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Abstract

Host–guest interactions are important to the design of pharmaceuticals, and more

broadly to soft materials, as they can enable targeted, strong, and specific interactions

between molecules. The binding process between host and guest may be classified

as a “rare event” when viewing the system at atomic scales, such as those explored

in molecular dynamics simulations. To obtain equilibrium binding conformations and

dissociation constants from these simulations, it is essential to resolve such rare events.

Advanced sampling methods such as Adaptive Biasing Force (ABF) promote the oc-

currence of less probable configurations in a system, therefore facilitating the sampling

of essential collective variables (CVs) which characterize the host–guest interactions.

Here, we present the application of ABF to a rod–cavitand coarse-grained (CG) model

of host-guest systems to acquire the potential of mean force (PMF). We show that the

employment of ABF enables the computation of configurational and thermodynamic

1



properties of bound and unbound states, including the free energy landscape. More-

over, we identify important dynamical bottlenecks that limit sampling and discuss how

these may be addressed in more general systems.

1 Introduction

Host–guest systems are a particular class of binding interactions where one molecule (the

host) contains a cavity into which a second molecule (the guest) inserts.1–5 The interactions

can involve significant specificity in matching molecular shapes and charge distributions, and

often lead to strong and selective interactions between the host and guest.5–7 These host–

guest interactions are crucial to a variety of biological5,8 and chemical processes,9 including

catalysis,10,11 sensor design,12,13 and molecular sequestration from solution.14,15

It is crucial for the design of new materials and pharmaceuticals to have reliable knowl-

edge of the degree of association between host and guest, as captured by standard binding

free energies. Large, negative binding free energies ∆G◦ indicate thermodynamically stable

host–guest associations. The binding affinity of the two molecules is typically expressed

through the dissociation constant Kd in units of molarity (M).16 The magnitude of this dis-

sociation constant loosely correlates to the concentration in solution at which the host–guest

complexes17,18 will begin to dissociate. Small magnitudes of Kd correspond to strong binding

and a favorable bound state, whereas large magnitudes of Kd imply the dissociation of host

and guest and favor the unbound state. Formally, the dissociation constant is related to

the standard binding free energy ∆G◦, defined via Eq. 1 using the standard concentration,

C◦ =1 M.19,20

∆G◦ = kBT log (Kd/C
◦) (1)

In particular, for pharmaceutical applications, knowledge of binding free energy is an

essential component of molecular design.19,21–24 Rather than undergo time-consuming pro-
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cesses to synthesize specific organic compounds and test their Kd using standard experi-

mental techniques, researchers often begin by performing these calculations in silico, using

atomistic molecular simulations with the best available accuracy, including polarization and

quantum effects25,26 when needed. For pharmaceutical applications, focus in molecular de-

sign is often on a combination of solubility and standard binding free energies. Recent efforts

to determine dissociation constants for a wide variety of systems have utilized molecular dy-

namics in an effort to calculate the free energy of dissociation (from which a dissociation

constant can be easily calculated, as in Eq. 1). These methods allow large search spaces to be

explored through high-throughput molecular calculations, and minimize experimental cost,

both in time and resources, enabling the focus of syntheses to be placed on strong candidate

molecules.27–31

Historically, computational methods have utilized alchemical processes and thermody-

namic integration.32–34 In this technique, an unphysical, but computationally permissible,

perturbation is made to the Hamiltonian describing the system. So long as the perturbations

do not impose singularities on the Hamiltonian and its derivative, thermodynamic integra-

tion may capture the difference in free energy between bound molecules and individually

solvated molecules, thus codifying the binding free energy at the system concentration. 35–37

A typical pathway involves the guest being completely removed from the complexed system

by gradually turning off interactions between the guest molecule and the other molecules

in the simulation, which results in an unbound host in solvent and a guest molecule in a

hypothetical ideal gas state. Since both molecules must be solvated in the reaction equilib-

rium leading to Eq. 1, the guest molecule must be re-inserted into solvent to complete the

thermodynamic path and obtain ∆G.24,38 This can be corrected for volume to obtain ∆G◦.

However, one well-known difficulty with using this pathway for host–guest complexes involves

ensuring the correct volume exploration for the guest molecule as it is deleted from the com-

plex.19 Additional problems include the sampling of so-called multivalent host molecules

which could bind to a guest through multiple different mutual configurations, as each indi-
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vidual binding configuration must be independently calculated and properly weighted with

statistical mechanics.

In the thermodynamic integration method, finite differences between intermediate al-

chemical states comprise a free energy landscape that is integrated to either a known state

(such as the ideal gas or Einstein crystal) or a comparison state of interest, determining

either an absolute free energy or a free energy change for the entire process. 39–42 The path-

way is typically alchemical, meaning it does not correspond to physically accessible states

and thus cannot obtain any information about reaction pathways that connect both states

in configurational space or the dynamics of the system along them. However, advanced

sampling methods,37,43 including unrestrained biasing methods such as Funnel Metadynam-

ics,44,45 Steered Molecular Dynamics,46,47 and Umbrella Sampling,48,49 which apply biases

to physical coordinates to reconstruct free energies along a collective variable (CV) pathway

between states, can be useful for understanding transformations and dynamics, and have also

proven effective for capturing host–guest free energies. These methods are attractive pre-

cisely because they are not alchemical; all CV-dependent pathways are defined as mappings

of atomic coordinates, and though it is not required, it is often advantageous to make these

variables continuous for use in molecular dynamics, and in interpreting the role of path-

ways and excitations in dynamic transformations. Properly designed, the CV captures all

of the essential coordinates characterizing the reaction pathway, with a significantly reduced

dimensionality relative to a full MD simulation. These often make use of biasing poten-

tials or forces that accelerate sampling and aid in reconstructing the free energy landscape

with restraining potentials often used to aid convergence and limit orthogonal exploration.

However, this can be somewhat problematic in the context of host-guest interactions, as re-

straints typically require modified algorithms in order to capture the configurational entropy

and multiple binding configurations present in these binding arrangements. This makes un-

restrained methods, which naturally capture the influence of these effects on the ensemble

of states, attractive for such studies.
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It is our intent in this article to explore the behavior of biased simulations in a model

context, to understand what features of a simulation can be used to determine reliability

and convergence. Identifying characteristics of non-convergence in biased simulations will

generally lead to more robust and accurate binding assays. Here, we employ the Adaptive

Biasing Force (ABF) as an advanced sampling method in a collection of samples for free

energy calculations of a coarse-grained host-guest system.50,51 This host-guest model is in-

spired by the structure of the Cucurbit[n]uril (CB[n]) as the host molecule can bind with

a compatible guest molecule containing hydrophobic groups.31,52,53 Our chief interest is in

understanding how the relative geometry of host and guest can affect binding, inspired by

experimental observations of binding affinity in the CB[7]–Fentanyl complex.15 This is a

system which can potentially exhibit multiple binding conformations, but it is anticipated

that the dominant mode of binding is insertion of the Fentanyl molecule lengthwise into the

CB[7] (see Figure 1). The system in our study is entirely coarse-grained, but nonetheless

models the process of insertion of a rod-like molecule into a cavitand, which we hypothesize

is the primary binding configuration for this type of host–guest system. We seek to better

characterize the ABF advanced sampling method and how it might be used to character-

ize binding free energies of molecules with complex geometries to a library of excipients

and binding agents. The simplified geometry and coarse-graining allow us to focus on how

these features influence the thermodynamics of host–guest binding, determine bottlenecks

in molecular sampling, and overall affect the convergence of bias-based free energy methods.

Specifically, the effects of altered guest geometry are explored to understand how it affects

the overall system’s behavior.

2 Model and Methods

The system consists of a single cavitand-shaped host structure and a single rod-shaped guest

structure embedded in an implicit solvent. Both structures are composed of coarse-grained
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(a) (b)

Figure 1: Hypothesized Cucurbit[7]uril (CB7)–Fentanyl binding complex from top (a) and
side (b) perspectives. This molecular complex serves as an example of a real host–guest
system which the model in this study approximates.54

Lennard-Jones (LJ) beads of identical size; this sets a natural unit of length within the

system through the diameter (σ) used for all beads in the system. The host structure is

a rigid body constructed from five stacked, concentric, identically-sized rings of particles

containing two layers each at a radial spacing of 0.5σ. The resulting aggregated structure

still closely approximates a cylindrical, hollowed cavitand molecule. The cavitand with a

diameter of 6σ consists of 240 beads. Particles comprising the two layers are identical in

diameter and mass, but are separated into two types of beads (1 and 2) depending on

whether they are attractive (type 1) or repulsive (type 2) to the guest molecule. The inner

ring is composed of type 1 particles, while the exterior ring is composed of type 2 particles

to mitigate the tendency of the guest to adsorb to the exterior surface.

The guest structure is a linear rigid rod consisting of a variable number (N = {4, 6, 8

or 10}) of type 1 particles, which results in rigid rods of effective length L = Nσ. Figure

2 shows schematic examples of cavitand-rod interactions where the rod with a different

number of beads has entered the pore and resides for a moment inside the cavitand. At the

temperatures studied, the cavity–rod interaction, is sufficiently strong for all lengths to favor

host–guest binding within the pocket of the cavitand. The differences in rod length allow

for exploration of a key parameter in the host–guest binding of elongated molecules, notably

the relative length L/D, where D is the diameter of the cavitand. It should be noted that
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(a) (b)

(c) (d)

Figure 2: Rendered images of all four unique geometric configurations of the cavitand-rod
system. Left to right: (a) 4σ, (b) 6σ, (c) 8σ, and (d) 10σ length rods. Each system is shown
in a bound configuration at the interior binding pocket, though the exact orientation of the
rod during binding is dependent on its geometry. The cavitand impermeability is shown
clearly in all 4 images. Type 1 particles are depicted in pink, whereas type 2 particles are
depicted in teal, demonstrating visually the favorable binding of the interior to the type 1
rod and unfavorable binding of the exterior to the same rod.

while the cavitand–rod interactions are more favorable within the interior binding pocket,

weaker adhesive interactions are present between the rod and the exterior of the cavitand.

Interparticle interactions utilize the shifted–truncated Lennard-Jones (LJ) potential where

the cutoff rc is set to 2.5σ for both type 1 - type 1 and type 2 - type 2 interactions. On

the other hand, the cutoff for type 1 - type 2 interactions is set to rc = 21/6σ, resulting

in a Weeks–Chandler–Anderson repulsive potential.55 This is succinctly described by the

following equation

U(r) =


4ϵ[(σ

r
)12 − (σ

r
)6] + U0 if r ≤ rc

0 if r > rc

. (2)
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In Eq. 2, r represents the distance between the host and guest molecules. The quantity U0

is an added energy that makes the pair potential U(r) continuous when evaluated at r = rc.

With this formulation of the LJ potential, any foreign particle of type 1 will be strongly

attracted to the interior of the cavitand composed of type 1 particles, but will only be weakly

attracted to the exterior of the cavitand due to the mitigating repulsion of type 2 particles.

As the host and guest are treated as rigid bodies, the only meaningful potential energy

arises between host and guest. The remaining system parameters are nondimensionalized

in the style typical for LJ-based systems,55 with energy set by ϵ and masses by that of

individual beads, m. The remaining system parameters may be obtained as derived units

from combinations of σ, ϵ, and m.

We perform simulations using the open source code LAMMPS56 (v.lammps-29Oct20)

coupled to the SSAGES package (v.0.9.3) to perform advanced sampling. Example input

files are provided in the supplementary information.1 The host and guest are placed into

a box with dimensions V = L3 where L = 10σ. Particles are given randomized initial

velocities, which imbue the rigid bodies with randomized initial center-of-mass and rotational

motion, before equilibration using a Langevin thermostat with a damping coefficient of 1.0

and temperature of 1.5. The seed number varies from one simulation to another. A restraint

is placed on the maximum distance between host and guest centers of mass (∆rCM,max) using

SSAGES; this is set to 10σ for all systems studied. Utilizing the standard Lennard-Jones

timescale, τ =
√

mσ2

ϵ
, where m refers to the mass of a single Lennard-Jones bead, timesteps

were set to δt = 10−4τ . A set of trial simulations was performed focusing on identifying the

proper simulation time length to ensure convergence; it was quickly observed that while some

simulations converge quite quickly, convergence for all lengths L was unreliable for simulation

times less than 104τ . Thus, a standard simulation of length τsim = 105τ was utilized for data

gathering. Since all particles in this system participate in rigid body interactions, only

cross-interactions between host and guest are calculated using the pair potential. Solvent is

1Electronic supplementary information for this article is posted at XXX.
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treated implicitly through the Langevin thermostat and thus does not appear in the energy

calculations.

Binding free energies are calculated using the SSAGES package, using a collective variable

(CV) of the relative center of mass distance ∆r =
√

(rCM,rod − rCM,cav)2 of the rod and

cavitand (cav). CV statistics are compiled over a range of 0σ to 10σ, and the resulting

Potential of Mean Force (PMF) distribution, therefore, shares this range. No restraints are

applied to the ABF CV range.

3 Results

An exemplary result for the free energy of a specific rod–cavitand system with L = 10σ is

given in Figure 3(a). It is illustrative to examine the approach to convergence, as represented

by the trajectories in energy and CV space plotted in Figs. 3(b) and (c), respectively. The

visualized dynamics in Figures 3(b) and (c) demonstrate that the rod is able to enter the

interior region of the cavitand and interact with the adhesive beads there. However, in

some cases, the rod can become stuck in a bound configuration, or through a combination of

spatial configuration and sterics fail to explore the bound configurations at all. The restricted

exploration limits the accuracy of the free energy computed on the other side of the transition

state, visualized by the rightmost of the peaks in the PMF plotted in Figure 3(a) (occurring

around ∆rCM = 6σ). This peak represents the initial entry of the rod into the cavitand, and

is an entropic barrier to binding which grows as the orientation becomes necessarily more

constricted at the entry with growing N . The type of systematic undersampling we describe

here introduces large errors at precisely this type of entropic barrier. Detailed analysis of

the resulting free energy curves and trajectories in Figure 4(a) shows this is characteristic of

the simulations which fail to converge.

The results in Figure 3(b) suggest that the system readily explores all possible host-guest

distances in a properly converged system. This type of sampling does not imply convergence
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Figure 3: (a) PMF profile of a properly converged system. Example time series of the
corresponding (b) CV and (c) total energy of the system and CV value. The wide fluctuations
in CV and the total system’s energy per atom is characteristic of all properly converged
simulations, which is lacking in any improperly converged simulations.

on its own, but is a necessary requirement for convergence to occur, as it enables sufficient

sampling of all relevant configurations to occur. The energy curve likewise explores a range

of bound (predominately negative) and unbound (predominantly zero or positive) available

energies as depicted in Fig. 3(c). This is in contrast to improperly converged systems where

the CV in Figure 4(b) and total energy in Figrue 4(c) explore only a well-defined subset of

rod–cavitand distances after initial evolution. In all observed cases this is due to the system

becoming kinetically trapped within one region of CV space as a result of either entropic

limitations or initially poor estimates of the mean force not allowing for relaxation over the

timescale of simulations. Excluded states could manifest in one of two ways: either the CV

became trapped beneath an artificial upper bound and explored only the bound basin or

the CV became trapped above an artificial lower bound where dissociated host and guest

keep trying, but failing, to enter the bound state. Geometrical analysis of the cavitand
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Figure 4: (a) PMF profile of an improperly converged system. Example time series of
the corresponding (b) CV and (c) total energy of the system and CV value. The narrow
fluctuations in CV and the total system’s energy per atom is characteristic of an improperly
converged simulation.

and rod suggests the value of this artificial bound corresponds roughly to the transition

between the rod entering and exiting the interior binding pocket in all cases of unconverged

simulations. We hypothesize that this is due to the entropic nature of the transition state in

host–guest materials. If entropy on both sides of the barrier is similar and the rate-limiting

step is merely an energetic excitation, ABF is likely to handle convergence well, as has

been demonstrated for ABF and derived methods in a variety of one-dimensional systems.

However, here, there is a significant entropic penalty to the binding event. As such, if the

rod or cavitand approaches with incorrect orientation, the rigid nature of the molecules will

not accommodate a binding event. This can lead to overestimation of the free energy of the

transition state. Due to the additive nature of recorded forces in the ABF method, this will

require extensive sampling to correct the mean force which may not be possible on tractable

timescales.
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To understand the correlation between the CV and total energy fluctuations in our sim-

ulations, we plot in Figure 5 the time-dependence of energy deviations in response to fluc-

tuations in the CV. We use the equation

CξE(t
′) =

1

N

(N−1)δt∑
t=0

((ξ(t+ t′)− ⟨ξ⟩)(E(t)− ⟨E⟩)√
⟨ξ2⟩⟨E2)

(3)

where ξ = ∆rCM is the CV we use in our calculations. There is a clear correlation between

fluctuations of CV and energy at the same points in time, and an oscillating response that

results from the driving forces imparted by the ABF method.
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Figure 5: A plot of the time-correlations between the CV (∆rCM) and the system’s energy. A
clear instantaneous correlation exists, followed by a periodic signature in the time correlations
which likely results from application of the bias.

This is reflected in the extent of exploration for CVs and energy plotted in Figure 6, which

represents calculations of the average variances of CV and scaled total energy in every indi-

vidual simulation run. Figure 6 reveals a strong correlation between the average variances of

total energy and CV for the host–guest system. The higher magnitude of variance indicates

larger fluctuations in these variables which suggests a better coverage of the CV over the
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possibilities in the system. This further leads to an improvement in the convergence of PMF

calculation. Note that as a result of the bias force driving sampling back from extremes of

the CV domain, a periodic signature appears in the time series.
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Figure 6: (a) The average variance of CV for 10 different simulations sorted from low to high
versus simulation number for each system with different rod lengths of 4, 6, 8, 10 σ. Note
that UD represents the variance of a uniform distribution within a range of CV ∈ [0,10] (b)
The variance of the scaled total energies. To make a convenient comparison between the
total energy of four different systems we scaled the energy by multiplying values with the
total number of atoms in a given system and then dividing it by the number of atoms in the
rod. 4, 6, 8, 10 σ in the plots represents the size of the rod for the corresponding plots.

Properly converged simulations demonstrated a sufficiently comprehensive exploration

of the entire CV range and demonstrated no apparent barrier to the rod’s entry or exit of

the interior binding pocket. Consequently, the energy varies within a wider possible range

of values as shown from Figures 3 to 6. The trajectories of both energy and position as a

function of time have the signature of a random walk; this type of behavior is often seen, for

instance, in converged metadynamics simulations.57 The random walk idea applies equally

to simulations using ABF, though it is an imperfect analogy here, since ABF as applied does

not regulate orientational entropy (and thus retains some system features within the CV

dynamics). Since a uniform distribution results in the maximum variance of a hypothetical

system, it is a logical reference to evaluate the convergence of our results.
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We plot the expected uniform distribution of the CV in Figure 6(a), and find that simula-

tions whose trajectories have a variance within 10% of this value are nearly always converged.

Note that for simulation numbers greater than 4, these graphs demonstrate a plateau for

each N studied; this behavior is representative of a simulation which is sampling the entire

space and is converged. Also, it is worth noting that if this were a truly bimodal distribution

with a bound state near ∆rCM = 0 and unbound state located at ∆rCM = 10, the maximum

variance achievable is 25σ2; thus samples with much larger variances are possible which indi-

cate sampling of both the minimum and unbound states with comparatively less time spent

in between them. Long enough simulation runs which have converged will be expected to

trend toward the uniform distribution (UD) value.

To extract a free energy landscape from our simulated ensembles, improperly converged

samples were screened systematically and removed from the aggregated mean plots. Figure 7

presents the PMFs of our CG rod-cavitand systems where they vary in the number of beads

in the rod as a guest interacting with the cavitand as the host.

The presence of a free energy well is evident for each system displayed in Figure 7 which

corresponds to a binding event between the cavitand and rod. The primary well in the PMF

widens as the rod length is increased. Additionally, the number of local minima in each well

increases, suggesting that the unique binding events and conformations that contribute to

local free energy minima are more numerous but less equivalent as rod length is increased.

The absolute minima of these wells are roughly similar and independent of rod length. This

corresponds to a CoM difference that is achievable only in an interior pocket bound state,

demonstrating the most energetically favorable interaction. The longer rods also have the

ability to bind in other metastable states due to the increased number of available binding

locations (this is evidenced by the appearance of additional minima away from the primary

minimum, spaced by ≈ σ, but the best conformation is consistent across all geometries.

These concurrent phenomena display the two most observed challenges in achieving

proper sampling: increasing rod length leading to longer convergence times and difficulty in
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Figure 7: Mean ABF free energy curves for (a) 4σ, (b) 6σ, (c) 8σ, and (d) 10σ configurations.
These curves are plotted along the ABF collective variable (difference between cavitand and
rod CoM) and are the direct integrals of the ABF-generated PMF distributions. Free energy
is in units of ϵ and normalized so that the minimum point on the curve corresponds to an
energy value of 0.00, while CoM difference is in units of σ. Shaded regions represent the
standard deviation regions of each curve, calculated from the included free energy curves of
that configuration. Standard deviation is calculated independently at each point along the
plotted CV.

achieving precise replicate measurements of the system in the bound state. Yet, the overall

curve shape is not so drastically altered due to the increased error ranges that the result

is confounded—both the binding pocket and the nonbinding region are sufficiently resolved

when improperly converged runs are not included in the mean curve. Noting that our vari-

ances for the sampled CVs and energies (as plotted in Fig. 6) help to define systems with

“good coverage,” we anticipate this process may be automated in the future to ensure suf-

ficient sampling is obtained within a reasonable number of overall free energy calculations,

or the system is flagged for treatment using an alternative method (for instance, a partially

restrained method such as funnel metadynamics ).
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4 Discussion

Adaptive biasing force methods are promising for exploring host-guest systems due to their

tempered approach to initial free energy estimates, but they are not guaranteed to converge

in finite-length simulations. Through the course of this model study, we have identified

important signatures in the variance of CV and energy which indicate their state of con-

vergence. Improperly converged runs exhibit smaller fluctuations in their CV and energy

(whose fluctuations in turn are correlated) due to systematic undersampling. In extreme

cases, these are several orders of magnitude less than those observed in converged calcu-

lations, which should trend toward a uniform distribution given sufficient sampling time.

There is a distinct cause-and-effect relationship between this behavior in the energy profile

and the inability to sample portions of the CV range corresponding to the interior or exterior

of the cavitand. Therefore, the CV sampling exclusion, regardless of whether it excludes the

range corresponding to the cavitand interior or exterior, has been identified as a significant

system bottleneck. We reiterate that ABF should be capable of resolving these issues, given

sufficient length of simulations, though it is impossible to determine precisely what additional

length a simulation needs to run based on its current level of sampling. We can, however, use

the fluctuations observed in simulation to determine if the extent of sampling achieved in a

given simulation is sufficient by comparing the variance of the CV to the expected variance

of a uniform distribution, as noted in the previous section.

We hypothesize this correlation is most likely due to the decrease in geometric obstruc-

tions to binding and exploration of conformations as rod length is decreased. Smaller rod

lengths, especially those smaller than the cavitand diameter, are able to enter the interior

of the cavitand, bind, unbind, and exit more freely due to an increase in available physical

trajectories to reach the same end bound or unbound state. Larger rod lengths have more

difficulty in entering and exiting the cavitand from the exterior space simply due to geomet-

ric steric hindrance, leading to more difficulty in executing these movements and sufficiently

sampling the entire CV range. While later timesteps in the evolution of the system also
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incorporate a biasing force calculated from the PMF values obtained until that point in

the simulation, the addition of this force is not necessarily sufficient to overcome the steric

hindrances that discourage entrance and exit movements at longer rod lengths.

Adaptive sampling methods such as ABF could benefit greatly from designing protocols

which identify or avoid such bottlenecks. Here, we only explored the relatively simple case

of a single CV, though this issue could potentially be alleviated by biasing on both the sepa-

ration distance and relative orientation of the host and guest. This streamlines resolution of

the rate-limiting process, though it also requires significantly more sampling to be performed

away from the bottleneck to resolve the full landscape in multiple dimensions. Multi-walker

and multi-window–multi-walker simulations can be incorporated here, and there is the pos-

sibility for Monte Carlo protocols which connect the free energy landscape to resolve such

bottlenecking issues.

5 Conclusions

We have shown, using a CG host-guest model, that ABF simulations can be utilized to

obtain accurate PMFs in binding calculations. By systematically testing the ABF method

on different rod lengths within our rod–cavitand CG model we were also able to identify the

chief causes of bottlenecks which prevent the sampling of converged free energy landscapes,

and discuss some strategies which may prove useful for mitigating similar undersampling

issues. We anticipate these results to be useful to the computational community explor-

ing host–guest interactions in materials or drug design contexts. As noted, the selection of

this particular host-guest system was primarily motivated by a desire to study the binding

between elongated guest molecules (with multiple potential binding configurations) and cav-

itands such as in the Fentanyl–CB7 system.54 We anticipate this method can be extended

to study other chemical and biological systems to earn knowledge about the kinetics and

thermodynamics of host-guest binding and unbinding dynamics.
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