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We present the first lattice-QCD x-dependent pion valence-quark generalized parton distribution (GPD)
calculated directly at physical pion mass using the Large-Momentum Effective Theory (LaMET) with next-
to-next-to-leading order perturbative matching correction. We use clover fermions for the valence action
on 2+ 1+ 1 flavors of highly improved staggered quarks (HISQ), generated by MILC Collaboration, with
lattice spacing a ~ 0.09 fm and box size L ~ 5.5 fm; the pion two-point measurements number up to
0(10%) with boost momentum 1.73 GeV. The pion valence distribution is renormalized in hybrid scheme
with Wilson-line mass subtraction at large distances in coordinate space, followed by a procedure to
match it to the MS scheme. We focus on the zero-skewness limit, where the GPD has a probability-
density interpretation in the longitudinal Bjorken x and the transverse impact-parameter distributions.
We take the integral of our GPD functions to generate leading moment so that we can make comparisons
with past lattice-QCD and experimental determinations of the pion form factors and found consistent
agreement among them. We predict the higher GPD moments and reveal x-dependent tomography of
the pion for the first time using lattice QCD.
© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

GPDs, allowing us to map out the tomography of hadrons [11].
DVCS has been extensively studied during the last two decades;
the process is relatively simple in its interpretation, since the only
nonperturbative object entering its amplitudes, which are referred

1. Introduction

Pions, as the Nambu-Goldstone bosons created by the chiral
symmetry breaking of quantum chromodynamics (QCD), play a

crucial role in our understanding of the origin of mass for mat-
ter [1-4]. Decades of effort have been devoted to pursuing under-
standing of how quarks and gluons give rise to pions. Among the
various properties of the pions, generalized parton distributions
(GPDs), a concept introduced more than two decades ago [5,6],
have been among the most deeply studied both theoretically and
experimentally. (We refer interested readers to the review pa-
pers [7-10].) GPDs retain information on the form factors’ de-
pendence on the transfer momentum Q2 as well as the one-
dimensional structure in terms of the Bjorken-x parameter in the
parton distribution functions (PDFs). Multiple exclusive processes,
such as deeply virtual Compton scattering (DVCS) and deeply vir-
tual meson production (DVMP), provide experimental access to the
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to as Compton form factors (CFFs), are the GPDs. They are the main
source of information on GPDs. We refer readers to Ref. [9] for
phenomenological context. Efforts have been made to extract infor-
mation experimentally about the internal structure of pion, ranging
from its electromagnetic form factor through pion-electron scatter-
ing [12] to its PDFs through the Drell-Yan (DY) process [13-15].
As a result, there has been much progress made toward explor-
ing the global analysis of pion PDFs in recent years [16-18], but
not much effort has been made toward pion GPDs. There are many
ongoing and planned experimental efforts to further our knowl-
edge of pion structure; for example the JLab 12-GeV program will
provide precision data relating to the pion and kaon form fac-
tors up to Q2 ~ 10 GeV? and 5 GeV?, respectively. They will also
measure the pion and kaon structure functions at x > 0.5 through
the Sullivan process [19]. AMBER Collaboration at CERN can play
a crucial role due to their unique capability delivering pion and
kaon DY measurements in the center-of-mass (CoM) energy range
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10-20 GeV. A future facility, the Electron-lon Collider (EIC) at
Brookhaven National Laboratory, will provide information on pion
and kaon structure over a large and tunable CoM energy range
20-140 GeV via Sullivan-process measurements [1,2,4,10,20,21].
An electron-ion collider being discussed in China (EicC) [22,23]
would have a similar CoM energy range to AMBER and neatly fill a
gap between JLab 12 and the EIC.

Lattice quantum chromodynamics (LQCD) is an ideal nonper-
turbative theoretical method, allowing us to study pion structure
via the QCD path integral with full systematic control. For a long
while, LQCD was limited to low-order moments of PDFs and dis-
tribution amplitude, form factors and generalized form factors
of the pion. Since 2013, numerous calculations of x-dependent
hadron structure in lattice QCD have emerged since the proposal
of Large-Momentum Effective Theory (LaMET) [24-26]. Many lat-
tice works have been done on nucleon and meson PDFs and GPDs
based on the quasi-PDF approach [27-62]. Alternative approaches
to access x-dependent structure in lattice QCD are also prolif-
erating; for example, the Compton-amplitude approach (or “OPE
without OPE”) [63-75], the “hadronic-tensor approach” [76-81],
the “current-current correlator” [53,70,82-87] and the pseudo-
PDF approach [85,88-107]. A few works have started to in-
clude lattice-QCD systematics, such as finite-volume effects [44,87]
and lattice-spacing dependence for quark [49,54,56,108-110] and
gluon [104,106,107] distributions, in their x-dependent structure
calculations. Most lattice calculations of PDFs use next-to-leading-
order (NLO) matching [26,111-113], but recently some lattice cal-
culations of the valence pion PDF [114] have incorporated NNLO
matching [51,115].

Less progress has been made toward x-dependent GPD studies
by contrast. The first lattice study of GPDs was made for pions [45]
in 2019 with largest boost momentum 1.7 GeV using 310-MeV
pion mass. By 2020, ETMC [57] reported results at a single Q2
for both unpolarized and polarized GPDs with a 260-MeV pion
with skewness of 0 and 0.3 with a single transfer momentum of
1.67 GeV. In the same and following year, MSULat [58,61] reported
on the unpolarized and polarized zero-skewness GPDs with 135-
MeV pion at multiple Q2. One can actually take the moments
of MSULat’s x-dependent GPDs and compare with lattice results
using a traditional moment calculation using a local operator via
the OPE method, such as electromagnetic and axial form factors
(with n =1), and generalized form factors (n = 2). With multiple
Q2 values in the zero-skewness limit, the Fourier transform of the
non-spin-flip GPD H(x, £ =0, —Q?2) yields the impact-parameter—
dependent distribution, which cannot be directly accessed via ex-
perimental measurements. Progress so far has been done using
Breit frame, where the initial and final momenta of the hadron
differ by half the transfer momentum. Recent work on asymmetric-
momentum setups for GPDs has been demonstrated by the ETM
and BNL/ANL groups [62] and can help reduce the computational
cost of the lattice calculation. Pion structure, such as form factors,
can be more sensitive to the pion mass used in the lattice calcu-
lation; therefore, it is important to study pion structure directly at
the physical pion mass.

In this work, we report the first study at physical pion mass
of the pion unpolarized valence-quark GPD, using LaMET method
with lattice spacing 0.09 fm in the Breit frame. The remainder of
this paper is organized as follows: In Sec. 2, we discuss the lattice
setup and the procedure for how the lattice two- and three-point
correlators are calculated and analyzed to extract the ground-state
matrix elements. These matrix elements are then renormalized us-
ing hybrid renormalization scheme and the valence-quark GPDs
are extracted by fitting the matrix elements with NNLO kernels
in Sec. 3. We compare our results in certain limits that have prior
LQCD calculations for comparison: our valence-quark GPD at Q2
result is consistent with prior lattice physical-pion-mass calculate

Physics Letters B 846 (2023) 138181

the quasi-GPD distribution and matched them to the lightcone, and
the first moment of our GPD is in good agreement with the prior
lattice pion form factors. We predict the transfer-momentum de-
pendence of the pion GPDs, higher moments of the generalized
form factors that have not been calculated on the lattice, and the
tomography of the pion. Conclusions and future outlook can be
found in Sec. 4.

2. Calculation setup

The unpolarized valence-quark GPD of the pion on the lightcone
is defined as

dn= _i.-p+
neflan

Hz;(x,s,t,m:/‘m
AN (n o (n
X<”<P+2>‘q<2>y F<2’ 2>q
n- A
(2 (-3)) Y

where Bjorken-x is the momentum fraction x € [—1,1], w is
the renormalization scale in the MS scheme, momentum P =
(P%,0,0, P%), where the pion momentum of the initial and final
states are P F A/2 with A the momentum transfer, and the vari-
ables t = A2 and & = —%. q and g represent the antiquark and

quark fields, n* = (n° £ n%)/+/2, and the gauge link I'(n; , n;) =
exp (—ig jnng dn~A*T(n7) ) ensures gauge invariance of the quark
1

bilinear operator. In the forward limit (A* — 0), it reduces to the
PDF.

On the lattice, one can compute ground-state matrix elements
of a pion with a finite- P* boost in the Breit frame,

hiae(z, P%,t,0) = ——
lat( ) ZPO

y <n+ (,3 + %) 42T (]‘[ Uz(n2)> 739(0)

- (p_§>> (2)

where U; is a discrete gauge link in the z direction, P= {0, 0, P%}
is the 3-momentum of the pion, I' =y and A is the momentum
transfer between initial and final pion. The matrix elements are
renormalized and then contribute to the quark quasi-GPD via

[T zZ dzP* ixP*zp R z ~
Hy %.&.0. P 1)y = | ———e™" “hi(z, P". &. 1. [1) (3)

using the renormalized matrix element hR. The lightcone GPD in
the MS scheme at scale w is then convolved with a perturbative
hard matching kernel, up to power corrections that are suppressed
by the pion momentum [116]

~ dy (x & yP?
HZ—d,R(X,gat,PZ)=/mc<;,;, w Hg—d(yaé):stal'l’)

A2 A2
+(’)< Qcp QcD > (4)

x2P%’ (1 —x)2P?

In the zero skewness limit & = 0, the matching kernel C is the
same as the matching kernel for the PDF, as documented in
Refs. [37,117].

This calculation is carried out using Ny =2+ 14 1 highly
improved staggered quarks (HISQ) [118], generated by the MILC
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Fig. 1. An example of the bare ground-state matrix-element determination using
two-state fits to multlple source- smk separatlons along with the ratio plot and re-
constructed fit using Pf ={1,0,8} %% 7~ and P, ={-1,0, 8}2” The colored bands are
the reconstructed ratios from the fits to source-sink separation tsep ~[0.72, 0.9] fm,
respectively, and the gray band shows the ground-state matrix elements from the
“two-simRR” fits.

Collaboration [119], with lattice spacing a ~ 0.09 fm at physical
pion mass. Five steps of hypercubic (HYP) smearing [120] are ap-
plied to the gauge links to reduce short-distance noise. We use
Wilson-clover fermions in the valence sector and tune the valence-
quark masses to reproduce the lightest light and strange sea pseu-
doscalar meson masses. A similar setup is used by PNDME col-
laboration [121-131] with local operators, such as isovector and
flavor-diagonal charges, form factors and moments; the results
from this mixed-action setup are consistent with the same physical
quantities calculated using different fermion actions [60,132-136].
BNL/ANL Collaboration has also been using a mixed-action setup
for their pion valence-quark PDFs calculations [110,114]. We care-
fully monitor the measurements from each configuration to rule
out any possibility of exceptional configurations; we have not ob-
served any here nor in the previous works mentioned earlier.

To calculate the GPD matrix elements at nonzero momentum
transfer, we first calculate the matrix element (X,,(Pf)| OH| X (Pl)),
where x; is the pion interpolating field, O, = ‘g//)/MW(Z)lZf is
the LaMET Wilson-line displacement operator with v being the
quark field, and Py; 5} the initial and final nucleon momenta. We
use 1960 configurations to help with statistical noise at boost

P+Pf

momentum P, = = ‘ {0,0,8}a~'|. We vary the spatial

momentum transfer § = Pf - Pi = ZT”{nx,ny, 0}a~—! with integer
nyy and n2 + nf, € {0, 4,8, 16,20} with four-momentum transfer
squared ¢t = Q2 = —q,q" € {0,0.19,0.39,0.77,0.97} GeV? us-
ing periodic boundary conditions. We use source-sink separations
of {6,7,8,9,10} lattice units with high-statistics measurements of
{752,640, 1,003,520, 1,003,520, 1,505,280, 1,505,280}, respectively.
We extract pion ground-state matrix elements using two-state si-
multaneous fits about which more details can be found in our
previous work [40,58,61,126]. Fig. 1 shows an example of the
ground-state matrix elements (shown as the gray band) from
the simultaneous two-state fitted results using source-sink sep-
aration of ftsep € [6,10] in lattice units, at I;f ={1,0, 8}2T7T and
ﬁi = {—1,0,8}2T”. The signal in the three-point correlators de-
creases as the source-sink separation increases; also as expected,
the ground state for each tsep approaches the simultaneous-fit
ground-state matrix element, shown as the gray band in the plot.
The spectral decomposition predicts that the data for all three
quantities is symmetric about t = tsp/2 in Breit frame; at large
tsep such symmetry breaks slightly due to the statistical fluctua-
tions. The ground-state matrix elements are consistent when one
removes smaller tsep from the analysis.
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3. Results and discussion

We use the hybrid renormalization scheme [137] with NNLO
perturbative matching correction [51,115]. The exact procedure has
been applied and detailed in prior valence-quark PDF studies by
BNL/ANL group [110,114]. This renormalization scheme is a com-
bination of the ratio scheme at short distances up to Wilson-line
length z; and an explicit subtraction of the self-energy divergence
of the Wilson line at large distances. The parameter z; that sepa-
rates the nonperturbative and perturbative regions must be much
larger than the lattice spacing to avoid discretization effects but
not so large as to necessitate higher-twist terms in the OPE. For
our calculations, we choose z; = 0.27 fm. The hybrid normalized
matrix elements as functions of zP, can be found on the left-hand
side of Fig. 2. We also normalize all the matrix elements by the
bare ground-state matrix element at z=0 and Q2 = 0 (vector
charge normalized to 1) to improve the signal. The real matrix el-
ements decrease quickly to zero as a function z due to the large
boost momentum used in this calculation. The signal-to-noise ratio
also increases quickly as one increases the Wilson-line displace-
ment. The central values of matrix elements also drop quickly as
Q2 increases initially but slow down at the larger Q?Z; this is ex-
pected, since similar behavior observed in the QZ2-dependence of
the pion form factors.

The valence-quark GPD HT(x, Q%) is then extracted using
Eq. (4) with NNLO matching kernel C from Refs. [51,115]. We
compare two methods for performing the matching. First, we ex-
trapolate the matrix elements to large A = zP, using a form with
the exponential and power decay, die~%!7/|1|%, as used in prior
pion-PDF studies [110,114]. The fit parameters dq, d» and d3 vary
with Q2 and are fit to the data subset at large zP, > 3.9. We then
Fourier transform the matrix elements into the quasi-distribution
and apply matching according to Egs. (3) and (4). Alternatively, we
can adopt a phenomenology-inspired functional form to describe
the x dependence of the lightcone GPD:

M1 —x)"(1 + c/x)

H™ (x, Q% m,n,c) = ,
Bm+1,n+1)+cB (m+3,n+1)

(5)

where the parameters m, n and ¢ are Q%-dependent, and the beta
function B(m+1,n+ 1) = fol dxx™(1 — x)" is used to normalize
to unity at Q2 = 0. Note that this form is also commonly used
by the PDF global-fit community, for example, in the pion PDF
fit by JAM [16,138]. This phenomenological form has also been
widely used for x-dependent valence-quark pion PDFs, such as in
Refs. [49,86,87,95,110,139]. We perform the phenomenological fit
to our physical pion-mass ensemble using the matrix elements
with Wilson-line displacement z € [0.09, 0.81] fm for each trans-
fer momentum. We choose the MS renormalization scale to be
=2 GeV. We find the goodness of fit to be around 1 with either
c as a free parameter or ¢ = 0. As in the previous lattice valence-
quark pion PDF study, the final distributions are consistent with
either choice, but the former case results in the distribution hav-
ing larger error bands due to the additional free parameter. For the
remainder of this work, we focus on the ¢ = 0 results, since this
is the first lattice work on the pion GPD at physical pion mass.
Further study of the systematics due to fit-form choices, as well
as other lattice artifacts (lattice discretization, large momentum
dependent, etc.), should be explored when more computational re-
sources are available. The reconstructions of the matrix elements
using the fit parameters are shown as the bands on the left-hand
side of Fig. 2; they pass through the input data nicely. Varying zmax
results in small changes to the goodness-of-fit and x dependence
of the distributions. The two methods of extracting the GPD are
consistent for all Q2 values studied here. We show two selected
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Fig. 2. (left) The hybrid renormalized Wilson-line length displacement z-dependence of matrix elements as a function of dimensionless parameter zP, at various momentum
transfer Q2 € {0,0.97} GeV2. The corresponding bands are the reproducing matrix elements from the fit to the matrix elements using Eq. (4). (right) Comparison of two
methods, fit-matching “fit” and direct matching with extrapolation “extrap”, to extract the lightcone distributions for valence-quark pion GPD at Q2 =0 and 0.97 GeV2. The
two methods are consistent over most x values within statistical errors. There is some tension near x =0.25 and x > 0.9 for H™ (x, Q2 = 0) GPD, but they are still consistent

within two sigma.
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Fig. 3. (left) Pion valence-quark GPD as a function of Bjorken-x with five values of transfer momenta studied in this work. (right) Pion valence-quark GPD as a function of
transfer momenta at selected Bjorken-x indicated in the bands. The z-expansion is used to interpolate between the five transfer momenta.

values of Q2 results on the right-hand side of Fig. 2, labeled as
“extrap” and “fit” for the former and latter methods, respectively.
Both results are consistent in the intermediate-x region within sta-
tistical errors. Some small disagreement appears for x around 0.25
and at large x of H™ (x, Q2 = 0) but still within two standard devi-
ations; this may change as the statistics increase in future updates.
For the remainder of the manuscript, we focus on the results from
the fitting method.

Fig. 3 shows our final result for the pion valence-quark GPD. On
the left-hand side of Fig. 3, the GPD at zero transfer momentum
as a function of Bjorken-x (that is, the PDF) is shown, as well as
the distribution at various transfer momenta in the zero-skewness
limit. As the transfer momentum increases, the distribution de-
creases, as expected. On the right-hand side of Fig. 3, we show
the GPD at selected x values as functions of transfer momentum
Q2 (in units of GeV2). The GPD is fitted with a z-expansion up
to 3 parameters to interpolate the Q2 dependence. The Q2 de-
pendence of the GPD can help us investigate the tomography of
the pion. Unfortunately, there are few published lattice pion GPDs
at physical pion mass to make comparisons. In first lattice GPD
work [45], the pion valence-quark GPD at zero skewness was cal-
culated using clover valence fermions on an ensemble of gauge
configurations with lattice spacing a ~ 0.12 fm, box size L ~ 3 fm
and pion mass my; =~ 310 MeV. Our results are consistent with the
heavier quark mass but with the systematics removed or improved
for being at the physical pion mass and smaller lattice spacing. We
can compare our results at zero transfer momentum with the PDF
results of BNL/ANL group, also done at physical pion mass but at

a finer lattice spacing of 0.076 fm [110,114]; they are consistent
within statistical errors.

The zero-skewness limit of the pion valence-quark GPD is re-
lated to the Mellin moments by taking the x-moments [140,141]

+1
/dxx" H™ (x,£,Q%) = AT, ;(Q?),

-1

(6)

where A;’i(QZ) are the generalized form factors (GFFs). Our re-
sults for n € [1, 4] can be found in the left-hand-side of Fig. 4. The
GFF allows us to make comparison with past LQCD calculation and
provide possible constraints for global analysis. In the past, there
have been some works done to use the operator product expan-
sion (OPE) to directly calculate Mellin moments of the GPDs on
the lattice using local matrix elements. Generally, the OPE yields

<n+(P 4 A/Z)’ﬂ(O)y“‘iD’“iD“Z ...iDMY ()| 4+ (P — A/2)>
=2ppi | pHnlAL L 0(A?)

n
+2) 0 AART L ARIPRIT PR AL g (A7),
i=1, odd

(7)

Note that when n =0 in Eq. (7), it yields the pion electromagnetic
form factor (7 (p') |O* |7 (p)) = 2 P*Fx (A?), where Aj g = Fy. For
this case, there is a long history of lattice-QCD calculations using
the vector-current operator, and there have also been few attempts
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Fig. 4. (left) Lowest four unpolarized pion GFFs Ao with n € [1, 4] obtained from taking the moment integral using the pion GPD function obtained from this work. (right)
Selected pion form factor F,(Q?2) at the physical pion mass flavors of light quarks from different lattice groups (labeled “xQCD'20" [153], “BNL'21" [154]), together with
the result obtained in this work (labeled “MSULat’23”) and experimental data [12]. We found that this leading moments of our pion GPD is in agreement with prior lattice

works and existing experimental data [156-160].

to calculate the A o moments. Such calculations will provide inde-
pendent cross-checks of the results obtained directly from LaMET
by taking the integral over x to access the moments.

The elastic electromagnetic form factors of the charged pion are
the most studied pion structure in lattice QCD [142-154]. In re-
cent years, these include work directly calculated at physical pion
mass [151-155]. In Fig. 4, we compare our pion form factors, ob-
tained from taking the moments of the pion GPD function, with
two recent lattice calculations using vector-current operator. x QCD
Collaboration used overlap fermions on seven ensembles of 2+1-
flavor domain-wall configurations, including multiple lattice spac-
ings a € [0.083,0.195] fm to remove lattice discretization effects,
and pion masses ranging from 139 to 340 MeV. Their statistics
range from 9,600 to 485,376 measurements [153]. BNL used clover
on Ny =2+ 1 HISQ lattice at a single lattice spacing a =0.076 fm
at physical pion mass with 1750 and 35,000 exact and sloppy in-
versions, respectively [154]; the work also includes two additional
ensembles at smaller lattice spacing with 300-MeV pion to quan-
tify the systematics. They found the pion radius to be consistent
at heavy pion mass between the 0.04 and 0.06 fm lattice-spacing
ensembles but sensitive to the pion mass. We select their results
at physical pion mass on the smallest lattice-spacing to compare
to our integral over the GPD. We can see that there is a very nice
agreement among all the lattice results, even though the lattice
spacing varies among the three calculations. We also compare the
pion form factor with those extracted from experiments [156-160]
and find good agreement; the lattice data are more precise than
the available experimental data in certain transfer-momentum re-
gions.

There have been only a couple of dynamical calculations of A7 ,
using heavy pion masses more than a decade ago, reported in con-
ference proceedings. In 2005, UKQCD/QCDSF [161] used two flavors
of dynamical fermion with a very heavy pion mass of 1090 MeV
and found AZ,(t = 0) =0.315(8). In 2013, RQCD also used two-
flavor clover dynamical fermions with pion masses ranging from
150 to 491 MeV [162]; unfortunately, they found AZ,(t) to have
a wide range distribution and the data at the near-physical pion
mass has uncertainty too large for a direct comparison. However,
overall, our moment-integral from GPD functions lies within the
range of RQCD moment results obtained using OPE method. Unfor-
tunately, there have been no n > 3 GFF moment calculations from
OPE methods. Our A?BA]O results, shown in Fig. 4, are the only pre-
dictions from LQCD.

Taking the lattice calculations of the pion’s valence quark
GPD, Hz(x,& =0, Q?), we can then Fourier transform of this

GPD to learn about the impact-parameter-dependent distribution,
q(x,b) [7,163]:

N
q“m_famz

where b is the light-front distance from the center of transverse
momentum (CoTM). Fig. 5 shows slices of the distribution with se-
lected x € [0.1, 0.9], as well as the two-dimensional distribution at
x = 0.45. The impact-parameter-dependent distribution describes
the probability density for a parton with momentum fraction x to
be found in the transverse plane at distance b from the CoTM. It
provides a snapshot of the pion in the transverse plane and indi-
cates what might be expected from pion tomography.

H™ (x,& =0,t = —q?)e'9®,

(8)

4. Summary and outlook

We presented a state-of-the-art high-statistics lattice calcu-
lation of the valence-quark GPD of the pion using the LaMET
approach with a next-to-next-to-leading order perturbative match-
ing formula. The calculation was done at lattice spacing 0.09 fm
with physical pion masses and boosted pion momentum around
1.7 GeV with four additional nonzero transferred momenta in
the Breit frame. We performed multistate analyses with mul-
tiple source-sink separations to remove excited-state contam-
ination. We obtained the x-dependent valence-quark GPD by
fitting the hybrid-scheme-renormalized matrix elements to a
phenomenology-inspired functional form. We compared our re-
sults with prior lattice studies in special limits of the pion GPD,
such as the pion PDFs (Q2 =0 limit) and pion form factors (for-
ward limit). This is the first pion valence-quark GPD directly cal-
culated at the physical quark masses. We also made predictions
for higher moments of the generalized form factors that have not
yet been calculated and show x-dependent tomography of the pion
for the first time using lattice QCD. Our result provides the most
reliable lattice prediction of the valence-quark pion GPD to date
and will guide upcoming measurements at JLab and the EIC. Fu-
ture work will extend the calculation to additional boost momenta
and finer lattice spacings to further constrain the systematics in
the lattice calculations.
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