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Abstract—Effective power flow modeling critically affects the

ability to efficiently solve large-scale grid optimization problems,

especially those with topology-related decision variables. In this

work, we put forth a generative modeling approach to obtain

a piecewise linear (PWL) approximation of AC power flow by

training a simple neural network model from actual data samples.

By using the ReLU activation, the NN models can produce a

PWL mapping from the input voltage magnitudes and angles to

the output power flow and injection. Our proposed generative

PWL model uniquely accounts for the nonlinear and topology-

related couplings of power flow models, and thus it can greatly

improve the accuracy and consistency of output power variables.

Most importantly, it enables to reformulate the nonlinear power

flow and line status-related constraints into mixed-integer linear

ones, such that one can efficiently solve grid topology optimization

tasks like the AC optimal transmission switching (OTS) problem.

Numerical tests using the IEEE 14- and 118-bus test systems

have demonstrated the modeling accuracy of the proposed PWL

approximation using a generative approach, as well as its ability

in enabling competitive OTS solutions at very low computation

order.

Index Terms—Generative modeling, piecewise linear approx-

imation, nonlinear AC power flow, grid topology optimization.

I. INTRODUCTION

E
FFECTIVE power flow modeling is critical for analyzing
and optimizing large-scale power systems for efficient

and reliable grid operations. With worldwide energy transitions
and decarbonization, grid optimization tasks are increasingly
challenged by e.g., uncertainty factors, extreme conditions,
and fast computation needs. Meanwhile, optimizing the grid
topology for increased flexibility has been advocated in prob-
lems like optimal transmission switching (OTS) [1], adaptive
islanding [2], and post-disaster restoration [3]. Hence, it is
important to develop effective power flow models that can
facilitate the accurate and fast solutions for grid optimization
problems, especially those with the combinatorial topology
variables.

There exist significant efforts in developing approximation
models for the nonlinear AC power flow. Notably, linearized
power flow models have been advocated due to their simplic-
ity, such as the well-known DC model [4], or the first-order
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approximation at an operating point for better accuracy [5]. As
linear models are very limited by their generalizability across
all possible operation regions [2], one straightforward exten-
sion is the piecewise linear (PWL) approximation approach
by using multiple operating points; see e.g., [6]. By and large,
there is a trade-off between accuracy and complexity for these
model-based approaches, while the number and location of
operating points could be difficult to select.

To tackle these issues, data-driven approaches have been re-
cently advocated as an alternative for PWL modeling. Trained
from realistic power flow scenarios, machine learning models
such as K-plane regression [7] and neural networks (NNs) [8],
[9] have shown good power flow approximation capabilities. In
particular, ReLU-based NNs can be used to construct simple
yet accurate PWL power flow models by incorporating the
power flow Jacobian information [8]. Similar ideas have been
explored in the constraint learning framework [9] but for
general grid operational constraints. Interestingly, these PWL
models under the ReLU activation allow to reformulate grid
optimization problems with nonlinear power flow as mixed-
integer linear programs (MILPs), for which there exist efficient
off-the-shelf solvers. For example, successful applications to
unit commitment and distribution management have been con-
sidered. Albeit the success, these existing approaches mainly
build on an end-to-end learning framework that does not
consider the underlying physical models of power flow. In
addition, none of them has yet considered a flexible grid
topology.

In this paper, we put forth a generative modeling approach
to obtain the PWL approximation of AC power flow that is
directly applicable to complex grid optimization problems.
With the ReLU activation, we design the NN architecture
to uniquely explore the generative structure of AC power
flow. With the voltage and angle inputs, our proposed NN
model first predicts the nonlinear terms that are common to
all power variables in the first two layers, and then transforms
these common terms to all line flows and power injections
with two more layers. All the layers will be jointly trained
to ensure an excellent consistency among all variables. This
way, the proposed PWL model is generated in accordance
with the power flow physics, while able to incorporate flexible
topology connectivity. Thanks to our proposed NN design,
we can cast grid optimization tasks like OTS into an MILP



form for efficient solutions. We use the IEEE 14- and 118-
bus test systems to validate the proposed PWL approximation
in terms of improving power flow modeling accuracy over
non-generative, as well as an excellent optimality/feasibility
performance in solving AC-OTS.

The rest of the paper is organized as follows. Section II
provides the nonlinear AC power flow modeling. In Section III,
we develop the PWL model that uses a neural network
and discuss the formulation steps to attain a mixed-integer
program. Section IV provides the simulation set-up for the
IEEE 14- and 118-bus test systems and presents the numerical
comparisons and validations for the proposed scheme, along
with some concluding remarks.

II. NONLINEAR AC POWER FLOW MODELING

We first present the nonlinear AC power flow modeling for
transmission systems, while introducing the relevant topology
status variables and coupling terms useful for the discussions
later on. Consider a transmission system consisting of n buses
collected in the set N := {1, . . . , n} and ` lines (including
transformers) in L := {(i, j)} ⇢ N ⇥ N . For each bus
i 2 N , let Vi 6 ✓i denote the complex nodal voltage phasor,
and {Pi, Qi} denote the active and reactive power injections,
respectively. For each line (i, j) 2 L, let ✓ij := ✓i�✓j denote
the angle difference between bus i and j, and {Pij , Qij}
denote the active and reactive power flows from bus i to j; and
similarly for {Pji, Qji} from bus j to i. In addition, the line’s
series and shunt admittance values are respectively denoted by
yij = gij + jbij and yshij = gshi + jbshi .

By defining a binary variable ✏ij 2 {0, 1} to indicate the
status for each line (i, j) 2 L (0/1: off/on), the nodal power
balance at bus i per the Kirchhoff’s law becomes

Pi =
P

(i,j)2L ✏ijPij , (1a)

Qi =
P

(i,j)2L ✏ijQij . (1b)

Note that these binary variables {✏ij} will be important for
formulating topology-related grid optimization tasks such as
the optimal transmission switching problem as detailed later
on. Without any topology changes, they can be fixed at ✏ij = 1.
For each line (i, j) 2 L, the power flows relate to the angle
difference ✓ij and nodal voltages {Vi, Vj}, and in the case of
transformer, its tap ratio aij , as given by

Pij = V 2
i (

gij
a2ij

+ gshi )� ViVj

aij
(gij cos ✓ij + bij sin ✓ij), (2a)

Qij =�V 2
i (

bij
a2ij

+ bshi )� ViVj

aij
(gij sin ✓ij�bij cos ✓ij). (2b)

For the transmission lines, we can simply set aij = 1. As
for a transformer, the tap ratio is typically set within the
range of [0.9, 1.1] and it only affects the primary-to-secondary
direction. Thus, for the power flows in the secondary-to-
primary direction, one can use aij = 1 in (2).

One advantage of our proposed piecewise linear (PWL)
approximation is to leverage the underlying coupling among

active and reactive power flows. To this end, let us denote the
three nonlinear terms in (2) by

�i := V 2
i , ⇢ij := ViVj cos ✓ij , and ⇡ij := ViVj sin ✓ij .

To form the bi-directional power flows {Pij , Qij , Pji, Qji} per
line (i, j), we only need the nonlinear terms {�i, �j , ⇢ij ,⇡ij},
and the mapping between the two groups of variables is
simply linear. To represent the resultant linear relation of
(2) in a matrix-vector form, let us concatenate all the power
flow variables in zpf 2 R4`, and all the injection ones in
zinj 2 R2n. In addition, let � 2 Rn, ⇢ 2 R`, and ⇡ 2 R`
denote the respective vectors for the three groups of common
terms. This way, we have

zpf = W �� +W ⇢⇢+W ⇡⇡, (3a)
zinj = W  zpf (3b)

where the weight matrices {W � ,W ⇢,W ⇡,W  } are of
appropriate dimension given by the known line parameters
and line status variables in (2) and (1), respectively. Clearly,
the three groups of common terms are sufficient for fully
generating all power flow and injection quantities, and our
proposed generative modeling will work by predicting these
terms as the first step.

A. Linear Approximation

We discuss the linear approximation for the common terms,
which will be used by the proposed PWL models. Linear
approximation is a basic approach to deal with power flow
nonlinearity, thanks to its simplicity and reasonable accuracy
within a small region of the operating point. We will consider
the first-order approximation method to attain a linearized
modeling, while there also exist other popular methods such
as fixed-point method [10].

For the squared voltage term, it can be approximated by
�̂i = 2Vi�1, 8i 2 N , based on a flat-voltage value. Of course,
this linearized model can be improved by using the exact
operating point if different from the flat-voltage profile. As
shown in [2], the former already attains a very high accuracy
for power systems with well-regulated bus voltages within
the p.u. range of [0.94, 1.06]. Thus, for simplicity, this linear
representation of �̂ will be adopted in this work.

Nonetheless, the other two terms ⇢ and ⇡ are more com-
plicated to approximate than � due to the presence of angle
differences. To this end, we consider the first-order approx-
imation for the former at the operating point. To simplify
the notation, let us use [⇢; ⇡] = f(x) 2 R2` to represent
the nonlinear mapping from the input x, which consists of
the voltage magnitude V = {Vi}i2N 2 Rn and the angle
difference ✓ = {✓ij}(i,j)2L 2 R`. With a fixed operating point
denoted by xo, the first-order approximation becomes

[⇢̂; ⇡̂] = f(xo) + J(xo)(x� xo)

= f(xo) + J(xo)�x (4)

where J(xo) denotes the Jacobian matrix of f(x) evaluated at
xo, while we use �x := x � xo for simplicity. The ensuing



Fig. 1. The structure of the proposed neural network that can generate the
common terms on the second layer through the trainable weight matrix and
generate power flows and injections on the third and fourth layers through
the fixed weight matrices.

section will build upon the linear model in (4) by using a
data-driven approach to improve the approximation accuracy.

III. PWL APPROXIMATION VIA GENERATIVE MODELING

Our proposed PWL model uses a two-layer neural network
(NN) to first approximate the common nonlinear terms in
[⇢;⇡], followed by two additional linear layers to generate
the power flow and injection variables. As illustrated in Fig. 1,
using the input voltage and angle difference in x = [V ;✓],
the first two layers will rely on the ReLU activation functions
to form the best PWL model for [⇢̂; ⇡̂] by adjusting the NN
parameters. In addition, the last two layers use the fixed weight
parameters from (3a) to generate the power flows for all lines,
and accordingly, use (3b) to generate the power injection
at all nodes. Note that the squared voltage �̂ used by the
third layer of generating power flow is based on the simple
linearized model as described in Sec. II-A. Thus, the proposed
approximation fully matches the power flow relations and
coupling among different terms, in an efficient and generative
fashion.

Using the ReLU activation, the first two layers can effec-
tively produce a PWL mapping that can improve the accuracy
of the linearized model in (4). The ReLU function is defined by
�(·) where outputs the entry-wise maximum between the input
value and 0. Intuitively, when the activation status of ReLU
function stays unchanged within a certain region of input
values, its functional output enjoys the same linear relation
with the input in that region. Therefore, one can view that the
combination of ReLU activation status would divide the whole
input space into multiple smaller regions, within each it boils
down to a purely linear function. Thus, the overall function
over the whole input space becomes a PWL one. In this sense,
the number of linear regions will grow exponentially with the
number of activation functions, and it would be challenging to
search for all possible combinations. Therefore, we will train
the NN parameters within the first two layers from generated
data samples that can best select the activation status and linear
regions from the data.

To concretely connect the NN model with PWL functions,
we first consider a simple case of two linear regions obtained
by using two different operating points, namely xo and x1, as

[⇢̂; ⇡̂] = f(xo) +�y, with

�y =

(
J(xo)�x, x 2 Ro

J(x1)(x� x1) + r, x 2 R1

(5)

where Rq represents the linear region corresponding to xq ,
and the residue in R1 is given by r := f(x1)� f(xo).

To recover the NN structure for (5), we follow [11] to
assume that the two Jacobian matrices therein are different
by a low-rank component. Specifically, we assume that

J(x1) u J(xo) +w2w
>
1 (6)

where both w1 and w2 consist of the NN weight parameters,
that can be of much lower dimension than the size of Jacobian
matrix. For simplicity, we consider both of them to be vectors
with w1 2 Rn+` and w2 2 R2`, and thus the difference term
in (6) becomes a rank-one matrix. This will be expanded to a
higher-rank case later by using weight matrices. Interestingly,
the simplification in (6) allows to unify the two scenarios in
(5) by using one ReLU activation function, as given by

�y u J(xo)�x+w2�(w
>
1 �x+ b) (7)

where b is a scalar bias parameter. When the ReLU function
is not activated, it becomes the linear model in Ro of (5).
Otherwise, upon the activation of �(·) the resultant linear
model should approach the one in R1 by recognizing the
relation between the two Jacobian matrices in (6), as given
by

�y u
⇣
J(xo) +w2w

>
1

⌘
�x+w2b. (8)

In addition, to match the offset term in R1, we would need
to have w2b u J(x1)(xo � x1) + r. In general, the two-
layer form in (7) may not fully express or match the two-
region linearized model at the two operating points as in (5).
Nonetheless, (7) definitely constitutes as a PWL approximation
for the underlying f(x) function. In particular, the single
ReLU activation in (7) has led to 2 linear regions for the
resultant PWL model.

The simple case of two linear regions can be expanded
to encompass more complex PWL model by increasing the
number of ReLU activation functions. If the first layer has q
ReLU functions with different linear transformations as the
input, it is possible to generate a PWL model with up to 2q

linear regions. This way, the weight parameters form the two
matrices W1 2 R(n+`)⇥q and W2 2 R2`⇥q , as well as the bias
vector b 2 Rq . The number of linear regions is related to the
combination of activation status for all q ReLU functions. The
larger q is, the more expressive the corresponding PWL model
becomes, at the price of more model parameters to consider.
This makes it difficult to determine the weight parameters
using model-based linearization as in (5), motivating us to
train these parameters from generated power flow samples.



In general, the latter can be designed to reflect the realistic
operating points and the statistical variability around them,
and thus the resultant PWL model could outperform a model-
based approach by pre-selecting the points for linearization.

Before presenting the training loss, recall that the full
generative model in Fig. 1 includes the first two layers for
obtaining the nonlinear terms and two fixed-weight layers for
power variables, as given by

z(1) = �(W>
1 �x+ b), (9a)

z(2) = f(xo) +
⇣
J(xo)�x+W2z

(1)
⌘
, (9b)

z(3) = W � �̂ + [W ⇢;W ⇡]z(2), (9c)

z(4) = W  z(3) (9d)

where the first two layers generalize the simple case of (7) to q
ReLU functions, and the last two layers follow from (3). When
we generate random power flow data, the actual values for
both f(x) = [⇢;⇡] and [zpf ; zinj ] can be obtained and using
all of them for the loss function could effectively maintain
the relations among the corresponding predicted values in (9).
Specifically, we can use the Euclidean distance to form the
following loss function

L(W1,W2, b) =kf(x)� z(2)k22

+ �
���[zpf ; zinj ]� [z(3); z(4)]

���
2

2
(10)

where � > 0 denotes a regularization hyperparameter to
balance the error terms in different layers. The choice of � can
affect the prediction of the last two layers, and we will use a
value larger than 1 to improve the accuracy in predicting zpf

and zinj . The average loss will be used to aggregate different
samples, yielding the total training loss objective to minimize.
After training, the proposed PWL model can fully generate
the power flows and injections with linear transformations.
On the other hand, (9a) is not a linear transformation due to
the ReLU function. We also face nonlinear constraints when
considering the binary line status variables with power flows.
Hence, we will work to reformulate the ReLU function and the
line status-related constraints into mixed-integer linear forms.

A. Mixed-integer Linear Formulation for the PWL Model

The proposed PWL models allow for formulating the non-
linear power flow equations into mixed-integer linear forms
and thus enable efficient solutions for grid optimization prob-
lems involving topology variables. We present the formulation
to attain a mixed-integer linear program (MILP) for the PWL
modeling, and also for handling the line connectivity as in (1).

To adopt the PWL model in (9) into an MILP, the main issue
lies in the ReLU function of (9a), as all other transformations
are just linear ones. To tackle the ReLU function, we will
use a technique based on the big-M tightening method [12].
For the k-th entry z(1)k in (9a), we will approximate it by
introducing a binary variable �k, and its upper/lower bounds
{M̄k,Mk}. The two bounds can be determined through an
off-line optimization procedure [13]. After determining these

bounds and denoting the input in (9a) by ẑ(1) = W>
1 �x+b,

the big-M method asserts that each z(1)k can be reformulated
by using four linear inequality constraints, as given by

0  z(1)k  M̄k�k, (11a)

ẑ(1)k  z(1)k  ẑ(1)k �Mk(1� �k), (11b)

The binary variable �k critically relates to the ReLU activation
status based on the input ẑ(1)k . If the input ẑ(1)k > 0, then the
constraints in (11b) enforce �k to be one such that z(1)k = ẑ(1)k

holds exactly. Otherwise, if ẑ(1)k  0, the constraints in (11a)
enforce �k to be zero to yield z(1)k = 0. This way, the output
z(1)k from (11) exactly attains the ReLU-based output in (9a).
Thus, with accurate upper/lower bounds, the big-M method
allows for an equivalent reformulation of (9) into an MILP
form.

Similarly, we formulate the line status-related constraints
into an MILP form. We face the multiplication of contin-
uous variables {Pij , Qij} and binary variables ✏ij that are
denoted as P̂ij := ✏ijPij and Q̂ij := ✏ijQij . To tackle this
multiplication term, we will use the McCormick reformulation
technique [14] derived from the big-M tightening method.
After attaining the upper/lower bounds of active and reactive
power flows {P̄ ij , P ij} and {Q̄ij , Qij

}, each {P̂ij , Q̂ij} can
be reformulated by using four linear inequality constraints, as
given by

P ij✏ij  P̂ij  P̄ ij✏ij , (12a)

Q
ij
✏ij  Q̂ij  Q̄ij✏ij , (12b)

Pij + P̄ ij(✏ij � 1)  P̂ij  Pij + P ij(✏ij � 1), (12c)

Qij + Q̄ij(✏ij � 1)  Q̂ij  Qij +Q
ij
(✏ij � 1). (12d)

The outputs {P̂ij , Q̂ij} critically relate to ✏ij . If ✏ij is equal
to zero, then the constraints in (12a) and (12b) enforce P̂ij

and Q̂ij to be zero. Otherwise, if ✏ij is equal to one, then
the constraints in (12c) and (12d) enforce P̂ij and Q̂ij to be
Pij and Qij , respectively. This way, the output P̂ij and Q̂ij

from (12) exactly attain the power flows based on the binary
line status. Thus, the McCormick reformulation allows for an
equivalent reformulation of the multiplication terms of power
flows and line status variables into an MILP form.

IV. NUMERICAL STUDIES

We have implemented the proposed generative modeling
approach on the IEEE 14-bus and 118-bus test cases [15],
to compare its performance in power flow modeling and grid
topology optimization. The NN training has been performed
in PyTorch with Adam optimizer on a regular laptop with
Intel® CPU @ 2.70 GHz, 32 GB RAM, and NVIDIA® RTX
3070 Ti GPU @ 8GB VRAM. We have formulated the OTS
problem through Pyomo [16] and used the Groubi optimization
solver [17] for the resultant MILPs.

To train the proposed NN-based PWL models in Fig. 1, we
generate 10,000 samples from the actual power flow model,
with the outputs of common nonlinear terms {�,⇢,⇡}, as



(a) Average Error (b) Maximum Error
Fig. 2. Comparisons of the (a) average error and (b) maximum error
in approximating the line power flows for both the proposed Gen and
Direct methods using the IEEE 14-bus system.

(a) Average Error (b) Maximum Error
Fig. 3. Comparisons of the (a) average error and (b) maximum error
in approximating the line power flows for both the proposed Gen and
Direct methods using the IEEE 118-bus system.

well as line flows and nodal injections. For each sample,
we generate uniformly distributed voltage magnitudes within
the range of [0.94, 1.06] p.u., and similarly for the angle,
which randomly varies within [�⇡/6,⇡/6] radians around the
initial operating point. For the reference bus, namely, Bus 1
in the 14-bus or Bus 69 in the 118-bus system, we fix its
voltage magnitude and angle at default values. For the first
two trainable layers in Fig. 1, we use q = 25 and q = 75
ReLU activation functions, respectively for the two systems.
The NN parameters have been trained via backpropagation
using the loss function (10) with � = 10, with a total of 20e3
epochs and a learning rate of 2.5e�3. Note that the � value
has been chosen through hyperparameter tuning. We separate
90% of the data set as training one and the rest 10% as testing
one. The NN modeling results and error performance presented
later on are based on the testing data only.

A. AC Power Flow Approximation

We first validate the AC power flow modeling performance
of our PWL-based approximation. We compare the proposed
generative modeling approach using the common nonlinear
term prediction step (indicated by Gen) with the existing work
[8] that directly predicts the power flow variables (indicated
by Direct). The latter directly uses a two-layer NN of ReLU
activation to output the line power flow, with the structure
given by

zpf  J(xo)�x+W2z
(1). (13)

Note that we use the same number of activation functions for
both types of models.

We compare the approximation error between the predicted
and actual line power flow values as normalized by the line
capacity. Figs. 2 and 3 show the box plots of the normalized
prediction error percentages of both active and reactive line

(a) IEEE 14 bus (b) IEEE 118 bus
Fig. 4. Comparisons of the root mean square error (RMSE) in
predicting the injected power vectors for both the proposed Gen and
Direct methods in the (a) IEEE 14-bus and (b) 118-bus systems.

flows, respectively for the 14- and 118-bus systems. Note that
both the average error and the maximum error, out of all trans-
mission lines in each system are included for comparisons.
Each box plot shows the median values as midlines, the first
and third quartiles as boxes, maximum values as horizon bars,
and some outliers. Clearly, the proposed generative model
is of better accuracy in predicting the line flows than the
direct method, especially for the reactive power parts. Notably,
the proposed method has shown significant improvements in
terms of reducing the maximum values of errors in all cases.
These results have verified the benefits of incorporating the
underlying coupling between active and reactive power flows
considered by our proposed NN design.

Furthermore, we also compare the error performance in
predicting the active and reactive power injections, which can
be formed directly from the line flows using (3b). Without
any normalization basis, Fig. 4 instead shows the box plots
for the root mean square error (RMSE) in predicting the
injected power vectors in both test systems. Similar results
have been observed for predicting the injections, with even
more noticeable improvements in both active and reactive
power values. This is because our proposed NN model in
Fig. 1 has directly accounted for the power flow coupling, and
thus its joint training process would achieve high consistency
with nodal power balance. Thanks to the generative structure
of the underlying NN design, our proposed PWL models can
improve the accuracy and consistency in the resultant power
flow approximation.

B. OTS Applications

We adopt the proposed PWL models in solving the OTS
problem using the 118-bus system. The objective function
and operational constraints are set up similarly to the typical
optimal power flow (OPF) problem. Additionally, OTS allows
for line switching under the constraint of a total switching
budget of ↵ lines, given by

P
(i,j)2L ✏ij � `� ↵.

The number ↵ is typically no greater than 5-10. Hence, the
computation complexity of OTS is much higher than that of
OPF, due to the integer line status variables. We introduce
the proposed PWL models into the AC-OTS formulation by
replacing the power flow constraints by (11), as well as the
line status constraints by (12). This way, the resultant MILP
problem can be efficiently solved with solvers like Gurobi.



We test the performance of the proposed PWL model-
based OTS solutions. We compare it with the OTS solutions
using the DC- and AC- power flow models, both provided by
the open-source platform [18]. To compare across different
OTS methods, we re-run the AC-OPF problem after fixing
the topology with their line-switching decision outputs, using
the MATPOWER [19] solver. This way, we can compare the
metrics in terms of the objective costs (for optimality), as
well as the percentage rates of infeasibility and constraint
violations (for feasibility), using the corresponding AC-OPF
outputs. For the two feasibility measures, the infeasible solu-
tion rates measure the percentage of infeasible solutions over
all solutions, while the constraint violation rates are based on
the percentage of over-limit voltage magnitude and angle over
the infeasible solutions. Table I lists these metrics and also the
computation time for each of the three OTS methods with a
switching budget ↵ equal to 1 or 3. Note that the computation
time corresponds to solving the OTS optimization problem,
not the follow-up AC-OPF one. A total of 1,000 power
flow scenarios by having nodal demand uniformly distributed
within [50%, 200%] of the initial demands [15] have been
used to compute the average of all these four metrics. For the
objective cost, the AC-OTS method has been used as a baseline
(normalized to be 100%), and thus the other two OTS methods
using approximate models attain higher percentage values.
Nonetheless, the proposed PWL model only slightly increases
the objective cost by less than 2%, while attaining exactly
the same infeasiblity metrics as the AC-based OTS solutions.
Notably, our model achieves a highly competitive performance
and also great efficiency, as its computation time is almost a
tenth of the AC-OTS one. In particular, the PWL model has
allowed for a very low computation complexity in the order
of DC-OTS one. But the latter leads to significantly worse
feasibility performance, with an almost order of magnitude
higher of infeasiblity rates than PWL-based OTS. Thanks to its
high modeling accuracy, our proposed PWL model can greatly
simplify the computation for grid topology optimization tasks
by using the MILP reformulation trick, while approaching the
ideal optimality/performance performance.

To sum up, we have designed a NN-based PWL approxima-
tion model for AC power flow with a good balance between
model complexity and accuracy. Through its generative design,
the proposed PWL models not only account for the underlying
power flow coupling, but also allow for highly competitive
solutions for topology-aware grid optimization problems. Our
future research directions include improving the scalability
of our proposed PWL models in large-scale power systems,
as well as considering more generalized topology-aware grid
optimization tasks like restoration and adaptive islanding.
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TABLE I
COMPARISON OF THE OPTIMALITY AND FEASIBILITY OF THE SOLUTIONS

OF THE AC, PWL, AND DCOTS.

Switching
Budget AC PWL DC

Objective
Cost (%)
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