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Abstract:We continue to develop a program in geometric measure theory that seeks to identify how measures

in a space interact with canonical families of sets in the space. In particular, extending a theorem of M. Badger

and R. Schul in Euclidean space, for an arbitrary locally finite Borel measure in an arbitrary Carnot group, we

develop tests that identify the part of the measure that is carried by rectifiable curves and the part of the

measure that is singular to rectifiable curves. Our main result is entwined with an extension of analyst’s

traveling salesman theorem, which characterizes the subsets of rectifiable curves in 2
� (P. W. Jones, Rectifiable

sets and the traveling salesman problem, Invent. Math. 102 (1990), no. 1, 1–15), in n
� (K. Okikiolu,

Characterization of subsets of rectifiable curves in Rn, J. London Math. Soc. (2) 46 (1992), no. 2, 336–348), or

in an arbitrary Carnot group (S. Li) in terms of local geometric least-squares data called Jones’ β-numbers. In a

secondary result, we implement the Garnett-Killip-Schul construction of a doubling measure in n
� that charges

a rectifiable curve in an arbitrary complete, doubling, locally quasiconvex metric space.

Keywords: rectifiable curves, rectifiable measures, Jones’ β numbers, Carnot groups, doubling measures
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1 Introduction

Rectifiability is an important concept in geometric measure theory that supplies a finer notion of regularity of

a set or measure than does dimension [51,52]. There is not a single definition of rectifiability, but rather a

number of variations that may be encoded using a common framework [8]. For recent work on rectifiable sets

and absolutely continuous measures in Carnot groups and in general metric spaces, we refer the reader to

previous studies [3–5,18–20,22] and references within. A current challenge that we address in this study is to

find characterizations of rectifiability of locally finite measures without imposing the traditional background

hypothesis of absolute continuity. In other words, we are interested in detecting how a measure interacts with

a prescribed family of sets, but we do not want to make a priori assumptions about the null sets of the measure.

Building on recent progress on this problem in Euclidean space [11,15], we give the first characterization of a

class of rectifiable measures inside the collection of locally finite Borel measures in a non-Euclidean setting.

Following the convention in Morse and Randolph [53], Federer [31], and Badger and Schul [13], we say that

a Borel measure μ on a metric space X is 1-rectifiable if there exists a sequence Γ , Γ ,…1 2 of rectifiable curves in

X such that ⧹⋃ =∞μ X Γ 0i1( ) ; at the other extreme, we say that μ is purely 1-unrectifiable if =μ Γ 0( ) for every

rectifiable curve Γ in X . We remphasize that unlike some treatments [29,50], we do not impose the simplifying
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assumption that a 1-rectifiable measure is absolutely continuous with respect to one-dimensional Hausdorff

measure 1� (see Section 2.3 for a primer on rectifiable curves and Figure 1 for some simple examples of

rectifiable and purely unrectifiable measures in 2
� ). An arbitrary measure is not necessarily rectifiable or

purely unrectifiable. Nevertheless, by a general form of the Lebesgue decomposition theorem (Lemma 2.1),

every σ -finite Borel measure μ on a metric space X can be written uniquely as:

= +μ μ μ ,rect pu (1.1)

where μrect is 1-rectifiable and μpu is purely 1-rectifiable. Unfortunately, the proof that the decomposition (1.1)

exists is abstract and does not indicate how to find the component measures. In our main result (Theorem 1.1),

we identify the 1-rectifiable and purely 1-unrectifiable parts of an arbitrary locally finite measure on an

arbitrary Carnot group equipped with a Hebisch-Sikora norm (Section 2.4).

Theorem 1.1. For every Carnot group G and every locally finite Borel measure μ on G, there exist (explicitly

defined) Borel functions ⋅D μ,1( ) and ⋅J μ* ,( ) fromG to ∞0,[ ] such that the 1-rectifiable and purely 1-unrectifiable

parts of a given locally finite measure μ are identified by the pointwise behavior of the functions:

= ∟ ∈ > < ∞μ μ x G D μ x and J μ x: , 0 * , ,rect
1{ ( ) ( ) } (1.2)

= ∟ ∈ = = ∞μ μ x G D μ x or J μ x: , 0 * , .pu
1{ ( ) ( ) } (1.3)

The following consequence is immediate.

Corollary 1.2. A locally finite Borel measure μ on G is 1-rectifiable if and only if >D μ x, 01( ) and < ∞J μ x* ,( ) at

μ-a.e. ∈x G.

The “identifying functions” ⋅D μ,1( ) and ⋅J μ* ,( ) play distinct roles in the main theorem. Roughly speaking,

the first function D μ x,1( ) detects the metric dimension, while the second J μ x* ,( ) detects the Carnot geometry.

Let us now describe them in more detail.

Figure 1: Two-dimensional Lebesgue measure 2� in the plane 2
� is purely 1-unrectifiable (top-left). A countable sum = ∑μ μi i

∞ of
measures μi supported on line segments Ii is a 1-rectifiable measure with support⋃ Ii i (top-right); in particular, there are examples of this
type with =μspt 2

� . The natural Hausdorffmeasure E__s
s� ∣ restricted to a Cantor set Es of Hausdorff dimension s is 1-rectifiable when

<s 1 and purely 1-unrectifiable when ≥s 1 (bottom-left). A self-similar measure μ supported on the set E1 is 1-rectifiable when the
generating sets for E1 have unbalanced weights (bottom-right). This illustrates that it is possible for a rectifiable measure to have purely
unrectifiable support.
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For every locally finite Borel measure μ on an arbitrary metric space X , the lower 1-density ⋅ →D μ X, :1( )

∞0,[ ] is defined by the rule:

= ∈
↓

D μ x
μ B x r

r
x X, liminf

,

2
for all ,

r

1

0
( )

( ( ))
(1.4)

where B x r,( ) is the closed ball with center ∈x X and radius >r 0. The fact that in any metric space, the lower

1-density is positive on the 1-rectifiable part of a locally finite measure follows from Cutler’s theorem relating

the lower density and packing measures (Theorem 2.3). More specifically, the pointwise behavior of the lower

1-density can be used to identify the unique parts of a locally finite measure that are carried by or singular to

Borel sets of finite one-dimensional packing measure 1� . Thus, since every rectifiable curve in a metric space

has the finite 1� measure, we obtain

≤ ∟ ∈ > ∟ ∈ = ≤μ μ x X D μ x μ x X D μ x μ: , 0 and : , 0rect
1 1

pu{ ( ) } { ( ) } (1.5)

for any locally finite measure μ on X . For an in-depth discussion, see Sections 2.2–2.3, especially Corollary 2.4

and Remark 2.9.

The density-normalized Jones function ⋅ → ∞J μ G* , : 0,( ) [ ] connects the local geometry of a locally finite

Borel measure μ on a Carnot groupG with the asymptotic geometry of rectifiable curves inG. WhenG has step

s, the function is defined by the rule:

∑≔ ∈
∈
≤

J μ x β μ Q Q
χ x

μ Q
x G* , * , diam for all ,

Q

Q

s Q

Δ

side 1

2( ) ( )
( )

( ) (1.6)

where Δ is a fixed system of “dyadic cubes” for G (Section 2.5) and β μ Q* ,( ) is a certain anisotropic measure-

ment of the deviation of μ in a neighborhood of Q from being a measure supported on a horizontal line in G.

The definition of β μ Q* ,( ) is based on the stratified β numbers of [45]. Roughly speaking, J μ x* ,( ) is finite at

some x in the support of μ whenever the local dimension of μ at x is less than 1 or μ has a measure-theoretic

weak tangent at x . For a discussion of the underlying etymology and history of similar Jones-type geometric

square functions in n
� , see [13–15]. We postpone the precise definition of β μ Q* ,( ) to Section 4. For now, let us

simply remark that horizontal lines are the tangents to rectifiable curves in Carnot groups ([56, Theorem 2])

and the definition of β μ Q* ,( ) involves the step of the group. For example, when =G n
� is a Euclidean space,

the step =s 1 and the horizontal lines are precisely the one-dimensional affine subspaces of n
� . When G is a

Heisenberg group, the step =s 2 and there is a two-dimensional space of horizontal lines passing through each

point in G (Figure 2).

Figure 2: Simplest example of a nonabelian Carnot group is the first Heisenberg group H 1, which is topologically equivalent to 3
� but is

equipped with a metric so that H 1 has Hausdorff dimension 4. The step of H 1 is 2. In the illustration, we show four horizontal line
segments at 25 points located in the xy-plane inside of H 1.

Identifying 1-rectifiable measures in Carnot groups  3



Remark 1.3. On any metric space X , the collections of rectifiable curves and 1-rectifiable measures on X are

invariant under bi-Lipschitz changes of metric on X . (Of course, the length of any given curve depends on the

choice of metric.) In Theorem 1.1, there is partial flexibility in the choice of metric used to define the two

identifying functions. The lower 1-density ⋅D μ,1( ) may be defined with respect to any metric on G that is bi-

Lipschitz equivalent to a metric associated with a Hebisch-Sikora norm (e.g., the Carnot-Carathéodory metric).

However, the definition of the Jones function ⋅J μ* ,( ) (in particular, that of β μ Q* ,( )) is more sensitive and

presently seems to require the use of metrics that are associated with the Hebisch-Sikora norms on G in order

to use Lemma 2.11 and Proposition 3.3 in the proof of Proposition 3.1.

Underpinning the main theorem is a characterization of subsets of rectifiable curves with estimates on the

length of the shortest curve containing a given set, usually called Analyst’s traveling Salesman theorem (ATST).

First established in n
� by Jones [39] when =n 2 and by Okikiolu [55] when ≥n 3, the ATST was recently

extended to arbitrary Carnot groups by the second author [45] (for earlier necessary or sufficient conditions,

[23,32,40,46,47]). A key insight in [45] is that, to obtain a full characterization of subsets of rectifiable curves

with effective estimates on length, the local deviation of the set from a horizontal line should incorporate

distance in each layer of the Carnot group. Let us now state the theorem. Following [45], for any nonempty set

⊂E G and ball B x r,( ), define the stratified β number for ∩E B x r,( ) by setting

∑≔ ⎛
⎝

⎞
⎠= ∈ ∩

β x r
π z π L

r
, inf sup

d ,
,E

s

L i

s

z E B x r

i i i
i

2

1 ,

2

( )
( ( ) ( ))

( )

(1.7)

where L ranges over all horizontal lines in G, →π G G:i i is the projection of G onto a layer = ∕ +G G Gi
i 1( ) of G,

and = ∈d x A d x a a A, inf , :i i( ) { ( ) } for some choice of metric di associated with a Hebisch-Sikora norm on Gi
(see Section 2.4). When =G n

� , the step =s 1, horizontal lines are one-dimensional affine subspaces, π1 is the

identity, and the stratified β number reduces to the usual Jones β number.

Theorem 1.4. (ATST in Carnot groups [45, Theorem 1.5]) Let G be a Carnot group with step s and Hausdorff

dimension q. For any set ⊂E G, define the quantity

∫∫≔
∞

β E β x r B x r
x

r

r

r
, diam ,

d d
.

G

E
s

q

0

2( ) ( ) ( ) (1.8)

Then, E lies in a rectifiable curve if and only if E is bounded and < ∞β E( ) .Moreover, there exists >C 1 depending

only on G and its underlying metrics di so that

• if Γ is any curve containing E , then + ≤E β E Cdiam Γ1�( ) ( ) and

• if + < ∞E β Ediam ( ) , then there exists a curve Γ containing E for which ≤ +C E β EΓ diam1� ( ) ( ( )).

To promote Theorem 1.4 to a characterization of 1-rectifiable measures on G, we need to first extend the

algorithm for constructing a rectifiable curve through E when < ∞β E( ) to an algorithm for drawing a curve

through the Hausdorff limit of a sequence Xk( ) of “point clouds.” This algorithm has its origins in [39] when

=G n
� and [32] whenG is the (first) Heisenberg group. In the original setting of the ATST, one can simply take

Xk( ) to be a nested sequence of −2 k-nets for E . However, in the setting of the main theorem, when trying to build

a rectifiable curve charged by μ, we only know how to locate families Xk of −2 k -separated points that are

nearby, but not necessarily on a set with positive measure (Lemma 5.2) and we must allow Xk to “float” as

→ ∞k . This issue was resolved when =G n
� by the first author and Schul [15] by introducing “extensions” to

“bridges” and reproving Jones’ traveling salesman algorithm from first principles. In Section 3, we integrate

ideas from [15] and [45] to establish a flexible traveling salesman algorithm in arbitrary Carnot groups

(Proposition 3.1). There are additional technical challenges along the way. To name just one, the numbers

β μ Q* ,( ) appearing in Theorem 1.1 are designed so that we can extract enough data points lying nearby a set

with positive measure to which we can apply the traveling salesman algorithm. In [15], the extraction process

involves a nice idea of Lerman [44]: convexity of the distance of a point to a Euclidean line L and Jensen’s

inequality control the distance of the μ-center-of-mass zQ in a bounded windowQ to the line L. Unfortunately,
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we cannot use this observation in higher step Carnot groups. To overcome this, in Section 5, we must reorder

steps in the proof from [15, §5] and employ an indirect argument using the Chebyshev inequality.

Interesting examples of 1-rectifiable and purely 1-unrectifiable Borel measures that are singular with

respect to 1� and have compact support can be found in [25,48,49]. Garnett et al. [33] produced a family of

1-rectifiable measures μ on n
� that are doubling in the strong sense that

< ≤ < ∞ ∈ >μ B x r Cμ B x r x r0 , 2 , for all and all 0 .n
�( ( )) ( ( )) (1.9)

Not only are their measures singular with respect to the Hausdorff measure 1� , but they also satisfy the

stronger condition = ∞D μ x,1( ) μ-a.e. [13, Example 1.15]. In arbitrary metric spaces, Azzam and Morgoglou [6]

characterized 1-rectifiable doubling measures with σ -compact connected supports in terms of D μ x,1( ) alone,

but leave open the question of existence of such measures. To close this study, we extend the Garnett-Killip-

Schul existence theorem to a broad class of metric spaces, including Carnot groups and Riemannian manifolds.

While the construction of the measures in [33] leaned on the product structure of Euclidean space, we show

that this is not essential for the proof.

Theorem 1.5. If X is a complete, doubling, locally quasiconvex metric space, then there exists a doubling measure

ν on X with =ν Xspt such that ν is 1-rectifiable.

It is still an open problem to characterize the subsets of rectifiable curves in an arbitrary Banach or metric

space (see [9,10,28,30,34] for some partial results and discussion of the main difficulties). On the other hand,

Schul [57] successfully reformulated the ATST so that it holds in an arbitrary (finite or infinite-dimensional)

Hilbert space with dimension-independent constants. Gaps in the proof of the theorem in [57] were recently

discovered, but these have now been filled in (see [9,10,42]). Naples [54] has implemented a version of Theorem

1.1 for pointwise doubling measures on infinite-dimensional Hilbert spaces. Progress on traveling-salesman-

type theorems for various higher-dimensional objects has been made in [7,12,17,37,58].

The rest of this study is arranged as follows. In Section 2, we collect background results in geometric

measure theory and metric geometry, including definitions of Hausdorff and packing measures, rectifiable

curves, Carnot groups, and metric cubes. A version of the ATST for floating point clouds in a Carnot group is

the topic of Section 3. In Section 4, we define the anisotropic, stratified beta numbers β μ Q* ,( ). In Section 5, we

show how positivity of the lower density D μ x,1( ) and finiteness of the Jones function J μ x* ,( ) for ∈x A yield

rectifiability of ∟μ A. In Section 6, we show that J* is locally integrable on any rectifiable curve, which yields

necessary conditions for 1-rectifiability. The proof of Theorem 1.1 is recorded in Section 7, using results from

Sections 5 and 6. The proof of Theorem 1.5, in Section 8, may be read independently of Sections 3–7.

2 Preliminaries

2.1 Implicit constants

When working on a fixed metric space X (on a Carnot group G in Sections 3–7 and on a complete, doubling,

locally convex metric space X in Section 8), we may write ≲a b to indicate that ≤a Cb for some positive and

finite constant C that may depend on X , including its metric and dimensions, but (without further qualifica-

tion) is otherwise independent of a choices of particular sets or measures on X . We write a b~ if ≲a b and

≲b a. We may specify the dependence of implicit constants on additional parameters c d, ,… by writing

≲a bc d, , … and a b~c d, , … .

2.2 Measures and the identification problem

To set our conventions, we recall that ameasurable space X , �( ) is a nonempty set X paired with a σ -algebra

� on X , i.e., a nonempty collection of subsets of X that is closed under complements and countable unions; a
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measure on X , �( ) is a function → ∞μ : 0,� [ ] such that ∅ =μ 0( ) and ⋃ = ∑∞ ∞
μ A μ Ai i1 1( ) ( ) whenever

⋯∈A A, ,1 2 � are pairwise disjoint. In particular, a Borel measure μ on a metric space X is a measure defined

on some measurable space X , �( ) such that � contains every Borel set in X . Given a measure μ on X , �( )

and a set ∈E � , the restriction of μ to E is the measure ∟μ E defined by the rule ∟ = ∩μ E A μ A E( ) ( ) for

all ∈A � .

Given a measure μ on X , �( ) and a nonempty family � of sets in � , we say that μ is carried by � if

( ⧹⋃ ) =∞μ X N 0i1 for some sequence ⋯∈N N, ,1 2 � . At the other extreme, we say that μ is singular to � if

=μ N 0( ) for every ∈N � . For example, when � is the set of rectifiable curves in a metric space X , we

recover the definition of 1-rectifiable and purely 1-unrectifiable measures recorded in the introduction. We

have the following convenient form of the Lebesgue decomposition theorem; a detailed proof is written in the

appendix of [16].

Lemma 2.1. Let X , �( ) be a measurable space and let � be a nonempty collection of sets in � . For every

σ -finite measure μ on X , �( ), there is a unique decomposition = + ⊥μ μ μ� �
as a sum of measures on X , �( )

such that μ� is carried by � and ⊥μ
�

is singular to � .

Remark 2.2. The proof of Lemma 2.1 is abstract and does not provide any concrete method to produce sets

⋯∈N N, ,1 2 � such that ⧹⋃ =∞μ X N 0i1� ( ) . The identification problem [8] is to find the pointwise defined proper-

ties P μ x,( ) and Q μ x,( ) such that

= ∟ ∈ = ∟ ∈⊥μ μ x X P μ x μ μ x X Q μ x: , holds and : , holds� �
{ ( ) } { ( ) }

for every (locally) finite measure μ on X . An ideal solution should involve the geometry of the space X and the

sets in � .

On a metric space X , we let U x r,( ) and B x r,( ) denote the open and closed balls with center ∈x X and

radius >r 0, respectively. Let ⊂E X and let >δ 0. A δ-cover of E is a finite or infinite sequence of sets

⋯⊂E E X, ,1 2 such that ⊂ ⋃E Ei i and ≤E δdiam i for all i, where Adiam denotes the diameter of a set A. A

δ-packing in E is a finite or infinite sequence B B, ,…1 2 of pairwise disjoint closed balls centered in E such that

≤B δ2rad i for all i, where Brad denotes the radius of a ball B. For any ⊂E X , ≥s 0, and >δ 0, we define

∑=
⎧
⎨
⎩

-
⎫
⎬
⎭

E E E E δ Einf diam : , , … is a cover of ,δ
s

i

i
s

1 2� ( ) ( )

= =
↓ >

E E Elim sup ,s

δ
δ
s

δ
δ
s

0 0

� � �( ) ( ) ( )

∑=
⎧
⎨
⎩

-
⎫
⎬
⎭

P E B B B δ Esup 2rad : , , … is a packing in ,δ
s

i

i
s

1 2( ) ( )

= =
↓ >

P E P E P Elim inf ,s

δ
δ
s

δ
δ
s

0 0
( ) ( ) ( )

∑=
⎧
⎨
⎩

⊂ ⋃
⎫
⎬
⎭=

∞
E P E E Einf : .s

i

s
i

i
i

1
� ( ) ( )

We call s� the s-dimensional Hausdorff measure and call s� the s-dimensional packing measure; both s� and
s� are the Borel regular metric outer measures on X , and in particular, s� and s� are the measures when

restricted to the σ -algebra of Borel sets. The auxiliary quantity Ps is called the s-dimensional packing pre-

measure. We caution the reader that the premeasure Ps is generally not an outer measure – it is monotone, but

is not countably subadditive. Note that we have adopted the “radius” definition of the packing measure instead

of the “diameter” definition. The next estimate (valid on any metric space!) is a special case of [26, The-

orem 3.16].
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Theorem 2.3. (Cutler [26]) Let μ be a finite Borel measure on a metric space X, let ⊂E X be Borel, and let >s 0. If

≤ ≤↓
−a r μ B x r bliminf 2 ,r
s

0( ) ( ( )) for all ∈x E , then

≤ ≤a E μ E b E2 ,s s s� �( ) ( ) ( )

where we take the left-hand side to be 0 if =a 0 or =E 0s� ( ) and take the right-hand side to be ∞ if = ∞b

or = ∞Es� ( ) .

We can now use Cutler’s theorem to solve an instance of the identification problem.

Corollary 2.4. Let X be a metric space, let >s 0, and let � be the collection of all Borel sets ⊂E X with

< ∞Es� ( ) . For every Borel measure μ on X such that μ is finite on bounded sets, the parts μ� carried by �

and ⊥μ
�

singular to � (Lemma 2.1) are identified pointwise by the positivity of the lower s-density:

= ∟
⎧
⎨
⎩
∈ >

⎫
⎬
⎭↓

−μ μ x X r μ B x r: liminf 2 , 0 ,
r

s

0
� ( ) ( ( ))

= ∟
⎧
⎨
⎩
∈ =

⎫
⎬
⎭

⊥

↓
−μ μ x X r μ B x r: liminf 2 , 0 .

r

s

0
�

( ) ( ( ))

Proof. Fix any base point ∈x X0 . The set = ∈ >↓
−A x X r μ B x r: liminf 2 , 0r
s

0{ ( ) ( ( )) } can be written as a coun-

table union of sets

=
⎧
⎨
⎩
∈ > ∕

⎫
⎬
⎭↓

−A x B x l r μ B x r k, : liminf 2 , 1 ,k l
r

s
, 0

0
( ) ( ) ( ( ))

where k and l range over all positive integers. Using Cutler’s theorem, we determine that ≤As k l,� ( )

≤ < ∞k μ A k μ B x l,k l, 0( ) ( ( )) for each k and l. Therefore, ∟μ A is carried by sets of finite s� measure.

Similarly, let = ∈ =↓
−B x X r μ B x r: liminf 2 , 0r
s

0{ ( ) ( ( )) } and suppose < ∞Es� ( ) . Then,

∟ = ∟ ∩ ≤ ⋅ ⋅ =
→∞

μ B E μ B U x l E Elim , 2 0 0,
l

s s
0 �( ) ( ( ))( ) ( )

by continuity from below and the upper bound in Cutler’s theorem with =b 0. Thus, ∟μ B is singular to sets of

finite s� measure. Clearly, = ∟ + ∟μ μ A μ B. By uniqueness of the decomposition in Lemma 2.1, we confirm

that = ∟μ μ A� and = ∟⊥μ μ B
�

. □

Corollary 2.5. Let X be a metric space, let >s 0, and let � be the collection of all Borel sets ⊂E X with

=E 0s� ( ) . For every Borel measure μ on X such that μ is finite on bounded sets, the parts μ� carried by �

and ⊥μ
�

singular to � (Lemma 2.1) are identified pointwise by the magnitude of the lower s-density:

= ∟
⎧
⎨
⎩
∈ = ∞

⎫
⎬
⎭↓

−μ μ x X r μ B x r: liminf 2 , ,
r

s

0
� ( ) ( ( ))

= ∟
⎧
⎨
⎩
∈ < ∞

⎫
⎬
⎭

⊥

↓
−μ μ x X r μ B x r: liminf 2 , .

r

s

0
�

( ) ( ( ))

In particular, ≪μ s� if and only if < ∞↓
−r μ B x rliminf 2 ,r
s

0( ) ( ( )) μ-a.e.

Proof. We leave the proof that μ� and ⊥μ
�

are identified by the given formulas to the reader. (Just mimic the

proof of Corollary 2.4.) For the last remark, note that ≪μ s� if and only if =μ E 0( ) whenever =E 0s� ( ) . Thus,

≪μ s� if and only if μ is singular to sets of zero s� measure. □

Remark 2.6. Analogous results hold with the Hausdorff measures replacing the packing measures and upper

densities defined using limsup replacing lower densities defined using liminf . The proof of Theorem 2.3 for the
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Hausdorff measures is considerably easier and can be proved using Vitali’s r5 -covering lemma ([50] or [36])

and the definition of s� .

2.3 Rectifiable curves

The length of a curve in a metric space can be defined either intrinsically in terms of the variation of a para-

meterization of the curve or extrinsically using the one-dimensional Hausdorffmeasure of the trace of the curve. It

is well known that a curve has finite extrinsic length if and only if it admits a parameterization with finite intrinsic

length; for a detailed explanation, see [1]. The following theorem originated in the 1920s ([1] for a reference).

Theorem 2.7. (Ważewski’s theorem) Let X be a metric space. For any nonempty set ⊂ XΓ , the following are

equivalent:

• Γ is compact and connected, and < ∞Γ1� ( ) ;

• = fΓ 0, 1([ ]) for some continuous map →f X: 0, 1[ ] such that = ∑ < ∞< <⋯< −f f t f tvar sup dist ,t t t
n

i i1 1n0 1
( ) ( ( ) ( )) ;

• = fΓ 0, 1([ ]) for some Lipschitz continuous map →f X: 0, 1[ ] .

Moreover, any set Γ satisfying (1), (2), or (3) is the image of a Lipschitz continuous map →f X: 0, 1[ ] with

− ≤ −f t f s L t s∣ ( ) ( )∣ ∣ ∣ for all ∈s t, 0, 1[ ], where f is essentially 2-to-1 and = =L fvar 2 Γ1�( ) ( ).

A rectifiable curve Γ in a metric space X is any nonempty set satisfying one of the three conditions in

Ważewski’s theorem. To test whether a given set Γ is a rectifiable curve, it is usually easiest to check (1). In fact,

according to the following lemma, a weaker assumption suffices in complete metric spaces.

A set ⊂Y X is said to be r-separated if ≥y z rdist ,( ) for all ∈y z Y, . If, in addition, <x Y rdist ,( ) for all

∈x X , then we callY an r-net for X . Recall also that ⊂B X is totally bounded if for every >r 0, the set B can be

covered by a finite number of balls of radius r . It is well known that a metric space X is compact if and only if

X is complete and totally bounded.

Lemma 2.8. Let X be a complete metric space. If a nonempty set ⊂ XΓ is closed, connected, and < ∞Γ1� ( ) , then

Γ is compact, and thus, Γ is a rectifiable curve.

Proof. Equipped with the subspace topology, Γ is complete since it is a closed subset of a complete metric space.

Suppose that Γ is not compact. Then, it cannot be totally bounded. Hence, there exists an infinite r-net ⊂Y Γ for

some ∈r 0, diamΓ( ). By the triangle inequality, the collection ≔ ∕ ∈B y r, 3 y Y� { ( )} is pairwise disjoint. Because Γ

is connected, ∩ ≥ ∕B rΓ 31� ( ) for all ∈B � . Therefore,

∑ ∑≥ ∩ ≥ ∕
∈ ∈

B rΓ Γ 3.
B B

1 1� �
� �

( ) ( )

Since the collection � is infinite, this implies that = ∞Γ1� ( ) , which is a contradiction. Therefore, Γ must be

compact, and by Theorem 2.7, Γ is a rectifiable curve. □

Remark 2.9. Since every rectifiable curve Γ admits a Lipschitz parameterization, it follows that ≲Γ L
1� ( )

< ∞0, 11� ([ ]) (e.g., [13, Lemma 2.8]). Hence, every 1-rectifiable measure μ on X is carried by sets of finite
1� measure. Thus, if μ is a Borel measure on X that is finite on bounded sets, then the 1-rectifiable part of μ (cf.

Theorem 1.1) satisfies

≤ ∟
⎧
⎨
⎩
∈ >

⎫
⎬
⎭↓

−μ μ x X r μ B x r: liminf 2 , 0
r

rect
0

1( ) ( ( )) (2.1)

by Corollary 2.4. In particular, if μ is a 1-rectifiable measure on a metric space and μ is finite on bounded sets, then

the lower 1-density = >↓
−D μ x r μ B x r, liminf 2 , 0r

1
0

1( ) ( ) ( ( )) at μ-a.e. ∈x X . This observation significantly gener-

alizes [50, Theorem 7.9], which says that ∟ >D xΓ, 01 1�( ) at 1� -a.e. ∈x Γ for any rectifiable curve Γ in n
� .
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2.4 Carnot groups

A connected, simply connected Lie groupG is called a step s Carnot group if its associated Lie algebra g satisfies

= ⊕⋯⊕ = = − =+V V V V V i s V V, , for 1,…, 1, , 0 ,s i i s1 1 1 1g [ ] [ ] { }

whereV V,…, s1 are the nonzero subspaces of g. We call this a stratification of the Lie algebra g. Choose a basis

X X, …, N1{ } of g so that

⎧
⎨
⎩

⎫
⎬
⎭

∈∑ ∑+=
−

=
X X V i s, …, is a basis of for each 1, …, .

V V idim 1 dim
j

i
j j

i
j1

1

1

{ }
( ) ( )

For any ∈x G, we may use the exponential map → Gexp :g to uniquely write = +⋯+x x X x Xexp N N1 1( ) for

some ∈x x, …, N
N

1 �( ) . In other words, we can identifyG with N
� via the relationship ↔x x x, …, N1( ). These are

called the exponential coordinates ofG. We will actually group coordinates by the layer that the corresponding

basis elements are in. Thus, we will actually write

=x x x, …, ,s1( )

where ∈xi
ni� and =n Vdimi i . Under this identification, we have = −−p p1 for any ∈p G. Denote by ⋅∣ ∣ the

Euclidean norm in =G N
� relative to the aforementioned choice of basis.

For each ∈r s2, …,{ }, we also define the normal subgroups

= ⊕ ⋯⊕G V Vexp .r
r s( )( )

In terms of exponential coordinates, these are the subspaces of N
� spanned by the coordinates corresponding

to vectors ∈ ⊕⋯⊕X V Vi r s. For a general discussion of Carnot groups, see [21].

We can express group multiplication in G on the level of the Lie algebra using the Baker-Campbell-

Hausdorff (BCH) formula:

∑ ∑=
−

⋯
>

−

+ >
≥

≤ ≤

X Y
k

a r s r s X Y X Ylog exp exp
1

, , …, , ,
k

k

r s

r s

i k

k k
r s r s

0

1

0,

, 0,

1

1 1

i i

i i

k k1 1( ( ) ( ))
( )

( )[ ]
(2.2)

where the bracket term denotes iterated Lie brackets:

⋯ = ⋯ ⋯ ⋯ ⋯ ⋯ ⋯X Y X Y X X X Y Y Y X X X Y Y Y, , , , , , , , , , , .r s r s

r s r s

n n

n n

1 1

1 1

           [ ] [ [ [ [ [ [ [ [ [ [ [ ] ]

We have explicit formulas for group multiplication in terms of exponential coordinates:

⋅ = + + + + +x x y y x y x y P x y P, …, , …, , , …, .s s s s s1 1 1 1 2 2 2( ) ( ) ( )

Here, each Pi is a polynomial of −x x, …, i1 1( ) and −y y, …, i1 1( ), where xi and yi are the vectors in
ni� . We call the

Pi’s the BCH polynomials. We use the following lemma in Section 3.

Lemma 2.10. [45, Lemma 4.1] There exists some constant >C 0 depending only on G so that if ≤y ηi∣ ∣ and ≤x 1i∣ ∣

for all ∈ −i k1, …, 1{ } and any ∈η 0, 1( ), then

≤− −P x x y y Cη, …, , , …, .k k k1 1 1 1∣ ( )∣

There is a natural family of automorphisms known as dilations on G indexed by >t 0. Given >t 0, we

define

= =δ x δ x x tx t x t x, …, , , …, .t t s
s
s1 1

2
2( ) ( ) ( )

It follows that >δt t 0{ } is a one parameter family, i.e., ∘ =δ δ δu t ut.

A homogeneous norm → ∞N G: 0,[ ) is a function satisfying the following properties:

Identifying 1-rectifiable measures in Carnot groups  9



(1) = ⇔ =N g g0 0( ) ,

(2) =−N g N g1( ) ( ),

(3) ≤ +N gh N g N h( ) ( ) ( ).

(4) =N δ g tN gt( ( )) ( ) for all > ∈t g G0, .

The first three properties ensure that if we define = −d g h N g h, 1( ) ( ), then d is a left-invariant metric onG. The

last property ensures that the metric scales with dilations, i.e., for all >t 0 and ∈g h G, , we have

=d δ g δ h td g h, , .t t( ( ) ( )) ( )

Thus, we see that dilations and homogeneous norms on Carnot groups behave like scalar multiplication and

linear norms. That is to say, Carnot groups may be viewed as nonabelian generalizations of vector spaces. In

fact, the class of abelian Carnot groups are precisely the Euclidean spaces. Finally, we mention that it is well

known that any two metrics on a Carnot groupG induced by homogeneous norms are bi-Lipschitz equivalent.

We now define a family of homogeneous norms that exist for all Carnot groups. Given a parameter >η 0,

consider B ηN
� ( ), the Euclidean ball around 0 in G with respect to the Euclidean norm ⋅∣ ∣. We then define an

associated Minkowski gauge on G by:

= > ∈N g r g δ B ηinf 0 : .η r N
�( ) { ( ( ))}

It is a theorem of Hebisch and Sikora [35] that, for any Carnot group G, there exists >η 00 such that Nη is a

homogeneous norm for all < <η η0 0. As Euclidean balls of different radii are not homothetic under the

dilations of G, we obtain a family of nonisometric norms < <Nη η η0 0
{ } . We call these the Hebisch-Sikora norms

on G.

Define →π G: n1� to be the projection ofG onto its first layer. Furthermore, for each = −r s1,…, 1, we let

→ ≔ ∕ +π G G G G:r r
r 1( ). We endow G with a metric d that arises from a Hebisch-Sikora norm N chosen so that

the projected unit ball of N in each Gr also forms the unit ball of a Hebisch-Sikora norm. In particular, this

choice ensures that each projection πr is 1-Lipschitz. We note that the norms may be considered “nested” in the

following sense: if N and ′N are norms of Gr and +Gr 1, then

= ′N x x N x x, …, , …, , 0r r1 1( ) ( )

by the convexity of balls centered at 0. By the abusing notation, we will use N to denote all of these norms. We

now record another lemma, which will be important in Section 3.

Lemma 2.11. [45, Lemma 6.6] For any ∈α 0, 1( ), there exists a constant >C 0 so that if ∈−N x x α, …, , 0 , 1s1 1( ) [ ]

and ≤ ∕y C1∣ ∣ , then

≤ − ≤− −N x x y N x x C y0 , …, , , …, , 0 .s s1 1 1 1
2( ) ( ) ∣ ∣

Finally, a set ⊂L G is called a horizontal line if it is a coset of a one-dimensional subspace in × ⊂ G0n1� { } .

In other words,

= ⋅ ∈ ∈ ∈L x sv s x G v, 0, …,0 : for some , .n1� �{( ) }

By the definition of the norm on G, horizontal lines are isometric copies of � in G.

Using the BCH formulas, one can show that the Jacobian of left translation on G is 1. This tells us that the

Lebesgue measure on the underlying manifold N
� ofG is a Haar measure. By looking at the anisotropic scaling

of the dilation δλ, we see that the Lebesgue measure of balls in G satisfies

= ∈ >B x r c r x G r, for all and 0 ,G
q∣ ( )∣ (2.3)

where =c B 0, 1G ∣ ( )∣ is the Lebesgue measure of the unit ball and = ∑ =q k Vdimk
s

k1 is the homogeneous dimen-

sion of G. Therefore, the Lebesgue measure on any Carnot group G is q-uniform, Ahlfors q-regular, and

doubling. Furthermore, it follows from a standard packing argument that any ball in G of radius r may be

covered by at most C q ε,( ) balls of radius εr .

10  Matthew Badger et al.



2.5 Dyadic cubes in “finite-dimensional” metric spaces

We shall need access to a certain decomposition of an arbitrary Carnot group into a system of “dyadic cubes,”

where cubes of the same “side length” are pairwise disjoint. In the harmonic analysis literature, such systems

are often called Christ or Christ-David cubes after constructions by David [27] and Christ [24] (e.g., [38]), but

similar decompositions in a metric space were given earlier by Larman [43]. Here, we quote (a special case of)

a recent streamlined construction of cubes by Käenmäki et al. [41], which can be carried out in any metric

space, which is “finite-dimensional” in the weak sense that every ball B is totally bounded. For simplicity, we

record the KRS construction with the scaling parameter 1/2 (see [41] for the general case, which allows for any

scaling parameter between 0 and 1).

Recall that U x r,( ) and B x r,( ) denote open and closed balls in X , respectively.

Theorem 2.12. [41, Theorem 2.1, Remark 2.2] Let X be any metric space with totally bounded balls. Suppose that

we are given ∈x X0 and a family ∈Xk k �( ) of −2 k -nets for X such that ∈ ⊂ +x X Xk k0 1 for all ∈k � . Then, there

exist a family of collections = ∈ ⊂ ∈Q i NΔ :k k i k k, � �{ } of Borel sets (“cubes”) with the following properties:

(1) Partitioning: = ⋃X Qi k i, for every ∈k � ,

(2) Nesting: ∩ = ∅Q Qk i m j, , or ⊂Q Qk i m j, , whenever ≥k m,

(3) Centers and roundness: for every Qk i, , there is a point ∈x Xk i k, such that

⎛
⎝ ⋅ ⎞

⎠ ⊂ ⊂ ⎛
⎝ ⋅ ⎞

⎠
− −U x Q B x,

1

6
2 ,

8

3
2 ,k i

k
k i k i

k
, , ,

(4) Inheritance: ∈ ⊂ ∈+ +x i N x i N: :k i k k i k, 1, 1{ } { } for all ∈k � ,

(5) Origin: for every ∈k � , there exists Qk i, such that

⎛
⎝ ⋅ ⎞

⎠ ⊂
−U x Q,

1

6
2 .k

k i0 ,

(To derive Theorem 2.12 as stated, invoke the theorem in [41] with = ∕r 1 4 and duplicate every generation

of 4-adic cubes. The resulting cubes are the dyadic cubes.)

Given a fixed system of KRS cubes ∈Δk k �( ) and = ∈Q Q Δk i k, , we let =x xQ k i, denote its center and let

= −Qside 2 k denote its side length. Furthermore, we define

= ⎛
⎝ ⋅ ⎞

⎠ = ⎛
⎝ ⋅ ⎞

⎠
− −λU U x λ λB B x λ,

1

6
2 and ,

8

3
2Q Q

k
Q Q

k

for all >λ 0. Given ∈Q Δk and ∈ +R Δk 1, we say that R is a child of Q if ⊂R Q. Let QΔ1( ) denote the set of all

children of Q. Extending this metaphor, we may define grandchildren, descendants, parents, grandparents,

ancestors, and siblings in the natural way as convenient. Finally, we assign = ⋃ ∈Δ Δk k� , i.e., Δ is the set of all

cubes.

Definition 2.13. We say that ⊂ Δ� is a tree of cubes if � has a unique maximal element Top �( ) such that if

∈Q � , then ∈P � for all ∈P Δ with ⊂ ⊂Q P Top �( ). For each level ≥l 0, let l� denote the collection of all

cubes ∈Q � with = −Qside 2 sidel Top �( ). An infinite branch of � is a chain ≡ ⊃ ⊃ ⊃ ⋯Q Q Q0 1 2Top �( ) with

∈Ql l� for all ≥l 0. We define the set of leaves of � by:

≔ ⋃
⎧
⎨
⎩
⋂ ⊃ ⊃ ⊃ ⋯

⎫
⎬
⎭=

∞
Q Q Q Q: is an infinite branch of .

l
l

0
0 1 2Leaves � �( )

Remark 2.14. Because X has totally bounded balls, < ∞# l� for all ≥l 0. Using König’s lemma (i.e., in a graph

with infinitely many vertices, each of which has finite degree, there exists an infinite path), it can thus be

shown that = ⋂ ⋃=∞l l0Leaves � �( ) . In particular, Leaves �( ) is a Borel set, since cubes in Δ are Borel.

Identifying 1-rectifiable measures in Carnot groups  11



Definition 2.15. (cf. [15, p. 18]) For any locally finite Borel measure μ on X , tree of cubes � , and function

→ ∞b : 0,� [ ), we define the μ-normalized sum function:

∑≔ ∈ ∞ ∈
∈

S μ x b Q
χ x

μ Q
x X, 0, for all ,b

Q

Q
,�

�

( ) ( )
( )

( )
[ ]

where we interpret ∕ =0 0 0 and ∕ = ∞1 0 .

The following lemma is a slight variation on the Hardy-Littlewood maximal theorem for dyadic cubes in
n
� . The proof works in the metric setting, because the system of cubes Δ satisfies Properties (1) and (2) in

Theorem 2.12.

Lemma 2.16. (Localization, cf. [15, Lemma 5.6]) Let μ be a locally finite Borel measure on X, let � be a tree of

cubes, and let → ∞b : 0,� [ ). Fix < < ∞N0 and define

≔ ∈ ≤A x S μ x N: , .b,Leaves � �{ ( ) ( ) } (2.4)

If >μ A 0( ) and < <ε0 1, then there is a set ⊂	 � such that

(1) 	 is a tree of cubes with =Top Top	 �( ) ( ),

(2) ∩ ≥ −μ A ε μ A1Leaves 	( ( )) ( ) ( ), and

(3) ∑ < ∕∈ b Q N ε μQ Top �	 ( ) ( ) ( ( )).

Proof. Suppose that μ, � , b, N , A, and ε are given as in the statement of the lemma. Note that >μ 0Top �( ( )) ,

because >μ A 0( ) . Declare a cube ∈Q � to be bad if there exists ∈R � such that ⊂Q R and

∩ ≤μ A R
εμ A

μ
μ R .

Top �
( )

( )

( ( ))
( ) (2.5)

By design, this definition ensures that every child of a bad cube in � is bad too.

We say that a cube ∈Q � is good ifQ is not bad. Note that if ∈R � and ⊂ RTop �( ) , then =R Top �( ) and

∩ = >μ A μ A
εμ A

μ
μ ,Top

Top
Top�

�
�( ( )) ( )

( )

( ( ))
( ( )) (2.6)

since <ε 1 and >μ A 0( ) . Hence, Top �( ) is a good cube. Let 	 denote the set of all good cubes. Because Top �( )

is in 	 and every parent of a good cube in � is again a good cube, we conclude that 	 is a subtree of � with

=Top Top	 �( ) ( ). This verifies (1).

Next, we check (2). There are two cases. First, if there are no bad cubes, then =	 � and we trivially have

∩ = > −μ A μ A ε μ A1Leaves 	( ( )) ( ) ( ) ( ). Otherwise, there is at least one bad cube. Let � denote the set of all

maximal bad cubes, i.e., the set of all bad cues that are not properly contained in another bad cube. Note that�

is pairwise disjoint. Thus, using (2.5), we see that

∑

∑

⧹ ∩ ≤ ∩

≤

≤

=

∈

∈

μ A A μ A R

εμ A

μ
μ R

εμ A

μ
μ

εμ A .

R

R

Leaves

Top

Top
Top

	

�

�
�

�

�

( ( ( ))) ( )

( )

( ( ))
( )

( )

( ( ))
( ( ))

( )

(2.7)

Thus, ∩ = − ⧹ ∩ ≥ −μ A μ A μ A A ε μ A1Leaves Leaves	 	( ( )) ( ) ( ( ( ))) ( ) ( ).

Finally, using the definitions of A and S b,� , Tonelli’s theorem, and the definition of good cubes, we obtain
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∫

∫ ∑

∑

∑

≥

=

=
∩

>

∈

∈

∈

Nμ A S x μ x

b Q
χ x

μ Q
μ x

b Q
μ A Q

μ Q

b Q
εμ A

μ

d

d

.

A

b

A Q

Q

Q

Q

,

Top �

�

�

�

	

( ) ( ) ( )

( )
( )

( )
( )

( )
( )

( )

( )
( )

( ( ))

(2.8)

Rearranging yields (3). □

Remark 2.17. As stated, [15, Lemma 5.6] is false in general. Let us describe the problem. Instead of using (2.4),

the set A in [15] was defined as ≔ ∈ ≤A x S x N: b,Top � �{ ( ) ( ) }. It was then asserted without justification that

⧹ ⋃ = ∩
∈

A Q A ,
Qbad cubes

Leaves 	
�

( )

which is not true unless =Leaves Top� �( ) ( ).

Mimicking the usual construction of Whitney cubes in n
� , we may use a system of KRS cubes to build

Whitney cubes in the complement of any closed set.

Lemma 2.18. If ⊊E X is a nonempty closed set, then there exists a family 
 of cubes in Δ with the following

properties:

(1) Partitioning: ⧹ = ⋃ ∈X E WW 
 and ∩ ≠ ∅W W1 2 if and only if =W W1 2;

(2) Size and location: ≤W W Ediam dist ,( ) for all ∈W 
 ,

where = ∈ ∈W E d w xdist , inf inf ,w W x E( ) ( ). Moreover, if there exists a constant >c 0 such that ≥U x r crdiam ,( )

whenever ∈x X , >r 0, and ≠U x r X,( ) , then

(3) < ∕W E c Wdist , 128 diam( ) ( ) for all ∈W 
 .

Proof. Given a nonempty closed set E with nonempty complement, take
 to be any maximal family of cubes

∈W Δ such that ≥W E Wdist , diam( ) . The partitioning property follows from maximality and Properties (1),

(2), and (3) of Theorem 2.12. Let ∈W 
 . One the one hand, ≥W E Wdist , diam( ) by definition of the family. On

the other hand, let V be the parent ofW in Δ. Then, <V E Vdist , diam( ) by maximality. Thus, under the extra

assumption on the diameters of open balls,

≤ + < ≤ ∕ ≤ ∕W E V E V B c U c Wdist , dist , diam 2diam 128 diam 128 diam .V W( ) ( ) ( ) ( ) □

Remark 2.19. Suppose that X is a doubling metric measure space in the sense that there is a Borel measure μ

on X and constant >C 0 such that (1.9) holds for all ∈x X and >r 0. By (2) and (3) in Theorem 2.12, for any

∈Q Δk and ∈R QΔ1( ), we have

⊂ ⊂ ⎛
⎝ ⋅ ⎞

⎠
⎛
⎝ ⋅ − ⎞

⎠ ⊂
⎛
⎝ ⋅ ⎞

⎠ ⊂
− − − +Q B x B B x B x ε U x U, diam ,

16

3
2 and ,

1

12
2 ,

1

6
2R Q R

k
R

k
R

k
R

1( ) ( )

for any < < ⋅ −ε0 2 k1

12
. Doubling of the measure at xR yields ≤μ Q C μ UR

7( ) ( ) for all ∈R QΔ1( ). Hence,

∑ ∑= ≥ ≥ ⋅
∈ ∈

−μ Q μ R μ U C μ Q Q#Δ ,
R Q R Q

R

Δ Δ

7
1

1 1

( ) ( ) ( ) ( ) ( )
( ) ( )

i.e., ≤Q C#Δ1
7( ) for every KRS cube Q.
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3 Traveling salesman algorithm in Carnot groups

From here through the end of Section 7, letG be a fixed Carnot group that is homeomorphic to n
� and has step

s and homogeneous dimension q. Also, choose metrics di associated with a Hebisch-Sikora norm on

= ∕ +G G Gi
i 1( ) for all ≤ ≤i s1 .

In this section, our goal is to prove the following traveling salesman type criterion for existence of a

rectifiable curve passing through the Hausdorff limit of a sequence of point clouds. Crucially, the weak

coherence condition VII( ) only requires that each cloud lie nearby, but not necessarily on, the rectifiable curve.

We will use this flexibility in the proof of Lemma 5.3. In the Euclidean setting, Proposition 3.1 is due to the

Badger and Schul [15], based in part on earlier constructions in [39] and [44]. There are at least two difficulties

in extending this criterion to arbitrary Carnot groups. The first challenge is in the statement of the criterion.

The number αk v, is a penalty term that bounds the stratified distance to a horizontal line k v,ℓ of points x in the

clouds −Vk 1 and Vk that lie nearby the point v in Vk ; the correct dependence on the step s in (3.1) and (3.2) was

only recently identified by the second author [45]. Another technical challenge for higher step groups appears

in the proof. In the Euclidean case, all length estimates can be stated in terms of the total Hausdorffmeasure of

line segments of approximating curves. However, in the general Carnot setting, we need to employ two

notions: edge length of projections of abstract graphs Γk connecting Vk onto the horizontal layer of G and

Hausdorff measure of geometric realizations Γk of the graphs in the whole space G (see Section 3.4).

Proposition 3.1. (Traveling salesman criterion for point clouds) Let ∈x G0 , let ≥⋆C 1, and let >r 00 . Suppose

that =
∞Vk k 0( ) is a sequence of nonempty finite subsets of ⋆B x C r,0 0( ) such that

(VI) ′ ≥ −d v v r, 2 k
0( ) for all distinct points ′ ∈v v V, k ,

(VII) for all ∈v Vk k , there exists ∈+ +v Vk k1 1 such that ≤+
⋆ −d v v C r, 2k k

k
1 0( ) ,

(VIII) for all ∈v Vk k , there exists ∈− −v Vk k1 1 such that ≤−
⋆ −d v v C r, 2k k

k
1 0( ) .

Suppose also that, for all ≥k 1 and all ∈v Vk , there is a horizontal line k v,ℓ in G and a number ≥α 0k v, such that

∈ ⋅ ∈ ∪ ∩−
⋆ −−x δ B α for all x V V B v C r, 65 2 .k v r k v

s
k k

k
, 2 , 1 0k n

0 �ℓ ( ( )) ( ) ( ) (3.1)

Finally, suppose that

∑ ∑ < ∞
=

∞

∈

−α r2 .
k v V

k v
s k

1
,

2
0

k

(3.2)

Then, the setsVk converge in the Hausdorff metric to a compact set ⊂ ⋆V B x C r,0 0( ), and there exists a rectifiable

curve ⊂ ⋆B x C rΓ , 30 0( ) such that ⊂V Γ and

∑ ∑≲ +
=

∞

∈

−⋆ r α rΓ 2 .G C

k v V
k v
s k1

, 0

1
,

2
0

k

� ( ) (3.3)

Remark 3.2. The motivation for the requirement (3.1) on αk v, comes from [45]. Recall that the stratified β

number β x r,E( ) is defined by (1.7). By [45, Proposition 1.6],

> ∩ ⊂ ⋅β x r ε E B x r L δ B ε, ~ inf inf 0 : , ,E
L

r
sn

�( ) { ( ) ( ( ))} (3.4)

where B x r,( ) is a ball in G, B εsn
� ( ) is a Euclidean ball about the origin of the manifold n

� underlying G, and ε

represents the “width” of a tubular neighborhood ( )⋅L δ B εr
sn

� ( ) of the horizontal line L formed using the

group multiplication, the group dilation, and the step of the group. The implicit constant in (3.4) depends on n,

s, and the choice of the metric di in each layer Gi of G, but is otherwise independent of E , x , and r .

The following auxiliary result captures an essential bi-Lipschitz property of projections near points that

are relatively “flat,” i.e., close to a horizontal line relative to their scale of separation. It replaces [15, Lemma

8.3], which was an application of the Pythagorean theorem in n
� .
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Proposition 3.3. Assume G is a Carnot group of step s, and let →π G: n1� be the projection to the first layer ofG.

For any >α 1, there exist positive constants C and ε0 depending on G and α so that if ⊂L G is a horizontal line,

→P G π L: ( ) is the composition of π with the orthogonal projection in n1� onto π L( ), and ∈ ⋅a b L B ε, sn
� ( ) for

some <ε ε0 so that ∈d a b α, 1,( ) [ ], then

+
≤ − ≤

a b

Cε
P a P b d a b

d ,

1
, .

s2

( )
∣ ( ) ( )∣ ( )

Proof. The right-hand inequality restates the fact that the projections which comprise P are 1-Lipschitz. We

will prove the left-hand inequality. We may without loss of generality assume that the horizontal line L

contains the origin. In particular, this means that L has the form ∈ut t, 0, …,0 : �{( ) } for some ∈u n1� .

We also suppose that ∈ ⋅a B ε0 sn
� ( ) and u was chosen so that ∈ ⋅b u B ε, 0, …,0 sn

�( ) ( ). Hence,

∈ +π a π b π L B ε, .sn1�( ) ( ) ( ) ( ) (3.5)

By choosing ε0 sufficiently small, we can use the triangle inequality to guarantee that − ≥ ∕π b π a 1 2∣ ( ) ( )∣ ,

− ≥ ∕P b P a 1 4∣ ( ) ( )∣ , and ≤u α2∣ ∣ .

To continue, let us prove that there exists a constant >C 00 so that

= −−a b π b π a ξ ξ, , …, ,s
1

2( ( ) ( ) )

and each ∈ξi
ni� has norm ≤ξ C εi

s
0∣ ∣ . We will actually prove the statement for ∕

−δ a bα1 2
1( ) (with the first layer

properly rescaled) as it will allow us to use Lemma 2.10. Rescaling back by δ α2 then gives the corresponding

statement for −a b1 . The fact that the coordinate in the first layer of ∕
−δ a bα1 2

1( ) is −π b π a
α

1

2
( ( ) ( )) is clear by the

Baker-Campbell-Hausdorff formula (2.2). By our assumptions on a b, , we have

= ⋅ ′ ⋅∕
−δ a b x x u y y, …, , 0, …,0 , …, ,α s s1 2

1
1 1( ) ( ) ( ) ( )

where ≤ ∕x y ε α, 2i i
s∣ ∣ ∣ ∣ and ′ = ∕ ≤u u α2 1∣ ∣ ∣ ∣ . Two applications of Lemma 2.10 give the result.

Now, by Lemma 2.11, we have = ≤ − +−
−d a b N a b N π b π a ξ ξ C ε, , , …, s

s1
2 1 1

2( ) ( ) ( ( ) ( ) ) for some constant

>C 01 . Iterating this gives a constant >C 02 so that

≤ − + = − +d a b N π b π a C ε π b π a C ε, .s s
2

2
2

2( ) ( ( ) ( )) ∣ ( ) ( )∣

Recalling (3.5), the Pythagorean theorem gives − ≤ − +π b π a P a P b ε10 s2∣ ( ) ( )∣ ∣ ( ) ( )∣ . Altogether, we get a con-

stant >C 03 such that

≤ − +d a b P a P b C ε, .s3
2( ) ∣ ( ) ( )∣

Since − ≥ ∕P a P b 1 4∣ ( ) ( )∣ , we have proven the desired inequality. □

3.1 Start of the proof of Proposition 3.1

The rest of this section is devoted to the proof of Proposition 3.1. We follow the general outline of the proof in

the Euclidean case [15, §8.1]. We shall refer the reader to the original proof for arguments that are essentially

metric and highlight the changes that are necessary for the Carnot setting. The details are rather technical. As

such, the reader who is willing to assume the veracity of Proposition 3.1 is encouraged to jump to Section 4.

Without loss of generality, we can rescale the metric on G using a dilation so that =r 10 . By (the proof of)

Lemma 8.2 of [15], the sets Vk converge in the Hausdorff metric to a compact set ⊂ ⋆V B x C,0( ). Note that, if

=V# 1k for all k , then V is a singleton, and so the result trivially holds. Assume, therefore, that there is some

least ≥k 00 so that that ≥V# 2k for all ≥k k0.
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3.2 Construction

We will inductively construct a sequence of abstract graphs Γk on the vertices of⋃ Vj j. The abstract edges will

simply be unordered pairs of vertices. On occasion, we may refer to connected families of edges as “curves.”

(In the Euclidean case [15], the edges in Γk were realized geometrically as line segments.)

To begin, we will define the extension of a vertex. Given ∈v Vk , we define E k v,[ ] in the following way. Let

=v v0 . Once ∈ +v Vi k i has been defined, choose +vi 1 to be a closest point in + +Vk i 1 to vi. The extension E k v,[ ] is

then defined as = + =
∞E k v v v, ,i i i1 0[ ] {( )} . Given distinct vertices ′ ∈v v V, k , define the bridge

′ = ∪ ′ ∪ ′B k v v E k v v v E k v, , , , , .[ ] [ ] {( )} [ ]

Bridges will be used to span large “gaps” between vertices in Vk .

3.2.1 Initial curve Γk0

We remark that either =k 00 and ⊂ ⋆V B x C,0 0( ) by assumption, or ≥k 10 and ( )⊂ ⋆ −V B x C, 2k
k

0
0 by VIII( ), where

=−V xk 10
{ }. We construct the initial graph Γk0

by including every edge ′ ″v v,( ) with ′ ″ ∈v v V, k0
, i.e.,

≔ ⋃ ′ ″
′ ∈″

v vΓ , .k
v v V, k

0

0

( ) (3.6)

3.2.2 Future curves Γk

Suppose that −Γ ,…, Γk k 10
have been defined for some ≥ +k k 10 . In order to define the next set Γk , we first

describe the edge set in Γk locally nearby each vertex ∈v Vk . We will then declare Γk to be the union of new

parts of the curve together with the bridges from previous generations, i.e., if Γk v, denotes the new part of Γk
nearby v, then

≔ ⋃ ∪ ⋃ ⋃ ′ ″
∈ =

−

′ ⊂″
B j w wΓ Γ , , .k

v V
k v

j k

k

B j w w
,

1

, , Γk j0

[ ]
[ ]

(3.7)

For each ≥k k0 and ∈v Vk , define ≔ ⋆ −B B v C, 65 2k v
k

, ( ). According to VI( ), there is some constant >M 0

such that ∩ ≤V B M# k k v,( ) for all ≥k k0 and every ∈v Vk . Let >ε 0 be a small parameter, depending only on

G, chosen according to various needs below. In particular, when >ε 0 is sufficiently small, we can invoke

Proposition 3.3.

Fix an arbitrary vertex ∈v Vk . We will define Γk v, in two cases.

Case I: Suppose ≥α εk v, ˆ for some ∈ ∩v V Bˆ k k v, .

To construct Γk v, , consider each pair of vertices ′ ″ ∈ ∩v v V B, k k v, . If ′ − ″ < ⋆ −π v π v C30 2 k∣ ( ) ( )∣ , include the

edge ′ ″v v,( ) in Γk v, . Otherwise, include the bridge ′ ″B k v v, ,[ ]. In other words,

⎜ ⎟= ⋃
⎛
⎝

⋃ ′ ″ ∪ ⋃ ′ ″
⎞
⎠′ ∈ ′ − < ′ − ≥″ ″ ″⋆ − ⋆ −

v v B k v vΓ , , , .k v
v v V π v π v C π v π v C

,
, 30 2 30 2k

k k
( ) [ ]

∣ ( ) ( )∣ ∣ ( ) ( )∣

This ends the description of Γk v, in Case I.

Case II: Suppose <α εk v, ˆ for every ∈ ∩v V Bˆ k k v, .

Identify the projected horizontal line π k v,(ℓ ) with � . (In particular, pick directions “left” and “right.”) Let

→π G:k v, � denote the projection P defined in Proposition 3.3 composed with this identification. By (3.1), (VI ),

and Proposition 3.3, the map πk v, is bi-Lipschitz on ∪ ∩−V V Bk k k v1 ,( ) , with

′ ″ ≤ + ′ − ″ ∀ ′ ″ ∈ ∪ ∩−d z z Cε π z π z z z V V B, 1 , .s
k v k v k k k v

2
, , 1 ,( ) ( )∣ ( ) ( )∣ ( ) (3.8)

In particular, both ∩V Bk k v, and ∩−V Bk k v1 , can be arranged linearly along k v,ℓ , i.e., if we set = ∈v v Vk0 , we can

write

− −v v v v v,…, , , ,…,l m1 0 1
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to denote the vertices in ∩V Bk k v, arranged from left to right according to the relative order of π vk v i, ( ) in � ,

where ≥l m, 0. In other words,

<⋯< < < <⋯<− −π v π v π v π v π v .k v l k v k v k v k v m, , 1 , 0 , 1 ,( ) ( ) ( ) ( ) ( )

We start by describing the “right-half” Γk v
R

, of Γk v, . Starting from v0 and working to the right, include each edge

+v v,i i 1( ) in Γk v
R

, until − ≥+
⋆ −π v π v C30 2i i

k
1∣ ( ) ( )∣ , ∉+

⋆ −v B v C, 30 2i
k

1 ( ), or +vi 1 is undefined (because =i m). Let

≥t 0 denote the number of edges that were included in Γk v
R

, .

Case II-NT: If ≥t 1 (i.e., at least one edge was included), then we say that the vertex v is not terminal to the

right, and we are done describing Γk v
R

, .

Case II-T1 and Case II-T2: If =t 0 (i.e., no edges were included), then we say that the vertex v is terminal to

the right and continue our description of Γk v
R

, , splitting into subcases depending on how −Γk 1 looks near v. Letwv

be a vertex in −Vk 1 that is closest to v. As mentioned earlier, we may enumerate the vertices in ∩−V Bk k v1 ,

starting from wv and moving right (with respect to the identification of k v,ℓ with �) by:

=w w w w, ,…, ,v v v v s,0 ,1 ,

i.e., <⋯<π w π wk v v k v v s, ,0 , ,( ) ( ). Let wv r, denote the rightmost vertex that appears in ∩−
⋆ − −V B v C, 2k

k
1

1( )( ) . There

are two alternatives:

T1: If =r s or if − ≥+
⋆ − −π w π w C30 2v r v r

k
, , 1

1∣ ( ) ( )∣ ( ), then we set = vΓk v
R

, { }.

T2: If − <+
⋆ − −π w π w C30 2v r v r

k
, , 1

1∣ ( ) ( )∣ ( ), then v1 exists by (VII ) (and − ≥ ⋆ −π v π v C30 2 k
1∣ ( ) ( )∣ ). In this case, we

set = B k v vΓ , ,k v
R

, 1[ ].

The first alternative defines Case II-T1. The second alternative defines Case II-T2. This concludes the descrip-

tion of Γk v
R

, .

We define the “left-half” Γk v
L

, of Γk v, symmetrically. Also, define the terminology v is not terminal to the left

and v is terminal to the left by analogy with the corresponding terminology to the right. Having separately

defined both the “left-half” Γk v
L

, and the “right-half” Γk v
R

, of Γk v, , we now declare

≔ ∪Γ Γ Γ .k v k v
L

k v
R

, , ,

This concludes the construction of Γk v, in Case II.

3.3 Connectedness

The graph Γk0
is connected as it is the complete graph on Vk0

. The graphs Γk are locally connected nearby each

vertex inVk by construction of the Γk v, . Together with the fact that Γk includes all bridges appearing in −Γk 1 and

that bridges include extensions to all future generations, it can be shown that Γk is globally connected (see [15,

§8.3] for sample details).

3.4 Start of the length estimates

Let →π G: n1� be the horizontal projection. Given E , a nonempty collection of abstract edges of⋃ =
∞ Vk k k0

(e.g.,

Γk), we define its projected length Eℓ( ) by:

∑≔ −
∈

E π u π v .
u v E,

ℓ( ) ∣ ( ) ( )∣
( )

(3.9)

(This concept did not appear in [15].) We remark that the projected length may be larger than the length of the

curve in n1� formed by projecting ⋃ =
∞ Vk k k0

into n1� and connecting pairs of points whose vertices in E are

contained in an edge. The difference is that the quantity above might over-count the length since the projected

line segments could overlap.

Our primary task is to verify the following bound on Γkℓ( ):
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Lemma 3.4. There exists a constant >C 0 depending only on G and ⋆C so that

∑ ∑≤
⎛

⎝
⎜ +

⎞

⎠
⎟ ≥ +−

= + ∈

−C α for all k kΓ 2 2 1.k
k

j k

k

v V
j v
s j

1
,

2
0

j

0

0

ℓ( ) (3.10)

For convenience, in the rest of this section, we write ≲a b to denote ≲ ⋆a bG C, . Let us first see how

Proposition 3.1 follows from this lemma.

Proof of Proposition 3.1 given Lemma 3.4. First, assume that for some constant >C 01 depending on at mostG

and ⋆C , we know that for all ≥ +k k 10 ,

∑ ∑ ∑≤
⎛

⎝
⎜ +

⎞

⎠
⎟

∈ = + ∈

−d u v C α, Γ 2 .
u v

k

j k

k

v V
j v
s j

, Γ

1

1
,

2

k j0

( ) ℓ( )
( )

(3.11)

Let Γk be a geometric realization of Γk in G formed by drawing a geodesic in G for each edge ∈u v, Γk( ) and

taking the closure of the union of these geodesics. Observe that ⊂ ⋆B x CΓ , 3k 0
 ( ) by the triangle inequality, since

∈ ⋆u v B x C, ,0( ) for each ∈u v, Γk( ) and =⋆ ⋆B x C Cdiam , 20( ) . Together, (3.2), (3.10), and (3.11) yield

∑ ∑≤
⎛

⎝
⎜ +

⎞

⎠
⎟ < ∞ ≥ +−

= +

∞

∈

−C α k kΓ 2 2 , for all 1,k
k

j k v V
j v
s j1

2

1
,

2
0

j

0

0

� ( ) (3.12)

where C2 is a constant depending on at mostG and ⋆C . Let ( ) =∞Γk j 1j
 be any subsequence of =

∞Γk k k0
( ) that converges

in the Hausdorff metric, say = →∞Γ lim Γj kj
 . Then, by Gołab’s semicontinuity theorem, which is valid in any

metric space [1], Γ is a rectifiable curve and ( )≤ < ∞→∞Γ liminf Γj k
1 1

j
� �( ) by (3.12). That is to say, Γ satisfies

(3.3). Also, we know that ⊂ ⋆B x CΓ , 30( ), since each ⊂ ⋆B x CΓ , 3k 0
 ( ). Back in Section 3.1, we noted that Vkj

converges in the Hausdorff metric to a compact set ⊂ ⋆V B x C,0( ). Since ⊂V Γk k
 , it follows that ⊂V Γ, as

well. Therefore, we have reduced the proof of Proposition 3.1, given Lemma 3.4, to verifying (3.11).

Suppose first that ∈u v, Γk( ) is a pair which is not part of an extension E i z,[ ] included in Γk . If this edge

was added to Γj w, in Case I above (noting that it is only possible for <j k when u v,( ) is the “central span” of a

bridge B j u v, ,[ ]), then ∈ ∩u v V B, j j w, and ≥α εj v, ˆ for some ∈ ∩v V Bˆ j j w, . Thus,

≤ ≤ ≤⋆ − ⋆ − −d u v B C C ε α, diam 130 2 130 2 .j w
j s

j v
s j

,
2

, ˆ
2( )

Since each Bj w, contains boundedly many pairs u v,( ) depending only on G and ⋆C , and furthermore, each v̂ is

selected by a bounded number of points w, we may choose C1 large enough so that the sum of d u v,( ) over all

such pairs u v,( ) is bounded from above by:

∑ ∑−

= + ∈

−C ε α 2 .s

j k

k

v V
j v
s j

1
2

1 ˆ
, ˆ

2

j0

If u v,( ) was added in Case II, then we get from (3.8) that

≤ + −d u v Cε π u π v, 1 .s2( ) ( )∣ ( ) ( )∣

Choosing ≥ +C Cε1 s
1

2 ensures that the sum of d u v,( ) over all pairs u v,( ) discussed here is bounded from

above by:

∑ − =
∈

C π u π v C Γ .
u v

k1

, Γ

1

k

∣ ( ) ( )∣ ℓ( )
( )

We now bound the length of all extensions E j w,[ ] in Γk . If E j w,[ ] was added to Γj v, in Case I for some

∈v Vj, then there is some ∈ ∩v V Bˆ j j v, so that ≥α εj v, ˆ . We then get

∑ ′ ″ ≤ ≤
′ ∈

⋆ − + ⋆ − −

″
d u u C C ε α, 2 2 2 .

u u E j w

j s
j v
s j

, ,

1 2
, ˆ

2( )
( ) [ ]

(3.13)
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As each Γj v, can only have boundedly many such extensions and each ∩V Bj j v, has boundedly many elements,

we may conclude that the sum of ′ ″d u u,( ) over all edges ′ ″u u,( ) in such extensions is bounded by a constant

multiple of

∑ ∑⋆ −

= ∈

−C ε α2 2 .s

j k

k

v V
j v
s j2
,

2

j0

For extensions contained in a bridge ′B j w w, ,[ ] that were added in Case II, we get a bound as follows:

∑ ∑′ ″ + ′ ″ ≤ ≤ − ′
′ ∈ ′ ∈ ′

⋆ −

″ ″
d u u d u u C π w π w, , 4 2

4

30
.

u u E j w u u E j w

j

, , , ,

3.13

( ) ( ) ∣ ( ) ( )∣
( ) [ ] ( ) [ ]

( )

Thus, by increasing the lower bound ≥ +C Cε1 s
1

2 to ≥ +C Cε2 s
1

2 , we can account for all such extensions. This

completes the proof of (3.11). □

The rest of this section is now dedicated to proving Lemma 3.4. Roughly speaking, we would like to bound

the length of Γk0
by −C2 k0 and to bound Γkℓ( ) by + ∑− ∈

−C αΓ 2k v V k v
s k

1 ,
2

k
ℓ( ) for all ≥k k0 and some C independent of

k . At each step, we will “pay” for the length of Γk with the length of −Γk 1 plus some extra accumulation

∑ ∈
−C α 2v V k v

s k
,

2
k

. The main difficulty arises when attempt to “pay” for an edge ′ ″v v,( ) in Γk when either of its

vertices is close to a terminal vertex from Case II of the construction. This is because, in this case, the old curve

may not be long enough to “pay” for ′ − ″π v π v∣ ( ) ( )∣. To address this issue, we will take advantage of a

“prepayment” technique called phantom length originating in Jones’ original traveling salesman construction

[39] (also [44]).

3.5 Phantom length

Below, it will be convenient to have notation to refer to the vertices appearing in a bridge. For each extension

= ⋃ =
∞

+E k v v v, ,i i i0 1[ ] ( ), we define the corresponding extension index set I k v,[ ] by:

= + ≥I k v k i v i, , : 0 .i[ ] {( ) }

For each bridge ′ ″B k v v, ,[ ], we define the corresponding bridge index set ′ ″I k v v, ,[ ] by:

′ ″ = ′ ∪ ″I k v v I k v I k v, , , , .[ ] [ ] [ ]

Following [15], for all ≥k k0 and ∈v Vk , we define the phantom length associated with the pair k v,( ) as

≔ ⋆ −p C3 2k v
k

, . If ′ ″B k v v, ,[ ] is a bridge between vertices ′ ″ ∈v v V, k , then the totality ′ ″pk v v, , of phantom length

associated with pairs in ′ ″I k v v, ,[ ] is given by:

≔ + +⋯ + + +⋯ =′
⋆ − − + ⋆ − − + ⋆ −

″p C C C3 2 2 3 2 2 12 2 .k v v
k k k k k

, ,
1 1( ) ( )( ) ( )

During the proof, we will track the phantom length at certain pairs k v,( ) with ∈v Vk as we now describe.

For the initial generation, define the index set k0Phantom( ) by:

≔ ∈k k v v V, : .k0 0 0
Phantom( ) {( ) }

Suppose that −k k,…, 10Phantom Phantom( ) ( ) have been defined for some ≥ +k k 10 , where the index sets

already defined satisfy the following two properties.

• Bridge property: For all ∈ −j k k, …, 10{ }, if a bridge ′ ″B j w w, ,[ ] was introduced in Γj , then jPhantom( )

contains ′ ″I j w w, ,[ ].

• Terminal vertex property: Let ∈ −w Vk 1 and suppose ℓ is a horizontal line with

∈ ⋅ ∈ ∩−
⋆ − −− −y δ B ε y V B w Cfor all , 30 2 .s

k
k

2 1
1

k n1 �ℓ ( ( )) ( )( )
( )

Let →π G: �ℓ be the composition of π with the orthogonal projection in n1� onto ℓ and the identification of

ℓ with � as before. If there does not exist
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′ ∈ ∩ ′ <−
⋆ − −w V B w C π w π w, 30 2 withk

k
1

1( ) ( ) ( )( )
ℓ ℓ

or there does not exist

″ ∈ ∩ ″ >−
⋆ − −w V B w C π w π w, 30 2 with ,k

k
1

1( ) ( ) ( )( )
ℓ ℓ

then − ∈ −k w k1, 1Phantom( ) ( ).

(Note that k0Phantom( ) satisfies both properties trivially since, by definition, k0Phantom( ) includes k v,0( ) for

every ∈v Vk0
.) We will form kPhantom( ) via −k 1Phantom( ) as follows. Initialize the set kPhantom( ) to be

equal to −k 1Phantom( ). Next, delete all pairs −k w1,( ) and k z,( ) appearing in −k 1Phantom( ) from

kPhantom( ). Finally, for each vertex ∈v Vk , include additional pairs in kPhantom( ) according to the following

rules:

• Case I: Suppose that ∈v Vk and ≥α εk w, for some ∈ ∩w V Bk k v, . Include ′k v,( ) in kPhantom( ) for all vertices

′ ∈ ∩v V Bk k v, and include ′ ″I k v v, ,[ ] as a subset of kPhantom( ) for every bridge ′ ″B k v v, ,[ ] in Γk v, .

• Case II: Suppose that ∈v Vk and <α εk w, for all ∈ ∩w V Bk k v, .

– Case II-NT: Suppose Γk v
R

, or Γk v
L

, is defined by Case II-NT. Do nothing.

– Case II-T1: Suppose Γk v
R

, or Γk v
L

, is defined by Case II-T1. Include ∈k v k, Phantom( ) ( ).

– Case II-T2: Suppose Γk v
R

, or Γk v
L

, is defined by Case II-T2. When Γk v
R

, is defined by Case II-T2, include I k v v, , 1[ ]

as a subset of kPhantom( ). When Γk v
L

, is defined by Case II-T2, include −I k v v, ,1[ ] as a subset of kPhantom( ).

In particular, note that k v,( ) is included in kPhantom( ).

The phantom length associated with the deleted pairs will be available to pay for the length of edges in Γk near

terminal vertices inVk and to pay for the phantom length of pairs in ⧹ −k k 1Phantom Phantom( ) ( ). Verification

that kPhantom( ) satisfies the bridge and terminal vertex properties is the same as the Euclidean case (see [15,

p. 30] for details).

3.6 Proof of (3.10) given (3.14)

The projected length of a set of edges is defined in (3.9). Suppose that there exists = ⋆C C G C,( ) such that for all

≥ +k k 10 ,

∑

∑ ∑

+ +

≤ − + + +

∈

∈ − ∈

−

k k p

k p C α k1 2
5

6
,

j u k
j u

j u k
j u

v V
k v
s k

,
,

, 1
, ,

2

k

Edges Bridges

Edges Bridges

Phantom

Phantom

ℓ( ( )) ℓ( ( ))

ℓ( ( )) ℓ( ( ))

( ) ( )

( ) ( )

(3.14)

where kEdges( ) denotes the set of all pairs ′ ″v v,( ) included in Γk that are not part of a bridge ′ ″B j w w, ,[ ]

included in Γk , kBridges( ) denotes the union of all bridges ′ ″B k v v, ,[ ] included in Γk , and kPhantom( ) is

defined in §3.5. Recall the definition of Γk in (3.7) and also that Γk0
contains no bridges. Applying (3.14) tele-

scopically −k k0 times yields

∑

∑ ∑ ∑ ∑

= +

≤ + + +

= +

∈ = + ∈

−

= +

k j

k p C α j

Γ

2
5

6
.

k

j k

k

j u k
j u

I

j k

k

v V
j v
s j

j k

k

II

1

0

,
,

1
,

2

1j

0

0 0 0

Edges Bridges

Edges Bridges
Phantom     

ℓ( ) ℓ( ( )) ℓ( ( ))

ℓ( ( )) ℓ( ( ))
( ) ( )

Since ( )⊂ ⋆ −V B x C, 2k
k

0
0 for some x andVk0

is −2 k0-separated, the number of points inVk0
is bounded, depending

only onG and ⋆C . It follows that ≲ −⋆I 2G C
k

,
0. Also, since Γk includes all bridges introduced in +Γ ,…, Γk k10

, we have

≤II Γk
5

6
ℓ( ). Thus,
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∑ ∑≲ +−

= + ∈

−α
1

6
Γ 2 2 .k G C

k

j k

k

v V
j v
s j

,

1
,

2
*

j

0

0

ℓ( )

This proves (3.10) given (3.14).

3.7 Proof of (3.14)

This section corresponds to [15, §9.4]. Fix ≥ +k k 10 . Our goal is to prove (3.14). As the projection →π G: n1� is

1-Lipschitz, we have from (3.1) that

≤
∈ ∪ ∩

−

−

π x π αsup dist , 2 .
x V V B

k v k v
s k

, ,

k k k v

n

1 ,

1� ( ( ) (ℓ ))
( )

(3.15)

By an abuse of notation, we will refer to the projected line π k v,(ℓ ) in n1� as k v,ℓ . It should always be clear from

context to which line we are referring. Moreover, we will write →π :k v
n

,
1� � to denote orthogonal projection

onto π k v,(ℓ ) composed with identification of the line with � . By (3.15), the sets π Vk( ) satisfy [15, (8.1)] with

“error” αk v
s
, . Thus, the estimate (3.14) is almost a direct application of the proof of [15, Proposition 8.1], except

for the fact that π Vk( ) is not necessarily −2 k separated. In [15], the separation condition is primarily used to get

a bound on π V# k( ), but in our context, this conclusion follows from a bound on V# k . We sketch some details for

the reader’s convenience convenience.

It follows from the construction that for all ≥k k0,

′ ″ ∈ ⇒ ′ − ″ < ⋆ −v v k π v π v C, 30 2 ,kEdges( ) ( ) ∣ ( ) ( )∣

′ ″ ⊂ ⇒ ≤ ′ − ″ <⋆ − ⋆ −B k v v k C π v π v C, , 30 2 130 2 .k kBridges[ ] ( ) ∣ ( ) ( )∣

Furthermore, if ′ ″ ⊂B k v v k, , Bridges[ ] ( ), then

′ ″ = ′ − ″ + ′ + ″

≤ ′ − ″ + < ′ − ″⋆ −

B k v v π v π v E k v E k v

π v π v C π v π v

, , , ,

4 2 1.14 ,k
3.13

ℓ( [ ]) ∣ ( ) ( )∣ ℓ( [ ]) ℓ( [ ])

∣ ( ) ( )∣ ∣ ( ) ( )∣
( )

where, in addition to (3.13), we used the fact that π is 1-Lipschitz.

Each graph Γk gives rise to a geometric realization of π Γk( ) in n1� by taking a union of line segments in n1�

corresponding to abstract edges:

≔ ⋃
∈

π u π v, .k
u v, Γk

� [ ( ) ( )]
( )

Since Γk is connected, k� is as well. The length of an edge in Γk agrees with the Hausdorff measure 1� of the

corresponding line segment in k� . We will call line segments in k� “edges” and unions of line segments with

the extensions at their endpoints “bridges” using the same classification as in Section 3.2. Given ∈v Vk , we let

k v,� denote the associated line segments from Γk v, .

Edges and bridges forming k� and “new” phantom length associated with pairs in the set ⧹kPhantom( )

−k 1Phantom( )may enter the local picture k v,� of k� near π v( ) for several vertices ∈v Vk , but they each only

need to be accounted for once to estimate the left-hand side of (3.14). Continuing to follow [15], we prioritize as

follows:

1. Case I edges, Case I bridges, Case I phantom length.

2. Case II-T1 phantom length and edges that are near Case II-T1 terminal vertices (where here and below near

means at a distance at most ⋆ −C2 2 k );

3. Case II-T2 bridges, Case II-T2 phantom length, and (parts of) edges that are near Case II-T2 terminal

vertices;

4. remaining (parts of) edges, which are necessarily not near Case I vertices and Case II-T1 and Case II-T2

terminal vertices.

Identifying 1-rectifiable measures in Carnot groups  21



First estimate (Case I): This is analogous to the estimates on [15, p. 33]. Since ∩ ≲V B# 1k k v G C, , *( ) , we may

charge the length of edges, new bridges, and new phantom length appearing in Bk v, to −α 2k u
s k
,

2 for some vertex

∈u Bk v, with ≥α εk u, .

Second estimate (Case II-T1): As long as we choose ε to be small enough so that + <Cε2 1 2.5s2( ) , where C

is the constant in Proposition 3.3, this estimate is the same as the one on [15, p. 33]. Use Proposition 3.3 in place

of [15, Lemma 8.3].

Third estimate (Case II-T2): This estimate introduces the term k
5

6
Bridgesℓ( ( )) in (3.14). While it is similar

to the estimate on [15, pp. 33–34], the proof there uses a notion of the “core” of a bridge, which we have not

introduced. Thus, we record some details. Suppose that <α εk u, for all ∈ ∩u V Bk k v, and v is T2 terminal to the

right. (The case when v is terminal to the left can be handled analogously.) Let ∈v Vk1 and ∈+ −w w V,v r v r k, , 1 1

denote vertices appearing in the definition of Γk v
R

, . We will pay for pk v v, , 1
, the projected length of the bridge

B k v v, , 1[ ], and the length (Hausdorff measure) of the part of any segments in k� inside of

∪ ≕⋆ − ⋆ −B π v C B π v C BB, 2 2 , 2 2k k
1n n1 1� �( ( ) ) ( ( ) ) with at least one endpoint which is the projection of a point

in ∪ ≕⋆ − ⋆ −B v C B v C U, 2 2 , 2 2k k
1( ) ( ) .

First, the totality pk v v, , 1
of phantom length associated with all vertices in B k v v, , 1[ ] is ⋆ −C12 2 k . Second,

≤ + − ≤ + −⋆ − ⋆ −
+B k v v C π v π v C π w π w, , 4 2 8 2k k

v r v r1

3.13

1 , , 1ℓ( [ ]) ∣ ( ) ( )∣ ∣ ( ) ( )∣
( )

because < ⋆ −d v w C, 2 2v r
k

,( ) and <+
⋆ −d v w C, 2 2v r

k
1 , 1( ) . Finally, by our choice of ε in the second estimate as

before, since <α εk v, and <α εk v, 1
, the total length of parts of edges inside BB does not exceed ⋆ −C5 2 k .

Altogether,

∑+ + ′ ″ ∩

≤ − + + +

≤ − + −

′ ∈
′ ∩ ≠∅

+
⋆ − ⋆ − ⋆ −

+

″
″

B k v v p π v π v BB

π w π w C C C

π w π w π v π v

, , ,

8 2 12 2 5 2

25

30
.

k v v
v v k

v v U

v r v r
k k k

v r v r

1 , ,
,

,

1

, , 1

, , 1 1

1
Edges

�ℓ( [ ]) ([ ( ) ( )] )

∣ ( ) ( )∣

∣ ( ) ( )∣ ∣ ( ) ( )∣

( ) ( )

{ }

In the last inequality, we used − ≥ ⋆ −π v π v C30 2 k
1∣ ( ) ( )∣ . In fact, this is the entire rationale for the requiring

bridges to have large spans. We remark that ∈ −+w w k, 1v r v r, , 1 Edges( ) ( ) and the assignment ↦ +v w w,v r v r, , 1( )

when v is T2 terminal to the right is one-to-one.

We have now paid for all phantom lengths, all bridges, and those parts of edges that are within a ball of

radius ⋆ −C2 2 k from the projection of a Case II-T1 and Case II-T2 terminal vertex. The next estimate will pay for

all remaining edge lengths.

Fourth estimate (Case II-NT): Suppose ′ ″ ∈v v k, Edges( ) ( ) is an edge for which the length of ′ ″π v π v,[ ( ) ( )]

has not yet been fully paid, and fix a point ∈ −y Vk 1 so that ′ < ⋆ −d y v C, 2 k( ) . Then, <′α εk v, and <″α εk v, , and

there are ′ ″ ∈u u, n1� such that ′ ″u u,[ ] is the largest closed subinterval of ′ ″π v π v,[ ( ) ( )] so that ′u and ″u lie at

distance at least ⋆ −C2 2 k from the projections of II-T1 and II-T2 terminal vertices of ∩ ′V Bk k v, . Only ′ ″u u,1� ([ ])

remains to be paid for as we have already paid for the rest of the length of ′ ″π v π v,[ ( ) ( )] in the second and

third estimate. By Proposition 3.3 and (3.15),

′ − ″ ≤ + ′ − ″

≤ ′ ″ + ′ − ″

≤ ′ ″ +

′ ′ ′

′ ′ ′

′ ′
⋆

′
−

u u Cα π u π u

π u π u Cα π v π v

π u π u C Cα

1

,

, 30 2 .

k v
s

k v k v

k v k v k v
s

k v k v k v
s k

,
2

, ,

1
, , ,

2

1
, , ,

2

�

�

∣ ∣ ( )∣ ( ) ( )∣

([ ( ) ( )]) ∣ ( ) ( )∣

([ ( ) ( )])

This is analogous to the first displayed equation in the fourth estimate on [15, p. 34], except that we have

replaced = ⋅90 3 30 with C30 , where C is from Proposition 3.3. The argument on [15, pp. 34–35] shows how to

efficiently charge ′ ″′ ′π u π u,k v k v
1

, ,� ([ ( ) ( )]) to −k 1Edgesℓ( ( )) and ∑ ∈
−α 2u V k u

s k
,

2
k

.

Carefully tallying the four estimates, one obtains (3.14).
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4 Stratified β numbers for locally finite measures

We continue to let G denote the Carnot group fixed at the start of Section 3. Furthermore, from here through

the end of Section 7, we let = ⋃ ∈Δ Δk k� be a fixed system of “dyadic cubes” on G given by Theorem 2.12 with

respect to a fixed family of nested −2 k -nets ∈Xk k �( ) for G.

Motivated by [15] and [45], we wish to design a useful gauge of how close a locally finite measure μ onG is

to being supported on a horizontal line in a neighborhood of a cube ∈Q Δ, which both allows for the

possibility of nondoubling measures and incorporates distance in each of the layers G G,…, s1 of G. The defini-

tion of β μ Q* ,( ) proceeds in several stages.

Definition 4.1. For all ∈x y G, and >r 0, define

∑≔ ⎛
⎝

⎞
⎠=

β x y r
π x π y

r
˜ , ;

d ,
.s

i

s
i i i

i

2

1

2

( )
( ( ) ( ))

Furthermore, define ≔ ∈β x E r β x y r˜ , ; inf ˜ , ;y E( ) ( ) for all nonempty ⊂E G.

Definition 4.2. (Non-homogeneous stratified β numbers) Let μ be a locally finite Borel measure on G. For any

Borel set Q, with < < ∞Q0 diam , and any horizontal line L, define

∫≔β μ Q L β z L Q
μ z

μ Q
, , ˜ , ; diam

d
.s

Q

s2 2( ) ( )
( )

( )

Furthermore, define ≔β μ Q β μ Q L, inf , ,L( ) ( ), where L runs over all horizontal lines in G.

Definition 4.3. For ∈Q Δk , ∈k � , we define the family QNear( ) of cubes near Q by:

≔ ∈ ∪ ∩ ≠ ∅−Q R B BΔ Δ : 2 588 ,k k R Q1Near( ) { }

where = ⋅ −B B x588 , 1,568 2Q Q
k( ) and xQ is the center of Q.

Definition 4.4. (Anisotropic stratified β numbers) Let μ be a locally finite Borel measure onG. For every ∈Q Δ,

define

≔
⎧
⎨
⎩

⎫
⎬
⎭∈

β μ Q β μ B L
μ B

B
* , inf max , 2 , min 1,

2

diam2
,s

L R Q
R

s R

R

2 2

Near
( ) ( )

( )

( )

where the infimum is over the set of all horizontal lines in G.

Remark 4.5. The numbers β μ Q* ,( ) are a rough gauge of how far ∟μ B588 Q is from a measure supported on a

horizontal line. They are anisotropic insofar as the normalizations

⎧
⎨
⎩

⎫
⎬
⎭μ B

μ B

B

1

2
min 1,

2

diam2R

R

R( )

( )

of the integral of the scale-invariant stratified distance of points in B2 R to a horizontal line L against the

measure μ, i.e.,

∫∑ ⎜ ⎟
⎛
⎝

⎞
⎠=

π z π L

B
μ z

d ,

diam2
d ,

i

s

B

i i i

R

i

12

2

R

( ( ) ( ))
( )

vary independently in the regions B2 R that emanate in different directions and distances from the central

region B2 Q inside of the window B588 Q.

Remark 4.6. Let ∈x G, let � denote the tree of cubes ∈Q Δ such that ∈x Q and ≤Qside 1, and let

=b Q β μ Q Q* , diams2( ) ( ) for all ∈Q � . Then, =J μ x S μ x* , ,b,�( ) ( ), where J μ x* ,( ) is given by (1.6) and

⋅S μ,b,� ( ) is given by Definition 2.15.
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Remark 4.7. Let ∈Q Δk and let ∈ ∩ −R Q Δk 1Near( ) . Then,

⎛
⎝ ⋅ ⎞

⎠ = ⊂ ⊂ ⊂ ⎛
⎝ ⋅ ⎞

⎠
− −U x U R B B x,

1

3
2 2 ,

32

3
2 .R

k
R R R

k

Because ∩ ≠ ∅B B2 588R Q , we conclude that

⊂ ⋅ + ⊂ ⋅ =− −B B x B B x B2 , 1568 2 diam2 , 1592 2 597 .R Q
k

R Q
k

Q( ) ( ) (4.1)

Furthermore, since cubes in ∩ −Q Δk 1Near( ) are pairwise disjoint, a volume doubling argument yields

∩ ≲−Q# Δ 1k 1Near( ) , where the implicit constant depends only on G. A similar computation shows that

⊂B B2 597R Q for all ∈ ∩R Q ΔkNear( ) and ∩ ≲Q# Δ 1kNear( ) , as well.

Remark 4.8. Midpoint convexity of ↦x xp when >p 1 gives us a quasitriangle inequality for the stratified

distance:

≤ +−β x y r β x z r β z y r, ; 2 , ; , ; .s s s s2 2 1 2 2( ) ( ( ) ( ) )͠ ͠ ͠ (4.2)

We also have a change of scales inequalities:

≤ ≤ ≥ >β x y t β x y r
t

r
β x y t t r, ; , ; , ; whenever 0.( ) ( ) ( )͠ ͠ ͠ (4.3)

5 Rectifiability of sets on which the Jones function is finite

Suppose that μ is a locally finite Borel measure on G. For each cutoff >c 0, we define the truncated beta

number β μ Q* ,c, ( ) for ∈Q Δ by ignoring cubes ∈R QNear( ) on which μ has small one-dimensional density,

i.e.,

≔
⎧
⎨
⎩

∈ ≥
⎫
⎬
⎭

β μ Q β μ B L c R Q
μ B

B
c* , inf max , 2 , min , 1 : ,

2

diam2
,c s

L
R

s R

R

, 2 2 Near( ) ( ) { } ( )
( )

(5.1)

where as usual the infimum runs over all horizontal lines in G and β μ B L, 2 ,R
s2( ) is defined in Definition 4.2. If

there are no ∈R QNear( ) with ≥μ B c B2 diam2R R( ) , simply assign =β μ Q* , 0c, ( ) . The associated density-nor-

malized Jones function is defined by:

∑≔ ∈
∈ +

J μ x β μ Q Q
χ x

μ Q
x G* , * , diam for all ,c

Q

c s Q,

Δ

, 2( ) ( ) ( )
( )

( )
(5.2)

where +Δ is the set of cubes of side length at most 1. It is immediate from the definitions that ≤β μ Q* ,c, ( )

β μ Q* ,( ) for all ∈Q Δ and ≤J μ x J μ x* , * ,c, ( ) ( ) for all ∈x G.

This section is devoted to the proof of the following theorem.

Theorem 5.1. Let μ be a locally finite Borel measure on G. For every >c 0,

∟ ∈ > < ∞μ x G D μ x c and J μ x: , 2 * ,c1 ,{ ( ) ( ) } (5.3)

is 1-rectifiable.

Our main tool for constructing a rectifiable curve passing through a set of points is Proposition 3.1. In

order to find (countably many) rectifiable curves covering the set where D μ x,1( ) is positive and J μ x* ,c, ( ) is

finite, we need to extract enough data to input to the proposition. In [15], the convexity of the Euclidean

distance of a point to a line was used to find points zQ (centers of mass) for each ∈Q Δ for which we could

control the distance of zQ to any line L using β numbers. This approach is not available in an arbitrary Carnot
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group G, so we reverse the process. First, we associate a special line Qℓ with each ∈Q Δ. In particular, with μ

and >c 0 fixed, for each ∈Q Δ, choose any horizontal line Qℓ so that

⎧
⎨
⎩

∈ ≥
⎫
⎬
⎭
≤β μ B c R Q

μ B

B
c β μ Qmax , 2 , min , 1 : ,

2

diam2
2 * , .R Q

s R

R

c s2 , 2Near( ℓ ) { } ( )
( )

( ) (5.4)

If there are no ∈R QNear( ) such that ≥μ B c B2 diam2R R( ) , choose Qℓ arbitrarily or leave Qℓ undefined –we will

never refer to it. Once we have fixed these lines, we may show that there exist points ∈zR R Δ{ } for which we can

control the distance of zR to Qℓ whenever ∈R QNear( ) and ≥μ B c B2 diam2R R( ) .

Lemma 5.2. There exist points ∈zR R Δ{ } such that ∈z B2R R for each ∈R Δ and

≲ ≲β z B β z B β μ B, ; diam2 , ; diam2 , 2 ,R Q Q R Q R R Q( ℓ ) ( ℓ ) ( ℓ )͠ ͠ (5.5)

for each R and Q in Δ with ∈R QNear( ) and ≥μ B c B2 diam2R R( ) .

Proof. Fix ∈R Δ. Since ≤ ≤B B Bdiam2 diam2 2diam2Q R Q when ∈R QNear( ), the first inequality in (5.5) follows

from (4.3), so it suffices to prove the second inequality. By definition, for any horizontal line L,

∫=β μ B L β z L B
μ z

μ B
, 2 , , ; diam2

d

2
.R

s

B

R
s

R

2

2

2

R

( ) ( )
( )

( )
͠

Thus, for each horizontal line Qℓ associated with some ∈Q Δ, Chebyshev’s inequality gives

∈ ≥ ≤ >μ z B β z B Cβ μ B
μ B

C
C2 : ˜ , ; diam2 , 2 ,

2
for all 1.R Q R

s
R Q

s R2 2({ ( ℓ ) ( ℓ ) })
( )

By an argument similar to Remark 4.7, there exists a constant = < ∞N N G( ) such that

∈ ∈ ≤Q R Q N# Δ : Near{ ( )} . Choosing = >C N2 1, it follows that

⋃ ∈ ≥ ≤
∈

μ z B β z B Nβ μ B μ B2 : ˜ , ; diam2 2 , 2 ,
1

2
2 .

Q R Q
R Q R

s
R Q

s
R

:

2 2

Near

( { ( ℓ ) ( ℓ ) }) ( )
{ ( )}

Therefore, as long as >μ B2 0R( ) , there exists ∈z B2R R such that

≤β z B Nβ μ B, ; diam2 2 , 2 ,R Q R
s

R Q
s2 2( ℓ ) ( ℓ )͠ (5.6)

for all ∈Q Δ such that ∈R QNear( ). Pick one such point for each ∈R Δ such that >μ B2 0R( ) . (This includes all

cubes ∈R Δ such that ≥μ B c B2 diam2R R( ) . For any ∈R Δ with =μ B2 0R( ) , choose =z xR R if desired.) □

The following lemma describes a scenario in which the whole set of leaves of a tree is contained in a

rectifiable curve. Moreover, the length of such a curve can be controlled by the diameter or side length of the

top cube and a sum involving β μ Q* ,c s, 2( ) .

Lemma 5.3. Let μ and c be fixed as earlier. Suppose that � is a tree of cubes such that

≥ ∈μ B c B for all Q and2 diam 2 ,Q Q �( ) ( ) (5.7)

∑= < ∞
∈

S β μ Q Q* , diam .
Q

c s, 2
�

�

( ) ( ) (5.8)

Then, there exists a rectifiable curve Γ with ⊂ ΓLeaves �( ) such that

≲ + −c SΓ side max , 1 .1 1Top� � �( ) ( ) { } (5.9)

Proof. If the set of leaves of the tree is empty, the conclusion is trivial. Thus, we assume that ≠ ∅Leaves �( ) .

Without loss of generality, we may further assume that every cube in � intersects Leaves �( ). (Delete any

cubes without this property.) Let ∈Q Q Δ{ℓ } be given by (5.4) and let ∈zR R Δ{ } be given by Lemma 5.2.
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We employ a traveling salesman algorithm for constructing rectifiable curves in Carnot groups from

Section 3. In particular, we will apply Proposition 3.1 with parameters:

= =⋆C r24 and side .0 Top �( )

To do so, we must identify a sequence ≥Vk k 0( ) of point clouds satisfying conditions VI( ), VII( ), and VIII( ) of the

proposition and sequences ≥ ∈k v k v V, 0, k
(ℓ ) of lines and ≥ ∈αk v k v V, 0, k

( ) of linear approximation errors satisfying (3.1)

and (3.2).

Point clouds. For each ≥k 0, define ≔ ∈ = −Z z Q Q r: and side 2k Q
k

0�{ } and choose Vk to be a maximal
− r2 k

0-separated subset of Zk . By definition, Vk satisfies VI( ).

Suppose that ∈v Vk k for some ≥k 0. Then, =v zk Q for some ∈Q � with = −Q rside 2 k
0. Because every cube

in � is part of an infinite chain, there exists ∈R � with = ∕R Qside 1 2 side( ) and ⊂R Q. By maximality of +Vk 1

in +Zk 1, there is ∈S � with =S Rside side such that ∈ +z VS k 1 and ≤ − +d z z r, 2S R
k 1

0( ) ( ) . Hence, ≔+v zk S1 satisfies

= ≤ + + + ≤ ⎛⎝ + + + ⎞
⎠ ⋅ < ⋅+

− −d v v d z z d z x d x x d x z d z z r r, , , , , ,
16

3

8

3

8

3

1

2
2 12 2 .k k Q S Q Q Q R R R R S

k k
1 0 0( ) ( ) ( ) ( ) ( ) ( )

Therefore, (VII ) holds.

Similarly, suppose that ∈v Vk k for some ≥k 1, again say that =v zk Q for some ∈Q � with = −Q rside 2 k
0.

Let ∈P � be the parent of Q, which satisfies =P Qside 2side and ⊂Q P . By maximality of −Vk 1 in −Zk 1, there is

∈O � with =O Pside side such that ∈ −z VO k 1 and ≤ − −d z z r, 2O P
k 1

0( ) ( ) . Hence, ≔−v zk O1 satisfies

= ≤ + + + ≤ ⎛⎝ + + + ⎞
⎠ ⋅ < ⋅−

− −d v v d z z d z x d x x d x z d z z r r, , , , , ,
16

3

16

3

32

3
2 2 24 2 .k k Q O Q Q Q P P P P O

k k
1 0 0( ) ( ) ( ) ( ) ( ) ( )

Therefore, (VIII ) holds.

Horizontal lines and linear approximation errors. Next, we will describe how to choose the horizontal lines

k v,ℓ and errors αk v, for use in Proposition 3.1. For each ≥k 0 and ∈v Vk , let Qk v, denote the cube ∈Q � such

that = −Q rside 2 k
0 and =v zQ. Then, let =k v Q, k v,

ℓ ℓ be the horizontal line chosen just before Lemma 5.2 to

satisfy (5.4).

Suppose that ≥k 1, let ∈v Vk , let =Q Qk v, , and let

∈ ∪ ∩ = ∪ ∩ ⋅−
⋆ −

−
−x V V B v C r V V B v r, 65 2 , 1560 2 .k k

k
k k

k
1 0 1 0( ) ( ) ( ) ( )

We must bound the distance of x to k v,ℓ . Since ∈ ∪−x V Vk k1 , we can express =x zR for some = ∈R Rx � with

≤ ≤Q R Qside side 2side . Note that ∈x B2 R and

≤ + ≤ ⋅ + ⋅ < ⋅− − −d x x d x v d v x r r r, , , 1,560 2
16

3
2 1,568 2 .Q Q

k k k
0 0 0( ) ( ) ( )

Thus, ∈ ∩x B B2 588R Q, whence ∈R QNear( ). By Lemma 5.2 and (4.3), we obtain

= ≲−β x r β x B β z B β μ B, ;2 ~ , ;diam2 , ; diam2 , 2 , .k v
k s

k v Q
s

R Q Q
s

R Q
s

, 0
2

,
2 2 2( ℓ ) ( ℓ ) ( ℓ ) ( ℓ )͠ ͠ ͠

Taking the maximum over all admissible x and invoking (5.4) and (5.7), we obtain

≲
∈ ∩

− −

−
⋆ −

β x r β μ Q csup , ;2 * , max , 1 .
x V V B v C r

k v
k s c s

, ,65 2
, 0

2 , 2 1

k k
k

1 0

( ℓ ) ( ) { }͠

( ) ( )

By [45, Proposition 1.6] or [45, Lemma 6.2], it follows that there exists αk v, such that

≲ −α β μ Q c* , max , 1k v
s c s
,

2 , 2 1( ) { } and

∈ ⋅ ∈ ∩−
⋆ −−x δ B α x V V B v C rfor all , , 65 2 .k v r k v

s
k k

k
, 2 , 1 0k n

0 �ℓ ( ( )) ( ) ( )

In other words, the errors αk v, satisfy 3.1. Moreover,

∑ ∑ ∑≲ < ∞
=

∞

∈

− −

∈

−α r c β μ Q Q c S2 max , 1 * , diam ~ max , 1
k v V

k v
s k

Q

c s

1
,

2
0

1 , 2 1

k �

�{ } ( ) ( ) { }

by (5.8). This verifies (3.2).
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The rectifiable curve. Therefore, by Proposition 3.1, there exists a rectifiable curve Γ in G such that the

Hausdorff distance limit = →∞V Vlimk k is contained in Γ. Moreover,

∑ ∑≲ + ≲ +
=

∞

∈

− −r α r c SΓ 2 side max , 1 .
k v V

k v
s k1

0

1
,

2
0

1

k

Top� � �( ) ( ) { }

In other words, (5.9) holds. It remains to prove that ⊂ ΓLeaves �( ) and suffices to show that ⊂ VLeaves �( ) .

Pick ∈y Leaves �( ) so that = →∞y ylimk k for some sequence of points ∈y Qk k , for some infinite chain

⊃ ⊃ ⊃ ⋯Q Q Q0 1 2 in � . By maximality of Vk in Zk , for each ≥k 0, we may find ∈v Vk k such that

( ) < −d v z r, 2k Q
k

0k
. Hence,

) ( )≤ + + ≤ + + →−d y V d y y d y z d z v d y y B r, , , , , diam2 2 0k k Q Q k k Q
k

0k k k
( ) ( ) ( ( )

as → ∞k , since =→∞y ylimk k . Thus, ∈y V , and therefore, ⊂ ⊂V ΓLeaves �( ) . □

We are ready to prove the theorem.

Proof of Theorem 5.1. Let μ be a locally finite Borel measure onG and >c 0 be given. We wish to show that the

measure μc defined by (5.3) is 1-rectifiable, i.e., we wish to find a sequence Γ , Γ ,…1 2 of rectifiable curves such

that ⧹⋃ =∞μ G Γ 0c i1( ) .

Suppose that ∈x G has >D μ x c, 21( ) . Then, there is some radius >r 0x such that

> < ≤μ B x r cr r r, 4 for all 0 .x( ( ))

Thus, for any ∈Q Δ containing x with ≤Q rside x
8

3
, we have ⊂B x Q B, side 2 Q

8

3
( ) and

≥ ⎛
⎝
⎛
⎝

⎞
⎠
⎞
⎠
≥ =μ B μ B x Q c Q c B2 ,

8

3
side

32

3
side diam2 .Q Q( )

Choose ∈Q Δx to be the maximal cube containing x with ≤Q rside x
8

3
and ≤Qside 1. Then, ∈x xLeaves �( ),

where

≔ ∈ ⊂ ≥ ∈ ⊂ ⊂Q Q Q μ B c B R Q R QΔ : and 2 diam 2 , for all Δ with .x x R R x� { ( ) ( ) }

Note that =x y� � whenever =Q Qx y and the collection >Q D μ x c: , 2x
1{ ( ) } of cubes is countable, since it is a

subset of the countable family Δ. Thus, we may choose a sequence =
∞xi i 1{ } of points in G such that >D μ x c, 2i

1( )

for each ≥i 1 and

∈ > ⊂ ⋃
=

∞
x G D μ x c: , 2 .

i
x

1

1
i

Leaves �{ ( ) } ( )

Therefore,

∈ > < ∞ ⊂ ⋃ ⋃ ∈ ≤
=

∞

=

∞
x G D μ x c J μ x x J μ x M: , 2 , * , : * , .c

i M
x

c1 ,

1 1

,
i

Leaves �{ ( ) ( ) } { ( ) ( ) }

This shows that to prove the measure μc defined in (5.3) is 1-rectifiable, it suffices to prove that each measure

∟ ∈ ≤μ x T J μ x M: * ,x
c,

i
Leaves{ ( ) ( ) } is 1-rectifiable.

Fix ≥i 1 and ≥M 1. Since ≤Qside 1xi
, the set ∈ ≤x J μ x M: * ,x

c,
i

Leaves �{ ( ) ( ) } is contained in

∑≔
⎧
⎨
⎩
∈ ≤

⎫
⎬
⎭∈

A x β μ Q Q
χ x

μ Q
M: * , diam .x

Q

c s Q, 2
i

xi

Leaves �
�

( ) ( )
( )

( )

To complete the proof of the theorem, it is enough to prove that ∟μ A is 1-rectifiable. If =μ A 0( ) , we are done.

Suppose that >μ A 0( ) . By Lemma 2.16, applied with the function ≡b Q β μ Q Q* , diamc s, 2( ) ( ) and = ∕ε k1 , for

each ≥k 2, there is a subtree k	 of xi� such that ∩ ≥ − ∕μ A k μ A1 1kLeaves 	( ( )) ( ) ( ) and

∑ < < ∞
∈

β μ Q Q kM μ Q* , diam .
Q

c s
x

, 2

k

i
	

( ) ( ) ( )
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Since the tree k	 satisfies (5.7) and (5.8), Lemma 5.3 produces a rectifiable curve Γk in G such that

⊂ Γk kLeaves 	( ) and

⧹ = − ∩ ≤ − ∩ ≤ ∕ ⋅μ A μ A μ A μ A μ A k μ AΓ Γ 1 .k k kLeaves 	( ) ( ) ( ) ( ) ( ( )) ( ) ( )

Therefore, ∟μ A is 1-rectifiable:

⎛
⎝ ⧹ ⋃

⎞
⎠ ≤ ⧹ ≤ ∕ ⋅ =

=

∞

≥ ≥
μ A μ A k μ AΓ inf Γ inf 1 0.

k
k

k
k

k2 2 2
( ) ( ) ( ) □

By repeating the arguments above, making minor changes as necessary, one can obtain the following two

variants of Theorem 5.1. For some sample details, see [15, Lemmas 5.4 and 7.3]. For all ∈Q Δ, define

= ∈β μ Q β μ B L** , inf max , 2 ,L R Q RNear( ) ( )( ) , where the infimum is over all horizontal lines in G. Also, define

∑= ∈
∈ +

J μ x β μ Q Q
χ x

μ Q
x G** , ** , diam , for all .

Q

s Q

Δ

2( ) ( )
( )

( )
(5.10)

Theorem 5.4. If μ is a locally finite Borel measure on G, then the measure given by ∟ ∈ < ∞μ x G J μ x: ** ,{ ( ) } is

1-rectifiable.

With β μ Q,( ) as in Definition 4.2, define

∑= ∈
∈ +

J μ x β μ B Q
χ x

μ Q
x G, , 2 diam for all .

Q

Q
s Q

Δ

2( ) ( )
( )

( )
͠ (5.11)

Theorem 5.5. If μ is a locally finite Borel measure on G, then the measure

∟
⎧
⎨
⎩
∈ < ∞ < ∞

⎫
⎬
⎭↓

μ x G
μ B x r

μ B x r
and J μ x: limsup

, 2

,
,

r 0

( ( ))

( ( ))
( )͠

is 1-rectifiable.

6 Finiteness of the Jones function on rectifiable curves

In this section, we show that finiteness of the Jones function defined in (1.6) is necessary for a measure to be

carried by rectifiable curves; cf. [15, §4].

Theorem 6.1. If μ is a locally finite Borel measure on a Carnot group G and Γ is a rectifiable curve in G, then the

function ⋅ ∈ ∟J μ L μ* , Γ1( ) ( ). In particular, < ∞J μ x* ,( ) for μ-a.e. ∈x Γ.

At the core of Theorem 6.1 is the following computation, which incorporates and extends the necessary

half of Theorem 1.4. A minor difficulty in the proof of Lemma 6.2 compared with the proof of the corresponding

statement in [15, §4] is that we need to use (4.2). Recall that +Δ is the set of ∈Q Δ with ≤Qside 1.

Lemma 6.2. If ν is a finite Borel measure on G and Γ is a rectifiable curve in G, then

∑ ≲ +
∈
∩ >

+

β ν Q Q ν G* , diam Γ \Γ .
Q

ν Q

s

Δ

Γ 0

2 1�( ) ( ) ( )

( )

(6.1)
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Proof. Given two sets ⊂E U G, , define

=
∈ ∩

β U β z L Uinf sup , ; diam ,E
L z E U

( ) ( )͠ ͠

where as usual the infimum is over all horizontal lines in G. In particular, recalling (1.7), we have

≤ ≤β B x r β x r β B x r, , 2 ,E E E( ( )) ( ) ( ( ))͠ ͠ for all ∈x G and >r 0 by (4.3).

By (4.1), ⊂B B2 597R Q for all ∈R QNear( ). Fix an absolute constant =A 1200 (this is an overestimate) and a

small constant >ε 0 depending only on the step s ofG to be determined later. Partition the set of cubes ∈ +Q Δ

that intersect the curve Γ in a set of positive measure into two classes:

= ∈ ∩ > ∕ ≤

= ∈ ∩ > ∕ >
+

+

Q ν Q ε A β ν Q β AB

Q ν Q ε A β ν Q β AB

Δ Δ : Γ 0 and 2 * , ,

Δ Δ : Γ 0 and 2 * , .

Q

ν Q

Γ Γ

Γ

{ ( ) ( ) ( ) ( )}

{ ( ) ( ) ( ) ( )}

͠

͠

Then,

∑ ∑ ∑= +
∈
∩ >

∈ ∈+

β ν Q Q β ν Q Q β ν Q Q* , diam * , diam * , diam .
Q

ν Q

s

Q

s

Q

s

Δ

Γ 0

2

Δ

2

Δ

2

νΓ

( ) ( ) ( )

( )

From the definition of ΔΓ, the ATST in Carnot groups (Theorem 1.4), and (2.3), it follows that

∑ ∑

∑

≤ ∕

≤ ∕ ∕ ≲
∈ ∈

−

−

∈

β ν Q Q ε A β AB B

ε A β x A Q B

* , diam 2 diam

2 , 8 3 side diam Γ .

Q

s

Q

s
Q

s
Q

s

Q

Q
s

Q

Δ

2

Δ

2
Γ

2

2

Δ
Γ

2 1

Γ Γ

�

( ) ( ) ( )

( ) ( ( ) ) ( )

͠

To complete the proof of (6.1), we will show that ∑ ≲ ⧹∈ β ν Q Q ν G* , diam Γ .Q
s

Δ
2

ν
( ) ( )

Let ∈Q Δν. By change of scales (4.3), the definition of β ABQΓ( )͠ , and the definition of the family Δν, we can

find a horizontal line L in G so that

≤ < ∕
∈ ∩

β z L B Aβ AB ε β ν Qsup , ; diam2 2 * , .
z AB

Q Q
Γ

Γ
Q

( ) ( ) ( ) ( )͠ ͠
(6.2)

For the same horizontal line L, we have that

≤
⎧
⎨
⎩

⎫
⎬
⎭
≕

∈ ∈
β ν Q β ν B L

ν B

B
β ν B L m* , max , 2 , min 1,

2

diam2
max , 2 , .s

R Q
R

s R

R R Q
R

s
R

2 2 2

Near Near
( ) ( )

( )
( )

( ) ( )

Fix ∈R QNear( ) and divide B2 R into two sets:

= ∈ ≤ = ⧹N y B β y L B εβ ν Q F B N2 : , ; diam2 * , , 2 .R R R R R R{ ( ) ( )}͠

Note that ⊂ ⧹F G ΓR by (6.2). To proceed, write

∫

∫

=

≤ +

∪

β ν B L m β y L B m
ν y

ν B

ε β ν Q β y L B m
ν y

ν B

, 2 , , ; diam2
d

2

* , , ; diam2
d

2
.

R
s

R

N F

R
s

R
R

s s

F

R
s

R
R

2 2

2 2 2

R R

R

( ) ( )
( )

( )

( ) ( )
( )

( )

͠

͠
(6.3)

Note that, since ∈Q Δν, if ε is very small, then β ABQΓ( )͠ is very small relative to β ν Q* ,( ). This will allow us to

effectively replace the horizontal line L appearing in (6.3) with Γ. For any ∈y B2 R, Inequalities (4.2), (4.3), and

(6.2), the fact that ⊂B B2 597R Q and ∩ >ν QΓ 0( ) , and the choice = > ⋅ + ∕A Q Q1,200 2 597 diam side( ) ( ) give us

≤ ∩ +

< ∩ + ∕

= + ∕

−

∈ ∩

−

−

β y L B β y AB B β z L B

β y AB B ε β ν Q

β y B ε β ν Q

, ; diam2 2 , Γ ; diam2 sup , ; diam2

2 , Γ ; diam2 1 2 * ,

2 , Γ; diam2 1 2 * , .

R
s s

Q R
s

z AB
R

s

s
Q R

s s s

s
R

s s s

2 2 1 2

Γ

2

2 1 2 2 2

2 1 2 2 2

Q

( ) ( ( ) ( ) )

( ) ( ) ( )

( ) ( ) ( )

͠ ͠ ͠

͠

͠

Combining the previous two displays and using ≤ ∕m ν B B2 diam2R R R( ) , we have
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∫

∫

≤ ∕ +

≤ ∕ +

−

−

β ν B L m ε β ν Q β y B m
ν y

ν B

ε β ν Q β y B
ν y

B

, 2 , 3 2 * , 2 , Γ;diam2
d

2

3 2 * , 2 , Γ; diam2
d

diam2
.

R
s

R
s s s

F

R
s

R
R

s s s

F

R
s

R

2 2 2 2 1 2

2 2 2 1 2

R

R

( ) ( ) ( ) ( )
( )

( )

( ) ( ) ( )
( )

͠

͠

Taking the maximum over all cubes ∈R QNear( ), choosing ε sufficiently small depending only on s, rearran-

ging, and using ≤Q Bdiam diam2 R, we obtain

∫≤
∈

β ν Q Q β y B dν y* , diam 2 max , Γ; diam2 .s s

R Q
F

R
s2 2 2

R

Near
( ) ( ) ( )͠

( )

As we already noted, each ⊂ ⧹F G ΓR . Thus, by Remark 4.7 and (4.3),

∫≲
⧹

β ν Q Q β y Q ν y* , diam , Γ;side d ,s

B

s2

597 Γ

2

Q

( ) ( ) ( )͠
(6.4)

Let 
 be a Whitney decomposition of ⧹G Γ given by Lemma 2.18. For each ∈j � , let

= ∈ < ≤− + −W W: 2 dist , Γ 2 .j
j j1
 
{ ( ) }( )

For any set I , also define = ∈ ∩ >I W ν I W: 0
 
( ) { ( ) } and = ∩I Ij j
 
 
( ) ( ). Then, continuing from

(6.4),

∑

∑ ∑ ⎟⎜

≲ ∩

≲
⎛
⎝

⎞
⎠

∩

∈ ∈

= ∈ ∈

β ν Q Q β y Q ν W B

π y π

Q
ν W B

* , diam sup , Γ, side 597

sup
d , Γ

side
597 .

s

W B y W

s
Q

i

s

W B y W

i i i
i

Q

2

597

2

1 597

2

Q

Q







( ) ( ) ( )

( ( ) ( ))
( )

͠

( )

( )

Suppose that = −Qside 2 k . If ∈W B597j Q
 ( ), then by bounding the distance of a point in ∩W B597 Q to a point

in ∩ QΓ , we have

≤ ≤ ≤ ⋅− + −W B2 dist , Γ diam597 3,184 2 ,j
Q

k1 ( )( )

which implies that ≥ −j k 12. Also, if ∈W j
 and ∈y W , then ≤ ≤ +d π y π y W, Γ dist , Γ dist , Γi i i( ( ) ( )) ( ) ( )

≤ ≤ ⋅ −W Wdiam 2dist , Γ 2 2 ,j( ) where the first inequality holds because the projections →π G G:i i are 1-

Lipschitz and the penultimate inequality is by Property (2) of Lemma 2.18. Therefore,

∑ ∑ ∑ ⎟⎜≲
⎛
⎝

⎞
⎠

∩
= =− −

∞

∈

−
β ν Q Q

Q
ν W B* , diam

2

side
597 .s

i

s

j Q W B

j i

Q
2

1 log side 12 597

2

j Q2 


( ) ( )
( ) ( )

(6.5)

This estimate is valid for every ∈Q Δν.

Equation (6.5) is analogous to [13, (3.8)] (with step =s 1). Because the cubes in
 are pairwise disjoint and

each of the families ∈ = −B Q Q597 : Δ and side 2Q
k{ } has bounded overlap, we may repeat the computation in

[13] mutatis mutandis s times to obtain ∑ ≲ ⧹∈ β ν Q Q ν G* , diam Γ .Q
s

Δ
2

ν
( ) ( ) □

We now apply the lemma to prove that ⋅J μ* ,( ) is integrable on any rectifiable curve.

Proof of Theorem 6.1. Let ⊂ GΓ be a rectifiable curve. Integrating the Jones function,

∫ ∫∑

∑ ∑

=

=
∩

≤

∈

∈
∩ >

∈
∩ >

+

+ +

J μ x μ x β μ Q
Q

μ Q
χ x μ x

β μ Q Q
μ Q

μ Q
β μ Q Q

* , d * ,
diam

d

* , diam
Γ

* , diam .

Q

s
Q

Q

μ Q

s

Q

μ Q

s

Γ Δ

2

Γ

Δ

Γ 0

2

Δ

Γ 0

2

( ) ( ) ( )
( )

( )
( ) ( )

( ) ( )
( )

( )
( ) ( )

( ) ( )
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Let = ⋃ ∈ ∩ >+K Q μ QΔ : Γ 0{ ( ) } and put ≔ ∟ν μ K . Since the set K is compact and μ is locally finite, we have

= < ∞ν G μ K( ) ( ) . Furthermore, ∟ = ∟μ Q ν Q whenever ∈ +Q Δ and ∩ >μ Q Γ 0( ) . Thus, by Lemma 6.2,

∫ ∑≤ ≲ + ⧹ < ∞
∈
∩ >

+

J μ x μ x β ν Q Q ν G* , d * , diam Γ Γ .□
Q

ν Q

s

Γ
Δ

Γ 0

2 1�( ) ( ) ( ) ( ) ( ) ( )

( )

Corollary 6.3. Let μ be any locally finite Borel measure on G. Then, the measure ∟ ∈ = ∞μ x G J μ x: * ,{ ( ) } is

purely 1-unrectifiable.

Proof. If Γ is a rectifiable curve in G, then < ∞J μ x* ,( ) at μ-a.e. ∈x Γ by Theorem 6.1. That is to say,

∩ ∈ = ∞ =μ x G J μ xΓ : * , 0( { ( ) }) for every rectifiable curve Γ. □

7 Proof of Theorem 1.1

Equipped with the results from Sections 5 and 6, we are ready to the prove the main theorem. Let μ be a locally

finite Borel measure on G. Both the lower density ⋅D μ,1( ) and the Jones function ⋅J μ* ,( ) are Borel measur-

able. Hence,

= ∈ > < ∞R x G D μ x J μ x: , 0 and * , and1{ ( ) ( ) }

= ∈ = = ∞P x G D μ x J μ x: , 0 or * ,1{ ( ) ( ) }

are the Borel sets and = ∪G R P. By the uniqueness clause of Lemma 2.1, if we show that ∟μ R is 1-rectifiable

and ∟μ P is purely 1-unrectifiable, then

= ∟ = ∟μ μ R μ μ Pand .rect pu

On the one hand, ≤J μ x J μ x* , * ,c, ( ) ( ) for all ∈x G and >c 0 (Section 5). Thus,

= ∈ > < ∞

⊂ ⋃ ∈ > ∕ < ∞ ≕ ⋃
=

∞
∕

=

∞
R x G D μ x J μ x

x G D μ x n J μ x R

: , 0 and * ,

: , 2 and * , .
n

n

n
n

1

1

1 ,1

1

{ ( ) ( ) }

{ ( ) ( ) }

By Theorem 5.1, ∟μ Rn is 1-rectifiable for each ≥n 1. Therefore, ∟ ≤ ∑ ∟=
∞

μ R μ Rn n1 is 1-rectifiable, as well. On

the other hand, we can write

= ∈ = ∞ ∪ ∈ = ≕ ∪P x G J μ x x G D μ x P P: * , : , 0 .1
1 2{ ( ) } { ( ) }

The measure ∟μ P1 is purely 1-unrectifiable by Corollary 6.3 and the measure ∟μ P2 is purely 1-unrectifiable

by Corollary 2.4 and Remark 2.9. Since ∟ ≤ ∟ + ∟μ P μ P μ P1 2, ∟μ P is also purely 1-unrectifiable. This

completes the proof of Theorem 1.1.

8 Garnett-Killip-Schul-type measures in metric spaces

Toward Theorem 1.5, suppose that X d,( ) is a complete metric space such that

• X is doubling, i.e., there exists a constant ≥C 1db such that every bounded set of diameter D can be covered

by Cdb or fewer sets of diameter ∕D 2 and

• X is locally quasiconvex, i.e., for every compact set ⊂E X , there exists a constant ≥C 1qc E, such that for

every ∈x y E, with ≠x y, there exists a parameterized curve →γ X: 0, 1[ ] such that =γ x0( ) , =γ y1( ) ,

and ≤γ C d x yvar ,qc E,( ) ( ).
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Because X is complete and doubling, there exists a doubling measure μ on X , i.e., a measure satisfying (1.9) for

all ∈x X and >r 0; for a proof, see [41, Theorem 3.1] or [36, Theorem 13.3]. Let Cμ denote the doubling constant

of μ. Our goal is to construct a doubling measure ν on X that is 1-rectifiable. We will explicitly construct ν and

rectifiable curves Γ with >ν Γ 0( ) in a manner similar to [33], which handled the particular case that =X n
�

and μ is the Lebesgue measure.

8.1 Construction of the measure ν

Fix any system ∈Δk k �( ) of dyadic cubes on X given by Theorem 2.12. We freely adopt the notation of Section 2.5.

In particular, to each ∈ ≔ ⋃ ∈Q Δ Δk k� , we may refer to the center xQ, side length Qside , inner ballUQ, and outer

ball BQ associated with Q. For any ≥j 1 and ∈Q Δk , let = ∈ ⊂+Q R R QΔ Δ :j k j( ) { } denote the collection of all

jth generation descendents ofQ. Note that ≥ >μ Q μ U 0Q( ) ( ) for all ∈Q Δ because μ is doubling. We proved the

following facts in Remark 2.19.

Lemma 8.1. There exists >C 01 depending only on Cμ such that ≥μ R C μ Q1( ) ( ) for all ∈R QΔ1( ).

Corollary 8.2. There exists ≥M 1 depending only on Cμ such that ≤Q M#Δj
j( ) for all ∈Q Δ and >j 0.

Next, let us show that each cube in Δ contains a descendent – within a few generations – that is quantita-

tively far away from the complement of the cube. A similar claim is proved in the study [41].

Lemma 8.3. For any ∈n � and ∈Q Δn, there exists some ∈R QΔ7( ) such that ≔d R Q, c( )

> ⋅∈ ∉
−d x yinf inf , 2x R y Q
n1

8
( ) .

Proof. Fix ∈n � and ∈Q Δn. By Property (4) of Theorem 2.12, there exists ∈ +R Δn 7 such that =x xR Q.

Therefore,

≥ ≥ − ≥ ⋅ − ⋅ = ⋅
∈

− − + −d R Q d B U d x U d z x, , , sup ,
1

6
2

8

3
2

7

48
2 .c

R Q
c

Q Q
c

z B
Q

n n n7

R

( ) ( ) ( ) ( ) ( )
□

It will be convenient to thin Δ by skipping generations and to restrict to cubes starting from a fixed

generation. For each integer ≥n 0, define

= = ⋃
=

∞
D D DΔ and .n n

n
n7

0
(8.1)

For all ∈Q D and ≥k 0, define D Qk( ) to be the k -th generation descendants of Q in D, i.e., ≔D Qk( )

∈ ⊂+R D R Q:n k{ }. By Lemma 8.3, for each ∈Q Dn, we may choose some cube ∈R D QQ 1( ) such that

> ⋅ = ⋅− − +d R Q,
1

8
2 16 2 .Q

c n n7 7 1( ) ( ) (8.2)

Let < ≪δ0 1 be a constant whose value will be fixed later (see (8.11)). For each ∈Q D, we define a Borel

measure νQ on X that is absolutely continuous with respect to μ by defining its Radon-Nikodym derivative as a

sum of indicator functions:

≔ = + ⧹f
ν

μ
a χ δχ

d

d
,Q

Q
Q R Q RQ Q

(8.3)

where >a 0Q is chosen so that =ν Q μ QQ( ) ( ). Note that =ν Q 0Q
c( ) (Figure 3).

Lemma 8.4. For all ∈Q D, we have ≥ −ν R δ ν Q1Q Q Q( ) ( ) ( ).
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Proof. Because =μ Q ν QQ( ) ( ), we have

= − ⧹ = − ⧹ ≥ − = −ν R ν Q ν Q R ν Q δμ Q R ν Q δμ Q δ ν Q1 .Q Q Q Q Q Q Q Q Q( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) □

Lemma 8.5. There is a constant ≥C 12 depending only on Cμ such that ≤∈ a CsupQ D Q 2.

Proof. Since =D Q QΔ1 7( ) ( ), iterating Lemma 8.1 gives ≥ −μ R C μ QQ 1
7( ) ( ) for all ∈Q D. We defined aQ so that

= = + ⧹ = + −μ Q ν Q a μ R δμ Q R a μ R δμ Q δμ R .Q Q Q Q Q Q Q( ) ( ) ( ) ( ) ( ) ( ) ( )

Hence, = + − ∕ ≤ + ≕a δ δ μ Q μ R C C1 1Q Q 1
7

2( ) ( ) ( ) . □

To define the measure ν, we iterate the construction of f μdQ Q and pass to a limit. Formally, for each ≥k 0,

we define = ∑ ∈f fk Q D Qk
. Using these weights, for each ≥n 0, we define a Borel measure νn by setting

∏⎜ ⎟=
⎛
⎝

⎞
⎠=

ν f μd dn

k

n

k
0

(8.4)

(Figure 4). Finally, we define the measure ν to be a weak-* limit of νn (along some subsequence).

Lemma 8.6. For all ≥n 0 and ∈Q Dn, we have ∂ =ν Q 0( ) and = −ν Q ν Qn 1( ) ( ). (When =n 0, this should be read

as =ν Q μ Q( ) ( ) for all ∈Q D0.)

Proof. From (8.3) and (8.4), it is immediate that = −ν Q ν Qp n 1( ) ( ) for all ≥ ≥p n 0 and ∈Q Dn. If we can show

that ∂ =ν Q 0( ) for all ∈Q Δ, then = =→∞ −ν Q ν Q ν Qlimp p n 1( ) ( ) ( ) for all ∈Q Dn by weak convergence.

Fix ∈Q Dn for some ≥n 0. To prove that ∂ =ν Q 0( ) , we must find a good cover of the boundary. To that

end, let� denote the family of all ∈A Dn such that ∩ ∂ ≠ ∅A Q . Each cube ∈A � is adjacent toQ. Because μ

is doubling and the sets ∈U A:A �{ } are pairwise disjoint and confined to a bounded region of X , the

collection � is finite. We will cover ∂Q with certain subsets of the adjacent cubes. Given ∈A � and ≥k 1,

let = ⧹⋃ ⋃=− ∈F A RA k j
k

S D A S, 0
1

j( ) , i.e., form FA k, from A by removing any central descendants RS of A through k

generations. By Lemma 8.3, ∂Q is contained in some open subset Vk of ⋃ ∈ FA A k,� for each ≥k 1. By weak

convergence, monotonicity, and subadditivity of measures, and the fact that FA k, is a union of cubes in +Dn k ,

∑ ∑∂ ≤ ≤ ≤ =
→∞ →∞ ∈ ∈

+ −ν ν V ν V ν F ν FΩ liminf liminf ,k
m

m k
m A

m A k

A

n k A k, 1 ,

� �

( ) ( ) ( ) ( ) ( )

for all ≥k 1. Because FA k, is formed by deleting k generations of central descendants, =+ − −ν F δ ν An k A k
k

n1 , 1( ) ( )

for all ≥k 1. Because ∑ < ∞∈ −ν AA n 1� ( ) , we conclude that ∂ ≤ ∑ =→∞ ∈ −ν δ ν AΩ lim 0k
k

A n 1�( ) ( ) . □

8.2 Doubling of ν

Lemma 8.7. There is a constant ≥C 13 depending only on Cμ and δ so that if ∈S Dn for some ≥n 0 and

= ∈ ≤ ⋅ −S T D d S T: , 2,048 2n
n7�( ) { ( ) }, then

Figure 3: To define f μdQ , redistribute the mass μ Q( ) so that more mass is assigned to RQ and less mass is assigned to ⧹Q RQ.
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≤ ≤ ∈−C ν S ν T C ν S for all T S .3
1

3 �( ) ( ) ( ) ( ) (8.5)

Proof. Let ∈S Dn and S�( ) be fixed as in the statement. To proceed, let ∈T S�( ). There are two cases.

Case 1. Suppose that S and T have a common ancestor in D. Let ≥k 0 be the largest integer such that

⊂S Q0 and ⊂T Q0 for some ∈Q Dk0 . In other words, letQ0 be the first common ancestor of S and T . We claim

that neither S nor T is contained in RQ for any ∈ ⋃ = +
−Q Dj k

n
j1

2 . Indeed, first suppose to get a contradiction that

⊂S RQ for some ∈Q Dj with + ≤ ≤ −k j n1 2. Then, ∩ = ∅T Q , since ⊂S Q and Q is not a common ancestor

of S and T . Hence,

≤ ≤ ⋅ ≤ ⋅− −d R Q d S T, , 2,048 2
1

8
2 ,Q

c n j7 7( ) ( )

where we used the fact that ≤ −j n 2. This violates (8.2).

An identical argument implies ⊈T RQ for any ∈ ⋃ = +
−Q Dj k

n
j1

2 . The consequence of this is that = =f x δj ( )

f yj ( ) for all ∈x S and ∈y T when + ≤ ≤ −k j n1 2. Also =f x f yj j( ) ( ) for all ∈x S and ∈y T when

≤ ≤ −j k0 1, since ∈Q Dk0 is a common ancestor of S and T . Hence, only fk and −fn 1 may have different

values for x and y. Thus, Lemma 8.5 gives

∏

∏
= ∈ ∕ ∕

=
−

=
−

−

−

f x

f y

f x f x

f y f y
δ C C δ, .

j
n

j

j
n

j

k n

k n

0
1

0
1

1

1

2
2
2

2
2 2

( ( ))

( ( ))

( ) ( )

( ) ( )
[ ]

Case 2. Suppose that S andT do not have a common ancestor in D. Repeating the argument above informs

us that neither S nor T is contained in RQ for any ∈ ⋃ =
−Q Dj

n
j0

2 . It follows that =f xj ( ) =δ f yj ( ) for all ∈x S and

∈y T when ≤ ≤ −j n0 2. Again, by Lemma 8.5, we have

∏

∏
= ∈ ∕ ∕

=
−

=
−

−

−

f x

f y

f x

f y
δ C C δ, .

j
n

j

j
n

j

n

n

0
1

0
1

1

1
2 2

( ( ))

( ( ))

( )

( )
[ ]

In each case,

∕ ≤ ≤ ∕ ∕ ≤ ≤ ∕δ C μ S ν S C δ μ S δ C μ T ν T C δ μ Tand .2
2

2
2

2
2

2
2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

The lemma follows, because μ is a doubling measure and ∈T S�( ); cf. Remark 2.19. □

Lemma 8.8. There is a constant ≥C 14 depending only on Cμ and on δ so that

≤ ≤ ∈−C μ Q ν Q C μ Q for all Q D, .4
1

4 1( ) ( ) ( ) (8.6)

Proof. If ∈Q D1, then either =ν Q δμ Q( ) ( ) or =ν Q a μ QP( ) ( ), where ∈P D0 is the parent of Q in D. Hence,

≤ ≤δμ Q ν Q C μ Q2( ) ( ) ( ) for all ∈Q D1 by Lemma 8.5. Therefore, we may take = −C δ Cmax ,4
1

2{ }. □

Proposition 8.9. The measure ν is doubling.

Proof. Let B x r,( ) be a ball in X .

Figure 4: Possible densities f f Q0 1 ∣ (left) and f f f Q0 1 2 ∣ (right).
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Case 1. Assume that ≤r 16

3
. Then, there exists a unique integer ≥j 0 such that

⋅ ≤ < ⋅− − −r
16

3
2

16

3
2 .j j7 7 1( )

Since Dj partitions X , there exists a unique cube ∈S Dj such that ∈x S . On the one hand, since ≥r Sdiam , we

have ⊃B x r S,( ) and

≥ν B x r ν S, .( ( )) ( ) (8.7)

Let � denote all cubes of Dj that intersect B x r, 2( ). Thus, ≤ ∑ ∈ν B x r ν T, 2 T �( ( )) ( ). If ∈T � , then

≤ ≤ < ⋅ < ⋅− − −d S T d x T r, , 2
32

3
2 1,366 2j j7 1 7( ) ( ) ( )

and so ∈T S�( ) as defined in Lemma 8.7. This lemma implies that ≤ν T C ν S3( ) ( ) for all ∈T � . Hence,

∑≤ = ⋅
∈

ν B x r C ν S C ν S, 2 # .
T

3 3�
�

( ( )) ( ) ( ) (8.8)

The proposition will follow from (8.7) and (8.8) in this case once we have shown that #� is uniformly bounded.

Indeed, for all ∈T � , we have

+ ≤ + + < ⋅ −d x T T S d s T T, diam diam , 2diam 1,382 2 .S
j7( ) ( )

This implies that ⊂ ⋅ −T B x , 1,382 2S
j7( ) and we also know that ⊃ = ⋅ −T U U x , 2T T

j1

6
7( ). Thus, because μ is

doubling, ≲# 1Cμ� ; cf. the argument in Remark 2.19.

Case 2. Now assume >r 16

3
. Let

= ⋃ ∈ ∩ ≠ ∅ = ⋃ ∈ ∩ ∕ ≠ ∅S Q D Q B x r S Q D Q B x r: , 2 and : , 2 .1 1 2 1{ ( ) } { ( ) }

As elements of D1 have diameters bounded by ∕ ⋅ < ∕− r16 3 2 27 , we get the containments

⊂ ⊂ ∕ ⊂ ⊂B x r S B x r B x r S B x r, 2 , 4 and , 2 , .1 2( ) ( ) ( ) ( )

We now can bound

≤ ≤ ≤ ≤ ∕

≤ ≤ ≤

ν B x r ν S C μ S C μ B x r C C μ B x r

C C μ S C C ν S C C ν B x r

, 2 , 4 , 2

, .

μ

μ μ μ

1

8.6

4 1 4 4
3

4
3

2

8.6

4
2 3

2 4
2 3

( ( )) ( ) ( ) ( ( )) ( ( ))

( ) ( ) ( ( ))

( )

( ) □

8.3 Cubes with high density

For ≤ ≤k n0 and ∈Q D, we define n k,Q
 ( ) to be the collection of cubes ∈S D Qn( ) for which there exist at

least −n k distinct cubes ∈ ⋃ =
−T D Qj

n
j0

1 ( ) such that ⊂S RT . We remark that

⊂ ≤ ≤ ≤n k n l k l n, , when 0 ,Q Q
 
( ) ( )

with =n# , 0 1Q
 ( ) and =n n D Q,Q n
 ( ) ( ). When ≪k n, the cubes ∈S n k,Q
 ( ) have relatively high density

∕ν S μ S( ) ( ) compared to ∕ν Q μ Q( ) ( ).

Lemma 8.10. If ≥k δn, then ⎜ ⎟⋃ ≥
⎛

⎝
−

⎡
⎣⎢
− ⎛⎝ − ⎞

⎠
⎤
⎦⎥
⎞

⎠
ν n k δ ν Q, 1 expQ

n k

n8

2


( ( )) ( ).

Proof. Fix ∈Q D. Without loss of generality, we may assume that =ν Q 1( ) . This will allow us to adopt a

probabilistic view. Let � denote the probability measure ∟ν Q, and let � denote the corresponding

expectation.

For ≥j 1, define ′ ≔ ∈ −D R T D Q:j T j 1{ ( )} and the random variable = ∑ ∈ ′Y 1j S D Sj
. By Lemma 8.4, we have

≥ −Y δ1j�[ ] . From the definition of Yj and the nested nature of the Dk ’s, it is apparent that the random

variables
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∑= = − ≥
=

X X Y Y j0, , for all 1,j

i

j

i i0

1

�( [ ])

form a martingale with respect to the filtration generated by ≥D j: 1j{ }. Furthermore, − =−X Xj j 1∣ ∣

− ≤Y Y 2j j�∣ [ ]∣ for all j . Thus, we may bound

∑ ∑
⎡

⎣
⎢ < −

⎤

⎦
⎥ =

⎡

⎣
⎢ < − −

⎤

⎦
⎥ ≤ − < − ≤ ⎡

⎣⎢
−

− ⎤
⎦⎥= =

Y n k X n k Y X X δn k
δn k

n
exp

8
,

j

n

j n

j

n

j n

1 1

0

2

� � � �[ ] [ ]
( )

where the final estimate holds by Azuma’s inequality (see, e.g., [2, Theorem 7.2.1]) provided that − ≤δn k 0.

The lemma follows, because ⋃ = ∑ ≥ −=n k Y n k,Q j
n

j1
 ( ) { }. □

Lemma 8.11. There exists a constant ≥C 15 depending only on Cμ so that

≤ ⎛⎝
⎞
⎠ ∈n k C

n

k
for all Q D# , , .Q

k

5
 ( ) (8.9)

Proof. By Corollary 8.2, we can index each child in D Q1( ) of a cubeQ by a character in = M1, …, 7� { }. Wemake

the convention that RQ is indexed by 1. We can then continue indexing all descendants via strings of characters

in � in an obvious way so that cubes in D Qn( ) are length n strings.

By our indexing convention and the definition of n k,Q
 ( ), we see that n k# ,Q
 ( ) is no greater than the

number of length n strings of characters in � with at least −n k of the characters equal to 1. We can bound

this quantity by
⎛
⎝

⎞
⎠− M

n

n k
k7 , since

⎛
⎝

⎞
⎠−

n

n k
equals the number of ways in which −n k characters equal to 1 can be

chosen and M k7 bounds the number of all possible choices of characters in the other k positions. Therefore,

≤ ⎛⎝ −
⎞
⎠ ≤ ≤ ⎛⎝

⎞
⎠n k

n

n k
M

n

k
M M e

n

k
# ,

!
,Q

k
k

k
k

7 7 7
 ( )

where we used the Taylor series of ex to write ∕ <k k e!k k . □

8.4 Rectifiable curves with significant ν measure

For this subsection, let ∈Q D1 be fixed. Our goal is to find a rectifiable curve = QΓ Γ 1( ) such that ∩ >ν QΓ 01( ) ,

quantitatively. Let ∈Q D0 0 denote the unique cube of side length 1 such that ⊂Q Q1 0. Since X is locally

quasiconvex, there exists a constant ≥C 1qc Q, 0
such that any two points ∈x y Q, 0 can be connected by a

rectifiable curve Γx y, in X with ≲ d x yΓ ,x y C
1

, qc Q, 0
� ( ) ( ). (We do not claim [and it is not true in general] that

Γx y, is contained in Q0.)

To proceed, given a cube ∈Q D Q0( ) and ≤ ≤k n0 , we define an auxiliary curve n kΓ ,Q( ) as follows: for

each ∈S n k,Q
 ( ), connect xS to xQ with a curve of length at most C Qdiamqc Q, 0
, where Cqc Q, 0

is the local

quasiconvexity constant of X , described in the previous paragraph. The set n kΓ ,Q( ) is then defined to be

the union of these curves. For all ∈Q D Qm 0( ), we have the bound

≤ ⋅ ≤ ⋅ ⎛
⎝

⎞
⎠

−n k C Q n k C
C n

k
Γ , diam # ,

16

3
2 .Q qc Q Q qc Q

m
k

1
,

8.9

,
7 5

0 0
� 
( ( )) ( ) ( )

( )
(8.10)

Recalling that C5 does not depend on δ, we may finally fix >δ 0 sufficiently small and ∈n1 � so that

⎛
⎝
⎞
⎠ ≤ =

C

δ2
64 2 ,

δ
5

2
6 (8.11)
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and such that =k δn21 1 is an integer. We now construct a sequence =
∞n k,i i i 1( ) by defining =n jnj 1 and =k jkj 1,

and note that ∕ = −n k δ2j j
1( ) , for all ∈j �.

Recall that ∈Q D1 is fixed and ∈Q D0 0 is the unique cube of side length 1 such that ⊂Q Q1 0. We now

construct a curve = QΓ Γ 1( ) that captures a significant portion of the mass of ∟ν Q1. Define ≔ Q0 1
 { } and

≔ ⋃ =K Q0 0 1
 . Assuming −j 1
 is defined for some ≥j 1, we next define ≔ ⋃ ∈ − n k,j Q Q j jj 1

 

 ( ) and ≔ ⋃Kj j
 .

Note that ⊂ −K Kj j 1, and

⎟⎜≤
⎛
⎝

⎞
⎠
= ⎛

⎝
⎞
⎠− −

C n

k

C

δ
# # #

2
.j j

j

j

k

j

k8.9

1
5

1
5

j
j


 
 

( )

Iterating this estimate gives

≤ ⎛⎝
⎞
⎠

+⋯+C

δ
#

2
.j

k k
5

j1


 (8.12)

We now define

= ⋃ ⋃ ∪ ⋂
=

∞

∈ =

∞

−

n k KΓ Γ , .
j Q

Q j j
j

j
1 1j 1


( )

Note that Γ is closed. Furthermore, as n kΓ ,Q j j( ) connects xS to xQ for each cube ∈S n k,Q j j
 ( ), the set Γ is path-

connected.

The proof of Theorem 1.5 is a short step from the next two lemmas.

Lemma 8.12. = QΓ Γ 1( ) is a rectifiable curve with ≲ C QΓ diamqc Q
1

, 10
� ( ) .

Proof. Fix ≥ 1ℓ and = ⋅ − +⋯+η 2 n n16

3
7 1( )ℓ . For every ∈Q 
ℓ, we have ≤ ≤Q B ηdiam diam Q . Hence,

⎜ ⎟
⎛
⎝
⋂

⎞
⎠
≤ ≤ ⋅ ⎛

⎝
⎞
⎠ ≤ ⋅

=

∞
− +⋯+

+⋯+
− +⋯+K K

C

δ

16

3
2

2

16

3
2 .η

j
j η

n n
k k

n n1

1

1
8.12

7 5
8.11

1

1

1� � ( )ℓ
( )

( )
( )

( )ℓ

ℓ

ℓ

Since +⋯+ → ∞n n1 ℓ and →η 0 as → ∞ℓ , we get that ⋂ =K 0j j
1� ( ) . Thus,

∑ ∑≤
=

∞

∈ −

n kΓ Γ , .
j Q

Q j j
1

1

1

j 1

� �



( ) ( ( ))

As the only cube in 0
 is Q1 and the cubes of j
 are in +⋯+D Qn n 1j1
( ) whenever ≥j 1, we have (interpreting

+⋯+ ≡−n n 0j1 1 and +⋯+ ≡−k k 0j1 1 when =j 1)

∑

∑

∑

∑

⎟⎜≤ ⋅
⎛
⎝

⎞
⎠

≤ ⎛
⎝
⎞
⎠

=
⎡
⎣⎢
⎛
⎝
⎞
⎠
⎤
⎦⎥

≤ ≲ ≲

=

∞

−
− +⋯+

=

∞
− +⋯+

+⋯+

=

∞
−

+⋯+

=

∞
− +⋯+

−

−

C Q
C n

k

C Q
C

δ

C Q
C

δ

C Q C Q C Q

Γ
16

3
side # 2

16

3
side 2

2

16

3
side 2

2
2

16

3
side 2 2 side diam .

qc Q

j

j
n n j

j

k

qc Q

j

n n
k k

qc Q

j

δ n n

n

qc Q

j

n n n
qc Q qc Q

1
8.10

, 1
1

1
7 5

8.12

, 1
1

7 5

, 1
1

7 5
2

7

8.11

, 1
1

7
, 1 , 1

j

j

j

j

j

j

j j

0
1 1

0
1 1

1

0

1

0
1

0 0

� 
( )
( )

( )

( )
( )

( )
( )

In the last line, we used ∑ = ∑ ≲=
∞ − +⋯+

=
∞ − + +2 2 2 1j

n n n
j

j j n jn
1

7
1

1 7j j1
1
2 1 1( ) ( ) , since =n jnj 1; indeed, the tail of the series is

dominated by a convergent geometric series. Because X is a complete metric space and ⊂ XΓ is nonempty,

closed, connected, and < ∞Γ1� ( ) , Lemma 2.8 implies that Γ is a rectifiable curve. □

Lemma 8.13. ∩ ≥ν Q εν QΓ 1 1( ) ( ) for some constant ∈ε 0, 1( ) determined by δ and n1. In particular, ε is inde-

pendent of Q1.
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Proof. As ⊂+K Kj j1 , we have by the dominated convergence theorem that

⎜ ⎟∩ ≥
⎛
⎝
⋂

⎞
⎠
=

=

∞

→∞
ν Q ν K ν KΓ lim .

j
j

j
j0

1
( ) ( )

By the construction of j
 and Lemma 8.10, we have

( )∏≥ − ≥ −− ∕
−

=

− ∕ν K e ν K ν Q e1 1 .j
n δ

j

i

j

n δ8
1 1

1

8j i
2 2

( ) ( ) ( ) ( )

This product converges to a nonzero number as ∑ =
∞ − ∕ei

n δ
1

8i
2

is a convergent geometric series (since =n ini 1).

This proves the lemma. □

8.5 Proof of Theorem 1.5

Let ν be the measure defined in Section 8.1. By Proposition 8.9, ν is a doubling measure on X . As

= ∑ ∟∈ν ν QQ D 00 0
and D0 is countable, to prove that ν is 1-rectifiable, it will suffice to check that ∟ν Q0 is 1-

rectifiable for each ∈Q D0 0.

Fix ∈Q D0 0. By the prior discussion (Lemmas 8.12 and 8.13), there exists a rectifiable curve = QΓ Γ 0( ) such

that ⧹ ≤ −ν Q ε ν QΓ 10 0( ) ( ) ( ) for some constant ∈ε 0, 1( ) independent of Q0.

Suppose for induction that for some ≥k 1, we have found a finite family kC of rectifiable curves such that

⧹⋃ ≤ −ν Q ε ν Q1k
k

0

1

2 0C( ) ( ) ( ). Since the set ⋃ kC is closed (being a finite union of closed sets), we may write

⧹⋃Q k0 C as a countable union of pairwise disjoint cubes ⋯∈Q Q D Q, ,1 2 0( ). Once again, for each ≥i 1, we can find

a rectifiable curve Γi such that ⧹ ≤ −ν Q ε ν QΓ 1i i i( ) ( ) ( ) by Lemmas 8.12 and 8.13. Altogether,

∑⎜ ⎟
⎛
⎝
⧹⎛⎝⋃ ∪ ⋃ ⎞

⎠
⎞
⎠
≤ − = − ⧹⋃

=

∞

=

∞

ν Q ε ν Q ε ν QΓ 1 1 .k
i

i

i
i k0

1 1
0C C( ) ( ) ( ) ( )

Thus, by continuity from above and the induction hypothesis, we can find ≥j 1 sufficiently large such that

⎜ ⎟
⎛
⎝
⧹⎛⎝⋃ ∪ ⋃ ⎞

⎠
⎞
⎠
≤ − ⧹⋃ ≤ −

=

+ν Q ε ν Q ε ν QΓ 1
1

2
1

1

2
.k

i

j

i k
k

0
1

0
1

0C C( ) ( ) ( ) ( )

Hence, ≔ ∪+ Γ , …,Γk k j1 1C C { } satisfies the next step of the induction.

Finally, = ⋃ =
∞
k k1C C is a countable family of rectifiable curves and

⧹⋃ ≤ ⧹⋃ ≤ ⎛
⎝ −

⎞
⎠ =

≥ ≥
ν Q ν Q ε ν Qinf inf 1

1

2
0.

k
k

k

k

0
1

0
1

0C C( ) ( ) ( )

Therefore, ∟ν Q0 is 1-rectifiable. This completes the proof of Theorem 1.5.
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