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Abstract

Understanding the yielding of complex fluids is an important rheological challenge that affects our ability to engineer and process materials
for a wide variety of applications. Common theoretical understandings of yield stress fluids follow the Oldroyd–Prager formalism in which
the material behavior below the yield stress is treated as solidlike, and above the yield stress as liquidlike, with an instantaneous transition
between the two states. This formalism was built on a quasi-static approach to the yield stress, while most applications, ranging from material
processing to end user applications, involve a transient approach to yielding over a finite timescale. Using stress-controlled oscillatory shear
experiments, we show that yield stress fluids flow below their yield stresses. This is quantified through measuring the strain shift, which is
the value about which the strain oscillates during a stress-controlled test and is a function of only the unrecoverable strain. Measurements of
the strain shift are, therefore, measurements of flow having taken place. These experimental results are compared to the Herschel–Bulkley
form of the Saramito model, which utilizes the Oldroyd–Prager formalism, and the recently published Kamani–Donley–Rogers (KDR)
model, in which one constitutive equation represents the entire range of material responses. Scaling relationships are derived, which allow us
to show why yield stress fluids will flow across all stresses, above and below their yield stress. Finally, derivations are presented that show
strain shift can be used to determine average metrics previously attainable only through recovery rheology, and these are experimentally veri-
fied.© 2024 Published under an exclusive license by Society of Rheology. https://doi.org/10.1122/8.0000756

I. INTRODUCTION

Yield stress fluids are ubiquitous in many industries
ranging from foods and cosmetics to additive manufacturing,
building materials, biomedical research, and more [1–6].
These materials are desirable for their ability to flow under
processing conditions and then hold their shape when external
forces are removed. Recently, natural phenomena such as ava-
lanches and mudslides have also been shown to exhibit yield-
ing behaviors, which makes the understanding of yielding
applicable to industrial, environmental, humanitarian, and
economic interest, as the yielding transition is the difference
between a stable hillside and a catastrophic disaster [7–9].

The distinction between material behaviors was first dis-
cussed in the work of Oldroyd, where a yield stress fluid was
described as having two different constitutive responses, one
each above and below the yield stress. These two material
states were separated by a binary transition between the two
responses. Along with early works by Prager, this distinction
of two constitutive responses, separated by the yield stress
has become to be known as the Oldroyd–Prager formalism
[10–12]. When Oldroyd introduced this idea, he explicitly
considered only a quasi-static approach to the yield stress [10],

meaning that this approach should only be applied in the
limit of infinitely long times or infinitely low frequencies.
However, the quasi-static stipulation is often ignored, and it
is commonly assumed that no flow occurs below the yield
stress under transient conditions [13–16].

A. Introduction to recovery rheology through
common mechanical models

To separate what it means to be solidlike and liquidlike,
we can look at early rheological works that discuss how the
strain a material experiences is made up of recoverable and
unrecoverable components. The strain and strain rate are,
therefore, composite measures [17,18],

γ(t) ¼ γrec(t)þ γunrec(t), (1)

_γ(t) ¼ _γrec(t)þ _γunrec(t): (2)

Here, γ, γrec, and γunrec are the total, recoverable, and unre-
coverable strains, and _γ, _γrec, and _γunrec are the rates at which
strain is acquired in each of the three manners.

An idealized model for an elastic solid response is a
Hookean spring as shown in Fig. 1(a). In this simple model,
the stress is linearly proportional to the strain, all of which is
acquired recoverably, through a modulus

σ(t) ¼ Gγrec(t): (3)
a)Author to whom correspondence should be addressed; electronic mail:
sarogers@illinois.edu

© 2024 Published under an exclusive license by Society of Rheology.
J. Rheol. 68(3), 301–315 May/June (2024) 301

 21 M
ay 2024 16:19:04

https://doi.org/10.1122/8.0000756
https://doi.org/10.1122/8.0000756
https://doi.org/10.1122/8.0000756
https://orcid.org/0000-0002-1056-4593
https://orcid.org/0000-0002-5174-5024
https://orcid.org/0000-0002-3432-5044
https://doi.org/10.1122/8.0000756
mailto:sarogers@illinois.edu
http://crossmark.crossref.org/dialog/?doi=10.1122/8.0000756&domain=pdf&date_stamp=2024-03-27


Here, σ is the stress and G is the modulus. When deformed,
this simple model will store all energy elastically. When the
stress is removed, the spring immediately returns to its start-
ing position. That is, it recovers all the strain that had been
acquired.

In contrast, an idealized model for a viscous liquid is a
Newtonian fluid, in which the stress is equal to the product
of the unrecoverable strain rate and a viscosity, η,

σ(t) ¼ η _γunrec(t): (4)

When deformed, this simple model will dissipate all energy
and none will be stored. Because of the complete lack of
storage of energy in this model, when the stress is removed
from an idealized viscous fluid, the material remains station-
ary, and no recovery is observed. Viscous fluids are typically
represented by a dashpot, as shown in Fig. 1(b).

There are two common models that can be constructed by
combining a single spring and a single dashpot. When a
Hookean spring is put in series with a Newtonian dashpot,
we obtain the Maxwell viscoelastic liquid, which can be said
to represent materials that flow, a mechanical model of which
can be seen in Fig. 1(d). In this case, the strains and strain
rates in the system are additive, and the stress is the same
across each element. The response of the model can be calcu-
lated from

_σ(t)þ G

η
σ(t) ¼ η _γ(t), (5)

where _σ is the stress rate. The behavior of the Maxwell visco-
elastic liquid is such that when the stress is removed, some
strain will be recovered by the spring, and some will remain
unrecoverable due to the viscous dashpot. During deformation,
energy will be stored elastically by the spring while the
dashpot will dissipate energy. We, therefore, say that the
energy dissipated during deformation was dissipated by

unrecoverable processes. Furthermore, the ability of this model
to acquire strain unrecoverably indicates that it describes flow.

While the Maxwell model combines a spring and a
dashpot in series to create a viscoelastic liquid, combining
the same two elements in parallel creates a viscoelastic solid
that does not flow. This configuration, shown in Fig. 1(c), is
referred to as the Kelvin–Voigt model. In this case, the strain
and strain rate across each element are the same and the
stress is split across the two. We can calculate the response
of this model by solving

σ(t) ¼ ηs _γrec(t)þ Gγrec(t), (6)

where ηs is the viscosity of the dashpot. In this case, all
strain acquired by the system under an arbitrary stress is
recoverable and the model is said to describe a nonflowing
viscoelastic solid. Despite all strain being recoverable, this
model will still dissipate energy through the dashpot when
deformed. To distinguish between energy dissipated in a
Maxwellian viscoelastic liquidlike manner and a Kelvin–
Voigt viscoelastic solidlike manner, we, therefore, refer to
energy dissipation as being associated with recoverable or
unrecoverable processes.

Both the Maxwell and the Kelvin–Voigt models dissipate
energy, though one represents a viscoelastic fluid and the
other a viscoelastic solid. Energy dissipation is, therefore,
insufficient as a discriminator for yielding. Furthermore, dis-
sipation of energy does not imply flow. The major difference
between the two models is the way in which strain is
acquired. The Kelvin–Voigt viscoelastic solid acquires all
strain recoverably, therefore, does not flow, while the
Maxwell viscoelastic fluid acquires some strain unrecover-
ably, and flows. This realization indicates the value of per-
forming recovery tests in identifying flow and yielding
transition.

Recovery tests are commonly associated with the second
part of a creep and recovery test. In this test protocol, cons-
tant stress is applied for a specific duration, followed by the
removal of the stress. This recovery step can be implemented
at any point in any rheological protocol, as long as the rhe-
ometer is capable of applying zero shear stress. By perform-
ing a recovery step, information regarding recoverable and
unrecoverable strains and their rates of acquisition can be
ascertained from any rheological protocol, enhancing our
understanding of many materials. In addition, a recovery step
can be performed iteratively during the protocol, to determine
the transient acquisition of recoverable and unrecoverable
strains. This way of thinking about rheological experimenta-
tion in a general sense has come to be called “recovery rheol-
ogy” and provides more information than the conventional
rheometry approaches alone. This recovery rheology frame-
work also allows for further understanding that has led to
new developments in the experimental and theoretical
descriptions of yield stress fluids [19–21].

B. Determination of the yield stress

The most common experimental goal for characterizing
yield stress fluids is the determination of yield stress. As

FIG. 1. Common mechanical models in rheology, with the individual ele-
ments labeled with the stress in each term. (a) Ideal Hookean elastic spring,
(b) ideal Newtonian viscous dashpot, (c) Kelvin–Voigt viscoelastic solid,
and (d) Maxwell viscoelastic fluid.
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summarized by Dinkgreve et al., there remains a lack of con-
sensus on the best method to determine yield stress [22].
Techniques to determine yield stress come in two classes:
those that are in accordance with the quasi-static case
assumed by Oldroyd, such as steady shear flow curves, and
long-time creep experiments, and those with a timescale
associated with them, such as amplitude sweeps or steady
shear startup experiments. Some of the methods discussed by
Dinkgreve et al. include fitting of steady shear experiments,
oscillatory amplitude sweeps, and creep experiments.

For the case of steady-state flow curves, experimenters
first apply a shear rate until the shear stress response reaches
the steady state. The shear rate is then changed stepwise,
marking the steady-state shear stress at each step. Once suffi-
ciently low shear rates are achieved, the experiment con-
cludes, and one extrapolates the curve to zero-rate using an
empirical fitting equation, such as those put forward by
Bingham, Herschel and Bulkley, or Casson [23–25]. This
method closely matches the situation explicitly assumed by
Oldroyd with a quasi-static approach to yield stress, which
may explain why the steady-shear flow curve consistently
provides the smallest numerical value of yield stress out of
the proposed experimental techniques. As Dinkgreve et al.
point out, the limitations of this procedure are related to the
ability of a given rheometer to apply low enough shear rates
and of the time required to achieve steady-state at the small-
est shear rates, which is typically a few times the inverse of
the shear rate. This is reminiscent of the provocative work by
Barnes and Walters when discussing the idea of yield stress
as a myth or artifact due to the inability to measure low
enough shear rates [26]. The argument of Barnes and Walters
is that if low enough rates could be applied for long enough,
the materials would flow. The modern interpretation is that
yielding occurs over a finite timescale and is an engineering
reality [27,28].

Another popular method of determining a yield stress is
through an oscillatory amplitude sweep, which involves
applying oscillatory shear across a range of stress or strain
amplitudes at a fixed frequency. From knowledge of the full
transient response of the material, it is possible to determine
the storage and loss moduli as functions of the amplitude and
frequency. While few works investigate the frequency depen-
dence of the value of yield stress, researchers note that the
resulting yield stress determined by any one of a number of
metrics is dependent on the chosen frequency of oscillation
[29,30].

Many studies of large amplitude oscillatory shearing have
led to the generally accepted interpretation that the dynamic
moduli are average responses over a period of oscillation.
The physical meaning of the dynamic moduli comes from
energetic considerations. Briefly, the storage and loss moduli
are typically introduced in a geometric manner and are said
to relate to the in-phase or out-of-phase components of the
resulting stress/strain waveform to the applied strain/stress
waveform. This geometric interpretation breaks down in the
nonlinear regime, where nonsinusoidal responses can be elic-
ited and a single phase difference cannot be determined. A
physical interpretation that is consistent in the linear and non-
linear regions comes from considering energy storage and

dissipation mechanisms. In this treatment, we consider elas-
ticity as the only mechanism by which energy is stored and
ignore the inertial storage of energy. Storage of energy iner-
tially is likely to be more important at the very largest ampli-
tudes at higher frequencies and is typically neglected in
studies of elastoviscoplastic material responses. Using the
framework of energy storage and dissipation, the storage and
loss modulus are defined as

G0(ω) ¼ 4(Wstored(ω))avg
γ20

¼ 2[σ(t)γrec(t)]avg
γ20

, (7)

G00(ω) ¼ 2( _Wdiss:(ω))avg
γ20ω

¼ 2[σ(t) _γ(t)]avg
ωγ20

, (8)

where Wstored is the elastic energy stored per unit volume and
_Wdiss: is the rate of energy dissipation per unit volume [31].
The angular frequency is ω, while σ(t), γrec(t), and _γ(t) are the
stress, recoverable strain, and total strain rate waveforms,
respectively. γ0 is the amplitude of the (total) strain waveform.
The subscript “avg” represents the average of the function
over a period of oscillation. Since each of the energy terms is
normalized by the total amplitude, there are recoverable and
unrecoverable components contributing to the magnitude of
both moduli. Referring to modulus as reflecting either purely
elastic or viscous behavior is, therefore, incorrect.

Because the strain and strain rate are made up of two
terms, the loss modulus is actually a composite measure of
the rate of energy dissipation, which can also be split into
two terms. One term accounts for the rate of energy dissipa-
tion during acquisition of unrecoverable strains, as seen in
Eq. (9), and the other term accounts for energy dissipated
during recoverable processes, as seen in Eq. (10),

G00
fluid(ω) ¼

2( _Wdiss,fluid(ω))avg
ωγ20

¼ 2[ _γunrec(t)σ(t)]avg
ωγ20

(9)

and

G00
solid(ω) ¼

2( _Wdiss,solid(ω))avg
ωγ20

¼ 2[ _γrec(t)σ(t)]avg
ωγ20

: (10)

Because the strain rates are additive, so too are the com-
posite moduli

G00 ¼ G00
solid þ G00

fluid: (11)

G00
fluid is proportional to the rate of dissipation of energy due

to unrecoverable processes such as those accounted for by
the dashpot element of a Maxwell fluid, as seen in Fig. 1(c).
G00

solid, is proportional to the rate of dissipation of energy due
to recoverable processes, such as those accounted for by the
dashpot element of a Kelvin–Voigt solid where energy is dis-
sipated, but all strains are recoverable, as seen in Fig. 1(d).
Since each quantity is normalized by the total strain ampli-
tude, neither is a function of only unrecoverable or recover-
able strains, but the separation into two terms allows us to
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compare them against one another, where the only difference
between them is the numerator and, thus, the recoverable or
unrecoverable aspect of each term. Because both viscoelastic
solids and liquids can dissipate energy, we are forced to use
another term to represent when flow takes place. We take the
simple position that flow is associated with the acquisition of
unrecoverable strain. The difference between viscoelastic
solids and liquids is, therefore, not due to energy dissipation
but due to the acquisition of unrecoverable strain.

This framework of recovery rheology allows us to deter-
mine the viability of the many ways of determining yield
stress from oscillatory amplitude sweeps. Dinkgreve et al.
identified three features that have been considered as indica-
tors of yield stress. Typically, the data from an amplitude
sweep are plotted in two ways, the first being the storage and
loss modulus versus the applied amplitude, and the second
being the measured amplitude versus the applied amplitude.
One feature used to determine a yield point is the crossover
between the storage modulus and loss modulus, termed “the
yield point” by Shih et al. [32]. However, this crossover is
not solely a measure of flow but rather represents when the
rate of dissipation of energy through recoverable and unre-
coverable processes surpasses elastic energy storage.

Two other features identified by Dinkgreve et al. require
power-law fitting on logarithmic scales. One feature is the
intersection of power-law fits of the storage modulus in the
small-amplitude and large-amplitude limits, introduced by
Rouyer et al. [33]. However, this method measures elastic
energy storage normalized by the total strain, making it diffi-
cult to discern the effects from flow alone. The other feature
is the intersection of power law fits of the stress amplitude
dependence on the applied strain amplitude, introduced by
Mason et al. [34]. Here, the strain amplitude represents a
combination of recoverable and unrecoverable strains,
making it difficult to separate flow from elastic behavior.

In addition to these three responses seen in an oscillatory
amplitude sweep described by Dinkgreve et al., there are
three additional features commonly cited to determine yield
stress. Mezger introduced a feature based on the point where
the storage modulus deviates from linearity [35]. This
method also relies on power-law fitting and requires a user-
specified choice of how much deviation is considered signifi-
cant, leading to different yield stress determinations. Another
feature is the maximum of the product of the storage
modulus and strain amplitude, incorrectly referred to as the
elastic stress, introduced by Walls et al. [36]. This product is
actually the average elastic energy divided by the total strain
amplitude and, therefore, relates neither directly to flow nor
elasticity. Donley et al. [19] recently investigated the over-
shoot in the loss modulus, a feature commonly associated
with yield stress fluids, as discussed by Hyun et al. [37].
Donley et al. demonstrated that this overshoot arises from
unrecoverable strains, but traditional amplitude sweeps
carried out using only total strains and rates cannot differenti-
ate between the two modes of energy dissipation.

As pointed out by Dinkgreve et al., the methods com-
monly employed can yield significantly different numerical
values for yield stress, and each method has its own limita-
tions. These challenges range from experimental difficulties

in applying low shear rates in steady shear experiments to
uncertainties in determining crossover points and interpola-
tions from imperfect data in oscillatory amplitude sweeps.
The most common challenge is that many of the selected
points do not clearly relate to a change from a no-flow to a
flow condition. Despite the wide range of test protocols and
challenges, there is still no single experiment universally
used to determine yield stress for any given material.

C. Theoretical approaches to yield stress fluids

The earliest yield stress fluid model was proposed by
Bingham [23], where the behavior of yield stress fluids was
considered in the flowing state only. In this model, the stress
response of a material is equal to a yield stress plus a “flow
rule” that consists of a Newtonian stress. The works of
Herschel and Bulkley (HB) and Casson [24,25] expanded
upon this by changing the flow rule to be a power-law. The
common link between these three models is that each only
considers the yield stress fluid behavior while flowing and
makes no explicit consideration for the response of the mate-
rial below the yield stress.

Oldroyd made the distinction between the behavior above
and below the yield stress separated by a single yield point
but was careful to express that this required a quasi-static
approach to the yield stress [10]. Along with the work of
Prager, the treatment of yielding as two different responses
separated by the yield stress became known as the Oldroyd–
Prager formalism. Since then, many models have adopted the
Oldroyd–Prager formalism even for transient cases. One such
example is discontinuity in the stress response of a material
at the transition point, as seen in models by Isayev and Fan
or Puzrin and Holsby [38,39]. The issue of stress discontinui-
ties was addressed in a model published by Saramito [40],
which builds on the flow behavior of the Herschel–Bulkley
model. The Saramito model describes the behavior below the
yield stress as a viscoelastic solid with a mechanical analog
represented by a Kelvin–Voigt solid, and the behavior above
the yield stress as a viscoelastic fluid with a mechanical
analog represented by a Maxwell fluid in parallel with a
Newtonian dashpot, resulting in an Oldryod-B viscoelastic
fluid. The transition between the two is mechanically repre-
sented by a frictional element, which represents instantaneous
yielding. Thus, when stresses smaller than the yield stress are
applied, all strain is acquired recoverably, and no flow
occurs. When stresses larger than the yield stress are applied,
strain will be acquired unrecoverably at a rate proportional to
the applied stress and inversely proportional to the second
viscous term. Since this model is mechanically represented
by a spring in series with a dashpot that is only accessible
above the yield stress, the constitutive equation is often
written in terms of this stress, which is often called the poly-
meric stress, and the viscous stress, which are additive. The
1D version of the polymeric stress in the HB–Saramito
model can be expressed as

_τ p

G
þmax 0,

jτ pj � σy

kjτ pjn
� �1=n

τ p ¼ _γ, (12)
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where τ p and _τ p are the polymeric stress and stress rate,
respectively; G is a shear modulus; _γ is the shear rate; and
σy, k, and n are the yield stress, consistency, and power law
index, as determined by a Herschel–Bulkley fitting of the
steady shear flow curve. The total shear stress is written as

σ ¼ τ p þ η f _γ, (13)

where η f is the flow viscosity in the Newtonian dashpot that
allows for the acquisition of unrecoverable strain. It can be
seen in Eq. (13) that the elastic stress represented in Eq. (12)
is simply added to the viscous stress in the parallel dashpot.
The function max(x, y) returns whichever value, x or y, is
larger. If the magnitude of the applied stress in the elastic
element is below the yield stress, Eq. (12), simplifies to that of
a Hookean spring, which is then in parallel with a Newtonian
dashpot, giving a Kelvin–Voigt viscoelastic solid. If the mag-
nitude of the stress in the elastic element is larger than the
yield stress, Eq. (12), simplifies to a Maxwell viscoelastic
fluid, which is then in parallel with a Newtonian dashpot,
giving an Oldryod-B fluid with a Herschel–Bulkley flow
behavior. By using a function that chooses the maximum of
two terms, it is clear that there is a binary transition separated
by the yield stress. The HB–Saramito model is representative
of the way the Oldroyd–Prager formalism is used today: treat-
ment of yield stress fluids as having two different constitutive
responses, separated by the yield stress, where acquisition of
unrecoverable strain only occurs above the yield stress, even
under transient conditions. This treatment of the Oldroyd–
Prager formalism is where modern use of formalism diverges
from the explicit description by Oldroyd.

Recently, Kamani, Donley, and Rogers (KDR) [20] pro-
posed a model for yield stress fluids that goes beyond the
Oldroyd–Prager formalism. In the KDR model, a single con-
stitutive differential equation represents the material behavior
above and below a single yield stress, with no instantaneous
transition. This model was constructed on the basis of experi-
ments that measured recoverable and unrecoverable strains
[19]. Similar to the models utilizing Oldroyd–Prager, the
KDR model utilizes only one yield stress, determined from a
Herschel–Bulkley fitting of the flow curve to define its flow
viscosity, which represents the behavior under quasi-static
conditions. However, the flow viscosity term is dependent on
the total strain rate, as opposed to just the unrecoverable
strain rate typically associated with the steady-state flow. The
experiments performed by Donley et al., in which the recov-
erable and unrecoverable components were measured
directly, showed a flow viscosity that depends on the sum of
the two components of the strain rate. Since this flow viscos-
ity is a function of the total strain rate, the acquisition of
unrecoverable strain is aided by the rapid acquisition of
recoverable strains. Within the KDR model, the timescale of
deformation, therefore, becomes important. The KDR model
is presented in a full tensorial manner elsewhere, but it can
be represented in a simple 1D manner as

σ þ λ( _γ) _σ ¼ σy

j _γj þ kj _γjn�1
� �

_γ þ ηs
G
€γ

� �
, (14)

where the stress, stress rate, and Herschel–Bulkley parame-
ters are the same as in Eq. (12). ηs is the viscosity associated
with recoverable processes, and _γ and €γ are the strain rate
and strain acceleration, respectively. The elastic modulus
determined in the linear regime is G. Meanwhile, λ is the
relaxation time that depends on the total strain rate

λ( _γ) ¼ 1
G

σy

j _γj þ kj _γjn�1 þ ηs

� �
: (15)

This model has been shown to predict gradual transitions
typically observed in experimental studies of yield stress
fluids, including all features of oscillatory amplitude sweeps,
and the transient Lissajous responses associated with each
amplitude, as well as steady shear startup and creep experi-
ments [20].

D. Determination of flow

For yield stress fluids, the determination and description
of the yield stress is the key challenge. Based on the
Oldroyd–Prager formalism as used today, determining the
yield stress is equivalent to asking when does a material
flow. The answer to this question can be determined by a
method that is susceptible to flow only. We take the position
that a material is flowing when unrecoverable strain is being
acquired. Within the recovery rheology framework, this is
equivalent to seeking a method that is sensitive only to
acquisition of unrecoverable strain. A test that identifies unre-
coverable strain acquisition independently from recoverable
strains was first shown by Lee et al. [41]. Lee et al. showed
how viscoelastic materials would behave under application of
an oscillatory stress, with an arbitrary phase angle, after an
initial transience,

σ(t) ¼ σ0sin(ωt þ ψ), (16)

where σ0 is the amplitude of the sinusoidal stress wave, t is
time, and ψ is the phase angle of the applied stress wave.

The component strains for viscoelastic fluids can be
derived from the idealized cases of Hookean springs and
Newtonian fluids. The response of a Hookean elastic mate-
rial, seen in Fig. 1(a), to a phase-shifted sinusoidal stress can
be simply determined by rearranging Eq. (3),

γrec(t) ¼
σ0sin(ωt þ ψ)

G
, (17)

which indicates that the recoverable strain of a spring will
respond in an oscillatory manner, centered around zero.

The case of a generalized Newtonian fluid, seen in
Fig. 1(b), subjected to the same stress protocol, by contrast,
is

γunrec(t) ¼
ðt
0
_γunrec(̂t) dt̂ ¼

ðt
0

σ0sin(ω̂t þ ψ)
η

dt̂, (18)

where t̂ is a dummy variable of integration, and the bounds
are set for any period of time from 0 to t, where the initial
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condition of the system is unstrained, so that
γ(0) ¼ γrec(0) ¼ γunrec(0) ¼ 0. From this integration, we see
the steady-state unrecoverable strain as a function of time
[41,42],

γunrec(t) ¼
σ0

ωη
cos(ψ)� σ0

ωη
cos(ωt þ ψ): (19)

At the steady state, the unrecoverable strain response to a
phase-shifted sinusoidal stress is also oscillatory, but there is
a constant term about which this oscillation is centered. This
constant was termed the strain shift by Lee et al. Since visco-
elastic materials acquire recoverable and unrecoverable
strains in a linear sum, the constant term in Eq. (19) is the
strain shift for a viscoelastic fluid

γs,VE ¼ σ0

ωη0
cos(ψ): (20)

This strain shift is dependent on three parameters con-
trolled by the experimenter, the angular frequency, the stress
amplitude, and the phase of the applied stress, and one mate-
rial parameter, the flow viscosity. Following the work of Lee
et al., Hassager [42] analyzed the startup response of a visco-
elastic material and arrived at the same expression in Eq. (20)
for the steady-state response of a viscoelastic fluid, and
recently, Ogunkeye et al. showed that the steady-state strain
shift will also be independent of any instrumental inertia [43].

Under a phase-shifted oscillatory stress, any material that
responds in a solidlike manner, where all strain is acquired
recoverably, will oscillate about the position defined as zero
strain before the experiment began. In contrast, any liquidlike
response will oscillate about a constant nonzero value.
Therefore, strain shifts determined from stress-controlled
oscillations can be used to identify unrecoverable acquisition
of strain and by extension whether flow has taken place over
the timescale set by the frequency of the oscillation.

In the context of a phase-shifted sinusoidal wave, the
phase angle determines the starting point of the wave within
its period. For instance, a phase angle of ψ ¼ π=2 corre-
sponds to a sine wave shifted by half a period, which is
equivalent to a cosine wave. The convention of applying a
cosinusoidal stress to a material during stress-controlled
oscillations has been suggested due to the mathematical sim-
plicity of Fourier and harmonic analysis [44,45]. However,
the strain shift is a parameter that carries physical signifi-
cance of how much a material has flowed [41]. As shown in
Eq. (20), if the applied stress is cosinusoidal, the strain shift
equals zero, and the physical information it carries becomes
inaccessible. Considering the physical interpretation of the
strain shift allows the experimenter to make more informed
decisions. They may choose to avoid strain shift by applying
a cosinusoidal stress, or they can maximize the strain shift by
applying a sinusoidal stress, or they can select a value in
between to achieve the desired outcome.

While Lee et al. were the first to design experiments specif-
ically to measure the strain shift [41], the idea was introduced
in a problem by Pipkin in his lectures and textbook on visco-
elasticity [46]. Despite Pipkin posing the problem in 1986,

and other observations of this strain shift phenomenon
[42,45,47–51] modern rheological software, under stress-
controlled oscillations, will subtract this value and artificially
set the strain to oscillate about zero. This “behind-the-scenes”
subtraction requires researchers to circumvent the built-in
experimental protocols to access the full unadulterated material
response. In fact, we believe one of the reasons for the sparse
discussion of this phenomenon is due to the fact that this term
is subtracted out before researchers even know it is there.

As shown by Lee et al., the experimental protocol to
determine strain shift provides a repeatable method to deter-
mine when unrecoverable strain has been acquired and to
determine the viscous properties of soft materials. For yield
stress fluids, this presents an opportunity to directly test the
hypothesis set out by the Oldroyd–Prager formalism as it is
used today. Any model or discussion that invokes the ideas
of the Oldroyd–Prager formalism for transient experiments
would expect to have zero strain shift for stress amplitudes
below the yield stress, due to the treatment of the pre-yielded
behavior as being a purely recoverable solid. Strain shift
experiments, therefore, provide a clear and unambiguous
indicator of when unrecoverable strain is acquired and, there-
fore, when flow occurs.

In this work, we measure the strain shift for a well-studied
yield stress fluid and determine the strain shift across a range
of stress amplitudes ranging from well below to well above
the yield stress as determined by fitting the flow conditions
to the Herschel–Bulkley model in the quasi-static limit. We
compare these results to predictions of the HB–Saramito and
KDR models. We then connect the strain shift to the fluidlike
loss modulus introduced by Donley et al. [19] and derive an
expression for the recoverable and unrecoverable rates of dis-
sipation of energy as a function of strain shift. Determination
of these parameters has previously been attainable only
through iterative recovery measurements. Our new approach,
therefore, significantly reduces experimentation time. These
results are compared against measures obtained from iterative
recovery tests to validate our expressions and to highlight the
greater impact that measuring strain shift provides.

II. MATERIALS AND METHODS

Strain shift experiments were performed on a TA
Instruments DHR-3 torque-controlled rheometer using the
protocol illustrated in Fig. 2. The geometry used was a
40mm parallel plate, with 220 grit sandpaper adhered to both
surfaces with double sided tape, which eliminates wall slip.
Since the TRIOS software will report any strain response as
oscillating about zero when using the built-in oscillatory
functions, strain shift experiments were performed under the
arbitrary wave function in the TRIOS software. Each iteration
of the experiment consists of three steps: the first steps acts
to zero the strain and ensure a consistent starting point and is
enacted by applying zero shear stress for a time twait; the
second step is the application of the sinusoidal stress with
desired amplitude, frequency, and phase for a duration of
ttest; the third and final step in each iteration is the recovery
step, where zero shear stress is applied again, and the
material is allowed to recover and return to equilibrium,
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for trecovery. For our samples, 20 seconds was determined to
be sufficient for the material to recover at least 95% of its
total recoverable strain. Each of these tests is then repeated in
the forward (σ0 . 0) and reverse (σ0 , 0) directions to
account for possible instrument drift. Each pair is repeated
three times per set of test parameters. The data were analyzed
by calculating the discrete Fourier transform (DFT) of each
period, and the parameters were averaged based on the last
three periods of applied stress and measured strain. From the
DFT, we can determine the storage and loss modulus as
the first harmonic terms, as well as the strain shift, which is
the zeroth harmonic term of the strain response. For every
new test parameter, the results from the first of three pairs is
ignored to ensure repeatable results. A graphical representa-
tion of the test protocol for a given stress amplitude, and the
first step of the analysis, can be seen in the supplementary
material [58].

The behavior of a well-studied yield stress fluid was
investigated. Carbopol 980 NF (C980) produced by Lubrizol,
was dissolved in propylene glycol (PG), at three different
weight percents (1.6%, 1.8%, and 2.0%). The C980 was
added to PG, and mixed using a THINKY orbital mixer at
2000 rpm for 60 min, and then let rest for at least 24 h prior
to any testing. All rheological measurements were performed
at 25 �C. The steady shear flow curve, amplitude sweep, and
linear regime frequency sweep for the 1.6% C980 in PG are
shown in Fig. 3. From the linear regime response, we deter-
mine the shear modulus and the solid viscosity. From the
steady shear flow curve, we fit the data to obtain Herschel–
Bulkley parameters for all three concentrations, which are
shown in a table in the supplementary material [58]. We refer
to these flow curve parameters as representing the quasi-static
behavior of the material, as they are representative of steady-
state behavior and are not affected by any transience. In

additional, our materials behave qualitatively similar to other
materials that have the yield stress where slip is not seen
[52]. The star polymer glasses studied by Erwin et al. also
dissipate energy below the yield stress. This energy dissipa-
tion was attributed to the free or dangling ends of the stars.
The Carbopol we have studied is also likely to have some
dangling ends, providing a possible or partial mechanism for
energy dissipation at small stresses. These characterizations
were performed on an Anton Paar MCR 302 rheometer
under displacement control using the automatic rate control-
ler. The geometry used for the characterizations was a 50 mm
parallel plate, with 220 grit sandpaper adhered to both sur-
faces using double sided tape to avoid slip.

III. STRAIN SHIFTS IN YIELD STRESS FLUIDS

We show in Fig. 4 the results of our strain shift experi-
ment on 1.6% Carbopol at 0.5 rad/s. We show in Fig. 4(a),
the traditional storage and loss modulus as a function of the
stress amplitude normalized by the yield stress as determined
by the Herschel–Bulkley fitting of the steady-shear flow
curve. When compared to the data of Fig. 3, where the data
are plotted against strain amplitude, we see many features
common to yield stress fluids: a linear regime where
G0 . G00, an overshoot in G00 at intermediate amplitudes, and
a point at which G0 and G00 crossover. The dashed vertical
line at σ0=σy,HB ¼ 1 is a visual marker that indicates the
yield stress. We compare the amplitude dependence of the
dynamic moduli to the strain shift, as seen in Fig. 4(b). Our
measurements of strain shift span eight decades of strain,
from 10�5 to 103, across four decades in stress amplitude. In
addition to the measurements, the predictions of the HB–
Saramito model and the KDR model are also shown in
Fig. 4(b).

FIG. 2. (a) Arbitrary stress applied to a material (top left), and measured strain response with dotted line showing oscillation about a nonzero value (bottom
left), (b) Lissasjous curve of stress versus strain showing strain centered about a nonzero value, and (c) Fourier transform of the strain response, highlighting the
zeroth harmonic, giving the numerical value of the strain shift.
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The major conclusion to be drawn from the strain shift
data shown in Fig. 4(b) is that we are able to measure strain
shifts at all stress amplitudes, even those well below the yield
stress. This means that there is unrecoverable flow occurring
below the yield stress. We also see that the strain shift is a
continuous function of the stress amplitude, which is notable
for the lack of an abrupt transition as the yield stress is
crossed. The expectation based on the Oldroyd–Prager for-
malism, exemplified by the HB–Saramito model shown as
solid lines in Fig. 4(b), is that there is no unrecoverable flow
below the yield stress and so the strain shift should be zero.
This expectation ignores the distinction made by Oldroyd
that the binary nature of the yield stress is only true for the
quasi-static case where the yield stress is approached infini-
tesimally slowly. Our data, collected over finite time scales,
show that unrecoverable strain is acquired continuously
across the range of applied stresses, both above and below
the yield stress.

We observe that the experimentally measurable strain shift
does not abruptly change or go to zero as the yield stress is
approached or crossed. In fact, there is no obvious transition
in the unrecoverable behavior as the yield stress is crossed,
and it appears as though the only limitation in determining
smaller strain shifts is technological. We reliably determine
strain shifts as small as 10�5 strain units, or 1000th of 1%, at
stress amplitudes around a 100th of the yield stress. As small
as these strain shifts are, they are 3 orders of magnitude
larger than the lower limit of the displacement resolution for
the DHR3, which is discussed in detail in the supplementary
material [58].

In Fig. 4, we display the strain shift as a function of the
applied stress amplitude normalized by the yield stress deter-
mined under quasi-static conditions. To explore the func-
tional dependence of the strain shift on the stress and strain
amplitudes, in Fig. 5, the strain shift is plotted as a function
of (a) the measured strain amplitude and (b) the normalized
stress amplitude. While the full KDR model requires numeri-
cal solutions, scalings can be found in the small and large
amplitude limiting cases. These are also shown in Fig. 5 and
are derived below.

FIG. 3. Data for 1.6% Carbopol 980 in PG, (a) steady shear flow curve
determined from a series of steady-shear startup tests with Herschel–Bulkley
fitting. (b) Amplitude sweep at an angular frequency ω ¼ 0:5 rad=s equal to
the vertical line in the inset. The inset is a linear regime frequency sweep at
γ0 ¼ 0:0316%.

FIG. 4. Data for 1.6% C980 in PG at ω ¼ 0:5 rad/s. (a) Amplitude sweep
determined from the oscillatory response of waveform versus stress ampli-
tude normalized by the Herschel–Bulkley yield stress. (b) Symbols show
strain shift (nonoscillatory response of waveform). Dotted line shows KDR
model predictions of strain shift, while solid lines show the HB–Saramito
model prediction of strain shift all versus stress amplitude normalized by the
Herschel–Bulkley yield stress.
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A. Large-amplitude scaling

For the case of stress amplitudes much larger than the
yield stress, a yield stress fluid may be considered to flow
like a generalized Newtonian fluid. By writing the flow vis-
cosity as a ratio of the stress amplitude and rate amplitude in
Eq. (20), the strain shift can be written as

γs ¼
σ0

ωηflow
cos(ψ) ¼ σ0

ωσ0
_γ0

cos(ψ) ¼ γ0cos(ψ): (21)

This result was derived from Lee at al. for the case of vis-
coelastic materials but is rewritten here to show the strain
amplitude dependence more clearly. When a sinusoidal stress
is applied, the phase angle is zero, and the cosine of the
phase angle is one. The strain shift, therefore, scales linearly
with the strain amplitude. The data of Fig. 5 support this
scaling.

We can obtain the scaling of the strain shift with the stress
amplitude by inserting the functional form of the stress
amplitude on the strain amplitude into Eq. (21). The stress
response of yield stress fluids in the large stress limit is com-
monly represented by the Herschel–Bulkley equation

σ( _γ) ¼ σy þ k _γn: (22)

We can solve for the strain rate, for an applied sinusoidal
stress,

_γ ¼ σ0sin(ωt þ ψ)� σy

k

� �1=n

: (23)

Since we seek the relationship between the stress ampli-
tude and strain amplitude, we can determine the amplitude of
the strain rate by taking the maximum of the right hand side,
simplifying the expression to

_γ0 ¼
σ0 � σy

k

� �1=n
: (24)

Typically, in the large stress limit, the oscillatory strain
response is not purely sinusoidal. However, we can approxi-
mate the amplitude of the strain rate as being equal to the
amplitude of the strain times the frequency. Therefore,

γ0 ¼
1
ω

σ0 � σy

k

� �1=n
: (25)

The expression for the strain amplitude for a yield stress
fluid under a large-amplitude stress-controlled oscillation can
be placed into Eq. (21),

γs,large ¼ γ0,largecos(ψ) ¼
σ0,large � σy

k

� �1=ncos(ψ)
ω

, (26)

which allows us to predict that we should see a scaling of the
strain shift with the stress amplitude as having a slope of n�1

HB

on a log-log plot. This prediction of the scaling matches the
data seen in Fig. 5(a).

B. Small-amplitude scaling

While the large-amplitude scaling follows an approach
that is essentially no different from the case derived by Lee
et al. and Hassager with a rate-dependent viscosity, and
would be the same for models that follow the Oldroyd–
Prager formalism, the small amplitude case is less obvious.
According to the Oldroyd–Prager formalism, there should be
no acquisition of unrecoverable strain below the yield stress
and so there should be no strain shift. Our experiments show
this not to be true, and we observe strain shift at all stress
amplitudes we have applied. There are clearly two regions of
material behavior that can be observed in our raw data with a
continuous acquisition of unrecoverable strain across all
applied stress amplitudes.

Clearly, applying Oldroyd–Prager thinking to the small
amplitude case would not result in an accurate representation
of our experimental data. Instead, we turn to the KDR model,
which has accurately described other rheological features of
yield stress fluids. We again approximate the strain rate
amplitude as being the strain amplitude times the frequency,
and we take the flow viscosity using the low-rate limit of the
Herschel–Bulkley model seen in Eq. (22). This reduces
the Herschel–Bulkley model to the yield stress term only, as
the flow rule term becomes negligible at low rates. The flow
viscosity at small stresses can be expressed as

ηflow,small ¼
σy

ωγ0,small
: (27)

Below the yield stress, this flow viscosity is dependent on
the timescale of experimentation, accounted for by the

FIG. 5. Strain shift response as a function of (a) normalized stress amplitude
and (b) measured strain amplitude for 1.6% C980 in PG at ω ¼ 0:5 rad/s.
The filled in area represents the space between the upper and lower error
bars between three trials. Scaling for small-amplitude and large-amplitude
are shown, which are fully derived in Eqs. (26), (30), and (31).
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angular frequency. A time-dependent flow viscosity below
the yield stress has also been seen for the case of non oscilla-
tory tests, such as by Barnes and Walters, as well as Møller
et al. [26,53], who showed that measurement of the viscosity
at small stresses will continue to increase as a function of
experiment time. However, as noted in the work by Møller
et al., the viscosities measured are consistent with those of a
Kelvin–Voigt viscoelastic solid at finite times that are inde-
pendent of stress or rate amplitude and make no distinction
between recoverable and unrecoverable acquisition of strain
[53,54]. In contrast, a Herschel–Bulkley behavior below the
yield stress, as in the KDR model, results in a flow viscosity
shown in Eq. (27) that is dependent on both recoverable and
unrecoverable strain rates. The viscosity related to the recov-
erable strain rate will follow the rate independence that is pre-
sented by Møller et al., but the viscosity related to
unrecoverable flow will be inversely dependent on the rate.

Since we are in the limit of small stresses, the strain
amplitude response will be dominated by the recoverable
component, allowing us to approximate the total strain ampli-
tude as the ratio of the stress amplitude and the elastic
modulus,

γ0,small �
σ0,small

G
: (28)

Inserting Eq. (28) into Eq. (27), we obtain a new expres-
sion for the flow viscosity,

ηflow,small ¼
Gσy

ωσ0,small
: (29)

It can be seen in Eq. (29) that for a yield stress fluid under
a fixed stress amplitude oscillation, the flow viscosity scales
inversely with the frequency. That is, the faster the oscilla-
tion, the lower the viscosity, even below the yield stress. This
expression directly relates to the quasi-static case presented
by Oldroyd, since in the limit of zero frequency, or infinite
time, the viscosity will be infinite and the material will not
flow below the yield stress. The importance of Eq. (29) is
that it makes it clear that for any real timescale, there is a
finite flow viscosity that will lead to some small amount of
flow at any stress.

We can now take this flow viscosity from Eq. (29) and
determine the strain shift by inserting it into (21),

γs,small ¼
σ0

σy

� �
σ0

G

� �
cos(ψ) ¼ σ0

σy

� �
γ0cos(ψ): (30)

The frequency dependence that may have been expected
in this term is absent because both the flow viscosity and the
strain shift are inversely dependent on the frequency. For the
strain shift, lower frequencies mean the material has more
time to move further away from the initial position, while the
flow viscosity gets larger at lower frequency. The two effects
thus compete and cancel each other out. Unlike the expres-
sion we obtained for the viscosity at small stresses, shown as
Eq. (29), the expression for the strain shift under small stress

amplitudes shown as Eq. (30) does not contain the Oldroyd–
Prager behavior as a limiting case. In fact, we predict that the
strain shift for yield stress fluids subjected to small sinusoidal
stresses is independent of the frequency, which means that
yield stress fluids will always flow below the yield stress,
even if only a little bit.

The small-amplitude scaling shown in Eq. (30) looks very
similar to the large-amplitude scaling shown in Eq. (26). In
the large-amplitude case for a sinusoidal stress, the strain
shift is equal to the strain amplitude, while in the small
amplitude case the strain shift is equal to the strain amplitude
times the stress amplitude normalized by the yield stress,
which is the term the data have been plotted against in
Figs. 4 and 5(b). The form of Eq. (30) also allows us to
make another interesting observation, that for a sinusoidal
stress we should expect the strain shift to be a fraction of the
total strain given by σ0=σy. For any nonzero stress amplitude,
no matter how small it is compared with the yield stress, we
expect some amount of unrecoverable flow to take place.

In addition, if we invoke Eq. (28) and express the yield
stress as the product of the modulus and the yield strain
σy ¼ Gγy, which is the expected response at small rates in
the KDR model [20], we can determine the strain amplitude
dependence of the strain shift as

γs,small ¼
γ20,small

γy
cos(ψ): (31)

The small-amplitude strain shift is, therefore, predicted to
scale with the square of the strain amplitude as long as the
yield strain is constant, which holds true in the small-rate
limit [20]. The agreement between the data and Eq. (31)
rules out the possibility of a Newtonian slip layer in this
material, as this would result in the strain shift scaling with
the measured strain amplitude, as in the large-amplitude case.
The scalings predicted by Eqs. (30) and (31) agree with the
data, as shown in Fig. 5, meaning a full solution of the KDR
model is not required.

In addition to the single exemplary case presented so far,
we also show in Fig. 6 the strain shift results for other
Carbopol concentrations and other applied angular frequen-
cies. In Fig. 6(a), we show the strain shift for three concentra-
tions and two frequencies as a function of the measured
strain amplitude. Based on Eq. (31), we expect the small
amplitude scaling to have a slope of two on a log-log plot,
which is what we see for all three concentrations. In fact, the
quality of the overlay when shown as functions of the strain
amplitude implies that the yield strain for all three concentra-
tions is identical. At large amplitudes, we expect a general-
ized Newtonian response, as suggested by Eq. (21), which is
indicated by a slope of one.

In Fig. 6(b), we show the strain shift for the three concen-
trations and two frequencies as a function of the applied
stress amplitude. For large stress amplitudes, based on
Eq. (26), we expect the strain shift for each to be different,
depending on the Herschel–Bulkley parameters, which is
what is seen. The log-log scalings depend specifically on the
power-law index n, which is why the large amplitude
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behavior of each concentration has different slopes. For the
case of small stress amplitudes, Eq. (30)1 predicts a squared
scaling of the strain shift with respect to the stress amplitude,
which is shown with the log-log slope of 2.

IV. BEYOND YIELD STRESS FLUIDS

Up to this point, we have focused on determining the
strain shift response of yield stress fluids and have shown
that they will always acquire unrecoverable strain. They,
therefore, flow below their yield stress. Lee et al. [41] and
Hassager [42] have previously discussed the phenomenon of
strain shift for viscoelastic fluids. Since those studies, recov-
ery rheology has been shown to solve other problems also, in
particular, the expositions of Donley et al. [19] and Kamani
et al. [20] that showed how the amplitude sweep response of
yield stress fluids can be understood in terms of one storage
modulus and two components of the loss modulus. The two
components of the loss modulus correspond to energy dissi-
pation through recoverable processes, such as changes of
conformation, and unrecoverable processes, such as center of
mass motion. In a follow up work, Kamani et al. [21],
showed how an instantaneous Deborah number can be
defined in terms of recoverable and unrecoverable compo-
nents. The work of Lee et al. clearly established that the
strain shift comes from unrecoverable processes alone, and so
we now investigate what link, if any, exists between the
strain shift measure and the fluid component of the loss
modulus.

By carefully performing the strain shift experiments at
each stress amplitude, we can gain the same understanding of
a traditional amplitude sweep with the oscillatory response of
the material, along with the average recovery metrics for the
rate of dissipation of energy. From the oscillatory portion of
the strain response, one can determine the storage and loss

modulus, as described above and elsewhere [55,56]. The der-
ivations of the signal processing, and determination of the
moduli are not novel, but are replicated in the supplementary
material [58] for completeness for the case of a sinusoidal
stress. We can directly recreate the amplitude sweep from our
experiments, with additional information from the strain
shift.

When stress-controlled tests are discussed from the theo-
retical perspective, the response is often shown as a compli-
ance rather than a modulus. However, rheometry software
typically shows moduli for stress-controlled amplitude
sweeps. By carefully considering the energetic definitions,
one can convert between moduli and compliance across both
the linear and nonlinear material responses. Due to the con-
vention of compliance for stress-controlled tests, we will con-
tinue our derivations in compliance and convert to modulus
as necessary.

We begin this discussion by examining loss and storage
compliance in terms of energy dissipation and storage,

J 0(ω) ¼ 4(Wstored(ω))avg
σ2
0

¼ 2[σ(t)γ(t)]avg
σ2
0

, (32)

J 00(ω) ¼ 2( _Wdiss:(ω))avg
σ2
0ω

¼ 2[σ(t) _γ(t)]avg
ωσ2

0

: (33)

Equations (32) and (33) are the direct parallels of the
moduli terms expressed in Eqs. (7) and (8), which are all
forms we attribute to Tschoegl [31]. In the Introduction, we
also showed the fluidlike and solidlike components of the
loss modulus, as derived by Donley et al. Similar expressions
exist for the loss compliance, but instead of normalizing by
the total strain amplitude, the energetic terms are normalized
by the stress amplitude

J 00solid(ω) ¼
2( _Wdiss,solid(ω))avg

ωσ2
0

¼ 2[ _γrec(t)σ(t)]avg
ωσ2

0

, (34)

J 00fluid(ω) ¼
2( _Wdiss,fluid(ω))avg

ωσ2
0

¼ 2[ _γunrec(t)σ(t)]avg
ωσ2

0

: (35)

These can now be applied directly to the case of our
experimental strain shift procedure. There is an equivalence
in the concepts addressed by Eq. (35), which represents the
portion of the loss compliance that comes from unrecoverable
rate of dissipation of energy, and the strain shift, which also
only comes from unrecoverable processes. To develop a
formal expression that links the two measures, we begin with
the form shown in Eq. (4) for the unrecoverable strain rate
and our sinusoidal stress to calculate the fluid component of
the loss compliance from Eq. (35). Since the average of any
squared sine wave for an integer number of periods is equal
to 1

2, we see

J 00fluid(ω) ¼
2

ωσ2
0

σ2
0 sin

2 (ωt þ ψ)
ηflow

� �
avg

¼ (ωηflow)
�1: (36)

FIG. 6. Strain shift as a function of (a) measured strain amplitude and
(b) applied stress amplitude for three concentrations of C980 in PG at two
frequencies showing 1.6% C980 (blue and open) 1.8% C980 (red and diago-
nal crosses) and 2.0% C980 (black crosses), and frequencies of 0.5 (squares)
and 0.75 rad/s (triangles), with lines of the log-log slope shown.

STRAIN SHIFT IN YIELD STRESS FLUIDS 311
 21 M

ay 2024 16:19:04



We see from Eq. (36) that the fluid component of the loss
compliance is equal to the inverse of the angular frequency
times the flow viscosity. This flow viscosity can be expressed
in terms of the strain shift as seen in Eq. (21). Inserting that
form into Eq. (36), we see

J 00fluid(ω) ¼
γs

σ0cos(ψ)
: (37)

A similar process can be followed to calculate the connec-
tion between the flow viscosity and the fluid component of
the loss modulus. In this case, we find

G00
fluid ¼

2

ωγ20

σ2
0 sin

2 (ωt þ ψ)
ηflow

� �
avg

¼ σ2
0

γ20
(ωηflow)

�1, (38)

and the connection between the fluid component of the loss
modulus and strain shift follows as

G00
fluid ¼

σ0γs
γ20cos(ψ)

: (39)

We, therefore, have the link we sought between the strain
shift measure, γs, and the fluid component of the loss
modulus, G00

fluid. The solid component of the loss modulus
follows directly from the additive nature of the loss modulus
components shown in Eq. (11), by subtracting the fluid com-
ponent from the total

G00
solid ¼ G00 � G00

fluid: (40)

These two equations make it clear that if you apply a
sinusoidal stress to any material and obtain the raw strain
response including the strain shift, it is possible to distinguish
between the components of the dynamic loss modulus
without any extra experimentation.

The definitions of the compliance and moduli shown
above are well defined for all applied phase angles of the
stress except when cosinusoidal waves are used. In the case
of a cosinusoidal stress, it is not possible to determine a
strain shift and, therefore, the rate of dissipation of energy
due to acquisition of unrecoverable strains through this exper-
imental protocol. This loss of information about the flow
behavior of a material constitutes a clear reason to avoid the
use of a cosinusoidal stress.

We compare, in Fig. 7, the components of the loss
modulus determined from the strain shift as well as from iter-
ative recovery experiments. In Fig. 7(a), the total loss
modulus, as well as the fluid and solid components of the
loss modulus calculated from the strain shift experiment, are
shown as a function of the total strain amplitude. In
Fig. 7(b), we show the solid component of the loss modulus
due to recoverable rate of dissipation of energy, and in (c),
we show the component of the loss modulus due to unrecov-
erable rate of dissipation of energy, comparing the results
obtained from the strain shift experiment to those measured
via iterative recovery tests. The measure obtained from the
strain shift matches that obtained from the iterative recovery

experiments. Results for other concentrations and angular fre-
quencies are shown in the supplementary material [58].

Stress-controlled oscillatory shear tests, therefore, provide
a way to measure strain shift and calculate the components of
the loss modulus as seen in Eqs. (38) and (40). Previously,
iterative recovery experiments have been required to deter-
mine these average metrics. While the strain shift gives us
clear access to averaged measures, as shown above, the strain
shift experiment cannot give access to the transient informa-
tion that iterative recovery experiments provide that helps
explain the transient nature of yielding [21]. However, the
strain shift experiment can achieve the same average

FIG. 7. Data for 1.6% C980 in PG at ω ¼ 0:5 rad/s. (a) Both components of
the loss modulus determined via the strain shift experiment, and the total
loss modulus as a gray line. (b) Component of loss modulus from recover-
able processes, (G00

solid) and (c) component of loss modulus from unrecover-
able processes (G00

fluid) determined from the both the strain shift experiment
(cross symbols) and iterative recovery tests (solid symbols). The solid line is
the total dynamic loss modulus.
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information as iterative recovery experiments, while signifi-
cantly reducing the number of experiments required and,
therefore, the time.

V. CONCLUSIONS

While it is expected that yield stress fluids flow above their
yield stress, we have shown through strain shift experiments
that they also flow below their yield stress over finite time-
scales. The commonly applied Oldroyd–Prager formalism, and
any model that adheres to it, predicts no strain shift below the
yield stress. This measure of acquisition of unrecoverable
strain is distinct from the dissipation of energy associated with
recoverable processes displayed by a viscoelastic solid. Energy
dissipation below the yield stress has been reported for yield
stress fluids previously [54,57], but flow and dissipation of
energy are different phenomena. Flow implies an acquisition
of unrecoverable strain, while viscoelastic solids and liquids
both dissipate energy. Since a Kelvin–Voigt viscoelastic solid
only acquires strain and dissipates energy recoverably, and
unrecoverable flow is shown to occur below the yield stress by
the strain shift experiment, yield stress fluids are not simply
viscoelastic solids below the yield stress.

In Eq. (30), we show that yield stress fluids will flow
across all stress amplitudes, independent of frequency and
that the strain shift measured at small stress amplitudes is a
simple fraction of the total strain given by the ratio of the
applied stress amplitude to the yield stress, γs=γ0 ¼ σ0=σy.
The no-flow condition of Oldroyd–Prager, and the common
description of yield stress fluids only flowing above the yield
stress, only holds true for the quasi-static case. In all physical
experiments, yield stress fluids will flow below the yield
stress. We have derived expressions that match our experi-
mental observations from the KDR model, which contains a
well-defined yield stress. From the results we have obtained
in this study, we can now interpret the yield stress in
Carbopol and the KDR model as the stress below which no
flow occurs only in the quasi-static case. Over finite time-
scales, and across all stress amplitudes, above and below the
yield stress, yield stress fluids flow.

Stress-controlled rheology, through strain shift experi-
ments can be used to determine metrics previously requiring
iterative recovery procedures. We show in Eqs. (37) and (39)
that the fluid component of the loss modulus contains the
same physics as the strain shift. The component moduli
determined by strain shift are compared directly to those
measured using iterative recovery rheology, with great
success. From the protocol described in this work, stress-
controlled oscillatory shear is able to give researchers the
average measured determined by recovery rheology.
However, any transient information still requires the full
recovery rheology protocol.

Our conclusions are reminiscent of the discussion put
forward by Barnes and Walters regarding the yield stress
myth [26] but are crucially distinct in reasoning and conclu-
sion. Their argument is that if one could measure at low
enough shear rates and wait long enough, a Newtonian
plateau would be observed in the viscosity. Our results are
distinct from this perspective, and add a new chapter to the

discussion. Our work shows that at low enough constant
shear rates at long enough times, yield stress fluids do not
flow. However, our results show that it is possible for a con-
stitutive relation to have a well-defined yield stress, below
which no flow occurs in the quasi-static case but that still
flows under transient conditions as a result of transient kine-
matics acting upon such a relation. From this perspective, the
Oldroyd–Prager-style yield stress, which must be exceeded
for any flow to occur, is indeed a myth.

The derived results of strain shift scalings may be specific
to simple yield stress fluids, which show no time dependence
in their behavior. However, given the generality of the fea-
tures observed in Carbopol that are common across other
YSFs, we expect the phenomenon of the strain shift below
the yield stress to also be common. Prefactors may change so
that in other classes of YSF the strain shifts may be smaller
than σy=σ0

� �
γ0, but we still expect that they will exist.

By looking at the strain shift under stress-controlled oscil-
latory shear, we can determine when and how materials flow.
This has wide reaching applications beyond yield stress
fluids. In the derivation of Eq. (39), which relates the strain
shift to the fluid component of the dynamic loss modulus,
there are no assumptions about the material being a yield
stress fluid. Therefore, this experiment and expression can be
applied to study flow in any variety of systems under stress-
controlled oscillatory shear.

By performing the strain shift experiment and using the
relations derived in this work, we have shown that it is possi-
ble to gain access to more information than traditional oscil-
latory testing and analysis alone. This information is freely
available in the material response, making it an attractive pro-
tocol for any study. Furthermore, because we now understand
the physics behind the strain shift, we can accurately use any
phase angle to acquire more information than previously
achievable. Given the detailed information available from
stress-controlled oscillatory shear tests with strain shift, we
believe that this protocol should become the standard for rhe-
ological oscillatory testing moving forward.
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