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State preparation for quantum algo-
rithms is crucial for achieving high accu-
racy in quantum chemistry and compet-
ing with classical algorithms. The local-
ized active space unitary coupled cluster
(LAS-UCC) algorithm iteratively loads a
fragment-based multireference wave func-
tion onto a quantum computer. In this
study, we compare two state prepara-
tion methods, quantum phase estimation
(QPE) and direct initialization (DI), for
each fragment. We analyze the impact
of QPE parameters, such as the number
of ancilla qubits and Trotter steps, on
the prepared state. We find a trade-off
between the methods, where DI requires
fewer resources for smaller fragments,
while QPE is more efficient for larger frag-
ments. Our resource estimates highlight
the benefits of system fragmentation in
state preparation for subsequent quantum
chemical calculations. These findings have
broad applications for preparing multiref-
erence quantum chemical wave functions
on quantum circuits, particularly via QPE
circuits.

1 Introduction
In recent years, quantum chemistry has wit-
nessed remarkable progress in quantum comput-
ing, driven by advancements in hardware and al-
gorithms [1–3]. Quantum computers offer a no-
table advantage by leveraging the exponential re-
duction in required qubits compared to classical

bits for storage and manipulation of quantum in-
formation, thanks to the inherent quantum me-
chanical characteristics of qubits. This potential
enables the simulation of complex chemical sys-
tems that may be impractical to compute on clas-
sical computers, at least in theory.

In many cases, the description of complex sys-
tems with numerous degenerate electronic states
requires the use of multireference methods based
on a multiconfigurational wave function. Exam-
ples of such methods are multireference configura-
tion interation (MRCI) [4, 5], multireference per-
turbation theory [6, 7], and the complete active
space self-consistent field method (CASSCF) [8].
The computational cost of these methods scales
exponentially with the number of electrons and
orbitals in the active space, making accurate cal-
culations for large systems intractable.

When dealing with chemical systems that con-
sist of multiple fragments exhibiting local strong
correlation, while being surrounded by a weakly
correlated environment, active space-based frag-
mentation methods can serve as an alterna-
tive to CASSCF. These methods can help re-
duce the computational cost of the calculation,
while still maintaining an accurate description
of the individual fragments. One such method
is the localized active-space self-consistent field
(LASSCF) method [9, 10]. One of the limita-
tions of fragment-based methods like LASSCF is
the inability to recover correlation between frag-
ments. This drawback can be addressed by in-
troducing entanglement between fragments, as
demonstrated in the localized active space state
interaction (LASSI) method [11], which however,
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reintroduces the factorial scaling of CASSCF. A
more efficient way to improve the LASSCF de-
scription is to use an inter-fragment correlator
implemented on a quantum computer. Quantum
computers are particularly suitable for simulat-
ing multireference wave functions due to the com-
pact representation and manipulation of vectors
containing multiple electronic configurations on a
quantum register. To accurately represent com-
plex chemical systems, multireference states must
first be prepared on a quantum computer. Cur-
rent methods do not rely on classical algorithms
to improve the prepared state; instead, they uti-
lize chemical insights to select crucial configura-
tions and simplify the state preparation step [12–
14].

To leverage the capabilities of quantum com-
puters in capturing fragment correlation follow-
ing a LASSCF calculation, we have developed
the localized active-space unitary coupled clus-
ter (LAS-UCC) method [15]. The original LAS-
UCC method incorporates quantum phase esti-
mation (QPE) [16, 17] circuits to load multiref-
erence fragment wave functions, which are sub-
sequently coupled with a unitary coupled cluster
(UCC) ansatz [18–20]. The variational quantum
eigensolver (VQE) [21] is used to iteratively de-
termine the UCC parameters and minimize the
energy. This involves loading all fragment wave
functions at the beginning of each VQE iteration
containing a UCC circuit. In principle QPE can
be utilized for high-fidelity state preparation, by
employing additional (ancilla) qubits than those
required to represent the wave function. The
measurement of the ancilla qubits induces a col-
lapse of the system register to an eigenstate of
the relevant Hamiltonian applied to the system
via controlled unitary operations [22]. The load-
ing of a converged multireference wave function
utilizes state-of-the-art classical methods to cap-
ture strong correlation within a fragment, which
is challenging to achieve on a quantum computer
with an ansatz due to gate depth and optimiza-
tion issues. Consequently, the reliable prepara-
tion of a state that accurately reproduces the
LASSCF wave function on a quantum circuit is
an important consideration in refining the LAS-
UCC algorithm.

In this study, we present comprehensive re-
source and error estimates for LAS-UCC by di-
rectly compiling quantum circuits for noise-free

quantum devices. We investigate two distinct
schemes of state preparation to load the LASSCF
wave function onto the quantum circuit prior to
conducting a VQE iteration. First, we use QPE
in the fragments to prepare the ground state
using a fragment Hamiltonian derived from the
LASSCF calculation (defined in Section 2.2 be-
low). Second, we directly initialize the circuit
with the converged LASSCF wave function using
one- and two-qubit gates. We validate our code
using real chemical systems that demonstrate the
impact of increasing fragment numbers and the
level of strong correlation within and between
fragments. Additionally, we define a threshold
number of qubits that distinguishes regions where
it is more cost-effective on a quantum computer
to perform initial state loading through DI ver-
sus fragmented QPE. While our primary focus
is state preparation for the LAS-UCC algorithm,
our results offer insights into any QPE-based al-
gorithm, as effective state preparation techniques
are vital for the success of QPE [22].

The paper is structured as follows:
Section 2 provides the theoretical background

of the LAS-UCC algorithm, along with a descrip-
tion of the state preparation circuits and compu-
tational details.

Section 3 presents LAS-UCC results using both
methods of state preparation, an analysis of the
QPE-based state preparation, resource estimates,
and a study on spin states of a transition metal
complex using LAS-UCC.

Lastly, Section 4 includes a discussion of the
obtained results and concluding remarks.

2 Theoretical Background

2.1 LASSCF

The LASSCF [9, 10] method is a classical
fragment-based approach that incorporates user-
selected fragment active spaces, along with treat-
ing the inactive space and inter-fragment interac-
tions at a mean-field level, such as the restricted
Hartree-Fock method (RHF). [23].

The wave function is thus an anti-symmetrized
product of the K-fragment CAS wave functions
|ΨAK

⟩ and the inactive mean-field wave function
|ΦD⟩:

|LAS⟩ = (
∧

K

|ΨAK
⟩) ∧ |ΦD⟩ (1)
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It is variationally optimized to obtain the
LASSCF energy.
LASSCF is a more advantageous starting point

for hybrid quantum-classical methods compared
to the commonly used Hartree-Fock wave func-
tion, as it begins from a mean-field reference and
incorporates intra-fragment correlation, with the
size of the active space and choice of fragments as
tunable parameters. As a fragmentation method,
it provides a clear advantage over other classi-
cal ways of state preparation for a quantum algo-
rithm, allowing the fragment-wise loading of the
multireference wave function obtained.

2.2 LAS-UCC
The LAS-UCC algorithm combines LASSCF
with a whole-system VQE enabling the inclusion
of both intra- and inter-fragment correlation ef-
fects.
The algorithm currently begins by performing

a LASSCF calculation to convergence on a clas-
sical computer. The LASSCF wave function thus
obtained can be written as in Eq. (1) as a product
of fragment wave functions. The fragment wave
functions are individually loaded onto a quantum
computer and measurements are made of a cir-
cuit comprising the fragment circuits as well as
a parameterized ansatz, such as the UCC ansatz
[18–20].
The localized active space of a single fragment

K, containing spin orbitals denoted by (i, j, k, l),
together with the active spaces of the other frag-
ments L, with the corresponding spin orbitals de-
noted by (m, n) is used to create the fragment
Hamiltonian HK :

HK =
∑

ij

(hij +
∑

u

gju
iu +

∑

mn

gjn
imγn

m) â†
j âi (2)

+ 1
4

∑

ijkl

gkl
ij â†

kâ†
l âj âi

where hij and gkl
ij represent the one- and two-

particle components of the Hamiltonian, u rep-
resents the set of inactive orbitals, and â†

j and
âi are fermionic second-quantized creation and
annihilation operators. The qubit Hamiltonian
H̃K is created by mapping the fermionic Hamil-
tonian HK to the qubit space via a fermion-to-
spin transformation, such as the Jordan-Wigner
transformation [24].
Figure 1 provides a flowchart for the quantum

portion of the algorithm, once the LASSCF is

converged and all conversions to the qubit ba-
sis have taken place. The fragment Hamiltonians
H̃K are used to load the fragment wave func-
tions via QPE circuits, while the total system
Hamiltonian H̃ and a generalized UCC ansatz
|Ψ(θ)⟩ are used to compute the VQE energy dur-
ing the optimization process. A classical opti-
mizer is used to generate new ansatz parameters
θ′ to improve the energy measured at each iter-
ation. In this flowchart, the state preparation
can be done via either a QPE procedure for each
fragment (Scheme 1 in Fig. 1) as originally sug-
gested [15], or a direct initialization (DI) of frag-
ment state vectors (Scheme 2), with both sets
of circuits depicted as implemented in this work.
Other methods may also be used to load the wave
function, such as loading individual Slater deter-
minants [25], or a state containing a few Slater
determinants, which may be chosen via chemical
intuition or an efficient selected configuration in-
teraction algorithm [14, 26].

2.3 State Preparation
We explore the challenges of achieving both high
accuracy in wave function parameters and ener-
gies, as well as minimizing the number of qubits
and circuit depth needed when using a multiref-
erence wave function for state preparation. We
investigate two distinct methods of state prepa-
ration, which are described below, placing par-
ticular emphasis on the necessary resources and
the resulting error in the obtained LAS-UCC en-
ergies.

2.3.1 Scheme 1: QPE-based State Preparation

State preparation begins with a QPE circuit per-
formed on each individual fragment. The unitary
operator for the QPE is given by:

ÛK = eiH̃Kb . (3)

A series of gates controlled by the ancilla qubits
and incorporating this unitary operator is applied
on the fragment qubits in order to retrieve the
phase. After an inverse quantum Fourier trans-
form and measuring the ancilla qubits, the phases
ϕk are obtained as values between 0 and 1 by
phase kickback. The eigenvalues Ek of the frag-
ment Hamiltonian H̃K can then be obtained as:

Ek = 2πϕk

b
. (4)
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Figure 1: Flowchart describing the LAS-UCC algorithm, with example state preparation and measurement circuits
containing two 2-qubit fragments, using a single ancilla qubit each for the QPEs. Scheme 1 represents the LAS-UCC
algorithm from Ref 15 and is referred to within as QPE-based LAS-UCC (QPE-LAS-UCC), and Scheme 2 as direct
initialization LAS-UCC (DI-LAS-UCC). The boxes marked ‘QPE’, ‘Initialize’ and ‘UCC’ represent circuits containing
one- and two-qubit gates that perform the respective operations. The fragment Hamiltonians H̃K and the total
system Hamiltonian H̃, both in the qubit basis, as well as the parameterized wave function |Ψ(θ)⟩, are inputs to the
UCC circuit. |ai⟩ are ancilla qubits, |xi⟩ and |yi⟩ are qubits belonging to fragment 1 and fragment 2 respectively.
The classical optimizer suggests new parameters for the UCC circuits and the overall VQE procedure to minimize the
coupled fragments’ energy.

The scaling parameter b must be estimated to
lead to a 1:1 mapping of phase and energy eigen-
values. Measurement of the ancilla qubits leads
to the collapse of the system qubits into one of the
eigenstates of the fragment Hamiltonian, with a
probability dependent on the overlap of the initial
state with the specific eigenstate.

Because the initial state is generally not an
eigenstate of the fragment Hamiltonian, the cir-
cuit must be run enough times to obtain the
ground state energy (and collapse the system
qubits into the ground state with measurement)
with high probability. The ancilla qubit phase
corresponding to the ground state is stored. Fi-
nally, for the execution of the VQE iteration,
the QPE circuit for each fragment is run using
the fragment Hamiltonians H̃K until the ancilla
phase corresponding to the ground state of the
fragment Hamiltonian is reproduced.

2.3.2 Scheme 2: DI-based State Preparation

DI is a more straightforward method of state
preparation, which entails loading the CI vectors
of each individual fragment onto fragment circuits
of size Nfrag, where Nfrag represents the number of
spin orbitals in each fragment’s active space. This
process involves resetting the fragment qubits to
|0⟩ and subsequently applying combinations of
one- and two-qubit gates. The angles of these
gates are determined classically through a recur-
sive algorithm, allowing for precise setup of the
desired state vector on the specified qubits.[27].

DI of a fragment wave function offers the ad-
vantage of entangling only the fragment qubits
during state preparation, eliminating the need for
ancilla qubits. Unlike the QPE-based method, it
does not necessitate running the circuit multiple
times to achieve the ground state. However, one
drawback of initialization circuits is the exponen-
tial number of CNOT gates required. Addition-
ally, DI relies on performing the LASSCF calcula-
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tion on a classical computer. This approach may
face limitations if the fragments are too large to
be calculated classically, thus posing a challenge
in utilizing DI effectively.

2.4 Computational Details

Restricted Hartree-Fock (RHF) calculations are
run to obtain reference wave functions for
LASSCF calculations using the PySCF program
[28]. The LASSCF wave function is obtained as
described in Section 2.1 using the MRH code [29].
Complete active space configuration interaction
(CASCI) reference values were generated utiliz-
ing the same localized orbital space as LASSCF
[30]. The active space for the CASCI included all
fragment active spaces. The reference curves are
used to benchmark the new methods presented
in this work. Noise-free simulations of the state
preparation and measurement circuits were car-
ried out using the Qiskit framework and the Aer
state vector simulator [31]. The matrix exponen-
tials eiH̃Kb for the fragment QPEs were approx-
imated by replacing the exponentiated sums of
Pauli operators by a transformation into the com-
putational basis, a rotation around the z axis, and
a back transformation, combined with a Trotter-
ization with n steps, referred to here as Trotter
steps [32].

(a) (b)

(c)

Figure 2: Systems studied in this work: (a) a set of
interacting hydrogen molecules, (b) the trans-butadiene
molecule, and (c) a bimetallic complex containing Cu
and Mn (Orange: Cu, Purple: Mn, Blue: N, Gray:
C). Shaded boxes indicate the fragments used for each
system. Arrows represent intermolecular and inter-
atomic distances used to increase or decrease inter- and
intra-fragment correlation for the hydrogen and trans-
butadiene systems respectively.

The systems studied using LAS-UCC in this
work are shown in Figure 2 and include (a)
a set of interacting hydrogen molecules, in or-
der to study an ideal fragment system with in-
creasing numbers of fragments and the effect
of moving the molecules nearer or further away
and thus increasing the amount of entangle-
ment between fragments, (b) the trans-butadiene
molecule, which is a model system of increas-
ingly stronger correlation within each fragment as
the C-C double bonds are simultaneously broken,
and (c) a bimetallic system containing copper and
manganese, [Mn(NH3)4]oxamide[Cu(NH3)2]2+, a
transition metal complex with two chemically log-
ical fragments whose spin states are relatively
close in energy. An [Fe(H2O)4]2bpym+4 (bpym
= 2,2’-bipyrimidine) system was used for resource
estimations in Section 3.4. Molecular coordinates
are provided in the SI.
The fermionic Hamiltonian operator for the

VQE in the active space is given by

Heff =
∑

ij

(hij +
∑

u

gju
iu ) â†

j âi + 1
4

∑

ijkl

gkl
ij â†

kâ†
l âj âi.

(5)
This fermionic Hamiltonian Heff is then mapped
to a qubit Hamiltonian H̃ using the Jordan-
Wigner mapping [33].
The VQE is performed using the circuit needed

to load the state vectors as the initial state for
each Hamiltonian measurement. The VQE en-
ergy is the total (coupled fragments) energy of
the system.

3 Results
3.1 Hydrogen systems
The potential energy curves for the H2 dimer and
trimer were calculated by varying the separation
distance R between the individual H2 molecules
at their center of mass. At each geometry, the
ground state energy was computed to obtain the
respective potential energy curves.
The energy curves for (H2)2 obtained us-

ing CASCI, LASSCF, the numerically simulated
LAS-UCC code, and the QPE-based code (la-
beled as QPE-LAS-UCC) are depicted in Figure
3. Here, by "numerically simulated", we refer
to the code that classically minimizes the LAS-
UCC energy value with respect to all parameters
rather than mapping to a quantum circuit. This
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approach is a direct measure of the quality of the
LAS-UCC algorithm, with no state preparation
errors. The QPE-LAS-UCC results are using six
Trotter steps and eight ancilla qubits in each frag-
ment. A similar comparison for the (H2)3 system
can be found in the SI.
Based on Figure 3, it is observed that the

numerically simulated LAS-UCC method (blue
curve) accurately reproduces the reference curve
with high fidelity. On the other hand, the QPE-
LAS-UCC method (teal curve) introduces a sys-
tematic error across the potential energy curve.
However, by utilizing 6 Trotter steps in the QPE-
LAS-UCC code, it is possible to achieve an error
below chemical accuracy, specifically 1.6 mEh, at
all points on the potential energy curve.
The error in the numerically simulated LAS-

UCC method roughly follows the error pattern
observed in the LASSCF method. It is more sig-
nificant when the hydrogen molecules are closer
together, indicating a less accurate representation
of the CASSCF wave function due to stronger in-
teractions between the fragments. As the frag-
ments are pulled apart, the error decreases in
magnitude, suggesting an improved accuracy of
the LASSCF wave function.
Similarly, the LAS-UCC method, which builds

upon the LASSCF wave function, exhibits a sim-
ilar trend of increased accuracy as the distance
between fragments increases. This indicates that
the accuracy of the LAS-UCC method also im-
proves with greater separation between the frag-
ments.

Figure 3: VQE energy in Hartrees (Eh) as a function
of the distance between molecular centers of mass for
(H2)2 as the molecules are moved apart.

The error in the gate-based QPE-LAS-UCC

method does not show this trend, as it is induced
even at 6 Trotter steps by Trotterization. The
magnitude of this error and its dependence on the
number of Trotter steps are discussed in Section
3.3.2 below.

3.2 State Preparation Method Comparison

Figure 4a presents the effects of differing methods
of state preparation on the error in the VQE en-
ergy for the same potential energy curve as Fig-
ure 3. Reproduced here are the error with re-
spect to CASCI for classical LASSCF and QPE-
LAS-UCC (Inset Fig. 3), with the addition of the
DI-LAS-UCC and HF-UCC methods. Here, HF-
UCC uses a simple Hartree-Fock wave function
and the same generalized UCC ansatz as all LAS-
UCC methods. Using DI to prepare the state
lowers the error significantly as compared to the
systematic error shown by the QPE-LAS-UCC
method previously. The energy errors from DI
track with the error in the LASSCF energies with
respect to the CASCI reference, as expected from
a method that eliminates the systematic error
associated with Trotterization. The error with
respect to the reference using HF-UCC is also
low at most points on the potential energy curve
for this small system. However, Figure 4b shows
the number of VQE function evaluations (equiv-
alent to VQE iterations, multiplied by a constant
system- and optimizer-dependent factor) required
for convergence using the Hartree-Fock reference
is high for all points on the potential energy curve,
while those required for convergence using the DI-
LAS-UCC method reduce as the LASSCF wave
function becomes a better approximation, begin-
ning at R=1.8 Å, and remaining low until R=4.5
Å, the largest separation we studied.

Figure 4b also compares the number of func-
tion evaluations required during the VQE opti-
mization for QPE-LAS-UCC and DI-LAS-UCC.
DI-LAS-UCC requires fewer function evaluations
beginning at R = 1.8 Å, while QPE-LAS-UCC re-
quires a higher number until R = 3.0 Å. This sug-
gests that the Trotterized state introduces added
difficulty to the convergence problem of the VQE
that is unrelated to the quality of the LASSCF
wave function.
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(a)

(b)

Figure 4: (a) VQE energy error with respect to the
CASCI reference in Hartrees (Eh) and (b) Number of
VQE function evaluations, as a function of the distance
between molecular centers of mass for (H2)2 as the
molecules are moved apart.

3.3 QPE-based State Preparation
The trans-butadiene and interacting H2 model
systems have been studied to obtain empirical ev-
idence of the number of qubits and Trotter steps
required in fragment QPE calculations for a de-
sired level of accuracy in subsequent QPE-LAS-
UCC calculations. The ancilla qubits play an
essential role in the identification of the ground
state of each fragment, and the Trotter steps af-
fect the fidelity of the loading of the LASSCF
wave function onto the circuit, one fragment at a
time.

3.3.1 Number of Ancilla Qubits

Figure 5 presents the errors in the QPE en-
ergy values of a single fragment for our trans-
butadiene system at two different geometries,
with R being the C-C double bond distance. This

error is calculated with respect to exact diago-
nalization of the fragment Hamiltonian and is af-
fected by both the number of ancilla qubits as
well as the Trotter error. Since our chosen frag-
ments have identical geometries and electronic
structure, the behavior of the error is identical
across fragments, and therefore only the energies
corresponding to a single fragment are shown. As
an error threshold we choose the gap between the
ground and first excited states, represented by
the dotted lines for each geometry. For R=1.0,
this threshold is 28.58 mEh, while for R=3.0, it
is 0.0071 mEh.

At least six ancilla qubits are required for the
error to be smaller than the threshold at R=1.0.
However, in the strongly-correlated regime where
the C-C double bonds of the trans-butadiene
molecule are stretched at R=3.0, while the energy
error drops significantly at two ancilla qubits, it
remains larger than the excitation energy gap
threshold. While we cannot distinguish between
the ground and first excited states of the trans-
butadiene system at R=3.0 even with nine ancilla
qubits, these states are very close in energy, as
can be seen by the purple horizontal dotted line
at 10−5 in the inset of Fig.5. We note that nine
qubits are enough to obtain a sufficiently small
energy error, within 1.6 mEh of the reference en-
ergy. Thus, when simulating systems with highly
degenerate states, while we cannot guarantee col-
lapse into the ground state with unlimited preci-
sion, we can achieve exponential precision with
the number of ancilla qubits, though the error
must still be minimized with respect to the Trot-
ter steps.

Further, we observed that in the fragment QPE
calculations for trans-butadiene at R=3.0, the
most likely eigenvalue for each fragment is no
longer the ground state energy (Table in the SI).
Further analysis using a Prony-like approach [34]
confirms that the Hartree-Fock reference state
has the largest overlap not with the ground state
but with an excited state with energy eigenvalue
−2.788Eh.

Another complication of QPE is that the choice
of the scale factor, b, in Eq. 3 can affect the preci-
sion obtained with a given number of ancillas and
some preliminary analysis with differing b values
can be beneficial, as we discuss in the SI. Thus
some care and preliminary calculations with post-
processing analysis are required to be confident of
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QPE results in these difficult cases.
On the other hand, the error for a single H2

molecule in the interacting H2 systems, as our
ideal systems, requires only more than two ancilla
qubits in order to lie below the threshold (Figure
in the SI).

Figure 5: Error in the QPE energy in Hartrees (Eh) with
respect to the exact diagonalization energy as a function
of the number of ancilla qubits used in the QPE for
C4H6 with C-C distance = 1.0 (blue) and C4H6 with C-C
distance = 3.0 (purple), both with 4 Trotter steps. The
corresponding dotted lines represent the gap between the
ground and first excited states for each system.

3.3.2 Number of Trotter Steps

Figure 6 contains information about the fidelity
of the Trotterized wave function (red) and the
energy error for the interacting H2 systems (blue)
as a function of the number of Trotter steps.
The fidelity of the fragment wave function ob-

tained using the Trotter approximation is esti-
mated by the absolute value of its overlap with
the one obtained by exact diagonalization. The
overlaps are averaged over the total number of
fragments for the system containing four H2
molecules. The number of ancilla qubits was set
to eight (much larger than the two seen to be re-
quired in the previous section) to ensure collapse
into the ground state, thus allowing us to focus
on the effect of increasing Trotter steps only. As
we increase the number of Trotter steps, we see
the overlap increase in magnitude, asymptotically
approaching 1.
The three blue curves represent the total sys-

tem VQE energy error at iteration 0, also as a
function of the number of Trotter steps. For the
H2 tetramer, at two Trotter steps, we see that
while the overlap is above 0.995, the VQE en-

ergy has an error of 40 mEh with respect to the
LASSCF energy of the total system, taken as a
reference. For the H2 dimer, at a minimum 6
Trotter steps are required to converge to within
1.6 mEh of the reference. The error scales linearly
with the number of fragments, thus, the dimer
has the lowest error, followed by the trimer and
then the tetramer. The per-fragment error re-
maining constant implies size-intensivity of the
method, which is a desirable property.
As the system size increases, a larger number

of Trotter steps is then required to converge the
0-th iteration VQE energy to the corresponding
LASSCF reference value. Thus, the fragment
QPE wave functions must reproduce the LASSCF
wave function with high fidelity in order to min-
imize the energy error for the whole system.

Figure 6: Error in the zeroth-iteration VQE energy with
respect to the LASSCF energy in Hartrees (blue) and
overlap with the exact diagonalization wave function
(red) as a function of the number of Trotter steps used
in the QPE for the (H2)2 (light blue/light red), (H2)3
(blue/red), and (H2)4 (dark blue/dark red) systems.

3.4 Resource Estimation
The cost of the LAS-UCC algorithm depends on
both the cost of the VQE circuit itself and the
method chosen for the preparation of the LAS
state on the VQE circuit. Assuming the cost of
the VQE to be constant, we study the cost of
state preparation only in terms of number of gates
required for a given accuracy.

In the case of the QPE, the total number of
qubits and the gate depth of the final state prepa-
ration circuit depend on the number of ancilla
qubits and Trotter steps required to model the
fragment wave functions with accuracy (in our
case within an energy error of 1.6 mEh), which is
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system-dependent. The DI circuit only needs to
be run once and does not require ancilla qubits,
however, the gate depth scales exponentially with
the size of the active space, with the prefactor
depending on the algorithm used to initialize the
circuit. DI via quantum multiplexors as imple-
mented in Qiskit scales as 4N − (3/2)2N , where
N is the number of qubits in the fragment [27].
Table 1 contains information about the num-

ber of ancilla qubits required for a precision of 1.6
mEh in the fragment QPE energies of each sys-
tem studied above. This precision threshold was
chosen as equivalent to the 1 kcalmol−1 thresh-
old of chemical accuracy. The hydrogen systems
have the same fragment type, the H2 molecule,
and so require the same number of ancilla qubits
per fragment for the same precision. The trans-
butadiene system, is a model of weak correlation
at R=1.0 Å, requiring 15 ancilla qubits, while at
R=3.0 Åshows more strong correlation and re-
quires 21 qubits per fragment. The details of
the ancilla qubit estimation are presented in the
SI. We also report the actual numbers of ancilla
qubits used in the simulations for high-accuracy
results and the number of CNOT gates required
for a single fragment circuit estimated for both
QPE- and DI-LAS-UCC. The number of CNOTs
required to implement the QPE circuit was com-
puted according to the following equation:

NCNOT = nU nTr(2nan − 1) (6)

where nU is the number of CNOTs required to
implement a single unitary, nTr is the number of
Trotter repetitions, and nan the number of ancilla
qubits used in the calculations. This estimation
is based on the circuit used for the QPE, with
the unitary repeated nTr times for the Trotter
approximation and 2nan − 1 times in a standard
QPE circuit.
For the H2 dimer, NCNOT for QPE-LAS-UCC

is equal to 38x NCNOT for DI-LAS-UCC, while for
the tetramer, it is 48x NCNOT for DI. The num-
ber of CNOT gates scales exponentially with the
number of ancilla qubits, thus for trans-butadiene
at R=3.0 Å, QPE-LAS-UCC requires an order of
magnitude more resources than at R=1.0 Å. This
serves as an example of the system-dependence of
the resources required by QPE-LAS-UCC.
To compare the resources needed for state

preparation with the two methods, we ex-
plored a more realistic chemical system,

[Fe(H2O)4]2bpym+4 (bpym = 2,2’-bipyrimidine),
and studied the effect of increasing the number
of active spin orbitals on the total number of
CNOT gates required for both methods. Each
Fe center was chosen to be a fragment, with the
active orbitals being localized on the Fe atoms.

Figure 7: Total estimated gate counts for the state
preparation circuits tested as a function of the number
of spin orbitals in each fragment active space for the
[Fe(H2O)4]2bpym+4 molecule. QPE-LAS-UCC counts
are estimated using 10 Trotter repetitions and 10 (pur-
ple) or 20 (peach) ancilla qubits respectively.

Figure 7 reports the number of CNOT gates
estimated for DI-LAS-UCC and QPE-LAS-UCC
for different active spaces, ranging from 10
spin orbitals per fragment, with the LAS being
((6,5),(6,5)), to 22 spin orbitals per fragment,
with the corresponding LAS as ((12,11),(12,11)).
We find on comparing the DI in blue with the
two QPE lines in peach and purple that DI re-
quires fewer CNOT gates than QPE for smaller
active spaces and cases in which larger numbers
of ancilla qubits are used for QPE. As the size
of the fragment active spaces grows, QPE-LAS-
UCC becomes more efficient, especially if smaller
numbers of ancilla qubits are needed. The num-
ber of ancilla qubits required, as seen from es-
timations in Table 1, depends on how strongly
correlated the individual fragments are and in-
versely on the gap between the desired ground
state and first excited state. (See SI for more de-
tails on the ancilla qubit estimates.) For the Fe
system, this crossover occurs at between 14 and
20 active fragment spin orbitals. Note that we
have here only estimated the gate depth. QPE
has additional overheads based on the overlap of
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System Est. Num. of
ancilla qubits

Actual
ancilla qubits

Num. of
Trotter steps

CNOT Gates
QPE

CNOT Gates
DI

(H2)2 11 4 7 8820 232
(H2)4 11 4 9 11340 232

C4H6; R=1.0 15 6 4 2,881,872 65,152
C4H6; R=3.0 21 9 4 33,231,352 65,152

Table 1: Number of ancilla qubits per fragment estimated for an energy precision of 1.6 mEh. Actual numbers of
ancilla qubits used in this study, as well as actual numbers of Trotter steps, with total CNOT gate counts for QPE-
and DI-LAS-UCC respectively for each fragment studied.

the target eigenstate with the initial state. This
adds additional overheads in time, which were not
estimated here.

3.5 Application to a Cu-Mn complex

Both the numerically simulated LAS-UCC and
the DI-LAS-UCC methods were employed for the
calculation of spin-state energy differences for a
more challenging problem than the model sys-
tems above, [Mn(NH3)4]oxamide[Cu(NH3)2]2+

(Figure 2c). The goal is to compute the spin state
energy differences with LAS-UCC and DI-LAS-
UCC and compare them with LASSCF, HF-UCC
and CASSCF (defined in Section 3.2). A minimal
(6,6) active space was used for the CASSCF, in-
cluding 5 d orbitals on the Mn center and 1 d
orbital on the Cu center. For the LASSCF cal-
culation, the fragment active spaces considered
were a (5,5) active space and a (1,1) active space
centered on the Mn and Cu atoms respectively.
Table 2 contains information about the energy
differences between states of different ms values,
with antiferromagnetic local spin orientations for
the LASSCF subspaces. The LAS-UCC and DI-
LAS-UCC methods provide values within 1 kcal
mol−1 of the CASSCF reference values. How-
ever, the HF-UCC method gives an error of close
to 10 kcal mol−1 for the lower ms states, which
are, in general, harder to simulate. These results
suggest that the LAS wave function is a better
starting point for the VQE than Hartree-Fock
for multi spin-center containing systems, and the
LAS-UCC method also improves on the classical
LASSCF calculation.

4 Discussion

We have analyzed two methods of state prepa-
ration for the loading of a fragment multirefer-
ence wave function onto a quantum circuit, to
obtain highly accurate ground state energies of
systems with strongly correlated subunits. Sec-
tion 3.1 shows that the error in the QPE-based
state preparation (QPE-LAS-UCC) is dominated
by Trotter error, which can however be system-
atically reduced. While both QPE- and DI-LAS-
UCC lower the number of VQE iterations as
compared to simply using a Hartree-Fock refer-
ence (Section 3.2), DI provides an ancilla- and
probability-free method to load the state, at the
cost of exponential scaling in the number of gates.

The analysis in Sections 3.3.1 and 3.3.2 sug-
gests that the number of ancilla qubits and the
number of Trotter steps heavily influence the
quality of the fragment QPE wave functions,
while the values of these parameters required for
a desired accuracy depend on the system size and
degree of strong correlation.

Strongly correlated systems, our final target
systems, are challenging for the use of QPE for
state preparation, requiring careful preliminary
calculations and post-processing analysis as well
as a large number of ancilla qubits and Trotter
steps.

For systems with fragments that can be rep-
resented by less than 20 qubits, DI-LAS-UCC
requires a smaller number of gates than the
QPE with 10 Trotter steps. However, for sys-
tems whose representation requires more than
20 qubits, there exists a crossover point where
the QPE algorithm’s polynomial scaling requires
fewer gates than DI. Thus, the size of the ac-
tive space can guide the choice of state prepara-
tion method. These results also provide insight
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ms CASSCF LASSCF LAS-UCC DI-LAS-UCC HF-UCC
Septet 0.0 0.0 0.0 0.0 0.0

Quintet -0.04 0.01 -0.03 -0.03 -0.03
Triplet 70.58 71.51 71.48 71.48 82.47
Singlet 96.60 96.60 96.60 96.60 115.28

Table 2: Energy differences in kcal mol−1 for all possible spin states of the Cu-Mn system. CASSCF calculations
used a (6,6) active space, while LASSCF and LAS-UCC calculations used ((5,5),(1,1)) fragment active spaces.

to more general QPE algorithms, where effective
state preparation is required, pointing to DI of
complex classically computed wave functions as
a potential technique for small-scale demonstra-
tions of QPE.

We note that the ancilla-dependence, post-
processing requirement, and other overheads will
also apply to a full-system QPE, while the frag-
mentation of the active space results in shallower
state-preparation circuits, thus the QPE-LAS-
UCC and DI-LAS-UCC have a clear advantage
over QPE in terms of the number of gates re-
quired.

Our results in Section 3.5 for the bimetallic sys-
tem compare the LAS-UCC method, simulated
both numerically and using a noiseless state vec-
tor simulator, with a generalized UCC ansatz uti-
lizing an HF reference. The LAS-UCC method
replicates the CASSCF reference value with high
accuracy, confirming that to obtain accurate en-
ergy differences for spin states of multi-centered
transition metal complexes, the LASSCF wave
function is an ideal starting point.

Future work includes improvements to the
LAS-UCC method through exploration of the
VQE ansatz and optimization procedure. Cur-
rently the VQE step of the algorithm uses a gen-
eralized UCC ansatz, which is physically moti-
vated and accurate, but expensive in terms of
gate depth. Alternative methods of building an
ansatz such as ADAPT-VQE [35], Qubit Coupled
Cluster [36] or Unitary Selective Coupled Clus-
ter [37] can be considered in order to reduce the
circuit depth. Other more efficient optimization
schemes can also be tested [38, 39]. Our ultimate
goal is to simulate complex chemical systems via
fragment-based methods by leveraging the power
of both classical and quantum computers.
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S1: QPE Scale Factors and Time Series Analysis

In QPE, some of the eigenvalues, Uj , of a unitary operator U = eiHb are estimated, where H in our
case is the fragment Hamiltonian and b is a scaling factor. (We assume H has been written as a sum
of Pauli terms and that the overall term proportionate to the identity operator has been subtracted
out.) Typically, the eigenvalues are written as Uj = ei2πϕj , where ϕj can be viewed to be in (0, 1), or
equivalently (−1/2, 1/2) and it is a set of approximate ϕj that QPE directly estimates. In terms of the
Hamiltonian energies we have Ek = 2πϕk

b . The purpose of the scale factor b is ideally to ensure that
there is a 1:1 mapping of all the eigenvalues of H into the ϕ = (-1/2,1/2) range. If b is too big, there
could be energy eigenvalues that map to phases outside that range. The consequence of this is that
these eigenvalues will get mapped back into the (-1/2,1/2) range but at values that, when inverted,
yield incorrect energies. This is the phenomenon of aliasing. In the implementation of Qiskit that
we use, a conservative estimate of b is made based on a bound for the largest magnitude eigenvalue
of H. However, the smaller (more conservative) b, more binary digits in ϕ are required to achieve a
given resolution between energy eigenvalues (because the difference in ϕ associated with two energies
becomes smaller), implying more ancilla are needed. This problem becomes particularly vexing when
there are near degenerate states. Thus, in addition to the complication of the lowest eigenenergy not
being the most probable (see main text and below), it can be difficult to achieve accurate energies for
a small to modest number of ancilla owing to the scale factor, b. We have found it useful to carry
out calculations with larger (less conservative) values of b, carefully comparing results to identify any
possible aliased energies (only the aliased energies should change with changing b values). The results
in Figure 5 of the main text, for example, were obtained with b taken to be nearly six times its default,
conservative value, along with experimentation with other b values to ensure that they were not aliased
energies.
We also found it instructive to complement some of our QPE calculations by carrying out time prop-

agations of initial fragment wavefunctions, construction of the corresponding autocorrelation functions,
and then Fourier analysis via signal processing techniques. This type of approach [? ] requires only
one extra ancilla qubit but requires classical processing, sharing some commonalities with iterative
QPE approaches [? ? ] . We choose to use as a (short time) signal processing method the Prony
method [? ? ? ]. The autocorrelation function Ck is obtained by applying the non-Trotterized unitary

U = eiHbτ (1)

to our initial state (here the RHF reference) k = 1, 2, ..., N times, and measuring the overlap between
⟨Ψkτ |Ψ0⟩. This data is then fit to the equation:

Ck =
p∑

s=1
hseiθsk (2)

to obtain the hs and phases θs using Prony’s method. These phases are then converted back to
eigenvalues of the Hamiltonian H by:

Es = θs

bτ
. (3)

Note that it is easy to see that the hs correspond to the probabilities of the various eigenvalues. Using
τ = 0.75, p = 8, and N = 20, we obtain the data in Table S1 for our transbutadiene system, with R=3.0.
Because of the relatively short time propagation, this approach cannot resolve all the near degeneracies
that the more extensive, multi-ancilla QPE calculations in the main text can. Nonetheless it shows
clearly that the initial states in these instances contain significant contributions from excited states
and, indeed, the fragment ground states are not even the most populous states. This type of analysis
can serve as preliminary information to motivate and guide how the larger scale QPE calculations
should be carried out.
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Table S1: Coefficients and corresponding energy eigenvalues obtained via Prony analysis of the autocorrelation
function.

Fragment 1 Fragment 2
hs Es hs Es

0.482 -2.7880 0.482 -2.7879
0.210 -3.3041 0.210 -3.3040
0.186 -3.0805 0.186 -3.0797
0.122 -1.5885 0.122 -1.5885

S2: Ancilla Qubit Estimation
The number of ancilla qubits required for a QPE calculation can be estimated by [? ]:

t ≈ n + log 1
∆E2r2pϵ

(4)

where 1/2n is the required precision of the phase while ∆E is the minimum phase separation. In our
case, as we are interested in only the ground state energy, it can be replaced by the difference between
the ground and first excited state energies for each system. r corresponds to the number of Trotter
steps with p relating to the fidelity with which the unitary can be prepared on the circuit, and 1 − ϵ
to the desired success probability, which needs to be high in order for all fragments to be prepared
simultaneously for the VQE portion of the algorithm. We set the number of Trotter steps to 6, 9 and 4
respectively for the (H2)2, (H2)4, and C4H6 systems. ϵ is set to 0.33, resulting in a success probability
of 0.66. We assume p ≈ 1.

S3: Ancilla qubit-dependence of Gate Counts
We use the [Fe(H2O)4]2bpym+4 (bpym = 2,2’-bipyrimidine) system and two localized active spaces to
study the effect of increasing the number of ancilla qubits on the number of CNOT gates required per
fragment in QPE-LAS-UCC. The smaller active space is ((6,5),(6,5)) and the larger active space is
((10,9),(10,9)), both localized to each Fe center. The exponential scaling of the DI-LAS-UCC with the
number of active spin orbitals means that at smaller numbers of ancilla qubits, the required number of
CNOT gates is orders of magnitude smaller than those required by DI-LAS-UCC. As seen in Figure S1,
which contains estimates of the number of gates required for a given number of ancilla qubits, as the
active space grows, the crossover point where it makes sense to use QPE-based method shifts to larger
numbers of ancilla qubits. Thus, we can obtain our desired precision without sacrificing efficiency when
considering large active spaces.

S4: Additional data

Table S2: Resource estimates for QPE and QPE-LAS-UCC for the implementation of a single unitary using a single
Trotter step for the [Fe(H2O)4]2bpym+4 system.

CAS QPE CNOTs LAS QPE-LAS-UCC CNOTs
(12, 10) 250,644 ((6,5),(6,5)) 16,036
(14, 12) 613,912 ((8,7),(6,5)) 50,760
(16, 14) 1,324,756 ((8,7),(8,7)) 85,484
(18, 16) 2,576,800 ((10,9),(8,7)) 191,800
(20, 18) 4,611,108 ((10,9),(10,9)) 298,116
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Figure S1: Estimated per-fragment gate counts for the state preparation circuits tested as a function of the number
of ancilla qubits used for two active space sizes. QPE-LAS-UCC counts are estimated using 10 Trotter repetitions.

Figure S2: VQE energy in Hartrees (Eh) as a function of the distance between molecular centers of mass for (H2)3
as the molecules are moved apart.
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(a) (b)

Figure S3: (a) VQE energy error with respect to the CASCI reference in Hartrees (Eh) and (b) Number of VQE
function evaluations, as a function of the distance between molecular centers of mass for (H2)3 as the molecules are
moved apart.
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S5: Molecular Geometries

Table S3: Atomic coordinates of (H2)4 (Ångstroms)

Atomic
Symbol X Y Z

H 0.000000 0.000000 0.000000
H 1.000000 0.000000 0.000000
H 0.200000 1.600000 0.100000
H 1.159166 1.300000 -0.100000
H 0.359685 3.002880 0.049335
H 1.358647 2.797120 -0.049335
H 0.624706 4.577880 0.197837
H 1.452792 4.122120 -0.197837

Table S4: Atomic coordinates of trans-butadiene (Ångstroms)

Atomic
Symbol X Y Z

C -1.833376 0.000000 0.362184
H -2.781284 0.000000 -0.139873
H -1.857552 -0.000000 1.436643
C -0.667088 0.000000 -0.323584
H -0.680782 0.000000 -1.400031
C 0.667088 -0.000000 0.323584
H 0.680782 -0.000000 1.400031
C 1.833376 -0.000000 -0.362184
H 1.857552 0.000000 -1.436643
H 2.781284 -0.000000 0.139873
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Table S5: Atomic coordinates of [Mn(NH3)4]oxamide[Cu(NH3)2]2+ (Ångstroms)

Atomic
Symbol X Y Z

Cu -3.019630 -0.007541 -0.018036
Mn 2.414767 -0.023478 0.030690
N -1.567623 1.238448 -0.410772
N -1.580212 -1.277148 0.270959
N -4.477455 -1.377388 0.234355
N -4.445900 1.415487 -0.119243
C -0.396910 0.713913 -0.231658
C -0.402291 -0.751244 0.193785
O 0.719754 1.274368 -0.382229
O 0.709685 -1.305693 0.409195
N 4.035049 -1.399594 0.787214
N 2.805466 -1.226444 -1.858758
N 2.810332 1.223361 1.887095
N 3.835899 1.504798 -0.838902
H -5.344417 -1.227673 -0.285776
H -4.761790 -1.469833 1.213052
H -4.766482 1.576647 -1.077764
H -5.296267 1.268483 0.427975
H -4.167500 -2.313239 -0.035954
H -1.585917 -2.255151 0.559517
H -1.551477 2.213879 -0.705967
H -4.086023 2.320991 0.189752
H 3.778153 1.430066 2.139229
H 2.369771 2.137275 1.758658
H 2.395577 0.869641 2.752500
H 4.689943 1.721736 -0.321823
H 3.329935 2.393266 -0.885199
H 4.156909 1.359875 -1.798233
H 3.771503 -1.400275 -2.140808
H 2.359005 -0.860138 -2.702860
H 2.392501 -2.155451 -1.746877
H 3.745933 -2.377479 0.704362
H 4.295729 -1.309775 1.771472
H 4.925795 -1.353260 0.288437
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Table S6: Atomic coordinates of [Fe(H2O)4]2bpym+4 (bpym = 2,2’-bipyrimidine) (Ångstroms)

Atomic
Symbol X Y Z

Fe -3.004847 0.000000 0.000000
Fe 3.004847 0.000000 0.000000
C 0.000000 3.409725 0.000000
C -1.181171 2.688098 0.000000
C 0.000000 0.740752 0.000000
C 1.181171 2.688098 0.000000
C 0.000000 -0.740752 0.000000
C -1.181171 -2.688098 0.000000
H -2.146819 -3.183003 0.000000
C 0.000000 -3.409725 0.000000
C 1.181171 -2.688098 0.000000
H 0.000000 4.493448 0.000000
H -2.146819 3.183003 0.000000
H 2.146819 3.183003 0.000000
H 0.000000 -4.493448 0.000000
H 2.146819 -3.183003 0.000000
N 1.181856 -1.349331 0.000000
N 1.181856 1.349331 0.000000
N -1.181856 1.349331 0.000000
N -1.181856 -1.349331 0.000000
O -3.144689 0.000000 2.173794
H -3.215015 0.767135 2.755999
H -3.215015 -0.767135 2.755999
O -4.456206 -1.575287 0.000000
H -4.991908 -1.818728 -0.767267
H -4.991908 -1.818728 0.767267
O -4.456206 1.575287 0.000000
H -4.991908 1.818728 -0.767267
H -4.991908 1.818728 0.767267
O 4.456206 -1.575287 0.000000
H 4.991908 -1.818728 -0.767267
H 4.991908 -1.818728 0.767267
O 4.456206 1.575287 0.000000
H 4.991908 1.818728 -0.767267
H 4.991908 1.818728 0.767267
O 3.144689 0.000000 2.173794
H 3.215015 -0.767135 2.755999
H 3.215015 0.767135 2.755999
O -3.144689 0.000000 -2.173794
H -3.215015 0.767135 -2.755999
H -3.215015 -0.767135 -2.755999
O 3.144689 0.000000 -2.173794
H 3.215015 -0.767135 -2.755999
H 3.215015 0.767135 -2.755999
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