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Abstract— This paper develops a risk-aware controller
for grid-forming inverters (GFMs) to minimize large fre-
quency oscillations in GFM inverter-dominated power sys-
tems. To tackle the high variability from loads/renewables,
we incorporate a mean-variance risk constraint into the
classical linear quadratic regulator (LQR) formulation for
this problem. The risk constraint aims to bound the time-
averaged cost of state variability and thus can improve
the worst-case performance for large disturbances. The
resulting risk-constrained LQR problem is solved through
the dual reformulation to a minimax problem, by using a
reinforcement learning (RL) method termed as stochastic
gradient-descent with max-oracle (SGDmax). In particular,
the zero-order policy gradient (ZOPG) approach is used to
simplify the gradient estimation using simulated system
trajectories. Numerical tests conducted on the IEEE 68-bus
system have validated the convergence of our proposed
SGDmax for GFM model and corroborate the effectiveness
of the risk constraint in improving the worst-case perfor-
mance while reducing the variability of the overall control
cost.

Index Terms— Frequency control, grid-forming inverter
(GFM), inter-area oscillations, mean-variance risk con-
straint, reinforcement learning (RL)

I. INTRODUCTION

GRID-FORMING inverters (GFMs) are increasingly im-
portant for establishing grid voltage and frequency in

next-generation power systems with high penetration of low-
carbon energy resources [1]. Photovoltaics, wind generators,
and energy storage devices lack in conventional primary and
secondary controls as synchronous generators (SGs), and thus
their integration greatly challenges grid stability. Advanced
GFM technology can address this issue as they operate as inde-
pendent voltage sources to support grid stability by controlling
the voltage and frequency at the interfaces of new resources
[2].
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The existing GFM control strategies consist of three main
categories: droop control [3]–[5], virtual synchronous gener-
ators [6], [7], and virtual oscillator control [8]. Especially,
droop control is a well-established method to mitigate voltage
and frequency fluctuations by following P -ω and Q-V droop
curves. By observing active and reactive powers from the
network as inputs, it can vary the terminal frequency and
voltage depending on the internal voltage/power set-points [9].
Thus, changing these set-points can affect the overall grid
dynamics to quickly attain the steady-state operations after
huge external perturbations due to, e.g., sudden changes of
the load/renewable. As a local control design, it is known
that the overall performance of multiple droop-controllers
could degrade for reducing inter-area oscillations in large-scale
interconnection [3]. A decentralized control design among all
GFMs can address this issue, with state information exchange
among GFMs as enabled by communication network [10]. The
number of communication links are typically limited, and thus
a structured feedback design per the information-exchange
graph among GFMs will be adopted later on.

Recent advances in data-driven methods, including both
model-based and model-free ones, have provided significant
advantages for solving optimal control problems. To design
the decentralized GFM controller, there have been several
data-driven techniques such as reinforcement learning (RL)
[11] and adaptive dynamic programming [12]. While these
model-free approaches do not require to know the system’s
mathematical model, they are known to suffer from the sample
complexity issue which needs extensive data samples and large
training time [13]. Thus, we choose a model-based approach
by simulating the underlying system dynamics, which will
greatly accelerate the policy search in practice [14], [15].

Moreover, a linear quadratic regulator (LQR) objective [16]
typically used for the GFM control problem could unfortu-
nately face severe performance degradation particularly in the
worst-case oscillations. This is because it solely focuses on
reducing the expected cost over time, failing to account for
the highest oscillation scenarios. The latter issue is particu-
larly pronounced in large-scale interconnections, where sudden
load/renewable changes can trigger the inter-area oscillations
that are known to experience high frequency fluctuations and
poor damping levels. While some existing work [16] has
attempted to use model-based RL for GFM controls, it is
still an open question to account for the risk associated with
extreme scenarios.

To this end, we develop a risk-aware RL approach for
the GFM control design problem while aiming to address



large perturbations in GFM inverter-dominated systems. We
formulate it as a constrained LQR problem with the so-
termed mean-variance risk constraint. The latter is imposed
on the overall deviations of state cost from its expectation,
which can reduce the level of high system variability as a
result of significant disturbances to enhance the worst-case
performance. To solve this problem, we implement an RL-
based algorithm termed as stochastic gradient-descent with
max-oracle (SGDmax), which utilizes zero-order policy gradi-
ent (ZOPG) as estimated gradients for reduced computational
complexity [17]. Expanding upon [17] that utilize SGDmax in
load frequency control (LFC) with simple dynamics in small
microgrids system, we develop the system dynamics model
by integrating detailed SG and GFM dynamics. In addition,
we demonstrate the effectiveness of the method based on the
widely recognized IEEE 68-bus system.

Our main contributions are three-fold. First, we formulate
the GFM problem as an LQR problem with linearized dynam-
ics integrating both SGs and GFMs through network coupling,
which is essential for incorporating the risk constraint. Second,
we consider high load perturbation into system dynamics that
leads to increased system variability. To address this chal-
lenge, we incorporate the mean-variance risk constraint into
LQR formulation and solve it using the RL-based SGDmax
algorithm. Third, we demonstrate the effectiveness of the
proposed method through numerical tests in the presence of
high external disturbances. Specifically, we train an RL policy
by generating the system trajectory offline and test it in the
actual nonlinear system to demonstrate the improved efficacy
of our proposed method.

II. SYSTEM MODELING

We consider a power system consisting of Na areas with
a total of Ng synchronous generators (SGs) and Nf grid-
forming inverters (GFMs).We denote SGs and GFMs as in-
dexed by the sets G = {1, 2, . . . , Ng} and F = {Ng +1, Ng +
2, . . . , Ng + Nf}, respectively. Without loss of generality
(Wlog), every load bus is assumed to be connected to one
GFM, as other load buses can be reduced.

To model the overall system, we first present the dynamics
of each SG and GFM here. The dynamics of SG i ∈ G is
represented by the following swing equations [18]:

δ̇i = ωi − ω0, (1a)

ω̇i =
1

Mi

[
Di(ω0 − ωi) + Pi − Pn

i

]
(1b)

where parameters {Mi, Di} are the inertia and damping
coefficients, respectively. Let the vector xi = [δi,ωi] collect
the internal state of rotor angle and speed for SG i. The
active power delivered to the network Pn

i is compared with its
generated one Pi to determine the rate of frequency deviation.
Here, we do not incorporate the frequency regulation of the
automatic generation control (AGC) due to its slow time-scale.
However, the AGC extension is possible to include as part of
the network power flow as considered later on.

Each of the Nf GFMs acts as a controllable voltage source
at the DER-connected load bus [9]. As illustrated in Fig. 1,

Fig. 1: GFM dynamics based on droop controls.

the internal dynamics utilizes the P -ω and Q-V droop control
curves [10]. For each GFM j ∈ F , the active and reactive
powers delivered by the network, namely Pn

j and Qn
j , are

calculated using the terminal voltage/current measurements
that go through a low-pass filter. The droop controller then
uses the difference from the corresponding power set-point
to determine the actuation signal. For example, the difference
between Pn

j and the active power set-point P s
j is multiplied by

the droop gain mp
j to determine the signal ωj ; and similarly for

the voltage error signal V e
j . Note that the Q-V droop is also

followed by a proportional-integral (PI) controller to further
regulate the deviations of the voltage error V e

j , with kpvj and
kivj as the proportional and integral gains, respectively. Last,
ω, δ and V are sent to the pulse width modulation (PWM)
generator and the frequency and voltage of the node are set
accordingly by the inverter. Thus, the dynamic model of GFM
j ∈ F can be expressed as follows:

δ̇j = ωj − ω0, (2a)

ω̇j =
1

τj

[
ω0 − ωj +mp

j (P
s
j − Pn

j )
]
, (2b)

V̇ e
j =

1

τj

[
V s
j − V e

j − Vj +mq
j(Q

s
j −Qn

j )
]
, (2c)

V̇j = kpvj V̇ e
j + kivj V e

j (2d)

where τj is a pre-determined droop time constant. The state
vector per GFM j becomes xj := [δj ,ωj , V e

j , Vj ]. Thus, the
GFM works by controlling its Vj and ωj via adjusting the
voltage and power set-points, which are included by the vector
uj := [V s

j , P
s
j .Q

s
j ].

Based on (1) and (2), the dynamics of SGs and GFMs
are coupled by the network power flow (PF) to determine
{Pn

ℓ } and {Qn
ℓ } for ℓ ∈ G ∪ F . Thus, we can establish the

overall system dynamics through the steady-state PF analysis.
By employing the Kron reduction [19], we first eliminate all
other buses except for the SG and GFM ones, to consider the
PF among {Vℓ, δℓ}ℓ∈G∪F as given by:

Pn
ℓ =

Ng+Nf∑

k=1

VℓVk(Gℓk cos(δℓ − δk) +Bℓk sin(δℓ − δk))

Qn
ℓ =

Ng+Nf∑

k=1

VℓVk(Gℓk sin(δℓ − δk)−Bℓk cos(δℓ − δk))



To formulate the linearized dynamics required for the risk
constraint reformulation, we linearize the PF equations around
the steady-state operating point, resulting in

⎡

⎣
∆Pg

∆Pf

∆Qf

⎤

⎦ =

⎡

⎢⎣

∂Pg

∂δg
∂Pg

∂δf
∂Pg

∂Vf

∂Pf

∂δg
∂Pf

∂δf
∂Pf

∂Vf

∂Qf

∂δg
∂Qf

∂δf
∂Qf

∂Vf

⎤

⎥⎦

⎡

⎣
∆δg

∆δf

∆Vf

⎤

⎦ (3)

where bold notation indicates the vector form by concatenating
all corresponding scalar variables, with g and f indicating the
SG and GFM components, respectively. Note that the reactive
power component from SGs is not considered as we do not
model the SGs’ exciter control.

By substituting (3) into (1) and (2), we can formulate the
overall dynamics in continuous-time as

ẋ = Acx+Bcu+ ξ (4)

where x := [∆δg,∆ωg,∆δf ,∆ωf ,∆Ve
f ,∆Vf ]ᵀ ∈ R2Ng+4Nf ,

and u := [∆Vs
f ,∆Ps

f ,∆Qs
f ]

ᵀ ∈ R3Nf . Due to the lineariza-
tion, all the variables in x and u now represent the deviations
from the corresponding steady-state values. Note that we
add ξ which denotes random perturbations to system states,
such as external disturbance or imperfect system modeling.
By considering the GFM control time ∆t, we represent the
discrete-time dynamics based on (4) as

xt+1 = Axt +But + ξt, t = 0, 1, . . . (5)

where A = I + ∆t · Ac and B = ∆t · Bcwith I and
∆t denoting the identity matrix and a small enough time
step, respectively. Note that we assume (5) to be stable
with sufficient communication links in the network, which is
reasonable since the system is linearized around the steady-
state operating point.

III. RISK-CONSTRAINED GFM PROBLEM

Under the system dynamics in (5), we can formulate the
GFM control problem as an optimal control one with the linear
quadratic regulator (LQR) objective, by minimizing the total
cost of state and control, as

min
K∈K

R0(K)= lim
T→∞

1

T
E

T−1∑

t=0

[
xᵀ
tQxt + uᵀ

tRut

]
(6)

where matrices {Q,R} are positive (semi-)definite matrices
used to weight the state and control variables into a single
cost. Our goal is to find the best structured controller gain
matrix K ∈ R3Nf×(2Ng+4Nf ) that linearly maps from xt to ut,
namely ut = −Kxt. Here, K indicates the structured feedback
set defined by the information-exchange graph, leading to the
design of a distributed control system based on information
transmitted through communication links. Specifically, for any
GFM or SG node ℓ ∈ G ∪ F and GFM node j ∈ F , the
structured set K is defined as

K = {K : Kj,ℓ = 0 if and only if j ! ℓ)},

with j ! ℓ implying that nodes ℓ and j are not connected
through a communication link. Note that the size of Kj,ℓ is
different according to ℓ, i.e. Kj,ℓ ∈ R3×2 if ℓ ∈ G and Kj,ℓ ∈
R3×4 if ℓ ∈ F . While the sparsity of K presents challenges in

the analysis of the feasible region [20], it will not affect the
implementation of our proposed algorithm.

Although the LQR objective in (6) effectively reduces oscil-
lations on average, focusing solely on the average trajectory
performance cannot account for the substantial system variabil-
ity. Specifically, high load perturbations introduce additional
fluctuations into the dynamics described in (5), which we
can redefine the perturbation term as ξ′t that includes both
the initial noise ξt and the fluctuations from significant load
changes. This change results in an increase in the variability
of the system trajectory, posing a significant challenge to the
LQR-based design. Notably, this issue becomes critical in in-
terconnected grids where inter-area oscillations can arise from
these substantial disturbances, thereby reducing the worst-case
damping performance of the controller.

To tackle this issue, we put forth a risk-constrained LQR
formulation by limiting the so-termed mean-variance risk
measure, as

min
K∈K

R0(K)= lim
T→∞

1

T
E

T−1∑

t=0

[
xᵀ
tQxt + uᵀ

tRut

]
(7)

s.t. Rc(K)= lim
T→∞

1

T
E

T−1∑

t=0

(
xᵀ
tQxt − E

[
xᵀ
tQxt|Ht

])2 ≤ c.

We denote Ht = [x0,u0, . . . ,xt−1,ut−1] as the system
state and control trajectory up to time t, and c as a risk
tolerance parameter. Note that the risk constraint bounds the
deviations of the realized state cost xᵀ

tQxt from its expected
value. This constraint enables us to mitigate the worst-case
scenarios of very high system variability as caused by external
load disturbances and imperfect modeling. Here, we assume
the feasibility of (7) by assuming the system stability and
sufficiently large threshold c with adequate connectivity.

One potential issue is that Rc(K) involves the conditional
expectation with respect to the past trajectory Ht. Fortunately,
it is known that the mean-variance risk metric allows for a
quadratic form reformulation, as introduced in [21], [22]. Un-
der the linearized dynamics (5) and a reasonable assumption
that ξ′t has a finite fourth-order moment, we have:

Rc(K)= lim
T→∞

1

T
E

T−1∑

t=0

(
4xᵀ

tQWQxt + 4xᵀ
tQM3

)
≤ c̄, (8)

with c̄ := c − m4 + 4tr{(WQ)2} and the (weighted) noise
statistics given as

ξ̄ := E[ξ′t], W := E[(ξ′t − ξ̄)(ξ′t − ξ̄)ᵀ],
M3 := E[(ξ′t − ξ̄)(ξ′t − ξ̄)ᵀQ(ξ′t − ξ̄)],

m4 := E[(ξ′t − ξ̄)ᵀQ(ξ′t − ξ̄)− tr(WQ)]2.

Thanks to the quadratic form in (8) same as (6), the ensuing
section will develop a dual approach to solve (7).

IV. REINFORCEMENT LEARNING BASED ALGORITHM

The risk constraint in (7) makes it challenging to find a
closed-form solution. This inspired us to develop a stochastic
gradient-descent method with a max-oracle (SGDmax), which
can efficiently find the stationary point (SP) of (7) while



Algorithm 1: Zero-Order Policy Gradient (ZOPG)
Estimation

1 Inputs: smoothing radius r, the policy K and its
perturbation U ∈ SK, both have nK non-zero entries.

2 Obtain λ′ ← argmaxλ∈Y L(K+ rU,λ);
3 Estimate the gradient
∇̂KL(K;U) = nK

r L(K+ rU,λ′)U.
4 Return: ∇̂KL(K;U).

considering structured feedback. We first form its Lagrangian
function with the multiplier λ ≥ 0, as given by

L(K,λ) := R0(K) + λ[Rc(K)− c̄]

= lim
T→∞

1

T
E

T−1∑

t=0

[xᵀ
tQλxt+uᵀ

tRut+4λxᵀ
tQM3]−λc̄, (9)

with the matrix Qλ := Q + 4λ(QWQ). The Lagrangian
clearly follows the same quadratic form as the original LQR
objective, thereby allowing to adopt a policy gradient approach
popularly used for the unconstrained LQR problem [21]. Based
on (9), the dual problem becomes

max
λ∈Y

D(λ) = max
λ∈Y

min
K∈K

L(K,λ), (10)

with D(λ) solved by an inner minimization problem to deter-
mine the best K within the structured set K. Note that we
use a bounded set Y := [0,Λ] for λ by assuming that (7) is
feasible with reasonable bound c and thus λ is finite.

Solving (10) presents a significant challenge for several
reasons. First, it requires the use of a primal-dual-based gra-
dient method, which involves both inner and outer problems.
Second, we need to take into account the structured feedback
when determining K ∈ K. Last, due to the intricate nature
of (9), the computation of first-order gradients involves a
substantial computational burden. To resolve these issues, we
consider its minimax counterpart problem, which is

min
K∈K

Φ(K), where Φ(K) := max
λ∈Y

L(K,λ). (11)

Since L(K,λ) is a linear function of λ per (9), we can
directly find the optimal λ to the inner problem in (11). If
the constraint is satisfied, we have λ = 0, and otherwise,
λ = Λ holds. While (11) is not the same problem as (10),
the KKT stationary conditions for (10) are closely related to
those of (11). This allows us to solve (11) instead of (10)
to find the SP of the original problem as advocated in our
earlier work [17]. To further minimize Φ(K), we can adopt
the gradient descent (GD) method. However, we must take into
account the structured set K introduced in Section III, which
could complicate the feasible region [20]. Fortunately, we can
compute the gradient over K easily by considering only the
non-zero entries, as denoted by ∇KL(K,λ) [17]. It is worth
noting that even though Φ(K) is not differentiable everywhere
due to the discontinuity of the optimal λ, we may still use it as
the subgradient for Φ(K), as earlier work [23] has established
that ∇KL(K,λ) ∈ ∂Φ(K).

Although it is possible to define ∇KL(K,λ), computing
this first-order term can lead to high computational complex-
ity. To address this issue, we utilize the zero-order policy

Algorithm 2: Stochastic gradient-descent with max-
oracle (SGDmax)

1 Inputs: A feasible and stable policy K0, upper bound
Λ for λ, step-size η, the number of ZOPG samples N
and the number of iterations M .

2 for m = 0, 1, . . . ,M − 1 do
3 for s = 1, . . . , N do
4 Sample the random Us ∈ SK.
5 Use Algorithm 1 to return ∇̂LK(Km;Us).
6 end
7 Compute the averaged stochastic gradient

Ĝ(Km) = 1
N

∑N
s=1 ∇̂L(Km;Us).

8 Update Km+1←Km−ηĜ(Km).
9 end

10 Return: the final iterate Km.

gradient (ZOPG) method as tabulated in Algorithm 1. The
ZOPG method relies on function values to provide unbiased
gradient estimates without the need to consider first-order
derivatives [24]. Since we can directly obtain function values
from the trajectory, there is no requirement for additional
steps to compute gradients, offering significant advantages
in reducing computational workload. Based on the ZOPG
estimate, we implement the stochastic gradient-descent with
max-oracle (SGDmax) algorithm as tabulated in Algorithm 2.
Starting from the initial policy K0, we perform iterative
GD update on K. To reduce estimation variance, we utilize
Ĝ(K), which represents the average of N ZOPG estimates.
Note that by determining proper smoothing radius r, step-size
η and the number of iterations M based on the Lipschitz
and smoothness constants of Φ(K), we can attain a high
convergence probability to SP, approximately 90% [17]. This
allows us to implement Algorithm 2 conveniently in practice,
as demonstrated in the ensuing section.

V. NUMERICAL EXPERIMENTS

To demonstrate the effectiveness of our risk-aware GFM
control, we conduct numerical tests on a modified IEEE 68-
bus system [25]. As shown in Fig. 2, this system consists of
16 SGs across five ares. We have added a total of 10 GFMs
to selected load buses. The GFM parameters follow from [9]
and are set to: τ = 0.01 s, mp = 0.01 pu, mq = 0.05 pu,
kpv = 0.01 pu, kiv = 5.86 pu/s. We assume that only SGs
and GFMs in neighboring areas can exchange data, forming a
structured feedback following the information-exchange graph.

We consider three cases, namely Baseline, GFM and GFM-
Risk. Baseline refers to the discrete-time model-based LQR
solution of (6) without taking into account both the struc-
tured feedback and perturbations ξt in (4). GFM represents
the typical model-based RL policy, which has been trained
using Algorithm 2 to minimize the risk-neutral (6) under
(4) without the risk constraint. GFM-Risk is the solution of
our risk-constrained problem (7) by utilizing Algorithm 2.
Here, GFM and GFM-Risk utilize Algorithm 2 with estimated
gradients obtained from Algorithm 1. The parameters used in
the simulation are as follows: r = 0.1,M = 50, η = 10−4 and



Fig. 2: IEEE 68-bus system with 16 SGs and 10 GFMs.

Fig. 3: Trajectory of the training objective values for GFM
and GFM-Risk.

c = 0.2 by considering [17, Theorem 2]. The control time step
is set to ∆t = 0.01s and the observation time window is set as
0 − 6s. As for perturbations, we introduce step load changes
in the GFM buses at t = 0, ranging from ±0.5 pu and ±1 pu,
which we refer to as the low and high perturbation settings.

Training comparisons: Fig. 3 illustrates the objective tra-
jectories for GFM and GFM-Risk. We can observe that both
cases converge to SP using the proposed algorithm, but GFM-
Risk exhibits more fluctuations in its trajectory compared to
GFM. This is because considering risk constraint complicates
the feasible region, which leads to oscillations in λ. As λ fluc-
tuates, the function value L(K,λ) also oscillates, consequently
affecting the ZOPG that is proportional to this value. Baseline
is not shown in the figure, as it does not require a training.

Testing comparisons: Using the three different policies
from Baseline, GFM and GFM-Risk, we conduct tests with
100 new scenarios, each involving random load changes of
either low or high perturbation settings. To show the effective-
ness of the risk constraint under extreme load changes, we
select one specific scenario with the most significant changes
among 100 scenarios for each setting. Fig. 4 compares the
frequency deviations of bus 57 in Area 1 with three different
polices in the both perturbation settings.

Clearly, both GFM and GFM-Risk effectively mitigate

(a)

(b)

Fig. 4: Comparison on the frequency deviation of bus 67 in
MG1 at (a) low and (b) high perturbation settings.

Fig. 5: Comparison on the LQR objective values in low and
high load perturbations.

frequency deviations and reach a steady-state faster in all
settings compared to Baseline. Here, Fig 4(b) experiences
more fluctuations than Fig 4(a) in both cases, thus taking more
time to reach the steady-state. This is reasonable since the
maximum perturbation level increases from ±0.5 pu to ±1 pu.
In addition, GFM-Risk demonstrates smaller fluctuations and
leads to the steady-state faster than GFM in both settings. This
implies that GFM-Risk provides more damping in extreme
cases compared to GFM due to the risk constraint. Notably,
we observe an improvement in the damping performance of
GFM-Risk in Fig. 4(b), indicating that the constraint becomes
more effective as perturbation level increases.

To further analyze the quantitative results of implementing
the risk constraint, we present Fig. 5, which provides statistical



information regarding the LQR objective values obtained from
100 testing scenarios. The red lines indicate the median values
while the lower and upper quartiles are represented by the
blue boxes. The maximum and minimum values are depicted
with black lines. First, it is evident that both GFM and
GFM-Risk in low load perturbation exhibit larger median
values and variances compared to high perturbation. This
is expected since an increase in the maximum perturbation
levels introduces higher variability into the system, resulting
in more frequency oscillations. Second, GFM-Risk exhibits
a slightly higher median value compared to GFM in both
settings, as expected due to the constraint. However, GFM-Risk
demonstrates a significantly smaller variance, notably reducing
the gap between the upper quartile and the maximum value.
As a higher objective value implies more frequency deviation,
this result showcases the effectiveness of incorporating the risk
constraint in mitigating worst-case performance and enhancing
system stability. Last, the variance of GFM-Risk decreases
dramatically in a high perturbation setting, validating that
the constraint becomes more effective in environments with
significant load changes.

VI. CONCLUSIONS

This paper designed a risk-aware controller for GFMs that
aims to address frequency oscillations resulting from high
load perturbations in GFM inverter-dominated power systems.
Based on the linearized system model that incorporates both
SGs and GFMs, we formulated the problem to minimize the
LQR objective over the structured feedback gain according to
the connectivity of communication network. Since increased
load perturbations lead to the higher state variability, we
introduced the mean-variance risk constraint to limit the state
cost variations, thereby reducing the system variability and
enhancing the worst-case performance. By reformulating this
constraint into a tractable quadratic form, we solved the dual
problem using an RL-based SGDmax algorithm. This method
searched for a policy through GD iterations by leveraging
efficient ZOPG for gradient estimation. Numerical tests on
the modified IEEE 68-bus system highlighted the effectiveness
of the proposed risk-aware GFM controller in reducing the
variability of total LQR cost, thus improving the performance
in worst-case scenarios with significant load perturbations.

Future directions include exploring additional risk measures
such as conditional value at risk (CVaR), as well as examining
the impact of other types of perturbations. In addition, it is
worth highlighting that our risk-aware control framework has a
variety of applications in other dynamic systems in mitigating
the system variability in practice.
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