
84 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 12, NO. 1, JANUARY-MARCH 2024

GRAPHIC: Gather and Process Harmoniously in
the Cache With High Parallelism and Flexibility

Yiming Chen , Student Member, IEEE, Mingyen Lee , Student Member, IEEE,
Guohao Dai , Member, IEEE, Mufeng Zhou , Student Member, IEEE, Nagadastagiri Challapalle ,

Tianyi Wang , Yao Yu , Yongpan Liu , Senior Member, IEEE, Yu Wang , Fellow, IEEE,
Huazhong Yang , Fellow, IEEE, Vijaykrishnan Narayanan , Fellow, IEEE,

and Xueqing Li , Senior Member, IEEE

Abstract—In-memory computing (IMC) has been pro-
posed to overcome the von Neumann bottleneck in data-
intensive applications. However, existing IMC solutions
could not achieve both high parallelism and high flexibility,
which limits their application in more general scenarios:
As a highly parallel IMC design, the functionality of a MAC
crossbar is limited to the matrix-vector multiplication; An-
other IMC method of logic-in-memory (LiM) is more flexible
in supporting different logic functions, but has low par-
allelism. To improve the LiM parallelism, we are inspired
by investigating how the single-instruction, multiple-data
(SIMD) instruction set in conventional CPU could poten-
tially help to expand the number of LiM operands in one
cycle. The biggest challenge is the inefficiency in handling
non-continuous data in parallel due to the SIMD limitation
of (i) continuous address, (ii) limited cache bandwidth, and
(iii) large full-resolution parallel computing overheads. This
article presents GRAPHIC, the first reported in-memory
SIMD architecture that solves the parallelism and irregular
data access challenges in applying SIMD to LiM. GRAPHIC
exploits content-addressable memory (CAM) and row-wise-
accessible SRAM. By providing the in-situ, full-parallelism,
and low-overhead operations of address search, cache

Manuscript received 1 October 2022; revised 9 February 2023; ac-
cepted 22 June 2023. Date of publication 17 July 2023; date of current
version 15 March 2024. This work was supported in part by the NSFC
under Grants #U21B2030, #92264204, in part by Tsinghua University –
Daimler Greater China Ltd. Joint Institute for Sustainable Mobility, and
in part by the NSF under Grants #2008365, #2132918. (Corresponding
author: Xueqing Li.)

Yiming Chen, Mingyen Lee, Mufeng Zhou, Yongpan Liu, Yu Wang,
Huazhong Yang, and Xueqing Li are with the BNRist, Department of
Electronic Engineering, Tsinghua University, Beijing 100084, China
(e-mail: cym21@mails.tsinghua.edu.cn; lmy21@mails.tsinghua.edu.cn;
zmf21@mails.tsinghua.edu.cn; ypliu@tsinghua.edu.cn; yu-wang@
tsinghua.edu.cn; yanghz@tsinghua.edu.cn; xueqingli@tsinghua.edu.
cn).

Guohao Dai is with Qing Yuan Research Institute, Shanghai Jiao
Tong University, Shanghai 200030, China (e-mail: daiguohao1992@
gmail.com).

Nagadastagiri Challapalle is with Senior Deep Learning Hardware
Architect, Nvidia, Santa Clara, CA 95050 USA (e-mail: nrc53@psu.edu).

Tianyi Wang and Yao Yu are with the Department of Research
& Development Automated Driving System, Daimler Greater China
Ltd., Beijing 100102, China (e-mail: tianyi.wang@mercedes-benz.com;
yao.y.y@mercedes-benz.com).

Vijaykrishnan Narayanan is with the Department of Computer Science
and Engineering, Penn State University, University Park, PA 16802 USA
(e-mail: vijay@cse.psu.edu).

Digital Object Identifier 10.1109/TETC.2023.3290683

read-compute-and-update, GRAPHIC accomplishes high-
efficiency gather and aggregation with high parallelism,
high energy efficiency, low latency, and low area overheads.
Experiments in both continuous data access and irregular
data pattern applications show an average speedup of 5x
over iso-area AVX-like LiM, and 3-5x over the emerging
CAM-based accelerators of CAPE and GaaS-X in advanced
techniques.

Index Terms—Associative memory, single instruction
multiple data, FAST SRAM, in-memory computing, logic in
memory.

I. INTRODUCTION

IN-MEMORY computing (IMC) attempts to improve the

performance and energy efficiency by reducing the data

movement in the conventional von Neumann architecture [1],

[2]. While the IMC concept has been proposed decades ago,

a majority of the IMC efforts today try to apply IMC in two

categories of computing [3]: logic operations [4], [5], [6], [7], [8]

and MAC operations [9], [10], [11], [12], [13]. Logic in mem-

ory (LiM) design aims at more general-purpose applications.

Typically, two or three rows will be activated simultaneously on

bitlines. The output results of the logic operation are obtained by

peripheral circuits that support flexible algorithms. Differently,

MAC-oriented design serves as a matrix-vector multiplication

(MVM) accelerator. The outputs are usually obtained by com-

parators [14], ADCs [15], or adder-trees [16], [17], which can

deal with dozens (or even far more) rows concurrently. Unfortu-

nately, it is challenging to achieve both flexible logic operations

and high parallelism. The MAC-oriented design is limited to

bit-wise accumulation, making it impossible to perform more

computation tasks. Meanwhile, it is difficult to apply LiM

computing to more rows in an array at a time, which limits the

inherent parallelism of LiM.

Therefore, there is a critical question: how to enable both

flexibility and parallelism in IMC?

Notably, single instruction, multiple data (SIMD) [18], [19]

as an instruction set architecture (ISA) could inspire the LiM de-

sign to improve parallelism by extending the access bandwidth.

However, it faces several challenges, as shown in Fig. 1(a).

First, the speedup from expanding bandwidth requires that the

operands must be contiguous in the memory, which is not

2168-6750 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Penn State University. Downloaded on May 21,2024 at 14:40:07 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: GRAPHIC: GATHER AND PROCESS HARMONIOUSLY IN THE CACHE WITH HIGH PARALLELISM 85

Fig. 1. Comparison between (a) conventional single-instruction
multiple-data (SIMD) in CPU, and (b) SIMD in the proposed GRAPHIC
cache.

applicable to irregular parallel data, e.g., graph processing [20],

[21], [22]. Second, the access bandwidth is limited by the

peripheral circuits. Due to the on-chip memory access interface,

the parallelism improvement from higher access bandwidth is

limited. Finally, due to the increase in the number of operands,

massive full-precision computing is limited by the power wall

and area efficiency bottleneck.

In this paper, we propose GRAPHIC, an in-memory SIMD

architecture, to overcome the challenges in flexible and paral-

lel computing with irregular data. As illustrated in Fig. 1(b),

GRAPHIC consists of content-addressable memory (CAM) [7],

[23] and a recently proposed fully-concurrent row-wise-access

SRAM, namely the FAST SRAM [24]. There are a few intriguing

new features of GRAPHIC. First, the data matching mechanism

of CAM provides an opportunity for parallel computation of

discontinuous data in the memory. Second, the in situ comput-

ing method supported by FAST SRAM introduces an efficient

way of parallel computing without data readout. Third, the

parallel computing architecture provides high-area-efficiency

processing in the memory. In addition to the regular vector

operations in the SIMD instruction set, GRAPHIC also supports

parallel aggregation in the whole memory, showing more advan-

tages in certain applications, such as single-source shortest path

(SSSP).

The key contributions of this paper include:
� GRAPHIC, a versatile SIMD accelerator that efficiently

enables high parallel in-situ IMC with the support of

discontinuous data access.
� A compiling process that converts the serial execution

codes into a parallel operation stream in the proposed

GRAPHIC.
� Demonstration of mapping of two different data access

types in graph processing and image processing onto

GRAPHIC.
� Full-stack application performance evaluations of

GRAPHIC, in comparison with the SIMD ISA in

CPU and recent CAM-based accelerators [25][26], in

which GRAPHIC shows 6x and 4x performance over

the CPU SIMD with irregular and continuous data,

Fig. 2. Basics of SIMD (a) architecture, and (b) programming.

respectively, along with a 3x-5x average speedup over

prior custom accelerator designs.

In the rest of this paper, Section II reviews the background

of SIMD and CAM-based accelerators. Section III shows the

details of the proposed GRAPHIC based on CAM and FAST

SRAM. Section IV presents the method of deploying applica-

tions on GRAPHIC. Section V evaluates the proposed designs

from the circuit level to the application level. Section VI dis-

cusses the overhead and future work. Section VII concludes this

work.

II. BACKGROUND

This section briefly introduces the basics of SIMD program-

ming. The building blocks of GRAPHIC, including content-

addressable memory (CAM) and fully-concurrent access SRAM

(FAST SRAM) are also introduced.

A. SIMD Programming

The SIMD ISA, a compatible parallel computing technique,

performs the same operation in multiple data simultaneously.

Generally, SIMD in modern CPU is designed with respect to

vector computation. As shown in Fig. 2(a), SIMD instructions

still follow the von Neumann architecture. Taking SSE-128

instructions as an example, 2 sets of four 32-bit data as vectors

stored continuously in the memory are loaded into registers

of corresponding processing units (PUs). After executing the

corresponding calculation in four 32-bit width arithmetic logic

units, the results are written back to the data memory. Thus, it

achieves up to 4x speedup compared to a single-core CPU.

Benefiting from vector computing in parallel, the modern

CPU with SIMD aims to improve the performance of multimedia

processing. However, there is not always such performance

improvement by SIMD. It depends on how the data are orga-

nized in the memory and which algorithm is performed. As

shown in Fig. 2(b), SIMD excels in processing homogeneous

data, but it is not friendly to sparse, heterogeneous computing.

As a typical application with regular data distribution, image

processing can get a high-performance boost from SIMD, with

data realignment. However, graph, as an efficient data structure

to describe relationships in many emerging applications such

Authorized licensed use limited to: Penn State University. Downloaded on May 21,2024 at 14:40:07 UTC from IEEE Xplore. Restrictions apply.

86 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 12, NO. 1, JANUARY-MARCH 2024

Fig. 3. Structure overview of (a) Content-Address Memory (CAM),
(b) GaaS-X architecture [26], and (c) CAPE architecture [25].

as social, biological, and information systems, faces difficulty

when applying SIMD due to the irregular data access.

B. Content-Addressable Memory (CAM) Based
Accelerator

There is a challenge in simultaneous access to irregular data

for high-concurrency computing. Recently, our work GaaS-X

[26] reveals a chance to utilize CAM for irregular access. Single-

cell and array structures of typical SRAM-based CAM are shown

in Fig. 3(a). During a search in the CAM, the search vector and its

inverted value are fed into SL and SLB, respectively. The match

line (ML) will be discharged if there is one or more mismatch

cell loaded on it. A priority encoder is used to output the address

of the first row that matches the input.

Based on the functionality of matching, GaaS-X combines the

CAM with MAC-oriented CiM to perform accumulation with

certain selected rows in the CiM crossbar, as shown in Fig. 3(b).

Various graph algorithms are implemented, such as PageR-

ank, SSSP, BFS, and collaborative filtering. GaaS-X relieves

the bottleneck of sparse-to-dense conversion to perform graph

computing in CiM. However, the limitation of GaaS-X is also

obvious. Only MAC calculations can be performed by the CiM.

Although the special function unit (SFU) can perform some

other operations, the overall area efficiency will be extremely

low due to the redundant ADCs.

The content-addressable parallel processing paradigm

(CAPP) [27] and associative computing (ASC) [28], [29] also

provide a chance for in-situ computing in memory by CAM.

A full-stack design based on the associative computing named

CAPE [25] was proposed recently as a SIMD architecture,

as shown in Fig. 3(c). The atomic operation of CAPE is to

match and update the corresponding value in CAM columns.

Based on this operator, bit-serial algorithms can be performed

on CAPE. During the bit-serial calculation, only 1-bit of data

will be computed in one cycle. In each step, CAPE searches for

possible cases and updates the bits at the matched positions to

the data obtained from the arithmetic unit. After a number of

cycles, single full-precision computing could be completed for

the entire array. Though CAPE could achieve high-performance

Fig. 4. FAST SRAM (a) 10T cell structure, (b) shift operation steps,
and (c) interconnecting method.

improvement in densely formatted data computing, the difficulty

of CAPE is long-term cycling. Using addition as an example,

CAPE consumes 8x more time compared to the typical bit-serial

algorithm. The performance deteriorates further with sparse data

due to the parallelism decrease.

C. Fully-Concurrent Access SRAM (FAST SRAM)

Recently, a fully-concurrent access SRAM (FAST SRAM)

[24] for the bit-serial algorithm was proposed and experimen-

tally verified to perform high-parallel in-situ computing, as

shown in Fig. 4.

FAST SRAM behaves as a memory that can cyclically shift

independently in rows. The basic cell structure is shown in

Fig. 4(a). Based on the conventional 6T SRAM, the FAST

SRAM inserts two switches in the inverter ring controlled by P2

and P2d. Meanwhile, each two adjacent SRAMs are connected

with a switch controlled by P1. It is noted that the inverter ring

can be broken during a write, which makes the single-ended read

and write possible. This 10T FAST SRAM offers dual-port read

and write functionality, i.e., simultaneous read and written in

one cycle.

The fully concurrent shift operation steps of FAST SRAM are

shown in Fig. 4(b). In phase 1, the inverter ring is broken and

the inter-cell switches controlled by P1 are closed to transfer the

data between two adjacent SRAMs. In phase 2 and phase 3, the

inter-cell switches are turned off and the switches controlled by

P2 and P2d will be turned on in sequence to recover the inverter

ring and maintain the data. This leads to a 1-bit right shift in

a single cycle. Notably, P2 and P1 are generated by a 2-phase

non-overlapping clock, and P2d is set to P2 with a slight delay

to provide sufficient time to set up.

As shown in Fig. 4(c), the MSB and LSB are connected with a

1-bit processing unit (PU) to form a bit-serial computing unit. A

folded interleaving layout connection is adopted to minimize the

critical path delay of the interconnections between FAST SRAM

cells. With this method, the longest interconnect line shrinks to

at most two SRAM cells instead of all SRAM cells in the row.

The arithmetic units of two adjacent rows of FAST SRAM can

reuse the same PU. This allows the critical path of the binary

operators to be minimized.

Authorized licensed use limited to: Penn State University. Downloaded on May 21,2024 at 14:40:07 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: GRAPHIC: GATHER AND PROCESS HARMONIOUSLY IN THE CACHE WITH HIGH PARALLELISM 87

Fig. 5. Proposed GRAPHIC architecture overview.

III. GRAPHIC ARCHITECTURE

This section presents the proposed in-memory SIMD ac-

celerator, GRAPHIC. To understand the support of full-array-

parallel data processing, this section will introduce the overall

GRAPHIC architecture, the merge operation, and the aggrega-

tion operation. The architecture and operations exploit CAM and

FAST SRAM to leverage the high-parallelism computation of

data matching and in-situ bit-serial computing to support various

algorithms and applications.

A. Overall Architecture

Fig. 5 shows the overall architecture of GRAPHIC. To obtain

compatibility with existing platforms, GRAPHIC serves as both

the L1 data cache and SIMD units of the CPU. In the cache

mode, the data transferred between the CPU and GRAPHIC

is conducted through the read/write port. The details related

to the group association are not shown in the illustration. In

the computing mode, the GRAPHIC architecture works with

three major modules: (i) the GRAPHIC controller, (ii) the CAM

crossbars, and (iii) the FAST SRAM banks. The controller

accepts instructions from the CPU and extracts the control vector

into the operation registers. The CAM is responsible for parallel

searching and generating the hit vector to drive the clock of

the corresponding rows in the FAST SRAM to select data for

computing. The FAST SRAM has the capability of performing

parallel bit-serial computing in all selected rows independently.

During each cycle, the PUs and aggregation modules perform

1-bit arithmetic operations such as full-add, Boolean logic, data

multiplexing, etc. With the multi-cycle support of the controller,

full-precision operations such as subtraction, multiplication, and

minimization are supported. Thanks to the in-situ computing in

the FAST SRAM, the context is well preserved when switching

between computing and cache modes. As the FAST SRAM has

been verified by tape-out [24] to be able to perform all-row-

parallel data processing, the throughput is improved significantly

compared with the area-costly low-density register files in the

conventional SIMD extension in CPU.

Fig. 6. GRAPHIC binary operator instructions with multiple data.

B. Merge Operation Mapping

As a SIMD architecture, GRAPHIC can compile codes that

serially process lists and hash tables into parallel instructions.

These operations are collectively known as “merge” operations.

With the support of FAST SRAM, GRAPHIC can support both

inter-list merging and immediate instructions with different bit

widths.

Considering the binary operator instructions of key-value

pairs in GRAPHIC, as shown in Fig. 6, the key for each value

is stored in the CAM crossbars and the values are stored in the

FAST SRAM. First, key matching is performed in the CAM

to search for rows that store the operands. The search result

will drive the clock generator in FAST SRAM to cyclically

shift the bits in corresponding rows. For a PU with binary

operators, there are two 1-bit external inputs, namely target

operand b[i] and intermediate operand c[i], from the LSB side

(see Fig. 6) of the FAST SRAM rows for each cycle of bit-serial

computing. Besides, internal registers (I Reg) are also deployed

in PU for data computing (e.g., carry bits in full-add) and state

indications (e.g., data processing, processing finished, idle). The

supported arithmetic operations performed in the PU include

1-bit full addition, Boolean logic, and assignment. In each

cycle, the PU calculation result is written back to the MSB

cell of the target operand while the input from the intermediate

operand is written to its own MSB cell. After N cycles (N =
value bit widths), full-precision addition, logical computation,

and list copying operators are completed. Note that shift op-

erations are also supported by simply configuring the cycles

of the driving clock. Furthermore, by combining these opera-

tors, more complex operations such as multiplication can be

performed.

The immediate instructions with multiple data in GRAPHIC

can be used when the selected element of a list or hash table

performs the same calculation with an identical value Imm, as

shown in Fig. 7. Compared to the binary operator instructions,

one input of PU also comes from the LSB cell of target operand,

but the other input of Imm is sent from the external registers

instead of the SRAM cells. At this point, the left and right sides

of a FAST SRAM row can be reconfigured as two values with

halved bit width, or, one single value with full bit width. The PU

corresponding to each value will receive a shift input from the

FAST SRAM row, and a global input from the immediate value.

The PU output will be updated directly to this row.

Authorized licensed use limited to: Penn State University. Downloaded on May 21,2024 at 14:40:07 UTC from IEEE Xplore. Restrictions apply.

88 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 12, NO. 1, JANUARY-MARCH 2024

Fig. 7. GRAPHIC immediate instructions with multiple data.

Algorithm 1: Minimize the List by Bit-Serial.

1 Input: A list C[1 …m] of n-bit data width

2 Output: A list of stored minimum values

3 Initialization: Conf[1 …m]Deny[1 …m] to 0
4 Conf[i]: 1-bit, whether C[i] is confirmed as minimum

5 Deny[i]: 1-bit, whether C[i] is not minimum

6 Min1: 1-bit, the output before minimum is located

7 Min2: 1-bit, the output after minimum is located

8 End: 1-bit, whether the minimum is located

9 One: 1-bit, used to decide the exists of minimum

10 for i in 1:n // executed in n cycle

11 for j in 1:m // parallel in FAST SRAM

12 Din[j] ← ith significant bit in C[j]

13 D[j] ← !(Din[j] | Deny[j])

14 K[j] ← Din[j] & Conf[j]

15 Min1 ← !D[1] & !D[2] & … & !D[m]

16 Min2 ← K [1] | K [2] | … | K[m]

17 End ← !(!Conf[1] & !Conf[2] & … & !Conf[m])

18 One ← Sum(!D[1 …m]) is 1

19 If End

20 Min ← Min2

21 Else
22 Min ← Min1

23 for j in 1:m // parallel, iReg update in FAST SRAM

24 Conf[j] ← Conf[j] | (!Din[j] & One)

25 Deny[j] ← Deny[j] | (Din[j] & Min1)

26 Dout ← Min

Selecting data by CAM without data alignment avoids the

bottleneck of traditional SIMD, as SIMD requires data align-

ment before performing parallel computation. Also, the in situ

computing feature of GRAPHIC supported by the FAST SRAM

reduces the energy consumption of redundant memory access.

Thus, performing merging operations in GRAPHIC is high-

lighted with both high energy efficiency and high area efficiency

benefits.

C. Aggregation Operation Mapping

To extend the vector processing capability of the conventional

SIMD, GRAPHIC supports aggregation operations in multime-

dia and graph applications. As shown in Fig. 8, row-wise parallel

bit-serial computing is performed in the aggregation units (AUs).

Fig. 8. GRAPHIC aggregation instructions with multiple data.

Fig. 9. (a) Circuits and (b) an example of aggregation operation:
minimize.

Unlike the additive aggregation used in MAC-oriented CiM

design supported with ADCs or adder-tree, GRAPHIC shows

a lower-cost way to perform the minimum aggregation of

massive data. In GaaS-X [26] and the SIMD extension in

CPU, minimization is performed using full-precision digi-

tal logic, which introduces a large area overhead and power

consumption.

Some modifications based on the 10T FAST SRAM are made,

so as to support minimization and maximization. Previous FAST

SRAM performed only the right shift to support arithmetic

operations due to only one switch between adjacent cells. The

modification is to add an extra right-to-left pathway controlled

by one more switch to achieve a bi-directional shift. That is about

20% cell area overhead and less than 5% overall area overhead.

FAST SRAM with the support of a bi-directional shift allows the

bit to be fed to the PUs in order from MSB to LSB for comparison

operators, such as “set less than (SLT)”. The internal register

(iReg) is used to store the comparison result of the current bit

and will be fixed after being set to ‘1’.

Further, based on the bi-direction FAST SRAM, we can

improve this one-by-one comparison into the minimization op-

eration in Fig. 8 on the array. The aggregation unit used for

minimization is shown in Fig. 9(a). This operation updates all

Authorized licensed use limited to: Penn State University. Downloaded on May 21,2024 at 14:40:07 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: GRAPHIC: GATHER AND PROCESS HARMONIOUSLY IN THE CACHE WITH HIGH PARALLELISM 89

Fig. 10. (a) The GRAPHIC Architecture and (b) Operation Example of
Single Source Shortest Path (SSSP).

the selected rows to the smallest one. An example is illustrated

in Fig. 9(b). In principle, the minimization operator traverses

all bit locations of selected rows from MSB to LSB. When the

minimum value has not been located, and a ‘0’ exists among AD

inputs, ‘0’ is written back to the MSB cells of all selected rows

since values with ‘0’ on that bit location are smaller ones. Oth-

erwise, ‘1’ will be written back. Such a process will be stopped

if the sense amplifier detects one and only one ‘0’ in the inputs

Ki, i = 0, …, n. This row is the location for the minimum value.

Meanwhile, END and the register “Conf” of the corresponding

row are set to 1. The following bits written back to all rows

are the bits corresponding to that minimum value. This method

utilizes bitline discharging and sense amplifiers in the aggrega-

tion unit to achieve extremely low-cost of latency and energy

consumption in the aggregation operation without direct SRAM

access.

The details are shown in Algorithm 1. This bit-serial aggrega-

tion can convert minimization and maximization in an array to

a constant-cycle operation, which can achieve a large speedup

in the corresponding applications.

IV. APPLICATION MAPPING

In this section, a method to map applications to the SIMD

instructions provided by GRAPHIC is provided. Also in de-

tail, different levels of applications are presented as examples,

including graph traversal operation SSSP, graph relationship

analysis connected component (CC), basic operators for image

process reverse, and practical image processing algorithms (his-

togram equilibrium and haze removal).

A. Graph Processing Application

Single Source Shortest Path (SSSP): The SSSP algorithm

is an important operator in the graph data structure, which is

to designate a start vertex and compute the distances from all

other vertices to the start vertex. The distance is calculated by

summing the weights of the edges of connected vertices. Due to

the highly random graph data accessing, SSSP is a bottleneck for

many graph-related algorithms, such as pathfinding algorithms

and computer-aided design.

Fig. 11. An operation example of connected component (CC).

Fig. 10 illustrates how to deploy SSSP on the GRAPHIC

architecture based on Dijkstra algorithm. Consider an imple-

mentation sample shown in Fig. 10(a), each row of CAMs and

FAST SRAMs stores the graph information in a coordinate

(COO) format (source, destination, and weights of an edge).

The source and destination pairs for each edge are loaded onto

CAM crossbars, while the weights are loaded onto FAST SRAM.

In the SSSP algorithms, the GRAPHIC basic operators include

matched value addition and matched minimization. The control

flow is based on breadth-first search (BFS).

Fig. 10(b) shows the data flow for the SSSP algorithm under

the sample graph. Starting from the source vertex (vertex 0), the

neighbors (vertex 1 and vertex 2) are selected in an ascending

order of the distance to the source vertex to perform BFS. The

operator to find the minimum distance from the source can

be modified by the aggregation algorithm in Section III.C. In

this process, GRAPHIC does not update the original data, but

directly selects and reads the row activated by the register Conf.

Since vertex 1 is terminated with no CAM row matched, vertex 2

is sent to CAM to perform the matched value addition operation

to update the distance of the vertex 2 neighbors (vertex 3 and

vertex 4). Meanwhile, the edge start point will also be updated

as the source vertex. The process above is applied on each vertex

started from the source vertex to update its distance to the source

until a duplicate destination appears in a matched addition oper-

ation, which means multiple paths from the current vertex to the

source have been found. At this point, the matched minimization

operator through the matched destination will update the path to

be the shortest one. Those operations will be repeated until all

stored sources of all the edges are the starting vertex.

Connected component (CC): The CC algorithm is another

operator in the graph, which is to mark all the connected vertex

with the same group ID (always the smallest vertex ID in

the subgraph). In general, this algorithm requires traversing

all edges to pass the minimum ID, which will suffer from

frequent and irregular memory access. However, the proposed

GRAPHIC-based algorithms only require the traversal of ver-

tices, bringing significant throughput improvement compared

with conventional CPU processing since the number of edges

will be orders of magnitude larger than the number of vertices.

Fig. 11 illustrates the procedure of how CC works in

GRAPHIC. The source and destination pairs for each edge

Authorized licensed use limited to: Penn State University. Downloaded on May 21,2024 at 14:40:07 UTC from IEEE Xplore. Restrictions apply.

90 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 12, NO. 1, JANUARY-MARCH 2024

Fig. 12. Operation examples of image processing applications:
(a) image inversion, (b) histogram equilibrium, and (c) haze removal.

are loaded onto the CAM crossbars, while the FAST SRAM

is used to store the group ID, initialed with the destination

vertex id. Starting from the smallest vertex ID, the matching

is performed in both source and destination columns in CAM.

The minimization operation is performed on the selected rows

in the FAST SRAM, which will update the group ID with the

smallest one. This operation will be repeated until all vertices

are visited.

B. Image Processing Application

Unlike irregular graph applications, image processing is a

class of applications where data are distributed continuously

and computation could be performed sequentially, which is

friendly to SIMD. The important feature of GRAPHIC is the

capability of performing the in situ computation of images,

which outperforms SIMD or other near-memory computing

architectures, leading to reduced data movement and improved

energy efficiency.

Fig. 12(a) shows a basic operator for image processing in a

single channel: inversion. If the image pixel is in an unsigned 8-

bit format, then the inversion is calculated as 255 minus the value

of the original image. The image information is stored in the

FAST SRAM, while the CAM is used to identify the attributes of

the FAST SRAM row. The attributes will be matched as a tag to

select all the pixels of the area to be operated in the inversion. At

this point, immediate instruction with multiple data is performed

in the FAST SRAM.

Fig. 12(b) demonstrates an advanced algorithm called the

histogram equilibrium. In some scenarios due to lighting, tex-

ture, etc., the photograph may be difficult to read. Histogram

equilibrium may enhance the image visibility, by mapping the

image grayscale level to a new level with statistical methods.

The grayscale information will be stored in both CAM and

corresponding rows in the FAST SRAM. For an image loaded on

the FAST SRAM, iterate through all its gray levels to be matched

in CAMs and update them to new values accordingly in the

FAST SRAM. This match-update operation can be implemented

not only for histogram equilibrium but also in various image

enhancement operations with improved parallelism.

Further, a specific application of haze removal is presented

in Fig. 12(c). Objects covered in fog or haze are difficult to be

distinguished. A hazing removal algorithm based on statistical

analysis was proposed [30]. Although neural network-based

algorithms are well performed in various scenarios, such a

lightweight and effective algorithm is vibrant on small devices

at the edge. When the haze removal algorithm is executed, an

image is firstly divided into multiple small blocks Ω, and in each

block, the smallest RGB values are found, i.e.,

m = Jdark (x) = min
y∈Ω(x)

(

min
c∈{r,g,b}

JC (y)

)

(1)

For an image without haze or fog, the value m is close to 0. For an

image covered with haze, the value m represents the intensity of

the haze in that block. Next, simply subtract the corresponding

value m from each block to complete the haze removal. When

it comes to the GRAPHIC architecture, the FAST SRAM stores

the image information (the left side and the right side save the

same pixel), while CAM is used to select a certain block in

the whole image. Each block performs two cycles of operation.

In the first cycle, the minimization on the selected block in the

FAST SRAM on the right side. In the second cycle, the minimum

value is subtracted from the FAST SRAM on the left side to

complete the haze removal algorithm for that block.

Furthermore, combined with the image inversion algorithm,

the haze removal could be modified as a night vision algorithm

[31]. To accomplish this task, a dark image is reversed first to a

white image. Then the haze removal is performed on it. Finally,

reverse the image back to the dark version. The visibility of the

original dark image may be improved.

V. EVALUATION

In this section, experiments from the circuit level to the

application level with the GRAPHIC architecture constructed by

specific parameters are carried out to evaluate the performance

of GRAPHIC. The proposed GRAPHIC is compared with the

baseline architectures and the improvement in energy efficiency

and speedup is presented.

A. Circuit-Level Evaluation

The extended FAST SRAM subarray of 16 columns by 256

rows is simulated in Cadence Virtuoso on TSMC 65nm PDK.

The design of the processing unit (PU) and aggregation unit

(AU) is compiled by Synopsys DC. The overall control logic is

also evaluated by the DC compiler. A 6T cell content-address

memory based on split-wordline [7] is implemented to be re-

configured as SRAM, BCAM, or TCAM according to different

applications. The latency and power consumption of the on-chip

SRAM arrays are evaluated by the 65nm CACTI model [32]. As

an L1 cache, the external circuitry of the FAST SRAM and its

cache controller are the same as the dual port SRAM modeled

by CACTI.

Timing of FAST SRAM: Multiple cycles to perform a single

operation is the latency bottleneck of the bit-serial style com-

puting method. FAST SRAM uses local access and computing,

which can greatly increase the frequency. The delay of FAST

SRAM obtained from the simulation is 120ps. Considering

the clock jitter, skew, and other factors, the FAST SRAM is

finally driven by a 5GHz clock. In addition, benefiting from the

Authorized licensed use limited to: Penn State University. Downloaded on May 21,2024 at 14:40:07 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: GRAPHIC: GATHER AND PROCESS HARMONIOUSLY IN THE CACHE WITH HIGH PARALLELISM 91

TABLE I
PARAMETERS OF THE GRAPHIC DESIGN

simplicity of 1-bit arithmetic logic, the PU is synthesized as

an additional unit in the FAST SRAM shifting loop at 5GHz.

Since the bitwidth of a FAST SRAM [24] array is fixed, a larger

FAST SRAM could be built by dynamic bitwidth reconfigu-

ration. This makes FAST SRAM scalable for various cache

designs.

Energy of FAST SRAM: FAST SRAM exhibits high energy

efficiency by eliminating the impact of the large parasitic capac-

itance loads on the bitline in SRAM access. It is also noted that,

the energy consumption could be further improved by taking

care of the redundant shifting operations in activated rows. There

are two techniques applied in GRAPHIC for this purpose. First,

a routing unit inserted in a word can terminate the shifting

loop earlier to reduce the flips. This can be applied in image

processing since in most cases the data bit width is only 8 bits.

Second, the addressing function of CAM is used to clock-gate

the FAST SRAM rows. This is widely used in graph processing

because the data access and computing will be sparse. In this

case, pruning useless shifting is the key to improving energy

efficiency.

B. Macro-Level Evaluation

Considering a reasonable L1 cache size of 128Kb, a specific

design of GRAPHIC with 128Kb memory capacity used in the

evaluation is summarized in Table I.

The GRAPHIC unit consists of a 256-row 32-bit CAM and a

FAST SRAM of the same size. Each row of the FAST SRAM

is divided by 1-bit PU into two 16-bit left and right parts.

Each GRAPHIC unit accepts inputs from the 64-bit instruction

registers and the 32-bit search registers to perform computing

and matching, respectively.

The macro consists of 8 basic GRAPHIC units, managed by

the controller. The controller is responsible for communicating

with the CPU and distributing data and control vectors to the

registers of GRAPHIC. A finite state machine is used to control

the FAST SRAM shift behavior under one vector/aggregation

instruction.

The designed access memory bitwidth is 512 bits (64-bit x

8), the same as the baseline AVX-512 (a SIMD instruction set

in CPU).

TABLE II
METRICS OF A SUBSET OF VECTOR INSTRUCTIONS SUPPORTED BY

GRAPHIC COMPARED TO CAPE

C. System Evaluation

To support general-purpose applications, we abstract the

GRAPHIC operations into several SIMD instructions. Ta-

ble II shows the metrics of a subset of instructions supported

by GRAPHIC compared with the CAPE architecture. Both

GRAPHIC and CAPE adopt the bit-serial computing method.

Given the bit width n, the number of execution cycles is related

to n because of the bit-serial execution method. The energy

consumption of GRAPHIC is obtained based on simulations.

The energy consumption of CAPE is from [25].

Arithmetic instructions perform an arithmetic calculation be-

tween two vectors and write the result back to the target vector.

Table II shows the number of cycles and the power consumption

of GRAPHIC and the baseline CAPE, using vector-to-vector

addition, subtraction, and multiplication as examples. It is noted

that CAPE needs to traverse all its possibilities for each bit.

For arithmetic calculations in CAPE, each bit takes 8 cycles.

In comparison, GRAPHIC needs only 1 cycle to deal with

each bit. In terms of power consumption, GRAPHIC consumes

35.7% less energy compared with CAPE in 32-bit addition and

subtraction. However, due to the high flip rate mentioned earlier,

the power consumption is greater than CAPE when performing

multiplication with a high number of cycles.

Logic instructions perform Boolean functions on Boolean

vectors, which are widely used in control flow. For FAST

SRAM, the minimum cycle shift period is 8 (by route units).

However, the logic operation is only performed to the LSB,

which will incur redundant shift operations in a uni-directional

FAST SRAM. At this point, the bi-directional FAST SRAM

could provide a redundance-shift-free solution. When executing

a logical operation on GRAPHIC, PU selects the corresponding

logical operation path. First, it performs a right shift to send the

LSB to the PU and the result to the MSB. Then the PU selects the

direct pass (without calculation) and the FAST SRAM performs

a left shift to write the calculation result in the MSB back to the

LSB. In this way, GRAPHIC achieves 2-cycle logic operation,

which is more efficient than the 3-cycle logic operation of CAPE.

Authorized licensed use limited to: Penn State University. Downloaded on May 21,2024 at 14:40:07 UTC from IEEE Xplore. Restrictions apply.

92 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 12, NO. 1, JANUARY-MARCH 2024

TABLE III
SPECIFICATION SUMMARY

Comparison instructions compare the corresponding values

of two vectors in parallel. Those operations are similar to an

arithmetic operation, requiring only one cycle per bit, which

shows a 3x speedup compared with CAPE.

Data movement is used to copy the data from one vector to

another, which will be used when a temporary copy is needed.

Aggregation instructions are used to count the data in a vector

and give an eigenvalue. Taking the example of finding the

minimum value in a list, SIMD in CPU does the comparison in

parallel in the form of a binary tree. Therefore, a total logarithmic

level of time duration is required. The CAPE architecture cannot

support native aggregation operations. The proposed GRAPHIC

architecture performs the min and max calculation by the aggre-

gation unit. The minimization simply iterates over the operands

stored in the FAST SRAM from MSB to LSB to replace all values

in the list with the minimum value. At the same time, in order

to reuse the aggregation units in the maximization operator, n

more cycles of operations are needed to invert the operands in a

batch.

The above operands are integers in the two’s complement for-

mat. Since the FAST SRAM is naturally shifting independently

between rows in the array, it is capable to store floating point

numbers in rows and align them before calculation, future work

is promising.

D. Metrics Comparison

The baseline is AVX-like LiM with the same functionality as

GRAPHIC. It is used to evaluate the efficiency of CAM-based

GaaS-X, CAPE, and the proposed GRAPHIC architecture, as

shown in Table III.

AVX-like LiM consists of a 128Kb cache (the same as the

GRAPHIC design) and 9 PU. Each PU supports 16 parallel 32-

bit operands. A custom design is implemented by Synopsys DC.

The specifications of the SRAM cache design are from CACTI

[33]. As a macro based on the SIMD instruction set, the baseline

TABLE IV
UTILIZATION AND SPEEDUP SUMMARY

can perform a variety of operations, including logic, arithmetic,

and aggregation.

GaaS-X [26] includes 64Mb RRAM-based CiM crossbars

and 32Mb RRAM-based CAM arrays. Benefiting from the ex-

tremely high density of the RRAM memory, GaaS-X obtains

a capacity beyond the other efforts in Table II. However, the

flexibility issues and the area overhead associated with massive

ADCs make the computational throughput the lowest. Further-

more, it does not support different operators like VSHIFT,

VLOGIC, and VMOV in Table II.

CAPE [25] performs as an associative computing engine

in the CPU. For each 32x32 SRAM CAM array as a PE, a

total of 131K vector lanes could be performed simultaneously.

With an advanced 7nm process, CAPE achieves the highest

area efficiency. However, the frequent bitline charging in CAPE

incurs lower energy efficiency compared with GaaS-X and the

proposed GRAPHIC.

GRAPHIC is proposed to obtain the highest energy efficiency

under the same bit width while supporting irregular data access.

In addition, it has 5x area efficiency improvement compared to

the baseline, and 3x area efficiency improvement compared to

CAPE in a normalized process.

E. Task Evaluation

We designed a custom cycle-granularity simulator for

speedup evaluation of GRAPHIC. The simulator splits the com-

puting tasks into instructions that can be executed on GRAPHIC

and the baseline architecture. The overall task execution time is

obtained based on the metrics in Table II.

The applications of the two classic data access patterns in

Section IV are used to evaluate the overall speedup. In Fig. 13,

the graph computing contains many irregular data flows, and

the image processing is featured with continuous regular data

mapping. Fig. 13(a) compares the speedup of GRAPHIC against

GaaS-X and CAPE. Fig. 13(b) shows the comparison of energy

consumption between GRAPHIC and CAPE.

In applications with irregular data access (SSSP and CC),

GaaS-X and GRAPHIC architectures with matched access struc-

tures achieve 4x-8x speedup ratios with respect to the AVX-like

method. GRAPHIC is about 50% faster in graph computing

compared to GaaS-X, due to the unique aggregation mechanism

in GRAPHIC and higher area efficiency than ADCs used in

GaaS-X. On contrary, CAPE architectures that require dense

computing to take advantage of acceleration are difficult to

obtain speedup in sparse computation. As shown in Table IV,

although CAPE has a high total throughput, the low utilization

Authorized licensed use limited to: Penn State University. Downloaded on May 21,2024 at 14:40:07 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: GRAPHIC: GATHER AND PROCESS HARMONIOUSLY IN THE CACHE WITH HIGH PARALLELISM 93

Fig. 13. (a) Speedup ratio with respect to AVX-like and (b) energy consumption of GRAPHIC compared to GaaS-X [26], and CAPE [25].

in graph computation hinders CAPE from taking advantage of

it.

However, with intensive data access, the SIMD-based base-

line and CAPE architecture will perform well in image-

enhancing tasks (such as hist equal). In these intensive tasks,

the GRAPHIC architecture can achieve performance close to

that of the CAPE architecture of a larger area. Considering

area normalization, GRAPHIC has a 5x-10x speedup compared

to CAPE. And in tasks that require aggregation, such as the

haze removal and night vision algorithm, GRAPHIC has a 3.4x

improvement over CAPE and a 31x improvement considering

the area normalization. GaaS-X is limited by the accumulation

provided by the MAC-oriented CiM module and cannot provide

acceleration for image processing computations. As shown in

Table IV, the utilization rate in CAPE is significantly higher in

intensive tasks such as image processing.

Overall, the GRAPHIC architecture achieves an average

speedup of 3.8x-4.8x speedup compared to the AVX-like, GaaS-

X, and CAPE architecture.

VI. DISCUSSION

GRAPHIC breaks the dilemma of flexibility and parallelism

faced in existing in-memory computing frameworks. With the

help of the FAST SRAM and CAM, GRAPHIC supports high

parallelism and irregular data selection for parallel computing.

While this work only implements a partial SIMD instruction

set, more operators could be supported in the future with more

implemented SIMD instructions.

Sensitivity: The number of processing elements determines

the maximum throughput. However, more circuits do not neces-

sarily perform better on specific tasks. Taking graph computing

and image processing as examples, increasing the array size

of GRAPHIC has different impacts. For graph computing, as

shown in Table IV, the utilization rate in GRAPHIC is still low.

Therefore, it may not obtain better performance by directly in-

creasing the array size. Instead, applying subgraph segmentation

may be more helpful. For image processing, the bottleneck of the

128Kb GRAPHIC design is the array size. Adding computing

resources here will improve the task performance.

Overhead: While achieving high-efficiency in-memory

SIMD, GRAPHIC may introduce some overhead. The first that

comes to mind could be the area occupation compared to the

conventional SRAM. Although the bi-direction FAST SRAM at

the cell level has 36% area overhead over an 8T dual-port SRAM,

the overall area overhead is about only 2% when considering the

peripheral circuits in the cache. Another overhead could be the

additional power consumption when performing regular access

(not computing) to the FAST SRAM, considering the increased

parasitic capacitance inside the cell. Actually, the overall access

power overhead is only about 1% because the main sources of

the access energy are still the bitline charging activities and the

SA operation.

Limitation: It is noted that there are some functions that

are currently difficult to support with GRAPHIC, GaaS-X, and

CAPE. The first function is a non-one-to-one data selection,

such as using a convolutional kernel in an image for expansion

or sharpening algorithms. An alternative way is to realign and

copy the image data by a number of times equal to the kernel

size. However, frequent data movement would incur serious

energy overhead, which will eliminate the energy efficiency

of IMC for this function. Another difficult function is the op-

erations between adjacent data. Because a compute operation

in GRAPHIC is restricted to two rows of the same index in

two FAST SRAMs, parallel computation located in rows of

a different row index, e.g., two adjacent rows, will not be

supported.

Future Work: Floating-point support is an important SIMD

feature. One potential way to implement floating-point calcula-

tions in GRAPHIC is to store a set of floating-point numbers in

two arrays. One array is used to store the exponent and the other

is used to store the mantissa. The floating-point calculation starts

by aligning the exponents. The number of bits to be shifted in

the mantissa needs to be obtained using subtraction in parallel.

The array storing the mantissa is shifted separately according

to the result of the calculation. After the exponent is aligned,

the floating-point calculation would be performed according to

the arithmetic logic. Preliminary investigation shows an area

overhead of roughly 25% for the single-precision floating-point

format because of the intermediate value during exponent align-

ment. Future work in complete end-to-end implementation and

optimization would be meaningful. Finer granularity of bitwidth

reconfigurability is also a promising direction, as it achieves

better performance on some tasks at the cost of extra area and

Authorized licensed use limited to: Penn State University. Downloaded on May 21,2024 at 14:40:07 UTC from IEEE Xplore. Restrictions apply.

94 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 12, NO. 1, JANUARY-MARCH 2024

control overheads, such as reconfiguring four 8-bit FAST SRAM

subarrays instead of using the original two 16-bit subarrays.

VII. CONCLUSION

In this paper, a high-flexibility and high-parallelism in-

memory computing architecture, namely GRAPHIC, is pro-

posed to deal with the dilemma of existing MAC-oriented and

logic-in-memory approaches. GRAPHIC utilizes the matching

functionality of content-address memory (CAM) and the in-

dependently parallel computing of the FAST SRAM. On the

one hand, GRAPHIC is capable of supporting SIMD instruc-

tion subsets with the in-memory computing method; on the

other hand, GRAPHIC supports irregular data processing in

parallel to optimize the graph processing algorithms. Therefore,

GRAPHIC has established a new paradigm of energy-efficient,

flexible, and high-parallel in-memory computing for various

tasks including dense mapping and irregular access.

REFERENCES

[1] “Beyond von Neumann,” Nat. Nanotechnol., vol. 15, no. 7, pp. 507–507,
Jul. 2020, doi: 10.1038/s41565-020-0738-x.

[2] J. Backus, “Can programming be liberated from the von Neumann style?:
A functional style and its algebra of programs,” Commun. ACM, vol. 21,
no. 8, pp. 613–641, Aug. 1978.

[3] C.-J. Jhang, C.-X. Xue, J.-M. Hung, F.-C. Chang, and M.-F. Chang,
“Challenges and trends of SRAM-based computing-in-memory for AI
Edge devices,” IEEE Trans. Circuits Syst. I, vol. 68, no. 5, pp. 1773–1786,
May 2021, doi: 10.1109/TCSI.2021.3064189.

[4] A. Agrawal, A. Jaiswal, C. Lee, and K. Roy, “X-SRAM: Enabling in-
memory Boolean computations in CMOS static random access memories,”
IEEE Trans. Circuits Syst. I, vol. 65, no. 12, pp. 4219–4232, Dec. 2018,
doi: 10.1109/TCSI.2018.2848999.

[5] M. Lee et al., “FeFET-based low-power bitwise logic-in-memory with
direct write-back and data-adaptive dynamic sensing interface,” in Proc.

IEEE/ACM Int. Symp. Low Power Electron. Des., Boston MA, 2020,
pp. 127–132, doi: 10.1145/3370748.3406572.

[6] J. Chen, W. Zhao, Y. Wang, Y. Shu, W. Jiang, and Y. Ha, “A reli-
able 8T SRAM for high-speed searching and logic-in-memory opera-
tions,” IEEE Trans. VLSI Syst., vol. 30, no. 6, pp. 769–780, Jun. 2022,
doi: 10.1109/TVLSI.2022.3164756.

[7] “A 28 nm configurable memory (TCAM/BCAM/SRAM) using push-rule
6T Bit cell enabling logic-in-memory,” IEEE J. Solid-State Circuits,
vol. 51, no. 4, pp. 1009–1021, Apr. 2016.

[8] S. Angizi, Z. He, A. Awad, and D. Fan, “MRIMA: An MRAM-based
in-memory accelerator,” IEEE Trans. Comput.-Aided Des. Integr. Circuits

Syst., vol. 39, no. 5, pp. 1123–1136, May 2020.
[9] S. Angizi, Z. He, F. Parveen, and D. Fan, “IMCE: Energy-efficient bit-wise

in-memory convolution engine for deep neural network,” in Proc. IEEE

23rd Asia South Pacific Des. Automat. Conf., 2018, pp. 111–116.
[10] X. Si et al., “A local computing cell and 6T SRAM-based computing-

in-memory macro with 8-b MAC operation for edge AI chips,” IEEE

J. Solid-State Circuits, vol. 56, no. 9, pp. 2817–2831, Sep. 2021,
doi: 10.1109/JSSC.2021.3073254.

[11] J.-W. Su et al., “15.2 A 28nm 64Kb inference-training two-way transpose
multibit 6T SRAM compute-in-memory macro for AI edge chips,” in Proc.

IEEE Int. Solid- State Circuits Conf., San Francisco, CA, USA, 2020,
pp. 240–242.

[12] S. Xie, C. Ni, A. Sayal, P. Jain, F. Hamzaoglu, and J. P. Kulkarni,
“16.2 eDRAM-CIM: Compute-in-memory design with reconfigurable
embedded-dynamic-memory array realizing adaptive data converters and
charge-domain computing,” in Proc. IEEE Int. Solid- State Circuits Conf.,
San Francisco, CA, USA, 2021, pp. 248–250.

[13] J. Yue et al., “15.2 A 2.75-to-75.9 TOPS/W computing-in-memory NN
processor supporting set-associate block-wise zero skipping and ping-
pong CIM with simultaneous computation and weight updating,” in Proc.

IEEE Int. Solid- State Circuits Conf., San Francisco, CA, USA, 2021,
pp. 238–240, doi: 10.1109/ISSCC42613.2021.9365958.

[14] S. Angizi, Z. He, A. S. Rakin, and D. Fan, “CMP-PIM: An energy-efficient
comparator-based processing-in-memory neural network accelerator,” in
Proc. 55th Annu. Des. Automat. Conf., San Francisco CA, 2018, pp. 1–6,
doi: 10.1145/3195970.3196009.

[15] A. Biswas and A. P. Chandrakasan, “CONV-SRAM: An energy-efficient
SRAM with in-memory dot-product computation for low-power convo-
lutional neural networks,” IEEE J. Solid-State Circuits, vol. 54, no. 1,
pp. 217–230, Jan. 2019, doi: 10.1109/JSSC.2018.2880918.

[16] R. Guo et al., “A 5.1pJ/Neuron 127.3us/inference RNN-based speech
recognition processor using 16 computing-in-memory SRAM macros in
65nm CMOS,” in Proc. IEEE Symp. VLSI Circuits, Kyoto, Japan, 2019,
pp. C120–C121, doi: 10.23919/VLSIC.2019.8778028.

[17] F. Tu et al., “A 28nm 29.2TFLOPS/W BF16 and 36.5TOPS/W
INT8 reconfigurable digital CIM processor with unified FP/INT
pipeline and bitwise in-memory booth multiplication for cloud
deep learning acceleration,” in Proc. IEEE Int. Solid- State

Circuits Conf., San Francisco, CA, USA, 2022, pp. 1–3,
doi: 10.1109/ISSCC42614.2022.9731762.

[18] M. J. Flynn, “Some computer organizations and their effectiveness,”
IEEE Trans. Comput., vol. C–21, no. 9, pp. 948–960, Sep. 1972,
doi: 10.1109/TC.1972.5009071.

[19] G. Conte, S. Tommesani, and F. Zanichelli, “The long and winding road to
high-performance image processing with MMX/SSE,” in Proc. IEEE 5th

Int. Workshop Comput. Architectures Mach. Percep., Padova, Italy, 2000,
pp. 302–310, doi: 10.1109/CAMP.2000.875989.

[20] S. Zhou, C. Chelmis, and V. K. Prasanna, “Accelerating large-scale
single-source shortest path on FPGA,” in Proc. IEEE Int. Parallel Dis-

trib. Process. Symp. Workshop, Hyderabad, India, 2015, pp. 129–136,
doi: 10.1109/IPDPSW.2015.130.

[21] L. Arge, G. S. Brodal, and L. Toma, “On external-memory MST,
SSSP, and multi-way planar graph separation,” in Algorithm Theory -

SWAT 2000, vol. 1851, Berlin, Germany: Springer, 2000, pp. 433–447,
doi: 10.1007/3-540-44985-X_37.

[22] T. Geng et al., “AWB-GCN: A graph convolutional network accel-
erator with runtime workload rebalancing,” in Proc. IEEE/ACM 53rd

Annu. Int. Symp. Microarchitecture, Athens, Greece, 2020, pp. 922–936,
doi: 10.1109/MICRO50266.2020.00079.

[23] K. Pagiamtzis and A. Sheikholeslami, “Content-addressable mem-
ory (CAM) circuits and architectures: A tutorial and survey,” IEEE

J. Solid-State Circuits, vol. 41, no. 3, pp. 712–727, Mar. 2006,
doi: 10.1109/JSSC.2005.864128.

[24] Y. Chen et al., “FAST: A fully-concurrent access SRAM topology for
high row-wise parallelism applications based on dynamic shift operations,”
IEEE Trans. Circuits Syst. II, vol. 70, no. 4, pp. 1605–1609, Apr. 2023,
doi: 10.1109/TCSII.2022.3231589.

[25] H. Caminal et al., “CAPE: A content-addressable processing engine,” in
Proc. IEEE Int. Symp. High-Perform. Comput. Architecture, Seoul, Korea
(South), 2021, pp. 557–569, doi: 10.1109/HPCA51647.2021.00054.

[26] N. Challapalle et al., “GaaS-X: Graph analytics accelerator support-
ing sparse data representation using crossbar architectures,” in Proc.

IEEE/ACM 47th Annu. Int. Symp. Comput. Architecture, Valencia, Spain,
2020, pp. 433–445, doi: 10.1109/ISCA45697.2020.00044.

[27] C. C. Foster, Content Addressable Parallel Processors. Hoboken, NJ,
USA: Wiley, 1976.

[28] J. Potter, J. Baker, S. Scott, A. Bansal, C. Leangsuksun, and C. Asthagiri,
“ASC: An associative-computing paradigm,” Computer, vol. 27, no. 11,
pp. 19–25, Nov. 1994, doi: 10.1109/2.330039.

[29] G. E. Sayre, “Staran: An associative approach to multiprocessor
architecture,” in Computer Architecture, vol. 4, W. Händler and
R. K. Bell, Eds. Berlin, Germany: Springer, 1976, pp. 199–221,
doi: 10.1007/978-3-642-66400-7_9.

[30] K. He, J. Sun, and X. Tang, “Single image haze removal using dark
channel prior,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 12,
pp. 2341–2353, Dec. 2011, doi: 10.1109/TPAMI.2010.168.

[31] X. Dong et al., “Fast efficient algorithm for enhancement of low lighting
video,” in Proc. IEEE Int. Conf. Multimedia Expo, Barcelona, Spain, 2011,
pp. 1–6, doi: 10.1109/ICME.2011.6012107.

[32] R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee, and V.
Srinivas, “CACTI 7: New tools for interconnect exploration in innovative
off-chip memories,” ACM Trans. Archit. Code Optim., vol. 14, no. 2,
pp. 1–25, Jul. 2017, doi: 10.1145/3085572.

[33] N. P. Jouppi, A. B. Kahng, N. Muralimanohar, and V. Srini-
vas, “CACTI-IO: CACTI with OFF-chip power-area-timing models,”
IEEE Trans. VLSI Syst., vol. 23, no. 7, pp. 1254–1267, Jul. 2015,
doi: 10.1109/TVLSI.2014.2334635.

Authorized licensed use limited to: Penn State University. Downloaded on May 21,2024 at 14:40:07 UTC from IEEE Xplore. Restrictions apply.

CHEN et al.: GRAPHIC: GATHER AND PROCESS HARMONIOUSLY IN THE CACHE WITH HIGH PARALLELISM 95

Yiming Chen (Student Member, IEEE) received
the BS degree from the Department of Elec-
tronic Engineering, Tsinghua University, Bei-
jing, China, in 2021. He is currently working
toward the PhD degree with the Department
of Electronic Engineering, Tsinghua University,
Beijing, China. His current research interests
include computing-in-memory architecture and
co-optimization on artificial intelligence.

Mingyen Lee (Student Member, IEEE) received
the BS degree from the Department of Elec-
tronic Engineering, Tsinghua University, Bei-
jing, China, in 2021. He is currently working
toward the master’s degree with the Depart-
ment of Electronic Engineering, Tsinghua Uni-
versity, Beijing, China. His research interests
mainly include energy-area-efficient computing-
in-memory designs.

Guohao Dai (Member, IEEE) received the BS
and PhD (with honor) degrees from Tsinghua
University, Beijing, in 2014 and 2019. He is join-
ing Shanghai Jiao Tong University, Shanghai,
China, as an associate professor. His research
interests include mainly focuses on large-scale
sparse graph computing, heterogeneous hard-
ware computing, emerging hardware architec-
ture, and etc.

Mufeng Zhou (Student Member, IEEE) re-
ceived the BS degree from the Department
of Electronic Engineering, Tsinghua University,
Beijing, China, in 2021. He is currently working
toward the master’s degree with the Department
of Electronic Engineering, Tsinghua University,
Beijing, China. His research interests mainly in-
clude computing-in-memory circuit and system.

Nagadastagiri Challapalle received the PhD
degree in computer science and engineer-
ing from the Pennsylvania State University,
State College, PA, and his thesis proposed
processing-in-memory architectures for deep
learning and graph analytics applications. He
is a hardware architect with Nvidia in Santa
Clara, CA, USA. His research interests include
the areas of performance and power model-
ing for parallel computer architectures, and ef-
ficient scale-out architectures for deep learning
training applications.

Tianyi Wang received the BS degree from
Shandong University, and the MS degree from
Ulm University. After joining Mercedes-Benz in
2012, he worked in different roles in crowd data
analysis and advanced driver assistance sys-
tems. He is currently in charge of ADAS devel-
opment and validation.

Yao Yu received the BS degree from the Bei-
jing Institute of Technology, and the MS degree
from the Karlsruhe Institute of Technology. She
joined the Department of Research & Devel-
opment Automated Driving System since 2018.
She is currently developing an automated driv-
ing system-data recorder.

Yongpan Liu (Senior Member, IEEE) received
the BS, MS, and PhD degrees from Tsinghua
University, in 1999, 2002, and 2007, respec-
tively. He is currently a full professor with the De-
partment of Electronic Engineering, Tsinghua
University, China. He is a Program Committee
Member for ISSCC, A-SSCC and DAC.

Yu Wang (Fellow, IEEE) received the BS
and PhD (with honor) degrees from Ts-
inghua University, Beijing, in 2002 and 2007.
He is currently a tenured professor with the
Department of Electronic Engineering, Ts-
inghua University. His research interests in-
clude brain inspired computing, application spe-
cific hardware computing, parallel circuit analy-
sis, and power/reliability aware system design
methodology.

Huazhong Yang (Fellow, IEEE) received the
BS degree in microelectronics and the MS and
PhD degrees in electronic engineering from
Tsinghua University, Beijing, China, in 1989,
1993, and 1998, respectively. In 1993, he joined
the Department of Electronic Engineering, Ts-
inghua University, where he has been a full pro-
fessor since 1998.

Authorized licensed use limited to: Penn State University. Downloaded on May 21,2024 at 14:40:07 UTC from IEEE Xplore. Restrictions apply.

96 IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTING, VOL. 12, NO. 1, JANUARY-MARCH 2024

Vijaykrishnan Narayanan (Fellow, IEEE) re-
ceived the BS degree in computer science
and engineering from the University of Madras,
Chennai, India, in 1993, and the PhD degree
in computer science and engineering from the
University of South Florida, Tampa, FL, USA,
in 1998. He is currently the Robert Noll chair
professor of Computer Science and Engineer-
ing and Electrical Engineering with Pennsylva-
nia State University, University Park, PA. He is
also the co-director of the Microsystems Design
Laboratory.

Xueqing Li (Senior Member, IEEE) received
the BS and PhD degrees from the Department
of Electronic Engineering, Tsinghua University,
Beijing, China, in 2007 and 2013, respectively.
He is currently an associate professor with
the Department of Electronic Engineering, Ts-
inghua University. From 2013 to 2017, he was
a postdoctoral researcher with the Department
of Computer Science and Engineering, Penn
State University, State College, PA. He joined
the Department of Electronic Engineering, Ts-

inghua University, as an assistant professor, in 2018. He has more
than 100 publications. He holds more than 20 patents. His research
interests include emerging memory, memory-oriented computing, and
high-performance data converters. He is currently the TPC member of
DAC, ICCAD, ASP-DAC, GLSVLSI, ISVLSI, etc.

Authorized licensed use limited to: Penn State University. Downloaded on May 21,2024 at 14:40:07 UTC from IEEE Xplore. Restrictions apply.

