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Abstract

Notions of transition invariants and closure certificates have
seen recent use in the formal verification of controlled dy-
namical systems against ω-regular properties. The existing
approaches face limitations in two directions. First, they re-
quire a closed-form mathematical expression representing the
model of the system. Such an expression may be difficult to
find, too complex to be of any use, or unavailable due to
security or privacy constraints. Second, finding such invari-
ants typically rely on optimization techniques such as sum-of-
squares (SOS) or satisfiability modulo theory (SMT) solvers.
This restricts the classes of systems that need to be formally
verified. To address these drawbacks, we introduce a notion
of neural closure certificates. We present a data-driven algo-
rithm that trains a neural network to represent a closure cer-
tificate. Our approach is formally correct under some mild as-
sumptions, i.e., one is able to formally show that the unknown
system satisfies the ω-regular property of interest if a neural
closure certificate can be computed. Finally, we demonstrate
the efficacy of our approach with relevant case studies.

Introduction
The recent advances in deep learning and neural networks
have revolutionized the capability in perception and nat-
ural language processing (Voulodimos et al. 2018; Otter,
Medina, and Kalita 2020). As a result, control and robotics
applications in modern critical infrastructure are progres-
sively incorporating deep neural networks into their oper-
ations, leading to the grand challenge of ensuring safety
in learning-enabled cyber-physical systems. Examples of
safety-critical such systems include implantable medical de-
vices, autonomous vehicles, and surgical robots.

In response to this overarching challenge, substantial ef-
forts have been directed (Haesaert, Van den Hof, and Abate
2017; Ratschan 2017; Nejati et al. 2023) towards adapt-
ing successful classical formal and statistical approaches
to verify systems with unknown dynamics. Among these
approaches, neural network based barrier certificates have
shown considerable promise. These certificates capture state
invariants providing a certificate for safety (“nothing bad
happens”). We extend this line of research by developing
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neural network based certificates to capture liveness proper-
ties (“something good eventually happens”) by approximat-
ing the transitive closure of state transitions. We dub these
certificates neural closure certificates.

Neural Barrier Certificates for Safety. A key contribu-
tion in the use of neural networks as a verification tool has
been that of neural barrier certificates (Zhao et al. 2020)
to demonstrate the safety of dynamical systems. We say
that a dynamical system is safe with respect to a set of un-
safe states, if it never reaches these states as it evolves. To
address the problem of safety verification, Prajna and Jad-
babaie (2004) proposed a notion of barrier certificates.

A barrier certificate is real-valued function that is non-
positive over the initial states, positive over the unsafe states
and non-increasing over the evolution of the system. These
conditions together ensure that the system is safe. Observe
that a barrier certificate is a functional inductive state invari-
ant. Every initial state has a barrier value which is nonposi-
tive. Furthermore, given any state with a nonpositive barrier
value, all of its successors must also be nonpositive via an
inductive proof. Lastly, as the unsafe states do not have a
nonpositive barrier value, they cannot be reached from the
initial states. As the search for a barrier certificate involves
finding a function that satisfies the above constraints, there
has been a widespread adoption of novel techniques and ap-
proaches to make use of neural networks to represent such
certificates (Abate et al. 2021; Dawson, Gao, and Fan 2023;
Nadali, Trivedi, and Zamani 2023).

Beyond Safety. While neural barrier certificates have seen
significant success in ensuring the safety of systems, they are
inadequate in certifying an important class of specifications
known as liveness. A system satisfies a liveness property if
something good eventually happens (Alpern and Schneider
1987). An example of such a property is to ensure that a sys-
tem visits a set of states infinitely often. While safety can
be demonstrated using an inductive argument, one needs to
develop a well-foundedness argument (Cook 2009) to es-
tablish liveness. To address this question, Podelski and Ry-
balchenko (2004) proposed a notion of transition invariants.

A transition invariant is a set of pairs of states such that
it may be possible to reach the second element from the
first. This represents a superset of the transitive closure of
the transition relation that represents the evolution of the
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system. Using transition invariants, they developed a well-
foundedness argument to refute a liveness property to prove
program termination.

Certification Beyond Safety. The ω-regular properties
are an expressive and well-behaved class of formal specifica-
tions that capture linear-time properties. These are precisely
those properties that can be compiled into ω-automata (Vardi
2005). Their compilation into automata, allows for one to
make use of algorithms over the automata, which entail auto-
matic proofs. Podelski and Rybalchenko (2004) demonstrate
how one may use transition invariants to verify programs
against ω-regular properties. Inspired by this approach, Mu-
rali, Trivedi, and Zamani (2023) developed the notion of
closure certificates, functional transition invariants, to ver-
ify dynamical systems against ω-regular properties.

Formally, a closure certificate is a real-valued function
that is defined over pairs of states of the system. Consider
the states x, y and z where the state y is the immediate suc-
cessor of state x. As a base case, the closure certificate must
be nonnegative for every pair (x, y). If the closure certifi-
cate is nonnegative for the pair (y, z), then it must also be
nonnegative for the pair (x, z). These together ensure that if
state z is reachable from state x, then one has the value of
the closure certificate to be nonnegative for the pair (x, z).
One adds additional constraints to the above to verify safety,
refute liveness or prove ω-regular properties of interest.

Though closure certificates hold promise, one must ad-
dress their shortcomings. Notably, current methods of
searching for these certificates require knowing the precise
mathematical model of the dynamical system. In many cases
finding such closed-form expression is difficult, due to the
complexities of the system and requires significant manual
effort. Moreover, existing approaches for searching for clo-
sure certificates rely on the dynamics of the system to be of
a certain form. They either rely on optimization techniques
such as Sum-of-Squares programming (SOS) (Parrilo 2003)
or Satisfiability Modulo Theory (SMT) (Barrett and Tinelli
2018) solvers. In the former, one requires the dynamics to
be specified as a polynomial, while in the latter the dynam-
ics need to be supported by the chosen SMT solver.

Neural Closure Certificates. We propose a novel data-
driven algorithm to formally verify unknown dynamical sys-
tems against ω-regular properties. To do so, we represent
closure certificates as neural networks. We construct a loss
function such that it being zero in tandem with a validity
condition, is sufficient to ensure that our neural network
is a closure certificate, provided our system is Lipschitz-
continuous. Unlike earlier SOS and SMT approaches which
restrict the class of functions that act as closure certificates,
our use of neural networks allows us to consider any Borel-
measurable function as a candidate closure certificate.

Organization. The paper is organized as follows. We be-
gin the formal discussion by introducing notations and defi-
nitions in the Preliminaries. We then discuss closure certifi-
cates and their properties. Next, we introduce a data-driven
approach to find Neural Closure Certificates assuming the
system dynamics are Lipschitz continuous. This ensures that

our trained neural network provides a formal guarantee of
correctness and proves that the system does in fact satisfy the
ω-regular property of interest. Moreover, we illustrate the ef-
ficacy of our proposed algorithm with relevant case studies
in the corresponding section.

Preliminaries
Notations. We use N and R to denote the set of natural num-
bers and reals, respectively. For any given a ∈ R, R≥a and
R>a refer to intervals [a,∞) and (a,∞), respectively. Like-
wise, for any b ∈ N, N≥b denotes the set of natural numbers
greater than or equal to b. We use ∥v∥∞ to represent the in-
finity norm of vector v ∈ Rn for some n ∈ N.

For a given alphabet A, we write A∗ and Aω for the set of
finite and infinite sequences of elements in A, respectively.
As usual, |A|, A \ B, and A × B represent the cardinality,
set difference and Cartesian product of sets A and B.

We call a function f : A→R bounded if there exist u, l ∈
R such that l≤f(a)≤u, for all a ∈ A. We define the RELU :
R → R activation function as RELU(z) = max(0, z) for all
z ∈ R. A function f : Rn → R is Lipschitz continuous with
respect to the infinity norm, and with Lipschitz constant L, if
for all x, y ∈ Rn, one has ∥f(x)−f(y)∥∞ ≤ L∥

(
x−y)∥∞ .

System Definition
Definition 1 (Discrete-time Dynamical System). A discrete-
time dynamical system is a tuple S = (X ,X0, f), where
X ⊂ Rn represents the state set, X0 ⊆ X denotes the initial
set, and f : X → X is the transition function (or model) of
the system. The evolution of the system can be described as:

S : x(t+ 1) = f(x(t)). (1)

A state sequence is an infinite series x0x1 . . . ∈ Xω where
x0 ∈ X0 and xi+1 = f(xi), for all i ∈ N. We assume the
state set X to be compact and the function f to be Lips-
chitz continous. Furthermore, we say that system is unknown
when we do not have an explicit closed form expression for
the function f . To reason about ω-regular properties, we em-
ploy a labeling function L : X → Σ that maps a state of the
system to a letter in a finite alphabet. This labeling function
extends naturally to map a state sequence to an infinite trace
(or word) w = L(x0)L(x1) . . . ∈ Σω . Let T (S,L) denote
the set of all traces of system S under labeling function L.

Specification
Definition 2 (Nondeterministic Büchi Automata (NBA)).
A nondeterministic Büchi automata (NBA) A is a tuple
(Q,Σ, q0, δ, Qacc) where Q denotes a finite set of states, Σ
denotes a finite alphabet, δ : Q×Σ → 2Q denotes the tran-
sition relation, and q0 ∈ Q and Qacc ⊆ Q denote the initial
state1 and set of accepting states, respectively.

A run of A on an infinite word w = σ0σ1 . . . ∈ Σω is
an infinite sequence ρ = q0q1q2 . . . ∈ Qω such that qi+1 ∈
δ(qi, σi) for all i ∈ N. A word w = w0w1 . . . is accepted by
the NBA A if there exists a corresponding run ρ = q0q1 . . .

1Without loss of generality, one can convert an NBA with a set
of initial states to an NBA with a single initial state.
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of the NBA on w such that for every j ∈ N, there exists
some i ∈ N≥j , such that qi ∈ Qacc.

As the state set of the NBA is finite, one can equivalently
think of the set Q as the set {0, 1, . . . , |Q|−1}. The language
of an NBA A, denoted by L(A), is defined as the set of all
words w that are accepted by it, and the language character-
izes an ω-regular property. Finally, NBAs are closed under
complementation (Safra 1988), i.e., given an NBA A′, one
can construct its complement A where L(A) = Σω \L(A′).

Verification
We say that a system satisfies an ω-regular property char-
acterized by an NBA A′ under labeling function L, if
T (S,L) ⊆ L(A′) and denote it as S |=L A′. In the fol-
lowing, we implicitly infer the labeling function from the
context unless it needs to be explicitly specified. Lastly, as
NBAs are closed under complement, one can instead ver-
ify that S |=L A′ by showing that T (S,L) ∩ L(A) = ∅
where the NBA A denotes the complement of A′. A well-
known approach (automata-theoretic approach) to determine
whether a system satisfies a desired ω-regular property or
not is to first construct the synchronous product of the sys-
tem and the (complement of) the specification.

Definition 3 (Synchronous Product). We define the syn-
chronous product S ⊗ A of a system S = (X ,X0, f), and
an NBA A = (Q,Σ, q0, δ, Qacc) as the tuple (X ′,X ′

0, f
′)

where X ′ = X × {0, . . . , |Q| − 1} and X ′
0 = X0 × q0

denote state and initial set, respectively. The transition func-
tion f ′ : X ′ → 2X

′
is defined as:

f ′((x, i)) =
{
(f(x), j) | qj ∈ δ(qi,L(x))

}
.

We should add that the set f ′((x, i)) is finite for every
x ∈ X , and qi ∈ Q.

For complex learning-enabled cyber-physical systems, it
is impractical and difficult to find a closed form expression
of the transition function. To overcome this challenge, our
goal is to develop approaches to verify a system S against an
ω-regular property when the transition function is unknown.
To do so, we assume that we have access to the next step
evolution of the system based on samples, that is, given a
sample state x̂ ∈ X , we can get the value of f(x̂). Further-
more, we assume that the function f is Lipschitz continuous.

Now we are in the position to state the central problem
studied in this paper.

Problem 1. Given an unknown system S, and an ω-regular
specification, expressed by an NBA A′, verify whether
S |=L A′.

Closure Certificates
A functional approach to formally verify a dynamical sys-
tem against a desired ω-regular property, is through the use
of transition invariants (Podelski and Rybalchenko 2004)
and closure certificates (Murali, Trivedi, and Zamani 2023).
As neural closure certificates employ notions of closure cer-
tificates to provide guarantees against ω-regular properties,
we provide a sketch of the main results as well as the proofs

for self-containment. We refer the interested reader to (Mu-
rali, Trivedi, and Zamani 2023) for detailed proofs. First, we
discuss the use of closure certificates in ensuring safety.
Definition 4 (Closure Certificate for Safety). A bounded
function T : X×X→R is a Closure Certificate for S =
(X ,X0, f) with a set of unsafe states Xu if there exists a
value δ ∈ R>0 such that for all states x, y ∈ X , x0 ∈ X0

and xu ∈ Xu we have:

T (x, f(x)) ≥ 0, (2)
T (f(x), y) ≥ 0 =⇒ T (x, y) ≥ 0, and (3)
T (x0, xu) ≤ −δ. (4)

Theorem 1 (Closure Certificate imply Safety). Consider a
system S = (X ,X0, f). The existence of a function T :
X × X → R satisfying (2)-(4) implies that no trace of the
system reaches Xu.

Intuitively, the first two conditions ensure that all the pairs
of states that are in the transitive closure of the function f
have a nonnegative closure certificate value. The first con-
dition encodes the condition that the successor of a state
x ∈ X is reachable from x and acts as the base case of
induction. The second condition acts as an inductive step,
where we require that if some state y ∈ X may be reachable
from the state f(x) ∈ X , then it is reachable from the state
x ∈ X . Thus, the value of T (x, y) is nonnegative for ev-
ery state y ∈ X that is reachable from state x ∈ X . Lastly,
condition (4) ensures that the value of T (x0, xu) is nega-
tive for every pair of initial state x0 ∈ X0 and unsafe sate
xu ∈ Xu. Hence, no unsafe state is reachable from any ini-
tial state. Similar to how closure certificates can be used to
demonstrate safety, they may also be used to prove a region
is visited finitely often. This can be achieved by changing
the last condition to a decreasing argument as follows.
Definition 5 (Closure Certificate for Persistence). Consider
a system S = (X ,X0, f). A bounded function T : X×X →
R is a Closure Certificate for S with a set of states XV F ⊆
X , which must be visited finitely often, if there exists a value
δ ∈ R>0 such that for all states x, z ∈ X , x0 ∈ X0, and
y, y′ ∈ XV F we have:

T (x, f(x)) ≥ 0, (5)
T (f(x), z) ≥ 0 =⇒ T (x, z) ≥ 0, and (6)(
T (x0, y) ≥ 0

)
∧
(
T (y, y′) ≥ 0

)
=⇒(

T (x0, y
′) ≤ T (x0, y)− δ

)
. (7)

Theorem 2 (Closure Certificate imply Persistence). Con-
sider a system S = (X ,X0, f). The existence of a function
T : X ×X → R satisfying conditions (5) to (7) implies that
the traces of the system visit the set XV F finitely often.

Observe that similar to the case of safety the first two con-
ditions overapproximate the set of states z ∈ X that are
reachable from state x ∈ X . Let us suppose that there exist
pairs of states y, y′ ∈ XV F that may be reachable from an
initial state x0 ∈ X0. Then the last condition requires that the
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value of the closure certificate decreases for the pair (x0, y
′)

compared to the pair (x0, y). As the function T is bounded,
there can only be a finite amount of such decreases before
the value of T (x0, y

′) becomes negative. This ensures that
only a finite number of values y, y′ ∈ XV F can occur in any
given state sequence of the system and, hence, the set XV F is
visited finitely often. We make use of this idea to show how
closure certificates can be used to prove that the accepting
states of the complement of an NBA is visited finitely often.
To do so, let us consider NBA A′ to denote the ω-regular
property of interest and the NBA A its complement.
Definition 6 (Closure Certificate for Büchi Objectives).
Consider a system S = (X ,X0, f) and a desired ω-regular
property specified by an NBA A′ = (Q′,Σ, q′0, δ

′, Q′
acc).

Let the complement of NBA A′ be an NBA A =
(Q,Σ, q0, δ, Qacc). A bounded function T : X × N × X ×
N → R is a closure certificate for S and NBA A if there
exists a value δ ∈ R>0 such that for all states x, y ∈ X , and
states qζ , qℓ ∈ Q, and qξ ∈ δ(qζ ,L(x)) we have:

T (x, ξ, f(x), ζ) ≥ 0, (8)
T (f(x), ζ, y, ℓ) ≥ 0 =⇒ T (x, ξ, y, ℓ) ≥ 0, (9)

and for all states x0 ∈ X0, y, y′ ∈ X , and states qj , qj′ ∈
Qacc, we have:(

T (x0, 0, y, j) ≥ 0
)
∧
(
T (y, j, y′, j′) ≥ 0

)
=⇒(

(T (x0, 0, y
′, j′) ≤ T (x0, 0, y, j)− δ

)
. (10)

Theorem 3 (Closure Certificate imply Büchi Objectives).
Consider a system S and an ω-regular property specified by
the NBA A′. Let NBA A denote the complement of A′. The
existence of a closure certificate T satisfying conditions (8)
to (10) implies that S |=L A′.

The above closure certificate ensures that the accepting
state of the NBA A is visited finitely often by the system S,
thus, the system satisfies the original property of interest.

Neural Closure Certificates
Unfortunately, the search for a suitable closure certificate
in many cases is either computationally expensive (Murali,
Trivedi, and Zamani 2023) or relies on an expert choice of
well-behaved functions (either specified as polynomials or
functions that can be reasoned about in SMT solvers). Cur-
rent methods also require the model of the system to be spec-
ified. In many real-world systems the model is unknown ei-
ther due to security concerns or difficulty in finding a closed-
form expression. While such close-form expressions may be
unavailable, it is often a reasonable assumption to have ac-
cess to samples or a black-box model, that is, for a given
state x̂ ∈ X , one has access to the value of f(x̂). Thus, we
develop a novel data-driven algorithm which relies on sam-
pling to find a closure certificate for a given system to guar-
antee the satisfaction of a desired ω-regular property. To do
so, we learn the closure certificates as neural networks and
we dub our approach neural closure certificates.

We provide an outline for our algorithm in Figure 1. First,
we partition the state space into finitely many cover elements

and pick representative points from these cover elements.
We then train the neural network on these sample points un-
til a stopping criterion (the loss function l′s in equation (18) is
zero and condition (20) holds) is met. If we succeed, then the
trained neural network is a neural closure certificate. Other-
wise, the neural network training continues until we reach
a threshold number of maximum iterations. If this fails, we
change the hyperparameters of the neural network, such as
the architecture of the neural network, or the learning rate,
and train again. We should emphasise that the trained neural
network provides a formal guarantee for the satisfaction of
ω-regular property, under the assumption that the unknown
transition function is Lipschitz continuous. To learn a neural
network to represent a closure certificate, we first reformu-
late the implication in conditions (8)-(10). Our reformula-
tion utilizes bilinearity (Gusev and Likhtarnikov 2006; Mu-
rali, Trivedi, and Zamani 2023) and is defined as follows:
Definition 7 (Encoding Closure Certificates). Consider a
system S = (X ,X0, f), and NBA A′ = (Q′,Σ, q′0δ

′, Q′
acc),

representing an ω-regular property of interest. Let NBA
A = (Q,Σ, q0, δ, Qacc) represent the complement of A′.
A bounded function T : X × N × X × N → R is a
closure certificate for S and NBA A if there exist values
δ, λ1, λ2 ∈ R>0 such that for all states x, y ∈ X , and states
qζ , qℓ ∈ Q, and qξ ∈ δ(qζ ,L(x)), we have:

g1,T (x, ζ, ξ) ≥ 0, (11)
g2,T (x, ζ, ξ, y, ℓ) ≥ 0, (12)

and for all x0 ∈ X0, y, y′ ∈ X , and qj , qj′ ∈ Qacc, we have:

g3,T (x, 0, y, j, y
′, j′) ≥ 0, (13)

where functions g1,T g2,T , and g3,T are parameterized over
T and defined as:

g1,T (x, ζ, ξ)=T (x, ζ, f(x), ξ), (14)
g2,T (x, ζ, y, ℓ)=T (x, ζ, y, ℓ)−T (f(x), ξ, y, ℓ), and (15)

g3,T (x, 0, y, j, y
′, j′)=(1− λ1)T (x, 0, y, j)

−T (x, 0, y′, j′)−δ−λ2T (y, j, y′, j′). (16)

Observe that a function T satisfying conditions (11)
to (13) satisfies conditions (8) to (10). This follows from the
well-known reduction of an implication to a bilinear con-
straint following the S-procedure (Gusev and Likhtarnikov
2006). However, note that this is only sufficient. Namely,
one may still be able to find a closure certificate satisfying
conditions (8) to (10) even if one is unable to find a clo-
sure certificate satisfying conditions (11) to (13). While the
above conditions are only sufficient, we found that they en-
sure the loss is relatively stable while training a candidate
neural closure certificate. This is in contrast to encoding the
conditions as implications where the loss is much less stable
and so finding a neural closure certificate is more difficult.

We now illustrate how one can represent closure certifi-
cates as neural networks. To do so, we define a function ls
with respect to a system S = (X ,X0, f), the NBA A =
(Q,Σ, q0, δ, Qacc) representing the complement of the spec-
ification of interest, and a function T : X ×N×X×N → R.
The function ls is defined over the states x, y, y′ ∈ X ,
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Figure 1: Our proposed algorithm. The property of interest and unknown dynamical system are the inputs. At each iteration,
the algorithm checks if function l′s (18) is zero and if the validity condition holds, if so, training stops. Otherwise, the training
of the neural network continues until the maximum number of iterations is reached.

x0 ∈ X0, qℓ, qζ ∈ Q, qξ ∈ δ(qζ ,L(x)), and qj , qj′ ∈ Qacc

as follows:
ls =RELU(−g1,T (x, ζ, ξ))

+ RELU(−g2,T (x, ζ, ξ, y, ℓ))

+ RELU(−g3,T (x0, q0, y, j, y
′, j′)). (17)

Suppose that the above function is zero for all the values in
its domain, then we can conclude that the function T satis-
fies conditions (11) to (13) and is thus a closure certificate.
We make use of this idea to learn closure certificates us-
ing neural networks. Let us specify the template for function
T as a neural network Fθ : X × N × X × N → R with
parameters θ (the weights and biases). We choose the acti-
vation function of Fθ to be RELU for all its neurons. This
ensures that Fθ is Lipschitz-continuous over its domain. We
then perturb function ls by adding a robustness parameter η.
Consider function l′s, defined over the same domain as ls:

l′s =RELU(−g1,Fθ
(x, ζ, ξ) + η)

+ RELU(−g2,Fθ
(x, ζ, ξ, y, ℓ) + η)

+ RELU(−g3,Fθ
(x0, 0, y, j, y

′, j′) + η). (18)
Observe that if η ≥ 0 and l′s is zero for all values in its do-
main, then function ls is also zero with T = Fθ and, hence,
one obtains that the neural network Fθ is a closure certifi-
cate satisfying conditions (11) to (13). We now show how
one can train the neural network Fθ over only finitely many
data points with the loss function specified as l′s to repre-
sent a closure certificate. To do so, let us partition the state
set X into finitely many cells X1,X2, . . . ,XM , by picking a
discretization parameter ϵ > 0. We then pick sample points
xi ∈ Xi from each of these cells such that:

∥x− xi∥∞ ≤ ϵ

2
, for all x ∈ Xi. (19)

Let us denote the set of all those sampled points by Xd. One
way of partitioning the state set into such cells, is to par-
tition it into hyperrectangles. We then pick the centers of
these hyperrectangles as the representative points. Without
loss of generality, we assume that labeling function L does
not change within these hyperrectangles, meaning all points
inside a hyperrectangle have the same label. That is, for any
hyperrectangle Xi, we have L(xi) = L(x) for all x ∈ Xi,
where xi is the center of Xi. As the function f is Lipschitz
continuous and we make use of the RELU activation func-
tion for the neural network Fθ, we have function g1,Fθ

to
be Lipschitz continuous with respect to the first argument,
function g2,Fθ

to be Lipschitz continuous with respect to the
first, and fourth argument, and function g3,Fθ

to be Lips-
chitz continuous with respect to the first, third, and fifth ar-
guments. Let their Lipschitz constants be L1, L2, and L3,
respectively. Let the maximum of these Lipschitz constants
be denoted by L. We now state the main result of our paper:
Theorem 4 (Correctness of Neural Closure Certificates).
Consider a neural network Fθ where θ represents its pa-
rameters, a system S = (X ,X0, f), and an NBA A′ =
(Q′,Σ, q′0, δ

′, Q′
acc) representing an ω-regular property of

interest. Let NBA A = (Q,Σ, q0, δ, Qacc) denote the com-
plement of A′. Let Xd be the set of sample points with a
discretization parameter ϵ. Assume that the trained neural
network Fθ ensures that the function l′s is zero for all sample
points and:

Lϵ

2
− η ≤ 0. (20)

Then we can conclude that S |=L A′.

Proof. To prove that the system satisfies the desired prop-
erty, we show that conditions (11) to (13) hold in their re-
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spective domains. First, let us consider condition (11) and
states x ∈ X , qζ ∈ Q, and qξ ∈ δ(qζ ,L(x)). Observe that
function l′s is zero for all sample points and, hence, condi-
tion (11) holds for all points in Xd. Now, let x be an out of
sample point, i.e., x /∈ Xd. By our construction, there exists
some sample point xd ∈ Xd such that ∥x− xd∥∞ ≤ ϵ

2 . Fur-
thermore, states x and xd are in the same cell and, hence.
L(xd) = L(x), and δ(qζ ,L(xd)) = δ(qζ ,L(x)) for all
states qζ ∈ Q. We thus obtain the following inequality:

g1,Fθ
(xd, ζ, ξ)− g1,Fθ

(x, ζ, ξ) ≤

L∥(x, ζ, ξ), (xd, ζ, ξ)∥∞ ≤ Lϵ

2
,

for all states qζ ∈ Q, and qξ ∈ δ(qζ ,L(xd)).
Since Lϵ

2 ≤ η due to (20), one has:

g1,Fθ
(xd, ζ, ξ)− g1,Fθ

(x, ζ, ξ) ≤ η, or,
g1,Fθ

(x, ζ, ξ) ≥ g1,Fθ
(xd, ζ, ξ)− η.

Since the function in (18) is zero at the sample point xd, one
get g1,Fθ

(xd, ζ, ξ) ≥ η. By combining these two inequal-
ities, one gets: g1,Fθ

(x, ζ, ξ) ≥ 0. Thus, condition (11) is
satisfied for any out-of-sample point x ∈ X \ Xd and sam-
ple points in Xd. One can use similar reasoning for condi-
tions (12) and (13). Therefore, the neural network Fθ is a
closure certificate for the system S, and the NBA A. This
ensures that the system satisfies the ω-regular property rep-
resented by A′. The proof is now complete.

Observe that one needs to know the Lipschitz constants
of functions g1,Fθ

, g2,Fθ
, and g3,Fθ

to formally verify the
correctness of the neural closure certificate. While the sys-
tem designers may not have a closed-form expression of the
function f , they may be able to accurately determine the
Lipschitz constant of the transition function f . In such cases,
one can use existing techniques (Pauli et al. 2021) to deter-
mine the Lipschitz constant of the trained neural network Fθ

and hence the value of L. Even if the Lipschitz constant of
function f is unknown, one may make use of (Weng et al.
2018, Algorithm I) to estimate an upper bound of it. Finally,
one can leverage regularization terms (Goodfellow, Bengio,
and Courville 2016) to force the neural network to have a
small Lipschitz constant, and hence reduce the value of L.

Case Studies
We demonstrate the effectiveness of neural closure certifi-
cates with relevant case studies, a 1-dimensional Kuramoto
oscillator, a two room temperature, and finally an inverted
pendulum model where the inverted pendulum is controlled
by a neural network controller. In all case studies, we learn
a candidate neural closure certificate to verify an ω-regular
property whose negation is described by the NBA A in Fig-
ure 2. The property of interest combines both safety and per-
sistence, and requires that the traces of a given system do not
visit states with a label c, while also ensuring that they visits
states with a label a only finitely often.

To train a candidate neural closure certificate, we first par-
tition the state set X into finitely many hyperrectangles of

diameter ϵ. We then pick the center of each of these hyper-
rectangles as sample points. We train a candidate neural clo-
sure certificate on these points, while minimizing the loss
l′s as specified in equation (18). If (18) is zero for all sam-
pled points, we estimate the Lipschitz constant of the neu-
ral network, and hence L. We then check if condition (20)
holds, and if so, we guarantee the neural network is indeed
a neural closure certificate and the system satisfies the de-
sired ω-regular property. Moreover, we ensure the neural
network has a small Lipschitz constant by adding regular-
ization terms to the loss function. We repeat the above pro-
cedure till a maximum number of iterations is reached. If we
are unsuccessful, we change the hyperparameters (architec-
ture or the discretization parameter) and train again. If this
fails, our approach is inconclusive.

We employ the same neural network architecture of one
hidden layer with 80 neurons to train the neural closure cer-
tificates for our case studies. The input layer is dependant on
the system, and the output layer is always one-dimensional.
We used the normalized Adam optimizer (Kingma and Ba
2014; Zhang 2018) to train the neural network in our im-
plementations. All our experiments are conducted on a sin-
gle Nvidia RTX 4090 graphics card coupled with an Intel
13700k CPU and 32GB of RAM. Finally, we should empha-
sise that while we state the transition functions in all case
studies, they are purely for collecting samples. We do not
use these functions to encode or verify the conditions, only
to get the value of f(x̂) for each sample points x̂.

Kuramoto Oscillator
The Kuramoto model has been extensively deployed to rep-
resent chemical oscillators, with a wide array of applications
in neuroscience as well as modern power system analysis
(Guo et al. 2021). As the first case study, we consider sys-
tem S = (X ,X0, f) as a one dimensional Kuramoto oscil-
lator where X = [0, 2π] and X0 = [ 4π9 , 5π

9 ]. Furthermore,
the dynamics governing the system are described as:

f(x) = x+ τΩ+ tsK sin(−x)− 0.532x2 + 1.69,

where x ∈ X denotes the phase of the oscillator, ts = 0.1
is the sampling time, ω = 0.01 is the natural frequency, and
K = 0.0006 is the coupling strength.

We verify the above system against an ω-regular speci-
fication whose complement is specified by NBA A in Fig-
ure 2. The labeling function L : X → Σ is defined as:

L(x) =


b if x ∈ [ 11π18 , 12π

18 ]

c if x ∈ [ 7π9 , 8π
9 ]

a otherwise.

To do so we partition the state set X into finitely many hy-
perrectangles of diameter ϵ = 0.02. We then select the cen-
ters of these hyperrectangles as representative sample points
to train our neural network. We train the candidate neural
closure certificate on the points while minimizing the loss l′s
as specified in equation (18). We stop training when equa-
tion (18) is zero for all sampled points. When we stop train-
ing, we find the values of δ = η = 0.01. We then esti-
mate the Lipschitz constant L = 0.2798, and check if con-
dition (20) holds. For the above values, this is indeed true,
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Figure 2: An NBA denoting the complement of the specifi-
cation for our case studies.

and so our candidate certificate is indeed a neural closure
certificate that demonstrates that the system satisfies the de-
sired ω-regular property. The time taken for our training to
converge was 5 hours.

We depict some state sequences of the system starting
from some initial states in Fig 3a. One observes that these
state sequences satisfy the desired ω-regular property.

(a) (b)

Figure 3: Some state sequences showing the evolution of the
phase of the oscillator (Figure 3a) and the temperature of
two rooms (Figure 3b). The areas marked with red and yel-
low indicate the unsafe and finite visit sets, respectively. We
denote the initial set by the dotted black square and line.

Two Room Temperature Model
In our second case study, we consider a two dimensional
room temperature model S = (X ,X0, f) where X =
[9, 19] × [9, 19] ∈ R2 represents the set of temperatures of
both rooms, and X0 = [9, 10] × [9, 10] indicates the initial
set. Moreover, transition function is described as:

f (T1, T2) = A

[
T1

T2

]
+ µTh

[
u (T1)
u (T2)

]
+ θ

[
Te

Te

]
,

where Ti denotes the temperature of the room i ∈ {1, 2}.
The matrix A is:

A :=

[
1− 2α− θ − µu(T1) α

α 1− 2α− θ − µu(T2)

]
,

where α = 0.01, θ = 0.06, and µ = 0.145 denote the
conduction factors, and u(Ti) = 0.59 − 0.011xi represents

the controller for each room. Constants Th = 40C and
Te = −5C indicate the heater and ambient temperatures, re-
spectively. We consider the ω-regular property whose nega-
tion is expressed by an NBA in Figure 2 under the labeling
function L : X → Σ defined as:

L(x) =


b if x ∈ [11, 12]× [11, 12]

c if x ∈ [21, 23]× [21, 23]

a otherwise.

We repeat the above procedure with a discretization parame-
ter ϵ = 0.5, and find the values of δ = η = 0.2. We then esti-
mate the Lipschitz constant of the conditions as L = 0.6814.
This does in fact satisfy condition (20) and so the network
is indeed a neural closure certificate. The time taken to learn
the neural closure certificate was around than 4 hours. We
depict some traces of the system in Figure 3b. One can read-
ily observe that all properties of interest are satisfied.

Inverted Pendulum
As the third case study, we consider the system S =
(X ,X0, f) to be an inverted pendulum where X =
[−π

4 , π
4 ]× [−π

4 , π
4 ] and X0 = [−π

15 ,
π
15 ]× [−π

15 ,
π
15 ]. The tran-

sition function is given by:

f(x1, x2) =

[
x1 + τx2

x2 +
gτ
l sin

(
x1 +

1
ml2u(x1, x2)

) ]
,

where x1 and x2 are the angular position and velocity, re-
spectively. Furthermore, g = 9.8 is the gravitation accelera-
tion, and constants l = 1 and m = 1 represent the length and
the mass of pendulum, and τ = 0.01 is the sampling time.
We represent the control input of the system by u(x1, x2),
represented by a neural network trained for safety based on
(Anand and Zamani 2023, Algorithm I). We consider the ω-
regular property whose complement NBA is shown in Fig-
ure 2 with the following labelling function L : X → Σ:

L(x) =


b if x ∈ [0.1, 0.15]× [0.1, 0.15]

c if x ∈ X \
(
[−π

6 ,
π
6 ]× [−π

6 ,
π
6 ]
)

a otherwise.

We then partitioning the state set into hyperrectangles of
diameter ϵ = 0.05 and train a candidate neural closure cer-
tificate. We find the values of δ = η = 0.2, and then estimate
the value of L = 1.002. The above values satisfy condi-
tion (20) and hence we have a neural closure certificate that
certifies the system satisfies the ω-regular property.

Conclusion
This paper introduces a notion of neural closure certificates
to verify systems against ω-regular properties. We demon-
strated the effectiveness of neural closure certificates using
some case studies. A key direction for future research is
to leverage compositional reasoning to alleviate the sample
complexity inherent to neural closure certificates. Another
key challenge is to leverage neural closure certificates to aid
in the correct-by-construction design of controllers for sys-
tems. A final challenge is to adapt these notions for the ver-
ification and synthesis for continuous time systems.
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