/write port. The details related
to the group association are not shown in the illustration. In
the computing mode, the GRAPHIC architecture works with
three major modules: (i) the GRAPHIC controller, (ii) the CAM
crossbars, and (iii) the FAST SRAM banks. The controller
accepts instructions from the CPU and extracts the control vector
into the operation registers. The CAM is responsible for parallel
searching and generating the hit vector to drive the clock of
the corresponding rows in the FAST SRAM to select data for
computing. The FAST SRAM has the capability of performing
parallel bit-serial computing in all selected rows independently.
During each cycle, the PUs and aggregation modules perform
1-bit arithmetic operations such as full-add, Boolean logic, data
multiplexing, etc. With the multi-cycle support of the controller,
full-precision operations such as subtraction, multiplication, and
minimization are supported. Thanks to the in-situ computing in
the FAST SRAM, the context is well preserved when switching
between computing and cache modes. As the FAST SRAM has
been verified by tape-out [24] to be able to perform all-row-
parallel data processing, the throughput is improved significantly
compared with the area-costly low-density register files in the
conventional SIMD extension in CPU.

Search Value1 Value2
a A b[0] o] c[0]
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{
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Q
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Fig. 6.  GRAPHIC binary operator instructions with multiple data.

B. Merge Operation Mapping

As a SIMD architecture, GRAPHIC can compile codes that
serially process lists and hash tables into parallel instructions.
These operations are collectively known as “merge” operations.
With the support of FAST SRAM, GRAPHIC can support both
inter-list merging and immediate instructions with different bit
widths.

Considering the binary operator instructions of key-value
pairs in GRAPHIC, as shown in Fig. 6, the key for each value
is stored in the CAM crossbars and the values are stored in the
FAST SRAM. First, key matching is performed in the CAM
to search for rows that store the operands. The search result
will drive the clock generator in FAST SRAM to cyclically
shift the bits in corresponding rows. For a PU with binary
operators, there are two 1-bit external inputs, namely target
operand b[i] and intermediate operand c[i], from the LSB side
(see Fig. 6) of the FAST SRAM rows for each cycle of bit-serial
computing. Besides, internal registers (I Reg) are also deployed
in PU for data computing (e.g., carry bits in full-add) and state
indications (e.g., data processing, processing finished, idle). The
supported arithmetic operations performed in the PU include
1-bit full addition, Boolean logic, and assignment. In each
cycle, the PU calculation result is written back to the MSB
cell of the target operand while the input from the intermediate
operand is written to its own MSB cell. After N cycles (N =
value bit widths), full-precision addition, logical computation,
and list copying operators are completed. Note that shift op-
erations are also supported by simply configuring the cycles
of the driving clock. Furthermore, by combining these opera-
tors, more complex operations such as multiplication can be
performed.

The immediate instructions with multiple data in GRAPHIC
can be used when the selected element of a list or hash table
performs the same calculation with an identical value Imm, as
shown in Fig. 7. Compared to the binary operator instructions,
one input of PU also comes from the LSB cell of target operand,
but the other input of Imm is sent from the external registers
instead of the SRAM cells. At this point, the left and right sides
of a FAST SRAM row can be reconfigured as two values with
halved bit width, or, one single value with full bit width. The PU
corresponding to each value will receive a shift input from the
FAST SRAM row, and a global input from the immediate value.
The PU output will be updated directly to this row.

Authorized licensed use limited to: Penn State University. Downloaded on May 21,2024 at 14:40:07 UTC from IEEE Xplore. Restrictions apply.



88 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 12, NO. 1, JANUARY-MARCH 2024

// immediate merge Search Value
for (int i = @; i < length; i++) a[0] b_high(0] [Off b_low[0]
{ . . .
if (ali]l == Key) : . .
ali] b_high[i] |G b_low[i]
b[i] = b[i] © Imm; . . .
} ¥ [ Camni=Key b_highin] | O||_b_lowin] | |
/ Imm_]
Imm
| | | ML | | D 5
OO = Thges - O
a[n] b_high[n] Bit-Serial b_low[n]
CAM PU
Fig. 7. GRAPHIC immediate instructions with multiple data.

Algorithm 1: Minimize the List by Bit-Serial.

1 Input: A list C[1...m] of n-bit data width
2 Qutput: A list of stored minimum values
3 Initialization: Conf[1...m]Deny[1...m] to 0
4 Confli]: 1-bit, whether C[i] is confirmed as minimum
Deny[i]: 1-bit, whether C[i] is not minimum
Minl1: 1-bit, the output before minimum is located
Min2: 1-bit, the output after minimum is located
End: 1-bit, whether the minimum is located

9 One: 1-bit, used to decide the exists of minimum
10 for i in 1:n // executed in n cycle
11 forjin l:m // parallel in FAST SRAM
12 Din[j] < ith significant bit in C[j]
13 DI[j] « !(Din[j] | Deny[j])
14 K[j] < Din[j] & Conff[j]
15 Minl + !D[1] & !'D[2] & ... & !D[m]
16 Min2 < K [1]|K[2]] ... | K[m]
17 End < !(!Conf[1] & !Conf[2] & ... & !Conf[m])

[e-BEN INe NNV, |

18 One <+ Sum(!D[1...m])is 1
19 IfEnd

20 Min < Min2

21 Else

22 Min < Minl

23 for jin 1:m// parallel, iReg update in FAST SRAM
24 Conf[j] < Conf[j] | (!Din[j] & One)

25 Deny[j] < Denyl[j] | (Din[j] & Min1)

26 Dout <~ Min

Selecting data by CAM without data alignment avoids the
bottleneck of traditional SIMD, as SIMD requires data align-
ment before performing parallel computation. Also, the in situ
computing feature of GRAPHIC supported by the FAST SRAM
reduces the energy consumption of redundant memory access.
Thus, performing merging operations in GRAPHIC is high-
lighted with both high energy efficiency and high area efficiency
benefits.

C. Aggregation Operation Mapping

To extend the vector processing capability of the conventional
SIMD, GRAPHIC supports aggregation operations in multime-
dia and graph applications. As shown in Fig. 8, row-wise parallel
bit-serial computing is performed in the aggregation units (AUs).

// aggregation Search Value
int min = Inf; a[0] HD c[0]
for (int i = 0; i < length; i++) . .
if (alil == Key) . .
min=(c[il<min)?c[il:min; afi] BB cli]
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[ HeE S
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GRAPHIC aggregation instructions with multiple data.
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(b) Minimize example

Fig. 9.
minimize.

(a) Circuits and (b) an example of aggregation operation:

Unlike the additive aggregation used in MAC-oriented CiM
design supported with ADCs or adder-tree, GRAPHIC shows
a lower-cost way to perform the minimum aggregation of
massive data. In GaaS-X [26] and the SIMD extension in
CPU, minimization is performed using full-precision digi-
tal logic, which introduces a large area overhead and power
consumption.

Some modifications based on the 10T FAST SRAM are made,
s0 as to support minimization and maximization. Previous FAST
SRAM performed only the right shift to support arithmetic
operations due to only one switch between adjacent cells. The
modification is to add an extra right-to-left pathway controlled
by one more switch to achieve a bi-directional shift. That is about
20% cell area overhead and less than 5% overall area overhead.
FAST SRAM with the support of a bi-directional shift allows the
bit to be fed to the PUs in order from MSB to LSB for comparison
operators, such as “set less than (SLT)”. The internal register
(iReg) is used to store the comparison result of the current bit
and will be fixed after being set to ‘1°.

Further, based on the bi-direction FAST SRAM, we can
improve this one-by-one comparison into the minimization op-
eration in Fig. 8 on the array. The aggregation unit used for
minimization is shown in Fig. 9(a). This operation updates all
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the selected rows to the smallest one. An example is illustrated
in Fig. 9(b). In principle, the minimization operator traverses
all bit locations of selected rows from MSB to LSB. When the
minimum value has not been located, and a ‘0’ exists among AD
inputs, ‘0’ is written back to the MSB cells of all selected rows
since values with ‘0’ on that bit location are smaller ones. Oth-
erwise, ‘1’ will be written back. Such a process will be stopped
if the sense amplifier detects one and only one ‘0’ in the inputs
K,, i =0, ..., n. This row is the location for the minimum value.
Meanwhile, END and the register “Conf” of the corresponding
row are set to 1. The following bits written back to all rows
are the bits corresponding to that minimum value. This method
utilizes bitline discharging and sense amplifiers in the aggrega-
tion unit to achieve extremely low-cost of latency and energy
consumption in the aggregation operation without direct SRAM
access.

The details are shown in Algorithm 1. This bit-serial aggrega-
tion can convert minimization and maximization in an array to
a constant-cycle operation, which can achieve a large speedup
in the corresponding applications.

[V. APPLICATION MAPPING

In this section, a method to map applications to the SIMD
instructions provided by GRAPHIC is provided. Also in de-
tail, different levels of applications are presented as examples,
including graph traversal operation SSSP, graph relationship
analysis connected component (CC), basic operators for image
process reverse, and practical image processing algorithms (his-
togram equilibrium and haze removal).

A. Graph Processing Application

Single Source Shortest Path (SSSP): The SSSP algorithm
is an important operator in the graph data structure, which is
to designate a start vertex and compute the distances from all
other vertices to the start vertex. The distance is calculated by
summing the weights of the edges of connected vertices. Due to
the highly random graph data accessing, SSSP is a bottleneck for
many graph-related algorithms, such as pathfinding algorithms
and computer-aided design.

v ivdlys
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Fig. 11.  An operation example of connected component (CC).

Fig. 10 illustrates how to deploy SSSP on the GRAPHIC
architecture based on Dijkstra algorithm. Consider an imple-
mentation sample shown in Fig. 10(a), each row of CAMs and
FAST SRAMs stores the graph information in a coordinate
(COO) format (source, destination, and weights of an edge).
The source and destination pairs for each edge are loaded onto
CAM crossbars, while the weights are loaded onto FAST SRAM.
In the SSSP algorithms, the GRAPHIC basic operators include
matched value addition and matched minimization. The control
flow is based on breadth-first search (BFS).

Fig. 10(b) shows the data flow for the SSSP algorithm under
the sample graph. Starting from the source vertex (vertex 0), the
neighbors (vertex 1 and vertex 2) are selected in an ascending
order of the distance to the source vertex to perform BFS. The
operator to find the minimum distance from the source can
be modified by the aggregation algorithm in Section III.C. In
this process, GRAPHIC does not update the original data, but
directly selects and reads the row activated by the register Conf.
Since vertex 1 is terminated with no CAM row matched, vertex 2
is sent to CAM to perform the matched value addition operation
to update the distance of the vertex 2 neighbors (vertex 3 and
vertex 4). Meanwhile, the edge start point will also be updated
as the source vertex. The process above is applied on each vertex
started from the source vertex to update its distance to the source
until a duplicate destination appears in a matched addition oper-
ation, which means multiple paths from the current vertex to the
source have been found. At this point, the matched minimization
operator through the matched destination will update the path to
be the shortest one. Those operations will be repeated until all
stored sources of all the edges are the starting vertex.

Connected component (CC): The CC algorithm is another
operator in the graph, which is to mark all the connected vertex
with the same group ID (always the smallest vertex ID in
the subgraph). In general, this algorithm requires traversing
all edges to pass the minimum ID, which will suffer from
frequent and irregular memory access. However, the proposed
GRAPHIC-based algorithms only require the traversal of ver-
tices, bringing significant throughput improvement compared
with conventional CPU processing since the number of edges
will be orders of magnitude larger than the number of vertices.

Fig. 11 illustrates the procedure of how CC works in
GRAPHIC. The source and destination pairs for each edge
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Fig. 12. Operation examples of image processing applications:
(a) image inversion, (b) histogram equilibrium, and (c) haze removal.

are loaded onto the CAM crossbars, while the FAST SRAM
is used to store the group ID, initialed with the destination
vertex id. Starting from the smallest vertex ID, the matching
is performed in both source and destination columns in CAM.
The minimization operation is performed on the selected rows
in the FAST SRAM, which will update the group ID with the
smallest one. This operation will be repeated until all vertices
are visited.

B. Image Processing Application

Unlike irregular graph applications, image processing is a
class of applications where data are distributed continuously
and computation could be performed sequentially, which is
friendly to SIMD. The important feature of GRAPHIC is the
capability of performing the in situ computation of images,
which outperforms SIMD or other near-memory computing
architectures, leading to reduced data movement and improved
energy efficiency.

Fig. 12(a) shows a basic operator for image processing in a
single channel: inversion. If the image pixel is in an unsigned 8-
bit format, then the inversion is calculated as 255 minus the value
of the original image. The image information is stored in the
FAST SRAM, while the CAM is used to identify the attributes of
the FAST SRAM row. The attributes will be matched as a tag to
select all the pixels of the area to be operated in the inversion. At
this point, immediate instruction with multiple data is performed
in the FAST SRAM.

Fig. 12(b) demonstrates an advanced algorithm called the
histogram equilibrium. In some scenarios due to lighting, tex-
ture, etc., the photograph may be difficult to read. Histogram
equilibrium may enhance the image visibility, by mapping the
image grayscale level to a new level with statistical methods.
The grayscale information will be stored in both CAM and
corresponding rows in the FAST SRAM. For an image loaded on
the FAST SRAM, iterate through all its gray levels to be matched
in CAMs and update them to new values accordingly in the
FAST SRAM. This match-update operation can be implemented
not only for histogram equilibrium but also in various image
enhancement operations with improved parallelism.

Further, a specific application of haze removal is presented
in Fig. 12(c). Objects covered in fog or haze are difficult to be
distinguished. A hazing removal algorithm based on statistical

analysis was proposed [30]. Although neural network-based
algorithms are well performed in various scenarios, such a
lightweight and effective algorithm is vibrant on small devices
at the edge. When the haze removal algorithm is executed, an
image is firstly divided into multiple small blocks 2, and in each
block, the smallest RGB values are found, i.e.,

Je (y)) (1)

For an image without haze or fog, the value m is close to 0. For an
image covered with haze, the value m represents the intensity of
the haze in that block. Next, simply subtract the corresponding
value m from each block to complete the haze removal. When
it comes to the GRAPHIC architecture, the FAST SRAM stores
the image information (the left side and the right side save the
same pixel), while CAM is used to select a certain block in
the whole image. Each block performs two cycles of operation.
In the first cycle, the minimization on the selected block in the
FAST SRAM on the right side. In the second cycle, the minimum
value is subtracted from the FAST SRAM on the left side to
complete the haze removal algorithm for that block.

Furthermore, combined with the image inversion algorithm,
the haze removal could be modified as a night vision algorithm
[31]. To accomplish this task, a dark image is reversed first to a
white image. Then the haze removal is performed on it. Finally,
reverse the image back to the dark version. The visibility of the
original dark image may be improved.

min

m = J9F (r) = min <
ce{r,g,b}

yEQ(x)

V. EVALUATION

In this section, experiments from the circuit level to the
application level with the GRAPHIC architecture constructed by
specific parameters are carried out to evaluate the performance
of GRAPHIC. The proposed GRAPHIC is compared with the
baseline architectures and the improvement in energy efficiency
and speedup is presented.

A. Circuit-Level Evaluation

The extended FAST SRAM subarray of 16 columns by 256
rows is simulated in Cadence Virtuoso on TSMC 65nm PDK.
The design of the processing unit (PU) and aggregation unit
(AU) is compiled by Synopsys DC. The overall control logic is
also evaluated by the DC compiler. A 6T cell content-address
memory based on split-wordline [7] is implemented to be re-
configured as SRAM, BCAM, or TCAM according to different
applications. The latency and power consumption of the on-chip
SRAM arrays are evaluated by the 65nm CACTI model [32]. As
an L1 cache, the external circuitry of the FAST SRAM and its
cache controller are the same as the dual port SRAM modeled
by CACTL

Timing of FAST SRAM: Multiple cycles to perform a single
operation is the latency bottleneck of the bit-serial style com-
puting method. FAST SRAM uses local access and computing,
which can greatly increase the frequency. The delay of FAST
SRAM obtained from the simulation is 120ps. Considering
the clock jitter, skew, and other factors, the FAST SRAM is
finally driven by a SGHz clock. In addition, benefiting from the

Authorized licensed use limited to: Penn State University. Downloaded on May 21,2024 at 14:40:07 UTC from IEEE Xplore. Restrictions apply.



CHEN et al.: GRAPHIC: GATHER AND PROCESS HARMONIOUSLY IN THE CACHE WITH HIGH PARALLELISM 91

TABLE |
PARAMETERS OF THE GRAPHIC DESIGN

TABLE Il
METRICS OF A SUBSET OF VECTOR INSTRUCTIONS SUPPORTED BY
GRAPHIC CoMPARED TO CAPE

Component Configuration Area
Array 32x256x8 0.478 mm? ( bitz) CAPE GRAPHIC
Instruction (n bits Total |Operation | Total |Operation
-bi 2 P P
FAST S 1-bit PU 2%256%8 0.057 mmz cycle energy (pJ) cycle energy (pJ)
1-bit AU 256%8 0.053 mm vadd 8n+2 8.4 n 54
: 2
Signal generators 0.005 mm Arithmetic | vsub 8n+2 8.4 n 5.4
2
CAM Crossbar 32x256x8 0.578 mm vmul | 4n2? - 4n 99.9 (3n2 —n)2 256.5
Instruction registers 64x8 0.004 mm? vand 3 0.4 2 0.3
Input Buffer 2 Logic ! ‘
Search registers 32x8 0.002 mm vor 3 0.4 2 0.3
Controller Finite state machine 0.003 mm? Comparison | vimslt | 3n+6 3.2 n 5.4
Total 128 Kb 1.18 mm? Data vmov 2n 12.8 n 5.4
. min n 5.4
Aggregation Unsupported
max 2n 10.8

simplicity of 1-bit arithmetic logic, the PU is synthesized as
an additional unit in the FAST SRAM shifting loop at 5GHz.
Since the bitwidth of a FAST SRAM [24] array is fixed, a larger
FAST SRAM could be built by dynamic bitwidth reconfigu-
ration. This makes FAST SRAM scalable for various cache
designs.

Energy of FAST SRAM: FAST SRAM exhibits high energy
efficiency by eliminating the impact of the large parasitic capac-
itance loads on the bitline in SRAM access. It is also noted that,
the energy consumption could be further improved by taking
care of the redundant shifting operations in activated rows. There
are two techniques applied in GRAPHIC for this purpose. First,
a routing unit inserted in a word can terminate the shifting
loop earlier to reduce the flips. This can be applied in image
processing since in most cases the data bit width is only 8 bits.
Second, the addressing function of CAM is used to clock-gate
the FAST SRAM rows. This is widely used in graph processing
because the data access and computing will be sparse. In this
case, pruning useless shifting is the key to improving energy
efficiency.

B. Macro-Level Evaluation

Considering a reasonable L1 cache size of 128Kb, a specific
design of GRAPHIC with 128Kb memory capacity used in the
evaluation is summarized in Table I.

The GRAPHIC unit consists of a 256-row 32-bit CAM and a
FAST SRAM of the same size. Each row of the FAST SRAM
is divided by 1-bit PU into two 16-bit left and right parts.
Each GRAPHIC unit accepts inputs from the 64-bit instruction
registers and the 32-bit search registers to perform computing
and matching, respectively.

The macro consists of 8 basic GRAPHIC units, managed by
the controller. The controller is responsible for communicating
with the CPU and distributing data and control vectors to the
registers of GRAPHIC. A finite state machine is used to control
the FAST SRAM shift behavior under one vector/aggregation
instruction.

The designed access memory bitwidth is 512 bits (64-bit x
8), the same as the baseline AVX-512 (a SIMD instruction set
in CPU).

C. System Evaluation

To support general-purpose applications, we abstract the
GRAPHIC operations into several SIMD instructions. Ta-
ble II shows the metrics of a subset of instructions supported
by GRAPHIC compared with the CAPE architecture. Both
GRAPHIC and CAPE adopt the bit-serial computing method.
Given the bit width n, the number of execution cycles is related
to n because of the bit-serial execution method. The energy
consumption of GRAPHIC is obtained based on simulations.
The energy consumption of CAPE is from [25].

Arithmetic instructions perform an arithmetic calculation be-
tween two vectors and write the result back to the target vector.
Table IT shows the number of cycles and the power consumption
of GRAPHIC and the baseline CAPE, using vector-to-vector
addition, subtraction, and multiplication as examples. It is noted
that CAPE needs to traverse all its possibilities for each bit.
For arithmetic calculations in CAPE, each bit takes 8 cycles.
In comparison, GRAPHIC needs only 1 cycle to deal with
each bit. In terms of power consumption, GRAPHIC consumes
35.7% less energy compared with CAPE in 32-bit addition and
subtraction. However, due to the high flip rate mentioned earlier,
the power consumption is greater than CAPE when performing
multiplication with a high number of cycles.

Logic instructions perform Boolean functions on Boolean
vectors, which are widely used in control flow. For FAST
SRAM, the minimum cycle shift period is 8 (by route units).
However, the logic operation is only performed to the LSB,
which will incur redundant shift operations in a uni-directional
FAST SRAM. At this point, the bi-directional FAST SRAM
could provide a redundance-shift-free solution. When executing
a logical operation on GRAPHIC, PU selects the corresponding
logical operation path. First, it performs a right shift to send the
LSB to the PU and the result to the MSB. Then the PU selects the
direct pass (without calculation) and the FAST SRAM performs
a left shift to write the calculation result in the MSB back to the
LSB. In this way, GRAPHIC achieves 2-cycle logic operation,
which is more efficient than the 3-cycle logic operation of CAPE.
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TABLE IlI
SPECIFICATION SUMMARY
Specifications Avﬁl’\}[ike Gaa$-X | CAPE |GRAPHIC
Technique node 65nm CMOS | 32nm RRAM | 7nm CMOS | 65nm CMOS
Storage size (Kb) 128 98304 18432 128
Area (mm?) 1.23 2.69 11.3 1.18
Throughput (Tbps) 4.19 3.35 524.52 18.62
Computing method Full prec. ADC Bit-serial Bit-serial
VADD/VSUB Supported Supported Supported Supported
VMUL Supported Supported Supported Supported
VSHIFT Supported | Not supported | Not supported |  Supported
VLOGIC Supported | Not supported | Supported Supported
VMOV Supported | Not supported | Supported Supported
MAX/MIN Supported Supported | Not supported | Supported
Irregular pattern Not supported | Supported | Not supported | Supported
Area efficiency! (Tbps/mm?) 3.39 1.24 46.4 15.8
Energy efficiency’ (16bit) | 1938 pJ/OP | 13 pj0p | 420pJ/OP | 1.26 pJ/OP
Energy efficiency (32bit) | 38.75 pJ/OP (6 bit) 8.40 pJ/OP | 5.40 pJ/OP

*1: 32-bit arithmetic logic between two values

Comparison instructions compare the corresponding values
of two vectors in parallel. Those operations are similar to an
arithmetic operation, requiring only one cycle per bit, which
shows a 3x speedup compared with CAPE.

Data movement is used to copy the data from one vector to
another, which will be used when a temporary copy is needed.

Aggregation instructions are used to count the data in a vector
and give an eigenvalue. Taking the example of finding the
minimum value in a list, SIMD in CPU does the comparison in
parallel in the form of a binary tree. Therefore, a total logarithmic
level of time duration is required. The CAPE architecture cannot
support native aggregation operations. The proposed GRAPHIC
architecture performs the min and max calculation by the aggre-
gation unit. The minimization simply iterates over the operands
stored in the FAST SRAM from MSB to LSB to replace all values
in the list with the minimum value. At the same time, in order
to reuse the aggregation units in the maximization operator, n
more cycles of operations are needed to invert the operands in a
batch.

The above operands are integers in the two’s complement for-
mat. Since the FAST SRAM is naturally shifting independently
between rows in the array, it is capable to store floating point
numbers in rows and align them before calculation, future work
is promising.

D. Metrics Comparison

The baseline is AVX-like LiM with the same functionality as
GRAPHIC. It is used to evaluate the efficiency of CAM-based
GaaS-X, CAPE, and the proposed GRAPHIC architecture, as
shown in Table III.

AVX-like LiM consists of a 128Kb cache (the same as the
GRAPHIC design) and 9 PU. Each PU supports 16 parallel 32-
bit operands. A custom design is implemented by Synopsys DC.
The specifications of the SRAM cache design are from CACTI
[33]. As a macro based on the SIMD instruction set, the baseline

TABLE IV
UTILIZATION AND SPEEDUP SUMMARY
Tasks CAPE GRAPHIC-512 GRAPHIC-2k
Specification utilization  speedup utilization speedup utilization  speedup

graph sssp 0.08% 0.4 19.8% 4.4 5.0% 4.4

computing cc 0.3% 1.4 39.6% 8.8 9.9% 8.8

. hist equal 15.8% 41 65.9% 4.4 32.5% 8.6
image

processing haze removal 0.9% 1.0 99.6% 3.9 98.6% 15.4

night vision 10.8% 1.3 77.0% 4.2 54.5% 10.9

can perform a variety of operations, including logic, arithmetic,
and aggregation.

GaaS-X [26] includes 64Mb RRAM-based CiM crossbars
and 32Mb RRAM-based CAM arrays. Benefiting from the ex-
tremely high density of the RRAM memory, GaaS-X obtains
a capacity beyond the other efforts in Table II. However, the
flexibility issues and the area overhead associated with massive
ADCs make the computational throughput the lowest. Further-
more, it does not support different operators like VSHIFT,
VLOGIC, and VMOV in Table II.

CAPE [25] performs as an associative computing engine
in the CPU. For each 32x32 SRAM CAM array as a PE, a
total of 131K vector lanes could be performed simultaneously.
With an advanced 7nm process, CAPE achieves the highest
area efficiency. However, the frequent bitline charging in CAPE
incurs lower energy efficiency compared with GaaS-X and the
proposed GRAPHIC.

GRAPHIC is proposed to obtain the highest energy efficiency
under the same bit width while supporting irregular data access.
In addition, it has 5x area efficiency improvement compared to
the baseline, and 3x area efficiency improvement compared to
CAPE in a normalized process.

E. Task Evaluation

We designed a custom cycle-granularity simulator for
speedup evaluation of GRAPHIC. The simulator splits the com-
puting tasks into instructions that can be executed on GRAPHIC
and the baseline architecture. The overall task execution time is
obtained based on the metrics in Table II.

The applications of the two classic data access patterns in
Section IV are used to evaluate the overall speedup. In Fig. 13,
the graph computing contains many irregular data flows, and
the image processing is featured with continuous regular data
mapping. Fig. 13(a) compares the speedup of GRAPHIC against
GaaS-X and CAPE. Fig. 13(b) shows the comparison of energy
consumption between GRAPHIC and CAPE.

In applications with irregular data access (SSSP and CC),
GaaS-X and GRAPHIC architectures with matched access struc-
tures achieve 4x-8x speedup ratios with respect to the AVX-like
method. GRAPHIC is about 50% faster in graph computing
compared to GaaS-X, due to the unique aggregation mechanism
in GRAPHIC and higher area efficiency than ADCs used in
GaaS-X. On contrary, CAPE architectures that require dense
computing to take advantage of acceleration are difficult to
obtain speedup in sparse computation. As shown in Table IV,
although CAPE has a high total throughput, the low utilization
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in graph computation hinders CAPE from taking advantage of
it.

However, with intensive data access, the SIMD-based base-
line and CAPE architecture will perform well in image-
enhancing tasks (such as hist equal). In these intensive tasks,
the GRAPHIC architecture can achieve performance close to
that of the CAPE architecture of a larger area. Considering
area normalization, GRAPHIC has a 5x-10x speedup compared
to CAPE. And in tasks that require aggregation, such as the
haze removal and night vision algorithm, GRAPHIC has a 3.4x
improvement over CAPE and a 31x improvement considering
the area normalization. GaaS-X is limited by the accumulation
provided by the MAC-oriented CiM module and cannot provide
acceleration for image processing computations. As shown in
Table IV, the utilization rate in CAPE is significantly higher in
intensive tasks such as image processing.

Overall, the GRAPHIC architecture achieves an average
speedup of 3.8x-4.8x speedup compared to the AVX-like, GaaS-
X, and CAPE architecture.

VI. DISCUSSION

GRAPHIC breaks the dilemma of flexibility and parallelism
faced in existing in-memory computing frameworks. With the
help of the FAST SRAM and CAM, GRAPHIC supports high
parallelism and irregular data selection for parallel computing.
While this work only implements a partial SIMD instruction
set, more operators could be supported in the future with more
implemented SIMD instructions.

Sensitivity: The number of processing elements determines
the maximum throughput. However, more circuits do not neces-
sarily perform better on specific tasks. Taking graph computing
and image processing as examples, increasing the array size
of GRAPHIC has different impacts. For graph computing, as
shown in Table IV, the utilization rate in GRAPHIC is still low.
Therefore, it may not obtain better performance by directly in-
creasing the array size. Instead, applying subgraph segmentation
may be more helpful. For image processing, the bottleneck of the
128Kb GRAPHIC design is the array size. Adding computing
resources here will improve the task performance.

Overhead: While achieving high-efficiency in-memory
SIMD, GRAPHIC may introduce some overhead. The first that
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(a) Speedup ratio with respect to AVX-like and (b) energy consumption of GRAPHIC compared to GaaS-X [26], and CAPE [25].

comes to mind could be the area occupation compared to the
conventional SRAM. Although the bi-direction FAST SRAM at
the cell level has 36% area overhead over an 8T dual-port SRAM,
the overall area overhead is about only 2% when considering the
peripheral circuits in the cache. Another overhead could be the
additional power consumption when performing regular access
(not computing) to the FAST SRAM, considering the increased
parasitic capacitance inside the cell. Actually, the overall access
power overhead is only about 1% because the main sources of
the access energy are still the bitline charging activities and the
SA operation.

Limitation: It is noted that there are some functions that
are currently difficult to support with GRAPHIC, GaaS-X, and
CAPE. The first function is a non-one-to-one data selection,
such as using a convolutional kernel in an image for expansion
or sharpening algorithms. An alternative way is to realign and
copy the image data by a number of times equal to the kernel
size. However, frequent data movement would incur serious
energy overhead, which will eliminate the energy efficiency
of IMC for this function. Another difficult function is the op-
erations between adjacent data. Because a compute operation
in GRAPHIC is restricted to two rows of the same index in
two FAST SRAMs, parallel computation located in rows of
a different row index, e.g., two adjacent rows, will not be
supported.

Future Work: Floating-point support is an important SIMD
feature. One potential way to implement floating-point calcula-
tions in GRAPHIC is to store a set of floating-point numbers in
two arrays. One array is used to store the exponent and the other
is used to store the mantissa. The floating-point calculation starts
by aligning the exponents. The number of bits to be shifted in
the mantissa needs to be obtained using subtraction in parallel.
The array storing the mantissa is shifted separately according
to the result of the calculation. After the exponent is aligned,
the floating-point calculation would be performed according to
the arithmetic logic. Preliminary investigation shows an area
overhead of roughly 25% for the single-precision floating-point
format because of the intermediate value during exponent align-
ment. Future work in complete end-to-end implementation and
optimization would be meaningful. Finer granularity of bitwidth
reconfigurability is also a promising direction, as it achieves
better performance on some tasks at the cost of extra area and
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control overheads, such as reconfiguring four 8-bit FAST SRAM
subarrays instead of using the original two 16-bit subarrays.

VIl. CONCLUSION

In this paper, a high-flexibility and high-parallelism in-
memory computing architecture, namely GRAPHIC, is pro-
posed to deal with the dilemma of existing MAC-oriented and
logic-in-memory approaches. GRAPHIC utilizes the matching
functionality of content-address memory (CAM) and the in-
dependently parallel computing of the FAST SRAM. On the
one hand, GRAPHIC is capable of supporting SIMD instruc-
tion subsets with the in-memory computing method; on the
other hand, GRAPHIC supports irregular data processing in
parallel to optimize the graph processing algorithms. Therefore,
GRAPHIC has established a new paradigm of energy-efficient,
flexible, and high-parallel in-memory computing for various
tasks including dense mapping and irregular access.
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