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Inverse Matrix Games With Unique
Quantal Response Equilibrium

Yue Yu , Member, IEEE , Jonathan Salfity, David Fridovich-Keil , Member, IEEE ,
and Ufuk Topcu , Senior Member, IEEE

Abstract—In an inverse game problem, one needs to
infer the cost function of the players in a game such that
a desired joint strategy is a Nash equilibrium. We study
the inverse game problem for a class of multiplayer matrix
games, where the cost perceived by each player is cor-
rupted by random noise. We provide sufficient conditions
for the players’ quantal response equilibrium—a general-
ization of the Nash equilibrium to games with perception
noise—to be unique. We develop efficient optimization
algorithms for inferring the cost matrix based on semidef-
inite programs and bilevel optimization. We demonstrate
the application of these methods in encouraging collision
avoidance and fair resource allocation.

Index Terms—Game theory, optimization.

I. INTRODUCTION

IN A MULTIPLAYER game, each player tries to find
the strategies with the minimum cost, where the cost

of each strategy depends on the other players’ strategies.
The Nash equilibrium is a set of strategies where no player
can benefit from unilaterally changing strategies. The Nash
equilibrium generalizes minimax equilibrium in two-player
zero-sum games [1] to multiplayer general-sum games [2], [3].

Given a joint strategy of the players in a game, the inverse
game problem requires inferring the cost function such that the
given joint strategy is indeed a Nash equilibrium. The inferred
cost function can either rationalize observed player behav-
ior [4], [5], [6] or provide incentives to encourage desired
behavior [7], [8]. There have been many results on inverse
games in different contexts, including specific games, such
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Fig. 1. A two-player game with two Nash equilibrium: joint strategy
(1, 1) and (2, 2). The players must align their choice of equilibrium to
avoid collisions.

as matching [9], network formation [10], and auction [11];
and generic classes of games, such as succinct games [12],
dynamic games [4], and general convex games whose Nash
equilibria are characterized by variational inequalities [5].

The existing results on inverse games have the following
limitations. First, the existing results do not guarantee a unique
Nash equilibrium. Such nonuniqueness makes the players’
behavior less predictable since there is ambiguity in which
equilibrium the players will choose. It also complicates the
players’ decision-making, since the players need to align their
choice of equilibrium with the other players’ [13]; see Fig. 1
for an illustrative example. Second, the existing results assume
each player has perfect perceptions of the cost of each action.
Such an assumption is not reasonable to model human behav-
ior where the players have bounded rationality and imperfect
cost estimation [14], [15]. Recent work addressed these lim-
itations in the context of two-player zero-sum games [6].
However, for multi-player general-sum games, treatments to
these limitations are, to our best knowledge, still missing.

We study the inverse game problem for a class of multi-
player general-sum matrix games, where each player’s strategy
is a probability distribution over a finite number of discrete
actions, the cost of a strategy is characterized by a matrix,
and the cost perceived by each player is corrupted by random
noise. Our contributions are as follows.

First, we provide sufficient conditions on the cost matrix for
the uniqueness of the quantal response equilibrium—which is
a generalization of the Nash equilibrium when the cost per-
ceived by each player is corrupted by noise [14], [15]—and
show that one can efficiently compute this unique equilib-
rium by solving a nonlinear least-squares problem. Second,
we develop two numerical methods–one based on semidefinite
programs, the other based on bilevel optimization–that infer
the cost matrices which optimize the unique quantal response
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equilibrium with respect to a performance function. The lat-
ter extends the implicit differentiation methods in [6] from
convex-concave saddle point problems to nonconvex equilib-
rium problems. Finally, we demonstrate the application of
these methods in encouraging collision avoidance and fair
resource allocation.

Our results are particularly useful for designing incentives
that motivate desired behavior when the players’ cost function
is (partially) known. They also have potential applications in
general inverse multiplayer games.

Notation: We let R, R+, R++, and N denote the set of
real, nonnegative real, positive real, and positive integer num-
bers, respectively. Given m, n ∈ N, we let Rn and Rm×n denote
the set of n-dimensional real vectors and m× n real matrices;
we let 1n and In denote the n-dimensional vector of all 1’s and
the n× n identity matrix, respectively. Given positive integer
n ∈ N, we let [n] := {1, 2, . . . , n} denote the set of positive
integers less or equal to n. Given x ∈ Rn and k ∈ [n], we
let [x]k denote the k-the element of vector x, and ‖x‖ denote
the !2-norm of x. Given a square real matrix A ∈ Rn×n, we
let A%, A−1, and A−% denote the transpose, the inverse, and
the transpose of the inverse of matrix A, respectively; we say
A ' 0 and A ( 0 if A is symmetric positive semidefinite and
symmetric positive definite, respectively; we let ‖A‖F denote
the Frobenius norm of matrix A. We let blkdiag(A1, . . . , Ak)
denote the block diagonal matrix whose diagonal blocks are
A1, . . . , Ak ∈ Rm×m. Given continuously differentiable func-
tions f : Rn → R and G : Rn → Rm, we let ∇xf (x) ∈ Rn

denote the gradient of f evaluated at x ∈ Rn; the k-th ele-
ment of ∇xf (x) is ∂f (x)

∂[x]k
. Furthermore, we let ∂xG(x) ∈ Rm×n

denote the Jacobian of function G evaluated at x ∈ Rn; the
ij-th element of ∂xG(x) is ∂[G(x)]i

∂[x]j
.

II. QUANTAL RESPONSE EQUILIBRIUM
IN MATRIX GAMES

We introduce our theoretical model, a multiplayer matrix
game where the cost perceived by each player is corrupted by
stochastic noise.

A. Multiplayer Matrix Games With Perception Noise
We consider a game with n ∈ N players. Each player i ∈ [n]

has mi ∈ N actions. We let m := ∑n
i=1 mi denote the total

number of actions of all players. Player i’s strategy is an mi-
dimensional probability distribution over all possible actions,
denoted by xi ∈ #i, where

#i := {y ∈ Rmi |y%1mi = 1, y ≥ 0}. (1)

Each player’s optimal strategy is one that minimizes the
perceived cost, which is jointly determined by the strategies
of all players and a stochastic perception error. In particular, let
bi ∈ Rmi and Cij ∈ Rmi×mj with Cii = C%ii ' 0 for all i, j ∈ [n]
be cost parameters. Then the cost of action k perceived by
player i is given by

[bi +
n∑

j=1

Cijxj]k + ξik, (2)

where ξik is a random variable that captures perception error
in player i’s decision-making.

If each ξik is independently sampled from the Gumbel dis-
tribution with mean γ λ for some λ ∈ R++ where γ is Euler’s
constant, then the optimal strategy for player i is

xi = fi
(
− 1
λ (bi + ∑n

j=1 Cijxj)
)

(3)

where fi(z) := 1
1%mi

exp(z) exp(z) for all z ∈ Rmi , and exp(z) ∈
Rmi

++ is the elementwise exponential of vector z. The strat-
egy in (3), known as the logit quantal response, models the
bounded rationality in decision-making, and has been effec-
tive in consumer choice problems [16]; see [14], [15] for a
detailed discussion. We define the concept of logit quantal
response equilibrium formally as follows.

Definition 1: A joint strategy x :=
[
x%1 x%2 · · · x%n

]% is a
quantal response equilibrium if (3) holds for all i ∈ [n].

The following lemma provides an optimization-based char-
acterization of the equilibrium in Definition 1.

Lemma 1: If λ > 0 and Cii = C%ii ' 0 for all i ∈ [n],
then (3) holds if and only if

xi ∈ argmin
y∈#i



bi + 1
2

Ciiy +
∑

j ,=i

Cijxj




%

y + λy% ln(y), (4)

where ln(y) denotes the elementwise logarithm of y.
Proof: Since Cii = C%ii ' 0 and the set #i is nonempty,

the condition in (4) holds if and only if the following Karush-
Kuhn-Tucker conditions hold for some vi ∈ R and ui ∈ Rmi

bi +
n∑

j=1

Cijxj + (λ+ vi)1mi + λ ln(xi)− ui = 0mi ,

x%i 1mi = 1, xi ≥ 0, ui ≥ 0, u%i xi = 0. (5)

Furthermore, since the logarithm function is only defined for
strictly positive numbers, we know that (4) implies that xi
is elementwise positive. Combining this fact with (5) gives
ui = 0mi . Finally, one can directly verify the equivalence
between (3) and (5) when ui = 0mi .

Remark 1: If n = 2, Cii = 0mi×mi for i = 1, 2, and
C12 = −C21, then Definition 1 reduces to the quatal response
equlibrium in two-player zero-sum games [6].

B. Computing the Quantal Response Equilibrium via
Nonlinear Least-Squares

We can compute the quantal response equilibrium in
Definition 1 by solving the following nonlinear least-squares
problem:

minimize
x

n∑

i=1

∥∥∥∥∥∥
xi − fi



−1
λ

(bi +
n∑

j=1

Cijxj)





∥∥∥∥∥∥

2

(6)

where function fi is given by (3). If the optimal value of
the objective function in optimization (6) is zero, then the
corresponding solution x indeed satisfies (3) for all i ∈ [n].

However, the question remains whether optimization (6) has
an optimal value of zero, or whether it has a unique solution.
We will answer these questions next.
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Throughout we will also use the following notation:

b :=




b1
b2
...

bn



, C :=




C11 C12 ... C1n
C21 C22 ... C2n
...

...
. . .

...
Cn1 Cn2 ... Cnn



. (7)

We make the following assumptions on optimization (6).
Assumption 1: λ > 0, C+C% ' 0, Cii = C%ii for all i ∈ [n].
The following proposition provides sufficient conditions

under which the quantal response equilibrium in Definition 1
exists and is unique.

Proposition 1: If Assumption 1 holds, then there exists a
unique x =

[
x%1 x%2 · · · x%n

]% ∈ Rm
++ such that (3) holds for

all i ∈ [n].
Proof: We first prove the existence. Since C+C% ( 0, all of

its principle submatrices are also positive semidefinite. Hence
Cii ' 0 for all i ∈ [n]. In addition, since y% ln(y) is a convex
function of y, we conclude that any x that satisfies (4) is the
Nash equilibrium of a concave game, which always exists, due
to [17, Th. 1].

Next, we prove the uniqueness of x. The logarithm function
in (4) ensures that x is elementwise positive. By combining this
fact together with Assumption 1, we can show that C + C%+
λ diag(x)−1 is positive definite. Hence any x that satisfies (4)
is the Nash equilibrium of a diagonally strict concave game,
which is unique [17, Th. 6].

The rest of the proof follows from the equivalence
between (3) and (4), due to Lemma 1.

In practice, different cost functions can induce the same
equilibrium, even those violating Assumption 1. The cost
functions satisfying Assumption 1, however, eliminate the
ambiguity in the quantal response equilibrium, as shown by
Proposition 1.

III. NUMERICAL METHODS FOR
INVERSE MATRIX GAMES

We now consider the following inverse game problem: given
a desired joint strategy x, how can one infer the cost matrix
C that makes x the unique equilibrium in Definition 1. Here
we only consider the inferring of the matrix C. We note that
one can seamlessly generalize the results in this section to the
inference of vector b.

In the following, we will introduce two different approaches
for the aforementioned inverse matrix game: one based on
semidefinite programs, the other based on the projected gra-
dient method for bilevel optimization.

A. Semidefinite Program Approach
We first consider the case where the desired equilibrium

is a pure joint strategy, where each player i has a preferred
action i' ∈ [mi]. In particular, suppose there exists x' ∈ Rm

and i' ∈ [mi] for all i ∈ [n] such that [x'i ]k equals 1 if k = i',
and 0 otherwise.

In this case, perhaps the most direct way to ensure x'

is an equilibrium is to simply make sure that the cost
of action i' is sufficiently lower than any alternatives for
player i. By combining these constraints together with the
results in Proposition 1, we obtain the following semidefinite

program:

minimize
C

1
2
‖C‖2F

subject to C + C% ' 0, Cii = C%ii , i ∈ [n],

[bi]i' +
n∑

j=1

Ci'j' + ε ≤ [bi]k +
n∑

j=1

Ckj' ,

∀k ∈ [mi] \ {i'}, i ∈ [n]. (8)

where the objective function penalizes large values of the ele-
ments in matrix C, and ε ∈ R+ is a tuning parameter that
separates the cost of the best action from the cost of the sec-
ond best action. Intuitively, as the value of ε increases, the
quantal response equilibrium in Definition 1 is more likely to
take a pure form.

The drawback of optimization (8) is that it only applies to
the case where the desired equilibrium is known and close to
be deterministic. If the desired equilibrium is mixed, ı.e., each
player has a preferred probability distribution over all actions
rather than one single preferred action, then the semidefinite
program is no longer useful.

B. Bilevel Optimization Approach
We now consider the case where the desired equilibrium is

described by a performance function, rather than explicitly as a
desired joint strategy. In particular, we consider the following
continuously differentiable function, denoted by ψ : Rm → R,
that evaluates the quality of a joint strategy. For example, if
x' =

[
(x'1)
% (x'2)

% · · · (x'n)
%]% is the desired equilibrium,

then a possible choice of function ψ is as follows:

ψ(x) = DKL(x, x') :=
n∑

i=1

x%i (ln(xi)− ln(x'i )). (9)

The above choice of function ψ(x) measures the sum of
the Kullback–Leibler (KL) divergence between each player’s
strategy and the corresponding desired strategy.

In order to compute the value of matrix C such that the equi-
librium in Definition 1 is unique and minimizes the value of
performance function ψ(x), we introduce the following bilevel
optimization problem:

minimize
x,C

ψ(x)

subject to C + C% ' 0, Cii = C%ii , i ∈ [n],

‖C‖F ≤ ρ, x is optimal for optimization (6). (10)

Here ρ ∈ R+ is a tuning parameter that controls the maximum
allowed Frobenius norm of matrix C. Intuitively, the larger the
value of ρ, the more choices of matrix C from which we can
choose, and the more likely we can achieve a lower value of
function ψ(x).

The drawback of optimization (10) is that, unlike the
semidefinite program in (8), it is nonconvex and, as a result,
one can only hope to obtain a locally optimal solution. Next,
we will discuss how to compute a locally optimal solution
efficiently using the projected gradient method.
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1) Differentiating Through the Equilibrium Condition: The
key to solve bilevel optimization (10) is to compute the gra-
dient of ψ(x) with respect to matrix C. In particular, we let
∇Cψ(x) ∈ Rm×m be the matrix whose pq-th element, denoted
by [∇Cψ(x)]pq, is given by

[∇Cψ(x)]pq := ∂ψ(x)
∂[C]pq

(11)

for all p, q ∈ [m]. Since function ψ is continuously differen-
tiable, the difficulty in evaluating ∇Cψ(x) is to compute the
Jacobian of the equilibrium x with respect to matrix C. To this
end, we introduce the following notation:

u := −1
λ

(b + Cx) (12a)

f (u) :=
[
f1(u1)

% f2(u2)
% · · · fn(un)

%]% (12b)

where ui ∈ Rmi for all i ∈ [n], and fi is given by Lemma 1.
The following result provides a formula to compute ∇Cψ(x)
using the implicit function theorem [18].

Proposition 2: Suppose C + C% ' 0 and λ > 0. Let x :=[
x%1 x%2 · · · x%n

]% be such that (3) holds for all i ∈ [n],
ψ :Rm → R be a continuously differentiable function, u and
f (u) given by (12). If Im + 1

λ∂uf (u)C is nonsingular, then

∇Cψ(x) = −1
λ
∂uf (u)%(Im + 1

λ
∂uf (u)C)−%∇xψ(x)x%.

Proof: Let F(x, C) := x− f (u) and Cq denote the q-th col-
umn of matrix C. Proposition (1) implies x is the unique vector
that satisfies F(x, C) = 0m. Since f is a continuously differen-
tiable function, the implicit function theorem [18, Th. 1B.1]
implies the following: if ∂xF(x, C) is nonsingular, then ∂x

∂Cq
=

−(∂xF(x, C))−1∂Cq F(x, C). Using the chain rule we can show
∂xF(x, C) = Im + 1

λ∂uf (u)C and ∂CqF(x, C) = 1
λ [x]q∂uf (u).

The rest of the proof is due to the chain rule and the definition
of ∇Cψ(x) in (11).

The gradient formula in Proposition (2) requires computing
matrix inverse, which can be numerically unstable, In practice,
we use the following formula:

∇Cψ(x) = −1
λ
∂uf (u)%((Im + 1

λ
∂uf (u)C)†)%∇xψ(x)x%, (13)

where † denotes the Moore–Penrose pseudoinverse. Note that
if Im + 1

λ∂uf (u)C is nonsingular, then Proposition 2 implies
∇̂Cψ(x) = ∇Cψ(x); otherwise, the value of ∇̂ψ(x) provides
only an approximation of ∇Cψ(x).

2) Approximate Projected Gradient Method: Equipped with
Proposition 2 and the projection formula in (13), we are now
ready to introduce the approximate projected gradient method
for bilevel optimization (10). To this end, we define the set
D ⊂ Rm×m:

D := {C| C + C% ' 0, ‖C‖F ≤ ρ, Cii = C%ii , i ∈ [n]}. (14)

We summarize the approximate projected gradient method
in Algorithm 1, where the projection map +D : Rm×m →
Rm×m is given by

+D(C) = argmin
X∈D

‖X − C‖F (15)

Algorithm 1 Approximate Projected Gradient Method
Input: Function ψ : Rm → R, vector b ∈ Rm, scalar weight

λ ∈ R++, step size α ∈ R++, stopping tolerance ε.
1: Initialize C = 0m×m, C+ = 2εIm
2: while

∥∥C+ − C
∥∥

F > ε do
3: C← C+
4: Solve optimization (6) for x.
5: C+← +D(C − α∇̂Cψ(x))
6: end while

Output: Equilibrium x and cost matrix C.

for all C ∈ Rm×m. At each iteration, this method first solve
the nonlinear least-squares problem in (6), then update matrix
C using the approximate gradient in (13).

A key step in Algorithm 1 is to compute the projection
in (15). The following lemma provides the explicit compu-
tational formula for computing this projection via eigenvalue
decomposition and matrix normalization.

Lemma 2: Let set D be given by (14) and matrix C ∈ Rm×m

be partitioned as in (7), where Cij ∈ Rmi×mj , for all I, j ∈ [n].
Let B = C − blkdiag(C11, . . . , C%nn), U ∈ Rm×m, and s ∈ Rm

be such that U diag(s)U% = 1
2 (C + C%). Let Then

+D(C) = ρ

max{ρ, ‖A‖F}A, (16)

where A := 1
2 (B− B%) + U diag(max(s, 0))U%.

Proof: Let tr(M) denote the trace of matrix M. First, let
K1 := {M ∈ Rn×n|M = M% ' 0}, K2 := {M ∈ Rn×n|M =
−M%, Mii = M%ii , ∀i ∈ [n]} where Mii ⊂ Rmi×mi denotes the
i-th principal submatrix of M, and B := {M ∈ Rn×n|‖M‖F ≤
ρ}. Then one can verify that D = (K1 + K2) ∩ B where +
denotes the direct sum, and that K1 + K2 is a closed con-
vex cones. By using the results on the projection onto the
intersection of a ball and a closed convex cone [19, Th. 7.1],
we can show that +D(C) = +B(+K1+K2(C)).

Second, observe that C ∈ K1 + K2 if and only if C̃ :=
( 1

2 (C + C%), 1
2 (C − C%)) ∈ K1 × K2, where × denotes the

Cartesian product. By using the results on the projection onto
the Cartesian product of sets [20, Proposition 29.4], we can
show that+K1×K2(C̃) = (+K1(

1
2 (C+C%)),+K2(

1
2 (C−C%))).

Hence +K1+K2(C) = +K1(
1
2 (C + C%)) ++K2(

1
2 (C − C%)).

The rest of the proof is a direct application of the for-
mulas for projecting onto norm balls [20, Ex. 3.18] and
projecting a symmetric matrix onto the positive semidefinite
cone [20, Ex. 29.32].

IV. NUMERICAL EXAMPLES

We demonstrate the application of the numerical methods in
Section III using two examples. In these examples, we assume
that vector b is known and C is a zero matrix before our design
process. We aim to design a nonzero matrix C—which can be
interpreted as subsidies and tolls—that encourages the desired
behavior. We note that if the value of either vector b or matrix
C is unknown before design, one can first infer the values of b
and C using the approaches in Section III, then proceed with
the results in this section.

Throughout, we compute the entropy regularized equilib-
rium in Definition 1 by solving optimization (6) using the
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Fig. 2. An illustration of the equilibrium strategies in (17) (red arrows)
and (18) (blue arrows).

Gauss-Newton method with line search [21, Sec. 10.3], where
we terminated the algorithm when the objective function value
in (6) is less than 10−10. We note that, depending on the
problem settings, other solution algorithms may have better
performance. We refer the interested readers to [21, Ch. 10]
for a detailed discussion on nonlinear least-squares.

A. Encouraging Collision Avoidance
We consider four ground rovers placed in a two-dimensional

environment, at coordinate (0, 1), (0,−1), (1, 0), and (−1, 0),
respectively. Each rover wants to reach the corresponding
target position with coordinates (0,−1), (0, 1), (−1, 0) and
(1, 0), respectively. Each rover can choose one of three candi-
date paths that connect its initial position to its target position:
a beeline path of length 2; two semicircle paths, each of
approximate length π , and one in the clockwise direction, the
other one in the counterclockwise direction. We assume all
rovers move at the same speed and start at the same time.

We model the decision-making of each rover using the
entropy-regularized matrix game in Section II. In particular,
we let λ = 0.1, n = 4, m = 12, and bi =

[
2 π π

]% for all
i = 1, 2, 3, 4. Here the elements in bi denote the length of each
candidate path, regardless of other players’ strategies; if no
other player exists, then action one (beeline path) is the optimal
shortest path. If C = 012×12, one can verify—by solving an
instance of optimization (6)—that the quantal response equi-
librium in Definition 1—assuming λ is sufficiently small—is
approximately

xi =
[
1 0 0

]
, i = 1, 2, 3, 4. (17)

In other words, all players tend to choose the beeline path since
it has the minimum length. However, this causes collisions
among the rovers at coordinate (0, 0).

By adjusting the value of matrix C, we aim to change the
equilibrium above to the following

x'i =
[
0 0 1

]
, i = 1, 2, 3, 4. (18)

In other words, we want all players to choose the coun-
terclockwise semicircle path. See Fig. 2 for an illustration
and https://www.youtube.com/watch?v=EvtPp_DWqgU for an
animation.

We note that one can change the equilibrium from (17)
to (18) by simply letting C = 0m×m and modifying the value
of b. However, such a choice of parameter implies that all
rovers will voluntarily choose a longer path regardless of other
rovers’ strategies, which has no meaningful interpretation in
path planning.

Since the equilibrium in (18) is of the form in Section III-A,
we can compute matrix C using either the semidefinite pro-
gram (8) or the bilevel optimization (10); in the latter case,

Fig. 3. The trade-off between DKL(x, x') and
∥∥C

∥∥
F when tuning the

parameter ε in the semidefinite program (8) and the parameter ρ in
bilevel optimization (10).

we choose the performance function to be the KL-divergence
in (9).

We solve the semidefinite program (8) using the off-
the-shelf solver, and the bilevel optimization (10) using
Algorithm 1. Fig. 3 shows the trade-off between DKL(x, x')—
which measures the distance between the equilibrium x that
corresponds to matrix C and the desired equilibrium x'—and
‖C‖F of the computed matrix C when tuning the parameter
in (8) and (10). These results confirm that both the semidefi-
nite program approach and the bilevel optimization approach
apply to the cases where the desired Nash is pure and known
explicitly. Furthermore, both approaches require careful tun-
ing of algorithmic parameters to achieve a preferred trade-off
between DKL(x, x') and ‖C‖F .

B. Encouraging Fair Resource Allocation
We now consider a case where the desired equilibrium is

not of the explicit form in Section III-A. Instead, we only have
access to a performance function that implicitly describes the
desired equilibrium. To this end, we consider the following
three-player game. Each player is a delivery drone company
that provides package-delivery service, located in the south-
west, southeast, and east area of Austin, respectively. Each
strategy demotes the distribution of service allocated to the
nine areas of Austin; we assume all three companies have the
same amount of service to allocate. For each company, within
its home area (where it is located), the operating cost of deliv-
ery service is one unit; outside the home area, the operating
cost increases by 50% in an area adjacent to the home area, and
80% otherwise. See Fig. 4 for an illustration.1 We model the
joint decision of the three companies using the matrix game in
Section II, where n = 3, mi = 9 for i = 1, 2, 3, and m = 27;
we set λ = 0.1 and vector b according to the aforementioned
operating cost.

If all companies consider only the operating cost, they will
only allocate services to their respective home area. We aim to
infer the value of matrix C using Algorithm 1 that encourages
a fair allocation to other areas. In particular, we choose the
performance function as follows:

ψ(x) = 1%9 (x1 + x2 + x3)
−1, (19)

1Picture credit: https://en.wikipedia.org/wiki/List_of_Austin_neighborhoods.
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Fig. 4. Three drone delivery companies (red, green, and blue) located
in different areas in the city of Austin.

Fig. 5. The percentages of the total amount of delivery service allocated
to each area at the equilibrium computed by Algorithm 1.

where vector (x1 + x2 + x3)
−1 denotes the elementwise recip-

rocal of vector x1 +x2 +x3. Function ψ(x) is based on the the
potential delay function from the resource allocation literature;
the latter is a special case of the more general α-fairness func-
tion [22, Sec. 2.4]. Here function ψ(x) measures the overall
fairness of the delivery service allocation. Here we implic-
itly assume that the demand for delivery services is much
higher than the supply, and we aim to allocate all supply.
Such an assumption is common in the resource allocation
literature [22]. The competition is among different suppliers
(companies), not between supply and demand.

We compute the cost matrix using Algorithm 1 and illustrate
the percentages of the delivery service allocated to each area
at the equilibrium in Fig. 5. The results show that when ρ ≈
0, all the drone fleets will almost only serve their respective
home areas. As we increase the value of ρ, the computed
matrix encourages a more fair joint strategy where all nine
areas receive an almost equal amount of service.

V. CONCLUSION

We study the inverse game problem in the context of multi-
player matrix games. We develop efficient numerical methods
to compute the cost matrices that ensure a unique quantal
response equilibrium.

However, the current work only provides a preliminary
proof of concept with limited applications. For example, it
requires an exhaustive enumeration of all actions, which is
computationally unscalable and makes the cost inference of
a pure target equilibrium trivial: one can simply assign the

lowest cost to the target actions. Furthermore, it only pro-
vides the cost functions that induce one desired equilibrium,
rather than multiple equilibria with common desired proper-
ties. We aim to address these limitations by considering games
with more complicated decision-making models. We will also
consider simultaneously optimizing multiple equilibria using
robust optimization.
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