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Abstract

Yeasts are naturally diverse, genetically tractable, and easy to grow such that

researchers can investigate any number of genotypes, environments, or interactions

thereof. However, studies of yeast transcriptomes have been limited by the

processing capabilities of traditional RNA sequencing techniques. Here we optimize

a powerful, high‐throughput single‐cell RNA sequencing (scRNAseq) platform,

SPLiT‐seq (Split Pool Ligation‐based Transcriptome sequencing), for yeasts and

apply it to 43,388 cells of multiple species and ploidies. This platform utilizes a

combinatorial barcoding strategy to enable massively parallel RNA sequencing of

hundreds of yeast genotypes or growth conditions at once. This method can be

applied to most species or strains of yeast for a fraction of the cost of traditional

scRNAseq approaches. Thus, our technology permits researchers to leverage “the

awesome power of yeast” by allowing us to survey the transcriptome of hundreds of

strains and environments in a short period of time and with no specialized

equipment. The key to this method is that sequential barcodes are probabilistically

appended to cDNA copies of RNA while the molecules remain trapped inside of each

cell. Thus, the transcriptome of each cell is labeled with a unique combination of

barcodes. Since SPLiT‐seq uses the cell membrane as a container for this reaction,

many cells can be processed together without the need to physically isolate them

from one another in separate wells or droplets. Further, the first barcode in the

sequence can be chosen intentionally to identify samples from different environ-

ments or genetic backgrounds, enabling multiplexing of hundreds of unique

perturbations in a single experiment. In addition to greater multiplexing capabilities,

our method also facilitates a deeper investigation of biological heterogeneity, given

its single‐cell nature. For example, in the data presented here, we detect

transcriptionally distinct cell states related to cell cycle, ploidy, metabolic strategies,

and so forth, all within clonal yeast populations grown in the same environment.

Hence, our technology has two obvious and impactful applications for yeast

research: the first is the general study of transcriptional phenotypes across many

strains and environments, and the second is investigating cell‐to‐cell heterogeneity

across the entire transcriptome.
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1 | INTRODUCTION

Yeasts are probably one of the most well‐researched lifeforms and

serve as workhorse model organisms for exploring genetics, evolu-

tionary, cell, and systems biology. They are arguably the most

genetically tractable eukaryotes with the easy construction of

comprehensive gene deletion collections (Giaever et al., 2002) and,

more recently, libraries of thousands of mutant strains in a single

genetic editing experiment (Levy et al., 2015; Sharon et al., 2018).

There is also a wealth of well‐annotated, natural genetic diversity

available for study (Liti et al., 2009; Peter, 2018). However,

measuring the phenotypic effects of the myriad genetic differences

that separate these strains is challenging because most phenotyping

approaches require each strain to be studied separately. Further, to

comprehensively understand the differences between each geno-

type, each strain should be phenotyped in multiple conditions to

grasp the effects of environmental context. This scale quickly

multiplies into a number of experiments that are hard‐to‐impossible

to manage.

Single‐cell RNA sequencing (scRNAseq), or the profiling of RNA

expression in individual cells, has become a powerful tool that can

enable the high‐throughput interrogation of transcriptional pheno-

types across multiple strains and multiple conditions simultaneously

(Dixit et al., 2016; Jackson et al., 2020; Rodriguez‐Fraticelli

et al., 2020). While several recent papers have been published

applying scRNAseq to yeast, these papers utilize scRNAseq methods

involving physical isolation of cells and accumulate expense both in

the specialized equipment needed and the number of cells processed

(Kolodziejczyk et al., 2015; Liu & Trapnell, 2016; Urbonaite

et al., 2021). Recently developed combinatorial barcoding methods

(SPLiT‐seq.; Rosenberg et al., 2018; sciSeq; Cao et al., 2017). solve

these issues by allowing cells from multiple strains or environments

to be phenotyped while pooled, and are thus more easily scalable.

SPLiT‐seq also only requires basic benchtop tools. However, to date,

SPLiT‐seq has been applied to a variety of organisms (Cao et al., 2017;

Kuchina et al., 2021; Rosenberg et al., 2018) but, to our knowledge,

has not been adapted for fungi. Here we present a yeast‐optimized

version of SPLiT‐seq (Kuchina et al., 2021; Rosenberg et al., 2018).

SPLiT‐seq has many advantages as it allows for the sequencing of

transcriptomes of many many cells, giving us more power to profile

many yeast strains and conditions as well as phenotypic heterogene-

ity. For example, our yeast‐optimized SPLiT‐seq method can process

approximately 400,000 cells for approximately $2000 (a full cost

breakdown is provided in the methods), while droplet‐based methods

would cost approximately $2000 per sample, with typically up to

10 K cells per sample and up to eight samples, based on price listings

on the University of Kansas Medical Center, Boston University

Medical Center Sequencing Core, and Cornell Institute of Bio-

technology websites (10X Pricing, 2024; 10X Genomics single‐cell

libraries, 2024; Pricing, 2024). Note that this calculation does not

include the large cost of the instrument ($65K–350K), (Pricing &

Quoting − 10x Genomics, 2024) but assumes that researchers are

submitting their samples to sequencing cores or companies. And, as

SPLiT‐seq implements combinatorics, it can differentiate as many

samples (i.e., genotypes or environmental conditions) as there are

first barcodes (e.g., 96 or 384 per plate per experiment depending on

the type of multi‐well plates used). Given the strength of the yeast

system is the ability to study diverse genotypes and environments,

optimizing SPLiT‐seq for yeast unlocks the power of this model

organism for studying transcriptomics.

2 | TECHNIQUE OVERVIEW

In opposition to isolation‐based scRNAseq methods that typically

utilize microfluidic droplets to contain the RNA from a single cell

(Dohn, 2021; Macosko et al., 2015; McNulty et al., 2021; Zheng

et al., 2017), the SPLiT‐seq protocol uses the cell itself as a container

for its own RNA, and all enzymatic reactions are performed in situ

(Figure 1; Kuchina et al., 2021; Rosenberg et al., 2018). Fixed and

permeabilized cells are loaded into a multiwell plate where they

undergo in situ reverse transcription with well‐specific barcoded

random hexamer and poly‐dT primers. They are then pooled and split

into another 96‐well plate where each well contains a short, unique

barcode sequence that anneals to the first barcode via a linker strand.

A ligation reaction covalently bonds these two pieces of DNA at the

single‐stranded nick created. The cells are subsequently pooled and

split into a new plate where the process is repeated, adding a third

barcode. Cells that received the same first barcode are unlikely to

receive the same second and third barcodes. This process is completed

n times depending on the population size, as unique barcode

combination possibilities scale exponentially with each additional

round (e.g., 96 barcodes, n split‐pools = 96n possible barcode

combinations). Each cell is thus uniquely labeled by probabilistically

biasing the outcome such that it takes its own path through the

barcode plates. The basic SPLiT‐seq protocol includes one round of

reverse transcription and two rounds of ligation, generating cell

barcodes from combinations of three oligo additions. Finally, the cells

are lysed, and the extracted cDNA is prepped for sequencing

(Figure 1). After sequencing, combinatorial barcodes are used to

computationally resolve through which wells a cell has traveled to get

single‐cell data (Kuchina et al., 2021; Rosenberg et al., 2018).

Take‐away

• We adapted the high‐throughput, multiplexable, and

relatively low‐cost method for performing single‐cell

RNA sequencing, SPLiT‐seq, to yeast.

• This adaptation works successfully in multiple ploidies

and species of yeast including haploid and diploid

Saccharomyces cerevisiae and Candida albicans.

• Species identity, ploidy, and environmental conditions

can all be revealed through basic transcriptomics

analyses.
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The intrinsic power of SPLiT‐seq comes from its easy and

inexpensive capabilities to scale up the number of cells processed.

The number of cells that can be processed is a function of the

number of wells in each barcoding step and the number of ligation

reactions performed (Figure 2a). For example, one round of barcoded

reverse transcription with 96 barcodes and two subsequent ligation

steps, also with 96 barcodes, produces 963 (884,736) possible unique

combinations. Adding one more ligation reaction yields almost 85

million unique combinations with only the trivial cost of adding

another plate of 96 barcode oligos and reagents (Figure 2a; Kuchina

et al., 2021; Rosenberg et al., 2018).

Another advantage of SPLIT‐seq is the ability to multiplex many

samples (i.e., genotypes or growth conditions) in the same run. Since

each sample can be loaded intentionally into a specified well of a 96‐

or 384‐well plate during the reverse transcription step, the first

barcode in the combinatorial sequence can be used as a conditional

signifier. This allows for the processing of as many unique samples as

there are wells in the first step (Figure 2b). So, for example, if a 96‐

well scheme is used, 96 samples representing 96 genotypes or 96

environments can be processed in that run. In theory, using

expressible barcodes (Figure 2c; Jackson et al., 2020) to label unique

genotypes could increase the number of samples even further,

F IGURE 1 Yeast‐optimized SPLiT‐seq. (Left panel) Yeast‐specific protocols were developed for the fixation, cell wall enzymatic digestion,
and surfactant membrane permeabilization steps. These are the steps that are the most important to adapt to the working organism, as each
creature is going to have different structural morphologies that will need customization, particularly for the permeabilization steps. For example,
yeasts have cell walls, whereas mammalian cells do not. (Right panel) The split‐pool reverse transcription and ligation steps are carried out in
multi‐well plates similar to the original protocols (Rosenberg et al., 2018; Kuchina et al., 2021). The resulting cNDA libraries are prepared and
submitted for sequencing.
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enabling massive GxE screens. Assuming each strain's transcriptome

requires 500 cells per experiment to achieve adequate coverage, a

single standard SPLiT‐seq run (3 rounds of 96 barcodes) could

process almost 900,000 cells. This is enough to cover as many as

1800 genotypes if expressible barcodes are used or 1800 different

combinations of genotype and environment. As each SPLiT‐seq run

takes less than a week to perform, hundreds of conditions and

thousands of strains could easily be sampled in only a few months.

Additionally, as cells are fixed right after sampling, early samples can

be stored in the freezer until all experiments are finished and ready

for scRNAseq preparations.

In sum, SPLIT‐seq is a high‐throughput method for single‐cell

RNA sequencing that lends itself to the yeast system because

there are so many engineered and natural yeast genotypes to

explore, and so many environments in which yeast can be grown

in the laboratory (Costanzo et al., 2016; Gasch et al., 2000;

Kinsler et al., 2020). Here we optimize the method for the unique

physiology of yeasts.

3 | RESULTS

3.1 | Chemical fixation, beta‐glucan specific
enzymes, and nonionic detergents successfully
prepare yeast cells for in situ SPLiT‐seq reactions

Yeasts are unique in that they possess a fungal cell wall. This wall

must be permeabilized just enough to allow SPLiT‐seq reagents to

enter cells but not enough such that the cell can no longer act as a

container for the reaction. Optimizing fixation and permeabilization

methods in series is challenging as testing them one at a time would

require going through the entire approximately $2000 protocol and

sequencing every test. This is necessary because there are no good

intermediate steps in the protocol to test library quality. Realistically,

one must take the cells through the entire SPLiT‐seq protocol, library

preparation, and sequencing before one can discern the final data

quality. cDNA gel traces or library concentrations are not a good

indicator of barcoding success or of the number of reads or genes

F IGURE 2 The high‐throughput power of the SPLiT‐seq method. (a) The number of available unique barcode combinations scales
exponentially with addition of relatively few new barcodes (increments of 96 or 384). A similar scaling analysis can be found in the original
SPLiT‐seq publication (Rosenberg et al., 2018) (b) The number of samples that can be processed in a single run is equal to the number of
barcoded primers in the reverse transcription step, which provides the first barcode in the combinatorial sequence. For example, 96 or 384
samples could be processed with standard multiwell plates. (c) Expressible barcodes, or expressed engineered sequences that identify genotype,
can be combined with the SPLiT‐seq method to provide large genotype and environment combinatorial power.
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that will be recovered per cell. Fortunately, the multiplexable nature

of the SPLiT‐seq method allowed us to test many cell fixation and

permeabilization treatments in parallel, greatly reducing the time and

cost of exploring the parameter space.

Fluorescent in situ hybridization cell preparation methods are an

ideal place to start when adapting SPLiT‐seq to any new organism, as

FISH also relies on efficiently diffusing reagents into cells. Based on a

method adapting FISH for flow‐cytometry in yeast (Bertin et al., 1990),

we initially tested (Figure 3, Experiment 1) 16 combinations of

ethanol and/or formaldehyde fixation with an enzyme mixture,

zymolyase, which degrades the beta‐glucans in the cell wall, and

nonionic detergents Tween‐20 or Triton X‐100 to permeabilize the

cell membrane in both Saccharomyces cerevisiae and Candida albicans

(Figure 3a). After identifying the best‐performing initial condition by

choosing the one that yielded the greatest median UMIs/cell

(Figure 3a; red), we performed a second experiment (Figure 3,

Experiment 2). In this experiment, we tested an additional 18

conditions representing more subtle perturbations of the same

variables but found no further improvement (data not shown). The

optimal protocol we have so far established by selecting the

conditions yielding the greatest median UMIs/cell (Figure 3a; red),

which works in multiple yeast species (Figure 3), is the one described

F IGURE 3 Yeast‐optimized SPLiT‐seq produces quality scRNAseq data. (a) Initial 16 optimization conditions from Experiment 1 comprising
combinations of ethanol and/or formaldehyde fixations and zymolyase and/or detergent permeabilizations. While there were no strong
differences between any of the conditions, we moved forward with the combination with the highest median unique transcripts per cell
(highlighted in red), which is described in the methods. (b) Total unique transcripts detected per cell (including rRNAs) for multiple sublibraries
across three experiments. Each point represents a single cell and boxes represent 1st–3rd quartiles. Each sublibrary contains 10,133, 5465, 13,
299, 9177, 2960, 1705, and 703 cells, respectively. Median transcripts per cell range from 1500 to 9500 per cell. When fewer cells are profiled
(rightmost sublibraries), the sequencing depth per cell and the number of unique transcripts per cell increase. We use unique molecular
identifiers to distinguish unique transcripts from duplicates created during PCR. (c) Total genes per cell detected in C. albicans, and diploid and
haploid S. cerevisiae. Box represents 1st–3rd quartiles. (d) Total mRNAs per cell detected in diploid and haploid S. cerevisiae. Box represents 1st–
3rd quartiles. (e) UMAP visual clustering of S. cerevisiae and C. albicans data. Each point represents a single barcode or cell, and its position
relative to other points correlates with the similarity of their transcriptomes. The points are colored by their mapped or “true” identity. We see a
distinct separation of the two species. (f) Percentages of barcodes that classify as YFP or mCherry expressing cells, S. cerevisiae or C. albicans, or
multiplets (barcodes that have any reported expression of the opposing fluorescent reporter, or greater than 15% of the opposing species'
genome).
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below in the methods section. Briefly, it includes a 4% formaldehyde

overnight fixation and a combination of 0.005 U/µL zymolyase at

37°C for 15min and 0.4% Triton X‐100 at 4°C for 3min

permeabilization steps. The additional 15 conditions tested in

Figure 3a are also listed in the methods.

3.2 | Yeast‐optimized SPLiT‐seq detects thousands
of unique RNAs per cell for 43,388 cells of two yeast
ploidies and species

After modifying the protocol to work with yeasts, SPLiT‐seq detects a

median of ~1000 to 10,000 unique RNAs per cell depending on

sequencing depth (Figure 3b). Higher sequencing coverage results in

a deeper sampling of the transcriptome as can be seen in Figure 3b

which shows median unique RNAs per cell for technical replicates of

three experiments of different sequencing depths. In experiment 3,

the barcoded cells were evenly divided into 10 sublibraries. The two

sequenced sublibraries returned ~5,500 and 10,000 barcoded cells

that passed computational filtering. Given we started the experiment

with between 200,000 and 300,000 cells, this estimates a capturing

efficiency between 25% and 50%.

SPLiT‐seq is effective in both haploid and diploid cells of S.

cerevisiae, and also works with C. albicans. We recover, on average,

between 100 and 600 genes per cell (Figure 3c). Of the detected

mRNAs, we see an average of ~120–700 mRNAs per cell depending

on the experiment and sequencing depth. Across all cells, we see the

range of detected mRNAs being between ~10 to 3600 per cell

(Figure 3d). Given that there are approximately 30,000 mRNA

molecules per cell for Saccharomyces cereivisiae, (Miura, 2008) and

assuming haploid and diploid S. cerevisiae and C. albicans have

transcriptome sizes in the same order of magnitude, this range

represents 0.2‐12% of the active transcriptome in a yeast cell. This

level of single‐cell transcriptome recovery is similar to that obtained

using droplet‐based methods in yeast, (Jackson et al., 2020; Jariani

et al., 2020; Nadal‐Ribelles et al., 2019; Urbonaite et al., 2021) and

can likely be further optimized (see Discussion). On average, the

transcript proportions we recover are 93.7% rRNA, 0.005% tRNA,

0.04% ncRNA, and 5.75% mRNA. The low rate of mRNA recovery is

representative of the true fraction of a yeast cell's RNA belonging to

mRNA (5%) (Warner, 1999). We recover the expected ratio of rRNA

to mRNA because we use both polydT and random hexamer primers

in the reverse transcription step. The addition of random hexamers

allows for better coverage of the 5’ ends of mRNA, but also increases

rRNA recovery. Users who prefer to study mRNA should lower the

percentage of rRNA recovered by decreasing the ratio of random

hexamer to polydT primers, or by removing rRNA with commercially

available kits post cell lysis, following previous work (Kuchina

et al., 2021; O'Neil et al., 2013). Alternatively, a relatively low mRNA

recovery rate is not necessarily a problem, as algorithms leverage the

fact that the transcripts recovered differ for every cell, so they can

construct a fuller transcriptome by clustering together many single‐

cell transcriptomes (Waltman & van Eck, 2013). Indeed, similar

transcriptome recovery was adequate to illustrate known biological

processes in bacteria, as well as discover new behaviors (Kuchina

et al., 2021).

3.3 | Yeast‐optimized SPLiT‐seq is truly single‐
celled and experiences a negligible percentage of
barcode collisions

A common concern in single‐cell RNA sequencing experiments is

barcode collisions or one barcode mapping to multiple cells. In

physical isolation methods, this occurs when more than one cell is

loaded into the same container. In the SPLiT‐seq method, multiple

cells can acquire the same barcode by physically aggregating or

through cells traveling the same path through the barcode plates by

chance. We performed two experiments to get an empirical estimate

of the percentage of barcodes that map to multiple cells or multiplets.

We first processed two disparate species, diploid S. cerevisiae and C.

albicans, mixed together in the same SPLiT‐seq run. We could then

calculate the percentage of barcode collisions by calculating the

number of barcodes that have a large percentage ( > 15%) of uniquely

mapping transcripts that align to both species' genomes. We removed

rRNA reads before this calculation as there are considerable amounts

of homology between these species in those genes and keeping them

in falsely increases the number of calculated barcode collisions.

Since many engineered yeast strains are haploid S. cerevisiae, we

also wanted to ensure that these cells did not have any odd

properties that caused them to stick together. We looked at

stickiness between haploid S. cerevisiae by using two haploid strains

each expressing a different fluorescent protein. A total of 2209 cells

were detected that expressed at least one of these markers. We

looked for collisions by counting the number of cells (barcodes) that

report expression of both fluorescent markers. Figure 3f shows that

in both experiments, the percentage of detected barcode collisions is

well under five percent. We also see good species resolution in

UMAP‐based clustering analyses (Figure 3e). This suggests that our

method is truly single celled.

3.4 | Yeast‐optimized SPLiT‐seq identifies
heterogeneous transcriptional states in clonal
populations grown in similar conditions

A good test of any single‐celled method is whether it captures

enough of the diversity of the transcriptome to resolve transcription-

ally distinct states. The cells in two of our experiments (“experiments

1 and 2” from Figure 3) were grown in rich media and sampled in

early mid‐log phase. Even in this carbon‐rich environment, we see

considerable diversity in gene expression (Figure 4a). We performed

the Louvain clustering algorithm on these cells, and the cells from

Experiment 3 sampled at mid‐log to group cells based on the gene

expression data we collected and used UMAP to visualize the cell

clusters. For each of these clusters, we performed a differential gene
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expression analysis to investigate what biological processes were

distinguishing cells based on their gene ontology as assessed using

Metascape and the Saccharomyces Genome Database (Cherry

et al., 2012; Zhou et al., 2019). For example, cluster 2 appears to

be cells that have very recently divided, as the top differentially

expressed genes are related to septum digestion after cytokinesis. In

this same cluster, we also observe several daughter‐specific

upregulated genes such as DSE1, DSE2, and DSE4, thus, this cluster

may specifically tease out the newly divided daughter cells. Cells in

other clusters have different unique transcriptional profiles. For

example, cells in cluster 4 appear to be in late G1 or early S phase as

we see upregulated expression of the G1 cyclin CLN2, genes involved

in the formation of the bud neck such as HSL1 and GIN4, and genes

related to DNA replication such as POL1 and RNR1. A full list of each

cluster's statistically differentially expressed genes after multiple

comparison correction is available in Supporting Information S1:

Table 1. The observation that our single‐cell transcriptomes cluster

by cell‐cycle state, combined with previous work demonstrating that

single‐cell RNA‐seq often clusters cells by cell‐cycle state, provides

strong evidence that our yeast‐optimized SPLiT‐seq method is

effective at capturing single‐cell transcriptomes.

To provide further validation that our protocol adapting SPLiT‐

seq to yeasts captures biologically relevant details in single cells, we

also endeavored to discern known information about cells via their

transcriptomes. Cells in one of our experiments (“experiment 3” from

Figure 3) consist of both haploid and diploid cells from samples across

a standard growth curve in synthetic complete media. Cells sampled

early have access to more glucose relative to those sampled later

which are subsequently also exposed to more metabolic waste. Thus,

there are likely differences in the transcriptomes of these popula-

tions. Previous work using SPLiT‐seq demonstrates that cells cluster

based on the time and cell density they were sampled across a

F IGURE 4 Yeast‐optimized SPLiT‐seq can discern biologically relevant cell states. (a) UMAP visual clustering of combined haploid and
diploid S. cerevisiae cells from Experiments 1 and 2. The number‐labeled, colored clusters represent clusters detected using a standard Louvain
algorithm in Seurat (Kinsler et al., 2020). (b) UMAP visual clustering of S. cerevisiae cells from the first and last timepoints of the Experiment 3
growth curve corresponding to 17 and 23 h after inoculation. (c) UMAP visual clustering of haploid by 4741 and diploid s288c cells from the 17‐
h time point of Experiment 3. (d) UMAP visual clustering of the 23‐h time point of Experiment 3, identifying a subset of cells expressing theTYA
retrotransposon.

248 | BRETTNER ET AL.

 10970061, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/yea.3927 by A

rizona State U
niversity A

cq, W
iley O

nline Library on [21/05/2024]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



standard growth curve (Kuchina et al., 2021). Consistent with this

expectation, using UMAP visualization, we can see separation of our

yeast cells sampled from the earliest (17 h after inoculation) and

latest timepoints (23 h after inoculation) in our growth curve in

Figure 4b. Within the 17‐h time point, we can also distinguish

between the haploid and diploid cells (Figure 4c). This would not be

possible unless our protocol optimizing SPLiT‐seq for yeasts

preserves the integrity of the transcriptomes sampled and the

single‐cell nature of the method.

Finally, we are able to discern something previously unknown

about our yeast cells. Cells from the later timepoint in Experiment 3

(23 h after inoculation) contain a distinct group of cells that express

the TYA retrotransposon (Figure 4d) with significantly upregulated

YAR009C, YAR010C, YBR012W‐A&B, YDR050C, YDR261C‐D,

YDR365W‐A&B, YER138C, YJR029W, YKL096W‐A, YOL103W‐

A&B, YOR142W‐B, and YPR158C‐D genes. Understanding the

significance of this retrotransposon‐expressing population is outside

the scope of this work. Instead, we highlight this finding, and the

others listed in this section, to validate our protocol for optimizing

SPLiT‐seq for the unique biology of yeasts. The clustering approaches

performed in Figure 4 all provide evidence that our method is

sampling the transcriptomes of individual cells with enough depth to

cluster cells based on their transcriptionally distinct states.

4 | DISCUSSION

We demonstrate that SPLiT‐seq can be used to investigate the

transcriptomes of two important yeast species: S. cerevisiae and C.

albicans. Though other methods exist for performing single‐cell RNA

sequencing in yeasts (Dohn, 2021; Jariani et al., 2020; Nadal‐Ribelles

et al., 2019; Urbonaite et al., 2021; Zheng et al., 2017) SPLiT‐seq has

several advantages. One major advantage is that SPLiT‐seq enables

multiplexing hundreds of genotypes and environments in a single

experiment. It is thus better able to leverage the “awesome power of

yeast genetics” to explore how genetic changes affect the tran-

scriptome (Macreadie & Dhakal, 2022; Scannell et al., 2011). Another

advantage of SPLiT‐seq is that it does not require any expensive or

specialized equipment to perform. Thus, SPLiT‐seq brings the

possibility of transcriptomics to a wider group of yeast researchers.

Even researchers who have access to the specialized equipment

necessary for droplet‐based single‐cell RNA sequencing may benefit

from the yeast‐optimized SPLiT‐seq protocol described here. The in

situ barcoding reactions that comprise SPLiT‐seq have recently been

leveraged to extend the scalability of droplet based RNA sequencing

methods (Ma et al., 2023). Thus, we hope the yeast‐optimized

approach for SPLiT‐seq described in this manuscript will be broadly

useful to the community.

This method should be fairly straightforward to adapt for

researchers studying yeasts other than those studied here, such as

S. pombe, or flocculating natural isolates of S. cerevisiae. Zymolyase is

not very effective against the S. pombe cell wall, but industrial

enzymes can be used to permeabilize these cells (Molines, 2022).

Additionally, flocculation is a common problem in beer and wine

fermentation, and techniques exist to gently break the noncovalent

bonds between cells immediately before fixation (Stahl et al., 1983;

Verstrepen et al., 2003).

The number of mRNAs we recover using our yeast‐optimized

SPLiT‐seq method (120–700 on average per cell), and the number of

genes (100–600 on average per cell) is in the same ballpark but less

than reported recovery for yeast experiments performed with the

10X genomics microfluidics‐based platform (~2000 mRNAs per cell

and ~700 genes per cell; Jackson et al., 2020). Nonetheless, there are

several reasons our method is likely to be useful to the yeast

community. First, an average of hundreds of unique reads per cell is

enough for many applications. For example, we recover enough data

to delineate biologically relevant cell states (Figure 4). Additionally,

published studies detect less than 5% of each cell's transcriptome,

but by clustering similar cells, can comprehensively map different

transcriptional states (Kuchina et al., 2021) Second, we observe up to

thousands of mRNAs in some cells, suggesting further optimization

may yet yield further improvements. For example, in one experiment,

where we used a reverse transcriptase with H minus activity and

sequenced more deeply (Experiment 1 in Figure 3), we seemed to

improve our reads per cell to approximately 10,000 (including rRNA)

and our genes per cell to approximately 500 (Figure 3b,c). One

obvious area for further optimization is changing the ratio of polydT

to random hexamer primers, which would likely increase the yield of

mRNA over rRNA (Kuchina et al., 2021). This might also be achieved

by using a commercially available reagent to destroy rRNA before

sequencing (O'Neil et al., 2013). And finally, we believe the highly

scalable and massively multiplexable nature of the technique makes it

an important addition to the yeast community.

5 | METHODS

5.1 | Experimental methods

5.1.1 | Yeast cell culture

Diploid s288c, genetically naive haploid BY4741, MATa ura3A0

his3Δ1 met17Δ0 P ACT1‐GAL3::SpHIS5 gall1Δgal10Δ::LEU2 leu2Δ0::P

PGK1 ‐mCherry‐KanMX6 ybr209wΔ::B103‐HphMX6, and MATa

ura3A0 his3Δ1 met17Δ0 P ACT1‐GAL3::SpHIS5 gall1Δgal10Δ::LEU2

leu2Δ0::P GAL1‐YFP‐KanMX6 ybr209wΔ::BC3‐HphMX6, and ATCC

3147 C. albicans strains were used. Cells were streaked onYP plus 2%

dextrose agar plates from frozen −80C glycerol stocks and grown at

30 C for 48 h. In Experiments 1 and 2, single colonies of s288c and

ATCC 3147 were picked into YP plus 2% dextrose liquid media (YPD).

The YFP and mCherry‐engineered cells were picked into Synthetic

Complete minus glucose (Sunrise) plus 2.5% sucrose, 1.25% raffinose,

and 0.625% galactose media to induce YFP expression in Experiment

2. In Experiment 3, diploid s288c cells and haploid BY4741 cells were

picked into Synthetic Complete (Sunrise) plus 2% glucose media

(SCD). All cultures were grown with shaking at 30 C for 24 h. For
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Experiments 1 and 2, cells were then transferred into fresh YPD

media at a 1:250 dilution and grown until cultures reached

approximately 2–4 × 107 cells/mL, or early mid‐log phase. For

Experiment 3, approximately 15,000 total cells were transferred into

50mL of fresh SCD and sampled at 17, 19, 21, and 23 h after

inoculation, which correspond to approximately 0.9 × 107,

2.7 × 107 × 107, and 8.6 × 107 cells/mL.

5.1.2 | Fixation and permeabilization

At the time of sampling, 3 mL of yeast cultures were immediately

spun down in a room‐temperature centrifuge at 3000g for 5 min. The

media supernatant was removed, and the cell pellet was resuspended

in 2mL of cold 4% formaldehyde in molecular‐grade phosphate‐

buffered saline (PBS). The cells were then fixed cold in a 4°C

refrigerator for approximately 18 h. After fixation, the samples were

spun down in a 4°C centrifuge at 3000g for 5min. The formaldehyde

supernatant was removed, and the pellet was resuspended in 1mL

cold molecular grade 100mM Tris HCl pH 7 plus 0.1 U/µL

SUPERase‐In RNase inhibitor (Invitrogen) to quench the formalde-

hyde. Cells were then centrifuged, resuspended in 250 μL of a

zymolyase enzymatic solution of 0.1M Na2EDTA, 1M sorbitol, and

0.005 U/µL zymolyase (Zymo Research) (pH ~7.5), and incubated at

37°C for 15min. At the end of the incubation, 1 mL of cold PBS plus

0.1 U/µL SUPERase‐In RNase inhibitor and 0.1 U/µL Enzymatics

RNase inhibitor (Enzymatics) was immediately added, and the cells

were centrifuged at 4°C, 3000g for 5 min. The cells were then

resuspended in 250 µL of cold 0.4% Triton X‐100 in PBS plus RNase

inhibitors and incubated on ice for 3min. Again, 1 mL of cold PBS plus

RNase inhibitors was added at the end of the 3min and the cells were

centrifuged. They were then resuspended in 500 µL of cold PBS plus

RNase inhibitors, vortexed on high for approximately 30 s, and lightly

filtered through a 40 µm pluriStrainer (pluriSelect). The cells were

then counted using a Beckman Coulter Cell Counter and diluted to 1

million cells/mL into fresh cold PBS plus RNase inhibitors.

The additional conditions tried (Figure 3a, minus s12 described

above) are outlined below:

s1: 2% formaldehyde overnight fixation with 0.01 U/µL zymo-

lyase (37°C for 15min).

s2: 2% formaldehyde overnight fixation with 0.01 U/µL zymo-

lyase (37°C for 15min) and 0.4% Triton X‐100 (4°C for 3min).

s3: 2% formaldehyde overnight fixation with 0.005 U/µL

zymolyase (37°C for 15min).

s4: 2% formaldehyde overnight fixation with 0.005 U/µL

zymolyase (37°C for 15min) and 0.4% Triton X‐100 (4°C for 3min).

s5: 2% formaldehyde for 15min fixation stored in 70% EtOH

at −20°C overnight with 0.01 U/µL zymolyase (37°C for 15min).

s6: 2% formaldehyde for 15min fixation stored in 70% EtOH

at −20°C with 0.01 U/µL zymolyase (37°C for 15min) and 0.4%

Triton X‐100 (4°C for 3min).

s7: 2% formaldehyde for 15min fixation stored in 70% EtOH

at −20°C overnight with 0.005 U/µL zymolyase (37°C for 15min).

s8: 2% formaldehyde for 15min fixation stored in 70% EtOH

at −20°C with 0.005 U/µL zymolyase (37°C for 15min) and 0.4%

Triton X‐100 (4°C for 3min),

s9: 4% formaldehyde overnight fixation with 0.01 U/µL zymo-

lyase (37°C for 15min).

s10: 4% formaldehyde overnight fixation with 0.01 U/µL

zymolyase (37°C for 15min) and 0.4% Triton X‐100 (4°C for 3min).

s11: 4% formaldehyde overnight fixation with 0.005 U/µL

zymolyase (37°C for 15min).

s13: 2% formaldehyde for 15min fixation stored in 70% EtOH

at −20°C overnight with 0.01 U/µL zymolyase (37°C for 15min).

s14: 4% formaldehyde for 15min fixation stored in 70% EtOH

at −20°C with 0.01 U/µL zymolyase (37°C for 15min) and 0.4%

Triton X‐100 (4°C for 3min).

s15: 4% formaldehyde for 15min fixation stored in 70% EtOH

at −20°C overnight with 0.005 U/µL zymolyase (37°C for 15min).

s16: 4% formaldehyde for 15min fixation stored in 70% EtOH

at −20°C with 0.005 U/µL zymolyase (37°C for 15min) and 0.4%

Triton X‐100 (4°C for 3min).

In situ reverse transcription and ligation, post lysis processing, and

library preparation were performed as described in previous work

(Kuchina et al., 2021; Rosenberg et al., 2018) and are described in

detail below.

5.1.3 | Reverse transcription

Reverse transcription (in situ) was performed in 25 µL reactions in 48

wells of a 100 µL 96‐well plate with each well containing well‐

specific, barcoded primers. For each reaction, the final concentration

of cells and reagents equated to 3 µM barcoded random hexamer

primers (Supporting Information S2: Table 2), 3 µM barcoded 15‐dT

primers (Supporting Information S2: Tables 2), 0.25 U/µL Enzymatics

RNase inhibitor, 0.25 U/µL SUPERase‐In RNase inhibitor, 1 mM

dNTPs (per base), 20 U/µL Maxima H minus Reverse Transcriptase

(ThermoFisher), 1X RT buffer (ThermoFisher), 7.5% PEG6000

(formerly PEG8000), and 200,000 cells/mL (5 µL of the final

preparation of 1 million cells/mL). These reactions were covered

with an adhesive seal and placed in a standard thermocycler, and set

to 23°C for 10min followed by 50°C for 50min. At the end of the

thermal incubation, all 48 reactions were pooled with 9.6 µL of 10%

Triton‐X100 and centrifuged at 4°C, 3000g for 5 min and the

supernatant was carefully removed from the cell pellet. It was then

resuspended in 2mL of cold PBS plus RNase inhibitors and vortexed

on high for approximately 30 s. The 2mL of cells were then filtered

through a 15 µM pluriStrainer (pluriSelect).

5.1.4 | Ligations

Ligations (in situ) were performed in 50 and 60 µL reactions in a

100 µL 96‐well plate with each well containing well‐specific,

barcoded ligation oligos. Before the experimental protocol, the round
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2 and round 3 ligation plates were prepared by annealing the well‐

specific oligos with overhanging linker strands that guide the barcode

oligos to the 5′ end of the singly barcoded cDNA (Supporting

Information S2: Table 2, BC_0335 and BC_0284). In brief, for round

2, 12 µM barcode oligos and 11 µM linking strands per well were

heated to 95 C in a 96‐well plate and cooled to 20°C at a rate of

0.1°C/s. The same was performed for round 3, except 14 µM

barcode oligos and 13 µM linking strands were used. 10 µL of these

prepared annealed barcode plates were transferred to new 96‐well

plates for each experiment. A ligation mix was prepared containing

the 2mL of cells, and final concentrations of 8 U/µL T4 DNA Ligase

(New England Biosciences), 1X Ligase Buffer (NEB), 0.32 U/µL

Enzymatics RNase inhibitor, 0.32 U/µL SUPERase‐In RNase inhibitor,

and 7.5% PEG6000 in a total of 4.04mL. 40 µL of this ligation

mixture was added to the prepared round 2 barcode plate, covered

with an adhesive seal, and incubated at 37°C for 30min. A blocking

strand solution was then prepared which preferentially binds to the

linker strand, displacing it, and preventing future ligation reactions

with the round two barcode oligos (Supporting Information S2:

Table 2 BC_0340). This solution contained 26.4 µM blocking strand

(BC_0340), 2.5X Ligase Buffer, and molecular grade water in

1200 µL. At the end of the round 2 ligation incubation, 10 µL of

this blocking solution is added to each well, the plate was covered

with an adhesive seal and then incubated at 37°C for a further

30min. The ligation reactions were then pooled into a basin through

a 40 µM pluriStrainer. An additional 20 µL of 2M U/µL T4 DNA

Ligase was also added to the basin and thoroughly mixed. 50 µL of

this ligation mixture was then added to the round 3 barcode plate,

covered with an adhesive seal, and incubated at 37°C for 30min. A

blocking solution of 11.5 µM BC_0066 (Supporting Information S2:

Table 2), 125mM EDTA, and molecular grade water in a total of

3200 µL was prepared, and 20 µL was added to each well of the

round 3 plate at the end of the incubation. The EDTA immediately

terminated the ligation reaction, so no further incubation was

needed.

5.1.5 | Sublibrary generation and cell lysis

The final ligation mixture was pooled into a new basin and filtered

through a 40 µM pluriStrainer into two 5mL centrifuge tubes with

70 µL of 10% Triton‐X100. The mixtures were then centrifuged at

4°C, 3000 G for 5min. The supernatants of each tube were carefully

aspirated, leaving a small volume in each since a pellet was not always

visible. The pellets were then washed with a solution of 4mL PBS,

40 µL 10% Triton‐X100, and 10 µL of SUPERase‐In RNase inhibitor,

and consolidated into one 5mL tube. The washed cell mixture was

then centrifuged at 4 C, 3000 G for 5min, and the supernatant

carefully aspirated from the cell pellet. The pellet was then

resuspended in a final 50 µL of PBS plus RNase inhibitors, and a

small aliquot was counted using a Beckman Coulter Culture Counter.

An appropriate volume of the cell suspension and PBS plus RNase

inhibitors were mixed to make sublibraries ranging from

approximately 5000–20,000 cells in 50 µL. These sublibraries were

either then stored at −80°C or moved directly into the lysis step.

To lyse the cells, 60 µL of a solution of 20mM Tris‐HCl pH 8.0,

400mM NaCl, 100mM EDTA pH 8.0, 4.4% sodium dodecyl

sulfateSDS, and 0.02mg/mL proteinase K was added to each 50 µL

sublibrary and incubated with shaking at 55°C for 2 h.

5.1.6 | Bead‐bound template switch reaction

After lysis, 5 µL of either 100 µM PMSF or AEBSF was added to each

sublibrary and incubated for 10min at room temperature to

inactivate the proteinase K. For each sublibrary, 44 µL of Dynabeads

MyOne Streptavidin C1 (Invitrogen) were washed three times with

800 µL of a 1X wash solution of 5mM Tris‐HCl pH 8.0, 1M NaCl,

500 µM EDTA, 0.05% Tween‐20, and 0.1 U/µL SUPERase‐In RNase

inhibitor using a magnetic 1.5 mL tube rack. The beads were then

resuspended in 100 µL per sample of a 2X wash solution containing

10mM Tris‐HCl pH 8.0, 2M NaCl, 1 mM EDTA, and 0.2 U/µL

SUPERase‐In RNase inhibitor. 100 µL of this bead solution was added

to each lysed sublibrary and agitated at room temperature for 1 h to

bind the biotinylated, barcoded cDNA.

The samples were then placed in the magnetic rack and

resuspended in 250 µL of the 1X wash solution and agitated at

room temperature for 5 min, and repeated. After the two 1X wash

steps, the samples were resuspended in 250 µL of 10mM Tris‐HCl

pH 8.0, 0.1% Tween‐20, and 0.1 U/µL SUPERase In RNase inhibitor.

Following these three wash steps, the samples were rinsed with

250 µL of molecular‐grade water while the beads were still bound to

the magnetic rack.

For each sublibrary, the beads were then resuspended in 200 µL

of a template switch reaction mix containing 10 U/µL Maxima H

minus Reverse Transcriptase, 1X RT buffer, 1 mM dNTPs (per base),

0.5 U/µL SUPERase‐In RNase inhibitor, 2.5 µM template switch oligo

BC_0127 (Supporting Information S2: Tables 2), and 7.5% PEG6000.

The samples were then agitated at room temperature for 30min and

then 42°C for 90min. The tubes were then placed in a magnetic rack,

and the supernatant removed. At this point, the beads could be rinsed

with molecular‐grade water and moved on to subsequent steps or

resuspended in 250 µL of the Tris‐HCL Tween‐20 buffer and stored

at 4°C overnight.

5.1.7 | cDNA amplification

If the samples were stored overnight in the Tris‐Tween buffer, the

tubes were placed in a magnetic rack and the beads were rinsed with

250 µL of molecular‐grade water. The bead‐bound cDNA were then

amplified in 220 µL reactions with 2X high fidelity polymerase mix

(KAPA HiFi, Q5) and 0.4 µM BC_0062 and BC_0108 primers

(Supporting Information S2: Table 2) for 3 min at 95°C, and then

five cycles of 98°C for 20 s, 65°C for 45 s, and 72 for 3min. The bead

PCR product was then placed against a magnetic rack and the
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supernatant was transferred to new optical‐grade PCR tubes with

qPCR dye (EvaGreen 20X). The samples were then amplified on a

qPCR machine for a further 10–20 cycles until the amplification

curves exited log‐linear phase. The PCR products were then cleaned

using a 0.8X SPRI size selection and eluted in 20 µL of molecular‐

grade water. 5 µL were then run on a 1% agarose gel at 120 V for

15min. A properly amplified cDNA library should appear as a smear

starting at approximately 5–7 kB and ending at approximately 300 bp

on a gel or bioanalyzer. 1 µL was also used to test the concentration

on a qubit. A successful library will need a concentration of at least

1.5 ng/µL to have enough starting material for library preparation as

described in these methods.

5.1.8 | WGS fragmentation and ligation library
preparation

For each sublibrary, between 20 and 110 ng of amplified and cleaned

cDNA products were combined with an appropriate amount of

molecular‐grade water to make 35 µL. This was then added to 5 µL of

WGS Fragmentation buffer (Enzymatics) and 10 µL of WGS

Fragmentation Enzyme mix (Enzymatics) on ice and pipette mixed.

The fragmentation mix was placed into a chilled 4 C thermocycler and

then incubated at 32°C for 10min and 65°C for 30min. The samples

were then transferred back on ice, cleaned with a double‐sided SPRI

0.6X‐0.8X size selection, and then eluted in 50.5 µL of molecular

grade water.

An adapter ligation reaction mix was made containing 17.5 µL of

molecular grade water, 20 µL of WGS Ligation buffer (Enzymatics),

10 µL of WGS DNA Ligase (Enzymatics), and 2.5 µL of annealed

adapter mix with BC_0243 and BC_0244 at 50 µM each (Supporting

Information S2: Table 2) per sublibrary. 50 µL of the eluted

fragmentation product was added to this mix and incubated at 20 C

for 15min. The ligated adapter product was then cleaned using a

0.8X SPRI size selection and eluted in 20 µL of molecular grade

water.

To generate a final product ready for Illumina sequencing,

18.5 µL of the eluted adapter ligation product was PCR amplified

using a 2X high fidelity polymerase mix (KAPA HiFi, Q5) and Illumina

indexing adapter primers with either single 6 bp or dual 8 bp indices

(Supporting Information S2: Table 2). The PCR was cycled for 8–11

cycles depending on the amount of starting cDNA added to the initial

fragmentation step. The final product was cleaned using a double‐

sided 0.5X‐0.7X SPRI size selection and eluted in 20 µL of molecular‐

grade water.

5.1.9 | Detailed cost breakdown

300 µL 100 µM prediluted plates for the round 1 reverse transcrip-

tion and rounds 2 and 3 ligations were ordered from Integrated DNA

Technologies (IDT) for $7699.40. These plates contain enough

volume to complete 300 RT, 250 r2, and 215 r3 ligations with

careful pipetting. Using the lowest capacity of the round 3 plate, this

comes to $36 in barcoding oligos per protocol. The remaining stand‐

alone oligos were purchased as lyophilized DNA for $270.60

(Supporting Information S2: Table 2). The most expensive consum-

ables in the protocol are the reverse transcription and ligation

enzymes. Thermo Fisher Maxima H minus Reverse Transcriptase

(EP0753) now sells for between $835 and $845 depending on the

vendor. The New England Biolabs T4 DNA Ligase (M0202M) is

currently listed at $270. We recognize that cheaper brand alter-

natives do exist at similar enzyme concentrations, we just have no

personal verification that they work with our protocol. These

reagents are enough for just over 1 experiment, but not enough for

2, so we calculate them to be repurchased for every instance of the

protocol. The other large cost items are the RNase inhibitors and

Dynabeads. Both RNAse inhibitors together cost approximately $630

and last for about 5 repetitions of the protocol, totaling $127 per run.

The Dynabeads cost $638 per 2mL, and 44 µL are needed per

sublibrary sample, giving a cost‐per‐sample of $14. The amplified

cDNA libraries can be prepared for sequencing however the user

desires, but using our method with the WGS fragmentation and

ligation kits from Enzymatics, it comes to $39 per sample. The other

reagents and plastics are common to most molecular and micro-

biology labs, and inexpensive enough to be considered negligible to

the total cost of the protocol. This gives a start‐up cost of

approximately $10,000, a per‐protocol cost of approximately

$1300–1700 including added leeway for the unpriced consumables,

and an additional $55 per sublibrary.

Alternatively, kits containing all relevant regents for the steps

from in situ reverse transcription to WGS library preparation are

available through the company, Parse. However, their fixation and

permeabilization steps are optimized for mammalian cells, so

independent preparations like those described here will be needed

to more successfully apply the kits to yeast.

Illumina sequencing libraries from each of the three experiments

were submitted to Psomagen. Experiment 1 was paired end

sequenced on a full lane of the HiSeq X platform with a six basepair

index on read 2. Experiments 2 and 3 were also sequenced on full

lanes of the HiSeq X platform but with dual 8 bp indices.

Oligonucleotides: All oligonucleotide sequences used are available

in Supporting Information S2: Table 2.

5.2 | Computational methods

5.2.1 | Transcriptome alignment

Sequencing reads were processed by barcode and aligned to the R64

s288c genome or a combined R64 s288c and sc5314 V4 genome

from NCBI using STARsolo (Kaminow et al., 2021). This new version

of STAR parses out cell barcodes and allows for the multi‐mapping of

reads, meaning it keeps reads that map to multiple places in the

genome. This is important for yeast as S. cerevisiae recently

underwent a full genome duplication, and there is significant
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homology between many paralogs (Wolfe, 2015). We used the most

basic uniform multi‐mapping algorithm. This produced a highly sparse

gene‐by‐cell matrix with cell columns for every possible barcode

combination, regardless of gene detection.

5.2.2 | Data quality thresholding

To remove empty barcodes and low gene detection barcodes, we

applied a “knee” detection filtering to the STARsolo‐generated gene‐

by‐cell matrix (Kaminow et al., 2021). Briefly, the barcodes were

negatively ordered by log(total read counts). We remove any

barcodes after the curve begins to drastically decrease, or any

barcodes past the bend or the “knee.” Depending on the library

quality, this keeps between 60% and 80% of the non‐zero barcodes.

5.2.3 | Single‐cell data analysis

All data analysis was performed with the R based package, Seurat

(Hao et al., 2021). We performed normalization, scaling, nearest

neighbor calculations, clustering, and differential expression analyses

similar to the tutorial provided by the Satija Lab (Getting Started with

Seurat, 2024). Unique transcripts/cell and genes/cell were calculated

with all genes left in the data. However, mRNAs/cell, Louvain

clustering, and UMAP visualization were done on data with the

ribosomal RNA removed. rRNA genes were identified using the

Saccharomyces Genome Database (SGD; Cherry et al., 2012). For the

clustering analyses, we first normalized and scaled the data, and

found the variable features on which to perform principal component

analyses using the default Seurat settings. For the PCA, we computed

an initial 20 components and then used the JackStraw function to

calculate how many components significantly contributed to the

variance for each data set. The downstream Louvain clustering and

UMAP analyses were performed using this number of dimensions. All

other parameters were kept at the Seurat defaults.

5.2.4 | Gene ontology analysis

Simple gene ontology analyses were done by manually entering

genes into both Metascape and SGD (Cherry et al., 2012; Zhou

et al., 2019).
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clustering analyses are repeatable with these data. They are the basic

data format that feed into single‐cell RNA sequencing pipelines such

as Seurat (Getting Started with Seurat) or Scanpy (Wolf et al., 2018).

We also provide raw sequencing reads in the form of fastq files.

There are multiple fast files pertaining to each of the 3 experiments

because we sequenced multiple redundant sub‐libraries per each

experiment. Due to an unforeseen data loss, 3/14 original fastq files

were truncated, resulting in a minor data loss (5.7% of total reads).
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Supporting Information section at the end of this article.
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