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Abstract The analyst’s traveling salesman problem (TSP) is to find a characterization of
subsets of rectifiable curves in a metric space. This problem was introduced and solved in
the plane by Jones in 1990 and subsequently solved in higher-dimensional Euclidean spaces
by Okikiolu in 1992 and in the infinite-dimensional Hilbert space £, by Schul in 2007. In
this paper, we establish sharp extensions of Schul’s necessary and sufficient conditions for
a bounded set E C £, to be contained in a rectifiable curve from p =2to 1 < p < oo.
While the necessary and sufficient conditions coincide when p = 2, we demonstrate that
there is a strict gap between the necessary condition and sufficient condition when p # 2.
We also identify and correct technical errors in the proof by Schul. This investigation is
partly motivated by recent work of Edelen, Naber, and Valtorta on Reifenberg-type theorems
in Banach spaces and complements work of Hahlomaa and recent work of David and Schul
on the analyst’s TSP in general metric spaces.
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1. Introduction

Given a set in a path-connected metric space, we may ask whether or not the set is
contained in a curve of finite length (also called a rectifiable curve), and if so, ask how
to find a curve containing the set that is (essentially) as short as possible. This problem
was introduced and solved in the Euclidean plane by Jones [48] and is now commonly
known as the analyst’s traveling salesman problem. While it is immediate that a set
contained in a rectifiable curve is necessarily bounded and has finite 1-dimensional
Hausdorff measure J¢!, this pair of conditions is not sufficient. To decide when a set is
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contained in a rectifiable curve requires additional information about the local geome-
try of the set within the space. Full solutions to the analyst’s traveling salesman prob-
lem (TSP) are currently available in R” [58], Carnot groups [53], infinite-dimensional
Hilbert space £, [65], graph inverse limit spaces [33], and for Radon measures in R”
[17] and Carnot groups [13]; partial solutions are available in general metrics spaces
[32, 43] as well as for higher-dimensional curves [16, 20] and surfaces [7, 10, 36, 38,
41, 47, 67]. Beyond the intrinsic interest of the analyst’s TSP in metric geometry, find-
ing tests to determine when a set is contained in a rectifiable curve or “nice” surface has
led to applications in complex analysis, dynamics and probability, geometric analysis,
and harmonic analysis. For a sample of applications, see [6, 8, 9, 11, 15, 18, 19, 25, 26,
27,42, 55, 56, 57, 66].

In this paper, we establish sharp extensions of Schul’s necessary and sufficient
conditions for a bounded set £ C £, to be contained in a rectifiable curve from p = 2
to 1 < p < oo (see Theorems 1.6 and 1.7). As usual, £, denotes the (real) Banach space
of p-summable sequences,

X =(x1,X2,...)€4{p if and only if

o0
1/p
xl,X2,...€Rand|x|p=<Z|xi|p) < 0.
1

While the necessary and sufficient conditions in Schul’s theorem coincide when p = 2,
we demonstrate that there is a strict gap between the necessary condition and sufficient
condition when p # 2. En route, we prove that the classes of rectifiable curves in the
infinite-dimensional spaces £, and £, differ when p # g.

PROPOSITION 1.1

Let 1 < p < oo. Every rectifiable curve in £, is a rectifiable curve in Ly for all ¢ > p.
However; there exists a curve T in £,, such that T is rectifiable (that is, (') < 0o)
in Ly for every q > p, but T is not rectifiable (that is, #1(I') = 0o) in £ .

Proposition 1.1, Theorem 1.6, and Theorem 1.7 capture a special infinite-dimensional
phenomenon. In particular, they imply that a solution of the analyst’s TSP in £, cannot
be neatly derived from the solution in £5. By contrast, bi-Lipschitz equivalence of finite-
dimensional Banach spaces ensures that a set in R” is (a subset of) a rectifiable curve
independent from the choice of underlying norm, even though the actual length of the
curve depends on the norm. This paper serves to clarify the difference between the
finite and infinite-dimensional settings. An essential reason for us to study (subsets of)
rectifiable curves in £, for 1 < p < oo is that the spaces interpolate between £, where
the analyst’s TSP is solved, and £,, which contains an isometric copy of any separable
metric space. Thus, a resolution of the analyst’s TSP in £, may provide insight into the
analyst’s TSP in general metric spaces. For further discussion and description of related
research, see Section 1.3.
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1.1. Analyst’s TSP in Euclidean space and £,
To solve the analyst’s TSP in the plane, Jones introduced unilateral linear approxima-
tion numbers, now universally called Jones’ beta numbers, which measure how “flat”
a set is in a given window. The Jones’ beta numbers are well-defined in any Banach
space. Let X be a Banach space,! let E C X be a nonempty set, and let O C X be a set
of positive diameter. If £ N Q # @, define
(11) pe(@) =int sup Ll pg )

L xegno diam Q
where the infimum ranges over all 1-dimensional affine subspaces (lines) L C X; and, if
ENQ =0,define B (Q) = 0. Atone extreme, if B (Q) = 0, then E N Q is contained
in a line. At the other extreme, if B (Q) = 1, then the set E N Q is uniformly far away
from every line passing through Q. From the definition, it immediately follows that

diam Q
(1.2) Be(R) < Jiam R
In view of the fact that rectifiable curves (having parameterizations of bounded varia-
tion) admit tangent lines J !-a.e., one may expect that sets contained in a finite length
curve have “vanishing beta numbers” at typical points of those sets. The analyst’s trav-
eling salesman theorem makes this idea precise and provides a characterization of sub-
sets of rectifiable curves with an estimate on the shortest length of a curve containing
the set as follows.

Br(Q) forall EC Fand RC Q.

THEOREM 1.2 (Jones [48] in R?; Okikiolu [58] in R")
Letn > 2 and let E CR". Then E is contained in a rectifiable curve if and only if

(1.3) SER"):=diamE + » Bg(30)*diamQ < oo,
QeAR?)

where the sum ranges over all dyadic cubes Q in R" and 3Q denotes the concentric
dilate of the cube Q with scaling factor 3. More precisely, if Sg(R") < oo, then E is
contained in a curve T in R" with

(1.4) H(T) <u SER").

If ¥ C R" is a connected set, then

(1.5) Ss(R") Sn #' ().

The constant 3 in (1.3) can be replaced with any constant A > 1. Then (1.4) and (1.5)

hold with implicit constants depending on n and A.

For refinements of (1.4) and (1.5) for rectifiable Jordan arcs in R” and in Hilbert space,
see [24] and [52]. Time complexity of the analyst’s traveling salesman algorithm for
constructing the rectifiable curve in (1.4) is investigated in [62].

1. All Banach spaces in this paper are real Banach spaces of dimension at least 2.
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REMARK 1.3
If E is a subset of a rectifiable curve in R”, then the analyst’s traveling salesman theo-
rem ensures that

(1.6) Y diamQ <eS(E) <oo foralle>0.
QeAR")
BE(30)=e
It follows that
(1.7) lim Br(30)=0 atH'-ae.xekE,
Q6QA¢(§”)

or equivalently by (1.2),
(1.8) liﬁ)lﬂE(B(x,r)) =0 atH'-ae xekE.
r

Thus, subsets of rectifiable curves in R” have “vanishing beta numbers” at typical
points in the sense of (1.8). It is possible to construct examples of generalized von
Koch snowflake curves (with carefully chosen angles) to show that (1.8) is also sat-
isfied by certain curves of infinite length (Proposition 5.1). By contrast, the analyst’s
traveling salesman theorem guarantees that every curve I in R” of infinite length satis-
fies ST (R") = oo. In other words, the finiteness of St (R") is a perfect test to determine
rectifiability of a curve ' in R”.

REMARK 1.4

Let V be a finite set of points in R” (equipped with the Euclidean norm) that is /-
separated in the sense |[v — w| > 1 for all distinct v, w € V. Assume that L is a line in
R” such that dist(v, L) < 8 < 1 for all v € V. Then the set V = {vy,..., v} may be
enumerated according to its orthogonal projection onto L. For simplicity, let us further
assume that v, v € £. By the triangle inequality and a simple computation with the
Pythagorean theorem ( Figure 1),

(1.9) [vi = ve| < |vi = val + -+ 4 [vk—1 — v < (1 + C1B%) vy — v

for some universal constant Cy. Conversely, if dist(v;, L) > « for some 1 <i <k, then
the Pythagorean theorem yields

(1.10) |v1—v,-|+|v,-—vk|z(1+C2a2)|v1—vk|

for some universal constant C,. At a high level, the estimates (1.9) and (1.10) cor-
respond to (1.4) and (1.5) in the analyst’s traveling salesman theorem, respectively.
Informally, we say that the Pythagorean theorem is responsible for the exponent 2 on

Br(30)? in (1.3).

The dependence on the ambient dimension in the implicit constants in (1.4) and (1.5)
is ultimately a consequence of using dyadic cubes in the sum Sg(R") to index “all”
locations and scales in R”. By bi-Lipschitz equivalence, Theorem 1.2 persists in every
finite-dimensional Banach space with implicit constants that also depend on the norm
as well as a choice of coordinates; see Section 4 for a detailed statement. To formulate a
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Figure 1. To use the Pythagorean theorem to verify (1.9) and (1.10) (shown with k = 4), first draw right trian-
gles formed from line segments [v;, v; ] between consecutive points and the line passing through v; and
Vi .

dimension-independent version of the analyst’s traveling salesman theorem in £,, Schul
[65] replaced Sg (R") with a sum Sg (¥) indexed over a multiresolution family § of
“all” locations and scales in the set E.

Let X be a metric space and let £ C X be a nonempty set. For any p > 0, a p-net
X, in X is a set such that dist(y, z) > p for all distinct y,z € X, and dist(x, X,) < p
for all x € X. Following [65], we define a multiresolution family § for E with inflation
factor A¢ > 1 to be a collection of closed balls of the form

(1.11) G ={B(x,Ag27%) : x € Xy, k € Z},

where (Xj)rez is a nested family of 2 ¥ -nets for E. Analogously, if each set Xj has
the property dist(y,z) > 27 for all distinct y,z € Xj, but one or more of the sets X
are not 2~ -nets, then we call § a partial multiresolution family for E.

For any nonempty set £ C {5 and (partial) multiresolution family § for E, define

(1.12) Sg(§):=diamE + Y Bg(Q)*diam Q.
Qeg

THEOREM 1.5 (Schul [65])
If E C {4y and SE(§) < oo for some multiresolution family '§ for E with inflation
factor Ag > 200, then E is contained in a rectifiable curve T in £, with

(1.13) H () Say SE(S).

If ¥ C £, is a connected set and H is a (partial) multiresolution family for ¥ with
inflation factor Ag > 1, then

(1.14) Sx(H) Say HH(D).

Note that the implicit constants in (1.13) and (1.14) depend on the inflation factor of the
multiresolution family but are otherwise dimension free. Once again, the Pythagorean
theorem in £, determines the exponent 2 on S (Q)? in Theorem 1.5 & la Remark 1.4.
More generally, Theorem 1.5 holds in any Hilbert space (including nonseparable
spaces).
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1.2. Schul’s theorem in £,
For any nonempty set £ C £, and (partial) multiresolution family § for E, define

(1.15) Sg,(§):=diamE + ) Br(Q)" diam Q forall 0 <r < oo.
Qeg

Note that in the notation of the previous section, Sg 2(¥) = Sk (¥). Moreover, by (1.2),
(1.16) Sg,(§) <Spy(§) forall EC Fands<r,

where € is a multiresolution family for F extending §.

The following pair of theorems, extending Schul’s theorem from £, to £, with
1 < p < o0, constitutes our main result. We emphasize that when p # 2, there is a
strict gap between the necessary and sufficient conditions for a set to be contained in a
rectifiable curve.

THEOREM 1.6 (Sharp sufficient conditions in £ )
Let1 < p<oo. If ECLy and SE min(p,2)(§) < 00 for some multiresolution family §
for E with inflation factor Ag > 240, then E is contained in a curve I" in £, with

(1.17) HT) <p.ay SE min(p.2)(9)-

The exponent min(p, 2) on beta numbers in (1.17) is sharp.

THEOREM 1.7 (Sharp necessary conditions in £ )
Let1 < p <oo.If ¥ C £, is a connected set and K is a (partial) multiresolution family
for X with inflation factor Ag > 1, then

(1.18) S5 max@,p) (H) Sp.az HH(Z).

The exponent max(2, p) on beta numbers in (1.18) is sharp.

REMARK 1.8

In this paper, we prove Theorem 1.6 in full and we reduce the proof of Theorem 1.7 to
Theorem 3.30; the proof of the latter theorem is deferred to Part II of this paper [14].
More generally, we show that an analogue of Theorem 1.6 holds in uniformly smooth
Banach spaces (see Theorem 2.26) and an analogue of Theorem 1.7 holds in uniformly
convex spaces (see Theorem 3.22). For example, L? spaces of p-power integrable
functions over a measure space, which include £, are uniformly smooth and uniformly
convex for all 1 < p < co. In addition, we prove that a universal sufficient condition
with exponent 1 is valid in arbitrary Banach spaces (see Theorem 2.10). Each of these
results applies to both separable and nonseparable Banach spaces.

An essential feature of £, is that the unit ball and induced distance are rotationally
invariant. In particular, to compute the distance of a point x to a line L in Hilbert
space, one may first translate and rotate so that L. = span(e;) and x € span(eq, e;) if
convenient. In £,, when p # 2, rotational-invariance is no longer available, and com-
putation of the distance of a point to a line is sensitive to the position of the line and



Subsets of rectifiable curves in Banach spaces | 7

100
=
( 2%
0.5} 1}
\ XS
\ # ‘ :
i
[ \ Sl
0.0 ol 957
\ ﬂ"’
\ 4
\ 9
‘, H
[ \ H
00 -1\
o
1.0 p
0 <

-1.0 -05 0.0 0.5 1.0 1 ~/

Figure 2. (Color online) Unit balls in £3 , (blue), R (orange), £3 and £3 (green), where £, denotes (R", || ).

geometry of the unit ball. We remark that the gain in complexity witnessed when mov-
ing from ij to Z; (for example, consider the shape of slices of their unit balls; see
Figure 2) continues to increase when moving from the finite-dimensional spaces E’;,
to the infinite-dimensional space £,. For instance, although the norms in £} and €7,
are C(n, p)-bi-Lipschitz equivalent for each pair n and p, the bi-Lipschitz constant
C(n, p) degenerates as n — oo for each p # 2.

EXAMPLE 1.9
To illustrate the essential idea behind the exponents in Theorems 1.6 and 1.7, let’s
estimate the length gain in £2 = (R2, |- |5) of isosceles triangles

Ty ap = (0,0), bp=(/2.h). e = (1,0), and
(1.19) Ty :aqz =(0,0), by = (27%/51 =275y, 278/5] 4 2715,
ca =@7131,27151)

with horizontal and diagonal bases ac of length / and height dist(b,ac) = h. On one
hand,
1/5

lanbn|s + |bachls — |ancr|s = 2((1/2)° + h°) l

(1.20)
=1((14320/D%)"° = 1) ~ 1(h) 1)®

for h < I by Taylor’s theorem for x — x!/> at x = 1. On the other hand,
laabals + |bacals —laacals

1/5

(1.21) =2(Q@7%*1 —275h)> + 27851 4 271/ )?) I

= 1((1+40(h/1)* +80(h/ D*)'® = 1) ~ 1(h/ 1)
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when & < [ by Taylor’s theorem, again. This computation indicates that on the axial
directions, the excess in the triangle inequality for “flat” triangles is comparable to
I(h/1)?, while on the diagonal directions, the excess is comparable to /(h/1)?. In fact,
as long as the base of the triangle is neither horizontal nor vertical, the excess is com-
parable to /(h/)? provided that h < [ (depending on proximity of the base to an axial
direction). In higher dimensions, the excess in the triangle inequality also depends on
the direction of the altitude of a triangle in addition to the direction of its base.

The strict gap in the exponents witnessed in Example 1.9 is an essential feature of £,
geometry when p # 2. To prove Theorems 1.6 and 1.7, we employ tools from func-
tional analysis such as modulus of smoothness, modulus of convexity, and normalized
duality mappings to carry out the estimates outlined in Remark 1.4 and Example 1.9
in the setting of £, in full generality. In fact, we work in arbitrary uniformly smooth
and uniformly convex Banach spaces, which include the £, spaces when 1 < p < co.
To establish the sufficient condition (1.17), we modify the “parametric proof” of the
sufficient condition in £, recently developed by Badger, Naples, and Vellis [16]. This
approach also yields new sufficient criteria for a set in a Banach space to be contained in
a (1/s)-Holder curve with s > 1 (see Theorem 2.7). To verify the necessary condition
(1.18), we follow the proof of the necessary condition in £, originally introduced by
Schul [65], indicating which parts of the proof are metric, which parts are Banach, and
which parts rely on the uniform convexity of the norm. The adaptation of the Hilbert
space proofs to £, and related Banach spaces is nontrivial; see Sections 2 (sufficient
conditions) and 3 (necessary conditions) for details. While revising an earlier draft of
this manuscript, we encountered some mistakes in the proof of the necessary conditions
in [65]; see Remark 3.8 and [14, Appendix C]. In Section 3.3, we show how to correct
the error in a minimal way, leaving the outline of virtually all of the original proofs
intact; see Remark 3.24. We complete the proof of Theorem 1.7 in [14].

To show that the exponents in Theorems 1.6 and 1.7 are sharp and to prove Propo-
sition 1.1, we construct Koch-snowflake-like curves in Section 5. While the exam-
ples of sharpness when min(p,2) = 2 or max(2, p) = 2 can be built inside any 2-
dimensional subspace of £, the examples of sharpness when min(p,2) = p # 2 or
max(2, p) = p # 2 require curves that extend outside of every finite-dimensional sub-
space of £,. This is plausible because we know the critical exponent in any finite-
dimensional Banach space is 2 by the analyst’s traveling salesman theorem in R” and
bi-Lipschitz equivalence of norms in finite dimensions (see Section 4 for details). Thus,
it is natural to expect examples showing sharpness of an exponent p # 2 to live in infi-
nite dimensions.

Sections 4 (the analyst’s TSP in finite-dimensional Banach spaces) and 5 (exam-
ples) may be read independently of Sections 2 and 3 (proofs of the main theorems).

1.3. Related work

The inception for this investigation is a recent paper of Edelen, Naber, and Valtorta
[38] that extends Reifenberg’s topological disk theorem [60] (also see [36]) from the
Euclidean to infinite-dimensional Hilbert and Banach spaces. The original formulation
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of the theorem says that if a closed set & C R” is uniformly bilaterally §(k,n)-close?
to some k-dimensional affine plane at all locations in ¥ and on all sufficiently small
scales, then ¥ is locally homoeomorphic to open subsets of R¥ (that is, ¥ is locally
a topological disk). Reifenberg proved the topological disk theorem to establish exis-
tence and regularity of the plateau problem in arbitrary dimension and codimension.
Underpinning the theorem is an algorithm that takes a collection of planes approximat-
ing the set X and patches them together using orthogonal projections and partitions of
unity to construct a parameterization. Edelen, Naber, and Valtorta solve the problem of
how to implement this algorithm in a Banach space with dimension independent esti-
mates. The main application of the Reifenberg algorithm in [38] is a structure theorem
for measures in Banach spaces, which we now briefly describe.

Following the convention used in [38], for every Borel regular measure p on a
Banach space X, location x € X, and scale r > 0, define the k-dimensional L2 Jones
beta number ,be(x r) by

(1.22) B (x.r)?:= inf r7k2 [ dist(z, p + V) du(z),
p+VEk B(x,r)

where the infimum ranges over all k-dimensional affine subspaces of X. Beta numbers
associated to measures were originally introduced by David and Semmes [34, 35] to
build a bridge between singular integral operators and quantitative rectifiability of sets.

THEOREM 1.10 (Edelen, Naber, and Valtorta [38, Theorem 2.1])

Let X be a Banach space, let . be a finite Borel measure supported in B(0,1), let
S C B(0,1) be a set with w(B(0,1)\ S) =0, and let r : S — (0, 1). Assume that
satisfies

2

d

(1.23) ,Bﬁ(x,s)“—s < MY/? forallx € S,
r(x) s

where the exponent a is determined as follows:
e if X is a generic Banach space, then oo = 1;
o if X is a Hilbert space, then o = 2;
o if X is a uniformly smooth Banach space and k = 1, then « is the smoothness

power of X (for example, the smoothness power of £, is min(p,2) for
1< p<oo)

Then there is a subset S’ C S so that we have the following packing/measure estimate:

(1.24) ,u(B(O, 1\ U B(x,r(x))) Skox M and Z r(x)k Sk.px 1.

xeS’ xeS’

where px denotes the modulus of smoothness of X (see Section 2 below).

2. For a comparison of unilateral (Jones) versus bilateral (Reifenberg) flatness of a set, see [12].
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Roughly speaking, condition (1.23) allows one to control the tilt of the approximating
planes in the Reifenberg algorithm and construct local bi-Lipschitz parameterizations.
For our present discussion, the most interesting aspect of Theorem 1.10 is the depen-
dence of the exponent @ on the geometry of the Banach space X and the dimension k of
the approximating planes. In any given space, one would like to identify the largest pos-
sible exponent such that the theorem holds. The exponent & = 1 corresponds to the tri-
angle inequality, which holds in any Banach space, and the exponent o = 2 corresponds
to the Pythagorean theorem, which holds in any Hilbert space. In an intermediate sce-
nario, Edelen, Naber, and Valtorta prove that when X is a smooth Banach space and
k =1, the exponent « can be taken to be the smoothness power of the Banach space.
For example, o« = p when X = £, and 1 < p < 2. Furthermore, Edelen, Naber, and
Valtorta prove that the restriction to k = 1 is necessary to obtain « > 1 in non-Hilbert
spaces. This is tied up with the existence of good projections onto lines when k = 1
and the absence of good projections onto subspaces when k > 2; see [38, Sections 3.6
and 5.3] for details.

A strength of the Reifenberg algorithm over the analyst’s traveling salesman the-
orem is that it gives conditions to build parameterizations of every dimension k. An
advantage of the analyst’s traveling salesman theorem over the Reifenberg algorithm
is that it provides necessary and sufficient conditions for parameterizations of dimen-
sion k = 1. Edelen, Naber, and Valtorta’s successful implementation of the Reifenberg
algorithm in smooth Banach spaces with k = 1 provided our initial motivation to look
for an analyst’s traveling salesman theorem in Banach spaces.

A separate vein of research by Hahlomaa [43] and David and Schul [32] (also
see [44, 63]) focuses on the analyst’s TSP in the setting of an arbitrary metric space.
Because metric spaces are not necessarily path connected, it is natural to reformulate the
analyst’s TSP as stated above and instead ask which sets in a given metric space X are
contained in rectifiable curve fragments—that is, images of Lipschitz maps f : S — X
from some set S C [0, 1]. Hahlomaa’s original work in this direction established an
analogue of the sufficient half of the analyst’s traveling salesman theorem by redefining
Jones’ beta numbers using Menger curvature, or equivalently, using the excess in the
triangle inequality. For different perspectives on rectifiability in measure metric spaces,
see, for example, [4, 21, 22, 23, 50, 56, 59].

Following [32], for a given metric space E and ball Q = B(p,r), define ﬂfo(Q)
by

,BfQ(Q)2 =7t sup{dist(x, y) + dist(y, z) — dist(x, z) :

(1.25)
x,y,z€ EN Q and dist(x, y) <dist(y,z) < dist(x,z)}.

The metric beta number ,Bfo(Q) measures the normalized excess in the triangle
inequality among triples of points in £ N Q. The exponent 2 on the left-hand side of
(1.25) is a convention that is imposed to make the statement of Theorem 1.11 look
similar to Theorem 1.2 when E C R is endowed with the Euclidean metric.
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THEOREM 1.11 (Hahlomaa [43, Theorem 5.3])

Let E be a metric space and let § be a multiresolution family for E with inflation factor
Ag >~ 1. If

(1.26) SE(G) :=diamE + Y BE(Q)*diam Q < oo,

Qeg
then there exists a set A C [0, 1] and a surjective Lipschitz map f : A — E with Lips-
chitz constant Lip(f) < SE(9).

REMARK 1.12

It is known that the converse to Hahlomaa’s theorem is (quantitatively) false for certain
rectifiable curves in {3 = (R?, |- |;); see [64, Example 3.3.1]. A similar phenomenon
occurs in graph inverse limit spaces; see [33, Section 7]. This issue is not fully under-
stood and merits further investigation.

David and Schul recently announced a partial converse to Hahlomaa’s theorem, which
is the first nontrivial necessary condition for the analyst’s TSP in a metric space.
Together, Theorems 1.11 and 1.13 are quite striking and indicate the rough shape that
a full solution to the analyst’s TSP in a general metric space might take. Recall that a
metric space is doubling if every ball of radius 7 can be covered by at most D balls of
radius /2.

THEOREM 1.13 (David and Schul [32, Theorem A])
Let 3 be a connected, doubling metric space with doubling constant D and let H be a
multiresolution family for X with inflation factor Ag > 1. For every € > 0,

(1.27) SZeH) :=diam Q + Y BE(0)**diam O <c.p.az H' (D).
Qedt

REMARK 1.14

The doubling assumption in Theorem 1.13 allows the authors to simplify the overall
proof of theorem. David and Schul conjecture (see [32, Remark 1.6]) that the doubling
assumption can be dropped by implementing the techniques in [65].

David and Schul present several corollaries to Theorem 1.13 with alternative definitions
of the metric beta numbers ,BEO(Q) (see (1.25)). In particular, they obtain necessary
conditions for the analyst’s TSP in £, with 1 < p < oo, using traditional Jones’ beta
numbers Bx(Q) (see (1.1)). Also see [32, Corollary D] for a more general statement
on uniformly convex Banach spaces.

COROLLARY 1.15 (David and Schul [32])
Let 1 < p <00, let ¥ C L, be a connected set with doubling constant D, and let J be
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a multiresolution family for ¥ with inflation factor Ag > 1. For all € > 0,

SEmx@.p)+e(H) =diam E + Y Bg(0)" P+ diam 0
(1.28) Qe

SG,D,p,A]{ Jfl (E)

In Theorem 1.7, we remove the doubling assumption and the error € from Corol-
lary 1.15. This is accomplished by following the strategy in [65].

2. Modulus of smoothness and proof of the sufficient conditions

2.1. Ordering flat sets in Banach spaces

A simple but important ingredient in all proofs of the analyst’s traveling salesman the-
orem is that “almost flat” sets of points can be linearly ordered. To implement a generic
Banach space version of the sufficient half of the analyst’s traveling salesman theorem
with universal constants (in the spirit of Hahlomaa [43]), we first develop an instance
of this principle. The following lemma is modeled after [17, Lemma 8.3].

LEMMA 2.1 (Flatness implies order)
Let X be a Banach space. Suppose that V C X is a §-separated set with #V > 2 and
there exist lines L1 and L, and a number 0 < o < 1/6 such that

2.1 dist(v,L;) <aé forallveV andi =1,2.
Let w; : X — L; denote a metric projection onto L;; that is, any map satisfying
2.2) dist(x, L;) = dist(x, i (x)) for all x € X.

There exist compatible identifications of L1 and Ly with R such that w1 (v') < w1 (v")
if and only if Ty (V') < (V") for all v, v" € V. If vy,v3 € V, then

2.3) (1+42a)7! |7r1(v1) —m (v2)| <|vi—uv| <1+ 3oz)|711 (vy) — 711(1)2)|.
Proof
Without loss of generality, it suffices to assume § = 1. Let V' C X be a 1-separated set

with at least two points. Assume that there exist 1-dimensional affine subspaces L; and
L, in X and a number 0 <« < 1/6 such that

dist(v,L;) <a forallveVandi =1,2.
Let r; denote a metric projection onto L;. For any distinct pair of points vy, v, € V,
1 <|vy —va| < |mi(v1) — 7 (v2)] + 2ax
because V is 1-separated and the distance of points in V' to L; is bounded by «. Hence,
(2.4) |7 (v1) — i (v2)| = Jv1 — V2| =20 = 1 —2a > 2/3.
In particular, 2« < 3a|m; (v1) — 7; (v2)], and it follows that

v —va| < (1 + 3oe)|7ri(v1) — ni(v2)|.
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This establishes the right half of (2.3). Similarly,

|7i (v1) — 7 (v2)| < |1 —va| + 2 < (1 + 20)|vy — V2,
which yields the left half of (2.3). In particular, note that
(2.5) v — V2| > }m(vl)—ni(vz)\ —20.

Suppose for contradiction that there are identifications of L and L, with R and
distinct points v, v’, v” € V such that 1 (v) < 71 (V') < 71 (v"), but w2 (V') < 2 (V) <
o (v”). Set

X::|v_v/|’ y:=|v//_v/|’ ZI=|UN—U|,
yp=[m@) -m). ye=lme)-me) = me) -mE)),
X2 1= |712(U)—7'[2(v’)|7 Vo = |7t2(v”)—n2(v’)|, Zy = |7T2(U//)—n2(v)|,

Heuristically, since 71 (v) < 71 (v’) < 71 (v”), we have z &~ x + y, and since 75 (V') <
o (v) < o (v”), we have y &~ x + z. Hence, z ~ z + 2x, which yields a contradiction
if « is sufficiently small. More precisely, by repeated application of (2.4) and (2.5):

z>z1—20=x1+y1—20>x1+y—4oa>x1+ y, — 60
=x1+Xx2+2—60>x; +x2+2z—8a.

Rearranging, we obtain 4/3 < x; 4+ x, < 8« < 8/6, which is absurd. Therefore, under
any choice of identifications of L1 and L, with R, either 71 (v) < 71 (v’) if and only
if ma(v) < ma(v') for all v,v" € V, or w1 (v) < 71 (V') if and only if 75 (v) > 72 (V')
for all v, v’ € V. Thus, we can choose compatible identifications of L; and L, with R
such that 71 (v') < 71 (v”) if and only if 72 (v') < o (v”) forall v/, v” € V. O

COROLLARY 2.2 (cf.[16, Lemma 2.2])
Let X be a Banach space. Suppose that V C X is a §-separated set with #V > 2 and
there exists a line L and a number 0 < a < 1/6 such that

(2.6) dist(v, L) <ab forallvelV.
Enumerate V = {v1,...,V,} so that v;4+1 lies to the right of v; forall 1 <i <n — 1.
Then
n—1
(2.7) D i —vil* < (14 30) vy —val* forall s € 1. 00).
i=1
Proof

Let 7 denote a metric projection onto L. For all 1 <i <n, set x; := m(v;). Then

(1 +3oz)_1|x,-+1 —xi| <|vig1 —vi| < (1 4+ 3a)|xj4+1 —x;| foralll <i<n-—1
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by Lemma 2.1. Assume s € [1,00) and #V > 2. Then

[vig1 —vil°
Z (14 3a)" Z Xier =i

i=1

n—1
N
= (X i —xl) ==l < (1430 oy — vl

i=1

because s > 1 and x1,...,Xx, appear in the given order on the line L by Lemma 2.1.
This proves (2.7). O
REMARK 2.3

In a general Banach space, the metric projection is not unique and may be norm increas-
ing. For example, in €2, = (R?,| - |o), consider the horizontal line L through the
origin (“the x-axis”) and the point v = (1,«) for some 0 < o < 1. Then |v|eo = 1,
dist(v, L) = «, and a metric projection from v to L can be any point on the line
segment [1 —a, 1 4+ «] x {0}. In particular, if 7z (v) = (1 4+ «,0), then |7L (V)|oo =
(1 + @)|V|oo > |V]|o0o- This shows that in Lemma 2.1 for an arbitrary Banach space, we
cannot expect to replace the lower bound in (2.3) with a 1-Lipschitz bound.

2.2. Lipschitz and Holder continuous traveling salesman parameterizations in
Banach spaces
Throughout this section, let X denote an arbitrary Banach space.

DEFINITION 2.4 (Doubling scales)

Let 0 <& <& < 1. A (§1,52)-doubling sequence of scales is a sequence (pg)7—, of
positive numbers such that pg = 1 and for all k > 0, &1 px < pr+1 < &2k . In the special
case when &1 = &, we may call (px)32, @ geometric sequence of scales.

Following [16], let V = (Vi, px )7~ be a sequence consisting of nonempty finite sets
Vi in X and positive numbers py. Assume that there exist xg € X, rog > 0, C* > 1, and
0 < &; <& <1 such that 'V has the following properties:

(VO) The numbers (og)g—,, are a (§1,£2)-doubling sequence of scales.
(V1) When k = 0, we have Vy C B(xg, C*rp).
(V2) Forall k > 0, we have Vi C Vj41.
(V3) For all k£ > 0 and all distinct v, v’ € Vi, we have |v — v’| > pgro.
(V4) Forall k >0 and all v € Vj1, there exists v’ € V; such that
[v — v | < C*pr170.
With C* and &, given, define the associated constant
C *

2.8 A" = )
(2.8) - &
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In addition to (V0)—(V4), assume that for each k¥ > 0 and v € V}, we are given a number
Qk,p > 0 and a line Ly, in X such that

(V5) sup dist(x, Lk,v) = Ok, vPk+170-
x€Vi1NB(,304* py10)

DEFINITION 2.5 (Flat pairs; see [16])
Fix a parameter o € (0,1/6). For all k > 0, define Flat(k) to be the set of pairs
(v,v") € Vi x Vi such that

(F1) prro <|v—v'| < 144*pgrop, and
(F2) gy < and v’ is the first point in Vi N B(v, 144* pgro) to the left or to
the right of v with respect to the ordering induced by Ly ,.

Given a pair (v,v’) € Flat(k), let Vi1 (v,v’) denote the set of all points x € Viyy N
B(v, 14A* prro) such that x lies between v and v’ (inclusive) with respect to the order-
ing induced by Ly .

DEFINITION 2.6 (Variation excess; see [16])
For all s € [1,00), for all £ > 0, and for all (v,v’) € Flat(k), define the s-variation
excess ts(k,v,v’) by

n—1
(2.9) T5(k,v,0") v =0T = max{(z [vigr — v,-|s) —|v— v’|s,0},

i=1
where Vi11(v,v’) = {vy,...,v,} is enumerated so that v; = v and for all 1 <i <
n—1, viy1 € Vis1(v,v’) is the first point after v; in the direction from v to v’ with
respect to the ordering induced by Ly, (hence v, = v’).

The following theorem extends Badger, Naples, and Vellis; see [16, Theorem 5.1]. In
its original form, the theorem was stated for X = £, with a weaker restriction on oy,
achieved through targeted use of the Pythagorean theorem.

THEOREM 2.7 (Holder traveling salesman parameterizations for nets in Banach
spaces)
Let X be a Banach space. In addition to (VO)—(V5), assume that

(2.10) g <o 1= %

If the sum
o0 o0

.11) Sy=Y" Y rnkv)pp+dY DY pp <o
k=0 (v,v")€Flat(k) k=0 very

Q=00

then there exists a (1/s)-Holder continuous map f :[0,1] — X such that f([0,1])
contains \ Ji o Vi and the (1/s)-Holder constant of f satisfies H <s.c* .6, To(1 +
S5).
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Proof
Repeat the proof of [16, Theorem 5.1] (see [16, Sections 2-5]) mutatis mutandis. Use
Lemma 2.1 and Corollary 2.2 above in place of [16, Lemmas 2.1 and 2.2]. 0

REMARK 2.8 (Outline of key modifications)
We specify some details to aid the reader with the proof of Theorem 2.7. The reader is
first urged to read through [16, Section 2], followed by item (CO) in [16, Section 3.10],
which indicates how key parameters are chosen.

In Hilbert space, the initial upper bound 1/16 on the size of o is made so that

1432 <143(1/16)* < 1.1.

See [16, Lemma 2.3]. In generic Banach space, let us initially require a9 < 1/31 so
that 1 + 39 <14 3(1/31) < 1.1. Then using Lemma 2.1 instead of [16, Lemma 2.1],
the rest of the proof and conclusion of [16, Lemma 2.3] goes through as written.

The algorithm presented in [16, Section 3] requires no changes in the Banach set-
ting.

The principal estimates in the proof of the theorem occur in [16, Section 4]. No
changes are required until we reach the proof of [16, Lemma 4.6], where we need to use
Corollary 2.2 instead of [16, Lemma 2.2]. This time, we require that g < 1/62 so that
we can replace the original estimate 1 + 32 < 1.1 with the estimate (1 + 3a)? < 1.1.
The next required change occurs at the end of the proof of [16, Lemma 4.9]. Using
Corollary 2.2 once again, we see the original requirement 1 + 3a2 — &;/144* < 1
becomes (1 + 3ag)? — £1/14A* < 1, or equivalently 6ag + 92 < &;/14A*. With our
a priori bound a¢ < 1/62, this certainly holds provided (6 + 9/62)ag < &1/14A4*.
Thus, after noting that (6 + 9/62)14 = 86.03. . ., it suffices to take

&1 &(1-§&)
ap < = .
87A4* 87C*

Note that

. { 11 & —52)} _&(1—§)
min{ —, —, =
31 62 87C* 87C*

because 0 < &; <&, <1 and C* > 1. There are two final uses of Lemma 2.1 instead of
[16, Lemma 2.1] to estimate the separation of points after projection onto an approxi-
mating line £ ,,, once in the proof of [16, Proposition 4.11] and once in the proof of [16,
(4.3)]. This change affects the value of the implicit constant in [16, Proposition 4.11],
but not dependencies of the constant.

To finish the proof of Theorem 2.7, repeat the argument in [16, Section 5.1] verba-

tim.

COROLLARY 2.9

Let X be a Banach space. Assume V = (Vi, px) 3w, satisfies (V0)~(V5) above. If the
sum

o
(2.12) Sy = Z Z o Pk < 00,

k=0veVy



Subsets of rectifiable curves in Banach spaces | 17

then there exists a rectifiable curve T' containing | J k>0 Vk such that
(2.13) H () e+, ro(1+ Sv).
Proof

Set a9 = a1, which depends only on &1, &, and C*. By Corollary 2.2 with s = 1, we
have 71 (k,v,v") < 60k + 90 | < Ty, for every flat pair (v, v’) € Flat(k). Thus,

o o
Spy=>" > ukve+d, Y.

k=0 (v,v’)€eFlat(k) k=0 veVy
O p=0]
-1 —1
< Z Z Tt v Pk + 0 Z A ppk <oy Sy <oo.
k=0 (v,v’)€eFlat(k) veVy
Of v =0

By Theorem 2.7, there exists a Lipschitz map f : [0, 1] — X such that " := £([0, 1])
contains { Jg—y Vi and K (I') <Lip(f) Sc+g,.6 ro(1 + S5) Sc* 1.6 ro(l + Sv).
O

For completeness, we show how to use Corollary 2.9 to derive a beta number criterion
for a set in a Banach space to be contained in a rectifiable curve. The following theorem
is best viewed as the Banach space analogue of Theorem 1.11, expressed with the
geometric Jones’ beta numbers (1.1) instead of metric beta numbers (1.25). To recall
the definition of the sum Sg ;1 (¥) of beta numbers over a multiresolution family § for
E, see (1.15).

THEOREM 2.10 (Sufficient half of Schul’s theorem in arbitrary Banach spaces)

Let X be a Banach space. If E C X and Sg,1(§) = diam E + ZQeg BEe(Q)diam Q <
oo for some multiresolution family § for E with inflation factor Ag > 240, then E is
contained in a rectifiable curve I in X with

(2.14) H'(T) Sag SEA(S).

Proof

Let X be a Banach space, let £ C X, let § be a multiresolution family for £ with
inflation factor Ag > 240, and assume that Sg ;(¥) < oo. Then E is bounded and
there exists a unique integer ko € Z such that

(2.15) 27%0 < diamE <2-27%o,

For all k > 0, define px = 2% and V; = Xko+k> Where (X ;) ez are the 27/ -nets for

E used to define §. Set parameters C* =2, & =&, = %, and ro = 27%0_and choose

any xo € Vo = X, . Then the sequence V = (V, px) 3=, satisfies properties (V0)-(V4)

above. Note that A* =4C* = 8 and 304* = 240 since §; = &, = % For each k > 0

and v € Vg, set ag,, = 8AgBE(B(v, Ag2~*otk))y and choose Lg,, to be any line
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such that

sup dist(x, Lg y)
x€ENB(v,Ag2~ ko015

<2Bg(B(v, Ag2~*0Th)) diam B(v, Ag2~ko+h)),

Because Ag > 240 = 30A4*, it follows that for all k > 0 and v € Vj,

sup dist(x, L)
x€Vr11NB(v,304* pr10)

<2BE (B(v, Agz—(ko-i-k))) diam B(v, AgZ_(k0+k))

(2.16)

2.17)
<8AgBEr(B(v. Ag2‘<k0+k)))2—(k0+k+l)
= Qk,vPk+170.

Thus, property (V5) is satisfied, as well. To proceed, observe that

oo oo

Sy=2_ D akork=D_ ) 845Px(B, 4g2 (o)t

(2.18) k=0veVy k=0 xeVy
< 842" Sk 1(9).

Since Sy <84¢SE,1(§) < oo, there is a rectifiable curve T containing | Jg—, Vi such
that

(2.19) HUE) Scx g6, ro(1 + Sv) Sro(1 +84gry 'Sg 1) Say, SEN

by Corollary 2.9 and (2.15). Finally, note that since (Vi )72, is a sequence of 2~ (koth)
nets for £ and T is closed, I" contains the set UZOZO Vi D E, as well. O
REMARK 2.11

The constant 240 in Theorem 2.10 has not been optimized and can be at least somewhat
reduced at the cost of growing the implicit constant in (2.14). In the future event that a
smaller constant is needed, the reader should first consult [16, Section 3.10]

2.3. Triangle inequality excess in uniformly smooth Banach spaces

Our goal in this section is to prove that in a uniformly smooth Banach space of power
type p € (1,2], the exponent 1 in Corollary 2.9 and Theorem 2.10 may be replaced with
the exponent p. In the process, we will verify (1.17) in Theorem 1.6. The essential step
is to improve the exponent in the bound (2.3) in Lemma 2.1. To achieve this, we follow
the strategy used by Edelen, Naber, and Valtorta [38] in their proof of 1-dimensional
Reifenberg-type theorems in uniformly smooth Banach spaces. The approach utilizes a
special projection operator, which is available in uniformly smooth Banach spaces.

DEFINITION 2.12
Let X be a Banach space. The modulus of smoothness px of X is the function px :
[0,00) — [0, 00) defined by

1
(2.20) px(t):= sup =(lx+y|+|x—y|)—1 forallze][0,00).
xl=1lyl=t 2
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DEFINITION 2.13

We say that X is uniformly smooth if px(t)/t = o(t) as t — 0. In this case, we say that
X is smoothness power type p € (1,2] if there exists C > 0 such that px(¢) < Ct? for
all r > 0.

REMARK 2.14 (Essential facts)

For general background on the modulus of smoothness and uniformly smooth spaces,
including the following inequalities, see, for example, [37, Chapter Three] or [54, Chap-
ter 1, Section e]. On any Banach space X, the modulus of smoothness px is a nonde-
creasing convex function such that px(0) = 0 and

(2.21) V14+1t2—1=pg,(t) <px(t) <t forallt>0.
Since px is convex and px(0) =0,

px(t1) - px(t2)

(2.22) < forall 0 <11 <t,.
51 153
Furthermore, there exists a constant 1 < L < 3.18 (see [40, Proposition 10]) such that
t t
(2.23) pxt(j) < Lopx‘tg‘) forall 0 < £, < 5.
2 1

The modulus of smoothness px and modulus of convexity §x (see Section 3.2) are
related by

1
(2.24) pxx () = sup{zte —8x(e):0<e< 2} for all ¢ > 0.

Hence, the dual X* of a uniformly convex Banach space X (see Section 3.2) is uni-
formly smooth. Finally, every uniformly smooth Banach space is reflexive.

EXAMPLE 2.15

By Hanner’s inequalities [45], prr (t) = p~'t? +0(t?) when 1 < p <2;and pp»r(t) =
%( p—1t2+0(t?) when 2 < p < co. In particular, the L? spaces are uniformly smooth
with power type min(p,2) when 1 < p < oo.

We now present a class of 1-Lipschitz projections onto a line in a Banach space. Given
a real Banach space X, let X* denote the dual of X and let J : X — X* denote a
normalized duality mapping—that is, a (nonlinear) map satisfying

(2.25) |[J(X)|yx =1x| and  (J(x),x)=|x]* forallxeX,

where (f,x) = f(x) € R denotes the natural pairing of f € X* and x € X. Alterna-
tively, J is a subgradient of the convex function x € X %|x|2 (see [5, 49]). The norm
on any (uniformly) smooth Banach space X is Gateaux (uniformly Fréchet) differen-
tiable, and thus, J is uniquely determined (see, for example, [37, Chapter Two]) when
X is smooth. For example, when X = £, with 1 < p < oo,

J) =Ixl] Py ety =1y,

where y = (|x1|?72x1, |x2|?"2x5,...) and p’ is the conjugate exponent to p.
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DEFINITION 2.16 ([38, Definition 3.31])
Let X be a Banach space and let L be a 1-dimensional linear subspace of X. Define the
J -projection I1, onto L by

(2.26) Mz (x):=(J(v),x)v forall x €X,

where J is a normalized dual mapping and v is a point in L with |[v| = 1. When L is a
1-dimensional affine subspace of X, define I1;, = p + I1._,(- — p) for any choice of
p € L. For all lines L, we also define HJL- =Idx —I1.

Let us record some elementary properties of J-projection.

LEMMA 2.17
Let X be a Banach space and let L be a 1-dimensional linear subspace of X. The
J -projection Tl satisfies each of the following properties:

(1) Forall x € L, we have T (x) = x.

(2) Forall x € L+ = 1 (X), we have (Jv,x) =0 and I (x) = 0.
(3) Forall x € X, we have |I11(x)| < |x]|.

(4) Forall x € X, we have dist(x, L) < |1'Ii-(x)| <2dist(x, L).

Proof
Let v € L be the unit vector in the definition of I1. If x € L, say x = cv, then
Mp(x)=(Jv,cv)v=c{Jv,v)v = c|v|2v =cv=x.
This gives the first point. To see the second point, for any x € Lt say x = Hi(y),
(Jv.x)=({Jv.y = (Jv.y)v) = (Jv,y) = (Jv, y)(Jv.v)
= (Jv,y) = (Jv, ) |of> = (Jv,y) = (Jv,y) =0.
Hence, I11 (x) = (Jv, x)v = Ov = 0. For the third point, observe that for any x € X,
ML) = (0. x)v] < [ Tvlelxllol = [vPlx] = [x].

To see the last point, suppose that x € X. Clearly, |Hi(x)| = |TI (x) — x| > dist(x, L).
Choose y € L such that |x — y| = dist(x, L). Then

ML (x) — x| < |HL(x)—y|+|x =y
= ML) = M|+ lx =y =2 —y| =2dist(x. L) O

We now check that in any Banach space, the J-projection IT7 induces a well-defined
order on a sufficiently flat, separated set of points, by checking compatibility with the
order induced by a metric projection rr7,. The importance of this fact for us is that in the
definition of flat pairs in the traveling salesman algorithm (see Definition 2.5), it does
not matter whether we order points by 7, or Iy .



Subsets of rectifiable curves in Banach spaces | 21

LEMMA 2.18 (Order compatibility for [T, and )

Let X be a Banach space. Suppose that V is a §-separated set with #V > 2 and there
exists a line L and a number 0 < o < 1/8 such that dist(x, L) <« forall x € V. Then
the J-projection 11y, induces an order on V compatible with the order induced by a
metric projection wy, onto L.

Proof

Let V C X be a §-separated set with #V > 2, let L be aline in X, let 0 <o < 1/6, and
assume that dist(x, L) < «é for all x € V. Without loss of generality, we may assume
that L is a linear subspace of X. Fix any metric projection rr7, onto L. The restriction on
o ensures that 777, induces a unique order on V' by Lemma 2.1. If x, y € V are distinct,
then

lx —y| = | (x) =TI (p)| = |x — y| = |TI£ ()| = |7 ()]
2.27) 1
> (1 —4a)s > §8>0

by the triangle inequality and Lemma 2.17. We may now check that the J-projection
IT; induces an order on V' that is compatible with the order induced by ;. To that
end, suppose that x, y,z € V are distinct points, write x’ = 71 (x), y' = nr(y), 2/ =
wr(z)and x” =T (x), y” =1 (y), z” = I 1(z), and suppose to get a contradiction
that there exists identifications of L with R such that x’ < y’ <z’ and y” < x” < z”.
Heuristically, because of the order of the triples on the line L,

Ix—z|~|x—yl+|y—z[~x =yl +|x =yl +[x —z|,
——

which is impossible if « is sufficient small. More precisely, on one hand, by (2.4) and
(2.5) from the proof of Lemma 2.1 (recalling that there we normalized § = 1),

since x’ < y’ < z’. On the other hand, by (2.27),

since y” < x” < z”. Combining the previous two displayed equations and recalling
V is §-separated, we obtain

|x —z| >2|x —y| 4+ |x —z| — 14ad > |x — z| + 26 — 14aé,

or equivalently (2 — 14)8 < 0. This is a contradiction because o < 1/8 implies that
2—14a >2—14/8 = 1/4 > 0. It readily follows that there is an identification of L
with R such that 77 (x) < wz(y) ifand only if I17(x) <TIp(y) forallx,y e V. O

REMARK 2.19 (Geometric interpretation in smooth spaces)

Assume that X is smooth. For a line L, spanned by a unit vector v € X, the J-
projection IT; admits the following geometric description. Let T,0B(0, 1) denote the
tangent hyperplane to dB(0,1) at the point v (which exists because X is smooth).
By Lemma 2.17(2), a point x € X satisfies I1z(x) = cv if and only if x € (cv +
T,dB(0,1)). See Figure 3.
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Figure 3. (Color online) Fibers (cyan) of the J-projection IT;, of X = Z§/4 onto the (red) line L = span(v),
where v = (1/4,y0), (1/4)>/* + y3/4 = 1. The dot (black) is the metric projection 7, (w) onto L of
w = (1/4, y1) with IT (w) = (0, 0).

LEMMA 2.20
If X is a smooth Banach space, then

d
E|x + ty|2 = Z(J(x + ty),y)

forall x,y e Xandt e Rwithx +ty #0and y # 0.

Proof
Since 2J is the subgradient of x € X > |x|?, we have

|z = |x +ty)* > (2J(x +1y),z—(x +1ty)) forallzeX.
The claim follows by applying the inequality to the difference quotient

lx + (¢t +h)y|?>—|x +1ty]?
h

along values 4 — 0™ and for 4 — 0, where the limit exists by Gateaux differentiabil-
ity of the norm. g

The following estimate by Alber is crucial for our application below.

LEMMA 2.21 (see Alber [2, Remark 7.3] or [1, (2.13)])
Let X be a uniformly smooth Banach space and write hx(t) = px(t)/t. Then

(2.28) |J(x) = J(»)

K < 4C0hx(8C0L0|x — y|) for allx,y e X,

where Co = 2max(1, %(|x|2 + |¥|?))) and Ly is Figiel’s constant (2.23).
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The next estimate is similar to [38, Lemma 3.27]. Unfortunately, the proof of the
lemma given in [38] is partially based on [38, Lemma 3.26], which appears to mis-
state Lemma 2.21. Thus, we supply a proof of the estimate.

LEMMA 2.22

Let X be a uniformly smooth Banach space and let L be a 1-dimensional linear sub-
space of X. If x € X, |x| <1, and dist(x, L) < «|x|, then

8

(2.29) |x|§|HL(x)|+1 1
— a0

hx(51a|x|),
where hx(t) = px(t)/t.

Proof

For brevity, write y = I (x) and z = Hi-(x) =x — y. If dist(x, L) < «|x], then
|y| <|x| and |z| < 2«|x| by Lemma 2.17. Thus, by Lemma 2.20 and the fundamental
theorem of calculus,

x| = |y| /1d|+t|dt /11| fez Ly oz ar
x|l=yl=1 — zldt= | = z|7 — z
Y Odty 02y dty

1 1 1
= ly + 1z J(y +12),z dtf—/ J(y +1tz),z)dt,
/0 | ! (I —4a)|x| Jo | )
where we used the rough estimate |y + tz| > |y| — |z| = |x| — 2|z = (1 — 4a)|x]|.
Now, by Lemma 2.17, (J(y), z) = 0. Therefore, by Alber’s inequality (2.28),

1 1 1
/ (J(y+tz),z>dt=/ (J(y+tz)—J(y),z)dt§[ \J(y+tz)—J(y)
0 0 0

<« 2] dt

1
<4Colz| [ he(8CoLalrz)) dt = 4Colzlhx(3CoLolz]).
0

where Co = supy,<; max{l, \/%(|y|2 + |y +1z|?)} <1 (since |x| < 1) and 1 <
Ly < 3.18. Recall that hx(¢) is nondecreasing (see Remark 2.14) and |z| < 2u|x|.
Thus,

1
/ (J(y +12).z)dt <8a|x|hx(51e|x])
0

because 16L ¢ < 50.88. Combining the displayed estimates yields (2.29). ]
We may now improve Lemma 2.1 in uniformly smooth Banach spaces.

LEMMA 2.23 (cf. Lemma 2.1)

Let X be a uniformly smooth Banach space. Suppose that V' is a §-separated set with
#V > 2 and there exists a line L and a number 0 < o < 43/1224 = 0.0351... such that
dist(x, L) <ad forall x e V. Ifvy,vy €V, then

(230)  |Oz(v1) — ML (v2)] < |v1 —va| < (1 + px(1020)) | (v1) — T2 (v2)]-
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Proof

Let V C X be a §-separated set with #1 > 2, let L be a line in X, let & > 0, and
assume that dist(x, L) <« for all x € V. Fix any pair of distinct points vy, v, € V. By
applying two translations and invoking the triangle inequality, we may assume that L is
a linear subspace of X, 0 = v; € L, and v := v satisfies |v| > § and dist(v, L) < 2a8.
Applying a dilation, we may further assume that |[v| = 1. Then dist(v, L) < 2a6 <
2a|v| and by Lemma 2.22,

16 8
hy(1020) = | T % r(1020).
gy x(1020) = | (v)|+51(1—8a)'0X( @)

Recall that px(¢) <t in any Banach space; see (2.21). Hence,

8 166 1—24a
M@)| > |v] = ——— px(1020) > 1 — - .
ROIEY 510 sy X102 2 1= 0 = T,

lv| < |TI(v)| +

We now require that
8 1 — 24«
< ki
51(1 — 8a) = 1 —8«
or equivalently, @ < 43/1224. Then combining the displayed equations yields the right-

hand side of (2.30). The left-hand side of (2.30) follows immediately from Lemma 2.17.
O

COROLLARY 2.24 (cf. Corollary 2.2)

Let X be a uniformly smooth Banach space. Suppose that V C X is a §-separated
set with #V > 2 and there exists a line L and a number 0 < o < 43/1224 such that
dist(x, L) < b forall x € V. Enumerate V = {vy,...,v,} so that v; 1 lies to the right
of vi forall 1 <i <n — 1, relative to the ordering induced by the metric projection mwy,
or the J -projection I, (see Lemma 2.18). Then

n—1
(2.31) > i —vil® < (14 px(1020))’ vy — v |* forall s € [1,00).
i=1
Proof
Repeat the proof of Corollary 2.2 mutatis mutandis. Use Lemma 2.23 instead of
Lemma 2.1. 0

THEOREM 2.25 (Analyst’s traveling salesman parameterizations for nets in uniformly
smooth Banach spaces; cf. Corollary 2.9)

Let X be a uniformly smooth Banach space and let px denote its modulus of smoothness
(see Definition 2.12). Assume that 'V = (Vi, Ax) 3>, satisfies (VO)~(V5) in Section 2.2.
If the sum

(e )
(2.32) Sy (V) 1= Z Z px (1020 ) Ax < 00,
k=0veVy
then there exists a rectifiable curve I' containing Ulio=o Vi such that

(2.33) HT) Scx gy To(1+ Spe (V).
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Proof

As in the proof of Corollary 2.9, set &g = a1, which only depends on C*, &1, and &,.
Note that o; < 1/384 < 43/1224. Thus, by Corollary 2.24 with s = 1 and the bound
px(102a1) > pg, (102001) >~ @f ~c= g, ¢, 1 (see (2.21)),

o0 o0
Sy=>" Y ukvoh+d > Ak

k=0 (v,v’)€eFlat(k) k=0 veVy
O p=0]
<> > px(102ek) Ak + e, (1020) ™" D px(1020 1) A
k=0 (v,v")eFlat(k) veVy

A p=0]
Scx 1,8 Spx (V) <00,

By Theorem 2.7, there exists a Lipschitz map f : [0, 1] — X such that I" := £([0, 1])
contains (Jp—o Vi and H'(I') < Lip(f) Sc=g.6 ro(l + S3) Sc*g.6 ro(l +
Spx(V)). O

THEOREM 2.26 (Sufficient half of Schul’s theorem in uniformly smooth Banach
spaces)

Let X be a uniformly smooth Banach space of power type p € (1,2]. If E C X and
SE,p(§) =diam E + ZQeg BE(Q)P diam Q < oo for some multiresolution family §
for E with inflation factor Ag > 240, then E is contained in a rectifiable curve I' in X
with

(2.34) H'T) Spe.ag SEp(9).

Proof

Repeat the proof of Theorem 2.10 mutatis mutandis. Use Theorem 2.25 in lieu of Corol-
lary 2.9. ]

Because the Banach space £, is uniformly smooth of power type min(p,2) when
1 < p < oo, the sufficient condition (1.17) in Theorem 1.6 follows immediately from
Theorem 2.26.

3. Modulus of convexity and proof of the necessary conditions

3.1. Canonical parameterization of finite length continua and beta numbers
associated to a parameterization
At the heart of the proof of necessary conditions in analyst’s traveling salesman theo-
rems is the existence of parameterizations of finite-length continua by Lipschitz curves.
An excellent source for the essential background is the recent paper [3] by Alberti and
Ottolini.
Given a continuous map f : [0, 1] — X into a metric space and a closed, nonde-
generate interval / C [0, 1], the variation var(f, 1) of f over I is defined by

n

3.1 var(f,1):=  sup ) |flai+1) = flai)] €[0,00],
A1="=an+41 ;1
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where the supremum ranges over all finite increasing sequences in /. Associated to f,
define the multiplicity function m(f.-) : X — [0,00], m(f.x) =#f~1(x) forall x € X.
The following proposition records the well-known connection between the variation of
f (intrinsic length) and the Hausdorff measure of the image of f (extrinsic length).

PROPOSITION 3.1 ([3, Proposition 3.5])

Let f :[0,1] = X be a continuous map into a metric space and let I C [0,1] be a
closed, nondegenerate interval. If var(f,1) < oo, then m(f|1,-) is a Borel function
and

(3.2) var(f,]):/Xm(fh,x)del(x).

A theorem of Wazewski [68] asserts that every connected, compact metric space X
with finite 1-dimensional Hausdorff measure J#! admits a Lipschitz parameterization
by the interval [0, 1] with Lipschitz constant Lip(f) = sup,., | f(x) — f(D)|/]x — y|
at most 21 (X).> Alberti and Ottolini have recently proved the following refinement
of Wazewski’s theorem (in particular, that f has degree zero). Property (2) says that
the parameterization f of X is essentially 2-to-1.

THEOREM 3.2 ([3, Theorem 4.4])
Let 3 be a connected, compact metric space with H1(Z) < co. Then there exists a
continuous function f :[0,1] — X such that

(1) f is closed, Lipschitz, surjective, and has degree zero (see [3]);
(2) m(f,x) =2 for H#'-a.e. x € %, and var(f,[0,1]) = 2H 1 (X); and,
(3) f has constant speed equal to 2H ' (Z).

In any Banach space X, a connected set ¥ C X has the property that #1(X) = # (),
where ¥ denotes the closure of X in X. Moreover, if ¥ C X is closed, connected, and
H1(Z) < oo, then T is compact. The proofs of these facts are simple exercises with
the definitions, using convexity of X; see, for example, [65, Section 5] (although stated
there for X = £,, the proofs there hold in any Banach space).

COROLLARY 3.3
Let X be a Banach space. If ¥ C X is connected and # ' (X) < oo, then there exists an
essentially 2-to-1 Lipschitz surjection f :[0,1] — X with Lip(f) = 2H# ().

For the remainder of Section 3, we fix a connected set ¥ in a Banach space X with
H1(Z) < oo and we fix a parameterization f :[0,1] — X given by Corollary 3.3.
Following [58] and [65], we refer to subcurves of f as “arcs”; note that we do not
require arcs be 1-to-1.

3. This fails dramatically for higher-dimensional curves; see, for example, the “Cantor ladders” in [16, Sec-
tion 9.2].
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DEFINITION 3.4 (Arcs and associated quantities)
An arc, T = f 4], of X is the restriction of f to some interval [a,b] C [0, 1]. Given
an arc 7 : [a,b] — X, define

e Domain(t) = [a, b], Image(r) = t([a, b]) = f([a, b)),
Diam(r) = diamImage(z);

e Start(r) = t(a) = f(a), End(z) = t(b) = f(b); and

o Edge(r) =[f(a), f(b)],i.e Edge(r) is the line segment in X from f(a) to
f(b).

REMARK 3.5

On any interval [a, b] C [0, 1], the map ¢ — Diam( f'|[4,4+¢]) is a continuous function
on [0, b —a]. Thus, by the intermediate value theorem, any arc t with Diam(z) > « can
be partitioned into a finite number of arcs o, all of which save one have Diam(o) = «,
and the final of which has Diam(o) between « and 2.

DEFINITION 3.6 ([58, 65])
Given an arc T of 3, we define the arc beta number

~ dist(x, Edge(r))
3.3 = ———— €[0,1].
( ) IB(T) xEI:‘:ge(r) Dlam(r) € [ ]

EXAMPLE 3.7

Unlike the Jones’ beta numbers, which satisfy (1.2), the arc beta numbers are highly
non-monotone. To see this, we construct a family of simple examples in the Euclidean
plane R?. Consider the three collinear points

x =1(0,0), y = (¢,0), z=(1,0) forsomece € (0,1).
Let 7/ be an arc whose image traces a piecewise linear path
X—=>y—>z—y.
Let t be an arc with Domain(z”) € Domain(z) such that the image of 7 traces a
piecewise linear path
I>X—>yY—>Z—>Y.
We have Image(z’) = Image(r) = [0, 1] x {0}, whence Diam(z’) = Diam(z) = 1.
However, Edge(z’) = [x, y], while Edge(t) = [y, z], so that
B(r') = dist(z, [x, y]) =1-c¢ and B(r) = dist(x, [y,z]) =e.

Thus, ,3 (t")/ ,5 () = (1 — €)/e can be arbitrarily large or arbitrarily small by choosing
the parameter € sufficiently near O or 1, respectively. Similar examples can be made
with 1-to-1 arcs by allowing the trace of ¢’ and 7 to lie inside [0, 1] x [—h, k] with
h<e.
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REMARK 3.8

In [65] (at the very end of the statement of Lemma 3.13), the author mistakenly asserts
that Domain(z’) € Domain(z) and Diam(z) < Diam(z’) imply that B(7) > B(7').
This claim is then applied in the proofs of Lemmas 3.14 and 3.16 of that paper. By
modifying the definition of almost flat arcs (see Remark 3.24 below), one can avoid
this trap entirely.

Under special circumstances, the arc beta numbers are almost monotone. We do not use
Lemma 3.9 or 3.10 below, but we include them for completeness.

LEMMA 3.9 (Almost monotonicity )
If ' and t are arcs in T with Domain(z’) C Domain(z), then

(3.4) f(z") Diam(<) < B(v) Diam(z) + excess(Edge(z’), Edge(t)),

where excess(A, B) = sup, 4 infyep |x — y| denotes the excess of A over B.
In particular, if € € EO, 1) and t is obtained by concatenating an arc of (image)
diameter no more than € (t’) Diam(z’) to each endpoint of T/, then

~ _, ¢ Diam(7)

(3.5) P = (-9 (Game PO
Proof
Let z € Image(z’) and w € Edge(r’) be any pair of points such that 8(z") Diam(z’) =
dist(z, Edge(z’)) = |z — w|. By definition of the excess and compactness of line
segments, there exists a point v € Edge(r) such that |v — w| < excess(Edge(r’),
Edge(r)) =: E. Hence, f(t)Diam(r) = |z —v| = |z — w| — |w — v| = B(*)) x
Diam(z’) — E

Let € € (0,1) and suppose that 7 is obtained from t’ by concatenating arcs of
diameter no more than 7 := €B(z’) Diam(z’) to the endpoints of 7’. Then | Start(r) —
Start(z’)| and | End(z) — End(z’)| are bounded by 5. Given p € Edge(z’), there is
0 <t <1 such that p = ¢ Start(z’) + (1 — ¢) End(z’). Then ¢ = ¢ Start(z) + (1 —
t)End(r) € Edge(r) and

dist(p, Edge(r)) < |p—q| < t|Start(r) —Start(z')| + (1—1)|End(z) —End(z")| < .
Because p was an arbitrary point in Edge(z’), it follows that E < . Thus,

(1—€)f(z") Diam(z’) < B(<') Diam(z) — E < () Diam(z). 0
LEMMA 3.10 (Almost monotonicity II)

Let ©' and t be arcs of © with Domain(<’) C Domain(t), let x’ = Start(z’), let y' =
End(t'), and let z' € Image(z’) be a point such that

(3.6) f(z") Diam(<) < A dist(z’, Edge(<")).
Let x, y, z denote (possibly nonunique) points in Edge(t), which realize the distance

of X', y', z' to Edge(), respectively. If z lies between x and y in Edge(t), then

~ D
(3.7) (e <22 (g 3 ).
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Proof
Assign § := maxy ey, 27y dist(w’, Edge(z)). If z € [x, y], then we can write z =
tx + (1 —1t)y for some ¢ € [0, 1]. Then

dist(z, Edge(r’)) < |Z — (tx/ +(1- t)y/)} <tlx—x'|+1-0)]y—y|<6.
Hence,
A~'B(z') Diam(z’) < dist(z’, Edge(t’))
< |z’ —z| + dist(z, Edge(t")) < 26 < 2B(r) Diam(z),

where the final inequality holds because x’, y’, z’ € Image(t). O

Let us now recall a key element in the proof of the necessary conditions in Theorems
1.2 and 1.5, first introduced by Okikiolu and later formalized by Schul.

DEFINITION 3.11 ([58, 65])

A filtration ¥ =72, o Fn is a family of arcs in Y with the following properties.

(1) Tree structure: If T/ € F,41, then there exists a unique arc t € F, such that
Domain(z’) € Domain(z).

(2) Geometric diameters: For every t € ¥, Ap~" < Diam(z) < Ap~" for some
constants p > 1 and 0 < A < A < oo independent of 7.

(3) Trivial overlaps: For all 7,1’ € %, either T = 7/, or Domain(z) and
Domain(z’) intersect in at most one point.

(4) Partitioning: | J, <5, Domain(r) = UrE'FnO Domain(r) for every n > ny.

LEMMA 3.12 ([58, 65])
Suppose that X is a Hilbert space. If ¥ = Uff:no Fn is a filtration, then

3.8) 3" B(x)> Diam(z) s(A/A),pJfl( U Image(r)).

TeF re?r',,o

The exponent 2 in (3.8) is a consequence of the Pythagorean theorem or parallelogram
law in Hilbert space. With Lemma 3.12 in hand, the remainder of the proof of necessary
conditions in the analyst’s traveling salesman theorem in R” or £, is essentially metric,
with a strong harmonic analysis flavor. We outline these last steps in Section 3.3.

3.2. Okikiolu’s filtration lemma in uniformly convex spaces

We now develop an analogue of Lemma 3.12 in uniformly convex spaces by following
the proof in £, from [65] (which is based on [58]) and replacing the parallelogram law
in Hilbert space with a suitable inequality in uniformly convex spaces from [32].

DEFINITION 3.13
Let X be a Banach space. The modulus of convexity 6x of X is the function dx : [0, 2] —
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[0, 1] defined by
[x +

(3.9) x(e) 1= inf{1 - ] =yl =Tand|x—y| = e}.

DEFINITION 3.14
A Banach space is called uniformly convex if §(¢) > 0 for all € € (0, 2]. In this case, we

say that X is convexity power type p € [2,00) if there exists ¢ > 0 such that §(¢) > ce?
for all € € (0,2].

REMARK 3.15 (Essential facts)

For general background on the modulus of convexity and uniformly convex spaces,
we again refer the reader to [37, Chapter Three] or [54, Chapter 1, Section e]. On any
Banach space X, the modulus of convexity satisfies the inequality

(3.10) Ox(€) <bp,(e) =1—+/1—¢€2/4.
Moreover, for all € € (0, 2],

GAD) Sx(e) =inf{1 - @ x| <1,0y] <1, and [x — y| Ze};

see, for example, [54, p. 60]. In addition,

8x(€1) - dx(€2)
€1 - €

(3.12) forall 0 < €1 <€y <2;

see, for example, [54, Lemma 1.e.8]. In contrast with the modulus of smoothness px
(see Section 2.3), the modulus of convexity §x is not necessarily a convex function.
The dual X* of a uniformly smooth Banach space X is uniformly convex and every
uniformly convex Banach space is reflexive.

EXAMPLE 3.16

By Hanner’s inequalities [45], 8. (€) = 2(p — 1)€? + 0(e?) when 1 < p < 2; and
81r(€) = p~127PeP 4+ 0(e?) when 2 < p < co. In particular, the L? spaces are uni-
formly convex with power type max(2, p) when 1 < p < co.

In [32], David and Schul observed that the modulus of convexity on a uniformly smooth
space of power type p can be used to control the triangle inequality excess from below.
Because of its centrality to the proof of (1.18), we include a proof of their estimate
here for reference. Actually, we provide a slightly stronger statement. There is a large
literature on related substitutes for the Pythagorean theorem and parallelogram law in
Banach spaces; see, for example, [28, 29, 30, 31].

LEMMA 3.17 (see [32, Lemma 8.2])
Suppose X is a uniformly convex Banach space. If x,y,z € X, then

X =yl +ly—zl—lx—z|

(3.13) (M)

> 2rx for all r = max{|x — y|,|y — z|}.
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Proof
By (3.10), §x(1) <1 — (\/5/2) < 1. Thus, in the degenerate case x = z, we have |x —
yI+1y—zl=lx—z[ =2]x —y[ > 28x (1) = 28x (dist(y, [x, z])/ max{|x — y|. |y —z[}).
This establishes (3.13) with r = max{|x — y|, |y — z|}; the general case follows from
(3.12). For the remainder of the proof, we assume that x # z.

If y € [x,z], then (3.13) holds trivially (both sides vanish). Thus, we may also
assume dist(y, [x, z]) > 0.

Because x # z, the function g(w) = |w — x|/|x — z| is continuous along [x, z]
with g(x) =0 and g(z) = 1. Hence, there exists yg € [x, z] such that

Yo—xI _  [y—xl
x—z[ | =yl+]y—z|

(3.14)

Because yyg € [x, z], we have |x — yo| + |yo — z| = |x — z|, and it follows that
yo-zl _ ly—zl

x—z|  |x—yl+|y—z|

Rearranging (3.14), we see that

(3.15)

|x —z|
|x =yl +1y -z
by the triangle inequality. By a parallel argument, starting from (3.15), |y — z| <
|y — z|. Therefore, y, yo € B(x,|y —x|) N B(z,|y — z|).
Now, let y' = (y + y9)/2 and h = |y — yo| = 2|y — y’|. Invoking (3.11) on a
scaled and translated copy of B(x, |y — x|) and similarly on B(z, |y — z|), we obtain

h ! __ !/ __
5X( )51—|y o SX( )51—|y 2l
|x =yl ly = x| |y —z|
Therefore, if |[x —y| <rand |y —z|<r,

[yo—x| =y — x| <ly—x|

|z =yl

x=yl+ly—zl=lx—z|=|x =yl + |y —z[ = |x =y |z =

h
2 b= y18x (=) + 2 = (=)
>2réx(h/r)
by (3.12). Since yg € [x, z], dist(y, [x, z]) < |y — yo| = h and (3.13) follows. |

LEMMA 3.18 (Filtration lemma, cf. Lemma 3.12)
Let X be a uniformly convex Banach space of power type p € [2,00), say 8x(€) > ce?
foralle € (0,2). If F =\ o2, F is a filtration in the sense of Definition 3.11, then

n=ng

> B(x)? Diam(z)

tef

Sepa/ayp Y var(f.Domain(r))— Y J'(Edge(r))

re?},o re?},o

sc,p,(A/A),pe%l( g Image(t)).

re.?"no

(3.16)
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The implicit constant is of the form ¢~ (A4/A)?~1C(p. p) and blows up as either ¢ | 0
or p 1 oo, see (3.23).

Proof

We mimic the proof of Lemma 3.12 in [65], invoking Lemma 3.17 at a critical juncture
to replace estimates depending on Hilbert space geometry. Forevery T € ¥, and k € N,
we let # ; denote the kth generation descendants of ,

(3.17) Feg = {1’ € Fy4x : Domain(z’) C Domain(r)}.

Also, for every t € ¥, define

31 A@:= ( Y |start(r)) - End(r/)|) — |Start(r) — End(r)| € [0, o0).
Z/E‘Wr,l

We immediately see that for each n; > ny,

> |start(r) —End(m)|+ Y Y A= Y [Start(z')—End(r))|

rETnO n=notef, f’ETnl-&-l
< Z var( f, Domain(z)).
TE€Fy

Thus, because | Start(t) — End(z)| = #'(Edge(z)) for each arc and f is essentially
2-to-1, recalling (3.2), we obtain,

D> A(r)< ) var(f.Domain(r)) — > J¢'(Edge(r))

1€F T€Fn, TE€EFn
(3.19)
= /m(f,x)d,;el(x)gz,;el( U Image(r)).
1:637,,0 X rE.%,O

Next, for every T € ¥, we define the discretized edge distance d; by
(3.20) d;:= sup sup dist(x, Edge(f)).
v'eFr.1 xeEdge(r’)

In addition, for every arc  and k € N, choose an arc 5 € F7 x such that d;, is maximal
among all arcs in F7 ;. We also write o = t. We claim that

(3.21) B(x)Diam(z) < Y " dy, .

k=0
To see this, choose an auxiliary sequence ¥ € F..x inductively so that t° = 7 and
B(c¥*+1) Diam(z¥*+1) is maximal over all arcs in F ok 1- Then

oo

B(x) Diam(r) = Y " (B(z*) Diam(z¥) — B(**") Diam(z**1))
k=0
because the series is telescoping and absolutely convergent by our assumption that the
arcs have geometrically decaying diameters. Moreover,

B (%) Diam(z%) — B(z¥*") Diam(z¥ ') < d «
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by the triangle inequality and definition of the sequence 7% . Hence,

o0 oo
B(r)Diam(r) <Y "d <Y dy,
k=0 k=0
by maximality of the distance d, among all arcs in 7 ;. This verifies (3.21).

The proof up until this point is valid in any Banach space. To continue, we now
suppose that §x is convexity power type p € [2, 00), say 8x(€) > ce? for all € € (0, 2].
By Lemma 3.17 and the triangle inequality,

dP

(3.22) * Diam(c)7- 1—( D [Stant@)—En (f)|) |Start(r) — End(z)|

T G? .1
= A(7)
for any arc t € ¥. Now, by (3.21) and Minkowski’s inequality for £,

(Z B(x)? Diam(t))% < (Z (i d,k)p Diam(r)“”)
teF

t€¥ k=0

S

1

> /
= XZ:(Z Dlam(t)P 1)1 "

Ift € F,say t € ¥, and k € N, then
Diam(ti) < Ap~ %) = 4o~ p" < (4/A)p~* Diam(z).

Hence,

- - d)? %
SkX—: (A4/4)p™) (Z Sam St )

Thus, by (3.22),

N

I <

Mg

@0 # ((4/ 407 T (X Aw)

0 te¥

Qo F ((4/4)7) 7 (X am)

0 tef

_ o) p(A/A) a (X ac ))

1- P p 1€F
Therefore, combining (3.19) and (3.23), we obtain (3.16). U

k

NI

Mg

(3.23) =
k

REMARK 3.19
The proof of Lemma 3.18 used the standing assumption that f : [0,1] — X is essen-
tially at most 2-to-1. Instead, if one starts with a parameterization f that is essentially
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at most m-to-1 for some m > 1, then (3.16) still holds, but with the implicit constant in
the second inequality multiplied by a factor m /2.

3.3. Filtration design: Bounding sums of Bx(Q)? diam Q from above

The following decoration of a lemma by Schul is an essential tool for constructing
filtrations from certain families of arcs, which we think of as prefiltrations. Although
originally stated in Hilbert space, it is clear upon reading the proof that the lemma
is valid in any metric space. Unfortunately, the statement in [65] contains a mistake,
claiming erroneously that Diam(z) < Diam(’) implies B(t) = B(z’), which is false
(even in R?) by Example 3.7. Also, Schul claims that one may transform a prefiltration
into 2CJ or fewer filtrations with J = 1 when A = 1 and p = 2, but after writing down
the details it seems to us that one must break apart the prefiltration into a larger number
of families depending on A and take J = 4 1 in order to verify (3.24) and (3.25). Thus,
we supply a corrected statement and detailed proof, whose outline is due to Schul. We
defer the proof to the appendix.

LEMMA 3.20

Prefiltration lemma, cf. [65, Lemma 3.13]] Let X be a metric space and let f :[0,1] —
Y be a continuous parameterization of a set X C X. Assume that p > 1, 0 < A <
A < o0, and J > 1 is any integer such that p’ > 6A/A. Then for every family F° =
Use . 72 of arcs in = with 37"00 # @ satisfying

n=ng
(1) bounded overlap: for every arc T € F,2, there exists no more than C arcs
v € 9 such that Domain(z) N Domain(z’) # @ for some constant C
independent of t,
(2) geometric diameters: for every arc T € ?no, we have
Ap™" < Diam(t) < Ap™",

we can construct 5(A/A)CJ or fewer filtrations F' = oo F1, F2 =22, F2,

n=ni; - n n=np “ n
..., with starting index nj € {ng,no +1,...,n9 +J — 1} for all j and

Lap=miyp=in
(3.24) 4
< Diam(z) < 2(A4pY D)o~ forall j, 1€ F/, n >n;,
such that for every index n > ng and arc v’ € ?no, there exists ¥/ (in the list of filtra-
tions), an index N withn —n; = J(N —nj), and an arc t € 3716 such that

(3.25) Domain(zr’) ¢ Domain(r) and Diam(t) < 2 Diam(z’).

The assignment (n,t') — (¥7, N, 1) is injective.

REMARK 3.21

In Lemma 3.20, we may allow an arc to appear in some %, several times, so long as
the bounded overlap condition in the hypothesis is computed with multiplicity. During
preprocessing (see the proof), each instance of a repeated arc v’ € F,0 will be assigned
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to a differen@ intermediate family i),{ , and their extensions t will land in different
filtrations 1{, We use this observation in the proofs of Lemmas 3.28 and 3.29 below.

Because the £, spaces are uniformly convex of power type max(2, p) when 1 < p <
00, the necessary condition (1.18) in Theorem 1.7 is an immediate consequence of the
following theorem.

THEOREM 3.22 (Necessary half of Schul’s theorem in uniformly convex Banach
spaces)

Let X be a uniformly convex Banach space of power type p € [2,00). If ¥ C X is
connected and K is a (partial) multiresolution family for % with inflation factor A g >
1, then

(3.26) Sp.p(H) =diam £ + Y B5(Q)” diam Q <54, H'(Z).
QeH

In the remainder of this section, we outline the proof of Theorem 3.22 in detail. Because
(3.26) is trivial when J#!(X) = oo, we may continue to assume that #!(X) < oo and
work with the essentially 2-to-1 Lipschitz parameterization f : [0, 1] — X fixed above
in Section 3.1. Also, because ¥ is connected, diam = < J¢! (X). Thus, the essential task
is to bound the beta number sum from above in terms of #!(X). To carry this out, we
modify the proof from [65, Section 3] with the correction noted in Remark 3.24 below.
Most of the argument works in any Banach space, and we make sure to explicitly state
wherever we need uniform convexity. We work with two classes of almost flat arcs and
one class of non-almost-flat arcs, which we call dominant arcs. Flatness is measured
with respect to a best approximating line for the image of the arc.

DEFINITION 3.23
For any ball Q € J and scaling factor A € {1, 5,7}, let
AAQ) = {f|[a’b] - [a,b] is a connected component of f~1(T N210)
(3.27)
such that AQ N f ([a,b]) # 0}.
The elements in A(AQ) are arcs in 2AQ that touch 1Q. Agree to write 8 (10)(2A0)
as shorthand for B| jqimage(r):zeA(10)} (2AQ).
An arc T € A(AQ) is called x-almost flat if

i dist(z, L)
(3.28) B(r):=inf sup ———— <50e285010)(2A0).
L zelmage(r) Dlam(f) *2)
where L ranges over all lines in X and 0 < €5 < 1 is a parameter, ultimately chosen
to depend on at most the inflation factor A g of # (shortly after Lemma 3.30). Denote
the set of x-almost flat arcs in A(AQ) by S*(1Q).
An arc 7 € A(AQ) is called almost flat if

(3.29) B(t) = e2B(0).
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Denote the set of almost flat arcs in A(AQ) by S(AQ). An arc T € A(AQ) \ S(AQ) is
called dominant.

REMARK 3.24

We have modified the definition of almost flat arcs from [58, 65], which instead required
,5 (1) < €28x(Q). Note that the quantity §(t) is nothing other than the Jones’ beta num-
ber Bimage(r) (IMage(z)) of the image of 7 in its own window. By (1.2), it follows that
Domain(z’) € Domain(t) and Diam(z) < Diam(z’) imply B(t) 2 B(z’). Further, it is
apparent that B(7) < ﬁ (7) for every arc. By using the Jones’ beta number B (t) instead
of the arc beta number B (t) wherever possible in the proof below, we avoid the issue
in Remark 3.8. We work with B () in only two spots, at the end of proofs of Lemmas
3.28 and 3.29, when we must invoke Lemma 3.18.

REMARK 3.25

For every Q € # and A € {1,5,7}, S(AQ) C S*(AQ) C A(AQ) by (1.2). Domains
of distinct arcs in A(AQ) are disjoint, although the images of distinct arcs in A(1Q)
may coincide because we do not require f be 1-to-1. If 7 € A(AQ) is the “only arc” in
A(AQ) in the sense that the image of each arc in A(LQ) is contained in Image(r) and
Bx(Q) > 0, then 7 is dominant, since Diam(r) < diam 14Q and ¢; < | imply

(3.30) B=(Q) = Pimage()(Q) = 14B(1) < (1/€2)B(7).

One should think of the latter situation as being the infinitesimally generic case. Note
that almost flat arcs are defined relative to Sx(Q) and *-almost flat arcs are defined rel-
ative to BA10)(2A0Q). This is intentional. The choice of the scaling factors A € {1, 5,7}
and definition of x-almost flat arcs are made to implement the proof of Lemma 3.29.
Lastly, we have defined A(AQ) as arcs in 2AQ touching AQ so that arcs 7 € A(LQ)
have uniformly large diameter: Diam(z) > AA%27% whenever Q = B(x, Ag27%),
x € Xg,and X\ 200 # 0.

To proceed, we categorize the balls Q in the multiresolution family J# according the
behavior of the associated arcs A(Q) U A(5Q) U A(7Q). First, let #, denote the
collection of all balls Q € J¢ such that

(3.31) Bs(0)=0 or IC 140,

where AQ = B(x, Ar) denotes the concentric dilate of the ball Q = B(x,r) by A > 0.
Next, we group # \ Ky into three (overlapping) subfamilies +, 8B, and €, as follows.

Let (X )xez denote the sequence of 2k -separated sets for X that is used to define
the (partial) multiresolution family #. For each k € Z, let N = {B(x,(1/3)27%): x €
Xy} denote the collection of net balls of level k. By the triangle inequality,

1
(3.32) gap(By, By) > 52—" for all By # B, in N,

where the reader may recall that gap(S,T) = inf{dist(s,t) : s € S, € T}. Suppose
Q = B(x, Agp27%) for some k € Z and x € Xi. Let A € {1,5,7}. We say that Q € J(’IA
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if
(3.33) there exists € A(LQ) \ S(AQ) such that Image(z) N B(x, (1/3)27%) # @;

that is, Q € J(’IA if there exists a dominant arc in A(AQ) that touches the net ball at
the center of Q. Otherwise, O ¢ J(’f‘ and every arc in A(AQ) that passes through the
net ball at the center of Q is an almost flat arc in A(AQ); in this case, we assign Q to
either 36’2’\ or 363)“, depending on global geometry of the x-almost flat arcs in A(LQ).
Following a convention from [65, p. 345], we write Bs*(10)(2AQ) as shorthand for
BUimage(z):res*(10)} (2AQ). Fix a constant 0 < €; < 1 depending on at most Ag to
be specified below. We say that Q € J(’% if

(3.34) Q¢Hl  and  Bs+0)(2AQ0) > €1Bru0)(210).
We say that Q € #7 if
(3.35) Q¢Ht and  Bsro)(2A0) < €1Baco)(2A0).

When a ball Q € Jé’% Bs*.0)(Q) dominates €184 (10)(2A0). By contrast, when a
ball Q € J{’g\, the *-almost flat arcs in A(AQ) are collectively much flatter inside of the
window 210 than the union of all of the arcs in A(AQ).

We now define

(3.36) A={QeH\Hy:QeH] forA=1,A=50rk =7}
(3.37) B:={QeH\Ho:0eH}forA=10rA=5)},
(3.38) C:={QeH\Hy:QeH}forA=1and A =5,and Q ¢ #/}.

(We neither use J#; nor J].) Note that J \ Ho C +4 U B U €. While the family € is
disjoint from 4 U B, some balls in # \ F#, could belong to both A and 8.

REMARK 3.26

Our classification of balls in the family J is slightly different than in [65], but roughly
speaking our 4, 8B, and € balls correspond to Schul’s §;, §,, and §3 balls. See [65,
Figure 4, p. 346] for an illustration of the different families. More specifically, our
class 8B corresponds to Schul’s A; and A, ; balls. Schul also defines A, 5 balls in §,,
but our definition includes these in 4. We introduced the net balls to consolidate the
estimates for §; and A, , balls.

With the families #, 4, 8, and € now defined, the proof of Theorem 3.22 reduces to
establishing an estimate like (3.26) for each category.

LEMMA 3.27 (Counting)
If X is an arbitrary Banach space, then for all s > 1,

(3.39) Y B=(Q) diam(Q) 55 Ax I (2),
QeHo

where the implicit constant blows up as s | 1.
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Proof
Modify the proof of [65, Lemma 3.9]. Set D = diam X. Suppose that k € Z, x € X,
and Q = B(x, A2 %) e #.1f diam 14Q = 284 427% < D, then = ¢ 14Q. Hence,
if Q € H#y and Bx(Q) > 0, then 284 %27 > D. Thus, letting # (k) denote all Q € #
of radius A3€2_k , we have
ko

> Bs(Q)diamQ <245 Y > Bs(Q)27F,

QeHo k=—c0 Qe (k)
where kj is the unique integer such that

28452 kot D <284 427k,

By considering any line passing through the ball’s center, we obtain the trivial bound
Bx(0) < (diam £)/(diam Q) = D/2A 327 for all Q € # (k). It follows that

ko
Y. Bu(Q)diam Q < 2dy)' 7D Y 2OV (k).
QeHy k=—o00
Because #H (k) = #X <#Xy, for all k > ko, it suffices to bound #X,,. We picked
ko so that 144 427%0 < D, which more than certainly implies (1/2)27%0 < D/2. In
particular, #1 (SN U(x, (1/2)27%0)) > (1/2)27%0 because x € £, ¥ is connected, and
Y is not trapped inside the ball. By definition of a net, the open balls U(x, (1/2)2%0)
centered on points x € X, are pairwise disjoint. Ergo,

(1/227%#X,, < Y H(TNU(x.(1/227%)) < 31 (D).

xeXkO

Therefore, #Xy,, < 2kot1301() < 56 A4 H1(X)/D. Assembling all of the pieces, we
have

> B=(Q)* diam Q

QeHo

ko
<5645 K (2)(D/245) " Y 2K6D

k=—oc0
. ) 2k0(s—1) ) 145—1
=56Ag5d (Z)(D/2A5)° [ a1 <56A5H (X) i
where in the final inequality we used once again that 2¥0 <2844 /D. 0

LEMMA 3.28 (Filtrations I)
If X is uniformly convex of power type p € [2,00), then

(3.40) > B2(Q)P diam Q Sp sy a0, (D).
Qe

Proof
Modify the proof of [65, Lemma 3.14]. We start with an auxiliary observation. Let X be
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any Banach space. Suppose that £ is an arc of X such that Image(£) intersects N net
balls in Nj. We claim that if N is sufficiently large, then B(£) Diam(&) > (1/18)27%.
To see this, choose points vy, ..., vy € Image(£), one inside each net ball intersecting
£. Then vy,...,vy are 8§ = (1/3)27% separated by (3.32). Suppose that L is a line
such that dist(v;, L) < (1/6)§ for all i. By Corollary 2.2 with s = 1, after reordering
V1,...,UN,

1 = 9

TN - D27*=(N=1D8§=< " |vi —vipa] < (14+3/6)%vy —vy| < ; Diam(&).

i=1

whence N < 1 + (27/4) Diam(£)/27%. Thus, if N > 1 4+ (27/4) Diam(£)/27%, then
B(£) Diam(§) > infy, sup; dist(v;, L) > (1/6)§ = (1/18)27%. In particular, suppose
that

(3.41) Diam(§) <284%27%  and N > 1904y,

which guarantees N > 1 4 18945 = 1 + (27/4)284% > 1 + (27/4) Diam(¢)/27%.
Then

(3.42) B(€) > (1/18)27% / Diam(&) > 1/504 A 4.

Let Q € 4. Then there exists k € Z, x € Xg, and A € {1,5,7} such that AQ =
B(x, M x27%) e 5‘(’1* Thus, we may choose a dominant arc yp € A(AQ) \ S(A0)
such that Image(yo) intersects the net ball B(x, (1/ 3)27k) and pick a point Yo €
Domain(yg) such that f(yg) € B(x, (1/3)27%). Let Ng be the number of net balls
R € N such that R intersects Image(yp). We know that Ng > 1, but if X is infinite-
dimensional, then Ng could be arbitrarily large. We now define an arc rb according
to one of two alternatives. If No < [190A4, then we set 7, = yo and have B(z) >
€28=(Q) since yp is dominant. Otherwise, if No > [190A44], then we choose ‘L'/Q
to be any arc such that yp € Domain(r,) C Domain(yg) and Image(ry) touches
precisely [190A 4 of the net balls from M that intersect Image(yo); then ,B(rb) >
1/504A 5 > (1/504A 4)Bx=(Q) by the auxiliary observation from above. In both cases,
the arc 7y, satisfies yo € Domain(zy), B(ty) X a6 Bx(Q), and 7, intersects no
more than 1914 % net balls in M. Include an instance of the arc t’Q in the set ?'ko.
(In the unlikely event that T3 = 7/, for some R # Q, we treat f"ko as a multiset; see
Remark 3.21.)

We claim that the family F° = Uzo:ko 37k° of arcs is a prefiltration (see
Lemma 3.20), where kg is the smallest integer such that # contains a ball of radius
A ng_ko. To see this, first note that if r’Q € 5‘7k°, then

1 . _
32 * < Diam(rp) <284527%.

The upper bound follows since ‘L'/Q is contained in 14 Q. The lower bound holds because
either 7, = yo and Diam(yg) > AA27% by Remark 3.25, or 7o touches at least 2
balls in N and (3.32) is in effect. Next, let’s confirm that the arcs in 3:160 have uniformly
bounded overlap for each k. Fix k > ko and r’Q e, ko. Consider the set

Y ={yr: 1} € # and Domain(tz) N Domain(zy) # @} C [0, 1].
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Because each yr belongs to the net ball at the center of R and (3.32) holds, there is a
bijection between Y and arcs tj € %, such that tj and T intersect in their domains.
Let rg, t’T € fko be the unique arcs such that ys = minY and y7 = max Y. Observe
that

Y C Domain(zg) U Domain(zy) U Domain(zr)

because the latter set is an interval containing ys and yr. Hence, #Y is bounded from
above by the number of net balls in N intersected by rg, t’Q, or t}. Therefore, we
know r’Q intersects at most #Y < 3-191A45 = 573 Ay arcs 1y € 37k°.

Invoking Lemma 3.20 with parameters p =2, A =28A g, A =1/3,C =573Ay,
and J = 1 + [log,(504A4)] (so that 2/ > 64/ A), we can find O(A?% log(Ag)) fil-
trations

o0 o0 o0
1 _ a1 2 a2 3 __ a2
F=Uw. #=U#rn £=UR
k=k k=k, k=k3

with starting indices ko < k; < ko + J — 1 such that
1

207V 277E < Diam(r) < 564527527 forall T € 7.

Note that the ratio of the upper and lower bounds for Diam(z) depends only on Ag.
Moreover, for all r’Q € ?ko, there exists £/ (in the list of filtrations), an index K with

k—kj=J(K—kj)andanarc tg € ?Ié such that
Domain(z,) C Domain(z) and Diam(zg) < 2Diam(zg).
The assignment (k, ‘L'/Q) — (f‘”j, K, tp) is injective. Now, for any r’Q € 37ko, we have

Bs(0) Say.er Btp) <2B(rg) <2B(0).

where the first inequality holds by our choice of t’Q, the second inequality holds by
(1.2) because Diam(z) < 2Diam(z’), and the third inequality holds generally. Thus,

> Bs(Q)?diam @ Spaye, Y. B(Z)? Diam(r))

QeA TeF0
<p Y. Y. B@PDiam(r) <> Y B(r)? Diam().
J te¥J J teFi

Up until this point, the proof is valid in any Banach space and for any 1 < p < oo.
Finally, if X is uniformly convex of power type p € [2,00), then by Lemma 3.18 and
the bound on the total number of filtrations,

D Bs(Q)Pdiam Q0 Spaze Y D B(D)?DIaM(x) $p sy dgeer K (Z).
QecA J teFJ
This verifies (3.40). O

LEMMA 3.29 (Filtrations II)
Assume that €1 is sufficiently small depending only on Age; €1 = 1/126A g will suffice.
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If X is uniformly convex of power type p € [2,00), then

(3.43) > Bs(Q)” diam Q Sp sy aseer H' (D).
Qe

Proof
Modify the proof of [65, Lemma 3.16]. We initially assume that X is any Banach space.
Let Q € €,say Q = B(xg, A27%) for some Xg € Xi. Because

Bs+0)(20) < €1Br0)(20),

we have A(Q) \ S*(Q) # @ provided that €; < 1. Choose any r’Q e A(Q)\ S*(Q).
Then
Ag27* <Diam(rp) <44%27%  and  Bx(Q) <2Ba0)(20) < Lﬁ(ré)
2562
by definition of A(Q) and S*(Q), respectively. Include an instance of r’Q in the set
37k°.

We claim that the family F° = |Jgo, o 37k° of arcs is a prefiltration (see
Lemma 3.20), where kg is the smallest integer such that € contains a ball of radius
A2 %0 We already noted that arcs in ?ko have good bounds on their diameters.
To check the bounded overlap property, fix Q as above. Using Bgs+(50)(10Q) <
€1BA50)(100) < €; for balls Q € €, we may choose a line L g in X such that

dist(x, Lg) < (21/20)€; diam 100

(3.44) <2le;Ap27F forallx e U Image(t).

Te€S*(50)

Suppose that R € €, R = B(xg, A2 %) for some xg € Xy, and T and I’Q intersect
in their domains. Since t’Q is contained in 20, ‘L’}e is contained in 2R, and the arcs
intersect, the triangle inequality yields xg € 40 and xg € 4R. Hence, R C 50 and
Q C 5R, as well. Our strategy is to show that xg is close to L relative to the scale
2% of separation between points in X. By (3.44), it suffices to exhibit an arc £g €
S*(5Q) containing xg and demand that €; be sufficiently small relative to Ag. To
find &g, first let yg € A(7R) be any arc containing xg. Because xg lies in the net
ball B(xg,(1/3)27%) and R ¢ (#, U A), we know that yg € S(7R); that is, B(yr) <
€28 (R). Choose &g to be a subarc of the arc yg such that xg € Image(ég) and
&r € A(50Q), which exists because xg € Image(yr) N4Q C 50 and 10Q C 14R. On
the one hand, since xg € Image(ér), xg € 4Q, and the endpoints of £ are contained
in the boundary of 10Q, we have Diam(ég) > 6A327%. On the other hand, since
Image(yr) C 14R, Diam(yg) < 28A432%. Thus, because 28/6 <5 and T N R C

EN50 CUrencsg) Image(r),
(3.45) B(ER) <5B(Yr) <5€2B5(R) <256:B5(50) < 50€28(50)(100)

by three applications of (1.2) and the observation that yg is almost flat. This computa-
tion confirms that the arc £g belongs to S*(5Q). (In fact, this computation is the rai-
son d’étre for x-almost flat arcs!) By (3.44), it follows that dist(xg, Lg) < (1/6)27k
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provided that €; < 1/126A 5. For concreteness, we specify that €; = 1/126A44. Let
{X1,...,xn} be an enumeration of the centers of balls R € € of the same gener-
ation as Q such that t intersects r’Q in the domain. Each x; € 40 and satisfies

dist(x;, Lg) < (1/6)27%. By Corollary 2.2, after reordering x, ..., Xy, we have

N—-1

(N=1D27% <3 |xi —xit1] < (14+3/6)%|x1 —xn| < (9/4)- 84527 = 184;27%.
i=1

We conclude that N < 1 + 1845 < 194 . Therefore, % is a prefiltration.

Invoking Lemma 3.20 with parameters p =2, A =4Agp, A= Ay, C = 194y,
and J =5 (so that 2/ > 64/ A), we can find O(Ay) filtrations

oo o0 o0
j;'l — U ‘?kl’ }72 — U ‘?'kZ, ‘?73 — U $k2,
k=k, k=k, k=k3
with starting indices ko < k; < k¢ + 4 such that

1 .
ZA]{Z(J_I)k«/ 277k < Diam(r) < 8442 VK 277k forallt e 7.

Note that the ratio of the upper and lower bounds for Diam(t) is universal. Moreover,
for all fb € .(Fko, there exists ¥/ (in the list of filtrations), an index K with k — kj=

J(K —kj),and an arc 7g € fFé such that
Domain(zy,) C Domain(r) and Diam(zg) < 2Diam(zy).

The assignment (k, 7)) = (¥7/, K, 7¢) is injective. Now, for any tj, € F,0, we have
that

Bs(0) Se, B(tp) <2B(10) <2B(10).

where the first inequality holds by our choice of t’Q, the second inequality holds by
(1.2) because Diam(z) < 2Diam(z’), and the third inequality holds generally. Also,
we have diam Q ~ Diam(ré) ~ Diam(zg). Thus,

> Bn(Q)Pdiam Q $,e, Y ()P Diam(z')

Qet eF0
<p Y. Y PP Diam(r) <)Y Y B(r?)Diam(r).
J teFJ j reFi

Up until this point, the proof is valid in any Banach space and for any 1 < p < oo.
Finally, if X is uniformly convex of power type p € [2,00), then by Lemma 3.18 and
the bound on the total number of filtrations,

> Bs(Q)Pdiam 0 Spey Y D B(X)P DIaM(1) Sp sy, asecr H' (D).
Qet J te¥J
This verifies (3.43). O

THEOREM 3.30 (Geometric martingales)
Assume that €, is sufficiently small depending only on Ag and €;; the value €; =
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2755¢, / A will suffice. If X is any Banach space, then for all g > 0,
(3.46) D Bs(Q) diam Q Sg.ay.e H'(Z).
QeB

where the implicit constant blows up as q | 0.

Note the arbitrary power ¢ in (3.46)! This indicates that Q € 8B (imagine Q is centered
at the intersection of two or more crossing line segments) occurs relatively infrequently.
This result is universal insofar as it is valid in an arbitrary Banach space! We defer the
(rather long) proof of Theorem 3.30 to the sequel to this paper [14].

Putting it all together, on a uniformly convex space of power type p € [2,00),
choose parameters 0 < ¢; < 1 and 0 < e, < 1 with €; = A3, and €, > A3} so that
Lemma 3.29 and Theorem 3.30 are valid. Then

> Bs(Q)Pdiam Q < T + I+ I+ 1V S p s, a5 X' (D),
QeH
where
I:= )" Bn(Q)diamQ < Y Bx(Q)*diam Q
QeHy QeHo
<a, #'(X) byLemma3.27,

Il = Z Bx(Q)? diam Q <ps, 44, #'(X) by Lemma 3.28,

Qe
=y px(Q)? diam Q < ) fx(Q)*diam Q
QB QeB

Say.e #' () by Theorem 3.30, and

IV:="Y" Bs(Q)” diam Q <p5:.45.e; H'(X) by Lemma 3.29.
Qe

This completes the proof of Theorem 3.22.

4. Analyst’s TSP in finite-dimensional Banach spaces

In this section, we record some additional observations about the analyst’s TSP in arbi-
trary finite-dimensional Banach spaces. It is well known that diameter, distance of a
point to a set, and Hausdorff measures are bi-Lipschitz metric invariants in the sense
that if f : X — Y is a C-bi-Lipschitz map between metric spaces X and Y, then each
of the quantities in the source and target spaces are quantitatively equivalent with mul-
tiplicative constants determined by C. As a consequence, the Jones’ beta numbers in a
normed vector space are bi-Lipschitz invariant in the following sense.

LEMMA 4.1 (Bi-Lipschitz equivalence of Jones’ beta numbers)
Let V be a vector space and let | - |x and | - |y be equivalent norms on V, say that
there exists a constant 1 < C < oo such that C ™ V|x|x < |x|y < C|x|x forall x € V.
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Let BE x(Q) and BE v(Q) denote the Jones’ beta numbersin X = (V,|-|x) and Y =
(V, |- |y), respectively—that is, for all nonempty sets E C V and positive diameter sets
QCVwithENQ#6,

. distx (x, L) . disty(x, L)
Ex(Q)=inf sup ——— and evy(Q)=inf sup ———,
Prx(@) L erF\Q diamy Q Prx(@ L erEQ diamy Q
where L runs over all lines in V. Then C 2B x(Q) < Bev(Q) < C?BEgx(Q) for
all admissible E and Q.

Proof

Let E C V be nonempty and let Q C V have positive diameter. By convention,
BEx(Q)=BEey(Q)=0if EN Q = @ in this case, the conclusion is trivial. Thus, we
may assume that £ N Q # @. By equivalence of the norms, diamx Q = sup{|x — y|x :
X,y € Q} and diamy Q = sup{|x — y|y : x, ¥y € Q} are also equivalent:

4.1) C~!diamx Q < diamy Q < C diamx Q.

Similarly, for any nonempty set S C V and x € V, distx(x,S) = inf{|x —s|x :5 € S}
and disty (x, §) = inf{|x — s|y : s € S} are equivalent:

4.2) CHdistx(x, S) < disty(x, S) < C distx(x, S).

The set of all lines (that is, 1-dimensional affine subspaces) in V' is independent of a
choice of norm. Fix a line L in V. By definition of 8¢ x(Q), (4.1), and (4.2),

distx (x, L) - disty (x, L)

- <C? - )
xeeng diamyx Q xegng diamy L

BEx(Q) =
Taking the infimum over all possible lines, we obtain S x(Q) < C?BE v(Q). Inter-
changing the roles of X and Y yields Bz v(Q) < C?BE x(Q). O

A basic fact in functional analysis is that every pair of finite-dimensional normed vector
spaces of the same dimension has equivalent norms. Therefore, the original formulation
of the analyst’s traveling salesman theorem due to Jones [48] (dim V' = 2) and Okikiolu
[58] (dim V' > 3) persists in any finite-dimensional vector space.

THEOREM 4.2 (Jones’ and Okikiolu’s theorems in finite-dimensional spaces)

Let X be a finite-dimensional Banach space with dimX > 2, let A(X) be a system of
dyadic cubes with respect to some set of coordinates on X, and let E C X. Then E is
contained in a rectifiable curve if and only if

4.3) Sp(X):=diamE + Y B£(3Q)*diam Q < oo,
QeA®X)

where 3Q denotes the concentric dilate of the cube Q with scaling factor 3 and
BE(BQ) denotes the Jones’ beta number with respect to X. More precisely, if
SE(X) < 00, then E is contained in a curve T in X with

(4.4) H(T) <xt.a).aimx SE(X).
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If ¥ C X is a connected set, then
4.5) Sz(X) <x.a0.dmx H(T).

The constant 3 in (4.3) can be replaced with any constant A > 1. Then (4.4) and (4.5)
hold with implicit constants depending on the norm of X, A(X) (that is, a choice of
coordinates), dimX, and A.

Proof

Suppose that dim X = n. After fixing coordinates on X, we may identify X with R” and
identify A(X) with A(R"). Then (X, |-|) = (R”,]|-]) and (R",]-|2) are bi-Lipschitz
equivalent, where |- |, denotes the standard Euclidean norm. (The bi-Lipschitz constant
depends on the norm |- | and on the choice of coordinates for X.) Each of the quantities
diam E, B£(3Q), and #!(I") defined relative to | - | are bi-Lipschitz equivalent to
the respective quantities defined relative to | - |. Thus, the rectifiability of a curve I"
containing E is independent of the choice of norm (although the length of I depends
on the norm), and the theorem follows immediately from Theorem 1.2. O

EXAMPLE 4.3

Given linearly independent vectors v and w in R?, let A(v,w) denote the system of
dyadic parallelograms corresponding to the lattice generated by v and w; for example,
P={sv+tw:0<s,t<1}and P' = {sv +tw:0<s,7 <1/2} belong to A(¥,w),
and P’ is one of four children of P. A bounded set E C R? is contained in a rectifiable
curve if and only if

Z B (3P)?diam P < oco.
PeA(v,0)

To see this, note that every P € A(v, W) is a dyadic square in R? with respect to the
coordinates induced by v and w and apply Theorem 4.2.

In a finite-dimensional Banach space, the analyst’s traveling salesman theorem can be
formulated using cubes, as in Theorems 1.2 and 4.2, and using multiresolution families,
as in Theorems 1.5, 1.6, and 1.7. It is always possible to pass between one and the
other, at the expense of growing implicit constants. For a more general formulation of
this principle, see [24, Appendix B].

LEMMA 4.4

Let X be a finite-dimensional Banach space with dimX > 2, let A(X) be a system of
dyadic cubes with respect to some set of coordinates on X, let a > 1 be a scaling factor
for cubes, let E C X, and let § be a multiresolution family for E with inflation factor
Ag > 1. Forall 0 < p < o0,

(4.6) Y Be@Q)Pdiam Q ~p 4 4y amx Y, BE(B)? diam B.

QeA(X) Beg
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Proof

The key point is that any bounded set in X is contained in some dilate a Q of a cube
0 € A(X) with comparable diameters. As long as the bounded set intersects E, that
set is also contained in some ball B € § with comparable diameters. We will use this in
conjunction with monotonicity of Jones’ beta numbers and volume doubling in finite-
dimensional spaces.

To normalize scales, let D = diam Q¢ for any choice of Q¢ € A(X). Fix Q €
A(X), say with diam Q = D27/ for some j € Z. Fix k € Z to be determined. If aQ N
E =0,then BE(aQ) = 0, so the cube Q is irrelevant to the sum on the left-hand side of
(4.6). Suppose that aQ N E # @ and fix any z € aQ N E. Choose x € X (the 27 -net
appearing in the definition of ) such that |x — z| <27%, and set B = B(x, Ag27%) e
§.Then forany y €aQ,

ly —x|<|y—z|+ |z — x| <diamaQ + 27 ¥ =aD277 +27F < Ag27*

and aQ C B provided that a D277 < (Ag —1)27%. We now specify that k is the unique
integer such that

(4.7) (Ag — 1)27*+D < 4 D277 < (45 — 1)27F.

As noted, this ensures that a Q C B. Furthermore,

diama Q < diam B <24g27% < 4y diama Q.
Ag —1
Thus, B£(aQ) <a, Be(B) by (1.2). Now, by volume doubling, the sets of the form
aR, where R € A(X) is a dyadic cube of the same generation as @, have bounded
overlap determined by a and dimX. Also, by (4.7), each k € Z is associated to an
unique j € Z. (This is a simple expression of the fact that 2~*-nets and dyadic cubes
have the same scaling ratios.) All together, we conclude that

Z BE(@Q)? diam Q <p 4,44, dimx Z BE(B)? diam B.

QeA(X) Be§

The reverse inequality holds by similar considerations. g

5. Sharpness of the exponents via examples

Our goal in this section is to verify the sharpness of the exponents on beta numbers in
Theorems 1.6 and 1.7. To do so, we build Koch-snowflake-like curves I', for which we
can estimate beta number sums over arbitrary multiresolution families. This type of
construction is not new; see, for example, [16, 25, 38, 61] for motivating examples, but
the details are subtle.

The organization is as follows. In Section 5.1, we verify sharpness of the exponent
2 in (1.17) when 2 < p < oo and in (1.18) when 1 < p <2 by building curves in the
Euclidean plane. In Section 5.2, we verify sharpness of the exponent p in (1.17) when
1 < p<2andin (1.18) when 2 < p < co by building curves in infinite-dimensional
Banach spaces. Finally, in Section 5.3, we carry out additional estimates to record a
proof of Proposition 1.1.
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Figure 4. (Color online) The snowflake map 7, displayed with [¥| =1, n =1/4, and s = 5/16.

5.1. Examples with critical exponent 2
The main results of this subsection are the following two propositions. Recall that E’},
denotes (R",|-|,).

PROPOSITION 5.1

There exists a curve T in {3 such that J'(T') = oo and Srp+e(§) < oo for every
multiresolution family § for I and every € > 0. In particular, the exponent 2 in (1.17)
when 2 < p < o0 is sharp.

PROPOSITION 5.2

There exists a curve T in {3 such that #1(T') < 0o and St—c(§) = oo for every
multiresolution family § for I and every € > 0. In particular, the exponent 2 in (1.18)
when 1 < p <2 is sharp.

Sharpness of the exponent 2 in (1.17) when 2 < p < oo and in (1.18) when 1 < p <2
follows from the case p = 2 because £, contains a subspace isomorphic to £2, which
in turn is bi-Lipschitz equivalent to 3. (Use Lemmas 4.1 and 4.4 to pass between
multiscale sums of beta numbers in E?, and ﬁ%. In particular, one may use a fixed system
of dyadic squares as an intermediary between multiresolution families for I" in Kf, and
in E%.) Therefore, in this section, we focus on £2 = R2, the standard Euclidean plane.
We wish to emphasize that in both statements the curve is independent of €. We build
the curves using the following procedure.

ALGORITHM 5.3 (Snowflake-like curves in R2)
Suppose that p,§ € R? and y : [a,b] — R? is a constant-speed parameterization of
I =[p,q] from y(a) = p to y(b) = g; that is,

- t—=a .

y(t) = p + b—“(q — ) foralls e la,b].
—a

Write ¥ := g — p and let j € R? denote the unique unit vector with ¥ L v such that
¥ points to the left of the oriented line segment from p to §. Given a relative height
0 <1 < 1/4/12, we define a piecewise linear path j : [a,h] — R?, as follows. Set
s:=1/44+n?<c[1/4,1/3]. Divide [a, b] into quarters. Foralla <t < (3/4)a + (1/4)b,

70)=p+ 4(2:Z)sﬁ
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(see Figure 4). For all (3/4)a + (1/4)b <t < (1/2)a + (1/2)b,
(t —(3/4)a — (1/4)b)(
b—a

PO)=p+si+4 (1/2 =) + n[37).

For all (1/2)a + (1/2)b <t <(1/4)a + (3/4)b,

t—(1/2)a—(1/2)b
b—a

P() =5+ (1/2)5 + nf3]5 + 4(

Finally, for all (1/4)a + (3/4)b <t <b,

)((1/2= )5 = nf3]3).

PO =p+(1—s)v+ 4([ (l/z)ia (3/4)b)s17.
We say that J is obtained from y by adding a bump of relative height 1 (on the left side).
On each quarter of [a, b], 7(¢) traces a line segment of length s|v| at constant speed.
Thus, 7 has Lipschitz constant 4s|6|/(b —a) = (1 + 4n?)|V|/ (b — a). Additionally, we
have [y — 7l = [y((a +b)/2) = P((a + b)/2)| = nlv]. R
Starting from the parameterization yj : [0, 1] — R? of the line segment /o = [0, &]
from yo(0) = 0 to yo(1) = €1, we now define a sequence of piecewise linear maps
¥i 1 [0, 1] = R? by iteratively adding bumps of relative height 7;. Suppose that y; has
been defined for some i > 0 so that y;|y; , is a constant-speed parameterization of a
line segment on each interval J; x = [a; k., b; ] of the form

(k1)
4i

k .
J,-,k=[a+ (b—a),a+z(b—a)] (1<k <4 keZ).
For each index 1 < k < 4, define Yi+1ls o = )/,/|Jl\k by adding a bump of relative
height n; 1. This defines a map y;4+;. By induction, we obtain the full sequence
Y0, V1, V2, ..., the image of each map y, is composed of 4" line segments of length
ry := (Lipy,)4™". Evidently, foralln =0, 1,2, ...

n

(5.1) Lip(ys) = [ J(1 + 4n7) < (4/3)".
i=1

(5.2) Tn1 < (1/3)rn,

(5.3) 1V — VYnt1lloo < Mnt17n <37 " Npyp1 <377

Therefore, y : [0, 1] — R2, which is defined pointwise by

o0
(5.4) y(6) =yo(t) + D (va+1(t) = yu(0)) forallz €[0.1],

n=0
is continuous as the uniform limit of the maps y, by (5.3). We denote y ([0, 1]) by T,
and for each n, we denote y, ([0, 1]) by I',,. For all integers n,k > 0 with 0 < k < 4",
we call the point y, (k/4") a vertex of T'y,.

REMARK 5.4 (Modulus of continuity)

In fact, (5.1) and (5.3) imply that the maps y, and y are uniformly log,(3)-Holder
continuous (see, for example, [16, Appendix B]). This is the optimal modulus of con-
tinuity of the von Koch snowflake curve, which corresponds to the choice of relative
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heights 1, = 1/+/12 for all n. Furthermore, if > o2 ; r},zl < 00, then (5.1) implies that
¥ and y are uniformly Lipschitz with Lipschitz constant at most [,—;(1 + 4r7,21) ~

exp(Y_pe i m7)-

REMARK 5.5 (Vertices)

For each integer n > 0, let V}, denote the set of vertices in I',, and let Vn =V \ Vaar
denote the set of “new vertices” in I';, with the convention that 70 = V. For later use,
we observe that

(5.5) VwCcVicVoC---,
(5.6) Va=VoUViU---UV,; UV, (VinV;=0wheni# j),

5.7 #Ve=2, #V,=3-4"n>1), #V,=1+4"

REMARK 5.6 (Injectivity)

The restriction 7; < 1+/12 on the relative heights ensures that the parameterization y of
I' constructed by Algorithm5.3 is injective. This can be shown by a geometric argument
similar to the proof that the standard von Koch snowflake curve is the attractor of an
iterated function system that satisfies the open set condition (that is, draw equilateral
triangles on the left side of each segment in I';). We leave details to the dedicated
reader. For other models of generalized von Koch curves, the question of injectivity of

a parameterization is quite subtle; see, for example, [51].

LEMMA 5.7
If U is constructed by Algorithm 5.3, then

(5.8) exp(3.3§§: n,%) <H#'I) = ]o_o[(l +4n7) < exp(4 i nﬁ)-
n=1 n=1 n=1

In particular, T is a rectifiable curve if and only ifZ:o:l n2 < oo. Moreover, in that
case, T' is Ahlfors regular with constants depending only on J(I").

Proof
The 1-dimensional Hausdorff measure #! enjoys the bound #!(K) > diam K for
every connected set K C R? (see, for example, [3, Lemma 2.11]). Thus, foreachn > 1,

4" 4"
JT) =" H (y([(k = DA™ k4™"])) = > diamy ([(k — )47, k47"])
k=1 k=1

4n

4" n n
> > diamy, ([(k — D4 k47]) =Y [J/4+ 0D =] + 40P,

k=1 k=1i=1 i=1
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where the initial equality holds by Remark 5.6. Hence, (") > [To—, (1 + 472).
Conversely, #1(T") <Lipy <[[o2,(1 + 4n?). Therefore,

¥(T) = 1‘[(1 +dn2) = exp(Zlog(l +42).
n=1
Finally, since 0 < 472 < 1/3, we may use Taylor’s theorem to bound log(1 + 4732) <
4n;; and log(1 + 4n3) > 47 — 5 (417)% = (10/3)n;.
Suppose that #1(T") < oco. By (5.2), (5.3), and the bound 71, < 1/+/12 for all
n>1,

V3
lyn = V||oofznj+1]_\/—zn+k_\/— Z = S <0457,

Thus, given x € I" and n > 1, we may pick y € T, such that |x — y| < (v/3/4)r,. Next,
let v € V,, be an endpoint of the segment in I',;, containing y that is closest to y so that
|v —y| < (1/2)r,. Hence, B(x,0.05r,) C B(v,r,) and we may use (5.8) to estimate

oo
Jé’l(r N B(x,0.0Sr,,)) < JZI(F N B(v,rn)) < ZCXP(Z 477,-2)"n
(5.9) —
<2 H N (D)ry,

because I, N B(v, r,) consists of one or two line segments of length r,,. From (5.9), one
easily deduces that J1 (' N B(x,7)) ~ g1 y r forevery x e " andevery 0 <r <1 =
diam I". Therefore, I is Ahlfors regular with constants depending only on #1(I"). O

LEMMA 5.8
Assume that T is constructed by Algorithm 5.3. Foralli > 0 and j > i,
V3 ~
(5.10) Tm <Br, (B(v,r,-)) <2n; forallveV;,
where ’171' denote the “new vertices” in I'; (see Remark 5.5) and ng = 0. Furthermore,
V3 . ~
(5.11) Tnifﬂr(B(v,ri)) foralli >0andv eV;.
Proof

Note that when v € 70 is an endpoint of I';, the set I'; N B(v, r;) is a line segment.
Thus, Br; (B(v,r;)) =0 for all v € Vo and j > 0. Next, suppose that i > 1 and v €
V,». Using the line containing the segment in I';_; N B(v, r;) to approximate the beta
number, we obtain the estimate

Br, (B(v.r;)) < —1

2(3 + 2) -
When j > i, the set I'; N B(v,r;) agrees up to a dilation centered at v with I'; N
B(v,r;). Thus, Br; (B(v,r;)) <2n; forallv € V; and j > i, as well.

21;.
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To establish the lower bound, one can use symmetry to find the best-fitting line for
each of the two triangles formed by consecutive segments of side length s in Figure 4.
The best-fitting lines are parallel to the third side of each triangle, and the altitudes of
the triangles are 7 and \/sn = (% + ?)1/25. 1t follows that for all v € V; and j=>1i,

3G P o V3
23 +n}) 4z +nHy2 T 4

Br; (B(v.r))) = Br; (B(v.r)) = ni

since 17; < 1/4/12. Finally, because I' N B(v, r;) contains the vertices a, b, ¢ of one of

the two triangles, we find that Br(B(v, ;) > Bia,p,c} (B(v,17)) > (+v/3/4)n;, as well.
O

5.1.1. Proof of Proposition 5.1. Build I" using Algorithm 5.3 with relative heights
417142 :=1/(@ + 15)1log(i + 15) for all i > 1. See Remark 5.9 below for an explanation
of the logarithmic factor in the relative heights. Note that n; 1 <n; < 1/8 for all i.
Because Y o, 77,-2 = 00, we have #1(I") = oo by Lemma 5.7. To proceed, let (X )xez
be any family of nested 2 *-nets for ', and let § = {B(x, A27%) : x € X;.k € Z} be
the associated multiresolution family with inflation factor A > 1. Since T is bounded,
to prove that St 2+¢(¥) < 00, it suffices to show that (cf. Lemma 3.27)

Srate(8) =Y Br(B)*™*diam B < oo,
Beg’

where §’ is the subfamily of all balls starting from some initial generation k.
Recall that each intermediate curve I, consists of 4” line segments of length

n n
r,=4" l_[(l + 4’71‘2) =47" exp(z log(1 + 4’7;'2))-
i=1 i=1
By Taylor’s theorem, we have

1
477,-2 - 5(4771-2)2 <log(1 + 477;'2) < 477!-2 foralli > 1.

Combined with the elementary bounds

- 1 1 nt1s
Z H . =< —|—/ dx
(i +15)log(i +15) ~ 161og(16) ~ Jis  xlog(x)
1
<t log(log(n + 15))
and
S (i +15)log(i +15)  2(i + 15)?log(i + 15)

n+16 1 1
= - dx > log(l 16)) — 1.2,
_/16 (XIOg(X) 2x210g(x)2> x > log(log(n + 16))

we obtain the rough estimate (for the record, 0.3 < e~12 and ¢'/16 < 1.1):

(5.12) 0.3log(n + 16)4™" <r, < l.1log(n + 15)4™" foralln > 1.
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To continue, let k > k¢ (with k¢ sufficiently large depending on A to be specified
below) and let x € X. Our immediate goal is to estimate B (B(x, A27%)) from above
in terms of Br,, (B(v, 1)) for some suitably chosen generation m = m(A4,k) > 1 and

1
vertex v € ['y,. Write ¢ :=log, A > 0 so that A27F = 47Gk=9) We now require %ko —
¢ > 3, which ensures

A27F0 <473 < 0.0310g(16)47".
Since k > ko, there exists a unique integer m > 1 with
(5.13) 0.03log(m + 16)4="*+D < 427F <0.031og(m + 15)47™.
By (5.12), it follows that

1
(5.14) rm < A27F < o'

~

Next, by (5.2), (5.3), and fact that n; 1 <n; < 1/8 forall i,

o0 (o] o0
—k
lYm = ¥lloo < Z Nj+17j = Nm+1 Z"m—&-l S Nm+1Tm 23
j=m 1=0 k=0

= (3/2)1m+1rm < (3/16)rm.

In particular, we can find y € '), with |x — y| < (3/16)ry, and then choose a vertex v
in [, such that |y — v| < (1/2)ry, (that is, v is an endpoint of the segment containing
¥). Since

1 3 1 3

TR
B(x,A27%) ¢ B(v.,(3/4)rm). Invoking the bound ||y — yYmlloo < (3/2)m+17m <
(3/16)r,, again, we conclude that
E :=excess(I' N B(x, A27%), Ty N B, 7m)) < (3/2)Nm+17m,

where excess(S, T') = sup,cg infrer |5 — t| denotes the excess of S over T. Hence,

E m
(515) ﬂF(B(X, Az_k)) S 2A2—k + # : IBFm (B(v,rm))

S Nm+1 + Bry, (B(v» rm))
by the triangle inequality and (5.14). Note that by Lemma 5.8,

(5.16) Nm+1 + Bry (B.7m)) < Nm+1+2n; whenv e Vi C Vi,

where 19 = 0. In particular, Br(B(x, A27%)) < n,u1 when v € Vo and Br(B(x,
A27K)) < n; whenv € 7,' for some 1 <i <m.

Next, we bound the number of times a scale m and vertex v € V}, are associated to
a point x € Xy. On one hand, #X; N B(v,ry,) < A? for each vertex v € Vj, by (5.14)
since Xy is 27 -separated and our construction takes place in R2. (We could remove
the dimension dependence by using Lemma 2.1, but we do not require a sharp upper
bound.) On the other hand, the scale m associated to k > k¢ satisfies

0.03log(m + 16)4~M+D < 4=Gk=0) < (.03 10g(m + 15)47™,
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where ¢ =log, A. Taking logarithms and rearranging, we have

2(m + ¢ —log,(0.03log(m + 15))) <k <2(m + 1 + ¢ —log,(0.03log(m + 16))).
Thus, the number of integers k associated to a given integer m is at most

2(m + 1+ ¢ —log4(0.03log(m + 16))) — 2(m + ¢ — log, (0.03log(m + 15))) < 2.

To finish, fix a parameter € > 0. In view the previous paragraph, (5.13), and (5.15),
we see that

o

Srave(§) = Y 2427 37 r(B(x.4279)""
k=ko x€Xy
(5.17)

o0
Sae Y log(m + 1547 3" (1 + Br,, (Bv.rm)) """,

m=1 veVy

Decomposing V,, = VO u---u Vm (see Remark 5.5) and invoking (5.16),

m
2+e€
m m s 56 m+1 i
Y (m+1 + Br, (B, rm)) doms Y D e

vEVm veVy i=1yey;

m
Sel+ )y 47iprte,

i=1

(5.18)

Combining the previous two displayed equations, it follows that

o o0 m
(5.19) Sro4e(§) Sae Y log(m +15)47" + ) " log(m + 15)47™ Y 47~y

m=1 m=1 i=1

I /g
It is apparent that I < 1. To bound /I, exchange the order of summation:

oo

o o0
=Y 47124 "log(m + 15)4™™ < Y 4 ' <log(i 4 15)47

i=1 m=i i=1

=~ ) . 1 43¢
<> logli + 152+ =Y log(i + 15)( ) .
i=1

(5.20)

= 4(i + 15)1log(i 4+ 15)

Hence Il S¢ 1and St+¢(8') <4, 1. Therefore, by our initial discussion, St2+¢(§) <
oo for every € > 0 and every multiresolution family ¥ for I". This completes the proof
of Proposition 5.1.

REMARK 5.9 (Importance of the logarithmic factor)
Seeking out examples verifying the sharpness of (1.17), it is natural to first look at
snowflake curves I' built with relative heights r)l.z ~ 1/i. By carrying out the outline
above with relative heights 497 = §/(i + i¢) with parameters § > 0 and io > 1, one
obtains
[ee] 1
< . .8 1 )H-ie
ney i ()

i=1
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where the latter expression is finite precisely when 6 < (1/2)e. Thus, for every € > 0,
we could build a curve T with #1(I'¢) = oo and St, 2+(§) < oo by selecting § =
8(¢) sufficiently small. The logarithmic correction used in the proof of Proposition 5.1
allows us to find a single curve T" such that #1(I") = co and St 2+(§) < oo for all
€>0.

5.1.2. Proof of Proposition 5.2. Construct I" using Algorithm 5.3 with relative heights
4n? =1/(i +2)log(i +2)*foralli > 1. Then n; 41 <n; <1/+/12foralli > 1 and

[e.e]

oo
1
2 : 2 _ § —

i=1 n=3

Hence, #1(I") < exp(3_i2, 471;'2) < exp(1.07) < 3 by Lemma 5.7. Similarly, we have
that the intermediate curves I',, consist of 4”7 segments of length r,, where

n
(5.22) 47" <y, < exp(z 4r;,-2>4_" <3.47" foralln>1.
i=1
Let (Xx)xez be an arbitrary family of nested 2 *-nets for T, let A > 1, and let § =
{B(x,A27%) : x € X}k € Z} be the associated multiresolution family for I". We wish
to show that St —(I") = oo for all € > 0. By Lemma 5.7, I is Ahlfors regular with
constants determined by # !(T"). In particular, we know that

#X) ~ 2k for every k > 0.
Thus, writing B(k) := infyex, Br(B(x, A27%)), we have

o0 o0
(523)  Sro-e(®)z ) Y Br(B(r.A2) 2427 24 Y B
k=k; xeXg k=k;
To proceed, we will bound B (k) from below in terms of 7, for sufficiently large k.
Choose ko sufficiently large such that A27K0 < 6. Suppose that k > k. Let
m(k) > 1 be the unique integer such that 6-4™" < 427K < 6.4-(m=1 By (5.22), we
have

(5.24) 2 < A27K <p,.

Given x € X, choose v € V}, such that |x — v| < ry, (cf. proof of Lemma 5.7). Then
B(v,rm) C B(x,2r,) C B(x, A27%). Hence,

Br (B(x,AZ_k)) > rznik ﬁr(B(v,rm)) 2 NMm

by Lemma 5.8. Because x € Xy was arbitrary, B(k) = 7. Now, m < Lk +log,(6/A)+
1. Choose k1 > ky sufficiently large such that log,(6/A4) + 3 < %kl. Then, for every
k > ki, wehave m + 2 <k and
1 1
Bk) 2 nm 2

>
(m+2)12log(m +2) ~ k1/21log(k)’
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Therefore, for every € > 0,

o0 o0
Sta—e(®)Za Y BIZ 24 Y k2 og(k) 2 = oo,
k=k k=k,

This completes the proof of Proposition 5.2.

5.2. Examples with critical exponent p # 2
To complete the proof of Theorems 1.6 and 1.7, we return to the infinite-dimensional
setting. Our goal is to establish the following.

PROPOSITION 5.10

Forall 1 < p < 0o, thereis a curve T in €, such that #'(T') = oo and St p+¢(§) < 00
for every multiresolution family § for I' and every € > 0. In particular, the exponent p
in(1.17) when 1 < p <2 is sharp.

PROPOSITION 5.11

Forall 1 < p < 0o, thereis a curve T in £, such that 31 (T') < oo and St p—c(§) = 00
for every multiresolution family § for I' and every € > 0. In particular, the exponent p
in (1.18) when 2 < p < oo is sharp.

We construct the curves in both propositions using the following algorithm, which is
inspired by examples of Edelen, Naber, and Valtorta [38, Section 5.2] in L7 (][0, 1]).
The key point is that because we are working in an infinite-dimensional space, we may
build each intermediate iteration of the snowflake by adding bumps in a new coordinate
direction.

ALGORITHM 5.12 (Snowflake-like curves in £, with bumps along coordinate
directions)
Let {e;}{2, denote the standard basis in £,; that is, e;(j) = §;;. Suppose x,y €
span{ey,...,er} and y : [a,b] — spanieq, ..., ex} = @’; is a constant-speed parameter-
ization of I = [x, y] from y(a) = x to y(b) = y; that is,

() = x + %(y —x) forall € [a,b].
Write v := y — x. Given a relative height 0 < n < 1/2, we define a piecewise linear
path 9 : [a,b] — span{eq,...,ex+1} = E’I‘,H, as follows. Define s € [1/4,1/2) to be
the unique solution of s? = (% —s)? 4+ n?. Divide [a, b] into quarters. Forall a <t <
(3/4)a + (1/4)b,

P(t)=x+ 4(2_61 )sv

(cf. Algorithm 5.3). For all (3/4)a + (1/4)b <t < (1/2)a + (1/2)b,

§0) = x 450+ oL G2 W0y

(1/2=5)v +nlv|pex+1)-
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For all (1/2)a + (1/2)b <t < (1/4)a + (3/4)b,

t—(1/2)a—(1/2)b
b—a

P() = x + (1/2)0 + nlvlexs1 + 4(
Finally, for all (1/4)a + (3/4)b <t <b,

)((1/2=5)0 = vl pers1).

t—(1/4)a — (3/4)b)

sV,
b—a

We say that  is obtained from y by adding a bump of relative height 1) in the direction

ek+1. On each quarter of [a,b], P(t) traces a line segment in £, of length s|v|, at

constant speed. Thus, 7 has Lipschitz constant 4s|v|,/(b — a). Additionally, we have

1y = 9lloe = Iy((@ +b)/2) = (@ + b)/2)], = nlv],.

Starting from the arc-length parameterization yg : [0, 1] — span{e;} of the line
segment o = [0, e1] from y4(0) = 0 to yo(1) = e1, we now define a sequence of piece-
wise linear maps y; : [0, 1] — span{ey, ..., e;+1} by iteratively adding bumps of relative
height »; in the direction e; 4. Suppose that y; has been defined for some i > 0 so that
Yils; . is a constant-speed parameterization of a line segment in span{ey,...,e; 11} on
each interval J; x = [a; k. b; k] of the form

(k—=1)
4i

)7(t)=x+(1—s)v+4(

J,-,kz[a+ (b—a),a+%(b—a)] (1<k <4 keZ).

For each index 1 < k < 4, define y; | Jix = )/,/|-Jl\k by adding a bump of relative
height n; 4+ in the direction e;,. This defines a map y;+;. By induction, we obtain
the full sequence yg, Y1, ¥2.-..; the image of each map y, is composed of 4" line
segments in span{ej,...,e,+1} of equal length r, = (Lipy,)4™" = s1---S,, where
s; €[1/4,1/2) denotes the solution to s = (3 —s;)? + nf. Moreover,

n
(5.25) Lip(yn) = [ [ 4s: <2".
i=1
(5.26) Fag1 < (1/2)rp.
(5.27) ”Vn — VYn+1 ||c>o S NMa+1ln = 2_n77n-i-l <27,

Therefore, y : [0, 1] — £, which is defined pointwise by

o0
(5.28) y(0) = o) + Y _(ya+1(0) —yu (1)) forallz €[0,1],
n=0
is continuous as the uniform limit of the maps y, by (5.27). We denote y ([0, 1]) by T,
and for each n, we denote y, ([0, 1]) by I',,. For all integers n,k > 0 with 0 < k < 4",
we call the point y,, (k/4") a vertex of T',,. Remark 5.5 holds in this setting, as well.

REMARK 5.13 (Modulus of continuity and injectivity)

In fact, (5.25) and (5.27) imply that the maps y, and y are uniformly (1/2)-Holder
continuous. The parameterization y is injective, and this can be verified by showing
that 7y o y is injective, where 7y : £, — R is projection onto the first coordinate. We
leave details for the reader.
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REMARK 5.14 (Improved bounds on r;,)
Let I'in £, (1 < p < 00) be constructed by Algorithm 5.12 with relative heights 0 <

n; <7 for all i, for some universal constant 7 to be specified below. Let s; € [1/4,1/2)
be defined by s¥ = (3 —5;)? + n. Then

1.2 (/49 +00)"? = S0+ (amy) 7.

Since p > 1, Taylor’s theorem with remainder gives

1 1
1+; 5(1+5)1/P51+;5 forall0 <8 < 1.

On the one hand, assume that 77 < 1/4. Then (4n;)? < 475 < 1, and we obtain

1 1 1 1
< (1 —(4 417):_ 4 .P'
51_4( +[7( ni) 4+4P( ni)

On the other hand, assume that 7 < 1/8. Then s; < 1/4 4+ (1/4p)27? < 3/8. Hence,
1/8 < % —s5; < 1/4, and using the Taylor bound we can write

s=(5-s)(+(5-5) )"

1 1/1 1-p p—1/1 1-2p 5,
ZE_SZ+;<§_Si) n — 2p2 (5_ 1) i
1 2
= 5=t ) = R n
Rearranging the inequahty, we obtaln
1 1 1
— 81027 = ; + |- — o5 (16m)” | (4m)”
Sl_4+ ( )7 - 32 2( i) 4+ 8p  32p 2( )P |(4ni)?.
We now specify that 7 = 1/16 so that
1 1 —1 3
re p ( 6m:)? > _P 5 2 25
8p 8p 32p 32p
Therefore,
1 1 1
(5.29) ) + —(4r;,)1’ <s < 1 + —(477,)” whenever 7; < 6

Thus, if n; < 1/16 for all i, then the length r, = [, si of each segment in [',, satisfies

(5.30) 4" ﬁ(l + _(4771)p) <r, <47" ﬁ(] + %(4,71.)17).
i=1 i=

The reader may verify that when p = 2, the bound (5.30) is compatible with (5.1).

LEMMA 5.15
If T is constructed by Algorithm 5.12 with relative heights n; < 1/16, then

(531) exp(ﬁ > @n)?) = H'D) < exp(% > m)?).
n=1 n=1
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In particular, T is a rectifiable curve if and only if Y o, nk < oo. Moreover, in that
case, T is Ahlfors regular with constants depending only on 3 1(T").

Proof
The outline is similar to the proof of Lemma 5.7. For each n > 1,
411 4}’!
HLO)ZEN " g (y ([ - DA™ k4™]) = D diamy ([(k — 4™ k47])
k=1 k=1
530 & " "
>

3 3
—n e | NP — | A\D
T+ g @m?) =T (1+ 5o @n?).
k=1 i=1 i=1
‘We conclude that
o0

3 (5.30) 2 1
[T(1+ & @n?) = 910 <Lipy <liminfLipy = [] (14— @n)7),
n=1 Sp mmeo n=1 p
To derive (5.31), rewrite each infinite product as the exponential of an infinite sum and
use Taylor’s theorem bounds for log(1 + x) with 0 <x < 1/4.

Suppose that #1(I') < co. By (5.26), (5.27), and assumption 7, < 1/16 for all
n>1,

”Vn - V”OO = Z nj+1r; = 1_6 Zrn-‘rk = an Zz_k = grn-
Jj=n k=0 k=0

Thus, given x € " and n > 1, we may pick y € I, such that |x — y| < (1/8)r,. Next,
let v € V},, be an endpoint of the segment in [, containing y that is closest to y so that
|v—y| <(1/2)r,. Hence, B(x, (3/8)r,) C B(v,r,) and we may use (5.8) to estimate

F! (F N B(x, %rn)) <H' (TN B(v,ry)) < Zexp(g %(477,')1’)1’,,

(5.32)

<24 H#1(D)ry
because I, N B(v, ry,) consists of one or two line segments of length r,,. It follows that
I is Ahlfors regular with constants depending only on #!(T"). O
LEMMA 5.16

Assume that T is constructed by Algorithm 5.12 with n; < 1/8 for all i. For alli >0
and j > 1,

1 ~
(5.33) Zm < Br, (B(v,rj)) <2n; forallveV;,
where Vi denote the “new vertices” in I'; (see Remark 5.5) and ng = 0. Furthermore,
1 SR ~
(5.34) e Br(B(v.ri)) foralli=0andveV;.
Proof

The upper bound agrees with the case p = 2 above. Note that when v € 70 is an
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endpomt of 'y, the set I'; N B(v,r;) is a line segment. Thus, Br; (B(v,r;)) = 0 for
allv e VO and j > 0. Next, suppose that i > 1 and v € V, Using the line containing
the segment in I';_; N B(v, r;) to approximate the beta number, we obtain the estimate

Br; (B(v.ri)) < % = 277—;1 <2n;,
where SUPyer, dist(x, £) < n;r;—; because at stage i in the construction, we added the
bump in the direction e; 4 and we recall that s; > i. When j > i, thesetI'; N B(v,r;)
agrees up to a dilation centered at v with I'; N B(v, ;). Thus, Br, (B(v,r;)) < 2n; for
allveV;and j >1i,as well.

Before we determine the lower bounds in (5.33) and (5.34), we recall two basic
properties of the beta numbers. First, for any set £ C B(v,r), we have Bg(B(v,r)) =
Bg(B(v,r)). (This may fail if £ ¢ B(v,r)!) Second, B (B(v,r)) is increasing in E.
Because V; CT'; forall j >i and V; C T, for any vg € V; the vertices vg_; and vy
that are adjacent with respect to the global parametrization satisfy

{Vk—1,Vk, Vk+1} CTj N B(vg,ri) forany j >,

and the inclusion also holds with I' in place of I'j. Therefore, up to a translation and
dilation, there are two relevant configurations of vertices:

1
Ey(n) :={0} U {sv} U {50 + news .

Fy(n) —{sv}u{ v+ nen UL =9},

where v € span{ey, ..., e,} is an arbitrary vector with |v|, =1 and s? = (% —5)P +n?
with n < 1/8. By Remark 5.14, 1/4 < s < 3/8. The optimal lower bound in (5.33) and
(5.34) is given by B(n;), where

pin) = min{Bz, ) (BGo.9). B, (B(50 + nensr.s)) .

We work separately for each configuration, beginning with E, (7). Let L be the
line containing [0, 1v + ne,41]. In the ve,,+1 -plane, the line L; is the locus of points

(x, ) satisfying y = 2nx. When x > + — _77’
- (1 1 ) 1 L7
VIR L T T
Since s > 4, it follows that B(sv, (7/16)n) N L, = @. Hence,

(5.35) dist(sv, L1) > (7/16)1.

We now argue that Bg, ) (B(sv,s)) > (3/32s)n by way of contradiction. Assume
that we can find a line L such that E,(n) C Bs;16)y(L). By convexity, L; N
B(sv.5) C B(3/16)y(L), as well. Let x; € L N B(0,(3/16)n) and x, € L N B(3v +
nen+1,(3/16)n). Once again, by convexity, the segment of L that falls between
x1 and x, is contained in B(z/16)y(L1). Since dist(x,sv) > %s > (3/16)n for all
x € L\ Bg/16)n(L1), the points x € L such that dist(x, sv) < (3/16)n are contained
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in Bz/16)y (L1). Thus, by the triangle inequality,

(5.36) Ey(n) C Bs/i6)n(L1)-
Since (5.35) and (5.36) are incompatible, we have reached a contradiction. Therefore,
- 3 1
,BEU(n)(B(SU, S)) = E’I > 177~

Using symmetry, one sees the best-fitting line for F(n) is %nenﬂ + span(v),
whence

1 n 2
ﬁFv(ﬂ)<B(§v + U€n+1,s)) > 4—s > gn

Thus, the extremal configuration is given by Ey (1) and B(n) > (1/4)7. O

5.2.1. Proof of Proposition 5.10. Let 1 < p < co. Let I be the curve constructed by
Algorithm 5.12 with relative heights 7){’ =38/(i 4+ ip)log(i + ip) for all i > 1, where
8 > 0 and io are chosen so that n; < 1/16. Then #!(I') = co in £, by Lemma 5.15. To
prove that St,,4¢(¥) < oo for every multiresolution family ¢ for I" and € > 0, repeat
the proof of Proposition 5.1, mutatis mutandis, using Lemma 5.16 in lieu of Lemma 5.8.

5.2.2. Proof of Proposition 5.11. Let 1 < p < oco. Let ' be the curve constructed by
Algorithm 5.12 with relative heights n? = §/(i +io)log(i + ig)? for all i > 1, where
8> 0 and io are chosen so that n; < 1/16. Then #!(I") < oo in £,, and T is Ahlfors
regular by Lemma 5.15. To prove that St,,—(¥) = oo for every multiresolution fam-
ily § for I' and € > 0, repeat the proof of Proposition 5.2, mutatis mutandis, again
substituting Lemma 5.16 for Lemma 5.8.

5.3. Proof of Proposition 1.1
Let 1 < p < g < oco. To begin, we verify that if I' C £, is a rectifiable curve, then T’
is also rectifiable when viewed as a curve embedded in £,4. As is well known, £, C £,
and |v|; < |v|, for every v € £,. Hence, the diameter of a set in £, does not increase
when embedded into £,. Thus, J{’gq (E) < J{’gp (E) forevery s >0 and E C £, where
H ;r denotes the s-dimensional Hausdorff measure in £,. In particular, every rectifiable
curve in £, is also a rectifiable curve in £,, possibly with shorter length.

We now construct a curve I" such that szlp (T') = oo and szlq (T') < oo for every
g > p.Build I' in £, using Algorithm 5.12 with relative heights

W

Yodlog(i + i)

where § > 0 and iy € N are chosen so that 0 < 1; < 1/16. Note that Zfil r;f’ = 00.
Therefore, erlp (I') = oo by Lemma 5.15.

Fix an exponent ¢ with p < g < oo. We break the proof that J(’Zlq (I') < oo into

foralli > 1,

a series of lemmata. First, we calculate the J ll,, -growth of a line segment under the
snowflaking procedure y + p used in Algorithm 5.12. We emphasize that the estimate
in the following lemma is independent of 7.
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LEMMA 5.17

Given v € span{eq,...,e,} with |v|, =1, let y : [0, 1] — span{e;....,e,} be the unit
speed parameterization of the line segment I = [0,v] in £,. Let y be obtained from
y by adding a bump of relative height n in the direction e, 41 (see Algorithm 5.12). If
n < 1/16, then szlq(l) = |v|4 and

(5.37) I, (7(10,1])) = H;, (1) <4 (n/lvlq)qlvlq-

Proof

The estimate is nearly identical to the calculation in Remark 5.14. Since n < 1/16,
each of the four edges of y(/) in £, have length s € [1/4,3/8) given implicitly by the
equation s? = (% —s5)? +nP. Indy,, erlq (1) = |v|q (since I is a segment) and the four
edges of y (/) have total length

el (7((0.1])) = 2s]vlg +2(<% —S)qlvlz N nq)l/q
=2slv]g + (1 —2s)|v|q(1 + (% —s>_q|v|;qnq)l/q

1 -q 1/q
<Plg(1+(5-5) llr?)

Applying (1 +8)/7 <1 + 58 for all § > 0 with § = (% —5)"9|v|;7n4, we conclude

. 1 n q 1/ 8n\¢
g} o,1N)) <vly + —(———) Ivls <Ivlg + —-(—) |v],.
Zq(y([ ])) lvlg q((%_s)h)'q) lvlg < vlg q(|v|q) lvlg 0

The next estimate is elementary and left as an exercise for the reader.

LEMMA 5.18
1 1
Foralln e Nandv €}, |vlg =na™ 7 |v]p.

We may now give a uniform estimate on the length of the intermediate curves I,
approximating I" in £,.

LEMMA 5.19
With the exponents and the parameter nf’ =§/(i log(i + ip)) fixed as above, the inter-
mediate curves produced by Algorithm 5.12 satisfy

erlq(rn) <C(p,q) <o foralln=>1,
where C(p,q) is a constant depending on p and q with C(p,q) 1 coas q | p.
Proof

The initial segment 'y = [0, e;] satisfies J(’elq (To)=1.Letn >0, let 1 <k <4",
and let J = y,([(k — 1)47",k47"]) be an edge in T',. Assign J* := y,11([(k —
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1)47",k47"]). By Lemmas 5.17 and 5.18,

77n+1<7€41p(-])

D) ) (Y

He, (J5) = H (J) <4 ( 1T
(n+ 1)

Summing over the 4" edges J in Iy, it follows that

Nn+1 a
96, (Cuen) < (14 Co(—5—)") %], (T,
(n+1)a 7>
where C, is a positive constant depending only on g. Therefore,

JQ (T,) < ]_[1<1 +Cq< et )q) Sexp(quXn:(ln_i )‘1)

1
— fa»

Finally, recalling our choice of 7;,

i N \9  ~=y8YPi7VUPlog(i +ig) 1 /P\a & §4/p
Z(.L_IL) 52( 1_1 ) Zzlog(z +lo)q/p

i=1 19 7 i=1 ia i=1

because g/p > 1. All together, erlq (I'y) < C(p,q) < oo, where C(p,q) T oo when
qip. O

By (5.27), y» converges uniformly to y in £,, and thus in £,. Hence, I',, converges to
I' in the Hausdorff metric on compact subsets of £,. Therefore, by Gotab’s semiconti-
nuity theorem (see, for example, [3, Theorem 2.9]), szlq (T) < liminf, o0 J(’Zlq Ty) <
C(p,q) < oo forall g > p. This completes the proof of Proposition 1.1.

Appendix. Schul’s prefiltration lemma in a metric space

Before we start the proof of Lemma 3.20, we record proofs of a couple of metric
lemmas. Recall that a pseudometric on X is a function d : X x X — [0, co) such that
d(x,x)=0,d(x,y)=d(y,x),and d(x,z) <d(x,y) + d(y,z) forall x,y,z e X.

LEMMAA.1

Let X be a metric space. If f :[0,1] = X is a continuous parameterization of a set
¥ C X, then d(a,b) = diam f([a,b]) is a pseudometric on [0,1]. Furthermore, with
respect to this pseudometric, if 0 <a <b < x <y <1, then diamy([a,b]) = d(a,b)
and gap, ([a.b]. [x, y]) = d (b, x).

Proof
To verify that d is a pseudometric on [0, 1], only the triangle inequality requires some
thought. Given a, b, ¢ € [0, 1], set

A= f([a.b]). B = f([b.c]), C = f(la.c]).

so that diam A = d(a, b), diam B = d(b,¢), and diam C = d(a, c). Up to relabeling,
there are two cases.
Case 1. 1fa <c <b,then C C Aand d(a,c) <d(a,b) <d(a,b)+d(b,c).
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Case 2. Suppose a < b < c. We now argue as in [3, Lemma 2.18], a step in a proof
of Gotab’s semicontinuity theorem. Let p and ¢ be points in C such that dist(p, q) =
d(a,c). Consider the 1-Lipschitz function F : C — R defined by F(x) = dist(x, p).
Then

d(a,b) + d(b,c) > diam F(A) + diam F(B) > diam F(C) > d(a,c),

where the first inequality holds since Lip(F) = 1, the second inequality holds since
F(A), F(B), F(C) are intervals in R with F(C) C F(A) U F(B), and the third
inequality holds since F(p) = 0 and F(q) = dist(p,q) =d(a,c).

Suppose that I = [a,b] C [0, 1]. On the one hand, for any a <da’ < b’ < b, we
know that the distance d(a’, b’) = diam f([a’, b’]) < diam f([a, b]) = d(a. b) because
[@’,b'] C [a,b]. Hence, diamy I < d(a,b). On the other hand, diamy I > d(a,b)
because a,b € I. A similar argument yields the formula for the gap between inter-
vals. ]

REMARKA.2

If the parameterization f : [0, 1] — X has positive constant speed, then the pseudomet-
ric d on [0, 1] is a metric. The pseudometric d on [0, 1] bears some similarity to the
intrinsic diameter distance on X; see, for example, [39, 46].

EXAMPLE A.3

Let {e; }72 | denote the standard basis in £5. Fix alarge integer n > 1 and let f : [0, 1] —
£, be a continuous map, which traces a constant-speed, piecewise linear path from
e1 to e3 to e3 and so on until reaching e, ;. Decompose [0, 1] into n intervals I; =
f~Y([ei,ei+1]). With respect to the metric d of Lemma A.1, we have diamy I; =
diam f(I;) = +/2 for all i and diamg[0, 1] = diam £ ([0, 1]) = +/2. This shows that
diamy is not superadditive. Similarly, even though there are > n/2 disjoint intervals of
diameter +/2 lying between I; and I,,, we only have gap,; (1. 1,) = |es — e, le, = V2.

The second auxiliary lemma is related to [63, Lemma 2.16] and [14, Lemma A.1], but
with an alternative gap condition that is motivated by the previous example.

LEMMA A.4

Let X be a metric space, let f :[0,1] — X be a continuous parameterization of a set
Y CX, letE>6, andlet 0 <r_ <ry < oo. Suppose {Ji}i1=1 is a finite (I < o00) or
infinite (I = o0) sequence of closed intervals in [0, 1] and (ki)il=1 is a sequence of
integers bounded from below such that

(1) chain property: forall 1 <i < I, we have J; N Ji+1 £ @;

(2) geometric decay: for all i > 1, we have diam f(J;) <& %iry; and

(3) separation within levels: for all i, j > 1 withi # j, ifk; =k; =k, then
there exists at least [3ry /r_]| pairwise disjoint closed intervals K with
diam f(K) > £ %r_ and such that K lies between J; and J; as subsets of R.
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If& > ry/r_, then there exists a unique M > 1 such that ks = min;>; k;; moreover,

1
(A1) D diam f(J;) < (1+3/6)§Mry.

i=1

Proof
Without loss of generality, we may assume that r— = 1 and 1 < r+ < co. Suppose that
& > 6 is sufficiently large, ultimately depending only on r, to be specified below. Fix
sequences {J; }iI=1 and (k,-)il=1 as above. We claim that for every integer 1 <n <1,
there exists a unique 1 < m < n such that k,, = min}_, k; and
n
(A2) D diam f(Ji) < (142671 +4E72 482 ) Ry
i=1

The base case n = 1 is trivial. Suppose for induction that the claim holds whenever 1 <
n<N.Putn =N + 1 and choose anindex 1 <m < N + 1 such that k,,, = minfvz“;l ki.
(We do not yet know that m is unique.) Separate {J; : 1 <i <N + 1} \ {J,,} into two
chains {Jq,...,Ju—1} and {Jpy 41, ..., JN+1}, each of which contains no more than N
intervals. Working with the first chain (unless it is empty), the induction hypothesis and
fact £ > 6 implies that there exists a unique 1 < j <m — 1 such that k; = min:-":_ll ki
and

m—1

D diam f(J;) < (142671 + 4672+ 8670 )8 r < 3/

i=1
We know that k; > k, by our selection of m. Suppose for contradiction that
k; = kn. By property (3), we can locate P = [3r ] pairwise disjoint closed intervals
Ki,K>, ..., Kp such that each K, lies between J; and J,, and diam f(K,) > S_k-/.
This immediately implies that J; and J, do not intersect, so j < m — 2. For
any j +1<i <m —1, we have k; > k; + 1 by our specification of j; hence,
diam f(J;) < £ %ir, <& ¢ %ir, < &% provided that & > r,. This ensures that
each interval J; with j +1 <i <m — 1 intersects at most two of the intervals K.
(Otherwise, if some J; intersected three or more intervals, then J; D K, for some
p and £/ > diam f(J;) > diam f(Kp) > £7%/. We remark that if we allowed
diam f(J;) > diam f(K,) for some p, then we could not control the overlap; see
Example A.3.) Now, U§=1 K, C Uf";]l 41 Ji because the latter intervals connect J;

and J,, by (1). All together, these observations yield

P m—1
PER <N " diam f(Kp) <2 Y diam f(Ji) <3 % ry.
p=1 i=j+1
Thus, P < 3ry < [3r4] = P, which is a contradiction. Therefore, we have k; >
kyn + 1.1t follows that k; > k,,, forall 1 <i <m — 1 and

m—1

3 diam f(J;) < €714 267 44572 4 8E D 4o )E R

i=1
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A similar conclusion holds for m + 1 <i < N + 1. Adding the estimates verifies the
induction step.

To conclude, let M > 1 be an index such that kj = miniI:l k;, which exists
because the sequence (ki)il=1 is bounded from below. Because for all integers 1 <n <
I, there is a unique index 1 <m <n such that k,, = min,’-‘:1 k;, we discover that M is

unique and k,, = ks for all n > M. Finally, (A.1) follows from (A.2) since £ > 6. [

Proof of Lemma 3.20

In the construction below, we view Diam(t), the diameter of the image of an arc t, as
a weight assigned to Domain(t), a closed interval lying in the domain of the map f.
From this vantage point, a filtration is simply a nested family of finite partitions of some
set K C [0, 1] into intervals with geometrically decaying weights. This heuristic can be
formalized using the pseudometric from Lemma A.1. As shorthand, we may speak of
the intersection or union of arcs, but we always mean the arc formed by taking the
intersection or union in the domains of the arcs.

Letp>1,let0 < A < A <oo,andlet J > 1 be an integer, with J sufficiently large
depending on p and A/A to be specified below. Without loss of generality, we may
assume that A =1 and 4 > 1. Let ° be an admissible family of arcs in X. Our plan
is to first preprocess F, partitioning it into a finite number of families D', D2, ...
of well-separated arcs. We then transform each family £/ into a nested family &/ of
arcs satisfying (3.24) and (3.25). (This is where we use Lemma A.4.) Afterwards, we
describe how to extend each family &7 to a filtration ¥/ with the same conclusions.

To begin, using the bounded overlap assumption, break F° into C or fewer
nonempty families such that within each family, arcs in the same level n are pairwise
disjoint. Note that some levels of a family may be empty. By splitting each family into

[BA]+1 (<54)

families, as necessary, we may assume that any pair of distinct arcs in level n of a
family is separated in the domain by at least [3A4] disjoint arcs o with Diam(a) > p™".
Next, break apart each family of arcs into J (or fewer) nonempty families by jumping
J generations at a time (that is, within each family), group together all levels n with n —
ng =m (mod J), relabeling so that each original level n = (ng +m) + kJ is assigned
to level N = (ng + m) + k. Denote the resulting 5ACJ or fewer families by D! =
U:o=nl DY, D2 = U;.zo=n2 D2, ..., with starting index nje{ng.no+1,....n9+J —
1} for all j. Note that level n in O/ correspondstoleveln; +J(n—n;)=Jn—(J —
Dnj in FO. By our assumption on the diameters of arcs in FO.ifn > njand T € @,{,
then

(A3) p =D p=Im < Diam(r) < (4pY D) p 7"

Further, any pair of distinct arcs in !D,{ is separated in the domain by at least [3A4]
disjoint intervals o with Diam(c) > p/=Dnj p=J/n,

Next, we transform D!, D2, ... into nested families &1, 2, ... of arcs. This will
require us to join certain overlapping arcs, thereby increasing the diameter of arcs. By
choosing J to be sufficiently large, we can control the growth of diameters.
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Fix a family /. For each n > n;, let JL),{Jr = i),{Jrl U i),{H U i),{+3 U---. Fix
alevel n > n; and an arc T € D; . We inductively define a sequence of arcs by fusing
the arc and all overlapping arcs from future generations relative to t. Formally, we set

=1, Tp1=/f ( U Domain(z) (k > 0),

{oeD] , :ony A0}

o
Too = f‘ U Domain(tx),

k=0
where o N 15 # @ means Domain(o) N Domain(tx) # @ and f|I denotes the restric-
tion of f to I. Let us upper bound Diam(ts) in terms of Diam(z). Each arc tj44
can be obtained by taking the union of 7 and up to two arcs o, and OI:F that intersect,
but are not contained in tz, one of each side. Thus, T, can be obtained by concate-
nating t and two arcs, T~ and tT, with domains on either side of Domain(t), where
7~ and T can each be expressed as the union of a finite or infinite chain of arcs in
éD,{Jr. By Lemma A.1, Diam(z¥) <, Diam(o,f). To continue, we need J to be
sufficiently large. Assume that p/ > 64 > max{6, A}. By Lemma A .4, with £ = p’,
= p(.l—l)nj ,and ry = Ap(.l—l)nj ,

Diam(z*) < (1 + 3/p” )(Ap ~Vni) p=I (D)
(A4) 1

<
4

pV=bnj p=In < i Diam(z).

Therefore,
Diam(ts,) < Diam(z™) + Diam(z) 4 Diam(z ™)

(A.5) 3 3
< Diam(z) < E(Apu —Dnjyp=In,

Recall that distinct arcs 7 and 7 in i),{ are separated by an arc (in fact, several arcs)
o of X with Diam(o) > p=Dnj p=Jn Thus, by (A.4) and the triangle inequality, for
any distinct 7,7 € ;) , the domains of 7o, and 7o, are separated by some arc o in ¥
with

1
(A.6) Diam(o) > - p =D p=In,

For each j and n > n, define 8,1, by including the arc 74 in 8,{ for each arc t €
i),{ . By (A.3) and (A.5), the families &/ = U;‘;n/ 8,], satisfy—even better inequali-
ties than—(3.24) and (3.25), where the roles of “t’ € £,2” and “t € ¥ 1(,"’ in the state-
ment of the lemma are played by t € !D;{ and 7 € 8,{ , respectively. Let us verify
that &/ is a nested family of arcs in the sense that if (the domains of) 7o, and 7o in
&7 intersect in more than one point, then Domain(z.o) is contained in Domain(zx)
or vice versa. Suppose that t >n >n;, v € !O,{ , T E i),j , and 7o, and T intersect
in at least two points. Then the interiors of Domain(zs,) and Domain(z7s,) intersect.
Hence, Domain(z;) and Domain(7;) intersect for some k,/ < oo, as well. Because 7;
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is a finite union of overlapping arcs JO(J;_I)Jr and ¢ > n, it follows that T; C g4, for
some sufficiently large positive integer m. Thus, Tj4; C Tk4m+; for all i > 0 by the
construction, and therefore, Too C Too- As an immediate corollary, distinct arcs in each
level 8,{ intersect in at most one point. However, by (A.6), we know even more: for
every j and n > nj, the arcs in 8,{ are pairwise disjoint. Reviewing the construction so
far, we see that the map that assigns each arc 7 € £, to an arc 7o € 8r{j+(n_nj)” is
1njective.

To build filtrations %/ out of the families &7, it remains to add arcs to each level of
a family, as necessary, to ensure that the domain of any arc is the union of the domains
of its children. Fix a family &/. We will work top-down, starting with level n = n .
Let 741, ..., % denote the arcs in 8,{ , ordered from left to right using the natural order
of their domains as subsets of R. It is possible that this list is empty. From left to right,
expand

f=0pUrniUoi U U---Urtg_y Uog—1 Ut Uog

with domains of consecutive arcs intersecting in exactly one point; the initial and final
arc 0g and o; may be empty or nonempty. If 8{ is empty, write f = 0. Suppose that
o = o; is nonempty. There are three alternatives.

Alternative 1. If it happens that Diam(c) is between (1/4)p"~D"ip™" and
p=Dnj p=" e make no modification and include o in 37”]‘ .

Alternative 2. Another possibility is that Diam(c’) < (1/4)p"Y =D o~ If 0 = o;
for some 0 <i <k — 1, set T = t;41, the first arc to the right; if 0 = oy, set t = 7,
the first arc to the left. Replace t by o U t. By (A.5), the modified arc satisfies

Diam(z) < (3/2)ApY =" p™ + (1/4)pY =1 o7 < (7/4) 4pY =1 p7.,

(Exceptionally, if f = 0o U 77 U 07 and both oy and o7 have small diameters, replace
T by 09 U T U 0 instead; in this case

Diam(z) < (3/2)Ap" =D p= 4 2(1/4)pV ~Dmi o= < 24p =D p71 )

Similarly, if the original arc t € 8,{ came from extending an arc T’ € i),{ , then the modi-
fied arc 7 satisfies Diam(t) < (7/4) Diam(z’) (exceptionally, Diam(z) < 2 Diam(z’)).
Include the modified arc 7 in f,ij .

Alternative 3. Lastly, suppose that Diam(c) > p/ D" p=". We will partition &
into a finite number of shorter arcs ¢; of diameter between (1/4)p 1"/ p™" and
p=Dnj p= (see Remark 3.5) but need to do this in an intelligent way in order to
maintain nested levels. Let {£1,&,,...} be an enumeration of the maximal arcs in
8,{+ = 8,{“ U 8,{+2 U--- whose domains are contained in Domain(o). (There may be
none.) Earlier we declared that p/ > 6A. Hence, Diam(§;) < (3/2)Ap ~Dnp=n+1) <
(1/4)pY=Dmj p=" We need to make sure that the endpoints of arcs in our partitions of
o do not lie in the interior of Domain(;) for any /. Proceed as follows: Let a be the left
endpoint of Domain(o). Choose ¢ > 0 as large as possible so that Diam( f |[4,q++]) =
(1/4)pY=D; p= which we may do because the diameter varies continuously in ¢ and
Diam(o) is large. If a + ¢ does not lie in the interior of Domain(§;) for any [, then we
set {1 = f|{a,a+¢ and have Diam(¢;) = (1/4)pY=D1j o= Otherwise, if a + ¢ lies in
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the interior & for some /, set {1 = f'|[4,a+:] U &, which satisfies (1/4)pY=Dnj p=n <
Diam(¢;) < (1/2)pY =D p="  Repeat a similar construction on o \ {1, this time let-
ting a be the left endpoint of Domain(o \ ¢;) and choosing ¢ > 0 as large as possible
0 that Diam(f |fa.a+r1) < (1/4)pY 0% g™ 1f Diam(f lja.an)) = (1/4)p0 0",
then continue as before and iterate. Otherwise, at some stage, o \ ({1 U - U () # 0,
but Diam( f |(4,a++]) < (1/4)pY=Dmj =" where t is the right endpoint of the domain
of 0. Replace { by {m U f[a,a+¢- This may increase the diameter of {,,, but in any
event, the modified arc satisfies (1/4)p" ="/ p=" < Diam(¢,) < (3/4),0(1_1)'” p"

Include each of the intervals ¢y, ..., {;, from the partition of ¢ in "J .

Carry out the indicated construction for each nonempty o = o;. Also include any
arc 7; in ?,,’ if it was not already included. This completes the definition of %, . /. To
define the next level ?7" 11, repeat the construction from above on each arc 7 in 37,,]
independently, with f replaced by 7. By induction, we obtain a definition of 7/ =

Ure =n; Fri / on each level. The family %/ is the desired filtration. O
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