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Abstract

Yeasts are naturally diverse, genetically tractable, and easy to grow such that
researchers can investigate any number of genotypes, environments, or interactions
thereof. However, studies of yeast transcriptomes have been limited by the
processing capabilities of traditional RNA sequencing techniques. Here we optimize
a powerful, high-throughput single-cell RNA sequencing (scRNAseq) platform,
SPLiT-seq (Split Pool Ligation-based Transcriptome sequencing), for yeasts and
apply it to 43,388 cells of multiple species and ploidies. This platform utilizes a
combinatorial barcoding strategy to enable massively parallel RNA sequencing of
hundreds of yeast genotypes or growth conditions at once. This method can be
applied to most species or strains of yeast for a fraction of the cost of traditional
scRNAseq approaches. Thus, our technology permits researchers to leverage “the
awesome power of yeast” by allowing us to survey the transcriptome of hundreds of
strains and environments in a short period of time and with no specialized
equipment. The key to this method is that sequential barcodes are probabilistically
appended to cDNA copies of RNA while the molecules remain trapped inside of each
cell. Thus, the transcriptome of each cell is labeled with a unique combination of
barcodes. Since SPLiT-seq uses the cell membrane as a container for this reaction,
many cells can be processed together without the need to physically isolate them
from one another in separate wells or droplets. Further, the first barcode in the
sequence can be chosen intentionally to identify samples from different environ-
ments or genetic backgrounds, enabling multiplexing of hundreds of unique
perturbations in a single experiment. In addition to greater multiplexing capabilities,
our method also facilitates a deeper investigation of biological heterogeneity, given
its single-cell nature. For example, in the data presented here, we detect
transcriptionally distinct cell states related to cell cycle, ploidy, metabolic strategies,
and so forth, all within clonal yeast populations grown in the same environment.
Hence, our technology has two obvious and impactful applications for yeast
research: the first is the general study of transcriptional phenotypes across many
strains and environments, and the second is investigating cell-to-cell heterogeneity

across the entire transcriptome.
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1 | INTRODUCTION

Yeasts are probably one of the most well-researched lifeforms and
serve as workhorse model organisms for exploring genetics, evolu-
tionary, cell, and systems biology. They are arguably the most
genetically tractable eukaryotes with the easy construction of
comprehensive gene deletion collections (Giaever et al., 2002) and,
more recently, libraries of thousands of mutant strains in a single
genetic editing experiment (Levy et al., 2015; Sharon et al., 2018).
There is also a wealth of well-annotated, natural genetic diversity
available for study (Liti et al., 2009; Peter, 2018). However,
measuring the phenotypic effects of the myriad genetic differences
that separate these strains is challenging because most phenotyping
approaches require each strain to be studied separately. Further, to
comprehensively understand the differences between each geno-
type, each strain should be phenotyped in multiple conditions to
grasp the effects of environmental context. This scale quickly
multiplies into a number of experiments that are hard-to-impossible
to manage.

Single-cell RNA sequencing (scRNAseq), or the profiling of RNA
expression in individual cells, has become a powerful tool that can
enable the high-throughput interrogation of transcriptional pheno-
types across multiple strains and multiple conditions simultaneously
(Dixit et al, 2016; Jackson et al., 2020; Rodriguez-Fraticelli
et al, 2020). While several recent papers have been published
applying scRNAseq to yeast, these papers utilize scRNAseq methods
involving physical isolation of cells and accumulate expense both in
the specialized equipment needed and the number of cells processed
(Kolodziejczyk et al., 2015; Liu & Trapnell, 2016; Urbonaite
et al.,, 2021). Recently developed combinatorial barcoding methods
(SPLiT-seq.; Rosenberg et al., 2018; sciSeq; Cao et al., 2017). solve
these issues by allowing cells from multiple strains or environments
to be phenotyped while pooled, and are thus more easily scalable.
SPLiT-seq also only requires basic benchtop tools. However, to date,
SPLiT-seq has been applied to a variety of organisms (Cao et al., 2017
Kuchina et al., 2021; Rosenberg et al., 2018) but, to our knowledge,
has not been adapted for fungi. Here we present a yeast-optimized
version of SPLiT-seq (Kuchina et al., 2021; Rosenberg et al., 2018).

SPLiT-seq has many advantages as it allows for the sequencing of
transcriptomes of many many cells, giving us more power to profile
many yeast strains and conditions as well as phenotypic heterogene-
ity. For example, our yeast-optimized SPLiT-seq method can process
approximately 400,000 cells for approximately $2000 (a full cost
breakdown is provided in the methods), while droplet-based methods
would cost approximately $2000 per sample, with typically up to
10 K cells per sample and up to eight samples, based on price listings
on the University of Kansas Medical Center, Boston University
Medical Center Sequencing Core, and Cornell Institute of Bio-
technology websites (10X Pricing, 2024; 10X Genomics single-cell
libraries, 2024; Pricing, 2024). Note that this calculation does not
include the large cost of the instrument ($65K-350K), (Pricing &
Quoting - 10x Genomics, 2024) but assumes that researchers are
submitting their samples to sequencing cores or companies. And, as
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Take-away

o We adapted the high-throughput, multiplexable, and
relatively low-cost method for performing single-cell
RNA sequencing, SPLiT-seq, to yeast.

e This adaptation works successfully in multiple ploidies
and species of yeast including haploid and diploid
Saccharomyces cerevisiae and Candida albicans.

e Species identity, ploidy, and environmental conditions
can all be revealed through basic transcriptomics

analyses.

SPLiT-seq implements combinatorics, it can differentiate as many
samples (i.e., genotypes or environmental conditions) as there are
first barcodes (e.g., 96 or 384 per plate per experiment depending on
the type of multi-well plates used). Given the strength of the yeast
system is the ability to study diverse genotypes and environments,
optimizing SPLiT-seq for yeast unlocks the power of this model

organism for studying transcriptomics.

2 | TECHNIQUE OVERVIEW

In opposition to isolation-based scRNAseq methods that typically
utilize microfluidic droplets to contain the RNA from a single cell
(Dohn, 2021; Macosko et al, 2015; McNulty et al., 2021; Zheng
et al., 2017), the SPLiT-seq protocol uses the cell itself as a container
for its own RNA, and all enzymatic reactions are performed in situ
(Figure 1; Kuchina et al., 2021; Rosenberg et al., 2018). Fixed and
permeabilized cells are loaded into a multiwell plate where they
undergo in situ reverse transcription with well-specific barcoded
random hexamer and poly-dT primers. They are then pooled and split
into another 96-well plate where each well contains a short, unique
barcode sequence that anneals to the first barcode via a linker strand.
A ligation reaction covalently bonds these two pieces of DNA at the
single-stranded nick created. The cells are subsequently pooled and
split into a new plate where the process is repeated, adding a third
barcode. Cells that received the same first barcode are unlikely to
receive the same second and third barcodes. This process is completed
n times depending on the population size, as unique barcode
combination possibilities scale exponentially with each additional
round (e.g, 96 barcodes, n split-pools=96" possible barcode
combinations). Each cell is thus uniquely labeled by probabilistically
biasing the outcome such that it takes its own path through the
barcode plates. The basic SPLiT-seq protocol includes one round of
reverse transcription and two rounds of ligation, generating cell
barcodes from combinations of three oligo additions. Finally, the cells
are lysed, and the extracted cDNA is prepped for sequencing
(Figure 1). After sequencing, combinatorial barcodes are used to
computationally resolve through which wells a cell has traveled to get
single-cell data (Kuchina et al., 2021; Rosenberg et al., 2018).
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FIGURE 1 VYeast-optimized SPLiT-seq. (Left panel) Yeast-specific protocols were developed for the fixation, cell wall enzymatic digestion,
and surfactant membrane permeabilization steps. These are the steps that are the most important to adapt to the working organism, as each
creature is going to have different structural morphologies that will need customization, particularly for the permeabilization steps. For example,
yeasts have cell walls, whereas mammalian cells do not. (Right panel) The split-pool reverse transcription and ligation steps are carried out in
multi-well plates similar to the original protocols (Rosenberg et al., 2018; Kuchina et al., 2021). The resulting cNDA libraries are prepared and

submitted for sequencing.

The intrinsic power of SPLiT-seq comes from its easy and
inexpensive capabilities to scale up the number of cells processed.
The number of cells that can be processed is a function of the
number of wells in each barcoding step and the number of ligation
reactions performed (Figure 2a). For example, one round of barcoded
reverse transcription with 96 barcodes and two subsequent ligation
steps, also with 96 barcodes, produces 96° (884,736) possible unique
combinations. Adding one more ligation reaction yields almost 85
million unique combinations with only the trivial cost of adding
another plate of 96 barcode oligos and reagents (Figure 2a; Kuchina
et al., 2021; Rosenberg et al., 2018).

Another advantage of SPLIT-seq is the ability to multiplex many
samples (i.e., genotypes or growth conditions) in the same run. Since
each sample can be loaded intentionally into a specified well of a 96-
or 384-well plate during the reverse transcription step, the first
barcode in the combinatorial sequence can be used as a conditional
signifier. This allows for the processing of as many unique samples as
there are wells in the first step (Figure 2b). So, for example, if a 96-
well scheme is used, 96 samples representing 96 genotypes or 96
environments can be processed in that run. In theory, using
expressible barcodes (Figure 2c; Jackson et al., 2020) to label unique

genotypes could increase the number of samples even further,
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FIGURE 2 The high-throughput power of the SPLiT-seq method. (a) The number of available unique barcode combinations scales
exponentially with addition of relatively few new barcodes (increments of 96 or 384). A similar scaling analysis can be found in the original
SPLiT-seq publication (Rosenberg et al., 2018) (b) The number of samples that can be processed in a single run is equal to the number of
barcoded primers in the reverse transcription step, which provides the first barcode in the combinatorial sequence. For example, 96 or 384
samples could be processed with standard multiwell plates. (c) Expressible barcodes, or expressed engineered sequences that identify genotype,
can be combined with the SPLiT-seq method to provide large genotype and environment combinatorial power.

enabling massive GxE screens. Assuming each strain's transcriptome
requires 500 cells per experiment to achieve adequate coverage, a
single standard SPLiT-seq run (3 rounds of 96 barcodes) could
process almost 200,000 cells. This is enough to cover as many as
1800 genotypes if expressible barcodes are used or 1800 different
combinations of genotype and environment. As each SPLiT-seq run
takes less than a week to perform, hundreds of conditions and
thousands of strains could easily be sampled in only a few months.
Additionally, as cells are fixed right after sampling, early samples can
be stored in the freezer until all experiments are finished and ready
for scRNAseq preparations.

In sum, SPLIT-seq is a high-throughput method for single-cell
RNA sequencing that lends itself to the yeast system because
there are so many engineered and natural yeast genotypes to
explore, and so many environments in which yeast can be grown
in the laboratory (Costanzo et al., 2016; Gasch et al., 2000;
Kinsler et al., 2020). Here we optimize the method for the unique
physiology of yeasts.

3 | RESULTS

3.1 | Chemical fixation, beta-glucan specific
enzymes, and nonionic detergents successfully
prepare yeast cells for in situ SPLiT-seq reactions

Yeasts are unique in that they possess a fungal cell wall. This wall
must be permeabilized just enough to allow SPLiT-seq reagents to
enter cells but not enough such that the cell can no longer act as a
container for the reaction. Optimizing fixation and permeabilization
methods in series is challenging as testing them one at a time would
require going through the entire approximately $2000 protocol and
sequencing every test. This is necessary because there are no good
intermediate steps in the protocol to test library quality. Realistically,
one must take the cells through the entire SPLiT-seq protocol, library
preparation, and sequencing before one can discern the final data
quality. cDNA gel traces or library concentrations are not a good
indicator of barcoding success or of the number of reads or genes
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that will be recovered per cell. Fortunately, the multiplexable nature nonionic detergents Tween-20 or Triton X-100 to permeabilize the
of the SPLiT-seq method allowed us to test many cell fixation and cell membrane in both Saccharomyces cerevisiae and Candida albicans
permeabilization treatments in parallel, greatly reducing the time and (Figure 3a). After identifying the best-performing initial condition by
cost of exploring the parameter space. choosing the one that yielded the greatest median UMlIs/cell

Fluorescent in situ hybridization cell preparation methods are an (Figure 3a; red), we performed a second experiment (Figure 3,
ideal place to start when adapting SPLiT-seq to any new organism, as Experiment 2). In this experiment, we tested an additional 18
FISH also relies on efficiently diffusing reagents into cells. Based on a conditions representing more subtle perturbations of the same
method adapting FISH for flow-cytometry in yeast (Bertin et al., 1990), variables but found no further improvement (data not shown). The
we initially tested (Figure 3, Experiment 1) 16 combinations of optimal protocol we have so far established by selecting the
ethanol and/or formaldehyde fixation with an enzyme mixture, conditions yielding the greatest median UMls/cell (Figure 3a; red),
zymolyase, which degrades the beta-glucans in the cell wall, and which works in multiple yeast species (Figure 3), is the one described

experiment B2 1 E3 2 B8 3
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FIGURE 3 Yeast-optimized SPLiT-seq produces quality scRNAseq data. (a) Initial 16 optimization conditions from Experiment 1 comprising
combinations of ethanol and/or formaldehyde fixations and zymolyase and/or detergent permeabilizations. While there were no strong
differences between any of the conditions, we moved forward with the combination with the highest median unique transcripts per cell
(highlighted in red), which is described in the methods. (b) Total unique transcripts detected per cell (including rRNAs) for multiple sublibraries
across three experiments. Each point represents a single cell and boxes represent 1st-3rd quartiles. Each sublibrary contains 10,133, 5465, 13,
299, 9177, 2960, 1705, and 703 cells, respectively. Median transcripts per cell range from 1500 to 9500 per cell. When fewer cells are profiled
(rightmost sublibraries), the sequencing depth per cell and the number of unique transcripts per cell increase. We use unique molecular
identifiers to distinguish unique transcripts from duplicates created during PCR. (c) Total genes per cell detected in C. albicans, and diploid and
haploid S. cerevisiae. Box represents 1st-3rd quartiles. (d) Total mMRNAs per cell detected in diploid and haploid S. cerevisiae. Box represents 1st-
3rd quartiles. (€) UMAP visual clustering of S. cerevisiae and C. albicans data. Each point represents a single barcode or cell, and its position
relative to other points correlates with the similarity of their transcriptomes. The points are colored by their mapped or “true” identity. We see a
distinct separation of the two species. (f) Percentages of barcodes that classify as YFP or mCherry expressing cells, S. cerevisiae or C. albicans, or
multiplets (barcodes that have any reported expression of the opposing fluorescent reporter, or greater than 15% of the opposing species'
genome).
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below in the methods section. Briefly, it includes a 4% formaldehyde
overnight fixation and a combination of 0.005 U/uL zymolyase at
37°C for 15min and 0.4% Triton X-100 at 4°C for 3 min
permeabilization steps. The additional 15 conditions tested in
Figure 3a are also listed in the methods.

3.2 | Yeast-optimized SPLiT-seq detects thousands
of unique RNAs per cell for 43,388 cells of two yeast
ploidies and species

After modifying the protocol to work with yeasts, SPLiT-seq detects a
median of ~1000 to 10,000 unique RNAs per cell depending on
sequencing depth (Figure 3b). Higher sequencing coverage results in
a deeper sampling of the transcriptome as can be seen in Figure 3b
which shows median unique RNAs per cell for technical replicates of
three experiments of different sequencing depths. In experiment 3,
the barcoded cells were evenly divided into 10 sublibraries. The two
sequenced sublibraries returned ~5,500 and 10,000 barcoded cells
that passed computational filtering. Given we started the experiment
with between 200,000 and 300,000 cells, this estimates a capturing
efficiency between 25% and 50%.

SPLiT-seq is effective in both haploid and diploid cells of S.
cerevisiae, and also works with C. albicans. We recover, on average,
between 100 and 600 genes per cell (Figure 3c). Of the detected
mRNAs, we see an average of ~120-700 mRNAs per cell depending
on the experiment and sequencing depth. Across all cells, we see the
range of detected mRNAs being between ~10 to 3600 per cell
(Figure 3d). Given that there are approximately 30,000 mRNA
molecules per cell for Saccharomyces cereivisiae, (Miura, 2008) and
assuming haploid and diploid S. cerevisiae and C. albicans have
transcriptome sizes in the same order of magnitude, this range
represents 0.2-12% of the active transcriptome in a yeast cell. This
level of single-cell transcriptome recovery is similar to that obtained
using droplet-based methods in yeast, (Jackson et al., 2020; Jariani
et al., 2020; Nadal-Ribelles et al., 2019; Urbonaite et al., 2021) and
can likely be further optimized (see Discussion). On average, the
transcript proportions we recover are 93.7% rRNA, 0.005% tRNA,
0.04% ncRNA, and 5.75% mRNA. The low rate of mRNA recovery is
representative of the true fraction of a yeast cell's RNA belonging to
mRNA (5%) (Warner, 1999). We recover the expected ratio of rRNA
to mRNA because we use both polydT and random hexamer primers
in the reverse transcription step. The addition of random hexamers
allows for better coverage of the 5’ ends of mRNA, but also increases
rRNA recovery. Users who prefer to study mRNA should lower the
percentage of rRNA recovered by decreasing the ratio of random
hexamer to polydT primers, or by removing rRNA with commercially
available kits post cell lysis, following previous work (Kuchina
et al., 2021; O'Neil et al., 2013). Alternatively, a relatively low mRNA
recovery rate is not necessarily a problem, as algorithms leverage the
fact that the transcripts recovered differ for every cell, so they can
construct a fuller transcriptome by clustering together many single-

cell transcriptomes (Waltman & van Eck, 2013). Indeed, similar
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transcriptome recovery was adequate to illustrate known biological
processes in bacteria, as well as discover new behaviors (Kuchina
et al.,, 2021).

3.3 | Yeast-optimized SPLiT-seq is truly single-
celled and experiences a negligible percentage of
barcode collisions

A common concern in single-cell RNA sequencing experiments is
barcode collisions or one barcode mapping to multiple cells. In
physical isolation methods, this occurs when more than one cell is
loaded into the same container. In the SPLiT-seq method, multiple
cells can acquire the same barcode by physically aggregating or
through cells traveling the same path through the barcode plates by
chance. We performed two experiments to get an empirical estimate
of the percentage of barcodes that map to multiple cells or multiplets.
We first processed two disparate species, diploid S. cerevisiae and C.
albicans, mixed together in the same SPLiT-seq run. We could then
calculate the percentage of barcode collisions by calculating the
number of barcodes that have a large percentage ( > 15%) of uniquely
mapping transcripts that align to both species' genomes. We removed
rRNA reads before this calculation as there are considerable amounts
of homology between these species in those genes and keeping them
in falsely increases the number of calculated barcode collisions.
Since many engineered yeast strains are haploid S. cerevisiae, we
also wanted to ensure that these cells did not have any odd
properties that caused them to stick together. We looked at
stickiness between haploid S. cerevisiae by using two haploid strains
each expressing a different fluorescent protein. A total of 2209 cells
were detected that expressed at least one of these markers. We
looked for collisions by counting the number of cells (barcodes) that
report expression of both fluorescent markers. Figure 3f shows that
in both experiments, the percentage of detected barcode collisions is
well under five percent. We also see good species resolution in
UMAP-based clustering analyses (Figure 3e). This suggests that our

method is truly single celled.

3.4 | Yeast-optimized SPLiT-seq identifies
heterogeneous transcriptional states in clonal
populations grown in similar conditions

A good test of any single-celled method is whether it captures
enough of the diversity of the transcriptome to resolve transcription-
ally distinct states. The cells in two of our experiments (“experiments
1 and 2" from Figure 3) were grown in rich media and sampled in
early mid-log phase. Even in this carbon-rich environment, we see
considerable diversity in gene expression (Figure 4a). We performed
the Louvain clustering algorithm on these cells, and the cells from
Experiment 3 sampled at mid-log to group cells based on the gene
expression data we collected and used UMAP to visualize the cell
clusters. For each of these clusters, we performed a differential gene
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FIGURE 4 Yeast-optimized SPLiT-seq can discern biologically relevant cell states. (a) UMAP visual clustering of combined haploid and

diploid S. cerevisiae cells from Experiments 1 and 2. The number-labeled, colored clusters represent clusters detected using a standard Louvain
algorithm in Seurat (Kinsler et al., 2020). (b) UMAP visual clustering of S. cerevisiae cells from the first and last timepoints of the Experiment 3
growth curve corresponding to 17 and 23 h after inoculation. (c) UMAP visual clustering of haploid by 4741 and diploid s288c cells from the 17-
h time point of Experiment 3. (d) UMAP visual clustering of the 23-h time point of Experiment 3, identifying a subset of cells expressing the TYA

retrotransposon.

expression analysis to investigate what biological processes were
distinguishing cells based on their gene ontology as assessed using
Metascape and the Saccharomyces Genome Database (Cherry
et al, 2012; Zhou et al., 2019). For example, cluster 2 appears to
be cells that have very recently divided, as the top differentially
expressed genes are related to septum digestion after cytokinesis. In
this same cluster, we also observe several daughter-specific
upregulated genes such as DSE1, DSE2, and DSE4, thus, this cluster
may specifically tease out the newly divided daughter cells. Cells in
other clusters have different unique transcriptional profiles. For
example, cells in cluster 4 appear to be in late G1 or early S phase as
we see upregulated expression of the G1 cyclin CLN2, genes involved
in the formation of the bud neck such as HSL1 and GIN4, and genes
related to DNA replication such as POL1 and RNR1. A full list of each
cluster's statistically differentially expressed genes after multiple
comparison correction is available in Supporting Information S1:

Table 1. The observation that our single-cell transcriptomes cluster
by cell-cycle state, combined with previous work demonstrating that
single-cell RNA-seq often clusters cells by cell-cycle state, provides
strong evidence that our yeast-optimized SPLiT-seq method is
effective at capturing single-cell transcriptomes.

To provide further validation that our protocol adapting SPLIiT-
seq to yeasts captures biologically relevant details in single cells, we
also endeavored to discern known information about cells via their
transcriptomes. Cells in one of our experiments (“experiment 3” from
Figure 3) consist of both haploid and diploid cells from samples across
a standard growth curve in synthetic complete media. Cells sampled
early have access to more glucose relative to those sampled later
which are subsequently also exposed to more metabolic waste. Thus,
there are likely differences in the transcriptomes of these popula-
tions. Previous work using SPLiT-seq demonstrates that cells cluster

based on the time and cell density they were sampled across a
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standard growth curve (Kuchina et al., 2021). Consistent with this
expectation, using UMAP visualization, we can see separation of our
yeast cells sampled from the earliest (17 h after inoculation) and
latest timepoints (23 h after inoculation) in our growth curve in
Figure 4b. Within the 17-h time point, we can also distinguish
between the haploid and diploid cells (Figure 4c). This would not be
possible unless our protocol optimizing SPLiT-seq for yeasts
preserves the integrity of the transcriptomes sampled and the
single-cell nature of the method.

Finally, we are able to discern something previously unknown
about our yeast cells. Cells from the later timepoint in Experiment 3
(23 h after inoculation) contain a distinct group of cells that express
the TYA retrotransposon (Figure 4d) with significantly upregulated
YAROO9C, YARO010C, YBRO12W-A&B, YDRO50C, YDR261C-D,
YDR365W-A&B, YER138C, YJRO29W, YKLO96W-A, YOL103W-
A&B, YOR142W-B, and YPR158C-D genes. Understanding the
significance of this retrotransposon-expressing population is outside
the scope of this work. Instead, we highlight this finding, and the
others listed in this section, to validate our protocol for optimizing
SPLiT-seq for the unique biology of yeasts. The clustering approaches
performed in Figure 4 all provide evidence that our method is
sampling the transcriptomes of individual cells with enough depth to
cluster cells based on their transcriptionally distinct states.

4 | DISCUSSION

We demonstrate that SPLiT-seq can be used to investigate the
transcriptomes of two important yeast species: S. cerevisiae and C.
albicans. Though other methods exist for performing single-cell RNA
sequencing in yeasts (Dohn, 2021; Jariani et al., 2020; Nadal-Ribelles
et al., 2019; Urbonaite et al., 2021; Zheng et al., 2017) SPLiT-seq has
several advantages. One major advantage is that SPLiT-seq enables
multiplexing hundreds of genotypes and environments in a single
experiment. It is thus better able to leverage the “awesome power of
yeast genetics” to explore how genetic changes affect the tran-
scriptome (Macreadie & Dhakal, 2022; Scannell et al., 2011). Another
advantage of SPLiT-seq is that it does not require any expensive or
specialized equipment to perform. Thus, SPLiT-seq brings the
possibility of transcriptomics to a wider group of yeast researchers.
Even researchers who have access to the specialized equipment
necessary for droplet-based single-cell RNA sequencing may benefit
from the yeast-optimized SPLiT-seq protocol described here. The in
situ barcoding reactions that comprise SPLiT-seq have recently been
leveraged to extend the scalability of droplet based RNA sequencing
methods (Ma et al., 2023). Thus, we hope the yeast-optimized
approach for SPLiT-seq described in this manuscript will be broadly
useful to the community.

This method should be fairly straightforward to adapt for
researchers studying yeasts other than those studied here, such as
S. pombe, or flocculating natural isolates of S. cerevisiae. Zymolyase is
not very effective against the S. pombe cell wall, but industrial

enzymes can be used to permeabilize these cells (Molines, 2022).
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Additionally, flocculation is a common problem in beer and wine
fermentation, and techniques exist to gently break the noncovalent
bonds between cells immediately before fixation (Stahl et al., 1983;
Verstrepen et al., 2003).

The number of mRNAs we recover using our yeast-optimized
SPLiT-seq method (120-700 on average per cell), and the number of
genes (100-600 on average per cell) is in the same ballpark but less
than reported recovery for yeast experiments performed with the
10X genomics microfluidics-based platform (~2000 mRNAs per cell
and ~700 genes per cell; Jackson et al., 2020). Nonetheless, there are
several reasons our method is likely to be useful to the yeast
community. First, an average of hundreds of unique reads per cell is
enough for many applications. For example, we recover enough data
to delineate biologically relevant cell states (Figure 4). Additionally,
published studies detect less than 5% of each cell's transcriptome,
but by clustering similar cells, can comprehensively map different
transcriptional states (Kuchina et al., 2021) Second, we observe up to
thousands of mRNAs in some cells, suggesting further optimization
may yet yield further improvements. For example, in one experiment,
where we used a reverse transcriptase with H minus activity and
sequenced more deeply (Experiment 1 in Figure 3), we seemed to
improve our reads per cell to approximately 10,000 (including rRNA)
and our genes per cell to approximately 500 (Figure 3b,c). One
obvious area for further optimization is changing the ratio of polydT
to random hexamer primers, which would likely increase the yield of
mRNA over rRNA (Kuchina et al., 2021). This might also be achieved
by using a commercially available reagent to destroy rRNA before
sequencing (O'Neil et al., 2013). And finally, we believe the highly
scalable and massively multiplexable nature of the technique makes it

an important addition to the yeast community.

5 | METHODS
5.1 | Experimental methods
5.1.1 | Yeast cell culture

Diploid s288c, genetically naive haploid BY4741, MATa ura3A0
his3A1 met17A0 P ACT1-GAL3::SpHIS5 gall1Agal10A::LEU2 leu2AO0::P
PGK1 -mCherry-KanMX6 ybr209wA::B103-HphMX6, and MATa
ura3A0 his3A1 met17A0P ACT1-GAL3::SpHIS5 gall1Agal10A:LEU2
leu2A0::P GAL1-YFP-KanMX6 ybr209wA::BC3-HphMX6, and ATCC
3147 C. albicans strains were used. Cells were streaked on YP plus 2%
dextrose agar plates from frozen —-80C glycerol stocks and grown at
30 C for 48 h. In Experiments 1 and 2, single colonies of s288c and
ATCC 3147 were picked into YP plus 2% dextrose liquid media (YPD).
The YFP and mCherry-engineered cells were picked into Synthetic
Complete minus glucose (Sunrise) plus 2.5% sucrose, 1.25% raffinose,
and 0.625% galactose media to induce YFP expression in Experiment
2. In Experiment 3, diploid s288c cells and haploid BY4741 cells were
picked into Synthetic Complete (Sunrise) plus 2% glucose media
(SCD). All cultures were grown with shaking at 30 C for 24 h. For
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Experiments 1 and 2, cells were then transferred into fresh YPD
media at a 1:250 dilution and grown until cultures reached
approximately 2-4x 107 cells/mL, or early mid-log phase. For
Experiment 3, approximately 15,000 total cells were transferred into
50mL of fresh SCD and sampled at 17, 19, 21, and 23 h after
inoculation, which correspond to approximately 0.9 x 107,
2.7x10” x 107, and 8.6 x 107 cells/mL.

5.1.2 | Fixation and permeabilization

At the time of sampling, 3 mL of yeast cultures were immediately
spun down in a room-temperature centrifuge at 3000g for 5 min. The
media supernatant was removed, and the cell pellet was resuspended
in 2mL of cold 4% formaldehyde in molecular-grade phosphate-
buffered saline (PBS). The cells were then fixed cold in a 4°C
refrigerator for approximately 18 h. After fixation, the samples were
spun down in a 4°C centrifuge at 3000g for 5 min. The formaldehyde
supernatant was removed, and the pellet was resuspended in 1 mL
cold molecular grade 100mM Tris HClI pH 7 plus 0.1U/uL
SUPERase-In RNase inhibitor (Invitrogen) to quench the formalde-
hyde. Cells were then centrifuged, resuspended in 250uL of a
zymolyase enzymatic solution of 0.1 M Na,EDTA, 1 M sorbitol, and
0.005 U/puL zymolyase (Zymo Research) (pH ~7.5), and incubated at
37°C for 15 min. At the end of the incubation, 1 mL of cold PBS plus
0.1U/pL SUPERase-In RNase inhibitor and 0.1 U/uL Enzymatics
RNase inhibitor (Enzymatics) was immediately added, and the cells
were centrifuged at 4°C, 3000g for 5min. The cells were then
resuspended in 250 uL of cold 0.4% Triton X-100 in PBS plus RNase
inhibitors and incubated on ice for 3 min. Again, 1 mL of cold PBS plus
RNase inhibitors was added at the end of the 3 min and the cells were
centrifuged. They were then resuspended in 500 uL of cold PBS plus
RNase inhibitors, vortexed on high for approximately 30 s, and lightly
filtered through a 40 um pluriStrainer (pluriSelect). The cells were
then counted using a Beckman Coulter Cell Counter and diluted to 1
million cells/mL into fresh cold PBS plus RNase inhibitors.

The additional conditions tried (Figure 3a, minus s12 described
above) are outlined below:

s1: 2% formaldehyde overnight fixation with 0.01 U/uL zymo-
lyase (37°C for 15 min).

s2: 2% formaldehyde overnight fixation with 0.01 U/uL zymo-
lyase (37°C for 15 min) and 0.4% Triton X-100 (4°C for 3 min).

s3: 2% formaldehyde overnight fixation with 0.005U/plL
zymolyase (37°C for 15 min).

s4: 2% formaldehyde overnight fixation with 0.005U/pL
zymolyase (37°C for 15 min) and 0.4% Triton X-100 (4°C for 3 min).

s5: 2% formaldehyde for 15 min fixation stored in 70% EtOH
at -20°C overnight with 0.01 U/uL zymolyase (37°C for 15 min).

s6: 2% formaldehyde for 15 min fixation stored in 70% EtOH
at -20°C with 0.01 U/uL zymolyase (37°C for 15 min) and 0.4%
Triton X-100 (4°C for 3 min).

s7: 2% formaldehyde for 15 min fixation stored in 70% EtOH
at —20°C overnight with 0.005 U/uL zymolyase (37°C for 15 min).

s8: 2% formaldehyde for 15 min fixation stored in 70% EtOH
at -20°C with 0.005 U/pL zymolyase (37°C for 15 min) and 0.4%
Triton X-100 (4°C for 3 min),

s9: 4% formaldehyde overnight fixation with 0.01 U/uL zymo-
lyase (37°C for 15 min).

s10: 4% formaldehyde overnight fixation with 0.01U/pL
zymolyase (37°C for 15 min) and 0.4% Triton X-100 (4°C for 3 min).

s11: 4% formaldehyde overnight fixation with 0.005U/uL
zymolyase (37°C for 15 min).

s13: 2% formaldehyde for 15 min fixation stored in 70% EtOH
at -20°C overnight with 0.01 U/uL zymolyase (37°C for 15 min).

s14: 4% formaldehyde for 15 min fixation stored in 70% EtOH
at -20°C with 0.01U/uL zymolyase (37°C for 15 min) and 0.4%
Triton X-100 (4°C for 3 min).

s15: 4% formaldehyde for 15 min fixation stored in 70% EtOH
at -20°C overnight with 0.005 U/uL zymolyase (37°C for 15 min).

s16: 4% formaldehyde for 15 min fixation stored in 70% EtOH
at -20°C with 0.005U/uL zymolyase (37°C for 15 min) and 0.4%
Triton X-100 (4°C for 3 min).

In situ reverse transcription and ligation, post lysis processing, and
library preparation were performed as described in previous work
(Kuchina et al., 2021; Rosenberg et al., 2018) and are described in
detail below.

5.1.3 | Reverse transcription

Reverse transcription (in situ) was performed in 25 uL reactions in 48
wells of a 100 uL 96-well plate with each well containing well-
specific, barcoded primers. For each reaction, the final concentration
of cells and reagents equated to 3 UM barcoded random hexamer
primers (Supporting Information S2: Table 2), 3 uM barcoded 15-dT
primers (Supporting Information S2: Tables 2), 0.25 U/uL Enzymatics
RNase inhibitor, 0.25U/uL SUPERase-In RNase inhibitor, 1 mM
dNTPs (per base), 20 U/uL Maxima H minus Reverse Transcriptase
(ThermoFisher), 1X RT buffer (ThermoFisher), 7.5% PEG6000
(formerly PEG8000), and 200,000 cells/mL (5uL of the final
preparation of 1 million cells/mL). These reactions were covered
with an adhesive seal and placed in a standard thermocycler, and set
to 23°C for 10 min followed by 50°C for 50 min. At the end of the
thermal incubation, all 48 reactions were pooled with 9.6 uL of 10%
Triton-X100 and centrifuged at 4°C, 3000g for 5min and the
supernatant was carefully removed from the cell pellet. It was then
resuspended in 2 mL of cold PBS plus RNase inhibitors and vortexed
on high for approximately 30s. The 2 mL of cells were then filtered

through a 15 uM pluriStrainer (pluriSelect).

5.1.4 | Ligations

Ligations (in situ) were performed in 50 and 60 uL reactions in a
100 pL 96-well plate with each well containing well-specific,
barcoded ligation oligos. Before the experimental protocol, the round
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2 and round 3 ligation plates were prepared by annealing the well-
specific oligos with overhanging linker strands that guide the barcode
oligos to the 5’ end of the singly barcoded cDNA (Supporting
Information S2: Table 2, BC_0335 and BC_0284). In brief, for round
2, 12 uM barcode oligos and 11 uM linking strands per well were
heated to 95C in a 96-well plate and cooled to 20°C at a rate of
0.1°C/s. The same was performed for round 3, except 14 uM
barcode oligos and 13 uM linking strands were used. 10 uL of these
prepared annealed barcode plates were transferred to new 96-well
plates for each experiment. A ligation mix was prepared containing
the 2 mL of cells, and final concentrations of 8 U/uL T4 DNA Ligase
(New England Biosciences), 1X Ligase Buffer (NEB), 0.32 U/uL
Enzymatics RNase inhibitor, 0.32 U/uL SUPERase-In RNase inhibitor,
and 7.5% PEG6000 in a total of 4.04mL. 40 uL of this ligation
mixture was added to the prepared round 2 barcode plate, covered
with an adhesive seal, and incubated at 37°C for 30 min. A blocking
strand solution was then prepared which preferentially binds to the
linker strand, displacing it, and preventing future ligation reactions
with the round two barcode oligos (Supporting Information S2:
Table 2 BC_0340). This solution contained 26.4 uM blocking strand
(BC_0340), 2.5X Ligase Buffer, and molecular grade water in
1200 pL. At the end of the round 2 ligation incubation, 10 uL of
this blocking solution is added to each well, the plate was covered
with an adhesive seal and then incubated at 37°C for a further
30 min. The ligation reactions were then pooled into a basin through
a 40 uM pluriStrainer. An additional 20 uL of 2M U/uL T4 DNA
Ligase was also added to the basin and thoroughly mixed. 50 pL of
this ligation mixture was then added to the round 3 barcode plate,
covered with an adhesive seal, and incubated at 37°C for 30 min. A
blocking solution of 11.5 uM BC_0066 (Supporting Information S2:
Table 2), 125 mM EDTA, and molecular grade water in a total of
3200 uL was prepared, and 20 uL was added to each well of the
round 3 plate at the end of the incubation. The EDTA immediately
terminated the ligation reaction, so no further incubation was
needed.

5.1.5 | Sublibrary generation and cell lysis

The final ligation mixture was pooled into a new basin and filtered
through a 40 uM pluriStrainer into two 5 mL centrifuge tubes with
70 uL of 10% Triton-X100. The mixtures were then centrifuged at
4°C, 3000 G for 5 min. The supernatants of each tube were carefully
aspirated, leaving a small volume in each since a pellet was not always
visible. The pellets were then washed with a solution of 4 mL PBS,
40 uL 10% Triton-X100, and 10 pL of SUPERase-In RNase inhibitor,
and consolidated into one 5mL tube. The washed cell mixture was
then centrifuged at 4C, 3000G for 5min, and the supernatant
carefully aspirated from the cell pellet. The pellet was then
resuspended in a final 50 uL of PBS plus RNase inhibitors, and a
small aliquot was counted using a Beckman Coulter Culture Counter.
An appropriate volume of the cell suspension and PBS plus RNase
inhibitors were mixed to make sublibraries ranging from
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approximately 5000-20,000 cells in 50 uL. These sublibraries were
either then stored at —80°C or moved directly into the lysis step.

To lyse the cells, 60 uL of a solution of 20 mM Tris-HCI pH 8.0,
400mM NaCl, 100mM EDTA pH 8.0, 4.4% sodium dodecyl
sulfateSDS, and 0.02 mg/mL proteinase K was added to each 50 pL
sublibrary and incubated with shaking at 55°C for 2 h.

5.1.6 | Bead-bound template switch reaction

After lysis, 5 uL of either 100 uM PMSF or AEBSF was added to each
sublibrary and incubated for 10min at room temperature to
inactivate the proteinase K. For each sublibrary, 44 puL of Dynabeads
MyOne Streptavidin C1 (Invitrogen) were washed three times with
800 pL of a 1X wash solution of 5mM Tris-HCI pH 8.0, 1 M NacCl,
500 uM EDTA, 0.05% Tween-20, and 0.1 U/uL SUPERase-In RNase
inhibitor using a magnetic 1.5 mL tube rack. The beads were then
resuspended in 100 pL per sample of a 2X wash solution containing
10 mM Tris-HCI pH 8.0, 2M NaCl, 1mM EDTA, and 0.2U/pL
SUPERase-In RNase inhibitor. 100 pL of this bead solution was added
to each lysed sublibrary and agitated at room temperature for 1 h to
bind the biotinylated, barcoded cDNA.

The samples were then placed in the magnetic rack and
resuspended in 250 uL of the 1X wash solution and agitated at
room temperature for 5 min, and repeated. After the two 1X wash
steps, the samples were resuspended in 250 uL of 10 mM Tris-HCI
pH 8.0, 0.1% Tween-20, and 0.1 U/uL SUPERase In RNase inhibitor.
Following these three wash steps, the samples were rinsed with
250 pL of molecular-grade water while the beads were still bound to
the magnetic rack.

For each sublibrary, the beads were then resuspended in 200 uL
of a template switch reaction mix containing 10 U/uL Maxima H
minus Reverse Transcriptase, 1X RT buffer, 1 mM dNTPs (per base),
0.5 U/pL SUPERase-In RNase inhibitor, 2.5 uM template switch oligo
BC_0127 (Supporting Information S2: Tables 2), and 7.5% PEG6000.
The samples were then agitated at room temperature for 30 min and
then 42°C for 90 min. The tubes were then placed in a magnetic rack,
and the supernatant removed. At this point, the beads could be rinsed
with molecular-grade water and moved on to subsequent steps or
resuspended in 250 pL of the Tris-HCL Tween-20 buffer and stored
at 4°C overnight.

5.1.7 | cDNA amplification

If the samples were stored overnight in the Tris-Tween buffer, the
tubes were placed in a magnetic rack and the beads were rinsed with
250 pL of molecular-grade water. The bead-bound cDNA were then
amplified in 220 uL reactions with 2X high fidelity polymerase mix
(KAPA HiFi, Q5) and 0.4uM BC_0062 and BC_0108 primers
(Supporting Information S2: Table 2) for 3min at 95°C, and then
five cycles of 98°C for 20's, 65°C for 45 s, and 72 for 3 min. The bead
PCR product was then placed against a magnetic rack and the
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supernatant was transferred to new optical-grade PCR tubes with
gPCR dye (EvaGreen 20X). The samples were then amplified on a
gPCR machine for a further 10-20 cycles until the amplification
curves exited log-linear phase. The PCR products were then cleaned
using a 0.8X SPRI size selection and eluted in 20 uL of molecular-
grade water. 5 uL were then run on a 1% agarose gel at 120V for
15 min. A properly amplified cDNA library should appear as a smear
starting at approximately 5-7 kB and ending at approximately 300 bp
on a gel or bioanalyzer. 1 uL was also used to test the concentration
on a qubit. A successful library will need a concentration of at least
1.5 ng/uL to have enough starting material for library preparation as
described in these methods.

5.1.8 | WSGS fragmentation and ligation library
preparation

For each sublibrary, between 20 and 110 ng of amplified and cleaned
cDNA products were combined with an appropriate amount of
molecular-grade water to make 35 pL. This was then added to 5 uL of
WGS Fragmentation buffer (Enzymatics) and 10uL of WGS
Fragmentation Enzyme mix (Enzymatics) on ice and pipette mixed.
The fragmentation mix was placed into a chilled 4 C thermocycler and
then incubated at 32°C for 10 min and 65°C for 30 min. The samples
were then transferred back on ice, cleaned with a double-sided SPRI
0.6X-0.8X size selection, and then eluted in 50.5 uL of molecular
grade water.

An adapter ligation reaction mix was made containing 17.5 pL of
molecular grade water, 20 uL of WGS Ligation buffer (Enzymatics),
10 uL of WGS DNA Ligase (Enzymatics), and 2.5 uL of annealed
adapter mix with BC_0243 and BC_0244 at 50 uM each (Supporting
Information S2: Table 2) per sublibrary. 50 uL of the eluted
fragmentation product was added to this mix and incubated at 20 C
for 15 min. The ligated adapter product was then cleaned using a
0.8X SPRI size selection and eluted in 20 uL of molecular grade
water.

To generate a final product ready for lllumina sequencing,
18.5 uL of the eluted adapter ligation product was PCR amplified
using a 2X high fidelity polymerase mix (KAPA HiFi, Q5) and lllumina
indexing adapter primers with either single 6 bp or dual 8 bp indices
(Supporting Information S2: Table 2). The PCR was cycled for 8-11
cycles depending on the amount of starting cDNA added to the initial
fragmentation step. The final product was cleaned using a double-
sided 0.5X-0.7X SPRI size selection and eluted in 20 pL of molecular-

grade water.

5.1.9 | Detailed cost breakdown

300 pL 100 uM prediluted plates for the round 1 reverse transcrip-
tion and rounds 2 and 3 ligations were ordered from Integrated DNA
Technologies (IDT) for $7699.40. These plates contain enough
volume to complete 300 RT, 250 r2, and 215 r3 ligations with

careful pipetting. Using the lowest capacity of the round 3 plate, this
comes to $36 in barcoding oligos per protocol. The remaining stand-
alone oligos were purchased as lyophilized DNA for $270.60
(Supporting Information S2: Table 2). The most expensive consum-
ables in the protocol are the reverse transcription and ligation
enzymes. Thermo Fisher Maxima H minus Reverse Transcriptase
(EPO753) now sells for between $835 and $845 depending on the
vendor. The New England Biolabs T4 DNA Ligase (M0202M) is
currently listed at $270. We recognize that cheaper brand alter-
natives do exist at similar enzyme concentrations, we just have no
personal verification that they work with our protocol. These
reagents are enough for just over 1 experiment, but not enough for
2, so we calculate them to be repurchased for every instance of the
protocol. The other large cost items are the RNase inhibitors and
Dynabeads. Both RNAse inhibitors together cost approximately $630
and last for about 5 repetitions of the protocol, totaling $127 per run.
The Dynabeads cost $638 per 2mL, and 44 uL are needed per
sublibrary sample, giving a cost-per-sample of $14. The amplified
cDNA libraries can be prepared for sequencing however the user
desires, but using our method with the WGS fragmentation and
ligation kits from Enzymatics, it comes to $39 per sample. The other
reagents and plastics are common to most molecular and micro-
biology labs, and inexpensive enough to be considered negligible to
the total cost of the protocol. This gives a start-up cost of
approximately $10,000, a per-protocol cost of approximately
$1300-1700 including added leeway for the unpriced consumables,
and an additional $55 per sublibrary.

Alternatively, kits containing all relevant regents for the steps
from in situ reverse transcription to WGS library preparation are
available through the company, Parse. However, their fixation and
permeabilization steps are optimized for mammalian cells, so
independent preparations like those described here will be needed
to more successfully apply the kits to yeast.

Illumina sequencing libraries from each of the three experiments
were submitted to Psomagen. Experiment 1 was paired end
sequenced on a full lane of the HiSeq X platform with a six basepair
index on read 2. Experiments 2 and 3 were also sequenced on full
lanes of the HiSeq X platform but with dual 8 bp indices.

Oligonucleotides: All oligonucleotide sequences used are available
in Supporting Information S2: Table 2.

5.2 | Computational methods
5.2.1 | Transcriptome alignment

Sequencing reads were processed by barcode and aligned to the R64
s288c genome or a combined Ré64 s288c and sc5314 V4 genome
from NCBI using STARsolo (Kaminow et al., 2021). This new version
of STAR parses out cell barcodes and allows for the multi-mapping of
reads, meaning it keeps reads that map to multiple places in the
genome. This is important for yeast as S. cerevisiae recently
underwent a full genome duplication, and there is significant
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homology between many paralogs (Wolfe, 2015). We used the most
basic uniform multi-mapping algorithm. This produced a highly sparse
gene-by-cell matrix with cell columns for every possible barcode

combination, regardless of gene detection.

5.2.2 | Data quality thresholding

To remove empty barcodes and low gene detection barcodes, we
applied a “knee” detection filtering to the STARsolo-generated gene-
by-cell matrix (Kaminow et al., 2021). Briefly, the barcodes were
negatively ordered by log(total read counts). We remove any
barcodes after the curve begins to drastically decrease, or any
barcodes past the bend or the “knee.” Depending on the library

quality, this keeps between 60% and 80% of the non-zero barcodes.

5.2.3 | Single-cell data analysis

All data analysis was performed with the R based package, Seurat
(Hao et al., 2021). We performed normalization, scaling, nearest
neighbor calculations, clustering, and differential expression analyses
similar to the tutorial provided by the Satija Lab (Getting Started with
Seurat, 2024). Unique transcripts/cell and genes/cell were calculated
with all genes left in the data. However, mRNAs/cell, Louvain
clustering, and UMAP visualization were done on data with the
ribosomal RNA removed. rRNA genes were identified using the
Saccharomyces Genome Database (SGD; Cherry et al., 2012). For the
clustering analyses, we first normalized and scaled the data, and
found the variable features on which to perform principal component
analyses using the default Seurat settings. For the PCA, we computed
an initial 20 components and then used the JackStraw function to
calculate how many components significantly contributed to the
variance for each data set. The downstream Louvain clustering and
UMAP analyses were performed using this number of dimensions. All
other parameters were kept at the Seurat defaults.

5.24 | Gene ontology analysis

Simple gene ontology analyses were done by manually entering
genes into both Metascape and SGD (Cherry et al., 2012; Zhou
et al., 2019).
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