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SUMMARY

Viruses are the most ubiquitous biological entities on Earth. Even so, elucidating the impact of viruses on
microbial communities and associated ecosystem processes often requires identification of unambiguous
host-virus linkages—an undeniable challenge in many ecosystems. Subsurface fractured shales present a
unique opportunity to first make these strong linkages via spacers in CRISPR-Cas arrays and subsequently
reveal complex long-term host-virus dynamics. Here, we sampled two replicated sets of fractured shale wells
for nearly 800 days, resulting in 78 metagenomes from temporal sampling of six wells in the Denver-Julesburg
Basin (Colorado, USA). At the community level, there was strong evidence for CRISPR-Cas defense systems
being used through time and likely in response to viral interactions. Within our host genomes, represented by
202 unique MAGs, we also saw that CRISPR-Cas systems were widely encoded. Together, spacers from host
CRISPR loci facilitated 2,110 CRISPR-based viral linkages across 90 host MAGs spanning 25 phyla. We
observed less redundancy in host-viral linkages and fewer spacers associated with hosts from the older,
more established wells, possibly reflecting enrichment of more beneficial spacers through time. Leveraging
temporal patterns of host-virus linkages across differing well ages, we report how host-virus co-existence
dynamics develop and converge through time, possibly reflecting selection for viruses that can evade host
CRISPR-Cas systems. Together, our findings shed light on the complexities of host-virus interactions as

well as long-term dynamics of CRISPR-Cas defense among diverse microbial populations.

INTRODUCTION

Viruses are abundant and important constituents of microbial
communities in nearly all ecosystems. Consequently, bacteria
and archaea, like all living things, are subject to near constant
threat of viral predation. In response, many bacteria (~40%—
60%) and archaea (~90%) deploy CRISPR-Cas viral defense
systems.'™ CRISPR-Cas works by recording memories of viral
interactions via integration of small pieces of viral DNA
(“spacers”) within the hosts’ CRISPR array that are interspaced
with identical repeat sequences and flanked by Cas (CRISPR-
associated) genes.” '"® These saved memories help to protect
the host against recurrent invasion by the same viral population
by more rapidly identifying and degrading the invading nucleic
acids, analogous to antibodies in the human immune
System.5—7,10,12,14

Spacers within CRISPR arrays therefore provide a record of
past interactions between a host and viral population, and
host-viral linkages can be made by matching the hosts’
CRISPR spacers to protospacers in viral genomes.''"'*?” How-
ever, the presence of CRISPR-Cas systems within the microbial
community is often a limiting step to making strong host-virus

connections; CRISPR-Cas defense is most likely advantageous
in ecosystems where host and viral populations repeatedly
interact, such as environments dominated by biofilms or those
hosting lower microbial and viral diversity.”>*° Additionally,
CRISPR-Cas has been shown to be more widespread in some
ecosystems relative to others, such as anoxic environments or
those with elevated temperatures.’*?-31-32

Despite the important role of CRISPR-Cas in viral defense,
much remains to be understood about CRISPR-Cas frequency,
size, and how the presence of these defense systems might
influence the temporal dynamics of host and viral populations
within diverse microbial communities. Successful incorporation
of a spacer should provide the host with future defense upon
interaction with the same viral population. However, there are
many factors that may influence CRISPR-Cas defense function.
For example, CRISPR arrays do not grow exponentially and
spacers can indeed be lost,>*>" and host-viral co-existence—
despite CRISPR-Cas defense—has been observed.*® Addition-
ally, spacers nearest to the leading end of the CRISPR arrays are
most likely to be effective, as they typically represent more
recent viral interactions with less time for mutations to occur
within the viral protospacer, although recombination can also
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influence CRISPR array architecture.® Thus, it has been hypoth-
esized and shown in laboratory experiments that select spacers
may be more favorably retained if they target evolutionarily
conserved portions of the viral genome, providing more effective
long-term viral defense.’®° Although ecosystem resources and
genome size are not necessarily limiting factors to array size, %"’
other studies have modeled the optimum CRISPR cassette size
based on other factors, such as viral diversity and trade-offs be-
tween Cas machinery and array size.*”™** As a result, it has been
suggested that maintaining smaller arrays, in the order of a few
dozen to a hundred spacers, may be the optimal size for
CRISPR arrays that provide broad protection against a range
of viruses but do not overwhelm CRISPR-Cas machinery.*444°
However, many of these insights are derived from modeling or
laboratory experiments, and there remains a need to understand
patterns of CRISPR-Cas defense in environmental systems with
diverse microbial communities.

To address this knowledge gap, we used a temporally
resolved dataset from six fractured shale wells to interrogate
host-virus dynamics and CRISPR-Cas loci in a subsurface
ecosystem. Subsurface fractured shales, which are relatively
closed ecosystems with limited immigration, elevated tempera-
tures, lower microbial diversity, and likely dominated by biofilms,
present an opportunity to address these questions through
strong CRISPR-based host-viral linkages.*"?*“°~*9 We hypothe-
sized and found that CRISPR-Cas viral defense systems were
widely encoded across hosts within shale microbial commu-
nities. Building on this, we applied multiple bioinformatic
approaches to identify CRISPR spacers in both recovered host
genomes and metagenomes and made strong host-virus link-
ages for many of the recovered host genomes. This approach
also facilitated temporal investigations into host utilization of
CRISPR-Cas at the community level and host-population levels
to better understand CRISPR-Cas defense in this natural
ecosystem. Finally, we leveraged over 2,000 viral linkages to
investigate host-viral dynamics and saw evidence for increased
host-virus co-existence through time. To our knowledge, our
study represents one of the most extensive analyses of long-
term, host-viral temporal dynamics with CRISPR-based linkages
in an environmental system to date.

RESULTS AND DISCUSSION

Fractured shale ecosystems provide a unique
opportunity to investigate virus-host temporal dynamics
We sampled fluids from two sets of hydraulically fractured oil and
gas wells in the Denver-Julesburg (DJ) Basin (Colorado, USA) for
nearly 800 days. The two sets of wells were defined by their age
relative to the initial fracturing process: the “established” wells
operated for nearly 3 years prior to the initiation of our sampling
campaign (DJB-1, DJB-2, DJB-3), while we began sampling the
“new” wells shortly after they had been hydraulically fractured
(DJB-4, DJB-5, DJB-6) (Figure 1). All three wells within each
group were located on the same frack pad and subject to the
same drilling and hydraulic fracturing process, resulting in three
replicate wells for each group.

From a total of 78 metagenomes across all six wells (Figure 1;
Data S1), we recovered 202 unique metagenome assembled ge-
nomes (MAGSs) representing 29 phyla and 2,176 unique viral
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MAGs (vVMAGs) > 10 kb from the subsurface communities. The
microorganisms that persist in this ecosystem likely originate
from water, sand, and chemical inputs used during the hydraulic
fracturing process. Many of the dominant and persisting
MAGs—encompassing bacterial taxa affiliated with Clostridia,
Thermotogae, Fusobacteriia, and Synergistia, and archaeal
taxa affiliated with Methanosarcinia, Methanomicrobia, and
Thermococci (Figure S1)—have been reported in other
engineered subsurface environments,”'°°>* and their relative
abundances in this system reflected patterns observed in com-
plementary 16S rRNA gene analyses (Figure S1). Although
VMAGs were recovered from metagenomes and not viromes,
only a small portion of viruses were predicted to be temperate
by presence of integrase genes (n = 192) or hidden Markov
model (HMM) searches of domains associated with temperate
viruses (n = 293).%°

Microbial communities, however, are not static through time.
Taxa unable to tolerate high temperatures and elevated salinity
are likely outcompeted, while biofilms and spatially distinct
niches likely emerge and expand in this closed ecosystem.*®*”
Thus, we expect that microbial communities within the estab-
lished wells are more spatially heterogeneous, while microbial
communities in the new wells are initially well mixed and more
spatially homogeneous.’®*® In agreement with these assump-
tions, we observed higher host (bacterial and archaeal) and viral
alpha diversity in the established wells relative to the new wells
(Wilcoxon, p = 5.563e—06) (Figure S2). Alpha diversity also
generally increased through time in all wells, likely reflecting
the development of niches fostering more diverse taxa (Fig-
ure S2). This trend contrasts findings from previous fractured
shale studies that reported a rapid decrease in microbial diver-
sity.*®4” More broadly, host alpha diversity in the DJ Basin
was also higher than many other fractured shale ecosystems
studied to date®%°>"*%:°% and similar to those reported previously
for produced fluids from the DJ Basin.®' Notably, microbial com-
munities from the new wells became more similar to those in the
established wells over time, likely reflecting the maturation of the
well ecosystem (Figure S2). Together, these results illustrate
the temporal juxtaposition of the two sets of wells and the
connectedness of host-viral dynamics in increasingly diverse mi-
crobial communities within a closed, subsurface ecosystem.

Evidence for active viral predation in deep subsurface
shales’ microbial communities

Although community composition did vary with time, host and
viral community dynamics generally mirrored one another (Fig-
ure 2). We quantified these temporal changes in community
structure using Bray-Curtis dissimilarity values (Figure 2). In
this analysis, higher dissimilarity values indicate greater change
in community composition relative to the previous time point.
Shifts in host and viral communities were strongly and positively
correlated, often mirroring one another in their dynamics (Fig-
ure 2)—a trend which was also reflected in host and viral alpha
diversity (Spearman’s Rho: established wells = 0.71, 0.96,
0.076; new wells = 0.6, 0.66, 0.91). Viruses depend on their hosts
for replication, yet host populations are often impacted as a
direct result of this proliferation. Thus, the strong relationship
observed here suggests that host and viral communities were
continually changing and that viral predation was likely
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Figure 1. Sampling scheme and methods

(A) Sampling time points for all six wells split by their age group. Dashes at 200 days on the axis of the new wells sampling scheme represents a change in scale.
(B) Overview of methods used to recover representative host and viral genomes, make linkages between MAGs and vMAGs, and identify spacers from meta-

genomic reads for a community-level insight.

(C) Overview of methods used to link additional spacers, identified with CRASS, to representative host genomes.

See also Figure S1.

occurring. Interestingly, we did not observe trends toward com-
munity stability in either grouping of wells, which would be indi-
cated by consistently decreasing Bray-Curtis dissimilarity
values. Finally, there was a stronger relationship between host
and viral communities in the established wells compared with
the new wells, potentially reflecting the temporal loss of viral
populations that lack hosts and subsequent enrichment of inter-
dependent host and viral populations.

Only a small portion of recovered viruses encoded genes
indicative of a temperate lifestyle (Data S3), suggesting that
these strong correlations are not driven by integrated prophage.
A temperate lifestyle may not be necessary for a virus to survive
in this ecosystem, as has been reported for other, more extreme
environments due to the availability of growth substrates (i.e.,
organic carbon) from additives used in the fracturing process
and reduced environmental stress on microbiomes due to the

lower salinity of the DJ Basin (avg. 47 mS/cm). Additionally,
only a very small proportion of vYMAGs that encoded an integrase
gene (<5 in each well) closely matched their hosts’ coverage,
indicating that temperate viruses are unlikely to be solely respon-
sible for the trends observed. Instead, lytic viruses are likely
recovered during the filtration step in sample processing as pro-
duced fluids are often viscous, containing small particulates that
clog the filter pores and elevated levels of ferric iron that can bind
viral capsids.”®®" Thus, the strong relationships observed here
are likely due to dynamic virus-host interactions and driven by
both lytic and lysogenic infections.

Community-level responses to viral interactions
recorded by CRISPR-Cas arrays

Viral diversity has been shown to impact the success of, and se-
lection for, CRISPR-Cas systems, as the “memory” recording of
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Figure 2. Temporal dynamics of host (bacterial and archaeal MAGs) and viral (VMAGs) communities

Bray-Curtis community dissimilarity through time for both host (solid line) and viral (dashed line) communities illustrating the change in each community
composition from the previous time point, with larger dissimilarity values indicating greater change in community structure. Spearman’s rho and p values highlight
the strong positive relationship between the temporal changes in host and viral populations in all wells.

See also Figure S2.

a viral interaction as an integrated spacer is more effective in
ecosystems where repeated interactions between host and viral
populations occur.?® The closed nature of these subsurface eco-
systems should promote such repeated interactions, and thus
we sought to identify evidence of hosts using CRISPR-Cas de-
fense at the community level.

First, repeats and spacers from CRISPR-Cas arrays (which
tend to break during metagenomic assembly) were identified in
all samples using CRASS.®® Overall, we recovered a total of
918,724 spacers from all 78 metagenomes. All six wells had a
significant positive relationship between the number of spacers
recovered and time, especially in the new wells, where the total
number of spacers rapidly increased through the first 100 days
(Figure 3). Although the established wells initially contained a
greater total number of spacers compared with the new wells,
at later time points, the new wells began to approach the estab-
lished wells’ totals, highlighting the speed at which spacers may
be incorporated by microorganisms.

Finally, linking this temporal relationship with observations that
the viral community is continually changing, we observed that
the number of spacers also had a significant and strong positive
relationship with the total number of unique viral populations
(VMAGSs) across all samples (Figure 3). Together, these results
demonstrate the presence of widely encoded CRISPR-Cas de-
fense systems in the microbial community and suggest that
microorganisms using CRISPR-Cas are likely responding to
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ongoing viral interactions and integrating matching spacers
into CRISPR arrays through time.

CRISPR-Cas and other viral defense systems within host
genomes

Moving beyond community-level analyses, we sought to link in-
dividual CRISPR-Cas viral defense systems to representative
host MAGs. Our host MAGs, by nature, are composite genomes
that likely represent a host population as opposed to a single
host cell. Linking spacers assembled from metagenome reads
to CRISPR-Cas loci associated with a given MAG thus provides
an overview of the total complement of spacers encoded by
members of this population—and a window into the popula-
tion-level diversity and dynamics at these CRISPR-Cas loci. In
total, 123 of our 202 MAGs (~60%) spanning 25 phyla contained
a detectable CRISPR array (Figure 4; Data S2). We identified
CRISPR-Cas loci in a higher proportion of MAGs from the estab-
lished wells (67 %) relative to the new wells (54%), highlighting
the persistent widespread use of this defense system in an envi-
ronment where viral predation is likely recurrent. Type I-B was
the most common CRISPR-Cas system type (22%) out of all
those identified and classified, followed by type IlI-A (17%)
(Data S2). The high proportion of hosts containing a CRISPR-
Cas array is not unexpected, as CRISPR-Cas systems are
reported to be more widely encoded in closed ecosystems,



shales, Current Biology (2023), https://doi.org/10.1016/j.cub.2023.06.033

Please cite this article in press as: Amundson et al., Long-term CRISPR locus dynamics and stable host-virus co-existence in subsurface fractured

Current Biology

A =0 New wells B
=@~ Established wells °
30,000 40,0004
® .
=y
£ @
s a
< &
c @ 30,000
< ©
% 20,000 <
g ©
@
s g
= 2 20,000
© K
°
[
10,000
10,000
0o *
X
R=0.8 p=0.6.56-09 R=0.47, p=0.0093
0 500 1000 1500 0

¢? CellPress

OPEN ACCESS

Figure 3. Community-level responses to viral
interactions through time as recorded by
CRISPR-Cas loci within the microbial com-
munity

(A) Spearman’s cotrrelation between the number of
spacers recovered in a sample and the number of
viruses in a sample.

(B) Spearman’s correlations between the number
of spacers in a sample and days for the new and
established wells.

See also Figure S3.
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biofilms, and ecosystems with elevated temperatures—three
characteristics of fractured subsurface shales.

We next leveraged CRASS to identify additional spacers asso-
ciated with our host MAGs.®? Briefly, repeat sequences identified
within host arrays were matched to those identified with CRASS,
and spacers grouped to the CRASS-identified repeat were then
associated with the MAG, representing a host population (Fig-
ure 1). This approach identified thousands of additional spacers
from metagenomic reads and associated many of these spacers
with host genomes from as many time points as possible. Impor-
tantly, this facilitated the identification of temporal trends in
CRISPR-Cas loci sizes, as insights into host arrays were
not limited to a single time point where the host MAG was
recovered.

For many host populations, the number of CRISPR spacers
generally exhibited a strong positive relationship with MAG
coverage, a proxy for relative abundance in the community (Fig-
ure S8). This trend was obscured when MAGs were grouped
together at higher taxonomic levels (Figure S3), highlighting the
importance of genome-resolved analyses and the need for
even more resolved analyses, possibly at the single-cell level,
to better understand loss and gain of spacers through time in
natural communities. In contrast, there was greater variability
in the relationship between spacers and time at the genome level
(Figure S8), with few host populations exhibiting consistent in-
creases or decreases in the number of spacers over time. The
overall increase in number of CRISPR spacers through time
observed at the community levels (Figure 2) is thus probably
not only due to increases in spacer number within individual
populations but also to an overall increase in host populations
encoding active CRISPR-Cas systems.

CRISPR-Cas is one of many viral defense systems, many of
which have been only recently described.®® Not all MAGs
encoded a detectable CRISPR array, and thus we hypothesized
that other viral defense systems are likely deployed by hosts. We
found that 87% of all MAGs contained another viral defense sys-
tem, with no significant difference in the proportion of MAGs
between the new and established wells (Data S2). Most of the
MAGs that contained a CRISPR array also tended to encode
another defense system in both the new and established wells
(81% and 78% of MAGs, respectively). However, there was a
greater diversity of different viral defense systems encoded in
the established wells compared with the new wells, with 41

300 600 900

and 34 different systems detected across
Total viruses in a sample

MAGs from the established and new wells,
respectively.®® In all wells, the most com-
mon viral defense system was a restriction modification system,
which works more promiscuously than CRISPR-Cas to degrade
nucleic acids,®® while known abortive systems that induce
cell death (i.e., Abi2, AbiEii) were a small proportion of the
overall number of systems in both established (6%) and new
(4%) wells.®>°® Together, this provides further evidence that
there is a benefit to the host for encoding viral defense
mechanism(s) and offers insights into the types of defense sys-
tems that may be paired with CRISPR-Cas in an environmental
system.

Fewer CRISPR spacers associated with hosts in the
established wells may reflect selection toward more
effective CRISPR-Cas arrays

With continued interactions between hosts and viruses, we hy-
pothesized that MAGs (representing host populations) in the
established wells would generally be associated with more
CRISPR spacers reflecting these events. However, loss of
spacers through time as well as a theoretical optimum for
CRISPR array size®*~%%“?*4 have both been previously reported,
which could lead to populations from established wells encoding
fewer spacers. Here, despite higher host and viral diversity in the
established wells, we observed on average a greater number of
spacers per host population in the new wells (avg. 288 + 410),
compared with the established wells (avg. 180 + 306) (Figure S4).
The high number of spacers associated with hosts may be due to
MAGs representing host populations rather than a single host
cell and likely mirrors trends within the subsurface host popula-
tions and reflects differences in terms of population diversity
among the group of wells for CRISPR loci.

A greater number of viral linkages were also made per
representative host MAG from the new wells relative to the
established wells, averaging 22 and 7 unique viral linkages,
respectively (Figure S4). We hypothesize that fewer linkages
per host in the established wells may be driven by interactions
with fewer different viruses, potentially due to more heteroge-
neous and confined spatial structures where host and viral
populations interact. Although MAGs from the established wells
encoded fewer spacers and linked to fewer viruses, we
observed less redundancy within those viral linkages. For all
linkages made (i.e., every host linked to any virus) for MAGs
from the established wells, an average of 71% of those link-
ages were to unique viruses (Figure 5). In the new wells, we
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See also Figure S4 and Data S2.

observed greater redundancy in linkages to the same virus, as
only 39% of all linkages were to unique viruses. Therefore,
while MAGs from the established wells contained fewer
spacers and linked to fewer viruses, they could be matched
to a proportionally greater number of different viruses, suggest-
ing that the retained spacers may help to protect the host
against a wider suite of viruses with less redundancy.

One way host populations with fewer spacers may still pro-
vide efficient defense against viral predation is if the retained
spacers target regions of the viral genome with fewer muta-
tions. We used single nucleotide polymorphism (SNP) fre-
quency as a proxy for sequence variation in viral genes to
investigate possible spacer effectiveness. Overall, very few
spacers persisted in both sets of wells, highlighting the
continual fluctuations in host and viral communities and the
loss and gain of spacers within hosts populations. More
spacers from the established wells persisted (4.5%) for at least
half the sampling time points compared with the new wells
(1.3%). Further, we observed that spacers recovered at only
one time point generally matched viral protospacers with the
highest SNP frequency (Figure S5). Additionally, the percentage
of targeted viral genes with zero SNPs increased with spacer
persistence in the new wells but not the established wells (Fig-
ure S5). That is, spacers that were present across the most
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time points tended to target viral genes that had less sequence
variation within the community. These trends may be associ-
ated with the increased selection and retention of spacers
that may confer viral resistance for longer periods of time.

Temporal increase in patterns of host-virus co-
existence

Spacers within CRISPR-Cas arrays can be uniquely leveraged to
make strong inferences about host-virus dynamics, as spacers
from the host array often identically match the viral protospacer
“target.”'® Leveraging additional spacers identified via CRASS,
we were able to identify 2,110 viral linkages across 90 MAGs rep-
resenting 25 different phyla (Figure 4). Indeed, matching all
spacers associated with a host MAG to our vMAG database
yielded at least one viral linkage for a majority of MAGs encoding
a CRISPR-Cas array. We observed >1 viral linkage for 68% of
MAGs with CRISPR-Cas arrays in the established wells (48 of
70 MAGs) and 79% of MAGs with CRISPR-Cas arrays in the
new wells (42 of 53 MAGs) (Figure 4; Data S2). There was no sig-
nificant relationship between MAG coverage and the number of
viral linkages in the established wells, and a weak positive rela-
tionship in the new wells (Spearman’s rho: R = 0.39; p =
1.4e—07), suggesting that there is not a sustained relationship
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between the hosts’ overall success and the number of different
interacting viruses.

Even among widespread CRISPR-Cas defense and the pres-
ence of matching (linking) spacers, many linked viruses per-
sisted. Therefore, we next evaluated how often viruses can
persist and interact with the host population, despite theoretical
CRISPR-Cas defense. We leveraged our 2,110 host-virus link-
ages to quantify differences in host-virus co-occurrence pat-
terns in both sets of wells and studied how these dynamics
may develop through time. We quantified occurrences of three
scenarios for every host-virus linkage: (1) when only the host
was present, (2) when both the virus and host were present,
and (3) when only the virus was present (Figure 6). Scenarios
where both host and virus were absent were excluded. In this
analysis, “absence” of host or virus is likely not complete
absence of the virus in the ecosystem but rather indicates that
their true abundance was very low and there was insignificant
evidence for their presence.

We observed differing patterns of host-virus dynamics be-
tween the new and established wells, potentially reflecting the
establishment of microbial communities through time in this
closed ecosystem. Notably, we tracked a decreasing trend in
occurrences of only the host present in the new wells, approach-
ing values observed in the established wells. Concurrently, we
observed a slight increasing trend in host-virus co-existence in
both sets of wells. This provides evidence that CRISPR-Cas
may be most effective when microbial communities are first
introduced into the newly formed ecosystem. CRISPR-Cas
may then become less effective through time as the selection
of viruses able to evade host defenses results in greater fre-
quency of host-virus co-existence (Figure 6).

Anti-CRISPR (acr) genes are one mechanism employed
by viruses to persist despite host defense, as they can sup-
press CRISPR-Cas systems. Putative anti-CRISPR genes
were identified in 16 different vMAGs that were persistent in the

ecosystems may develop toward an equilib-

rium of host-virus co-existence, as opposed
to dominance by host or viral populations,®” or “red queen” dy-
namics of constant evolution and population turnover.%6°

Here, we leveraged time-resolved samples from six hydrauli-
cally fractured shale wells to establish CRISPR-based host-viral
linkages and study long-term host-virus co-existence and
CRISPR-Cas dynamics in a natural, closed ecosystem. Times-
eries data (>800 days) from all six wells allowed us to recover
CRISPR spacers from metagenomes and MAGs, which facili-
tated community-level and host-population level analyses of
CRISPR-Cas defense through time. At the community level, we
observed evidence that viral predation is active through time
and that hosts are likely incorporating new spacers into their ar-
rays in response to viral interactions. Next, at the genome level,
we observed that CRISPR-Cas viral defense systems were
widely encoded across a majority of MAGs. In total, we identified
CRISPR arrays in ~60% of MAGs across 25 of 29 different phyla
representing host populations from the deep shale microbial
communities. We observed that host populations (represented
by MAGs) in the established wells were associated with fewer
spacers and that there was less redundancy in viral linkages,
potentially reflecting selection for retention of more effective
spacers through time in a closed ecosystem.

Leveraging CRISPR spacers to link viruses to hosts, we next
identified potential viruses for a majority of hosts containing a
CRISPR-Cas array, with over 2,000 total linkages identified
across 90 different host MAGs. The proliferation of microenviron-
ments (e.g., biofilms) over time in these subsurface ecosystems
may constrain the number of interactions between diverse host
and viral populations, resulting in fewer linkages in the estab-
lished wells. Alternatively, such patterns may be attributed to
lack of viral recovery due to successful host defense. Finally,
given the prevalence of CRISPR-Cas systems and the important
role this defense might have in host-viral co-existence, we used
host-viral linkages to interrogate host-virus temporal dynamics.
We found that co-existence of host and viral populations
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Figure 6. Patterns of host-virus co-existence

(A) Conceptual diagram of different “interaction” types: (1) where only host is present, but the virus is not present (below detection), (2) where host and virus are
both present, and (3) where only the virus is present. Axes are purposely left blank, given this conceptual illustration.
(B) Temporal trends in percent of each interaction type in the new and established wells. Lines represent linear trends, while shaded gray areas indicate the 95%

confidence interval.
See also Data S3.

generally increased through time, potentially due to the selection
for viruses able to evade host defenses, specifically CRISPR-
Cas defense, in this closed ecosystem. Together, this study of-
fers new insights into the long-term dynamics between host
and viral populations and CRISPR-based host-viral linkages
within a subsurface ecosystem.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Produced fluid samples were collected from six hydraulically fractured wells from the Niobrara formation, within the Denver-
Julesburg (DJ) Basin, in eastern Colorado between October 2018 and October 2020 (n=78) (Figure 1). The Niobrara shale formation
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consists of three benches that are located approximately 1890-1950 meters deep in the subsurface with a downhole temperature
measuring approximately 112°C (recorded while drilling). The six wells within this formation were sampled are split equally into
two groups defined by their age when sample collection began: the three ‘established’ wells (n=33) had been producing for approx-
imately 1000 days prior to sample collection (DJB-1, DJB-2, and DJB-3), while the three ‘new’ wells (n=45) were sampled from day
~30 in production (DJB-4, DJB-5, and DJB-6). A small number of early produced fluid samples (those beginning with ‘UMDJ#’,
<60 days) were collected directly from well heads and filtered through a 0.22um pore size polyethersulfone membrane Sterivex filter
due to field sampling constraints (MilliporeSigma) with a minimum of 500mL of fluid filtered. Most produced fluids (those beginning
with ‘DJKA’) were collected directly from separator tanks into 1L Nalgene bottles with no head space and stored at 4°C until process-
ing, which occurred within 24 hours from when the sample was collected. To the degree possible, samples were collected from
separator tanks shortly after the last contents had been released to the central processing facility. 500-800mL of fluid was filtered
through a 0.2um PES membrane Nalgene vacuum filtration unit (Thermo Scientific). Filters were removed from the units and stored
at -20°C until DNA extraction. Therefore, MAGs were recovered from produced fluids collected from the separator tank or well head
for each well, though for brevity we refer to these MAGs as simply recovered from the well. Conductivity was measured on raw,
unfiltered fluids at room temperature using a Myron L 6PIIFCE meter.

METHOD DETAILS

DNA extraction and metagenomic sequencing

Total nucleic acids were extracted from half of each sample’s 0.2um filter using DNAeasy PowerSoil Kit (Qiagen). Extraction blanks
were run with each round of DNA extractions and all returned no detectable nucleic acids using the maximum amount of blank
sample (20uL) via the Qubit dsDNA High Sensitivity assay kit (ThermoFisher Scientific). For all 78 samples, genomic DNA was
prepared for metagenomic sequencing at the Genomics and Microarray Core at the University of Colorado, Denver’'s Genomics
Shared Resource. Samples were prepared using the lllumina Nextera XT Library System according to manufacturer’s instructions
for 2x150bp libraries and were sequenced using the lllumina NovaSeq platform and paired-end reads were collected.

16S rRNA gene sequencing and analysis

Nucleic acids for all samples were also sent to Argonne National Laboratory for 16S rRNA gene sequencing (Data S1). Sequencing
was performed with the lllumina MiSeq platform, using the Earth Microbiome Project primer set for amplification of the 251bp hyper-
variable V4 region. 16S rRNA gene sequences were obtained via Argonne’s standard procedure, with the exception of performing 30
PCR ampilification cycles. Paired-end reads were processed with QIIME2 (v 2021.2) EMP protocol, by first demultiplexing via exact-
matching of barcodes, trimmed to 250bp and denoised with DADA2.%? Representative sequences were taxonomically classified with
SILVA (release 138). 16S community composition results are shown in Figure S1. All 16S rRNA gene sequencing reads were submit-
ted to NCBI under BioProject PRUINA308326 and individual BioSample accession numbers are listed in Data S1.

Metagenomic assembly, binning, and viral recovery

For bacterial, archaeal, and viral recovery, total sequenced DNA from each sample was first trimmed from 5’ to 3’ ends with Sickle
(https://github.com/najoshi/sickle) and individually assembled using IDBA-UD with default parameters.”® Assembly information for
each sample is provided in Data S1. Only scaffolds >5kb from metagenomic assemblies were used for binning bacterial and
archaeal genomes with MetaBAT2 (v2.12.1) to recover metagenome assembled genomes (MAGs).”' CheckM (v.1.1.2) lineage work-
flow (‘lineage_wf) followed by the ‘ga’ command was used to assess completion and contamination for each metagenomic bin,”®
and medium (>50% completion, <10% contamination) and high (~90% completion, <5% contamination) quality bins were recovered
from all samples from all six wells following the standard metrics for MAGs proposed by Bowers et al.?® The two sets of unique MAGs
(from the new and established wells) were individually determined by dRep v2.2.3 using default parameters.”> MAGs were derepli-
cated based on their well groupings so that representative host populations were most reflective of true host populations in the sub-
surface communities, and to identify host repeats and associate spacers from CRASS. We anticipate differences such as the age
differences (including possible differences in additive used), as well as physical separation of the well groupings from one another
could impact host genomic content, specifically repeats in CRISPR arrays, and thus we created a MAG database unique to each
grouping of wells. We refer to the final set of 202 MAGs as the ‘host’ community (Figure S1). All MAGs were taxonomically classified
using GTDB-Tk v2.2.0.”* Metagenomic assemblies and MAGs were annotated via DRAM (v1.2.4) using default parameters.”® Addi-
tional details about MAGs can be found in Data S2. Metagenomic reads and MAGs were submitted to NCBI BioProject
PRJNA308326 and individual accession numbers can be found in Data S1.

Viral MAGs (VMAGs) were also identified in metagenomic assemblies from scaffolds >10kb in length using VirSorter2
(v2.2.2)"° and following the “Viral sequence identification SOP with VirSorter2” developed by the Sullivan Lab.?* Following
this protocol, quality of YMAGs were assessed using checkV (v0.8.1) and annotated using DRAM-v (v1.2.4).”% Low confidence
VMAGSs were removed following the manual curation steps in the SOP. Viral genomic contigs (>10kb) were clustered into viral
populations (genus level) using the ‘ClusterGenomes’ (v 1.1.3) app in CyVerse using the parameters 95% average nucleotide
identity and 90% alignment fraction of the smallest contig (https://github.com/simroux/ClusterGenomes). The resulting data-
base of 2,176 vVMAGs are considered our viral database. Viral taxonomy was determined by clustering vVMAGs with viruses
belonging to the viral reference taxonomy databases in NCBI Bacterial and Archaeal Viral RefSeq v211, and viruses from the
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International Committee on Taxonomy of Viruses (ICTV) via vConTACT2 v0.11.3 with default settings.?® Anti-CRISPR (arc) genes
were identified in vYMAGSs using ArcFinder (using both homology-based and guilt by association based approaches) with default
parameters.”” Probable viral lifestyle (either lytic or lysogenic) was inferred via one of two methods: (1) presence of integrase
genes via KEGG annotation and (2) >75% confidence of a temperate lifestyle assigned from BACPHLIP (HMM searching for
temperate domains).>®> All vYMAGs have been deposited under NCBI BioProject PRJNA308326 and additional details about
vMAGs can be found in Data S3.

Calculating MAG and vMAG coverage and relative abundance

To calculate coverage and relative abundance of MAGs and vVMAGs, all 78 pairs of trimmed metagenomics reads were rarified to the
lowest metagenome sequencing depth of 9Gbp using the ‘reformat’ guide within bbmap.”® Coverage for MAGs was calculated by
competitively mapping rarified metagenomic reads to MAGs using bbmap (v38.89) with minid=90. Resulting sam files were con-
verted to sorted bam files using samtools (v1.9).5” Coverage for each MAG was calculated using coverM (v0.6.0) (https://github.
com/wwood/CoverM) using two commands. First, coverM was run using -min-covered-fraction=90 to determine MAGs read recruit-
ment to at least 90% of the genome. Second, coverage values were calculated using the -m reads_per_base command, which rep-
resents reads mapped/genome length, and thus multiplied this by read length (151bp) in order to calculate MAG coverage (simply,
coverage = reads_per_base * 151 bp). Only MAGs with >1x coverage and with reads mapped to >90% of the genome were consid-
ered present in a sample. Relative abundance was thus calculated as the proportion of a given MAG’s coverage out of the sum of all
present MAGs’ coverage, per sample.

Metagenomic reads were also mapped to VMAGSs to determine coverage using bbmap with minid=95 (v38.89)"® and sam files con-
verted to bam files using samtools (v1.9).8” Given vYMAGs are viral contigs, coverM (https://github.com/wwood/CoverM) contig mode
was applied with two commands. First, -min-covered-fraction 75 and next followed by -m reads_per_base to calculate coverage.
Similar to requirements set for MAGs, here vMAGs must have a minimum covered fraction >75% to be considered present. Coverage
values were calculated from the reads per base output*151 bp. Number of viruses present in a metagenome were determined by
presence of vMAGs given this recruitment of metagenomic reads.

Detection of viral defense systems and recovery of spacers

CRISPR arrays in MAGs were identified using the Geneious (v.2020.0.5) plugin CRISPR Recognition Tool (CRT)"° v.1.2 using the ‘Find
CRISPR loci’ annotation tool with the following parameters: min number of repeats a CRISPR must contain: 4, minimum length of a
CRISPR’s repeated region: 19, maximum length of a CRISPR’s repeated region: 55, minimum length of a CRISPR’s non-repeated
region (or spacer region): 19, maximum length of a CRISPR’s non-repeated region (or spacer region), length of a search window
used to discover CRISPR’s: 8. CRISPR arrays were then classified into types/subtypes using CRISPRCasTyper (v.1.8.0)%° via
matching repeat sequences. Spacers were also detected in non-rarified and rarified trimmed metagenomics reads using CRisprAS-
Sembler: CRASS (v1.0.1).°? Briefly, CRASS reassembles CRISPR-Cas arrays of repeats and spacers that tend to break during
assemblies and groups spacers by the repeat sequences in CRISPR arrays. Only spacers recovered from rarified metagenomics
reads were used to represent the ‘total number of spacers in a metagenome’ for all community-level correlations to not introduce
bias from varying read depth. All recovered host genomes, regardless of detection of a CRISPR array, were also queried for 60 other
known anti-phage systems using DefenseFinder (v.1.0).5®

Making CRISPR-based host-virus linkages

Linkages between MAGs and vVMAGs (hosts and viruses) were made exclusively via CRISPR spacers using two approaches (Fig-
ure 1). As a result of this, linkages could only be made with MAGs that had a detectable CRISPR array. First, CRISPR arrays
were identified in MAGs using Geneious, and spacers and repeats were extracted from the CRISPR arrays. We then leveraged
CRASS to make as many linkages as possible and evaluate the number of spacers associated with a MAG through time. Repeat
sequences from MAGs were identically matched to direct repeat sequences from CRASS (same length, no mismatches). Spacers
that were associated with a direct repeat sequence from CRASS were thus grouped with the MAG of the same repeat sequence. To
make as many host-viral linkages as possible, spacers were extracted from CRASS applied to non-rarified reads. Next, spacers
from all MAGs (linked via Geneious and CRASS) were queried against all vMAGs using BLASTn with the parameters to optimize
short sequences BLAST: -dust no and -word_size 7. Finally, only identical or nearly identical (O or 1 mismatch across
spacer length) were used to match spacers to VMAGs and make host-viral linkages. Number of linkages per MAG is shown in
Figure S4.

Host-viral co-occurrence patterns

All MAGs with at least one viral linkage were included in analyzing host-viral co-occurrence patterns. For each MAG and individual
linked virus at every timepoint, all possibilities were evaluated for being one of three interaction types: (1) only host present but virus
absent (below detection), (2) both host and virus are present and (3) when only the virus was present, but their linked host was absent
(below detection). Instances where both host and virus were not present were excluded from any calculations and not counted in the
total number of interaction occurrences, which was used to normalize occurrences. Thus, the percent of any interaction was calcu-
lated as the proportion of all interactions previously stated.
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Analysis of single nucleotide polymorphisms in vMAGs

We combined SNP values for viral genes with the persistence of spacers that link host and virus to interrogate any possible relation-
ship between gene variation and spacer retention for all MAGs with linkages (Figure S5). We utilized MetaPop®' with default
parameters to calculate the number of SNPs within all viral genes identified in our vMAGs. For genes that met MetaPop’s default
parameters, SNP frequency was calculated relative to the gene length. Genes containing linked protospacers that did not meet
MetaPop’s default parameters were not included in this analysis. Finally, SNP frequency for the gene containing the protospacer
was combined with the persistence of the spacer (i.e., number of samples the spacer was recovered).

QUANTIFICATION AND STATISTICAL ANALYSIS

Alpha diversity (Shannon’s index) and beta diversity (Bray-Curtis) values were calculated using vegan v2.6-2 in R. Alpha diversity was
calculated using 16S rRNA amplicon data, while beta diversity and Bray-Curtis dissimilarity values were calculated based on the host
and viral communities recovered via metagenomic sequencing and rarified reads. Metagenomics was used here since the viral com-
munity was recovered using metagenomics and thus the paired host communities were assessed similarly via MAGs (recovered from
metagenomes). Bray-Curtis dissimilarity values were calculated as the difference in beta diversity from the previous timepoint.
Spearman correlations and p-values were calculated using ggpubr to determine the strength and directionality of relationships
between variables such as number of spacers, MAG/VMAG coverage, time, etc. Specifically, correlations between number of
spacers and host coverage were only calculated for MAGs that were both present in at least 3 timepoints and also had spacer
recovery from at least three timepoints.
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Figure S1. Community composition of all six wells. Related to Figure 1 and STAR methods.
(A) Temporal dynamics of the microbial community as shown by MAGs relative abundance in
all six wells, summed and colored at the phyla level. (B) Barcharts illustrating the temporal
dynamics of DJ Basin microbial communities based on16S rRNA gene amplicon data. Select

dominant taxa that were observed in 3+ wells are highlighted below bar charts.
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Figure S2. Alpha and beta community diversity metrics. Related to Figure 2. (A) Boxplots
of alpha diversity (Shannon’s) for host and viral diversity for all six wells. (B) Temporal alpha
diversity of 16S rRNA gene amplicon data (Shannons’) through time reveals a temporal increase
in bacterial & archaeal alpha diversity across all six wells. (C) NMDS ordination of

complimenting 16S rRNA gene amplicon data using Bray-Curtis distance.
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Figure S3. Correlations between number of spacers associated with a MAG and MAG
coverage or days post frack at three decreasing levels of taxonomic resolution. Related to
Figure 3. Top panels illustrate the generation of data (Spearman’s rho) that is represented in the
boxplots below, with three examples provided per taxonomic level. All rho values and p values
for each individual genome, order, or phyla were extracted and plotted as an individual data in
the boxplots below for both variables: coverage (pink) or days post-frack (green). Non-

significant (>0.05) correlation values (grey) are shown to highlight the lack of a significant



positive or negative relationship in many cases, especially at higher taxonomic levels, which is

also highlighted in examples above.
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Figure S4. Viral linkages and number of spacers per MAG. Related to Figure 4 and 5. (A)
Temporal changes in the number of spacers in a MAG CRISPR array. Each dotted line

represents a single MAG with general trends highlighted as solid black lines. Top panels show



MAGs with arrays that generally decreased (final timepoint < average array size) for the
established (left) and new (right) wells, while bottom panels show MAGs with arrays that
generally increased (final timepoint > average array size). In general, MAG arrays were smaller
and fluctuated less in the established wells than in the new wells. (B) Range in the number of
spacers in MAG CRISPR arrays. Each dot is both sized and arranged by the size of the CRISPR
arrays, colored by new or established wells. Additionally, each dot represents one MAG at one
timepoint, and therefore may be multiple points for MAGs that had spacers recovered at alternate
timepoints via CRASS. (C) Distribution of total number of linkages, per MAG, to unique
VMAGs. Linkages were made using paired CRASS recovered spacers as well as Geneious
identified spacers and therefore viral linkages may have been made via spacers recovered at

many different timepoints, but distribution shows the total per MAG.
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Figure S5. SNP frequency (number of SNPs/gene length) for protospacer genes with

corresponding persistence of the host spacer. Related to Figure 5 and STAR methods.

Spacer persistence is quantified as the number of samples that the spacer was recovered. Average



SNP frequency as well as percent of viral genes with zero SNPs is shown as line graphs above

raw data plots.
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