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Abstract: We continue to develop a program in geometric measure theory that seeks to identify how measures
in a space interact with canonical families of sets in the space. In particular, extending a theorem of M. Badger
and R. Schul in Euclidean space, for an arbitrary locally finite Borel measure in an arbitrary Carnot group, we
develop tests that identify the part of the measure that is carried by rectifiable curves and the part of the
measure that is singular to rectifiable curves. Our main result is entwined with an extension of analyst’s
traveling salesman theorem, which characterizes the subsets of rectifiable curves in R? (P. W. Jones, Rectifiable
sets and the traveling salesman problem, Invent. Math. 102 (1990), no. 1, 1-15), in R™ (K. Okikiolu,
Characterization of subsets of rectifiable curves in R", ]. London Math. Soc. (2) 46 (1992), no. 2, 336-348), or
in an arbitrary Carnot group (S. Li) in terms of local geometric least-squares data called jones’ f-numbers. In a
secondary result, we implement the Garnett-Killip-Schul construction of a doubling measure in R" that charges
a rectifiable curve in an arbitrary complete, doubling, locally quasiconvex metric space.
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1 Introduction

Rectifiability is an important concept in geometric measure theory that supplies a finer notion of regularity of
a set or measure than does dimension [51,52]. There is not a single definition of rectifiability, but rather a
number of variations that may be encoded using a common framework [8]. For recent work on rectifiable sets
and absolutely continuous measures in Carnot groups and in general metric spaces, we refer the reader to
previous studies [3-5,18-20,22] and references within. A current challenge that we address in this study is to
find characterizations of rectifiability of locally finite measures without imposing the traditional background
hypothesis of absolute continuity. In other words, we are interested in detecting how a measure interacts with
a prescribed family of sets, but we do not want to make a priori assumptions about the null sets of the measure.
Building on recent progress on this problem in Euclidean space [11,15], we give the first characterization of a
class of rectifiable measures inside the collection of locally finite Borel measures in a non-Euclidean setting.

Following the convention in Morse and Randolph [53], Federer [31], and Badger and Schul [13], we say that
a Borel measure u on a metric space X is 1-rectifiable if there exists a sequence I3, I,... of rectifiable curves in

X such that u(X \U‘fl}) = 0; at the other extreme, we say that u is purely 1-unrectifiable if u(I') = 0 for every
rectifiable curve I' in X. We remphasize that unlike some treatments [29,50], we do not impose the simplifying
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assumption that a 1-rectifiable measure is absolutely continuous with respect to one-dimensional Hausdorff
measure ! (see Section 2.3 for a primer on rectifiable curves and Figure 1 for some simple examples of
rectifiable and purely unrectifiable measures in R?). An arbitrary measure is not necessarily rectifiable or
purely unrectifiable. Nevertheless, by a general form of the Lebesgue decomposition theorem (Lemma 2.1),
every o-finite Borel measure ¢ on a metric space X can be written uniquely as:

w= urect + ypu’ (1~1)

where i, is 1-rectifiable and u,, is purely 1-rectifiable. Unfortunately, the proof that the decomposition (1.1)
exists is abstract and does not indicate how to find the component measures. In our main result (Theorem 1.1),
we identify the 1-rectifiable and purely 1-unrectifiable parts of an arbitrary locally finite measure on an
arbitrary Carnot group equipped with a Hebisch-Sikora norm (Section 2.4).

Theorem 1.1. For every Carnot group G and every locally finite Borel measure p on G, there exist (explicitly
defined) Borel functions D'(u, -) and J*(u, -) from G to [0, «] such that the 1-rectifiable and purely 1-unrectifiable
parts of a given locally finite measure u are identified by the pointwise behavior of the functions:

Bret =M L {XEG:DYu,x)>0 and J*(u,x) < o}, 1.2)
Hpy =L {XE€G:D(u,x)=0 orJ*(ux) = o} 1.3)

The following consequence is immediate.

Corollary 1.2. A locally finite Borel measure u on G is 1-rectifiable if and only if D'(u, x) > 0 and J*(u, x) < « at
u-a.e. x € G.

The “identifying functions” D'(u, -) and J*(u, -) play distinct roles in the main theorem. Roughly speaking,
the first function D'(y, x) detects the metric dimension, while the second J*(u, x) detects the Carnot geometry.
Let us now describe them in more detail.

Figure 1: Two-dimensional Lebesgue measure £ in the plane R? is purely 1-unrectifiable (top-left). A countable sum g = 3 y; of
measures 4; supported on line segments I is a 1-rectifiable measure with support UL; (top-right); in particular, there are examples of this
type with spt 4 = R2, The natural Hausdorff measure H$ |_ E; restricted to a Cantor set Es of Hausdorff dimension s is 1-rectifiable when
s <1 and purely 1-unrectifiable when s > 1 (bottom-left). A self-similar measure u supported on the set E; is 1-rectifiable when the
generating sets for E; have unbalanced weights (bottom-right). This illustrates that it is possible for a rectifiable measure to have purely
unrectifiable support.
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For every locally finite Borel measure u on an arbitrary metric space X, the lower 1-density D'(u, ) : X —
[0, ] is defined by the rule:

B
HEX, 1) (2);’ ) forall x € X , 14

D(u, x) = liminf
ri0

where B(x, r) is the closed ball with center x € X and radiusr > 0. The fact that in any metric space, the lower
1-density is positive on the 1-rectifiable part of a locally finite measure follows from Cutler’s theorem relating
the lower density and packing measures (Theorem 2.3). More specifically, the pointwise behavior of the lower
1-density can be used to identify the unique parts of a locally finite measure that are carried by or singular to
Borel sets of finite one-dimensional packing measure P. Thus, since every rectifiable curve in a metric space
has the finite ! measure, we obtain

Mo S UL IXEX:DIGLx) >0} and L {x € X: Di(u,x) = 0} < g, 15)

for any locally finite measure ¢ on X. For an in-depth discussion, see Sections 2.2-2.3, especially Corollary 2.4
and Remark 2.9.

The density-normalized Jones function J*(u, -) : G — [0, ] connects the local geometry of a locally finite
Borel measure u on a Carnot group G with the asymptotic geometry of rectifiable curves in G. When G has step
s, the function is defined by the rule:

. " s 1 XQ(X)
J*(u, x) = QEA B*(u, Q) diam Qm forall x € G, 16)
side Q<1

where A is a fixed system of “dyadic cubes” for G (Section 2.5) and S*(u, Q) is a certain anisotropic measure-
ment of the deviation of ¢ in a neighborhood of Q from being a measure supported on a horizontal line in G.
The definition of f*(u, Q) is based on the stratified f numbers of [45]. Roughly speaking, J*(u, x) is finite at
some X in the support of u whenever the local dimension of y at x is less than 1 or u has a measure-theoretic
weak tangent at x. For a discussion of the underlying etymology and history of similar Jones-type geometric
square functions in R", see [13—-15]. We postpone the precise definition of *(u, Q) to Section 4. For now, let us
simply remark that horizontal lines are the tangents to rectifiable curves in Carnot groups ([56, Theorem 2])
and the definition of *(u, Q) involves the step of the group. For example, when G = R" is a Euclidean space,
the step s = 1 and the horizontal lines are precisely the one-dimensional affine subspaces of R". When G is a
Heisenberg group, the step s = 2 and there is a two-dimensional space of horizontal lines passing through each
point in G (Figure 2).

Figure 2: Simplest example of a nonabelian Carnot group is the first Heisenberg group H?, which is topologically equivalent to R® but is
equipped with a metric so that H! has Hausdorff dimension 4. The step of H! is 2. In the illustration, we show four horizontal line
segments at 25 points located in the xy-plane inside of H?.
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Remark 1.3. On any metric space X, the collections of rectifiable curves and 1-rectifiable measures on X are
invariant under bi-Lipschitz changes of metric on X. (Of course, the length of any given curve depends on the
choice of metric.) In Theorem 1.1, there is partial flexibility in the choice of metric used to define the two
identifying functions. The lower 1-density D!(u, -) may be defined with respect to any metric on G that is bi-
Lipschitz equivalent to a metric associated with a Hebisch-Sikora norm (e.g., the Carnot-Carathéodory metric).
However, the definition of the Jones function J*(u, -) (in particular, that of f*(u, Q)) is more sensitive and
presently seems to require the use of metrics that are associated with the Hebisch-Sikora norms on G in order
to use Lemma 2.11 and Proposition 3.3 in the proof of Proposition 3.1.

Underpinning the main theorem is a characterization of subsets of rectifiable curves with estimates on the
length of the shortest curve containing a given set, usually called Analyst’s traveling Salesman theorem (ATST).
First established in R" by Jones [39] when n = 2 and by Okikiolu [55] when n > 3, the ATST was recently
extended to arbitrary Carnot groups by the second author [45] (for earlier necessary or sufficient conditions,
[23,32,40,46,47]). A key insight in [45] is that, to obtain a full characterization of subsets of rectifiable curves
with effective estimates on length, the local deviation of the set from a horizontal line should incorporate
distance in each layer of the Carnot group. Let us now state the theorem. Following [45], for any nonempty set
E C G and ball B(x, r), define the stratified f number for E N B(x, r) by setting

di(m(2), m(L)) ]zl‘

r

.7

N
Br(x,r)® =inf )  sup
L= ZEENB(X,r)
where L ranges over all horizontal lines in G, 7; : G — G; is the projection of G onto a layer G; = G/GW*D of G,
and d;(x, A) = inf{d;(x, a) : a € A} for some choice of metric d; associated with a Hebisch-Sikora norm on G;
(see Section 2.4). When G = R", the step s = 1, horizontal lines are one-dimensional affine subspaces, 7 is the
identity, and the stratified § number reduces to the usual Jones § number.

Theorem 1.4. (ATST in Carnot groups [45, Theorem 1.5]) Let G be a Carnot group with step s and Hausdorff
dimension q. For any set E C G, define the quantity

dr

B(E) = ‘OU;[%E(X, )% diamB(x, r)%T (1.8)

Then, E lies in a rectifiable curve if and only if E is bounded and B(E) < . Moreover, there exists C > 1 depending
only on G and its underlying metrics d; so that

« if T is any curve containing E, then diam E + B(E) < CH (T) and

« ifdiamE + B(E) < o, then there exists a curve T containing E for which H'(T) < C(diamE + B(E)).

To promote Theorem 1.4 to a characterization of 1-rectifiable measures on G, we need to first extend the
algorithm for constructing a rectifiable curve through E when B(E) < o« to an algorithm for drawing a curve
through the Hausdorff limit of a sequence (Xy) of “point clouds.” This algorithm has its origins in [39] when
G = R™" and [32] when G is the (first) Heisenberg group. In the original setting of the ATST, one can simply take
(X;) to be a nested sequence of 27%-nets for E. However, in the setting of the main theorem, when trying to build
a rectifiable curve charged by u, we only know how to locate families X; of 27X-separated points that are
nearby, but not necessarily on a set with positive measure (Lemma 5.2) and we must allow Xi to “float” as
k — . This issue was resolved when G = R" by the first author and Schul [15] by introducing “extensions” to
“bridges” and reproving Jones’ traveling salesman algorithm from first principles. In Section 3, we integrate
ideas from [15] and [45] to establish a flexible traveling salesman algorithm in arbitrary Carnot groups
(Proposition 3.1). There are additional technical challenges along the way. To name just one, the numbers
B*(u, Q) appearing in Theorem 1.1 are designed so that we can extract enough data points lying nearby a set
with positive measure to which we can apply the traveling salesman algorithm. In [15], the extraction process
involves a nice idea of Lerman [44]: convexity of the distance of a point to a Euclidean line L and Jensen’s
inequality control the distance of the u-center-of-mass zy in a bounded window Q to the line L. Unfortunately,
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we cannot use this observation in higher step Carnot groups. To overcome this, in Section 5, we must reorder
steps in the proof from [15, §5] and employ an indirect argument using the Chebyshev inequality.

Interesting examples of 1-rectifiable and purely 1-unrectifiable Borel measures that are singular with
respect to 4! and have compact support can be found in [25,48,49]. Garnett et al. [33] produced a family of
1-rectifiable measures u on R" that are doubling in the strong sense that

0 < u(B(x, 2r)) < Cu(B(x,r)) <o forall x € R" andall r > 0. 1.9)

Not only are their measures singular with respect to the Hausdorff measure 7, but they also satisfy the
stronger condition D'(u, x) =  y-a.e. [13, Example 1.15]. In arbitrary metric spaces, Azzam and Morgoglou [6]
characterized 1-rectifiable doubling measures with g-compact connected supports in terms of D'(u, x) alone,
but leave open the question of existence of such measures. To close this study, we extend the Garnett-Killip-
Schul existence theorem to a broad class of metric spaces, including Carnot groups and Riemannian manifolds.
While the construction of the measures in [33] leaned on the product structure of Euclidean space, we show
that this is not essential for the proof.

Theorem 1.5. If X is a complete, doubling, locally quasiconvex metric space, then there exists a doubling measure
v on X with sptv = X such that v is 1-rectifiable.

It is still an open problem to characterize the subsets of rectifiable curves in an arbitrary Banach or metric
space (see [9,10,28,30,34] for some partial results and discussion of the main difficulties). On the other hand,
Schul [57] successfully reformulated the ATST so that it holds in an arbitrary (finite or infinite-dimensional)
Hilbert space with dimension-independent constants. Gaps in the proof of the theorem in [57] were recently
discovered, but these have now been filled in (see [9,10,42]). Naples [54] has implemented a version of Theorem
1.1 for pointwise doubling measures on infinite-dimensional Hilbert spaces. Progress on traveling-salesman-
type theorems for various higher-dimensional objects has been made in [7,12,17,37,58].

The rest of this study is arranged as follows. In Section 2, we collect background results in geometric
measure theory and metric geometry, including definitions of Hausdorff and packing measures, rectifiable
curves, Carnot groups, and metric cubes. A version of the ATST for floating point clouds in a Carnot group is
the topic of Section 3. In Section 4, we define the anisotropic, stratified beta numbers *(u, Q). In Section 5, we
show how positivity of the lower density D'(u, x) and finiteness of the Jones function J*(u, x) for x € A yield
rectifiability of ¢ L A. In Section 6, we show that J* is locally integrable on any rectifiable curve, which yields
necessary conditions for 1-rectifiability. The proof of Theorem 1.1 is recorded in Section 7, using results from
Sections 5 and 6. The proof of Theorem 1.5, in Section 8, may be read independently of Sections 3-7.

2 Preliminaries

2.1 Implicit constants

When working on a fixed metric space X (on a Carnot group G in Sections 3-7 and on a complete, doubling,
locally convex metric space X in Section 8), we may write a < b to indicate that a < Cb for some positive and
finite constant C that may depend on X, including its metric and dimensions, but (without further qualifica-
tion) is otherwise independent of a choices of particular sets or measures on X. We writea ~b ifa < b and
b = a. We may specify the dependence of implicit constants on additional parameters ¢, d,... by writing
ascq. banda ~.4 . b.

2.2 Measures and the identification problem

To set our conventions, we recall that a measurable space (X, M) is a nonempty set X paired with a g-algebra
M on X, ie. a nonempty collection of subsets of X that is closed under complements and countable unions; a
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measure on (X, M) is a function u: M — [0, ] such that u(@) =0 and u(UTA4;) = Y u(4A;) whenever
Ay, Ay,---€ M are pairwise disjoint. In particular, a Borel measure i on a metric space X is a measure defined
on some measurable space (X, M) such that M contains every Borel set in X. Given a measure u on (X, M)
and a set E € M, the restriction of u to E is the measure ¢ L E defined by the rule u L E(A) = u(A N E) for
all A € M.

Given a measure (4 on (X, M) and a nonempty family A of sets in M, we say that u is carried by N if
wX \Ui"Ni) = 0 for some sequence Ny, Ny,--€ N. At the other extreme, we say that u is singular to N if
U(N) = 0 for every N € N. For example, when N is the set of rectifiable curves in a metric space X, we
recover the definition of 1-rectifiable and purely 1-unrectifiable measures recorded in the introduction. We
have the following convenient form of the Lebesgue decomposition theorem; a detailed proof is written in the
appendix of [16].

Lemma 2.1. Let (X, M) be a measurable space and let N be a nonempty collection of sets in M. For every
a-finite measure y on (X, M), there is a unique decomposition u = ti,, + ,u,\l, as a sum of measures on (X, M)

such that p,, is carried by N and yj, is singular to N

Remark 2.2. The proof of Lemma 2.1 is abstract and does not provide any concrete method to produce sets
Ny, No,-+-€ N such that u, (X \UTNi) = 0. The identification problem [8] is to find the pointwise defined proper-
ties P(u, x) and Q(u, x) such that

Uy =u L {x €X:P(u,x) holds} and yAL, =uL {x €X:0Q(,x) holds}

for every (locally) finite measure ¢ on X. An ideal solution should involve the geometry of the space X and the
sets in V.

On a metric space X, we let U(x, r) and B(x, r) denote the open and closed balls with center x € X and
radius r > 0, respectively. Let E C X and let § > 0. A é-cover of E is a finite or infinite sequence of sets
Ei, E;,---C X such that E C U;E; and diamE; < 6 for all i, where diamA denotes the diameter of a set A. A
§-packing in E is a finite or infinite sequence By, By,... of pairwise disjoint closed balls centered in E such that
2rad B; < & for all i, where radB denotes the radius of a ball B. For any E C X, s > 0, and § > 0, we define

HE) = inf Z(diam E;)® : Ey, Ey, ... isa 6-cover of Ej,

1

HS(E) = lim H(E) = sup H(E),
510 550

PS(E) = sup

>

Z(Zrad B))S : By, By, ... isa 6-packingin E
i
PS(E) = lim P{(E) = inf P{(E),
810 §>0

PS(E) = inf

1

YPS(E):EC __UlEi

We call H ¢ the s-dimensional Hausdorff measure and call #* the s-dimensional packing measure; both H S and
S are the Borel regular metric outer measures on X, and in particular, 7/ and #° are the measures when
restricted to the o-algebra of Borel sets. The auxiliary quantity P¢ is called the s-dimensional packing pre-
measure. We caution the reader that the premeasure PS is generally not an outer measure — it is monotone, but
is not countably subadditive. Note that we have adopted the “radius” definition of the packing measure instead
of the “diameter” definition. The next estimate (valid on any metric space!) is a special case of [26, The-
orem 3.16].
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Theorem 2.3. (Cutler [26]) Let u be a finite Borel measure on a metric space X, let E C X be Borel, and let s > 0. If
a < liminf,,o(2r)*u(B(x,r)) < b for all x € E, then

aPS(E) < u(E) < 25bPS(E),
where we take the left-hand side to be 0 if a = 0 or PS(E) = 0 and take the right-hand side to be ® if b =
or PS(E) = o,

We can now use Cutler’s theorem to solve an instance of the identification problem.

Corollary 2.4. Let X be a metric space, let s > 0, and let N' be the collection of all Borel sets E C X with
PS(E) < o. For every Borel measure u on X such that p is finite on bounded sets, the parts u,, carried by N

and uAL, singular to N (Lemma 2.1) are identified pointwise by the positivity of the lower s-density:

Uy =uL

X € X : liminf(2r)Su(B(x, r)) > 0}:
ri0

1y =pL

X € X : iminf(2r)u(B(x, r)) = 0’.
ri0

Proof. Fix any base point x; € X. The set A = {x € X : liminf,,o(2r)*u(B(x, r)) > 0} can be written as a coun-
table union of sets

Ay, = 1X € B(xp, 1) : iminf(2r)Su(B(x, r)) > 1/kl,
ri0

where k and ! range over all positive integers. Using Cutler’s theorem, we determine that P5(Ax;) <
k u(Ax1) < k u(B(xop, 1)) <« for each k and l. Therefore, 4 L A is carried by sets of finite £ measure.
Similarly, let B = {x € X : liminf;,o(2r)*u(B(x, r)) = 0} and suppose P5(E) < . Then,

UL B(E)= }im‘u LBNUKX,D)E)<25-0-PS(E) =0,
by continuity from below and the upper bound in Cutler’s theorem with b = 0. Thus, y L B is singular to sets of

finite S measure. Clearly, u = ¢ L A + u L B. By uniqueness of the decomposition in Lemma 2.1, we confirm
that y, =y L Aand y; = u L B. O

Corollary 2.5. Let X be a metric space, let s > 0, and let N' be the collection of all Borel sets E C X with

PS(E) = 0. For every Borel measure u on X such that u is finite on bounded sets, the parts u,, carried by N
and y/t singular to N (Lemma 2.1) are identified pointwise by the magnitude of the lower s-density:

Uy =H L

X € X : liminf(2r)Su(B(x, r)) = m’,
ri0

y =uL

x € X : liminf(2r)u(B(x, r)) < 001.
ri0
In particular, u < P5 if and only if liminf,,o(2r)Su(B(x, r)) < © u-a.e.
Proof. We leave the proof that u,, and y)t are identified by the given formulas to the reader. (Just mimic the
proof of Corollary 2.4.) For the last remark, note that u < #* if and only if u(E) = 0 whenever £*(E) = 0. Thus,

u < P if and only if p is singular to sets of zero £° measure. O

Remark 2.6. Analogous results hold with the Hausdorff measures replacing the packing measures and upper
densities defined using limsup replacing lower densities defined using liminf. The proof of Theorem 2.3 for the



8 —— Matthew Badger et al. DE GRUYTER

Hausdorff measures is considerably easier and can be proved using Vitali’s 5r-covering lemma ([50] or [36])
and the definition of H*.

2.3 Rectifiable curves

The length of a curve in a metric space can be defined either intrinsically in terms of the variation of a para-
meterization of the curve or extrinsically using the one-dimensional Hausdorff measure of the trace of the curve. It
is well known that a curve has finite extrinsic length if and only if it admits a parameterization with finite intrinsic
length; for a detailed explanation, see [1]. The following theorem originated in the 1920s ([1] for a reference).

Theorem 2.7. (Wazewski’s theorem) Let X be a metric space. For any nonempty set I' C X, the following are
equivalent:

* T is compact and connected, and H (T) < oo;

* T = f([0, 1]) for some continuous map f: [0,1] — X such that var(f) = sup, ., <._.<th?dist(f(ti_l),f(ti)) < oo;
* T = f([0,1]) for some Lipschitz continuous map f: [0,1] —» X.

Moreover, any set T' satisfying (1), (2), or (3) is the image of a Lipschitz continuous map f: [0,1] - X with
If(®) = f(s)| < Lt - s| for all s, t € [0, 1], where fis essentially 2-to-1 and L = var(f) = 2H'(T).

A rectifiable curve I in a metric space X is any nonempty set satisfying one of the three conditions in
Wazewski’s theorem. To test whether a given set I' is a rectifiable curve, it is usually easiest to check (1). In fact,
according to the following lemma, a weaker assumption suffices in complete metric spaces.

A setY C X is said to be r-separated if dist(y, z) > r for all y,z € Y. If, in addition, dist(x, Y) < r for all
x € X, then we callY an r-net for X. Recall also that B C X is totally bounded if for everyr > 0, the set B can be
covered by a finite number of balls of radius r. It is well known that a metric space X is compact if and only if
X is complete and totally bounded.

Lemma 2.8. Let X be a complete metric space. If a nonempty setT C X is closed, connected, and H(T) < o, then
T is compact, and thus, T is a rectifiable curve.

Proof. Equipped with the subspace topology, I' is complete since it is a closed subset of a complete metric space.
Suppose that I' is not compact. Then, it cannot be totally bounded. Hence, there exists an infinite r-net Y C I for
somer € (0, diamI). By the triangle inequality, the collection 8 = {B(y, r/3)},ey is pairwise disjoint. Because I
is connected, H (T N B) = r/3 for all B € B. Therefore,
HT)z Y HTNB)2 ) r/3.
BEB BEB
Since the collection 8 is infinite, this implies that  1(T) = o, which is a contradiction. Therefore, I must be
compact, and by Theorem 2.7, T is a rectifiable curve. O

Remark 2.9. Since every rectifiable curve T admits a Lipschitz parameterization, it follows that PY(T)s;
P1[0,1]) <  (e.g, [13, Lemma 2.8]). Hence, every 1-rectifiable measure u on X is carried by sets of finite
Pl measure. Thus, if u is a Borel measure on X that is finite on bounded sets, then the 1-rectifiable part of u (cf.
Theorem 1.1) satisfies

Upeer S U L {X € X : liminf(2r)u(B(x, 1)) > 0 2.1
ri0
by Corollary 2.4. In particular, if ¢ is a 1-rectifiable measure on a metric space and y is finite on bounded sets, then

the lower 1-density D(u, x) = liminf,,o(2r)u(B(x, r)) > 0 at y-a.e. x € X. This observation significantly gener-
alizes [50, Theorem 7.9], which says that DY(H ! L T, x) > 0 at H l-a.e. x € T for any rectifiable curve I' in R™.
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2.4 Carnot groups

A connected, simply connected Lie group G is called a step s Carnot group if its associated Lie algebra g satisfies
g=lVo-oV, [WVW=V., fori=1.,s-1 [W V] ={0}

where V4,..., V; are the nonzero subspaces of g. We call this a stratification of the Lie algebra g. Choose a basis

{X, ...,Xy} of g so that
Xz;ll(dimVj)ﬂ’ ""XZ;=1(dim‘/j) is a basis of V; foreach i € {1, ...,s}.

For any x € G, we may use the exponential map exp:g — G to uniquely write x = exp(X; +--+xyXy) for

some (X, ...,Xy) € RV, In other words, we can identify G with R" via the relationship x < (x, ...,Xy). These are

called the exponential coordinates of G. We will actually group coordinates by the layer that the corresponding

basis elements are in. Thus, we will actually write

X = (Xl, "')XS))

where x; € R% and n; = dimV;. Under this identification, we have p™' = -p for any p € G. Denote by || the
Euclidean norm in G = RY relative to the aforementioned choice of basis.
For each r € {2, ...,s}, we also define the normal subgroups

GM = exp(Vr 2>} ®Vs)

In terms of exponential coordinates, these are the subspaces of RY spanned by the coordinates corresponding
to vectors X; € V@@ V;. For a general discussion of Carnot groups, see [21].

We can express group multiplication in G on the level of the Lie algebra using the Baker-Campbell-
Hausdorff (BCH) formula:

-1 k-1
log(exp(X) exp(Y)) = Z (Vi Z a(r, Sty ., T, S)[ XY S1 -+ XTkY K],
oo K rdso, 2.2)
13,8120,
1<i<k

where the bracket term denotes iterated Lie brackets:

[X1ysi-- XWYs) = [X, [X, [X,[Y,[Y, [Y, - [X, [X, ~[X,[Y,[Y, Y]]

n $1 Tn Sn

We have explicit formulas for group multiplication in terms of exponential coordinates:
O, s Xs) Yy o) = G4+ Yy, X + Y, + Poy X + ) + B).
Here, each P; is a polynomial of (x, ...,X;-1) and (y;, ...,)j_;), where x; and y; are the vectors in R". We call the
Py’s the BCH polynomials. We use the following lemma in Section 3.
Lemma 2.10. [45, Lemma 4.1] There exists some constant C > 0 depending only on G so that if|y;| < nand|x;| <1
foralli € {1, ...,k - 1} and any n € (0, 1), then
[Pk, wosXi-1, Y5 Vi)l < €.

There is a natural family of automorphisms known as dilations on G indexed by t > 0. Given ¢ > 0, we
define

8:(X) = 81X, s Xs) = (tX, 12X, ., 15X5).

It follows that {6} is a one parameter family, i.e., §, ° & = Sy
A homogeneous norm N : G — [0, ) is a function satisfying the following properties:
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) Ng)=0e g=0,

(2 N@g™) =N(g),

(3) N(gh) < N(g) + N(h).

4) N(S(g)) = tN(g) for allt > 0, g € G.

The first three properties ensure that if we define d(g, h) = N(g7h), then d is a left-invariant metric on G. The
last property ensures that the metric scales with dilations, i.e., for all t > 0 and g, h € G, we have

d(6:(g), 6.(h)) = td(g, h).

Thus, we see that dilations and homogeneous norms on Carnot groups behave like scalar multiplication and
linear norms. That is to say, Carnot groups may be viewed as nonabelian generalizations of vector spaces. In
fact, the class of abelian Carnot groups are precisely the Euclidean spaces. Finally, we mention that it is well
known that any two metrics on a Carnot group G induced by homogeneous norms are bi-Lipschitz equivalent.

We now define a family of homogeneous norms that exist for all Carnot groups. Given a parameter n > 0,
consider By~ (1), the Euclidean ball around 0 in G with respect to the Euclidean norm |-|. We then define an
associated Minkowski gauge on G by:

N/g) = Infir > 0 : g € &Byr(M)}-

It is a theorem of Hebisch and Sikora [35] that, for any Carnot group G, there exists i, > 0 such that N, is a
homogeneous norm for all 0 < < n,. As Euclidean balls of different radii are not homothetic under the
dilations of G, we obtain a family of nonisometric norms {N;}o<y<;,- We call these the Hebisch-Sikora norms
on G.

Define 7 : G — R™ to be the projection of G onto its first layer. Furthermore, for eachr = 1,..., s - 1, we let
7 : G~ G, = G/G"*D, We endow G with a metric d that arises from a Hebisch-Sikora norm N chosen so that
the projected unit ball of N in each G, also forms the unit ball of a Hebisch-Sikora norm. In particular, this
choice ensures that each projection 7, is 1-Lipschitz. We note that the norms may be considered “nested” in the
following sense: if N and N’ are norms of G, and Gr.1, then

NQOq, ... xr) = N'(%, ..., X, 0)

by the convexity of balls centered at 0. By the abusing notation, we will use N to denote all of these norms. We
now record another lemma, which will be important in Section 3.

Lemma 2.11. [45, Lemma 6.6] For any a € (0, 1), there exists a constant C > 0 so that if N(x, ...,Xs;-1, 0) € [a, 1]
and |y| < 1/C, then

0< N(Xl) ---,Xs—l,)’) - N(X1: s Xs-1, 0) s CMZ

Finally, a set L C G is called a horizontal line if it is a coset of a one-dimensional subspace inR™ x {0} C G.
In other words,

L=x-{(s,0,..0):s€R} forsome x € G, veERM

By the definition of the norm on G, horizontal lines are isometric copies of R in G.

Using the BCH formulas, one can show that the Jacobian of left translation on G is 1. This tells us that the
Lebesgue measure on the underlying manifold RY of G is a Haar measure. By looking at the anisotropic scaling
of the dilation &, we see that the Lebesgue measure of balls in G satisfies

[B(x, )| =cgr? forall x€ G and r >0, 2.3)

where ¢ = |B(0, 1)| is the Lebesgue measure of the unit ball and q = Y;_,k dim V4 is the homogeneous dimen-
sion of G. Therefore, the Lebesgue measure on any Carnot group G is g-uniform, Ahlfors g-regular, and
doubling. Furthermore, it follows from a standard packing argument that any ball in G of radius r may be
covered by at most C(q, €) balls of radius er.



DE GRUYTER Identifying 1-rectifiable measures in Carnot groups = 11

2.5 Dyadic cubes in “finite-dimensional” metric spaces

We shall need access to a certain decomposition of an arbitrary Carnot group into a system of “dyadic cubes,”
where cubes of the same “side length” are pairwise disjoint. In the harmonic analysis literature, such systems
are often called Christ or Christ-David cubes after constructions by David [27] and Christ [24] (e.g., [38]), but
similar decompositions in a metric space were given earlier by Larman [43]. Here, we quote (a special case of)
a recent streamlined construction of cubes by Kdenmaki et al. [41], which can be carried out in any metric
space, which is “finite-dimensional” in the weak sense that every ball B is totally bounded. For simplicity, we
record the KRS construction with the scaling parameter 1/2 (see [41] for the general case, which allows for any
scaling parameter between 0 and 1).
Recall that U(x, r) and B(x, r) denote open and closed balls in X, respectively.

Theorem 2.12. [41, Theorem 2.1, Remark 2.2] Let X be any metric space with totally bounded balls. Suppose that
we are given xo € X and a family (Xi)xez 0f 27%-nets for X such that Xy € Xy, C Xy+1 for allk € Z. Then, there
exist a family of collections Ay = {Qy; : | € Ny C N}xez of Borel sets (“cubes”) with the following properties:
(1) Partitioning: X = U;Q, ; for everyk € Z,

(2) Nesting: Qy; N Qp; = D 0r @y ; C Qp ; Wwhenever k = m,

(3) Centers and roundness: for every Qk.i» there is a point xi ; € Xy such that

U

1 8
Xk,i’g <27k C Qk,i CBXk,i)g -2 k],

(4) Inheritance: {Xy; : i € Ny} C {Xgs1; : | € Nxs1} forallk € 7,
(5) Origin: for every k € Z, there exists Qy ; such that

U

1 -k
X0, g - 27K C Qk,i'

(To derive Theorem 2.12 as stated, invoke the theorem in [41] with r = 1/4 and duplicate every generation
of 4-adic cubes. The resulting cubes are the dyadic cubes.)
Given a fixed system of KRS cubes (A)kez and Q = @, ; € Ay, we let xp = Xxi; denote its center and let

sideQ = 27% denote its side length. Furthermore, we define

1
AUp = U|Xo, oA 2kl and ABp =B

8
XQ, EA . 2"‘]

for all A > 0. Given Q € Ax and R € Ay, we say that R is a child of Q if R C Q. Let A;(Q) denote the set of all
children of Q. Extending this metaphor, we may define grandchildren, descendants, parents, grandparents,
ancestors, and siblings in the natural way as convenient. Finally, we assign A = UkezAy, i.e., A is the set of all
cubes.

Definition 2.13. We say that 7 C A is a tree of cubes if 7 has a unique maximal element Top(7) such that if
Q€7 ,thenP €7 forall P € AwithQ C P C Top(7). For each level [ > 0, let 7; denote the collection of all
cubes Q € 7~ with sideQ = 27'sideTop(7). An infinite branch of 7 is a chain Top(7) = Q, 2 Q, D Q, D -+ with
Q, € 7 for all 1 = 0. We define the set of leaves of 7~ by:

Leaves(7) = UNQ;: Qy D Q; 2 Q, D -+ is an infinite branch of 7‘]
1=0

Remark 2.14. Because X has totally bounded balls, #7; < o for all > 0. Using Konig’s lemma (i.e., in a graph
with infinitely many vertices, each of which has finite degree, there exists an infinite path), it can thus be
shown that Leaves(7) = N;2,U7;. In particular, Leaves(7) is a Borel set, since cubes in A are Borel.
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Definition 2.15. (cf. [15, p. 18]) For any locally finite Borel measure u on X, tree of cubes 7, and function
b: 7 - [0, ©), we define the y-normalized sum function:

Srp, x) = ) b(Q) ( %00 [0,0] forall x € X,
QeT Q)

where we interpret 0/0 = 0 and 1/0 = oo.

The following lemma is a slight variation on the Hardy-Littlewood maximal theorem for dyadic cubes in
R™. The proof works in the metric setting, because the system of cubes A satisfies Properties (1) and (2) in
Theorem 2.12.

Lemma 2.16. (Localization, cf. [15, Lemma 5.6]) Let u be a locally finite Borel measure on X, let T be a tree of
cubes, and let b : 7 — [0, »). Fix 0 < N < o and define

A = {x € Leaves(7) : Srp(, Xx) < N}. 2.9

Ifu(A) > 0 and 0 < € < 1, then there is a set G C 7 such that
(1) G is a tree of cubes with Top(G) = Top(7),
(2) u(A N Leaves(@)) =2 (1 - e)u(A), and

3) 20egh(Q) < (N/e)u(Top(7)).

Proof. Suppose that y, 7, b, N, A, and € are given as in the statement of the lemma. Note that u(Top(7)) > 0,
because u(A) > 0. Declare a cube Q € 7 to be bad if there exists R € 7 such that Q C R and

_euA)
u(To ()"

By design, this definition ensures that every child of a bad cube in 7~ is bad too.
We say that a cube Q € 7~ is good if Q is not bad. Note thatif R € 7 and Top(7) C R, then R = Top(7) and

gu(A)
u(Top(7))

since ¢ < 1 and u(A) > 0. Hence, Top(7) is a good cube. Let G denote the set of all good cubes. Because Top(7)
isin G and every parent of a good cube in 7 is again a good cube, we conclude that G is a subtree of 7~ with
Top(G) = Top(7). This verifies (1).

Next, we check (2). There are two cases. First, if there are no bad cubes, then G = 7 and we trivially have
U(A N Leaves(G)) = u(4) > (1 - e)u(A). Otherwise, there is at least one bad cube. Let 8 denote the set of all
maximal bad cubes, i.e., the set of all bad cues that are not properly contained in another bad cube. Note that 8
is pairwise disjoint. Thus, using (2.5), we see that

WANR) < u(R). 2.5)

(A N Top(7)) = u(A) > ——————u(Top(7)), (2.6)

u(A\(A N Leaves(G))) < Y u(ANR)

REB
_ewA)
#(Top(’i‘)) RZB HCE) @7
eu(A)
<——— (T
< M(Topm)u( op(7))
= eu(A).

Thus, (A N Leaves(@)) = u(A) - y(A\(A N Leaves(@))) = (1 — e)u(4).
Finally, using the definitions of A and S5, Tonelli’s theorem, and the definition of good cubes, we obtain
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Nu(A) 2 jsm(x)du(x)
[ 3 502 o
)& u@

HAN Q)
=3b
ng,- CTON Q)

eu(a)
b
Qgg @ Top) u(Top(7))’

(2.8)

Rearranging yields (3). O

Remark 2.17. As stated, [15, Lemma 5.6] is false in general. Let us describe the problem. Instead of using (2.4),
the set A in [15] was defined as A = {x € Top(7) : S7»(x) < N}. It was then asserted without justification that

A\ U Q = A N Leaves(G),
bad cubes Q€T

which is not true unless Leaves(7) = Top(7).

Mimicking the usual construction of Whitney cubes in R", we may use a system of KRS cubes to build
Whitney cubes in the complement of any closed set.

Lemma 2.18. If E C X is a nonempty closed set, then there exists a family ‘W of cubes in A with the following
properties:

(1) Partitioning: X\E = Uwew W and Wy N W, # & if and only if Wy = Wy;

(2) Size and location: diamW < dist(W, E) for all W € W,

where dist(W, E) = inf,cw infyegd(w, X). Moreover, if there exists a constant ¢ > 0 such that diam U(x,r) = cr
whenever x € X,r > 0, and U(x, ) # X, then
(3) dist(W, E) < (128/c)diamW for all W € W .

Proof. Given a nonempty closed set E with nonempty complement, take ‘W to be any maximal family of cubes
W € A such that dist(W, E) > diamW. The partitioning property follows from maximality and Properties (1),
(2), and (3) of Theorem 2.12. Let W € ‘W . One the one hand, dist(W, E) > diamW by definition of the family. On
the other hand, let V be the parent of W in A. Then, dist(V, E) < diamV by maximality. Thus, under the extra
assumption on the diameters of open balls,

dist(W, E) < dist(V, E) + diamV < 2diamBy < (128/c)diamUy, < (128/c)diamW. ]

Remark 2.19. Suppose that X is a doubling metric measure space in the sense that there is a Borel measure u
on X and constant C > 0 such that (1.9) holds for all x € X and r > 0. By (2) and (3) in Theorem 2.12, for any
Q € Ag and R € A(Q), we have

LI
Xg, 27 el C Ulx

d B
an o

16 1
Q C B(XR, dlamBQ) C B|xg, ? -k E . 2—(k+1)] C Uy

forany 0 < ¢ < % - 27k Doubling of the measure at xz yields u(Q) < C’u(Uz) for all R € A(Q). Hence,
uQ) = ) u®= Y uU) = C7uQ) #4(Q),

ReA(Q) ReA(Q)

ie., #1(Q) < C7 for every KRS cube Q.
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3 Traveling salesman algorithm in Carnot groups

From here through the end of Section 7, let G be a fixed Carnot group that is homeomorphic to R" and has step
s and homogeneous dimension ¢q. Also, choose metrics d; associated with a Hebisch-Sikora norm on
G =G/GWD foralll1<i<s.

In this section, our goal is to prove the following traveling salesman type criterion for existence of a
rectifiable curve passing through the Hausdorff limit of a sequence of point clouds. Crucially, the weak
coherence condition (V;) only requires that each cloud lie nearby, but not necessarily on, the rectifiable curve.
We will use this flexibility in the proof of Lemma 5.3. In the Euclidean setting, Proposition 3.1 is due to the
Badger and Schul [15], based in part on earlier constructions in [39] and [44]. There are at least two difficulties
in extending this criterion to arbitrary Carnot groups. The first challenge is in the statement of the criterion.
The number ay, is a penalty term that bounds the stratified distance to a horizontal line ¢ , of points x in the
clouds V-1 and Vj that lie nearby the point v in V4; the correct dependence on the step s in (3.1) and (3.2) was
only recently identified by the second author [45]. Another technical challenge for higher step groups appears
in the proof. In the Euclidean case, all length estimates can be stated in terms of the total Hausdorff measure of
line segments of approximating curves. However, in the general Carnot setting, we need to employ two
notions: edge length of projections of abstract graphs I}, connecting Vi onto the horizontal layer of G and
Hausdorff measure of geometric realizations Iy of the graphs in the whole space G (see Section 3.4).

Proposition 3.1. (Traveling salesman criterion for point clouds) Let x, € G, let C* > 1, and let r, > 0. Suppose
that (Vi)r-o is a sequence of nonempty finite subsets of B(x,, C'tp) such that
(VD) d(v, V") = 27%r, for all distinct points v, v’ € V%,
(VID) for all v € Vi, there exists Vis1 € Visq Such that d(visq, i) < C27%r,
(VIID) for all vy € W, there exists Vi-1 € Vi-q such that d(vg-1, v) < C*27%n.

Suppose also that, for allk > 1 and allv € Vj, there is a horizontal line ¢y, in G and a number ay, = 0 such that

X € by Syky (Brr(a,)) for all x € (Viey U Vi) N B(v, 65C"27Kry). 31
Finally, suppose that
Y D aB2kn < o 32
k=1veVy

Then, the sets Vi converge in the Hausdorff metric to a compact set V C B(xy, C'1y), and there exists a rectifiable
curveI' C B(xg, 3C'ry) such that V C T and

7‘{1(1—') Sgch*t Z z a,?fVZ"‘ro. 3.3)
k=1veV}

Remark 3.2. The motivation for the requirement (3.1) on ax, comes from [45]. Recall that the stratified
number B(x, r) is defined by (1.7). By [45, Proposition 1.6],

Be(x, 1) ~ irLlf inf{e >0 : ENB(x,r) CL - &§(Brr(e%))}, (3.4)

where B(x, r) is a ball in G, Bgr(e®) is a Euclidean ball about the origin of the manifold R™ underlying G, and &
represents the “width” of a tubular neighborhood L - &,(Bgr(¢%)) of the horizontal line L formed using the
group multiplication, the group dilation, and the step of the group. The implicit constant in (3.4) depends on n,
s, and the choice of the metric d; in each layer G; of G, but is otherwise independent of E, x, and r.

The following auxiliary result captures an essential bi-Lipschitz property of projections near points that
are relatively “flat,” i.e., close to a horizontal line relative to their scale of separation. It replaces [15, Lemma
8.3], which was an application of the Pythagorean theorem in R".
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Proposition 3.3. Assume G is a Carnot group of step s, and let t : G — R™ be the projection to the first layer of G.
For any a > 1, there exist positive constants C and g, depending on G and a so that if L C G is a horizontal line,
P: G - n(L) is the composition of m with the orthogonal projection in R™ onto n(L), and a, b € L - Brn(€°) for
some € < g so that d(a, b) € [1, a], then

d(a, b)
1+ Ce*s

< |P(a) - P(b)| < d(a, b).

Proof. The right-hand inequality restates the fact that the projections which comprise P are 1-Lipschitz. We
will prove the left-hand inequality. We may without loss of generality assume that the horizontal line L
contains the origin. In particular, this means that L has the form {(ut, 0, ...,0) : t € R} for some u € R™.
We also suppose that a € 0 - Bgr(¢%) and u was chosen so that b € (u, 0, ...,0): Bgr(e®). Hence,

n(a), n(b) € m(L) + Bru(e®). 3.5)

By choosing g, sufficiently small, we can use the triangle inequality to guarantee that |7(b) - n(a)| = 1/2,
|P(b) — P(a)| = 1/4, and |u| < 2a.
To continue, let us prove that there exists a constant C, > 0 so that

a_lb = (T[(b) - T[(a): EZs '-')ES)J

and each & € R™ has norm |§]| < Coe®. We will actually prove the statement for &;/5,(a”'h) (with the first layer
properly rescaled) as it will allow us to use Lemma 2.10. Rescaling back by &,, then gives the corresponding
statement for a™'h. The fact that the coordinate in the first layer of §;/3,(a”'b) is %(n(b) - n(a)) is clear by the

Baker-Campbell-Hausdorff formula (2.2). By our assumptions on a, b, we have
81/24(@7'h) = (4, o X)W, 0, o0, 0y, s ))s

where |x, |y;| < &%/2a and |u’| = |u|/2a < 1. Two applications of Lemma 2.10 give the result.
Now, by Lemma 2.11, we have d(a, b) = N(a™'b) < N(n(b) - n(a), &, ...,&-1) + Ci€* for some constant
G, > 0. Iterating this gives a constant C, > 0 so that

d(a, b) < N(n(b) - 71(a)) + Coe® = |m(b) - m(a)| + Ce®.

Recalling (3.5), the Pythagorean theorem gives |(b) — m(a)| < |P(a) - P(b)| + 10&%. Altogether, we get a con-
stant C; > 0 such that

d(a, b) < |P(a) - P(b)| + Cse®.

Since |P(a) - P(b)| = 1/4, we have proven the desired inequality. O

3.1 Start of the proof of Proposition 3.1

The rest of this section is devoted to the proof of Proposition 3.1. We follow the general outline of the proof in
the Euclidean case [15, §8.1]. We shall refer the reader to the original proof for arguments that are essentially
metric and highlight the changes that are necessary for the Carnot setting. The details are rather technical. As
such, the reader who is willing to assume the veracity of Proposition 3.1 is encouraged to jump to Section 4.

Without loss of generality, we can rescale the metric on G using a dilation so that ry = 1. By (the proof of)
Lemma 8.2 of [15], the sets Vi converge in the Hausdorff metric to a compact set V C B(x,, C*). Note that, if
#Vi = 1 for all k, then V is a singleton, and so the result trivially holds. Assume, therefore, that there is some
least ko = 0 so that that #V}, > 2 for all k > k.
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3.2 Construction

We will inductively construct a sequence of abstract graphs I}, on the vertices of U;V;. The abstract edges will
simply be unordered pairs of vertices. On occasion, we may refer to connected families of edges as “curves.”
(In the Euclidean case [15], the edges in I} were realized geometrically as line segments.)

To begin, we will define the extension of a vertex. Given v € Vi, we define E[k, v] in the following way. Let
Vo = V. Once v; € V.; has been defined, choose v;.; to be a closest point in V.. to v;. The extension E[k, v] is
then defined as E[k, v] = {(v;, Vi+1)}i=o- Given distinct vertices v, v’ € V, define the bridge

B[k, v, V'] = E[k,v] U {(v,v)} U E[k, V.

Bridges will be used to span large “gaps” between vertices in V.

3.2.1 Initial curve I,

We remark that either ko = 0 and Vy C B(xo, C*) by assumption, or ko = 1 and Vi, C B(x, C*27%) by (Vy), where
Vko-1 = 1x}. We construct the initial graph Iy, by including every edge (v’, v”) with v/, v* € V4, i.e,,

I‘ko = U (V', V”). (36)

v',v”er0

3.2.2 Future curves I

Suppose that Iy, ..., ;-1 have been defined for some k > kq + 1. In order to define the next set Iy, we first
describe the edge set in I} locally nearby each vertex v € V. We will then declare I to be the union of new
parts of the curve together with the bridges from previous generations, i.e., if Iy, denotes the new part of I
nearby v, then

I = Ui, U kul U  B[j,w,w"]. 3.7
VE Vi J=koB[j,w’,w"]CT;

For each k = ko and v € Vj, define By, = B(v, 65C*27%). According to (V;), there is some constant M > 0
such that #(Vx N Bk,,) < M for all k = kq and every v € V. Let € > 0 be a small parameter, depending only on
G, chosen according to various needs below. In particular, when ¢ > 0 is sufficiently small, we can invoke
Proposition 3.3.

Fix an arbitrary vertex v € V. We will define Ij , in two cases.

Case I: Suppose ax; = € for some ¥V € Vi N By,

To construct Ty, consider each pair of vertices v/, v* € Vi N By,. If |m(v") — m(v")| < 30C*27%, include the
edge (v, v”) in I} ,. Otherwise, include the bridge B[k, v’, v”]. In other words,

L= U U W, v)u U B[k, v, v"]|.
vV EV|Im(v)-m(v)|<30C 27K |m(v))-m(v”)|230C* 27k
This ends the description of Iy, in Case I.
Case II: Suppose ax,s < € for every v € V4 N By,.
Identify the projected horizontal line (¢ ) with R. (In particular, pick directions “left” and “right.”) Let
Ty : G ~ R denote the projection P defined in Proposition 3.3 composed with this identification. By (3.1), (V}),
and Proposition 3.3, the map 7y, is bi-Lipschitz on (Vx U Vk-1) N By, with

d(z',2") < (1 + Ce¥)lm (2') = meu(2”)l V2, 2" € (Vi U Vi) N By 3.8)

In particular, both Vi N By, and V-1 N B, can be arranged linearly along &, i.e., if we setvy = v € Vi, we can
write

Ve V-1, Vo, V1500, Um
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to denote the vertices in Vi N By, arranged from left to right according to the relative order of m ,(v;) in R,
where [, m = 0. In other words,

T w(V-) <+ < T p(V-1) < T w(Vo) < Tew(V1) <o+ < T v (V).

We start by describing the “right-half” I'¥ , of Iy, Starting from v, and working to the right, include each edge
(Vi Vi+1) in Fﬁyv until |77(vis1) = 7(v)| = 30C°27%, viuq € B(v, 30C*27%), or v;4q is undefined (because i = m). Let
t > 0 denote the number of edges that were included in F,’f)v.

Case II-NT: If ¢ > 1 (i.e, at least one edge was included), then we say that the vertex v is not terminal to the
right, and we are done describing I§ .

Case II-T1 and Case II-T2: If t = 0 (i.e., no edges were included), then we say that the vertex v is terminal to
the right and continue our description of nyv, splitting into subcases depending on how I}, looks near v. Let w;,
be a vertex in Vi, that is closest to v. As mentioned earlier, we may enumerate the vertices in Vx-; N By,
starting from w, and moving right (with respect to the identification of ¢, with R) by:

Wy = Wy 0, Wy 1,005 Wy s,

ie., 7 y(Wy o)< < T (W, 5). Let wy,» denote the rightmost vertex that appears in Vi_; N B(v, C*2"%"D), There

are two alternatives:

T1: If r = s or if [m(wy,;) = T(Wyr41)| 2 30C°27 KD, then we set TR, = {v}.

T2: If [m(Wy,) — T(Wyre1)| < 30C°27%D, then vy exists by (V) (and |r(v) — m(vy)| = 30C*27K). In this case, we
setIf, = B[k, v, v].

The first alternative defines Case II-T1. The second alternative defines Case II-T2. This concludes the descrip-
tion of I .

We define the “left-half” F,%)v of T, symmetrically. Also, define the terminology v is not terminal to the left
and v is terminal to the left by analogy with the corresponding terminology to the right. Having separately
defined both the “left-half” I, and the “right-half” T}, of Iy ,, we now declare

v = TF, UTR,.

This concludes the construction of Iy, in Case II

3.3 Connectedness

The graph Iy, is connected as it is the complete graph on Vi,. The graphs I} are locally connected nearby each
vertex in Vi by construction of the Iy ,. Together with the fact that I includes all bridges appearing in I}—; and
that bridges include extensions to all future generations, it can be shown that I is globally connected (see [15,
§8.3] for sample details).

3.4 Start of the length estimates

Let 7 : G — R™ be the horizontal projection. Given E, a nonempty collection of abstract edges of Up_x, Vk (e.g.,
I;), we define its projected length ¢(E) by:
eE)= Y () - 7(v). (3.9)
(u,v)EE
(This concept did not appear in [15].) We remark that the projected length may be larger than the length of the
curve in R™ formed by projecting Uy-, Vi into R™ and connecting pairs of points whose vertices in E are
contained in an edge. The difference is that the quantity above might over-count the length since the projected

line segments could overlap.
Our primary task is to verify the following bound on £(Iy):
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Lemma 3.4. There exists a constant C > 0 depending only on G and C* so that

k
-k 28 9—j
270+ Z Zai,vzj
J=ko+1vey;

eI £ C for all k = ko + 1. (3.10)

For convenience, in the rest of this section, we write a < b to denote a g ¢ b. Let us first see how
Proposition 3.1 follows from this lemma.

Proof of Proposition 3.1 given Lemma 3.4. First, assume that for some constant C; > 0 depending on at most G
and C*, we know that for all k > ky + 1,

Y dw,v) <G . (3.11)

(u,v) €T

k
emy+ ) Y a2l

j=k0+1vEVj

Let Iy be a geometric realization of Ty in G formed by drawing a geodesic in G for each edge (u, v) € I and
taking the closure of the union of these geodesics. Observe that Ij, C B(xo, 3C*) by the triangle inequality, since
U, v € B(xop, C*) for each (u, v) € I} and diamB(xy, C*) = 2C". Together, (3.2), (3.10), and (3.11) yield

2kt Y Y ak2d

j=ko+1VEY;

HYL) < G <o, forall k=ky+1, (3.12)

where G, is a constant depending on at most G and C*. Let (ﬁq)‘}’:l be any subsequence of (T)f- k, that converges
in the Hausdorff metric, say I' = lim;_.«[}. Then, by Gotab’s semicontinuity theorem, which is valid in any
metric space [1], T is a rectifiable curve and H'(T) < liminf;_, o 1(IA‘k].) < o by (3.12). That is to say, I satisfies
(3.3). Also, we know that T' C B(xg, 3C*), since each Iy C B(xp, 3C*). Back in Section 3.1, we noted that Vi,
converges in the Hausdorff metric to a compact set V C B(xp, C*). Since Vi C I, it follows that VCT, as
well. Therefore, we have reduced the proof of Proposition 3.1, given Lemma 3.4, to verifying (3.11).

Suppose first that (u, v) € Iy is a pair which is not part of an extension E[i, z] included in Iy. If this edge
was added to I, in Case I above (noting that it is only possible for j < k when (u, v) is the “central span” of a
bridge B[}, u, v]), thenu,v € V; N B;,, and a;; > ¢ for some ¥ € V; N B;,,. Thus,

d(u, v) < diamB;,, < 130C*27 < 130C*e%a?527.
Since each B;,, contains boundedly many pairs (u, v) depending only on G and C*, and furthermore, each v is

selected by a bounded number of points w, we may choose C; large enough so that the sum of d(u, v) over all
such pairs (u, v) is bounded from above by:

k
Ce™ ) Y ak2i.
J=ko+1V€V;
If (u, v) was added in Case II, then we get from (3.8) that
d(u,v) < (1 + Ce®)|n(u) - n(v)|.

Choosing C; = 1 + Ce* ensures that the sum of d(u, v) over all pairs (u, v) discussed here is bounded from
above by:

G Y In) - )| = GeT).

(u,v)€ET

We now bound the length of all extensions E[j, w] in I. If E[j, w] was added to I}, in Case I for some
v € Vj, then there is some V € V; N B;, so that a;; = €. We then get

Y dw,u’) < C2I <20 e Balh2. (3.13)

(W, u")EE[j,w]
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As each I}, can only have boundedly many such extensions and each V; N B;, has boundedly many elements,
we may conclude that the sum of d(u’, u”) over all edges (u’, u”) in such extensions is bounded by a constant
multiple of

k
* o2 28 9—j
2007 Z Z a 27
J=koveV;

For extensions contained in a bridge B[j, w, w’] that were added in Case II, we get a bound as follows:

(313) .4
Y dw,un) + Y A, u”) < 4C27 < —|n(w) - T(w)).
(', u”)EE[j,w] (u',u”)EE[j,w’] 30

Thus, by increasing the lower bound C; = 1 + Ce% to C; = 2 + Ce?, we can account for all such extensions. This
completes the proof of (3.11). O

The rest of this section is now dedicated to proving Lemma 3.4. Roughly speaking, we would like to bhound
the length of Ty, by €27 and to bound £(Iy) by €(Ty-1) + C Z‘,Evka,ff‘,Z‘k for all k > kq and some C independent of
k. At each step, we will “pay” for the length of I with the length of I;_; plus some extra accumulation
C ZvevkaffVZ"‘. The main difficulty arises when attempt to “pay” for an edge (v/, v”) in I} when either of its
vertices is close to a terminal vertex from Case II of the construction. This is because, in this case, the old curve
may not be long enough to “pay” for |7(v’) - m(v”)|. To address this issue, we will take advantage of a
“prepayment” technique called phantom length originating in Jones’ original traveling salesman construction
[39] (also [44]).

3.5 Phantom length

Below, it will be convenient to have notation to refer to the vertices appearing in a bridge. For each extension
E[k,v] = UZy(v;, vi+1), we define the corresponding extension index set I[k, v] by:

ITk,v] = {(k +1,v) : i 2 0}
For each bridge B[k, v’, v”], we define the corresponding bridge index set I[k, v’, v”] by:
Ik, v, v”] = I[k, V'] U I[k, v"].
Following [15], for all k = k, and v € V;, we define the phantom length associated with the pair (k, v) as

Dy = 3C*27k. 1f B[k, v’, v”] is a bridge between vertices v', v’ € V4, then the totality Dy Of phantom length
associated with pairs in I[k, v/, v”] is given by:
Dy = 3C @K + 27K oy 4 307 (27K 4 270D 4oy = 120727k,

During the proof, we will track the phantom length at certain pairs (k, v) with v € V; as we now describe.

For the initial generation, define the index set Phantom(ky) by:
Phantom(ky) = {(ko,v) : v € Vko}'
Suppose that Phantom(ky),..., Phantom(k — 1) have been defined for some k > k, + 1, where the index sets
already defined satisfy the following two properties.
* Bridge property: For all j € {ko, ...,k — 1}, if a bridge B[j, w’, w”] was introduced in I}, then Phantom(j)
contains I j, w’, w”].

» Terminal vertex property: Let w € V4, and suppose ¢ is a horizontal line with

y € ¢ Syan(Brr(e®) forall y € Vg N B(w, 30C*27 kD),

Let 7, : G —~ R be the composition of 7 with the orthogonal projection in R™ onto ¢ and the identification of
¢ with R as before. If there does not exist
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w’ € Vo1 N B(w, 30C*27KDy  with m(w”) < m(w)
or there does not exist
w” € Veey N B(w, 30C* 274Dy with m,(w”) > m(w),

then (k - 1, w) € Phantom(k - 1).

(Note that Phantom(k,) satisfies both properties trivially since, by definition, Phantom(ky) includes (ky, v) for
every v € Vj,.) We will form Phantom(k) via Phantom(k — 1) as follows. Initialize the set Phantom(k) to be
equal to Phantom(k - 1). Next, delete all pairs (k — 1, w) and (k, z) appearing in Phantom(k - 1) from
Phantom(k). Finally, for each vertexv € V4, include additional pairs in Phantom(k) according to the following
rules:

* CaseI: Suppose thatv € Vi and ay , > € for some w € Vi N By ,.. Include (k, v’) in Phantom(k) for all vertices
V' € Vi N By, and include I[k, v, v”] as a subset of Phantom(k) for every bridge B[k, v/, v”] in Iy,

Case II: Suppose thatv € V; and ax,, < € for all w € Vi N Byy.

— Case II-NT: Suppose I}, or I'% , is defined by Case II-NT. Do nothing.

— Case II-T1: Suppose I‘ﬁ)v or F,%)v is defined by Case II-T1. Include (k, v) € Phantom(k).

— Case II-T2: Suppose I'f , or I, , is defined by Case II-T2. When If , is defined by Case II-T2, include I[k, v, vi]

as a subset of Phantom(k). When Tﬁyv is defined by Case II-T2, include I[k, v, v] as a subset of Phantom(k).
In particular, note that (k, v) is included in Phantom(k).

The phantom length associated with the deleted pairs will be available to pay for the length of edges in I}, near

terminal vertices in Vi and to pay for the phantom length of pairs in Phantom(k)\Phantom(k - 1). Verification
that Phantom(k) satisfies the bridge and terminal vertex properties is the same as the Euclidean case (see [15,
Pp- 30] for details).

3.6 Proof of (3.10) given (3.14)

The projected length of a set of edges is defined in (3.9). Suppose that there exists C = C(G, C*) such that for all
k2ko+1,

¢(Edges(k)) + ¢(Bridges(k)) + Z Dy
(j,w)EPhantom(k) ~
(3.14)

< ¢(Edges(k - 1)) + > DiutC Q2 a2+ %é(BridgeS(k)),

(j,u)€Phantom(k-1) vE Tk
where Edges(k) denotes the set of all pairs (v/, v*) included in Ty that are not part of a bridge B[j, w’, w”]
included in I, Bridges(k) denotes the union of all bridges B[k, v’, v”] included in I}, and Phantom(k) is

defined in §3.5. Recall the definition of Iy in (3.7) and also that I}, contains no bridges. Applying (3.14) tele-
scopically k - ky times yields

k
(L) = ¢(Edges(k)) + ) ¢(Bridges()))
Jj=kot1
k 5 k
< ¢(Edges(ko)) + > Diu *C 2 2 an27+ — ) é(Bridges())).
(j,w)EPhantom(ko) Jj=ko+1vEV; 6 et

I I

Since V, C B(x, C*27%) for some x and Vi, 18 27k_geparated, the number of points in Vi, is bounded, depending
only on G and C". It follows that I < ¢ 27%. Also, since I includes all bridges introduced in Iiy+1, -+ Ik, we have
I < 36(Ty). Thus,
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k
1 .
Ef’(rk) S, 27K + ' Y D ak2i.
]=kg+1vGV]~

This proves (3.10) given (3.14).

3.7 Proof of (3.14)

This section corresponds to [15, §9.4]. Fix k =2 ky + 1. Our goal is to prove (3.14). As the projection 7 : G » R™ is
1-Lipschitz, we have from (3.1) that

sup distrm(7(x), (b)) < @i, 27%. (3.15)

XE(ViUVi-1)NBy

By an abuse of notation, we will refer to the projected line 7(¢ ) in R™ as # . It should always be clear from
context to which line we are referring. Moreover, we will write 7 , : R™ - R to denote orthogonal projection
onto (¢ ) composed with identification of the line with R. By (3.15), the sets (Vi) satisfy [15, (8.1)] with
“error” a;, ,. Thus, the estimate (3.14) is almost a direct application of the proof of [15, Proposition 8.1], except
for the fact that 77(Vy) is not necessarily 27% separated. In [15], the separation condition is primarily used to get
a bound on #m(V,), but in our context, this conclusion follows from a bound on #Vj. We sketch some details for

the reader’s convenience convenience.
It follows from the construction that for all k > k,

(v, v”) € Edges(k) = |7(v") - m(v")] < 30C*27K,
B[k, v’,v”] C Bridges(k) = 30C*27% < |7(v") - m(v")| < 130C*27%.
Furthermore, if B[k, v/, v”] C Bridges(k), then

¢Blk, v, v']) = |n(v) - m(v")| + €(E[k, v]) + €(E[k, v"])
(313)
< n(v) - 7(v7)| + 4C°27% < 1147 (V) - (v,

where, in addition to (3.13), we used the fact that 7 is 1-Lipschitz.

Each graph I} gives rise to a geometric realization of 7(Ix) in R™ by taking a union of line segments in R™
corresponding to abstract edges:

= U [nw),n(v)].
(u,v)EID;

Since Ty, is connected, &y is as well. The length of an edge in I}, agrees with the Hausdorff measure 7! of the
corresponding line segment in &;. We will call line segments in & “edges” and unions of line segments with
the extensions at their endpoints “bridges” using the same classification as in Section 3.2. Given v € V;, we let
Ex,v denote the associated line segments from I} ,.

Edges and bridges forming &, and “new” phantom length associated with pairs in the set Phantom(k)\
Phantom(k - 1) may enter the local picture &y, of & near m(v) for several vertices v € Vk, but they each only
need to be accounted for once to estimate the left-hand side of (3.14). Continuing to follow [15], we prioritize as
follows:

1. Case I edges, Case I bridges, Case I phantom length.

2. Case II-T1 phantom length and edges that are near Case II-T1 terminal vertices (where here and below near
means at a distance at most 2C*27%);

3. Case II-T2 bridges, Case II-T2 phantom length, and (parts of) edges that are near Case II-T2 terminal
vertices;

4. remaining (parts of) edges, which are necessarily not near Case I vertices and Case II-T1 and Case II-T2
terminal vertices.
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First estimate (Case I): This is analogous to the estimates on [15, p. 33]. Since #(Vx N Bk,,) S¢,c* 1, we may
charge the length of edges, new bridges, and new phantom length appearing in By , to a,ffHZ‘k for some vertex
U € By, with ay, = €.

Second estimate (Case II-T1): As long as we choose ¢ to be small enough so that 2(1 + Ce%) < 2.5, where C
is the constant in Proposition 3.3, this estimate is the same as the one on [15, p. 33]. Use Proposition 3.3 in place
of [15, Lemma 8.3].

Third estimate (Case II-T2): This estimate introduces the term %€(Bridges(k)) in (3.14). While it is similar
to the estimate on [15, pp. 33-34], the proof there uses a notion of the “core” of a bridge, which we have not
introduced. Thus, we record some details. Suppose that ax, < € for allu € Vi N B, and v is T2 terminal to the
right. (The case when v is terminal to the left can be handled analogously.) Let v; € Vi and wy, Wy r+1 € Vi
denote vertices appearing in the definition of FE}V. We will pay for p, , ,, the projected length of the bridge
Blk,v,v1], and the length (Hausdorff measure) of the part of any segments in & inside of
Bgru((v), 2C*27%) U Brm(m(vy), 2C*27%) = BB with at least one endpoint which is the projection of a point
in B(v, 2C*27%) U B(v1,2C°27%) = U.

First, the totality Pr.vv, of phantom length associated with all vertices in B[k, v, v4] is 12C*27%. Second,

313
¢Blk,v,m]) < 4C2F+ |n(v) = (V)| < 8C27K + [m(Wyp) = T(Wy, 1)

because d(v, w, ) < 2C*27% and d(v,, Wy re1) < 2C*27%, Finally, by our choice of € in the second estimate as
before, since ay, < & and ay, < €, the total length of parts of edges inside BB does not exceed 5C*27k,
Altogether,

OBV ) + ey, v 2 HY (W), m(v")] N BB)
(v',v")EEdges(k)
v VviINU20

< |m(wyr) = T(Wye1)| + 8C*27K + 12C°27K + 5C*27K
25
< lm(wy,r) = Wy re)| + %m(v) - (vl

In the last inequality, we used |7(v) — m(vy)| = 30C*27%. In fact, this is the entire rationale for the requiring
bridges to have large spans. We remark that (w, -, w, r+1) € Edges(k — 1) and the assignmentv = (W, ;, Wy r+1)
when v is T2 terminal to the right is one-to-one.

We have now paid for all phantom lengths, all bridges, and those parts of edges that are within a ball of
radius 2C*27¥ from the projection of a Case II-T1 and Case II-T2 terminal vertex. The next estimate will pay for
all remaining edge lengths.

Fourth estimate (Case II-NT): Suppose (v’, v”) € Edges(k) is an edge for which the length of [7(v"), m(v")]
has not yet been fully paid, and fix a point y € Vi_; so that d(y, v)) < C*27%. Then, ay - < € and ax,,~ < €, and
there are u’, u” € R™ such that [u’, u”] is the largest closed subinterval of [(v"), m(v”)] so that u” and u” lie at
distance at least 2C*27¥ from the projections of II-T1 and II-T2 terminal vertices of Vi N By,,~. Only H *([w, u”])
remains to be paid for as we have already paid for the rest of the length of [7(v’), 7(v”)] in the second and
third estimate. By Proposition 3.3 and (3.15),

' = )< (1 + Caey )i (W) = T ()]
< H U (W), T (W) + Cas, (V) = (")
< H U (W), T (W]) + 30C°Ca, 27
This is analogous to the first displayed equation in the fourth estimate on [15, p. 34], except that we have
replaced 90 = 3 - 30 with 30C, where C is from Proposition 3.3. The argument on [15, pp. 34-35] shows how to

efficiently charge H *([7m ,/(w"), 1k ,-(”)]) to €(Edges(k - 1)) and ZuevkaﬁfHZ"‘ .
Carefully tallying the four estimates, one obtains (3.14).
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4 Stratified f numbers for locally finite measures

We continue to let G denote the Carnot group fixed at the start of Section 3. Furthermore, from here through
the end of Section 7, we let A = UxezAx be a fixed system of “dyadic cubes” on G given by Theorem 2.12 with
respect to a fixed family of nested 2¥-nets (X )xez for G.

Motivated by [15] and [45], we wish to design a useful gauge of how close a locally finite measure y on G is
to being supported on a horizontal line in a neighborhood of a cube Q € A, which both allows for the
possibility of nondoubling measures and incorporates distance in each of the layers Gy, ..., Gs of G. The defini-
tion of f*(u, Q) proceeds in several stages.

Definition 4.1. For all x,y € G and r > 0, define
i
Bx,y; 1) = i di(ﬂi(x?: () |

i=1

Furthermore, define §(x, E;r) = infyefﬁ(x, y; r) for all nonempty E C G.
Definition 4.2. (Non-homogeneous stratified § numbers) Let ¢ be a locally finite Borel measure on G. For any
Borel set Q, with 0 < diam@Q < e, and any horizontal line L, define

du(z)
u@Q)

Furthermore, define B(y, Q) = inf;S(u, Q, L), where L runs over all horizontal lines in G.

B, Q. L* = [B(z, L; diamQ)y
Q

Definition 4.3. For Q € Ay, k € Z, we define the family Near(Q) of cubes near Q by:
Near(Q) = {R € Ay-1 U A : 2Bz N 5888y * T},

where 588B¢ = B(xp, 1,568 - 27K) and xg is the center of Q.

Definition 4.4. (Anisotropic stratified § numbers) Let u be a locally finite Borel measure on G. For every Q € A,
define

*(u, 0)% = inf max , 2Bg, L)* min{l, — ,
ﬁ (u Q) L ReNear(Q)ﬁ(u R ) dlamZBR

[ 1(2Bg) ]

where the infimum is over the set of all horizontal lines in G.

Remark 4.5. The numbers p*(u, Q) are a rough gauge of how far u L 588By is from a measure supported on a
horizontal line. They are anisotropic insofar as the normalizations

U(2Bg)
’ diamZBR

min
U(2Bg)

of the integral of the scale-invariant stratified distance of points in 2Bz to a horizontal line L against the
measure [, i.e.,

vary independently in the regions 2B that emanate in different directions and distances from the central
region 2B, inside of the window 588B.

di(m(z), (L))
diam2Bg

] du(z),

Remark 4.6. Let x € G, let 7 denote the tree of cubes Q € A such that x € Q and sideQ <1, and let
b(Q) = B*(u, Q)*diamQ for all Q € 7. Then, J*(u, x) = Sy»(u, X), where J*(u, x) is given by (1.6) and
Srp(, -) is given by Definition 2.15.
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Remark 4.7. Let Q € Ax and let R € Near(Q) N Ag-1. Then,

U

1
XR,E'Z_kleRCRCZBRCB

32
XR, ? : Z_k].

Because 2Br N 588B; #* &, we conclude that
2Bg C B(xp, 1568 - 27k + diam2Bg) C B(xp, 1592 - 27k = 597B. 4.1

Furthermore, since cubes in Near(Q) N Ax-; are pairwise disjoint, a volume doubling argument yields
#Near(Q) N Ax-; =1, where the implicit constant depends only on G. A similar computation shows that
2Bp C 597B for all R € Near(Q) N A and #Near(Q) N Ay < 1, as well.

Remark 4.8. Midpoint convexity of x — x” when p > 1 gives us a quasitriangle inequality for the stratified
distance:

B(x,y; 1) < 257V B(x, z; 1)* + B(z,y; 1)¥). 4.2)

We also have a change of scales inequalities:

B,y )< B(x,y; 1) < %ﬁ(x,y; t) whenever t=r > 0. 43)

5 Rectifiability of sets on which the Jones function is finite

Suppose that u is a locally finite Borel measure on G. For each cutoff ¢ > 0, we define the truncated beta
number B*¢(u, Q) for Q € A by ignoring cubes R € Near(Q) on which u has small one-dimensional density,
ie.,

U(2Bg) S

; 2 Cf, 5.1
diam2Bg

B*¢(u, Q)* = inf max{B(u, 2Br, L)* min{c, 1} : R € Near(Q),
L
where as usual the infimum runs over all horizontal lines in G and B(u, 2Bg, L)* is defined in Definition 4.2. If
there are no R € Near(Q) with u(2Bg) > cdiam2Bg, simply assign *¢(u, Q) = 0. The associated density-nor-
malized Jones function is defined by:

Xo(0)
TR x) =y BHe(u, Q) diam (@)%

forall x € G, (5.2)
o5, u(Q)

where A, is the set of cubes of side length at most 1. It is immediate from the definitions that f*“(u, Q) <
p*(u, Q) for all Q € A and J*(u, x) < J*(u, x) for all x € G.
This section is devoted to the proof of the following theorem.

Theorem 5.1. Let u be a locally finite Borel measure on G. For every ¢ > 0,
UL{xE€G:DYu,x)>2c and J*°(u,x) < oo} (5.3)

is 1-rectifiable.

Our main tool for constructing a rectifiable curve passing through a set of points is Proposition 3.1. In
order to find (countably many) rectifiable curves covering the set where D(u, x) is positive and J*¢(u, x) is
finite, we need to extract enough data to input to the proposition. In [15], the convexity of the Euclidean
distance of a point to a line was used to find points z, (centers of mass) for each Q € A for which we could
control the distance of zy to any line L using f numbers. This approach is not available in an arbitrary Carnot
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group G, so we reverse the process. First, we associate a special line £, with each Q € A. In particular, with
and ¢ > 0 fixed, for each Q € A, choose any horizontal line £, so that

u(2Bg)

maxjB(u, 2Bg, €9)* min{c, 1} : R € Near(Q), Aam2B
'R

> cf < 2B%<(, Q). (54)

If there are no R € Near(Q) such that u(2Bg) = cdiam2Bg, choose ¢, arbitrarily or leave £, undefined — we will
never refer to it. Once we have fixed these lines, we may show that there exist points {zg}zea for which we can
control the distance of zz to £y whenever R € Near(Q) and u(2Bg) 2 cdiam2Bp.

Lemma 5.2. There exist points {zg}rea Such that zz € 2B for each R € A and
B (zx, €o; diam2By) < B (zz, €o; diam2Bg) < B(u, 2By, €p) (5.5)

for each R and Q in A with R € Near(Q) and p(2Bg) = cdiam2Bg.

Proof. Fix R € A. Since diam2B, < diam2B; < 2diam2B, when R € Near(Q), the first inequality in (5.5) follows
from (4.3), so it suffices to prove the second inequality. By definition, for any horizontal line L,
du(z)

B 2Bo, LY® = [ Bz, L; diam2Bp? LB’

2B
Thus, for each horizontal line ¢, associated with some Q € A, Chebyshev’s inequality gives

_ 2B
u({z € 2By : f(z, €p; diam2Bg)® > CB(u, 2Bg, £)=}) < Q forall C > 1.

By an argument similar to Remark 4.7, there exists a constant N = N(G) <o such that
#{Q € A : R € Near(Q)} < N. Choosing C = 2N > 1, it follows that

u( U {z € 2By f(z, bo; diam2Bg)® = 2NB(u, 2B, 6p)*}) < 1.U(ZBR)-
{Q:RENear(Q)} 2

Therefore, as long as (2Bg) > 0, there exists zz € 2Bg such that

B (28, €; diam2Bg)> < 2NB(u, 2Bg, €9)* (5.6)
for all Q € A such that R € Near(Q). Pick one such point for each R € A such that y(2Bg) > 0. (This includes all
cubes R € A such that p(2Bg) = cdiam2Bg. For any R € A with u(2Bg) = 0, choose zg = X if desired.) ]

The following lemma describes a scenario in which the whole set of leaves of a tree is contained in a
rectifiable curve. Moreover, the length of such a curve can be controlled by the diameter or side length of the
top cube and a sum involving 8*<(u, Q)%.

Lemma 5.3. Let u and ¢ be fixed as earlier. Suppose that 7 is a tree of cubes such that

U(2By) = ¢ diam(2By) for all Q € 7, and (5.7
Sr= 2 B, Q)* diam(Q) < . 5.8)
QeT

Then, there exists a rectifiable curve I with Leaves(7) C I such that
HUT) = sideTop(7) + max{c?, 1}Ss. (5.9)
Proof. If the set of leaves of the tree is empty, the conclusion is trivial. Thus, we assume that Leaves(7) # &.

Without loss of generality, we may further assume that every cube in 7~ intersects Leaves(7). (Delete any
cubes without this property.) Let {£p}oea be given by (5.4) and let {zz}zea be given by Lemma 5.2.
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We employ a traveling salesman algorithm for constructing rectifiable curves in Carnot groups from
Section 3. In particular, we will apply Proposition 3.1 with parameters:

C'=24 and ry=sideTop(7).

To do so, we must identify a sequence (Vi )x=o of point clouds satisfying conditions (V;), (Vy), and (V) of the
proposition and sequences (¢x,,)k=o,vev, Of lines and (ax,y )k=0,vey; Of linear approximation errors satisfying (3.1)
and (3.2).

Point clouds. For each k > 0, define Z; = {zo : Q € 7 and sideQ = 27%ry} and choose Vi to be a maximal
2 kry-separated subset of Z. By definition, V; satisfies (V;).

Suppose that vx € Vi for some k = 0. Then, v, = zo for some Q € 7~ with sideQ = 27¥r,. Because every cube
in 7~ is part of an infinite chain, there exists R € 7~ with sideR = (1/2)sideQ and R C Q. By maximality of V4
in Z4q, there is S € 7~ with sideS = sideR such that zg € V.1 and d(zs, zz) < 2 **Dry. Hence, V41 = Zg satisfies

6 8 8 1
AV, Vie1) = d(2g, 2Zs) < d(zg, Xo) + d(Xg, Xp) + d(Xr, Zr) + d(zg, zs) < 3t3t373) 27y <12+ 27,

Therefore, (V7) holds.

Similarly, suppose that vk € V4 for some k = 1, again say that vx = zo for some Q € 7~ with sideQ = 27¥r.
Let P € 7 be the parent of Q, which satisfies sideP = 2sideQ and Q C P. By maximality of Vj-; in Zy_,, there is
0 € 7 with sideO = sideP such that zy € Vi-; and d(zo, zp) < 2~ ¥ Dr. Hence, vx_1 = Zo satisfies

16 16 32
AV, Vk-1) = d(2¢, 2o) < d(29, Xg) + d(Xg, Xp) + d(Xp, 2p) + d(2p, Zp) < 3t3 3" 2|+ 27k < 24 - 27,

Therefore, (Vy) holds.
Horizontal lines and linear approximation errors. Next, we will describe how to choose the horizontal lines
kv and errors ay ,, for use in Proposition 3.1. For each k 2 0 and v € W, let Q, , denote the cube Q € 7 such

that sideQ = 27%r; and v = zo. Then, let &, = €y, , be the horizontal line chosen just before Lemma 5.2 to

satisfy (5.4).
Suppose that k 2 1,1letv € V;, let Q = Qx v and let

X € (Veey U V) N B(v, 65C*2715) = (Viey U Vi) N B(v, 1560 - 27%1p).
We must bound the distance of x to ¢ . Since x € V,_; U Vi, we can express x = zg for some R = R, € 7 with
sideQ < sideR < 2sideQ. Note that x € 2By and
-k 16 -k
d(x, xg) < d(x,v) + d(v, xg) < 1,560 - 271 + 3 271y < 1,568 - 27,

Thus, x € 2Bz N 588Bp, whence R € Near(Q). By Lemma 5.2 and (4.3), we obtain
B (X, €iu;27 1)~ (X, €y,;diam2Bo)> = B (zr, €o; diam2Bo)™ < B(u, 2Br, £p)*.
Taking the maximum over all admissible x and invoking (5.4) and (5.7), we obtain

sup B (X, €u:2*1p)® < B<(u, Q)% max{c™, 13.
XE Vi1, Vi) NB(v,65C*27Krg)

By [45, Proposition 1.6] or [45, Lemma 6.2], it follows that there exists ax, such that
ap, s p(u, Q)* max{c™, 1} and

X € by * Syt (Brr(ai,))  forall x € (Viey, Vi) N B(v, 65C°27y).

In other words, the errors ay,, satisfy 3.1. Moreover,

Z Z a,ffv 27y < max{c™, 1} Z B*¢(u, Q)% diam(Q) ~ max{c™, 1}S5 < o

k=1vEV; QeT

by (5.8). This verifies (3.2).
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The rectifiable curve. Therefore, by Proposition 3.1, there exists a rectifiable curve I' in G such that the
Hausdorff distance limit V = limy_..V} is contained in I'. Moreover,

HIT) s+ ) ) a 27 s sideTop(7) + max{c™, 1}S;.
k=1veVy

In other words, (5.9) holds. It remains to prove that Leaves(7) C I and suffices to show that Leaves(7) C V.
Pick y € Leaves(7) so that y = limy_y, for some sequence of points Y, € Q,, for some infinite chain
Q20,20Q,2 - in 7. By maximality of Vy in Z, for each k >0, we may find vx € V, such that
d(vi, zg,) < 27%ry. Hence,

Ay, V) < d(y,y,) + A0y, 20,) + d(zo,, vi) < d(y, y,) + diam2Bg, + 27%1, - 0

as k — oo, since limy.«y, =y. Thus, y € V, and therefore, Leaves(7) C VCT. O
We are ready to prove the theorem.

Proof of Theorem 5.1. Let ¢ be a locally finite Borel measure on G and ¢ > 0 be given. We wish to show that the
measure u, defined by (5.3) is 1-rectifiable, i.e., we wish to find a sequence I, Iy,... of rectifiable curves such

that u(G\UST) = 0.
Suppose that x € G has D'(u, x) > 2c. Then, there is some radius 7, > 0 such that

uB(x,r)) >4cr forall 0 <r <.

Thus, for any Q € A containing x with gsideQ < ry, we have B(x, §sideQ) C 2B, and

u(2Bg) = y|B 3

8 32
X, EsideQ]] 2 —csideQ = cdiam2By.

Choose Q, € A to be the maximal cube containing x with gside(_) < ry and sideQ < 1. Then, x € Leaves(7),
where

Tx={Q€A:QCQ, and u(2Bg) = cdiam(2Bz), forall R € A with Q CR C Q,}.

Note that 7 = 7, whenever @, = Q, and the collection {Q, : D'(, x) > 2c} of cubes is countable, since it is a
subset of the countable family A. Thus, we may choose a sequence {x;};-, of points in G such that D(u, x;) > 2¢
for eachi >1 and

{x € G : D'(u, x) > 2c} C ULeaves(Ty).
i=1

Therefore,

{x € G: DY (u,x) > 2c, J*(u,x) <o} C U U {x € Leaves(Ty) : J*°(u, x) < M}.
i=1M=1
This shows that to prove the measure y, defined in (5.3) is 1-rectifiable, it suffices to prove that each measure
u L {x € Leaves(T,,) : J*“(u, x) < M} is 1-rectifiable.
Fixi21and M 2 1. Since sideQ, <1, the set {x € Leaves(Ty,) : J*“(u, x) < M} is contained in

A= {x € Leaves(T) : ) B*(u, Q)* diamQ XQ—(X) <
QT 1)

To complete the proof of the theorem, it is enough to prove that ¢ L A is 1-rectifiable. If u(A) = 0, we are done.
Suppose that u(A) > 0. By Lemma 2.16, applied with the function b(Q) = f*“(u, Q)* diamQ and ¢ = 1/k, for
each k > 2, there is a subtree Gy of 7, such that u(A N Leaves(Gx)) = (1 - 1/k)u(A) and

Y B, Q)% diam(Q) < kM u(Q,) < .
QEGk
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Since the tree Gy satisfies (5.7) and (5.8), Lemma 5.3 produces a rectifiable curve I in G such that
Leaves(Gy) C Iy and

w(A\L) = u(A) - A N Ty < u(A) - u(A N Leaves(Gy)) < (1/k) - u(A).

Therefore, p L A is 1-rectifiable:

y[A\ U T | < inf u(A\Ly) < inf(1/k) - u(A) = 0. 0
k=2 k=2 k=2

By repeating the arguments above, making minor changes as necessary, one can obtain the following two
variants of Theorem 5.1. For some sample details, see [15, Lemmas 5.4 and 7.3]. For all Q € A, define
B**(u, Q) = infy maxpeNear@)B (U, 2Bg, L), where the infimum is over all horizontal lines in G. Also, define

T, x) = Y B**(u, Q)* diamQ %) for all x € G. (5.10)
0eh, u(@’

Theorem 5.4. If i1 is a locally finite Borel measure on G, then the measure givenby i L {x € G : J**(u, x) < o} is
I-rectifiable.

With B(u, Q) as in Definition 4.2, define

Twx)= ) B, ZBQ)ZSdlamQ 1o() forall x € G. (5.11)
0en, 1Q)

Theorem 5.5. If u is a locally finite Borel measure on G, then the measure

uL XEG:limsupu(( ))<oo

S By T TWw0 <

is 1-rectifiable.

6 Finiteness of the Jones function on rectifiable curves

In this section, we show that finiteness of the Jones function defined in (1.6) is necessary for a measure to be
carried by rectifiable curves; cf. [15, §4].

Theorem 6.1. If u is a locally finite Borel measure on a Carnot group G andT is a rectifiable curve in G, then the
function J*(u, -) € L'(u L T). In particular, J*(u, x) < « for y-a.e. x € T.

At the core of Theorem 6.1 is the following computation, which incorporates and extends the necessary
half of Theorem 1.4. A minor difficulty in the proof of Lemma 6.2 compared with the proof of the corresponding
statement in [15, §4] is that we need to use (4.2). Recall that A, is the set of Q € A with sideQ < 1.

Lemma 6.2. If v is a finite Borel measure on G and T is a rectifiable curve in G, then
> B*v, Q) diamQ = H(T) + v(G\I).

Q€. (6.1
V(QNI)>0
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Proof. Given two sets E, U C G, define

B-(U) = inf sup B(z, L; diamU),
ZEENU
where as usual the infimum is over all horizontal lines in G. In particular, recalling (1.7), we have
Br(B(x, 1)) < Bp(x, ) < 2B.(B(x,1)) for all x € G and r > 0 by (4.3).
By (4.1), 2Bg C 5978, for all R € Near(Q). Fix an absolute constant A = 1200 (this is an overestimate) and a
small constant € > 0 depending only on the step s of G to be determined later. Partition the set of cubes Q € A.
that intersect the curve I in a set of positive measure into two classes:

Ar={Q € A, : v(T' N Q) > 0 and (&/24)B*(v, Q) < B(ABy)},
Ay={Q €A, : (T N Q) >0 and (¢/24)p*(v, Q) > B(ABy)}.

Then,
Y B, Q¥ diamQ = Y p*(v,Q)* diamQ + Y B*(v, Q)* diamQ.
Q€EA, Q€Ar Q€A
v(QNI)>0

From the definition of Ar, the ATST in Carnot groups (Theorem 1.4), and (2.3), it follows that
Y B*(v, Q)¥ diamQ < ) (e/2A)Y B (ABy)* diamB,
Q€Ar QEAr
< (€/24)> ) Bi(xo, (8A/3)sideQ)* diamB, s H (T).
Q€A
To complete the proof of (6.1), we will show that ¥ ye, *(v, Q) diamQ = v(G\F).

Let Q € A,. By change of scales (4.3), the definition of B}(ABQ), and the definition of the family A,, we can
find a horizontal line L in G so that

sup f(z, L; diam2By) < AB-(ABy) < (e/2)B*(v, Q). 6.2)
ZGIT]ABQ

For the same horizontal line L, we have that

B*(v, 0)® < max (v, 2Bg, L)* minil

RENear(Q)

V(2Bg) ]

R max v, 2Bg, L)=mp.
diam2B, B(v, 2Bg, L)*mg

ReNear(Q)
Fix R € Near(Q) and divide 2Bg into two sets:
Np = {y € 2Bg : B(y, L; diam2By) < B*(v, Q)}, Fg = 2Bz \Ng.

Note that F C G\F by (6.2). To proceed, write

7 d
B 2By Lme= [ B diamZBR)“mRv(VZBO;))
NRUFR (6.3)
i i dv(y)
< eBBH(v, Q) + Iﬁ (y, L; diam2Bg)*myg TR

Fr

Note that, since Q € A, if € is very small, then B}(ABQ) is very small relative to f*(v, Q). This will allow us to
effectively replace the horizontal line L appearing in (6.3) with . For any y € 2Bg, Inequalities (4.2), (4.3), and
(6.2), the fact that 2Bz C 597Bp and v(I' N Q) > 0, and the choice A = 1,200 > 2 - 597 + (diamQ)/(sideQ) give us

B(y, L; diam2Bg)® < 257 Y(B(y, T N ABy; diam2Br)®* + sup [B(z, L; diam2By)%)
0 p
z€TNABy

<2571 (y, T N ABy; diam2Bg)® + (1/2)e%B*(v, Q)%
= 225718 (y, T; diam2Bg)® + (1/2)eXB*(v, Q).

Combining the previous two displays and using my < v(2Bg)/diam2Bg, we have
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dv(y)
v(2Bg)

dv(y)
diam2Bg

B(v, 2Bg, L)®mg < (3/2)e*B*(v, Q) + 2571 Iﬁ(y, T;diam2Bg)*myg
Fp

< (3/2)€=B*(v, Q) + zzs-lj'/? (y, T; diam2Bp)

Fr

Taking the maximum over all cubes R € Near(Q), choosing ¢ sufficiently small depending only on s, rearran-
ging, and using diamQ < diam2Bg, we obtain

B(v, Q) diamQ < 2% max [F(y, T; diam2Bp)=dv(y).
ReNear(Q)FR

As we already noted, each F; C G\F. Thus, by Remark 4.7 and (4.3),

Frv, Q= diamQ = [ By, TisideQ)=du(y), (6.4)

597Bo\T
Let ‘W be a Whitney decomposition of G\I‘ given by Lemma 2.18. For each j € Z, let
Wi={WeWw: 20D <dist(W,T) < 27}

For any set I, also define W(I) = {W € W : v(I N W) > 0} and ‘W;(I) = W; N ‘W({). Then, continuing from
(6.4),

B*(v, Q)¥diamQ = )  sup B(y, T, sideQ)® v(W N 597B,)

WeW(597Bg) YEW
s A (y), m@) P

<y > M V(W N 597By).
i=1WeW(597Bg) YEW sideQ

Suppose thatsideQ = 27 K. If W € Wi(597By), then by bounding the distance of a point in W N 597B,, to a point
inT N Q, we have

270D < dist(W, I') < diam597B, < 3,184 - 27K,

which implies that j = k - 12. Also, if W € ‘W; and y € W, then d;(m(y), m(I)) < dist(y, I) < dist(W, T) +
diamW < 2dist(W,T) < 2 - 27, where the first inequality holds because the projections 7; : G - G; are 1-
Lipschitz and the penultimate inequality is by Property (2) of Lemma 2.18. Therefore,

B*(v, Q)ZSdiamosi f 2 [2]

i=1 j=-log,(sideQ)~12 WEW/(597By) sideQ

21
] V(W N 597By). (6.5)

This estimate is valid for every Q € A,.
Equation (6.5) is analogous to [13, (3.8)] (with step s = 1). Because the cubes in ‘W are pairwise disjoint and
each of the families {597B, : Q € A and sideQ = 2°X} has bounded overlap, we may repeat the computation in

[13] mutatis mutandis s times to obtain Y 5, f*(v, Q)*diamQ = v(G\T). O
We now apply the lemma to prove that J*(u, -) is integrable on any rectifiable curve.

Proof of Theorem 6.1. Let ' C G be a rectifiable curve. Integrating the Jones function,

diam(Q)
* , d - £ , 28 Ax/ d
lf (1, X)du(x) QEZmﬁ Q= o !x(,(x) ey
T
= 2 PO diam(Q)—u(Qn )5 Y B*u Q)% diam(Q).
Q<h, u(Q) 0k,

Q>0 u@ND)>0
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LetK=U{Q € A, : p(Q NT) >0} and putv = u L K. Since the set K is compact and g is locally finite, we have
V(G) = u(K) < oo, Furthermore, y L Q = v L Q whenever Q € A, and u(Q N I) > 0. Thus, by Lemma 6.2,

[Fruwxdun s 3w, @ diam(Q) = HI(T) + v(G\D) < .01
T

Q€A
v(QNI)>0

Corollary 6.3. Let u be any locally finite Borel measure on G. Then, the measure u L {x € G : J*(u, x) = »} is
purely 1-unrectifiable.

Proof. If T' is a rectifiable curve in G, then J*(u,x) < » at p-a.e. x €T by Theorem 6.1. That is to say,
UT N{x € G: J*(u,x) = }) = 0 for every rectifiable curve I O

7 Proof of Theorem 1.1

Equipped with the results from Sections 5 and 6, we are ready to the prove the main theorem. Let u be a locally
finite Borel measure on G. Both the lower density D'(y, -) and the Jones function J*(u, -) are Borel measur-
able. Hence,

R={x€G:D(u,x)>0 and J*(u,x) <o} and
P={x€G:D u,x)=0 or J*(u x)= o}

are the Borel sets and G = R U P. By the uniqueness clause of Lemma 2.1, if we show that u L R is 1-rectifiable
and y L P is purely 1-unrectifiable, then

Upeet = 4 L R and lpy = U L P.
On the one hand, J*¢(u, x) < J*(u, x) for all x € G and ¢ > 0 (Section 5). Thus,
R={x€G:D(u,x)>0 and J*(u, x) < o}
C pl{x €G : D (u,x)>2/n and J*VUn(u,x) < oo} = nleRn.

By Theorem 5.1, 4 L Ry is 1-rectifiable for each n > 1. Therefore, u L R < Y,_,u L R, is 1-rectifiable, as well. On
the other hand, we can write

P={x€G:J*(u,x)=w}U{x €G:DYu,x)=0}=P UP,.

The measure u L Py is purely 1-unrectifiable by Corollary 6.3 and the measure u L P, is purely 1-unrectifiable
by Corollary 2.4 and Remark 2.9. Since p L P<uL Py +pu L Py, uL P is also purely 1-unrectifiable. This
completes the proof of Theorem 1.1.

8 Garnett-Killip-Schul-type measures in metric spaces

Toward Theorem 1.5, suppose that (X, d) is a complete metric space such that

* X is doubling, i.e., there exists a constant Cg, > 1 such that every bounded set of diameter D can be covered
by Cg, or fewer sets of diameter D/2 and

* X is locally quasiconvex, i.e., for every compact set E C X, there exists a constant Cyr 2 1 such that for
every x,y € E with x # y, there exists a parameterized curve y : [0,1] - X such that y(0) = x, y(1) =y,
and var(y) < Cyc g d(x,y).
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Because X is complete and doubling, there exists a doubling measure u on X, i.e., a measure satisfying (1.9) for
allx € X and r > 0; for a proof, see [41, Theorem 3.1] or [36, Theorem 13.3]. Let C, denote the doubling constant
of u. Our goal is to construct a doubling measure v on X that is 1-rectifiable. We will explicitly construct v and
rectifiable curves I' with v(I') > 0 in a manner similar to [33], which handled the particular case that X = R"
and u is the Lebesgue measure.

8.1 Construction of the measure v

Fix any system (A )xez of dyadic cubes on X given by Theorem 2.12. We freely adopt the notation of Section 2.5.
In particular, to each Q € A = UrezAx, we may refer to the center X, side length sideQ, inner ball Uy, and outer
ball By associated with Q. For any j = 1 and Q € Ay, let A(Q) = {R € Ay; : R C Q} denote the collection of all
jth generation descendents of Q. Note that u(Q) = u(Up) > 0 for all Q € A because u is doubling. We proved the
following facts in Remark 2.19.

Lemma 8.1. There exists C; > 0 depending only on C, such that u(R) 2 Cu(Q) for all R € A(Q).
Corollary 8.2. There exists M 2 1 depending only on C, such that #A,(Q) < M’ for all Q € A and j > 0.

Next, let us show that each cube in A contains a descendent — within a few generations — that is quantita-
tively far away from the complement of the cube. A similar claim is proved in the study [41].

Lemma 83. For any n€Z and Q €A, there exists some R € A(Q) such that d(R,Q°) =
infrepinfyeod(x, y) > 3 - 2.

Proof. Fix n € Z and Q € A,. By Property (4) of Theorem 212, there exists R € Aps7 such that xz = Xp.
Therefore,

- 9~(n+T) = l .o 0

Lo —
48

d(R, Q%) = d(Bg, Uj) = d(xo, Uj) — sup d(z, xp) 2

ZEBR

D=
w | oo

It will be convenient to thin A by skipping generations and to restrict to cubes starting from a fixed
generation. For each integer n > 0, define

D,=A;,, and D= UD,. 8.1
n=0

For all Q € D and k 2 0, define Di(Q) to be the k-th generation descendants of Q in D, ie., Dp(Q) =
{R € Dysic : R C Q}. By Lemma 8.3, for each Q € D,, we may choose some cube Ry € D1(Q) such that
1
d(Ro, Q) > 3 <2 =16 - 27700, 8.2)

Let 0 < § < 1 be a constant whose value will be fixed later (see (8.11)). For each Q € D, we define a Borel
measure Vp on X that is absolutely continuous with respect to ¢ by defining its Radon-Nikodym derivative as a
sum of indicator functions:

dVQ
fQ = H = aQXRQ + SXQ\RQ’ (83)
where ag > 0 is chosen so that vp(Q) = u(Q). Note that vo(Q°) = 0 (Figure 3).

Lemma 8.4. For all Q € D, we have vo(Ryp) = (1 - §)vp(Q).
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Proof. Because u(Q) = vo(Q), we have

Vo(Rg) = vo(Q) = vo(Q\Rg) = vo(Q) = 81(Q\Rg) = vo(Q) - 8u(Q) = (1 = 8)vo(Q). O
Lemma 8.5. There is a constant C; 2 1 depending only on C, such that supycpag < .

Proof. Since D1(Q) = A7(Q), iterating Lemma 8.1 gives u(Rg) = C;'u(Q) for all Q € D. We defined a, so that

1(Q) = v(Q) = agu(Ry) + 81(Q\Ry) = agu(Ry) + S1(Q) — Si(Ry).
Hence, ag = § + (1 - §)u(Q)/u(Rg) <1+ ¢," = C,. O

To define the measure v, we iterate the construction of f,du, and pass to a limit. Formally, for each k 2 0,
we define f; = ZQEDka. Using these weights, for each n > 0, we define a Borel measure v, by setting

n
dv, = [ M fk’dy 8.4
k=0
(Figure 4). Finally, we define the measure v to be a weak-* limit of v, (along some subsequence).

Lemma 8.6. For alln = 0 and Q € D,, we have v(3Q) = 0 and v(Q) = v,-1(Q). (When n = 0, this should be read
as v(Q) = u(Q) for all Q € Dy.)

Proof. From (8.3) and (8.4), it is immediate that v,(Q) = v;,-1(Q) for all p 2 n 2 0 and Q € D,. If we can show
that v(0Q) = 0 for all Q € A, then v(Q) = lim,_«Vy(Q) = v,-1(Q) for all Q € D, by weak convergence.

Fix Q € D, for some n = 0. To prove that v(0Q) = 0, we must find a good cover of the boundary. To that
end, let A denote the family of all A € D, such that A N 8Q # &. Each cube A € A is adjacent to Q. Because u
is doubling and the sets {U; : A € A} are pairwise disjoint and confined to a bounded region of X, the
collection A is finite. We will cover 8Q with certain subsets of the adjacent cubes. Given A € A and k 2 1,
let Fop = A\U’;;%Usepj(A)Rs, i.e, form F,x from A by removing any central descendants Rs of A through k

generations. By Lemma 8.3, 0Q is contained in some open subset Vx of UsenqFax for each k > 1. By weak
convergence, monotonicity, and subadditivity of measures, and the fact that F, x is a union of cubes in D,.y,

v(0Q) £ v(V) < liminf vy, (Vi) < liminf Z Vn(Ea k) = Z Virk-1Fa i),
m=c m-=®° Aeq AEA

for all k = 1. Because Fy  is formed by deleting k generations of central descendants, Vy+x-1(Fsx) = §vp-1(4)
for all k = 1. Because ) ¢ #Vn-1(4) < ®, we conclude that v(8Q) < limy_«6*Y 4c 4Vn-1(4) = 0. O

8.2 Doubling of v

Lemma 8.7. There is a constant C3 2 1 depending only on C, and § so that if S € D, for some n 20 and
N(S) ={T €Dy :dS,T) < 2,048 - 27}, then

Figure 3: To define f,dy, redistribute the mass u(Q) so that more mass is assigned to Ro and less mass is assigned to Q\RQ.
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C;(S) < W(T) < G(S) for all T € N(S). (8.5)

Proof. Let S € D, and N(S) be fixed as in the statement. To proceed, let T € N(S). There are two cases.
Case 1. Suppose that S and T have a common ancestor in D. Let k > 0 be the largest integer such that
§C Qyand T C Q, for some Q, € Dy. In other words, let Q, be the first common ancestor of S and T. We claim
that neither S nor T is contained in R, for any Q € U’};,%ﬂDj. Indeed, first suppose to get a contradiction that
S C Ry for some Q € Djwithk+1<j<n-2Then, TN Q=d,sinceS C Q and Q is not a common ancestor

of S and T. Hence,
1 .
d(Rg, Q°) < d(S, T) < 2,048 - 277 < i 277,

where we used the fact that j < n — 2. This violates (8.2).
An identical argument implies T & R, for any Q € U'}¢,,D;. The consequence of this is that f[ix)=6=
fi(y) for all x€ S and y €T when k+1<j<n-2 Also f;(x) =f;(y) for all x€ S and y € T when

0<j<k-1,since Q, € D is a common ancestor of S and T. Hence, only f, and f,_, may have different
values for x and y. Thus, Lemma 8.5 gives

M-f, 0N _ £ 00hes )
;) A0V )

€ [8%CF, C716%.

Case 2. Suppose that S and T do not have a common ancestor in D. Repeating the argument above informs
us that neither S nor T is contained in R, for any Q € U}';(%Dj. It follows that f;(x) =6 = f;(y) for all x € S and
y € T when 0 £j < n - 2. Again, by Lemma 8.5, we have

M0 _ £y 00
M=fio) i ®)

€ [6/Cy, G/ 6].

In each case,
(8/C)*u(S) < v(S) < (C/8)*u(S) and (8/C)*u(T) < v(T) < (G/8)*u(T).

The lemma follows, because u is a doubling measure and T € N(S); cf. Remark 2.19. O

Lemma 8.8. There is a constant C, = 1 depending only on C, and on § so that

C;u(Q) £ v(Q) < C4 u(Q), for all Q € Dy. (8.6)

Proof. If Q € Dy, then either v(Q) = 6u(Q) or v(Q) = ap u(Q), where P € D, is the parent of Q in D. Hence,
Su(Q) < v(Q) < Gu(Q) for all Q € Dy by Lemma 8.5. Therefore, we may take C, = max{§~?, Cy}. O

Proposition 8.9. The measure v is doubling.

Proof. Let B(x, r) be a ball in X.

Figure 4: Possible densities f, f; |o (left) and f; f, f; lo (right).
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Case 1. Assume that r < ? Then, there exists a unique integer j = 0 such that

6 16 4
— 2T <r<— 270D,
3 3

Since D; partitions X, there exists a unique cube S € D; such that x € S. On the one hand, since r = diams, we
have B(x,r) D S and

v(B(x,r)) = v(S). 8.7
Let 7~ denote all cubes of D; that intersect B(x, 2r). Thus, v(B(x, 2r)) < 27e-V(T). If T € T, then

32 . .
d(S,T) < dx, T) < 2r < == - 270D < 1,366 - 277

and so T € N(S) as defined in Lemma 8.7. This lemma implies that v(T) < Gv(S) for all T € 7 . Hence,

V(B(x,2r)) £ ) Cv(S) = #T - Cav(S). 8.8)
TeT

The proposition will follow from (8.7) and (8.8) in this case once we have shown that #7 is uniformly bounded.
Indeed, for all T € 7, we have

d(x, T) + diamT < diam$ + d(s, T) + 2diamT < 1,382 - 2°7.

This implies that T € B(xs, 1,382 - 277) and we also know that T D Uy = U(xy, % -277). Thus, because u is
doubling, #7~ <¢, 1; cf. the argument in Remark 2.19.

Case 2. Now assume r > ? Let
$1=U{QED;:QNB(x,2r)+ 3} and S,=U{Q €D;:Q N B(x,r/2) * }.
As elements of D, have diameters bounded by 16/3 - 277 < r/2, we get the containments
B(x,2r) C §; C B(x,4r) and B(x,r/2) C S, C B(x,r).

We now can bound

VB, 2r) S V(S) 5 Cyi($1) < Cu(B(x, 4r)) < CiCUB(x, 1/2)

(8.6)
SCCu(Sy) S CICIV(Sy) < CCv(B(x, T)).

8.3 Cubes with high density

For 0 < k < n and Q € D, we define K(n, k) to be the collection of cubes S € D,(Q) for which there exist at
least n — k distinct cubes T € U}‘;(}D,-(Q) such that S C Ry. We remark that

Ko(n, k) € Ko(n,1) when 0<ks<l<n,

with #Ky(n, 0) = 1 and Ko(n, n) = D,(Q). When k < n, the cubes S € Ky(n, k) have relatively high density
v(S)/u(S) compared to v(Q)/u(Q).

fi-of

8ln

Proof. Fix Q € D. Without loss of generality, we may assume that v(Q) = 1. This will allow us to adopt a
probabilistic view. Let P denote the probability measure v L Q, and let E denote the corresponding
expectation.

For j 21, define D/ = {Ry : T € D;-1(Q)} and the random variable Y; = Zsepﬂs- By Lemma 8.4, we have

E[Y;] 21 - 6. From the definition of ¥; and the nested nature of the Dy’s, it is apparent that the random
variables

Lemma 8.10. If k = 6n, then v(UKy(n, k)) = |1 - exp

v(Q).
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J
Xp=0, Xj=)(%-E[¥]), forallj=1,
i=1
form a martingale with respect to the filtration generated by {D;:j > 1}. Furthermore, |X; - Xj4| =
|Y; — E[Y;]| < 2 for all j. Thus, we may bound

n
P =P|X, <n-k- YE[Y]

Jj=1

_(8n - k)Z}

SP[X,-Xo<bén-k]<exp an

n
2Yj<n-k
j=1

where the final estimate holds by Azuma’s inequality (see, e.g., [2, Theorem 7.2.1]) provided that én - k < 0.
The lemma follows, because UK(n, k) = {Z}Lle 2n - ki O

Lemma 8.11. There exists a constant Cs 2 1 depending only on C, so that

k
#5on, k) < CS%] . forall Q €D. ®.9)

Proof. By Corollary 8.2, we can index each child in D1(Q) of a cube Q by a character in A = {1, ...,M’}. We make
the convention that Ry is indexed by 1. We can then continue indexing all descendants via strings of characters
in A in an obvious way so that cubes in D,(Q) are length n strings.

By our indexing convention and the definition of %y(n, k), we see that #¥y(n, k) is no greater than the
number of length n strings of characters in A with at least n - k of the characters equal to 1. We can bound

M, since equals the number of ways in which n - k characters equal to 1 can be

this quantity by [n " X n " X

chosen and M7% bounds the number of all possible choices of characters in the other k positions. Therefore,
#Ko(n, k) < [ n ]M7’< < n—kM7k < [M7eE ‘
an n-k k! k

)

where we used the Taylor series of eX to write k¥/k! < ek, O

8.4 Rectifiable curves with significant v measure

For this subsection, let Q; € D be fixed. Our goal is to find a rectifiable curveI = I'(Q,) such thatv(I' N Q,) > 0,
quantitatively. Let Q, € Dy denote the unique cube of side length 1 such that Q, C Q,. Since X is locally
quasiconvex, there exists a constant Cyc o, 2 1 such that any two points x,y € Q, can be connected by a
rectifiable curve Iy, in X with H1(Ty,) s
Iy is contained in Q,.)

To proceed, given a cube Q € D(Q,) and 0 < k < n, we define an auxiliary curve I(n, k) as follows: for
each § € Ky(n, k), connect xs to xp with a curve of length at most Cy g diam@Q, where Cy o, is the local
quasiconvexity constant of X, described in the previous paragraph. The set Iy(n, k) is then defined to be
the union of these curves. For all Q € Dp,(Q,), we have the bound

Cac0o d(x,y). (We do not claim [and it is not true in general] that

16 K

1 i @9 7| G
H (I‘Q(n, k)) < ch,oodlam(Q) #(KQ(n, k) < ?ch,oo -2

8.10
. (8.10)

Recalling that C5 does not depend on §, we may finally fix § > 0 sufficiently small and n; € N so that

26

Gs
(o] RSP (8.11)
(5] <o




DE GRUYTER Identifying 1-rectifiable measures in Carnot groups == 37

and such that k4 = 26n, is an integer. We now construct a sequence (n;, k;);z1 by defining n; = jn; and k; = jik,
and note that nj/k; = (28)7%, for all j € N.

Recall that Q, € D is fixed and Q, € Dy is the unique cube of side length 1 such that Q, C Q,. We now
construct a curve I' = T'(Q,) that captures a significant portion of the mass of v L Q,. Define K = {Q;} and
Ko = UKy = Q;. Assuming K- is defined for some j = 1, we next define K = Ugex, ,Ko(n, k;) and K; = UK.
Note that K; C K1, and

(89 Csn; i ki
#‘7(]' < #(K'j_lTj = #7(]‘_1[%] .

Iterating this estimate gives

g+ + ki
CS] s (8.12)

#KG < [—
We now define

r=U U L k)U NK.
J=1Q€Kj1 j=1

Note that I is closed. Furthermore, as Iy(rn, k;) connects Xs to X for each cube S € Ko(n;, kj), the set I is path-
connected.
The proof of Theorem 1.5 is a short step from the next two lemmas.

Lemma 8.12. T = I'(Q,) is a rectifiable curve with H(T) < Cyc,0,diamQ;.

Proof. Fix £ 2 1 and nj = ? - 277m++n) For every Q € K,, we have diamQ < diamBy < 1. Hence,

0 ki+--+ke
7{3,[01{-] <HYEK,) < % : z—7<n1+~~+nc>[zc_g] e % ),
j=1

Since ny +--*+ ny, > 0 and n — 0 as € — o, we get that Wl(ﬂjK,-) = 0. Thus,
HIT) < Y Y H'Tn, k).
J=10€%1

As the only cube in Kj is Q; and the cubes of ; are in Dp,....5(Q;) whenever j 2 1, we have (interpreting
n+-+ni-1=0andk +--+ki-y =0 when j=1)

(810) 16 > Gsni
HIT) = = CregysideQ; > #Ky - z-7<m+~+nj-l>[%’
j=1 Y
(812) 16 . o ) . C5 k1+--+k]'
< ?ch,OoSIdte ];2 (u+ +"J-1)[§]
16 BN ol
= ?ch,oosideolz 2‘7[5] ] 27
j=
(811) 16 &
< 3 CregsideQy 2 27 < Coe 0,51deQ; < Cye g, diamQ;.
j=1

In the last line, we used 23212‘("1*“*"1)27"1 = ZT=12‘§i(i+1)"1+7f"1 = 1, since n; = jny; indeed, the tail of the series is
dominated by a convergent geometric series. Because X is a complete metric space and I' C X is nonempty,
closed, connected, and H (T) < o, Lemma 2.8 implies that T is a rectifiable curve. O

Lemma 8.13. v(I' N Q,) = ev(Q,) for some constant € € (0, 1) determined by & and ny. In particular, € is inde-
pendent of Q.
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Proof. As Kj.1 C Kj, we have by the dominated convergence theorem that

= lim v(K)).
Jo

vI'N Q) 2 v[ﬂlKj
j=
By the construction of K; and Lemma 8.10, we have
j
V(K) 2 (1 - e B)y(K;p) 2 v(Q[](1 - e"78),
i=1

. .52 . . . . .
This product converges to a nonzero number as Y;.,e /8 is a convergent geometric series (since n; = iny).
This proves the lemma. O

8.5 Proof of Theorem 1.5

Let v be the measure defined in Section 8.1. By Proposition 8.9, v is a doubling measure on X. As
V= ZQOEDOV L Q, and Dy is countable, to prove that v is 1-rectifiable, it will suffice to check that v L Q, is 1-
rectifiable for each Q, € D,.

Fix Q, € Dy. By the prior discussion (Lemmas 8.12 and 8.13), there exists a rectifiable curve I' = T'(Q,) such
that v(QO\l") < (1 - &)v(Q,) for some constant € € (0, 1) independent of Q,.

Suppose for induction that for some k > 1, we have found a finite family % of rectifiable curves such that

v(QO\U‘Kk) <(1- %8)kV(Q0). Since the set U% is closed (being a finite union of closed sets), we may write

QO\U(@ as a countable union of pairwise disjoint cubes Q,, Q,,-*-€ D(Q,). Once again, for eachi > 1, we can find
a rectifiable curve I such that v(Qi\l“i) < (1 - &)v(Q;) by Lemmas 8.12 and 8.13. Altogether,

v[QO\[Ufgk U 61 Ll < (-8 vQ) = (1 - ev(Q,\U%).
i= i=1

Thus, by continuity from above and the induction hypothesis, we can find j > 1 sufficiently large such that
V[Qo\

Hence, 6+1 = % U {Ih, ...,I}} satisfies the next step of the induction.
Finally, ¥ = Uy-1%x is a countable family of rectifiable curves and

U% U L]J1E <(1- %a)v(@o\u%{) <(1- %8)"*1\/(00).

k

v(Qp) = 0.

1
%) <i @) < i - =
v(Qp\U%) inf V(Qo\U%) inf]1-5e

Therefore, v L Q, is 1-rectifiable. This completes the proof of Theorem 1.5.
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