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Abstract We prove that in any Banach space, the set of windows in which a rectifiable curve
resembles two or more straight line segments is quantitatively small with constants that are
independent of the curve, the dimension of the space, and the choice of norm. Together with
Part I (also published in this issue), this completes the proof of the necessary half of the
analyst’s traveling salesman theorem with sharp exponent in uniformly convex spaces.

Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
2. Schul’s martingale argument in a Banach space . . . . . . . . . . . . . . . . . . . . . . 282
3. Outline of the proof of the main theorem . . . . . . . . . . . . . . . . . . . . . . . . . . 289
4. Geometric preliminaries and coarse estimates . . . . . . . . . . . . . . . . . . . . . . . 295
5. Necessary and sufficient cores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
6. Proof of Lemma I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
7. Proof of Lemma II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
Appendix A: Unions of overlapping balls in a metric space . . . . . . . . . . . . . . . . . . 324
Appendix B: Lipschitz projections onto lines in Banach spaces . . . . . . . . . . . . . . . 326
Appendix C: Comments on Lemma 3.28 in Schul [27] . . . . . . . . . . . . . . . . . . . . 327
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329

1. Introduction

1.1. Background
Given “snapshots” of a setE in a metric space X at all locations and scales, the analyst’s
traveling salesman problem (TSP) is to determine whether or not E is contained in
a rectifiable curve, and if so, to estimate the length of the shortest such curve. Full
solutions to the analyst’s TSP (characterizations of subsets of rectifiable curves) have
been found in R

n [19, 24], in arbitrary Carnot groups [23], in Hilbert space [27], and
in certain fractal-like metric spaces [12]. For the related measure-theorist’s traveling
salesman problem and its solution in R

n and also in Carnot groups, see [5, 6, 9]. Partial
results on the Analyst’s TSP in other metric spaces have been obtained by Hahlomaa
[16, 17] and David and Schul [11] and for higher-dimensional objects [4, 8, 18, 28].
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Refined estimates on the length of the shortest Jordan curve containing a set in R
n or

Hilbert space have been given in [10, 21]. In Part I [7] and in the present paper, we
address the Analyst’s TSP on a general Banach space.

Let X be a (real) Banach space, let E � X be a nonempty set, and let Q � X be a
set of finite, positive diameter. If E \Q¤;, we define

(1.1) ˇE .Q/D inf
L

sup
x2E\Q

dist.x;L/

diamQ
2 Œ0; 1�;

where the infimum ranges over all lines L � X. If E \ Q D ;, then we assign
ˇE .Q/D 0. These are a geometric variant of least squares errors introduced in [19]
and are now called Jones’ beta numbers. If ˇE .Q/D 0, then the portion of the set E
inside of the “window” Q is contained in some line L; if ˇE .Q/ & 1, then for each
line L passing through Q, at least some part of E \Q is far away from L. An easy,
but important, consequence of the definition is

(1.2) ˇE .R/�
diamQ

diamR
ˇF .Q/ for all E � F and R�Q:

Thus, an estimate of flatness at one scale yields (a worse) estimate of flatness at a
smaller scale. Because any rectifiable curve � �X admits tangents lines almost every-
where with respect to the 1-dimensional Hausdorff measure H1, it is perhaps reason-
able to expect that limr!0 ˇ�.B.x; r//D 0 at H1-a.e. x 2 � . Following [19], which
marks the start of quantitative geometric measure theory as its own subject, we are
interested in making this qualitative statement more precise.

In Part I [7], we established universal sufficient conditions for a set in an arbitrary
Banach space to be contained inside a rectifiable curve, as well as improved estimates
on the length of the shortest curve containing a set in uniformly smooth spaces. The
origin of this result is Jones’s criterion [19] for the existence of a rectifiable curve pass-
ing through a given set in R

n, which is usually stated using systems of dyadic cubes.
However, because we work in infinite-dimensional settings, we prefer to use Schul’s
formulation [27] in terms of multiresolution families. Recall that an �-net for E �X is
a maximal set X �E such that jx � yj � � for all distinct x;y 2X . A multiresolution
family G for E with inflation factor AG > 1 is a family ¹B.x;AG2

�k/ W x 2Xk ; k 2 Zº

of closed balls with centers in some nested family � � � �X�1 �X0 �X1 � � � � of 2�k-
nets Xk for E . Analogously, if each set Xk is a 2�k-separated set, but possibly one or
more of the sets Xk are not 2�k-nets, then we call G a partial multiresolution family
for E .

THEOREM 1.1 ([7, 19, 27])
Let X be Banach space and let 1� p � 2. Suppose that

(i) X is an arbitrary Banach space and pD 1; or,
(ii) X is a uniformly smooth Banach space of power type 1 < p � 2; or,
(iii) X is a Hilbert space and pD 2; or,
(iv) X is a finite-dimensional Banach space and pD 2.
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If E �X, G is a multiresolution family for E with inflation factor AG � 240, and

(1.3) SE;p.G / WD diamE C
X
Q2G

ˇE .Q/
p diamQ<1;

then E is contained in a rectifiable curve � � X with H1.�/ .AG ;X SE;p.G /. (When
p D 1, restrict the sum in the definition of SE;1.G / to balls Q 2 G with diamQ .
diamE .)

REMARK 1.2
In cases (i) and (iii), the implicit constant in Theorem 1.1 in the comparison
H1.�/.AG ;X SE;p.G / depends only on AG . In case (ii), the implicit constant depends
only on AG and the modulus of smoothness of X. In case (iv), the implicit con-
stant depends on AG , the dimension of X, and the bi-Lipschitz constant of a chosen
embedding X ,! `dimX

2 .

In the present paper, we complete the proof of the following theorem, which is dual
to Theorem 1.1. Where the modulus of smoothness is the relevant characteristic of a
space for sufficient conditions, the modulus of convexity of the space is the relevant
characteristic for necessary conditions. The special cases X D R

2 and X D R
n, n� 3

of Theorem 1.3 are originally due to Jones [19] and Okikiolu [24], respectively. When
X is an infinite-dimensional Hilbert space, the theorem was identified in [27], but the
proof in that paper has serious gaps (see [7, Remark 3.8] and Appendix C), and a
complete proof seems to not have been written until now. (An alternative fix of some
portions of the proof in Schul’s paper is proposed by Krandel [21].)

THEOREM 1.3
Let X be a Banach space and let 2� p <1. Suppose that

(i) X is a uniformly convex Banach space of power type 2� p <1; or,
(ii) X is a Hilbert space and pD 2; or,
(iii) X is a finite-dimensional Banach space and pD 2.

If E � X is contained in a rectifiable curve � and G is any (partial) multiresolution
family for E , then SE;p.G /.AG ;X H1.�/.

REMARK 1.4
Again, in case (ii), the implicit constant in the comparison SE;p.G / .AG ;X depends
only on the inflation factor AG . In case (i), the implicit constant depends only on AG

and the modulus of convexity of X. In case (iii), the implicit constant depends on AG ,
the dimension of X, and the bi-Lipschitz constant of an embedding X ,! `dimX

2 .

Combining Theorems 1.1 and 1.3, we recover Schul’s solution of the analyst’s TSP in
Hilbert space [27]. For derivation of Jones’s and Okikiolu’s dyadic cube formulation of
Corollary 1.5 in any finite-dimensional Banach space, see [7, Section 4].
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COROLLARY 1.5
Let X be any Hilbert space. A bounded set E � X is a subset of a rectifiable curve in
X if and only if

(1.4)
X
Q2G

ˇE .Q/
2 diamQ<1

for some (for every) multiresolution family G forE with inflation factorAG � 240. Fur-
thermore, if (1.4) holds, then E is contained in some rectifiable curve � with extrinsic
length H1.�/.AG

SE;2.G /.

The solution of the analyst’s TSP in Hilbert space depends heavily on the Pythagorean
theorem as well as invariance of distances under orthogonal transformation. These spe-
cial features of Hilbert space are not available in a general Banach space. While The-
orem 1.1 gives a sufficient test for a set to lie in a rectifiable curve and Theorem 1.3
provides us necessary conditions, a complete characterization of subsets of rectifiable
curves in an infinite-dimensional non-Hilbert Banach space is still unknown. The fol-
lowing example and remarks show that a new idea is needed. See [26] for further dis-
cussion of the underlying challenges and [11] for recent partial progress.

EXAMPLE 1.6
If 1 < p <1, then the Banach space XD `p of real-valued sequences x D .xi /11 with
kxkp D .

P1
1 jxi j

p/1=p is uniformly smooth of power type min¹p;2º and uniformly
convex of power type max¹2;pº. Let E � `p be bounded. By Theorem 1.1,

(1.5)
X
Q2G

ˇE .Q/
min¹p;2º diamQ<1H)E lies inside some rectifiable curve �:

By Theorem 1.3,

(1.6)
X
Q2G

ˇE .Q/
max¹2;pº diamQ<1(HE lies inside some rectifiable curve � .

Because min¹p;2º < max¹2;pº unless p D 2, this means that there is a strict gap
between Theorem 1.1 and 1.3 for infinite-dimensional non-Hilbert Banach spaces.

REMARK 1.7
In [7, Section 5], we constructed examples that show that the exponents in (1.5) and
(1.6) are sharp. For instance, for any 2 � p <1, we build a curve � in `p with
H1
`p
.�/ <1 and SE;p��.G /D1 for all � > 0.

REMARK 1.8
Equivalence of norms on finite-dimensional spaces ensures that a curve is rectifiable
independent of the choice of norm (although the length depends on the norm). By
contrast, the infinite-dimensional `p spaces are distinguished by their rectifiable curves
in the following sense. For each 1 < p <1, there exists a curve � in `p such that
H1
`p
.�/D1 and H1

`pC�
.�/ <1 for all � > 0. See [7, Proposition 1.1].
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The proof of Theorem 1.3 for uniformly convex Banach spaces started in [7, Sec-
tion 3] follows the outline of the argument in [27], but with the correction noted in
[7, Remark 3.24], which required weakening Schul’s original definition of “almost
flat arcs.” More specifically, we proved Theorem 1.3 modulo verification of [7, The-
orem 3.30], which is the main theorem of this paper. Roughly speaking, the main the-
orem is a quantitative strengthening of the statement that at H1, almost every point, at
sufficiently small scales, a rectifiable curve does not resemble a union of two or more
line segments. By proving the main theorem, we shall complete the demonstration of
Theorem 1.3.

The estimates that we establish below are universal insofar as they are valid in any
Banach space. Because of the general setting, we have very few tools at our disposal.
Our primary tools are the triangle inequality, connectedness of arcs, and existence of
Lipschitz projections onto 1-dimensional subspaces (see Appendix B).

1.2. Almost flat arcs and statement of the main theorem
For the remainder of the paper fix a Banach space .X; j � j/, a rectifiable curve � in
X, a (partial) multiresolution family H for � with inflation factor AH > 1 and centers
in a family .Xk/k2Z of 2�k-separated sets for � , and a continuous parameterization
f W Œ0; 1�! � . For the purpose of proving the main theorem below, we do not need
to (and shall not) place any restrictions on the modulus of continuity or multiplicity
of f , but if so desired, one may assume as in Part I that f is Lipschitz continuous,
#f �1¹xº � 2 for H1-a.e. x 2 � , and f .0/D f .1/ (see [1]).

DEFINITION 1.9 (Classification of arcs [7])
An arc, � D f jŒa;b�, of � is the restriction of f to some interval Œa; b�� Œ0; 1�. Given
an arc � W Œa; b�! � , define

Domain.�/D Œa; b�; Start.�/D �.a/D f .a/; End.�/D �.b/D f .b/;

Image.�/D �
�
Œa; b�

�
D f

�
Œa; b�

�
and Diam.�/D diam Image.�/:

For any ball Q 2H and scaling factor �� 1, let

(1.7)
ƒ.�Q/ WD

®
f jŒa;b� W Œa; b� is a connected component of f �1.� \ 2�Q/

such that �Q\ f
�
Œa; b�

�
¤;

¯
:

The elements in ƒ.�Q/ are arcs in 2�Q that touch �Q. Agree to write ˇƒ.�Q/.2�Q/
as shorthand for ˇS¹Image.�/W�2ƒ.�Q/º.2�Q/.

An arc � 2ƒ.�Q/ is called �-almost flat if

(1.8) ˇ.�/ WD ˇImage.�/
�
Image.�/

�
D inf

L
sup

z2Image.�/

dist.z;L/

Diam.�/
� 50�2ˇƒ.�Q/.2�Q/;

where L ranges over all lines in X and 0 < �2� 1 is a constant depending on at most
the inflation factor AH of H and �1 (see Definition 1.11). Denote the set of �-almost
flat arcs in ƒ.�Q/ by S�.�Q/.

An arc � 2 ƒ.�Q/ is called almost flat if ˇ.�/ � �2ˇ�.Q/. Denote the set of
almost flat arcs in ƒ.�Q/ by S.�Q/. An arc � 2ƒ.�Q/ n S.�Q/ is called dominant.
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REMARK 1.10
We do not require that arcs be 1-to-1. By (1.2), every almost flat arc is �-almost flat
provided that �� 25. The peculiar definition of �-almost flat arc—i.e., the constant 50
in (1.8), and the focus on scaling factors � 2 ¹1; 5º in arguments below are made in
order to implement the proof of [7, Lemma 3.29]. However, these choices will play no
direct role in the arguments in this paper.

Below, given an arc � and window Q, we write ˇ� .Q/ as shorthand for ˇImage.�/.Q/.
Similarly, given a set S of arcs, we write ˇS .Q/D ˇS¹Image.�/W�2Sº.Q/.

DEFINITION 1.11 (B balls)
Let 0 < �1� 1 be a constant depending on at most the inflation factor AH of H . Given
�� 1, let B� denote the collection of all balls Q 2H such that

(i) ˇ�.Q/¤ 0 and � n 14Q¤;;
(ii) if � 2ƒ.�Q/ and Image.�/ intersects the net ball

.1=3AH /QDB.x; .1=3/2
�k/ near the center of QDB.x;AH2

�k/, with
x 2Xk , then � 2 S.�Q/, and

(iii) ˇS�.�Q/.2�Q/ > �1ˇƒ.�Q/.2�Q/.

Assign B DB1 [B5.

REMARK 1.12
In Part I, we took �1 D 1=126AH to prove and use [7, Lemma 3.29]. The importance
of the net balls is that they are uniformly separated in each generation—i.e., if k 2 Z,
x1; x2 2Xk are distinct points, and Qi DB.xi ;AH2

�k/ 2H , then

(1.9) gap
�
.1=3AH /Q1; .1=3AH /Q2

�
� .1=3/2�k > 0;

where for any nonempty sets S;T �X, gap.S;T /D infs2S;t2T js � t j denotes the gap
between S and T . (In harmonic analysis, the notation dist.S;T /may be more familiar.)

If �2 is very small, then at the resolution of 2�Q, almost flat and �-almost flat arcs look
like line segments.1 Roughly, the class B consists of all balls in the multiresolution
family H such that 2�Q contains at least two �-almost flat arcs (with distinct images)
and the union of the images of arcs in S�.�Q/ is as nonflat as the union of the images of
all arcs in ƒ.�Q/. Our main theorem says that for any rectifiable curve in any Banach
space, the collection B of locations and scales with this behavior is rare relative to
H1.�/.

THEOREM 1.13 (Main theorem)
Assume that �2 is sufficiently small depending only on AH and �1; �2 D 2�55�1=AH

will suffice. For all q > 0,

1. At scales much smaller than 2�Q, almost flat and �-almost flat arcs can look like any rectifiable curve.
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(1.10)
X
Q2B

ˇ�.Q/
q diamQ .q;AH ;�1 H1.�/;

where the implicit constant blows up as q # 0.

REMARK 1.14
A consequence of the main theorem is that in order to prove Theorem 1.3 for a particular
curve � , in a particular Banach space X, and for a particular exponent p, it (essentially)
suffices to prove

P
Q2A ˇ�.Q/

p diamQ .p;AH
H1.�/, where Q 2A�H are balls

whose net ball .1=3AH /Q is intersected by a dominant arc. (Besides A and B, there is
also a class of C balls; see [7, Section 3.3] for details.) In Part I, we do this for curves
in uniformly convex Banach spaces of power type 2� p <1 and prove Theorem 1.3
assuming the main theorem ([7, Theorem 3.30]).

REMARK 1.15
In [27], Schul gives a version of the main theorem in Hilbert space but with some
differences. In particular, almost flat arcs � D f jŒa;b� in [27] satisfy the more stringent
requirement

(1.11) Q̌.�/D sup
c2Œa;b�

dist.f .c/; Œf .a/; f .b/�/

diam Image.�/
� �2ˇ�.Q/:

A geometric consequence is that Q̌ almost flat arcs that pass near the center of Q are
“diametrical” in the sense that diam Image.�/\Q � .1�O.�2//diamQ. By contrast
an almost flat arc with our definition that passes near the center of Q may be “radial”
in the sense that diam Image.�/\Q � .1=2CO.�2//diamQ. The existence of radial
arcs causes substantial difficulties in the proof of the main theorem; see Remark 3.5.
For additional comments on the proof of the theorem in [27], see Appendix C.

REMARK 1.16
R. Schul (personal communication) suggested an alternate approach to handling radial
arcs. If one assumes f is Lipschitz, then (1.10) for the subset of all Q 2B that contain
one or more radial arcs is subsumed by the Carelson-type estimates in Azzam and
Schul’s quantitative metric differentation theorem [3]. Such an approach entails passing
between multiresolution families in the domain and image of f , which is not needed in
the direct argument below. The techniques in this paper may be better suited to proving
a converse to the Hölder traveling salesman theorem [8].

We devote the remainder of the paper to the proof of the main theorem. The journey
is somewhat long, but we try to make the first few sections as easy to read as possible.
We hope that the reader who reaches the end may say that they have gained at least an
incrementally better insight into the mysteries of Banach space geometry. Sections 2–7
are best read in the order presented. In Section 2, we describe Schul’s clever idea to
prove (1.10) by constructing geometric martingales out of curve fragments [27]. We
show how to modify the original argument to account for the possibility of “radial”
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arcs. An important quantity introduced is diamHQ, the diameter of a “maximal arc
fragment” in the “core” UQ of a ball. In Section 3, we outline the proof of the main the-
orem, including a discussion of the underlying challenges and a plan to overcome them.
Ultimately, we reduce the proof of the main theorem to two key estimates, Lemma I
and Lemma II. Section 4 sketches the geometry of possible configurations of almost
flat arcs that we encounter in later proofs. Section 5 takes a crucial step toward better
estimates by identifying an auxiliary family of cores nearby a given arc fragment that
possesses a sufficient amount of “extra length.” A vital technical tool is Lemma 5.8,
which is proved using a topological argument.

We prove the main estimates in several stages. First, in Lemma 6.1, we show that

(1.12) diamHQ � 2H
1.� \RQ/C 1:37

X
diamHQ0 ;

where RQ is a “remainder” set and the sum ranges over all “children” UQ0 of the core
UQ. While this is a substantial improvement of the coarse estimate (3.6), which holds
with 2.01 instead of 1.37, to prove the main theorem we need the estimate to hold
with the coefficient of the sum strictly less than 1! In the end, by a case analysis and
iterating the proof of (1.12), using (1.12) instead of (3.6), we obtain the key estimate
with a coefficient less than 0.96. See Section 6 (proof of Lemma I) and Section 7 (proof
of Lemma II) for details.

2. Schul’s martingale argument in a Banach space

We describe Schul’s martingale argument (see [27, Section 3.3]) for upper bounding
sums of ˇ�.Q/q diamQ over subfamilies of B, where q is any positive exponent. In
this context, martingale refers to a recursively defined sequence of geometric weights
associated to a tree of “cores” of overlapping balls. We formalize this terminology
below. Schul’s method is robust and can be implemented in any Banach space.

2.1. Start of the proof: Reduction to existence of weights
Recall that if Q 2B, say Q D B.x;AH2

�k/ for some k 2 Z and x 2 Xk , then there
exists � D �.Q/ 2 ¹1; 5º such that every arc � 2 ƒ.�Q/ that intersects the net ball
B.x; .1=3/2�k/ is almost flat, ˇ.�/ � �2ˇ�.Q/, and hence is �-almost flat, ˇ.�/ �
50�2ˇƒ.�Q/.2�Q/. Moreover, the set S�.�Q/ of �-almost flat arcs in ƒ.�Q/ satisfies
ˇS�.�Q/.2�Q/ > �1ˇƒ.�Q/.2�Q/.

Suppose that we have broken up B into a finite number of (possibly overlapping)
families B.1/; : : : ;B.N /, where N is independent of X and �.Q/	 � 2 ¹1; 5º is uni-
form across all Q in any fixed family B.n/. (The partition that we eventually use is
described in Section 3.) To prove the main theorem, in particular (1.10), it suffices to
prove that for each B 0 DB.n/ and q > 0, we have

(2.1)
X
Q2B0

ˇS�.�Q/.2�Q/
q diamQ .q;AH

H1.�/

because ˇ�.Q/
q D ˇƒ.�Q/.Q/

q .q ˇƒ.�Q/.2�Q/q .q;�1 ˇS�.�Q/.2�Q/q for all
Q 2B.



Subsets of rectifiable curves in Banach spaces II 283

We now fix a family B 0 DB.n/ and describe a strategy to prove (2.1) for B 0. For
the remainder of the paper, we set

K WD 100C dlog2AHe � 100:(2.2)

The value of K is chosen according to certain geometric requirements below, but for
now the reader may think of K as being some large positive integer that is independent
of the family B 0. For the duration of the paper, for all integers M � 1 and 0 � j �
KM � 1, we let GM;j denote the set of all Q 2B 0 such that

� QDB.x;AH2
�k/ for some k 	 j .mod KM/ and x 2Xk , and

� 2�M < ˇS�.�Q/.2�Q/� 2
�.M�1/.

Each Q 2B 0 belongs to precisely one of the families GM;j for some integers M � 1
and 0 � j < KM � 1. We will prove that when �2 is sufficiently small compared to
�1=AH ,

(2.3)
X

Q2GM;j

diamQ .AH
H1.�/

for all M and j . (We refer to �1 only two more times, once in (3.1) and once in the
derivation of (4.2).) This suffices because for any q > 0,

X
Q2B0

ˇS�.�Q/.2�Q/
q diamQ �

1X
MD1

2�.M�1/q
KM�1X
jD0

X
Q2GM;j

diamQ .q;AH
H1.�/;

where in the last inequality, we used
P1
MD1M2�.M�1/q .q 1 andK .AH

1; i.e., (2.3)
for all M and j implies (2.1) holds for the family B 0.

We now fix integersM � 1 and 0� j1 �KM �1 and write G D GM;j1 . We make
a further reduction. Suppose that for each ball Q 2 G , we possess a Borel measurable
function wQ WX! Œ0;1� which satisfies two properties:Z

�

wQ dH1 &AH
diamQ for all Q 2 G I(2.4)

X
Q2G

wQ.x/. 1 at H1-a.e. x 2 �:(2.5)

Then X
Q2G

diamQ .AH

X
Q2G

Z
�

wQ dH1 D

Z
�

X
Q2G

wQ dH1 .AH
H1.�/I

i.e., the existence of weights wQ satisfying (2.4) and (2.5) implies (2.3). Our task is to
construct the weights, assuming that �2 is sufficiently small.

2.2. Cores and maximal almost flat arcs
Following [27], it will be convenient to introduce a nested family of “cores” U J;cQ , lying
near the center of balls Q 2H . Cores are formed by joining overlapping dilations of
balls in H from future generations, skipping by J generations at a time.
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DEFINITION 2.1 ([27])
Let Q 2H , say that Q D B.x;AH2

�k/ for some k 2 Z and x 2 Xk . For any integer
J � 4 and 0 < c � 1=5, we define the .J; c/-core U J;cQ of Q inductively by setting

U
J;c
Q;0 WDB.x; c2

�k/D .c=AH /Q;

U
J;c
Q;i WDU

J;c
Q;i�1 [

[
y2XkCJj for some j�1

B.y;c2�.kCJj//\U
J;c
Q;i�1

¤;

B.y; c2�.kCJj // for all i � 1;

U
J;c
Q WD

1[
iD0

U
J;c
Q;i :

Cores are a variation on the Christ–David “dyadic cubes” in a doubling metric space.
Although an infinite-dimensional Banach space is not a doubling metric space, we note
that the nets Xk are finite because � is compact. For a streamlined construction of
metric cubes that starts with any nested family of locally finite nets, see [22].

LEMMA 2.2 (Properties of cores, cf. [27, Lemma 3.19])
Given J � 4, 0 < c � 1=5, and 0� j � J � 1, let U be the family of cores defined by

UD
®
U
J;c
Q WQDB.x;AH2

�k/ for some x 2Xk and k 	 j .modJ /
¯
:

If Q;R 2 H with Q D B.x;AH2
�k/ and R D B.y;AH2

�m/ for some k;m 	

j .mod J /, x 2 Xk , and y 2 Xm, then the cores U J;cQ and U J;cR belong to the family
U and satisfy the following:

(i) Shape: B.x; c2�k/�U J;cQ �B.x; .1C 3=2J /c2�k/�B.x; .1=4/2�k/.
(ii) Separation within levels: If k Dm and x ¤ y, then

gap.U J;cQ ;U
J;c
R /� .1=2/2�k .

(iii) Tree structure: If m� k and U J;cQ \U
J;c
R ¤;, then U J;cR �U

J;c
Q .

Proof
For (i), given QD B.x;AH2

�k/, the first containment is immediate as B.x; c2�k/D
U
J;c
Q;0 � U

J;c
Q . For the second containment, U J;cQ � B.x; .1 C 3=2J /c2�k/, apply

Lemma A.1 with parameters � D 2J and r0 D c2�k and the balls B.y; c2�.kCJj //
appearing in the definition of U J;cQ assigned to level j . The reader should check that
the hypotheses of Lemma A.1 are satisfied, but here are the essential points: With
J � 4, the parameter � � 16 > 6. The chain hypothesis is satisfied by the construction
of the cores. The separation hypothesis is satisfied because the centers of balls in level
j are 2�.kCJj / separated and .1 � 2c/ � 3c. The final containment in (i) holds since
.1C 3=2J /c � 19=80 < 1=4 when J � 4 and c � 1=5. Property (ii) holds by property
(i) and fact that jx � yj � 2�k when x;y 2 Xk are distinct. When m D k, property
(iii) is immediate from property (ii). Finally, when m> k, property (iii) follows from
the construction. Indeed, U J;cQ \U

J;c
R ¤ ; only if U J;cQ;i \U

J;c
R;j ¤ ; for some i , j , so

U
J;c
R;jCl

�U
J;c
Q;iCjC1Cl

for all l � 0 since m> k. �
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DEFINITION 2.3
For all Q 2 H (in particular, for Q 2 G ), let UQ denote the .J; c/-core U J;cQ with

parameters J DKM and c D 2�12, with K as in (2.2), and let Q� denote U J;cQ;0.

REMARK 2.4
A core UQ looks like the ball Q�, except that it may have “tiny bubbles” pushing
outward near the boundary @Q� of the ball. Cores are not necessarily convex.

REMARK 2.5
If QDB.x;AH2

�k/ 2H for some k 2 Z and x 2Xk , then

(2.6) Q� DB.x; 2
�122�k/�UQ � 1:00001Q�

by Lemma 2.2 since 1C 3=2KM � 1C 3=2100 < 1:00001. (Fifth decimal place pre-
cision is chosen to facilitate select estimates in Sections 3–7.) If Q 2 G and Q0 D
B.y;AH2

�m/ 2 G for some m	 k .mod KM/ with m> k, then

(2.7) diam2�Q0 � 20AH2
�m � 32AH2

�KM2�k � 2�84 diamQ�

since 2�KM � 2�100A�1
H

, 32AH2
�KM � 2�95, and diamQ� D 2�112�k . In particu-

lar,

(2.8) 2�Q0 \ 0:99999Q� ¤;H) 2�Q0 �Q� �UQ:

REMARK 2.6
The core UQ of a ball Q 2H is much smaller than the net ball .1=3AH /Q: 210UQ �
.1=3AH /Q, where dilations are relative to the center of Q. When Q0 2 H n ¹Qº

and diamQ0 D diamQ, Lemma 2.2(ii) implies gap.UQ;UQ0/ � 210 diamQ� �
29 diamUQ.

REMARK 2.7 (Tree structure)
By Lemma 2.2, we may view G as a forest of trees ordered by inclusion of the cores
¹UQ WQ 2 G º;i.e., we declare P 2 G to be the parent of Q 2 G if and only if P is
the unique element such that UQ ¨ UP and UQ � UR � UP for some R 2 G implies
R 2 ¹P;Qº. Note that

(2.9) sup
Q2B

diamQ � .1=14/diam� <1

since � n 14Q ¤ ; for all Q 2B and � is a rectifiable curve. Hence, every element
of G sits below a maximal element in G —i.e., a ball without a parent. Extending the
metaphor, we say thatQ is a child of P if P is the parent ofQ. We let Child.P / denote
the set of all Q 2 G such that Q is a child of P . For each ball P 2 G , the set Child.P /
may be empty, nonempty and finite, or countably infinite. We also view ¹UQ WQ 2 G º

as a tree ordered by inclusion and call UQ0 a child of UQ if and only if Q0 2Child.Q/.
A child is a 1st generation descendent, a child of a child is a 2nd generation descendent,
etc.
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We now diverge slightly from [27] and introduce (possibly disconnected) fragments of
�-almost flat arcs on the image side of f . We also define a class of closed, connected
subsets of fragments called subarcs.

DEFINITION 2.8 (Fragments of �-almost flat arcs)
For each Q 2 G and nonempty set W � 2�Q, with � 2 ¹1; 5º determined by G , let
��W D ¹Image.�/\W W � 2 S�.�Q/º n ¹;º.

DEFINITION 2.9 (Subarcs)
Let T 0 2 ��W , say T 0 D Image.�/\W for some arc � 2 S�.�Q/. We say that T � T 0

is a subarc of T 0 if T D �.I / D f .I / for some nondegenerate interval I D Œa; b� �
Domain.�/; we say that the presentation T D f .I / is efficient if, in addition, diamT D
jf .a/� f .b/j.

REMARK 2.10
A subarc T of an arc fragment T 0 2 ��W may have several presentations—that is to say,
we may have T D f .I / and T D f .J / for some intervals I ¤ J . It is possible that
the presentation T D f .I / is efficient, but the presentation T D f .J / is not efficient.
This will not hamper the arguments below so long as we recall that the term “efficient”
always refers to a particular choice of presentation of T .

REMARK 2.11 (Choosing maximal arc fragments)
For any Q 2 G , say QDB.x;AH2

�k/ for some k 2 Z and x 2Xk , the set ��UQ of arc

fragments is nonempty since the core UQ is contained in the net ball B.x; .1=3/2�k/
and x 2 UQ. In fact, for every set T 0 2 ��UQ , there exists an almost flat arc � 2 S.�Q/

such that T 0 D Image.�/\UQ, since Q 2 G and G �B� (see Definition 1.11).
Among all sets in ��UQ , choose HQ 2 ��UQ such that

(2.10)
HQ \ .1=4/Q� ¤; and

diamHQ � diamT 0 for all T 0 2 ��UQ such that T 0 \ .1=4/Q� ¤;I

i.e., let HQ have maximal diameter among all fragments in UQ of almost flat arcs that
intersect .1=4/Q�. Let �Q 2 S.�Q/ denote any arc such thatHQ D Image.�Q/\UQ.
Existence of HQ is immediate because ��UQ is a nonempty finite set and at least one
fragment in ��UQ passes through the center of .1=4/Q�. If there are several candidates,
pick one in an arbitrary fashion. In principle, HQ may have several connected com-
ponents; e.g., even if �Q traces a line segment, the core UQ need not be a convex set.
Nevertheless,HQ always contains an efficient subarcGQ with diameter nearly equal to
that ofHQ; see (3.7) below. By comparison with an arc � 2 S.�Q/ with x 2 Image.�/
and (2.6),

(2.11) 0:5diamQ� � diamHQ � 1:00001diamQ� < 3H
1.� \UQ/;

where the diameter of HQ is closer to the lower bound if HQ is “radial” and closer to
the upper bound if HQ is “diametrical.” (The constant 3 is overkill.) Alternatively,

(2.12) 0:49999diamUQ � diamHQ � diamUQ � 2:00002diamHQ:
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Below, we use diamHQ to the play the role that diamUQ had in [27].

2.3. Martingale construction
In probability theory [14, Chapter 4], a martingale defined with respect to an increas-
ing sequence .Fk/k�0 of 	 -algebras is any sequence of real-valued random variables
.Yk/k�0 such that each Yk is Fk measurable and has finite expectation, and moreover,
the conditional expectations E.YkC1jFk/D Yk for all k. The martingale convergence
theorem asserts that if .Yk/k�0 is a martingale and Yk � 0 for all k, then Yk converges
to some random variable Y almost surely. We will use martingales to construct weights
satisfying (2.4) and (2.5), where the background “probability” is the finite measure
`DH1 � .

Let P 2 G be a fixed ball. For each k � 0, let Fk denote the 	 -algebra generated by
the coresUQ, whereQ is a descendent of P in G of generation at most k (including P ).
Thus, F0 D ¹;;UP ;XnUP ;Xº is the 	 -algebra generated by ¹UP º, F1 is the 	 -algebra
generated by ¹UP º[¹UQ WQ 2Child.P /º, etc. We remark that F0 �F1 �F2 � � � � �

BX, the Borel 	 -algebra. We build .Yk/k�0 inductively. First, assign Y0 to be the F0
simple function

(2.13) Y0 D
diamHP
`.UP /


UP ;

whereHP denotes the maximal arc fragment chosen in Remark 2.11. Note that Y0 is F0
measurable and

R
Y0 d`D diamHP . To continue, suppose that Q 2 G with UQ �UP .

Let k � 0 denote the unique integer such that Q is a descendant of P of generation
k; i.e., k D 0 if QD P , k D 1 if Q 2 Child.P /, etc. We will define YkC1jUQ to take
constant values on elements of FkC1 contained in UQ. If Child.Q/ D ;, then Q is
terminal in G and we simply set YkCi jUQ D YkjUQ for all i � 1. Otherwise, Q has at
least one and possibly @0 many children in G ; let Q1;Q2; : : : be an enumeration of
Child.Q/. We remark that the cores UQi of children of Q are pairwise disjoint. Now
define the remainder RQ,

(2.14) RQ WDUQ n
[
i

UQi ;

and define the auxiliary quantity sQ,

(2.15) sQ WD 101`.RQ/C
X
i

diamHQi :

Observe that sQ � 101`.UQ/ <1 by (2.11) and countable additivity of measures.
Assign YkC1jUQ to be the function

(2.16) YkC1jUQ D
�101
sQ


RQ C
X
i

diamHQi

`.UQi /sQ

Qi

�Z
UQ

Yk d`I

also assign YkCi jRQ D YkC1jRQ for all i � 2. Then YkC1jUQ is FkC1 measurable, andR
UQ

YkC1 d` D
R
UQ

Yk d`. Because UQ is an atom in the 	 -algebra Fk , the equal-
ity of the integrals ensures that E.YkC1jFk/D Yk on UQ. Repeating this construction
on each Q that sits k levels below P in G concludes the description of YkC1 given
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Yk . We have verified that YkC1 is FkC1 measurable and E.YkC1jFk/D Yk . Further-
more, the function YkC1 has finite expectation since

R
YkC1 d` D

R
Yk d` D � � � DR

Y0 d` D diamHP <1. Therefore, .Yk/k�0 is a martingale relative to .Fk/k�0.
By the martingale convergence theorem, .Yk/k�0 converges almost surely. Thus, we
may define the weight wP to be any non-negative Borel measurable function such that
wP D limk!1 Yk `-a.e.

The following observation is the key to unlocking (2.4) and (2.5).

LEMMA 2.12 (cf. [27, Lemma 3.25, Steps 2–3])
Suppose there is a universal constant 0 < q < 1 such that diamHQ � qsQ for all
Q 2 G . Then (2.4) and (2.5) hold for G .

Proof
Suppose that Q0 D P , Q1 2 Child.Q0/, . . . , Qk 2 Child.Qk�1/ is a finite branch of
G below P . Then, for all x 2UQk ,

Yk.x/D
diamHQk
`.UQk /sQk�1

Z
UQk

Yk�1 d`D
diamHQk
`.UQk /sQk�1

diamHQk�1
sQk�2

Z
UQk�1

Yk�2 d`

D � � � D
diamHQk
`.UQk /sQk�1

diamHQk�1
sQk�2

� � �
diamHQ1

sP

Z
UP

diamHP
`.UP /

d`

� qk
diamHQk
`.UQk /

< 3qk

by the hypothesis of the lemma and (2.11). Similarly, for all x 2RQk ,

YkCi .x/D YkC1.x/D
101

sQk

Z
UQk

Yk d`� 101q
kC1 for all i � 2:

Now, every point x 2UP either belongs to some RQ and Yk.x/ is eventually constant,
or x is contained in an infinite branch of G and Yk.x/! 0. Hence,

(2.17)
Yk.x/� 101 for all x 2X and k � 0; and

wP .x/� 101q
k whenever x belongs to a branch UQk �UQk�1 � � � � � UP :

Because Yk ! wP `-a.e. and Yk is uniformly bounded, Yk ! wP in L1.`/ by
Lebesgue’s dominated convergence theorem. Thus,Z

�

wP dH1 D

Z
wP d`D lim

k!1

Z
Yk d`D diamHP &AH

diamP

by (2.11)—i.e., (2.4) holds.
Finally, if some ball Q0 2 G is maximal in G (i.e., Q0 has no parent in G ) and

for some branch Q1 2 Child.Q0/, . . . , Qk 2 Child.Qk�1/ of G below Q0, a point
x 2 UQk , then

wQ0.x/CwQ1.x/C � � � CwQk .x/� 101q
k C 101qk�1C � � � C 101�

101

1� q

by (2.17). Since the upper bound is independent of the length of the branch and q is a
universal constant, this yields (2.5). �
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2.4. Summary
All things considered, we have shown that in order to prove (2.1) for a given family
B 0 � B, it suffices to verify the hypothesis of Lemma 2.12 for each subfamily G D

GM;j1 associated to B 0. (Look between (2.2) and (2.3) for the definition of G .)

3. Outline of the proof of the main theorem

Recall that B DB1 [B5. Some balls in B may belong to both families, but this will
not concern us. For the remainder of the paper, we let � 2 ¹1; 5º be fixed and focus on
establishing (2.1) for B 0 DB�. Throughout the sequel, we demand that

(3.1) �2 � 2
�55�1=AH ;

which ensures that at appropriate resolutions, every point in the image of an almost
flat arc lies close to some line segment. Furthermore, this choice guarantees that any
individual �-almost flat arc � 2 S�.�Q/ is much flatter than the union of the images of
all �-almost flat arcs in S�.�Q/. See Section 4.1 for details. We do not optimize �2.

REMARK 3.1
If desired, one can replace the scaling factor � 2 ¹1; 5º in the arguments below with
an arbitrary scaling factor �� 1. However, if � is very large, then one must adjust the
values of several parameters, including �2 in the definition of almost flat arcs, and J
and c in the definition of the cores UQ D U

J;c
Q . We restrict to � 2 ¹1; 5º because these

are the values needed for the proof of Theorem 1.3 presented in [7].

Later on, we would like to assume that every almost flat arc � 2 S.�Q/ that passes
through the net ball for Q has endpoints on the boundary of 2�Q. Exceptions may
occur if an endpoint of the full parameterization lies on the arc, but for each endpoint
this happens at most a finite number of times per scale. Checking (2.1) for such balls is
easy.

LEMMA 3.2
Let B�

0 denote the set of all Q 2B� for which there exists an arc � 2 S.�Q/ such that
Image.�/ contains f .0/ or f .1/ and Image.�/\ .1=3AH /Q¤;. For all q > 0,

(3.2)
X
Q2B�

0

ˇS�.�Q/.2�Q/
q diamQ �

X
Q2B�

0

diamQ .AH
H1.�/:

Proof
Fix any z 2 X (e.g. z D f .0/; f .1/). For the duration of the proof, let B�

z denote
the set of all Q 2 B� for which there exists an arc � 2 S.�Q/ such that Image.�/
contains z and intersects the net ball .1=3AH /Q. Choose k0 2 Z so that AH2

�k0

is the largest radius of a ball in B�
z . For each k � k0, let Ek denote all balls Q 2

B�
z of radius AH2

�k . Choose vQ 2 Image.�/ \ .1=3AH /Q for each Q 2 Ek . By
(1.9), (4.1), Lemma B.4, and Lemma B.5, the set ¹vQ W Q 2 Ekº \ B.z; 4�AH2

�k/

has cardinality at most 1C 36�AH . Thus, by (2.9),
P1
kDk0

P
Q2Ek

diamQ � 2.1C
36�AH /.1=14/diam� .AH

H1.�/. �
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Our strategy to prove (2.1) for B 0 DB� nB�
0 is to run Schul’s martingale argument.

That is to say, we must verify that the hypothesis of Lemma 2.12 holds for all Q 2 G ,
for each possible subfamily G D GM;j1 �B� nB�

0 :

(3.3) 90<q<18M8j18Q2G diamHQ � qsQ;

where the maximal arc fragment HQ associated to Q was chosen in Remark 2.11 and

(3.4) sQ D 101`.RQ/C
X

Q02Child.Q/

diamHQ0 :

There will be a number of cases, depending on the geometry of arc fragments in UQ
as well as on the geometry of arcs associated to Q0 2 Child.Q/, the children of Q in
the tree G (see Remark 2.7), and the size of the remainder RQ (2.14). Let us quickly
dispense with an easy case, which is connected to the choice of the constant 101 in
(3.4).

DEFINITION 3.3
Let Q 2 G .

� If `.RQ/ > .1=100/diamHQ, then we say that the remainder of Q is large.
� If `.RQ/� .1=100/diamHQ, then we say the remainder of Q is small.

LEMMA 3.4 (Case 1: Large remainder)
If Q 2 G has a large remainder, then diamHQ < 0:9901sQ.

Proof
By (3.4) and the definition of large remainder, diamHQ < 100`.RQ/ � .100=101/sQ
and 100=101D 0:9900 < 0:9901. �

Case 1 occurs if, for example, Q has no children in G . Having dealt with Case 1, we
may now make a standing assumption that any Q 2 G that we examine has a small
remainder. At a minimum, this assumption ensures that Child.Q/ ¤ ;. In fact, the
picture that the reader should keep in mind is that HQ (imagine a line segment through
the center of UQ) is intersected by many disjoint cores UQ0 with Q0 2 Child.Q/. We
emphasize that Child.Q/may be finite or infinite and diamUQ0 can be arbitrarily small
relative to diamUQ.

REMARK 3.5 (Challenges)
Broadly speaking, there are two challenges to verifying (3.3) for Q 2 G with a small
remainder. First, as we previously noted in Remark 2.11, each fragment HQ may be
disconnected. In principle, it is possible that

(3.5) diamHQ > `.RQ \HQ/C
X

UQ0\HQ¤;

diamUQ0 :

Thus, to verify diamHQ � qsQ, we must locate additional cores UQ0 with Q0 2

Child.Q/ that do not intersect HQ. In (3.5) and throughout the sequel, when we write
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Q0 inside the subscript position of a summation or union, we implicitly mean that,
in addition to any other restrictions, Q0 ranges over all Q0 2 Child.Q/, with Q fixed
nearby.

Secondly and more seriously, diamUQ0 � diamHQ0 for all children, but diamHQ0
could be significantly smaller than diamUQ0 if HQ0 is “radial.” For any closed, con-
nected set T � T 0 2 ��UQ , the diameter bound (2.12) leads only to the coarse estimate

diamT � `.RQ \ T /C 2:00002
X

UQ0\T¤;

diamHQ0 :(3.6)

This implies diamT � 2:00002sQ, which is insufficient to verify (3.3) because the
coefficient 2:00002� 1. See Lemma 4.6 for a proof of (3.6).

To sidestep the first challenge in Remark 3.5 and avoid complications near the bound-
ary, we narrow our focus to a smaller region inside of UQ and to an efficient subarc
GQ �HQ.

REMARK 3.6 (Choosing GQ)
For eachQ 2 G , we may invoke Lemma 4.3 with T 0 DHQ to choose IQ D ŒaQ; bQ��
Domain.�Q/ such that GQ WD f .IQ/�HQ \ 0:99999Q� and

(3.7)
ˇ̌
f .aQ/� f .bQ/

ˇ̌
D diamGQ > 0:99993diamHQ:

(A curious reader may jump ahead and read through the proof of Lemma 4.3 at this
stage; it depends only on the preliminary discussion and Lemmas 4.1 and 4.2 found in
Section 4.1.)

Overcoming the second challenge is more complicated. We need to account for length
in RQ and cores UQ0 appearing in a neighborhood of T DGQ that do not necessarily
intersect GQ. Ultimately, the reason that we can improve upon (3.6) is because we can
find a sufficient amount of “extra length” nearby GQ. Roughly speaking, for each UQ0
intersecting GQ, there exist at least two �-almost flat arcs in 2�Q0 that intersect �Q0.
To describe improved estimates for balls with a small remainder, we need to introduce
a classification of cores UQ0 of Q0 2Child.Q/ involving projections onto lines.

REMARK 3.7 (Projections, cylinders, and transverse arcs)
Given Q 2 G and a subarc T D f .Œa; b�/ � T 0 2 ��UQ , we define the line LT WD
f .a/C span¹f .a/ � f .b/º and choose a J -projection …T W X! LT onto LT (see
Appendix B). We will often identify LT with R. By default, we choose this identifica-
tion so that f .a/ lies “to the left” of f .b/. For every nonempty, bounded set W � X,
we define the cylinder PW WD…�1T .…T .W // of W over LT . If W is connected, then
PW is connected (because…T is continuous) and its complement XnPW has two con-
nected components, which we label PCW and P�W consistent with the orientation of LT .
If W is convex, then PW is convex, as well. See Figure 1.

We say that an arc � D f jŒc;d� 2 S�.�Q/ is W -transverse if its two endpoints lie
on opposite sides of PW : Start.�/D f .c/ 2 P˙W and End.�/D f .d/ 2 P�W .
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Figure 1. The cylinder PW over a ballW with respect to a J -projection…T D…LT in `21 (see Appendix B).

Figure 2. On the left, we show a core UQ0 of Q0 2 Child.Q/ with 2�Q0 containing a tall arc � . On the right,
we showUQ0 with 2�Q0 containing a wide arc � . The full set T DGQ associated to the larger coreUQ is not
displayed; since diamUQ� diamUQ0 , the set GQ may include the union of all arcs in the figure. Cores are
much smaller than illustrated.

DEFINITION 3.8 (“Necessary” cores)
Let Q 2 G and let T D f .Œa; b�/� T 0 2 ��UQ be an efficient subarc. Let …T be given
by Remark 3.7. Relative to T , we declare that a core UQ0 with Q0 2 Child.Q/ such
that 1:00002Q0� \ T ¤; has

� Property (N1) if there exists an arc � 2 S.�Q0/ such that Image.�/ intersects
both 1:00002Q0� and the closed region P1:01Q0� n int.4Q0�/; we say that � is tall.

� Property (N2) if there exists an arc � 2 S.�Q0/ such that
Image.�/\ 1:00002Q0� ¤; and � is UQ0 -transverse; we say that � is wide.
See Figure 2.

(These properties do not classify all cores UQ0 with Q0 2 Child.Q/.) Let N1.T / and
N2.T / denote the set of all (N1) cores, and all (N2) cores that are not (N1), respectively.
Assign N .T / WDN1.T /[N2.T /.
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REMARK 3.9
The cores in N .T / are “necessary” because we need them to improve the coarse esti-
mate (3.6). While necessary coresUQ0 lie close to T in the sense that 1:00002Q0�\T ¤
;, we do not require them to intersect T . The shadows …T .UQ0/ of necessary cores
cover …T .T / n…T .RQ/ up to a small error; see Section 5 for the details, especially
Definition 5.7 and Lemma 5.8.

We now record the main estimates of the paper.

LEMMA I (Improving the coarse estimate (3.6))
Let Q 2 G and let T D f .Œa; b�/� T 0 2 ��UQ be an efficient subarc. Define scales

(3.8)
rT WDmax

®
diamQ0� WQ

0 2Child.Q/; 1:00002Q0� \ T ¤;
¯

and

�T WD 2�AH � 2
12rT :

Suppose F is a (possibly empty) finite family of cores UQ00 with Q00 2 Child.Q/ such
that ¹2�Q00 WUQ00 2F º is pairwise disjoint and F satisfies

(F) For all UQ00 2F , we have 2�Q00 \ 16Q0� D; for every core
UQ0 2Child.Q/ with diamQ0 > diamQ00.

Let N2 DN2.T / and let NF denote the set of all cores UQ0 with Q0 2Child.Q/ such
that UQ0 � 1:99�Q00 for some UQ00 2F . Then

(3.9)

diamT � 2�T

� 2:2`
�
RQ \B9rT .T /

�
C

X
UQ002F

diam2�Q00

C 1:00016
X

UQ02N2nNF

diamHQ0 C 0:95
X

UQ0…N2[NF

diamHQ0 ;

where the sums in the second line may be further restricted to UQ0 contained in
B9rT .T /.

The proof of Lemma I is given in Section 6, using the setup of Sections 4 and 5. We
invite the reader to compare and contrast (3.9) with (3.6). While the coefficient 1.00016
is substantially smaller than 2.00002, it is unfortunately still not less than 1. As a con-
sequence, we must split verification of (3.3) for balls with a small remainder into two
cases.

LEMMA 3.10 (Case 2: Many non-N2 cores)
If Q 2 G (with or without a small remainder) and UQ has many non-N2.GQ/ cores in
the sense that

(3.10)
X

UQ0…N2.GQ/

diamUQ0 > 0:05diamHQ;

then diamHQ < 0:999sQ.
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Proof
By Lemma I, with T DGQ and F D ;, together with (3.7), the observation 2�GQ �
diamHQ (see (2.7), (2.11)), and the inequalities (2.12) and (3.10), we have

1:00016sQ D 101:01616`.RQ/C 1:00016
X

Q02Child.Q/

diamHQ0

� diamGQ � 2�GQ C .1:00016� 0:95/
X

UQ0…N2.GQ/

diamHQ0

� 0:99993diamHQ � 0:00001diamHQ

C .0:05016
 0:49999
 0:05/diamHQ:

Rearranging, we obtain diamHQ � 0:99898: : : sQ. �

The final case is the most difficult, requiring us to combine estimates inside and outside
of ¹2�Q00 W UQ00 2 Aº for a family of cores A � N2.GQ/. The family A is chosen
according to the following lemma, which we prove in Section 7.

LEMMA II
If Q 2 G has a small remainder and UQ has few non-N2.GQ/ cores in the sense that

(3.11)
X

UQ0…N2.GQ/

diamUQ0 � 0:05diamHQ;

then there exists a finite collection A�N2.GQ/ such that ¹2�Q00 W UQ00 2Aº is pair-
wise disjoint, A satisfies property (F) with T DGQ,X

UQ002A

diam2�Q00 � 0:04diamHQ; and(3.12)

X
UQ002A

diam2�Q00 � 2`.RQ/C 0:91
X

UQ02NA

diamHQ0 ;(3.13)

where NA WD ¹UQ0 WQ
0 2Child.Q/;UQ0 � 1:99�Q00 for some UQ00 2Aº.

LEMMA 3.11 (Case 3: Few non-N2 cores)
If Q 2 G has a small remainder and (3.11) holds, then diamHQ < 0:9963sQ.

Proof
Let A be given by Lemma II. By Lemma I, with T DGQ and F DA, and (3.13),

diamGQ�2�GQ � 4:2`.RQ/C0:91
X

UQ02NA

diamHQ0C1:00016
X

UQ0…NA

diamHQ0 :

Together with (3.7) and the observation 2�GQ � diamHQ (see (2.7) and (2.11)), fol-
lowed by (3.12) and (3.13) (again), we obtain

1:00016sQ D 101:01616`.RQ/C 1:00016
X

Q02Child.Q/

diamHQ0
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� diamGQ � 2�GQ C .101� 4:2/`.RQ/

C .1:00016� 0:91/
X

UQ02NA

diamHQ0

� 0:99993diamHQ � 0:00001diamHQ

C .0:04
 0:09016� 0:91/diamHQ:

Rearranging, we obtain diamHQ � 0:99629: : : sQ. �

In review, the hypothesis of Lemma 2.12 is satisfied with q D 0:999 < 1. This com-
pletes the proof of the main theorem, up to verification of Lemmas I and II.

4. Geometric preliminaries and coarse estimates

4.1. Basic geometry with beta numbers
Let’s record consequences of (3.1) on the flatness of almost flat and �-almost flat arcs
at some common scales. We use the fact that all beta numbers are bounded by 1, �2 D
2�55�1=AH � 2

�55=AH , and �� 5 < 8. Let Q 2 G and � 2ƒ.�Q/. If � is almost flat
(i.e., � 2 S.�Q/), then there is a line L such that

(4.1)
dist.x;L/� 2�2ˇ�.Q/Diam � � 2�54A�1H diam2�Q

� 2�50A�1H diamQ � 2�38 diamQ� 8x 2 Image.�/:

If � is �-almost flat (i.e., � 2 S�.�Q/), then there is a line L such that

(4.2)
dist.x;L/� 64�2ˇƒ.�Q/.2�Q/Diam � � 2�49A�1H ˇS�.�Q/.2�Q/diam2�Q

� 2�45A�1H diamQ � 2�33 diamQ� 8x 2 Image.�/;

where in the second inequality we used �1ˇƒ.�Q/.2�Q/ < ˇS�.�Q/.2�Q/ by Defi-
nition 1.11. (We shall never refer to �1 again.) Recall that 2�M < ˇS�.�Q/.2�Q/ �

2�.M�1/ whenever Q 2 G . In particular, for any Q 2 G and � 2 S�.�Q/, the line L
from (4.2) also satisfies

(4.3)
dist.x;L/� 2�49A�1H ˇS�.�Q/.2�Q/diam2�Q

< 2�M�48 diam2�Q 8x 2 Image.�/:

LEMMA 4.1 (Bilateral-ˇ estimate for arcs)
Let � D f jŒa;b� be an arc, let L be a line in X, and let …L be a J -projection onto L. If
dist.x;L/� ˇ for all x 2 Image.�/, thenˇ̌

…L.x/� x
ˇ̌
� 2dist.x;L/� 2ˇ for all x 2 Image.�/; and(4.4)

dist
�
y; Image.�/

�
� dist

�
y;…L

�
Image.�/

��
C 2ˇ for all y 2L:(4.5)

Proof
Let y 2L. Choose z 2…L.Image.�// such that jy � zj D dist.y;…L.Image.�///DW
ı. Next, choose x 2 Image.�/ such that …L.x/ D z. By Lemma B.4, jz � xj D
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j…L.x/� xj � 2dist.x;L/� 2ˇ. Thus, dist.y; Image.�//� jy � xj � jy � zj C jz �
xj � ıC 2ˇ. �

We emphasize that the following inequality (used to prove Lemma 4.3) is valid in any
Banach space; in particular, it does not require uniform or strict convexity of the norm.
It is instructive to think about the inequality in the case when XD `21 D .R

2; j � j1/

and the line segment .c; d/ is horizontal.

LEMMA 4.2
Let c; d 2 X, r > 0, and 0 < s < 1. If c; d 2 B.x; r/ and the segment .c; d/ intersects
B.x; sr/, then j.1��/cC�d � xj � r � r.1� s/min¹�;1��º for all 0� �� 1.

Proof
Without loss of generality, we may assume that x D 0. By assumption, there exists 0 <
� < 1 such that z D .1� �/cC �d satisfies jzj � sr . Suppose that y D .1��/cC�d
for some 0� �� �. Then y D .1� 
/cC 
z D .1� 
�/c C 
�d for some 0� 
 � 1.
This shows �D 
�; in particular, �� 
. Hence, jyj � .1� 
/jcj C 
jzj � .1� 
/r C

sr � r � r.1� s/�. The case � � �� 1 is similar, except that � should be replaced
by 1��. �

LEMMA 4.3 (Existence of GQ)
LetQ 2 G and let T 0 2 ��UQ , say T 0 D Image.�/\UQ for some � D f jŒa;b� 2 S.�Q/.

If T 0\ .1=4/Q� ¤;, then there exists ŒaT ; bT �� Œa; b� such that T WD f .ŒaT ; bT �/ lies
in T 0\0:99999Q�, and jf .aT /�f .bT /j D diamT > 0:99993diamT 0. Moreover, the
subarc T intersects 0:25007Q0�.

Proof
When the argument below is applied to T 0 DHQ and � D �Q, we obtain T DGQ; see
Figure 3. Because � is almost flat, we can find a line L such that (4.1) holds. Further,
since T 0 intersects .1=4/Q�, it follows that diamT 0 � .3=8/diamQ� > .1=4/diamQ�
and

(4.6)
dist.x;L/� 2�38 diamQ0� � 2

�36 diamT 0 8x 2 Image.�/I

2�38 < 10�10:

Let …L be a J -projection onto L. Then, by Lemma 4.1,

(4.7)

ˇ̌
…L.x/� x

ˇ̌
< 0:0000000002diamQ0�

� 0:0000000008diamT 0 8x 2 Image.�/:

Using (4.7) and the triangle inequality, we obtain

(4.8)
ˇ̌
…L.x/�…L.y/

ˇ̌
� jx � yj< 1:00000002

ˇ̌
…L.x/�…L.y/

ˇ̌
whenever x;y 2 Image.�/ and jx � yj � 0:1diamT 0. Identifying L with R, we can
define

c WDmin
®
…L.x/ W x 2 T 0

¯
and d WDmax

®
…L.x/ W x 2 T 0

¯
:
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Figure 3. Exaggerated picture (curve should be flatter) of �Q such that HQ has two connected components.
The dots indicate points inHQ with distance equal to diamHQ . (Arc through center ofQ� is not displayed.)

Choosing any u;v 2 T 0 such that ju� vj D diamT 0 D diamT 0 and using (4.8), we see
that

(4.9) diamT 0 � d � c �
ˇ̌
…L.u/�…L.v/

ˇ̌
> .1:00000002/�1 diamT 0:

Suppose c C 0:00003diamT 0 � p � d � 0:00003diamT 0 and let x 2…�1L .p/ \
Image.�/. By the first inequality in (4.9), p D .1 � �/c C �d for some 0 < � < 1
with min¹�;1 � �º � 0:00003. We would like to use Lemma 4.2 to show that x 2
0:99999Q�. Let’s check the hypothesis of the lemma. Certainly, c; d 2 1:000011Q�
and the segment .c; d/ intersects 0:2500000002Q� � 0:25 � 1:000011Q� since
T 0 � UQ � 1:00001Q�, T 0 \ .1=4/Q� ¤ ;, and (4.7) is in effect. By Lemma 4.2,
applied with s D 0:25 and min¹�;1 � �º � 0:00003, we discover p 2 0:9999775 �
1:000011Q� � 0:9999885Q�. Thus, by (4.7), x 2 0:99999Q�.

To continue, because …L is continuous and Image.�/ is connected, there must
exist Œ QaT ; QbT � � Œa; b� such that …L.f . QaT // D c C 0:00003diamT 0, …L.f . QbT // D

d �0:00003diamT 0 (or vice-versa), and…L.f .t// lies in between for all t 2 Œ QaT ; QbT �.
Define QT WD f .Œ QaT ; QbT �/. On the one hand, by the previous paragraph, we have QT �
Image.�/ \ 0:99999Q� D T 0 \ 0:99999Q� since 0:99999Q� � UQ and T 0 2 ��UQ .
Hence, by (4.7),

diamT 0 � diam QT �
ˇ̌
f . QaT /� f . QbT /

ˇ̌
� d � c � 0:00006diamT 0 � 0:0000000016diamT 0:

Using the last inequality in (4.9), it follows that diam QT > 0:99993997diamT 0.
On the other hand, if s; t 2 Œ Qa; Qb�, …L.f .s// < …L.f .t//, and …L.f .s// � c C

0:0000301diamT 0 or …L.f .t//� d � 0:0000301diamT 0, thenˇ̌
f .s/� f .t/

ˇ̌
� d � c � 0:0000601diamT 0C 0:0000000016diamT 0

< 0:99993991diamT 0I

whence, jf .s/ � f .t/j < diam QT . Choose any aT ; bT 2 Œ QaT ; QbT � such that …L.aT / <

…L.bT / and jf .aT /�f .bT /j D diam QT . By the previous computation, we necessarily
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have

(4.10)
…L.aT / < cC 0:0000301diamT 0 and

…L.bT / > d � 0:0000301diamT 0:

Define T WD f .ŒaT ; bT �/. Then T is an efficient subarc of T 0 \ 0:99999Q� with
diamT D diam QT > 0:99993diamT 0.

Lastly, let y be any point such that y 2 .c; d/\ 0:2500000002Q�. Shift from y to
a point y0 2…L.T / as needed. By (4.10), we can do this in such a way that jy � y0j<
0:0000301diamT 0. Then we can find at least one point x 2 T such that …L.x/D y

0

and jx�yj< 0:00003011diamT 0 by (4.7). Since diamT 0 is at most 2:00002 times the
radius of the ball Q�, we conclude that x 2 T lies in 0:25006023Q�. �

4.2. Geometry of N1 cores
For each necessary core UQ0 , we define neighborhoodsDQ0 , EQ0 , and FQ0 . Their rela-
tionship is that EQ0 is slightly smaller than DQ0 , FQ0 is slightly smaller than EQ0 , and
UQ0 is smaller than FQ0 . In Section 6, we use “extra length” from diamHQ00 associ-
ated to cores UQ00 that intersect FQ0 and lie inside of EQ0 to “pay for” the length of the
interval …T .DQ0/. The definition of the neighborhoods depends on the type of core.
For the definition of N1 cores and tall subarcs, see Definition 3.8.

DEFINITION 4.4
Let Q 2 G and let T D f .Œa; b�/ � T 0 2 ��UQ be an efficient subarc. For all UQ0 2
N1.T /, we define neighborhoods DQ0 �EQ0 � FQ0 of UQ0 by

DQ0 WD P1:04Q0� \ 4Q
0
�; EQ0 WD P1:03Q0� \ 3:99Q

0
�;

FQ0 WD P1:02Q0� \ 3:98Q
0
�:

LEMMA 4.5 (Tall subarcs)
Let Q 2 G and T D f .Œa; b�/� T 0 2 ��UQ be an efficient subarc. If UQ0 2N1.T / and

� 2 S.�Q0/ is a tall arc, then there exists a subarc T� of Image.�/\ FQ0 n UQ0 such
that diamT� � 1:48diamQ0�.

Proof
Pick any t0; t3 2 Domain.�/ such that �.t0/ 2 P1:01Q0� n int.4Q0�/ and �.t3/ 2

1:00002Q0�. Without loss of generality, suppose that t0 < t3. We let t2 > t0 be the
first time after t0 with �.t2/ 2 @.1:00003Q0�/. Then we define t1 WD max¹t 2 Œt0; t2� W
�.t/ 2 @.3:97999Q0�/º.

We claim that the subarc T� WD �.Œt1; t2�/ satisfies the required conditions. Fore-
most, diamT� � j�.t1/ � �.t2/j � 2:97996 radiusQ0� D 1:48998diamQ0�. Also, T� �
3:98Q� n UQ0 by the way we defined t1 and t2. It remains to verify that �.Œt1; t2�/ �
P1:02Q0� . First note that we arranged for �.t0/ and �.t2/ to lie in P1:01Q0� . Second note
that � is almost flat. Consulting (4.1) and (4.4), we can find a line L and J -projection
…L onto L such that

(4.11)
ˇ̌
…L.x/� x

ˇ̌
� 2dist.x;L/� 2�37 diamQ0� for every x 2 Image.�/:
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Hence, we can locate y; z 2 L nearby �.t0/ and �.t3/ such that y … 3:999Q0�,
z 2 1:001Q0�, and y; z 2 P1:011. By convexity, the whole segment Œy; z� � P1:011Q0�
too. From (4.11), the fact that 2�37 � 0:001, and the triangle inequality, it follows
that �.Œt1; t2�/�B2�37 diamQ0�

.Œx; y�/� P1:012Q0� , as well. This shows—with plenty of
room to spare—that T� D �.Œt1; t2�/ is a subarc of Image.�/\FQ0 nUQ0 . �

LEMMA 4.6
If Q 2 G and T � � \ UQ is a closed, connected set, then the coarse estimate (3.6)
holds for T .

Proof
Choose x;y 2 T such that jx�yj D diamT and let…T be a J -projection onto the line
through x and y; see Appendix B. Since …T is 1-Lipschitz, …T fixes x and y, and T
is connected, …T .T /D Œx; y�. Since T � � \UQ, we can cover T by RQ \T and the
set of cores UQ0 of Q0 2Child.Q/ such that UQ0 \ T ¤;. By countable subadditivity
of H1, the isodiametric inequality H1.A/� diamA for all sets A�R, and …T being
1-Lipschitz,

(4.12)

diamT �H1
�
…T .RQ \ T /

�
C

X
UQ0\T¤;

H1
�
…T .UQ0/

�

� `.RQ \ T /C
X

UQ0\T¤;

diamUQ0 :

Hence, (3.6) follows from (4.12) and (2.12). �

LEMMA 4.7
Let Q 2 G and let T � T 0 2 ��UQ be an efficient subarc. If UQ0 2N1.T /, then there is

a set MQ0 of cores UQ00 with Q00 2Child.Q/ and UQ00 \FQ0 ¤; such that

(4.13) diam…T .DQ0/ < 0:5`.RQ \FQ0/C 0:84
X

UQ002MQ0

diamHQ00 :

Proof
Choose a tall arc � 2 S.�Q0/ and let T� be the subarc of Image.�/\ FQ0 nUQ0 given
by Lemma 4.5. Define MQ0 D ¹UQ0º [ ¹UQ00 W UQ00 \ T� ¤ ;º. Applying the coarse
estimate (3.6), we find that

1:48diamQ0� � diamT� � `.RQ \ T� /C 2:00002
X

UQ002MQ0n¹UQ0 º

diamHQ00 :

We also know that diamQ0� � diamUQ0 � 2:00002diamHQ0 by (2.12). Hence,

2:38461diam1:04Q0� � 2:48diamQ0� � `.RQ \ T� /C 2:00002
X

UQ002MQ0

diamHQ00 :

Since diam…T .DQ0/� diam1:04Q0� and T� � FQ0 , this yields (4.13). �
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4.3. Geometry of N2 cores
Recall from Definition 3.8 that every core UQ0 2N2.T / admits a wide arc. To prove
Lemma I, we will need to distinguish between the case that some wide arc � lies near
the center of Q0� and the case that every wide arc is far from the center of Q0�.

DEFINITION 4.8
Let Q 2 G and let T � T 0 2 ��UQ be an efficient subarc. Suppose that UQ0 2N2.T /.
We say that UQ0 2 N2:1.T / if there exists a wide arc � such that Image.�/ \
2�14Q0� ¤;. Otherwise, we say that UQ0 2N2:2.T /.

DEFINITION 4.9
Let Q 2 G and T D f .Œa; b�/ � T 0 2 ��UQ0

be an efficient subarc. For all UQ0 2

N2:1.T /, we define neighborhoods DQ0 �EQ0 � FQ0 of UQ0 by

DQ0 WD 1:00002Q
0
�; EQ0 WDUQ0 ; FQ0 WDUQ0 :

For all UQ0 2N2:2.T /, we define neighborhoods DQ0 �EQ0 � FQ0 of UQ0 by

DQ0 WD 16Q
0
�; EQ0 WD 15:99Q

0
�; FQ0 WD 15:98Q

0
�:

LEMMA 4.10
Let Q 2 G and let T � T 0 2 ��UQ be an efficient subarc. If UQ0 2 N2:1.T /, then
diamDQ0 � 1:00016diamHQ0 .

Proof
Let � be a wide arc such that Image.�/ \ 2�14Q0� ¤ ;. By (4.1), there exists a
line L such that dist.p;L/ � 2�38 diamQ0� for all p 2 Image.�/. Since � is wide
and Image.�/ intersects 2�14Q0�, the set Image.�/ meets both connected compo-
nents of @Q0� \ B2�38 diamQ0�

.L/; choose points y; z 2 Image.�/ \ @Q0�, one from
each of the components. Let x denote the center of Q0�; then dist.x; Image.�// �
2�14 radiusQ0� D 2

�15 diamQ0�. By our assertions above, we can find points x0; y0; z0 2
L, with x0 lying between y0 and z0, such that jx � x0j � .2�15 C 2�38/diamQ0�,
jy � y0j � 2�38 diamQ0�, and jz � z0j � 2�38 diamQ0�. Define y00 D y0 C x � x0 and
z00 D z0 C x � x0 so that y00 and z00 lie on a line through x, with x in between y00 and
z00. Now,

jy00 � xj � jy � xj � jy00 � y0j � jy0 � yj � .1=2� 2�15 � 2�37/diamQ0�:

Similarly, jz00�xj � .1=2�2�15�2�37/diamQ0�. Hence, jy00�z00j D jy00�xjC jx�
z00j � .1� 2�14 � 2�36/diamQ0�. It follows that

jy � zj � jy00 � z00j � jy00 � y0j � jy0 � yj � jz00 � z0j � jz0 � zj

� .1� 2�13 � 2�35/diamQ0�:

Thus, diamHQ0 � jy � zj � 0:99987diamQ0� � 0:99985diamDQ0 . The lemma fol-
lows. �
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LEMMA 4.11
Let Q 2 G and let T � T 0 2 ��UQ be an efficient subarc. If UQ0 2 N2:2.T /, then
there exists a finite set Y of efficient subarcs of arc fragments in ��FQ0

such that

the sets ¹1:00002Q0�º [ ¹B2�40 diamQ0�
.Y / W Y 2 Yº are pairwise disjoint, diamY �

0:00021diamQ0� for all Y 2 Y, and
P
Y2Y diamY � 22:46diamQ0�. (The cardinality

of Y is 3 or 4.)

Proof
Since UQ0 2N2:2.T /, we can find a wide arc � 2 S.�Q0/ such that Image.�/ intersects
1:00002Q0� and is disjoint from 2�14Q0�. Let � 2 S.�Q0/ be any arc whose image
contains the center of Q0. Since the image of � does not contain the center of Q0, the
arcs � and � are distinct. The family Y will be built from subarcs of Image.�/\ FQ0
and Image.�/\FQ0 .

Let A denote the annulus 15:98Q0� n int.1:00004Q0�/, which is contained in
FQ0 . Choose a subarc T1 of Image.�/ \ A with one endpoint on @.15:98Q0�/ and
one endpoint on @.1:00004Q0�/ so that diamT1 � 14:97996 radiusQ0�; cf. proof of
Lemma 4.5. Similarly, we may find two subarcs T2 and T3 of Image.�/\A with end-
points in @.15:98Q0�/\P

C
UQ0

and @.1:00004Q0�/ and endpoints in @.15:98Q0�/\P
�
UQ0

and @.1:00004Q0�/, respectively. Observe that min¹diamT2;diamT3º � 14:97996

radiusQ0�, and the total diameter of the three subarcs is at least 44:93988 radiusQ0� D
22:46994diamQ0�.

Now, we show that B2�40 diamQ0�
.T2/ and B2�40 diamQ0�

.T3/ are disjoint. Let L� be
a line such that (4.1) holds for L� and all x 2 Image.�/. In particular,

B2�40 diamQ0�
.T2 [ T3/�B.2�38C2�40/diamQ0�

.L� /�B2�37 diamQ0�
.L� /:

By assumption, Image.�/ \ 1:00002Q0� ¤ ;. Hence, there exists Qw 2 Image.�/ \
1:00002Q0� such that B. Qw;0:00002 radiusQ0�/ � 1:00004Q

0
�. Let w 2 L� \ B. Qw;

2�38 diamQ0�/. Note that B.w;0:00001 radiusQ0�/ � 1:00004Q
0
�. Labeling the two

connected components of L� nB.w;0:00001 radiusQ0�/ by LC� , L�� , we conclude that

(4.14)

gap
�
B2�40 diamQ0�

.T2/;B2�40 diamQ0�
.T3/

�
� gap

�
B2�37 diamQ0�

.LC� /;B2�37 diamQ0�
.L�� /

�
� .0:00001� 2�35/diamQ0� > 0:000009diamQ0�:

Observe that for any arc, we may shrink its domain as needed to produce an efficient
arc of the same diameter. Thus, it remains to obtain a subarc or subarcs of T1 which
satisfy the disjointness and diameter estimates in the conclusion of the lemma.

Let L� be a line such that (4.1) holds with L� and all x 2 Image.�/. As with � ,
we have

B2�40 diamQ0�
.T1/�B.2�38C2�40/diamQ0�

.L� /�B2�37 diamQ0�
.L�/:

If B2�40 diamQ0�
.T1/ and B2�40 diamQ0�

.T2 [ T3/ do not intersect, by the previous para-
graph we are done. If, on the other hand, B2�40 diamQ0�

.T1/ and B2�40 diamQ0�
.L� / inter-

sect, then B2�37 diamQ0�
.L�/ and B2�37 diamQ0�

.L� / intersect. In this case, we will either
shrink T1 or split T1 into two subarcs to obtain the desired disjointness (see Figure 4).
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Figure 4. Separated subarcs Y associated to N2:2.T /-type coresUQ0 . Either #YD 3 (left) or #YD 4 (right).
The arc T is not displayed.

Suppose then that B2�37 diamQ0�
.L� / intersects B2�37 diamQ0�

.L�/. Then L� inter-
sects B2 WDB2�35 diamQ0�

.L� / by the triangle inequality. Define

r1 WDmin
®
jz � xj W z 2L� \B2

¯
and r2 WDmax

®
jz � xj W z 2L� \B2

¯
;

where, as before, x denotes the center ofQ0. Our goal is to show that r2�r1 is relatively
small. There are two cases.

For the easier case, suppose that r2 � 1:00054 radiusQ0� or r1 � 15:9795 radiusQ0�.
Replace T1 with a subarc QT1 using the annulus 15:97949Q0� n int.1:00055Q0�/ instead
of A. Then diam QT1 � 14:97894 radiusQ0� and diam QT1 C diamT2 C diamT3 �
22:46943diamQ0�. Furthermore, because QT1 � T1 and QT1 avoids ¹w W jw � xj 2
Œr1; r2�º,

gap
�
B2�40 diamQ0�

. QT1/;B2�40 diamQ0�
.T2 [ T3/

�
� gap.B2�37 diamQ0�

�
L� \

�
15:97949Q0� n int.1:00055Q0�/

�
;B2�37 diamQ0�

.L� /
�

� .0:00001� 2�36/diamQ0� > 0:

Thus, the neighborhoods B2�40 diamQ0�
. QT1/ and B2�40 diamQ0�

.T2 [ T3/ are disjoint.
For the harder case, suppose that

(4.15) r2 > 1:00054 radiusQ0� and r1 < 15:9795 radiusQ0�:

Let y 2 L� \ B2 \ @B.x; r1/. Let z 2 L� \ B2 \ @B.x; r2/. By translation, we may
replace L� with a line (which we relabel as L� ) such that y 2L� \L� . Since we trans-
late by at most 2�35 diamQ0�, the triangle inequality implies that B2�40.Image.�//�
B2�34 diamQ0�

.L� / and

dist.x;L� /� dist
�
x; Image.�/

�
� sup
w2Image.�/

dist.w;L� /� .2
�15 � 2�34/diamQ0�:
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Now, choose J -projections …� and …� onto L� and (the relabeled line) L� ,
respectively. Then the points x� WD…�.x/, x�� WD…� .x�/, and z� WD…� .z/ satisfy

jx� � x�� j � jx � x�� j � jx � x� j � .2
�15 � 2�34/diamQ0�;(4.16)

jx� � yj � jx � yj C jx � x� j
(4.17)

� 15:9795 radiusQ0�C 2
�38 diamQ0� < 2

3 diamQ0�;

jz � yj � jz � xj � jx � yj � r2 � r1; and(4.18)

jz � z� j � 2dist.z;L� /� 2
�33 diamQ0�:(4.19)

By “similar triangles,” it follows that

(4.20) r2 � r1 � jz � yj D jx� � yj
jz � z� j

jx� � x�� j
� .23 diamQ0�/

2�33

2�15 � 2�34
:

Hence, r2 � r1 < 2�14 diamQ0�.
Since � contains x and (4.1) is in effect, we may translate L� (by at most

2�38 diamQ0�) to obtain a line QL� which contains x. Thus, each component of
QL� \ B.x; r2/ n B.x; r1/ has diameter r2 � r1. By (4.1), (4.15), and the triangle
inequality, we see that each component L˙

�
of L� \ .Br2.x/ nBr1.x// satisfies

diamL˙� � r2 � r1C 2
�37 diamQ0� � .2

�14C 2�37/diamQ0�:

In particular, diamB2�35 diamQ0�
.L˙
�
\ .Br2.x/ n Br1.x/// � .2

�14 C 2�34 C 2�37/


diamQ0� � 0:000062diamQ0�. This estimate and the assumption (4.15) imply that we
may choose radii Qr1 and Qr2 such that

1:00047 radiusQ0� < Qr1 < r1 < r2 < Qr2 < 15:97957 radiusQ0�

and Qr2� Qr1 D 0:00007 radiusQ0�. Let QT1:1 be a subarc of T1\B.x; Qr1/nint.1:00005Q0�/
with one endpoint in @.1:00005Q0�/ and one endpoint in @B.x; Qr1/. Define QT1:2 simi-
larly using the annulus 15:97999Q0� n int.B.x; Qr2//.

We now demonstrate that the neighborhoods B2�40 diamQ0�
. QT1:1/,

B2�40 diamQ0�
. QT1:2/, and B2�40 diamQ0�

.T2 [ T3/ are pairwise disjoint. First, note that

gap
�
B2�40 diamQ0�

. QT1:1/;B2�40 diamQ0�
. QT1:2/

�
� gap

�
B3�37

�
L� \B.x; Qr1/

�
;B3�37

�
L� \B.x; Qr2/

c
��

� .0:00007� 2�36/diamQ0� > 0:

Thus, the neighborhoods B2�40 diamQ0�
. QT1:1/ and B2�40 diamQ0�

. QT1:2/ are pairwise dis-
joint. They are also pairwise disjoint from B2�40 diamQ0�

.T2 [ T3/ because

gap
�
B2�40 diamQ0�

. QT1:1 [ QT1:2/;B2�40 diamQ0�
.T2 [ T3/

�
� gap

�
B2�37

�
L� \

�
B.x; Qr1/[B.x; Qr2/

c
��
;B2�37 diamQ0�

.L� /
�

� .2�35 � 2�36/diamQ0� > 0:
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By definition of Qr1, Qr2, min¹diam QT1:1;diam QT1:2º � 0:00042 radiusQ0� D 0:00021

diamQ0� and diam QT1:1 C diam QT1:2 � .15:97999 � 1:00005 � 0:00007/ radiusQ0� D
14:97987 radiusQ0�. Thus, diam QT1:1 C diam QT1:2 C diamT2 C diamT3 � 22:46989

diamQ0�. This concludes the proof of the lemma. �

LEMMA 4.12
Let Q 2 G and let T � T 0 2 ��UQ be an efficient subarc. If UQ0 2N2:2.T /, then there

is a family MQ0 of cores UQ00 with Q00 2Child.Q/ and UQ00 \FQ0 ¤; such that

(4.21) diamDQ0 < 0:7`.RQ \FQ0/C 1:37
X

UQ002MQ0

diamHQ00 :

Proof
Given Y from Lemma 4.11, let MQ0 D ¹UQ00 WQ

00 2 Child.Q/;UQ00 \ FQ0 ¤ ;º. If
there happens to exist UQ00 2MQ0 with diamQ00 > diamQ0, then

diamHQ00 � 0:49999diamQ00� � 2
98 diamQ0�
 diamDQ0 ;

and (4.21) holds trivially. Assume otherwise that diamQ00 � diamQ0 for every core
UQ00 2MQ0 , so that diamUQ00 � 2�98 diamQ0� for all UQ00 2MQ0 n ¹UQ0º. Because
diamQ0� � 2:00002diamHQ0 and (3.6) holds for each Y 2 Y, Lemma 4.11 implies
that

.1C 22:46/diamQ0� � `.RQ \FQ0/C 2:00002
X

UQ002MQ0

diamHQ00 :(4.22)

Since diamDQ0 D 16diamQ0�, this estimate yields (4.21). �

4.4. Geometry of unnecessary cores

DEFINITION 4.13
Let …T be a J -projection onto some line LT in X. For any line L in X, the antislope
as.L;…T / of L relative to …T is the unique number in Œ0; 1� given by

(4.23) as.L;…T /D
j…T .u/�…T .v/j

ju� vj
for any u;v 2L with u¤ v:

REMARK 4.14
The antislope as.L;…T / is well-defined (i.e., the quantity in (4.23) does not depend
on the choice of points u, v) by linearity of J -projections onto linear subspaces. At one
extreme, as.L;…T /D 0 if and only if L is vertical in the sense that …T .u/D…T .v/

for every u;v 2 L. At the other extreme, as.L;…T / D 1 if and only if L is parallel
to LT .

LEMMA 4.15 (Location of endpoints)
Let Q 2 G and let T D f .Œa; b�/� T 0 2 ��UQ be an efficient subarc. If Q0 2Child.Q/
and 1:00002Q0� \ T ¤ ;, but the core UQ0 is “unnecessary” in the sense that UQ0 …
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N .T /DN1.T /[N2.T /, then for all arcs � D f jŒc;d� 2 S.�Q0/ such that Image.�/\
1:00002Q0� ¤;,

either
®
f .c/; f .d/

¯
� PC

15Q0�
\ @.2�Q0/

or
®
f .c/; f .d/

¯
� P�

15Q0�
\ @.2�Q0/I

moreover, if L is any line such that (4.1) holds for � , then as.L;…T / > 0:001.

Proof
Let Q0 be given as in the statement. Fix any � D f jŒc;d� 2 S.�Q0/. Because Q0 …B�

0

(see Lemma 3.2), the endpoints f .c/ and f .d/ of � lie on @.2�Q0/. Since UQ0 …
N1.T /, we know that f .c/; f .d/ … P1:01Q0� . Suppose without loss of generality that
f .c/ 2 PC

1:01Q0�
(see Remark 3.7). Since UQ0 … N2.T /, we have f .d/ 2 PC

1:01Q0�
, as

well. To complete the proof, it suffices to show that f .c/; f .d/ … P15Q0� .
Let L be a line such that (4.1) holds for � . Since Image.�/ \ 1:00002Q0� ¤ ;,

it follows that L \ 1:000021Q0� ¤ ;. Choose any u 2 L \ 1:000021Q0�. Similarly,
let x 2 Image.�/ \ @.4Q0�/. Since � is not tall, x … P1:01Q0� . Thus, by (4.1), there
exists v 2L\4:00001Q0�\P

C
1:00999Q0�

. Finally, choose w 2L such that jw�f .c/j �

2�38 diamQ0�. This more than guarantees w 2 X n .213�AH � 1/Q
0
� � X n 8191Q0�.

Now,

ˇ̌
…T .w/�…T .u/

ˇ̌
D jw � uj

j…T .v/�…T .u/j

jv � uj

� .8189 radiusQ0�/
1:00999� 1:000021

4:00001C 1:000021

� 16:01697 radiusQ0�:

Hence, w lies outside of P15:01676Q0� , and therefore f .c/ certainly lies outside
of P15Q0� . An identical argument shows that f .d/ lies outside of P15Q0� , as well.
Finally, from the display, we read off as.LI…T /� .1:00999� 1:000021/=.4:00001C

1:000021/D 0:00199: : : . �

LEMMA 4.16 (Overlapping arcs)
Let Q 2 G and let T D f .Œa; b�/ � T 0 2 ��UQ be an efficient subarc. Let Q	 ;Q� 2

Child.Q/ with diamQ	 � diamQ� and suppose that there is a point x 2

…T .1:00002Q
	
� \ T / \ …T .1:00002Q

�
� \ T /, but UQ� ;UQ� … N .T /. For any

arcs 	 2 S.�Q	 / and � 2 S.�Q� / such that Domain.	/;Domain.�/ � Œa; b�,
x 2…T .Image.	//\…T .Image.�//, and Domain.	/\Domain.�/¤;, either

(i) diamQ	 < diamQ� and Domain.	/�Domain.�/, or
(ii) diamQ	 D diamQ� and Œc; d � WDDomain.	/[Domain.�/ satisfies

either
®
f .c/; f .d/

¯
� PC

12Q��
\PC

12Q��

or
®
f .c/; f .d/

¯
� P�

12Q��
\P�

12Q��
:
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Proof
First, suppose that diamQ	 < diamQ� . Let x	 denote the center of Q	 and pick y	 2
1:00002Q	

� \ Image.	/\Px . Here Px is shorthand for P¹xº (see Remark 3.7). Then,
for any z	 2 Image.	/� 2�Q	 ,ˇ̌

…T .z	 /� x
ˇ̌
� jz	 � y	 j � jz	 � x	 j C jx	 � y	 j

� .1C 1:00002 � 2�13/ radius2�Q	

� 2�99A�1H radius2�Q� � 2�83 radiusQ�
�:

Thus, f .t/ 2 P2Q�� for all t 2Domain.	/. However, the endpoints Start.�/;End.�/ …
P15Q�� by Lemma 4.15. Therefore, Domain.	/ \ Domain.�/ ¤ ; implies
Domain.	/�Domain.�/.

Second, suppose that diamQ	 D diamQ� and Q	 D Q� . Since the arcs in
ƒ.�Q� / have pairwise disjoint domains (see Definition 1.9), Domain.	/\Domain.�/
implies 	 D � . Hence, the conclusion in this case follows from Lemma 4.15.

Finally, suppose that diamQ	 D diamQ� , but Q	 ¤ Q� . Let x	 , y	 be given
as above; similarly, let x� denote the center of Q� and choose y� 2 1:00002Q�

� \

Image.�/\ Px . Using the triangle inequality to form nested balls centered at x	 and
y	 and nested balls centered at x� and y� , plus the fact that radius…T .B/D radiusB
for any ball B , one can show that

(4.24)
P˙15Q��

� P˙.15�2:00004/Q��
� P˙12Q��

and

P˙
15Q��

� P˙
.15�2:00004/Q��

� P˙
12Q��

:

Let Œc	 ; d	 � and Œc� ; d� � denote the domains of 	 and � , respectively. If it happens that
Œc	 ; d	 � � Œc� ; d� � or Œc� ; d� � � Œc	 ; d	 � or d	 D c� or d� D c	 , then the conclusion
follows immediately from Lemma 4.15 and (4.24). Thus, without loss of generality,
we may focus on the case that c D c	 < c� < d	 < d� D d and Start.	/;End.	/ 2
P�
15Q��

� P�
12Q��

. Suppose to reach a contradiction that Start.�/;End.�/ 2 PC
15Q��

�

PC
12Q��

. We will show that this violates the antislope estimate in Lemma 4.15. Since
diamQ	 D diamQ� , but Q	 ¤Q� , the centers of the balls are far apart: jx	 � x� j �
2�k , where k 2 Z is the unique integer determined by Q	

� D B.x	 ; 2
�12�k/. Since

jx	 � y	 j � 1:00002 � 2
�12�k and jx� � y� j � 1:00002 � 2�12�k , the triangle inequality

gives jy	 � y� j � .1� 1:00002 � 2�11/2�k .
To continue, write

Œc; d �D Œc	 ; c� �„ƒ‚…
I1

[ Œc� ; d	 �„ ƒ‚ …
I2

[ Œd	 ; d� �„ ƒ‚ …
I3

:

Choose t	 2 Domain.	/ and t� 2 Domain.�/ such that f .t	 /D y	 and f .t� /D y� .
There are three (sub) cases, depending on which of the intervals I1, I2, I3 contain t	
and t� .

Case 1. Assume that t	 ; t� 2 I1 [ I2 D Œc	 ; d	 � D Domain.	/. Choose a line L
such that (4.1) holds for 	 and let …L be any J -projection onto L. Since y	 ; y� 2
Image.	/, their projections w	 WD …L.y	 / and w� WD …L.y� / satisfy max¹jw	 �
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y	 j; jw� � y� jº � 2
�49�k by (4.1) and (4.4). Hence, the estimate on jy	 � y� j from

above and the triangle inequality yields jw	 �w� j � .1� 2�10/2�k . Since …T .y	 /D

x D…T .y� / and…T is 1-Lipschitz, we also have j…T .w	 /�…T .w� /j � jw	 �y	 jC

jw� � y� j � 2
�48�k . It follows that

as.L;…T /D
j…T .w	 /�…T .w� /j

jw	 �w� j
�

2�48�k

.1� 2�10/2�k
< 0:000000000000004:

This (radically!) contradicts the antislope estimate for L from Lemma 4.15.
Case 2. Assume that t	 ; t� 2 I2[I3 D Œc� ; d� �DDomain.�/. Repeat the argument

from Case 1 using an approximating line L for � instead of an approximating line L
for 	 .

Case 3. Assume that t	 2 I1 and t� 2 I3. By our supposition above, I2 D Œc� ; d	 �
satisfies f .c� / 2 P

C
12Q��

and f .d	 / 2 P�12Q�� . Because x 2 P1:00002Q�� and …T ı f

is continuous, the intermediate value theorem produces t 0 2 .c� ; d	 / � Domain.	/ \
Domain.�/ such that …T .f .t

0// D x. Write y0 WD f .t 0/ 2 Image.	/ \ Image.�/.
Because jy	 �y� j> 0:98 �2�k , the metric pigeon hole principle implies that jy	 �y0j>
0:49 � 2�k or jy� � y0j > 0:49 � 2�k , say without loss of generality that jy	 � y0j >
0:49 � 2�k . As in Case 1, choose any line L such that (4.1) holds for 	 and let …L be
any J -projection onto L. Since y0 2 Image.	/, its projection w0 WD…L.y

0/ satisfies
jw0 � y0j � 2�49�k . Hence,

jw	 �w
0j � jy	 � y

0j � jw	 � y	 j � jw
0 � y0j> 0:48 � 2�k :

Since …T .y	 /D x D…T .y
0/, we again find that j…T .w	 /�…T .w

0/j � jw	 �y	 jC

jw0 � y0j � 2�48�k . This time it follows that

as.L;…T /D
j…T .w	 /�…T .w

0/j

jw	 �w0j
<

2�48�k

0:48 � 2�k
< 0:000000000000008:

This (again!) contradicts the antislope estimate for L from Lemma 4.15. �

REMARK 4.17
In Lemma 4.16, the intersection of Domain.	/ and Domain.�/ in the case diamQ	 D

diamQ� , but Q	 ¤Q� is possible. For example, consider XD `21 D .R
2; j � j1/, LT

horizontal,…T the vertical projection onto LT , and stack two squares 2�Q	 and 2�Q�

whose centers lie on a common vertical line Px with x 2LT . Then one can easily draw
a picture where UQ� ;UQ� …N .T / and End.	/D Start.�/ 2 @.2�Q	 /\ @.2�Q� /.

5. Necessary and sufficient cores

Imagine (or see Section 6) that you want to “pay for” diamT DH1.…T .T // for some
efficient subarc T � T 0 2 ��UQ using `.RQ/ and ¹diamHQ00 WQ00 2 Child.Q/º. The

length `.RQ/ pays for H1.…T .RQ// because …T is 1-Lipschitz. We will pay for the
remaining balance H1.…T .T / n…T .RQ// in installments. Loosely speaking, given a
point x 2…T .T / n…T .RQ/, if we can locate a core UQ0 2 N1.T / [N2.T / whose
shadow …T .UQ0/ contains x, then we can use Lemma 4.7, 4.10, or 4.12 to pay for
H1.…T .DQ0// using ¹diamHQ00 W UQ00 \ FQ0 ¤ ;º. A worry that we might have is
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that there exists an exceptional point x 2…T .T / n…T .RQ/, which is not contained in
the shadow of a core in N1.T /[N2.T /. Another concern is that some core UQ00 inter-
secting FQ0 could have diamQ00 > diamQ0, in which case UQ00 6� EQ0 . This section
ensures that we can effectively ignore these situations.

For the definitions of N1 and N2 cores, see Definition 3.8. For the definitions of
the neighborhoods DQ0 , EQ0 , and FQ0 associated to cores UQ0 , see Definitions 4.4
and 4.9.

DEFINITION 5.1
Let Q 2 G and let T � T 0 2 ��UQ be an efficient subarc. We say that a core UQ0 2
N .T / D N1.T / [ N2.T / is locally maximal if Q00 2 Child.Q/ n ¹Q0º and UQ00 \
16Q0� ¤; implies diamQ00 < diamQ0.

REMARK 5.2
Every core UQ0 2 N .T / with diamQ0 D 2�KM diamQ is locally maximal by
Remark 2.6 and the fact that there do not exist Q00 2 Child.Q/ with diamQ00 >
diamQ0.

LEMMA 5.3
Let Q 2 G and let T � T 0 2 ��UQ be an efficient subarc. If UQ0 2 N .T / is locally

maximal, then Q00 2Child.Q/ and UQ00 \FQ0 ¤; implies UQ00 �EQ0 . In particular,
if UQ0 2N1.T /[N2:2.T / is locally maximal, then

S
MQ0 �EQ0 , where MQ0 is the

set of auxiliary cores defined in Lemmas 4.7 and 4.12.

Proof
If UQ0 2N2:1.T /, then FQ0 D EQ0 D UQ0 and the conclusion follows since the cores
¹UQ00 W Q

00 2 Child.Q/º are pairwise disjoint. Thus, suppose that UQ0 2 N1.T / [

N2:2.T / is locally maximal, Q00 2Child.Q/, and UQ00 \FQ0 ¤;. Since FQ0 � 16Q0�
and UQ0 is locally maximal, either UQ00 D UQ0 or diamQ00 < diamQ0. In the former
case, we have UQ00 D UQ0 �EQ0 trivially by definition of EQ0 . In the latter case,

diamUQ00 � 1:00001diamQ00� � 2
1�KM diamQ0� � 2

�99 diamQ0�:

When UQ0 2N1.T /, it easily follows that UQ00 intersecting FQ0 D P1:02Q0� \ 3:98Q
0
�

implies UQ00 � P1:03Q0� \ 3:99Q
0
� D EQ0 . Similarly, when UQ0 2N2:2.T /, it follows

that UQ00 intersecting FQ0 D 15:98Q0� implies UQ00 � 15:99Q0� DEQ0 . �

LEMMA 5.4
Let Q 2 G , let T � T 0 2 ��UQ be an efficient subarc, and let rT be given by (3.8). For

all UQ0 2N .T /, the neighborhood EQ0 � B9rT .T /. Moreover, EQ0 \ 1:99�Q00 D ;
for all Q00 2 Child.Q/ such that diamQ0 � diamQ00 and …T .16Q

0
�/ \ .LT n

…T .2�Q
00//¤;.

Proof
Let UQ0 2 N .T /. Then T \ 1:00002Q0� ¤ ;; choose any point y in the intersec-
tion. Letting x0 denote the center of Q0, we have jx0 � yj � 1:00002 radiusQ0�. Let
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x 2 EQ0 � 15:99Q
0
�. Then jx � yj � jx � x0j C jx0 � yj � 16:99002 radiusQ0� �

8:49501diamQ0� < 9rT . Hence, EQ0 �B9rT .T / with room to spare.
Let Q00 2 Child.Q/ and suppose that diamQ0 � diamQ00 and …T .16Q

0
�/ inter-

sects the complement of …T .2�Q
00/. Then 16Q0� \ .X n 2�Q

00/¤; too. Note that

gap.X n 2�Q00; 1:99�Q00/� 0:01 radiusQ00 � 20:48diamQ00� � 20:48diamQ0�:

Thus, gap.EQ0 ; 1:99�Q00/ � gap.16Q0�; 1:99�Q
00/ � gap.X n 2�Q00; 1:99�Q00/ �

diam16Q0� � 4:48diamQ0� > 0. Therefore, EQ0 does not intersect 1:99�Q00. �

LEMMA 5.5
Let Q 2 G and let T � T 0 2 ��UQ be an efficient subarc. If UQ0 ;UQ00 2 N .T /,

diamQ0 < diamQ00, and …T .DQ0/ intersects LT n…T .DQ00/, then DQ0 \EQ00 D;.
Also, DQ0 \DQ000 D; for all UQ000 2N .T / n ¹UQ0º such that diamQ000 D diamQ0.

Proof
Under the hypotheses of the lemma, diamDQ0 � 16Q0� � 2

�96 diamQ00� andDQ0 inter-
sects X nDQ00 . Reviewing Definitions 4.4 and 4.9, we know gap.X nDQ00 ;EQ00/ �
0:00001diamQ00�. Therefore,

gap.DQ0 ;EQ00/� gap.X nDQ00 ;EQ00/� diamDQ0 � .0:00001� 2
�96/diamQ00� > 0:

If DQ000 2 N .T / n ¹UQ0º and diamQ000 D diamQ0, then DQ0 \ DQ000 D ; by
Remark 2.6. �

LEMMA 5.6
Let Q 2 G and let T � T 0 2 ��UQ be an efficient subarc. If UQ0 2N .T / is not locally

maximal, then 16Q0� � 1:00002Q
00
� for some UQ00 2N .T / that is locally maximal or

for some UQ00 …N .T /.

Proof
Assume that UQ1 2 N .T / is not locally maximal. Then there exists Q2 2 Child.Q/
with diamQ2 > diamQ1 such that UQ2 \16Q

1
� ¤;. Let x1 and x2 denote the centers

of Q1 and Q2, respectively, and choose w1 2UQ2 \ 16Q
1
� � 1:00001Q

2
�\ 16Q

1
�. We

have

(5.1) jx1 � x2j � jx1 �w1j C jw1 � x2j � 16 radiusQ1
�C 1:00001 radiusQ2

�:

Since radiusQ1
� � 2

�100 radiusQ2
�, it follows that for all z 2 16Q1

�,

jz � x2j � 32 radiusQ1
�C 1:00001 radiusQ2

� � .2
�95C 1:00001/ radiusQ2

�:

Hence, 16Q1
� � 1:00002Q

2
�. If perchance either UQ2 2N .T / and UQ2 is locally max-

imal or UQ2 …N .T /, then we are done. The other possibility is that UQ2 2N .T / and
UQ2 is not locally maximal and we repeat the argument.

Suppose that for some j � 3, we have found cores UQ1 ; : : :UQj�1 2N .T /, each
of which is not locally maximal, such that

(5.2) diamQi > diamQi�1 and UQi \ 16Q
i�1
� ¤; for all 2� i � j � 1;
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and such that the centers x1; : : : ; xj�1 of the balls Q1; : : : ;Qj�1 satisfy

(5.3) jxi�1 � xi j � 16 radiusQi�1
� C 1:00001 radiusQi

� for all 2� i � j � 1:

Since Qj�1 is not locally maximal, diamQj�1 � 2�2KM diamQ by Remark 5.2, and
there existsQj 2Child.Q/ such that diamQj > diamQj�1 and UQj \16Q

j�1
� ¤;.

Let xj denote the center of Qj and choose wj�1 2 UQj \ 16Q
j�1
� � 1:00001Q

j
� \

16Q
j�1
� . Then

(5.4)
jxj�1 � xj j � jxj�1 �wj�1j C jwj�1 � xj j

� 16 radiusQj�1
� C 1:00001 radiusQj

�:

Thus, (5.2) and (5.3) also hold when i D j . Let z 2 16Q1
� and write jz � xj j � jz �

x1j C jx1 � x2j C � � � C jxj�1 � xj j. Since radiusQi�1
� � 2�100 radiusQi

� for all 2 �
i � j , we get

(5.5)
jz � xj j � 16 radiusQ1

�C 17:00001
�j�1X
iD1

radiusQi
�

�
C 1:00001 radiusQj

�

< .2�93C 1:00001/ radiusQj
� :

Hence, 16Q1
� � 1:00002Q

j
� . Once again, if either UQj 2 N .T / and UQj is locally

maximal, or UQj … N .T /, then we are done. Otherwise, UQj 2 N .T / and UQj is
not locally maximal and we go to the next step of the induction. The iterative scheme
eventually terminates after finitely many steps by Remark 5.2. �

DEFINITION 5.7
Let Q 2 G and let T � T 0 2 ��UQ be an efficient subarc. We say that UQ0 2N .T / is
sufficient if UQ0 is locally maximal or if 16Q0� � 1:00002Q

00
� for some locally maximal

UQ00 2N .T /. Let S.T /�N .T / denote the set of all sufficient cores.

The proof of the following lemma is ultimately a topological argument, which follows
from our assumption that the parameterization f W Œ0; 1�! � is continuous. (Further-
more, the proof invokes Lemma 4.16, which also exploited the continuity of f .)

LEMMA 5.8 (Topological lemma)
Let Q 2 G and let T D f .Œa; b�/ � T 0 2 ��UQ be an efficient subarc. Define �T by

(3.8); that is, let �T be largest diameter of a ball 2�Q00 among allQ00 2Child.Q/ such
that 1:00002Q00� \ T ¤;. For all points x such that

(5.6) x 2…T .T / n
�
…T .RQ \ T /[B0:51
T

�®
f .a/; f .b/

¯��
;

there exists UQ0 2 S.T / such that x 2…T .UQ0 \ T /.

Proof
Let x satisfying (5.6) be given. Following the convention in Remark 3.7, f .a/ 2 P�

¹xº

and f .b/ 2 PC
¹xº

. For simplicity, we shall write Px and P˙x instead of P¹xº and P˙
¹xº

.
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Figure 5. (Color online) Proof of Lemma 5.8 (simplified): If no core in N1.T / or N2.T / intersects T above
x 2…T .T / n…T .RQ/, with x far away from the endpoints of T , then it is impossible to reach f .b/ from
f .a/.

Consider the set U WD ¹UQ00 WQ
00 2Child.Q/;UQ00 \ T \Px ¤;º of cores that inter-

sect T and whose shadows contain x. Our assumption that x 2…T .T / n…T .RQ \T /

guarantees that U is nonempty and ;¤ T \Px �
S
UQ002U

UQ00 . Suppose for the sake
of contradiction that no core UQ00 2U belongs to S.T /. Then, by Lemma 5.6, for all
UQ00 2U, there exists at least one core UQ0 in

O WD
®
UQ0 …N .T / WQ0 2Child.Q/; 1:00002Q0� \ T \Px ¤;

¯
such that UQ00 � 16Q00� � 1:00002Q

0
�. Hence O ¤; and

(5.7) T \Px �
[

UQ02O

1:00002Q0�:

Further, our assumption that x 2 X n B0:51
T .¹f .a/; f .b/º/ ensures that if UQ0 2 O,
then 2�Q0 \ ¹f .a/; f .b/º D ;. Indeed, given UQ0 2O, let x0 denote the center of Q0

and pick y0 2 1:00002Q0� \ T \Px . Since …T is 1-Lipschitz,ˇ̌
x �…T .x

0/
ˇ̌
� jy0 � x0j � radius1:00002Q0� < 2

�12 radius2�Q0 � 2�13�T :

Using the fact that …T is 1-Lipschitz once more and the fact that …T fixes f .a/ and
f .b/, we find that

dist
�
x0;
®
f .a/; f .b/

¯�
� dist

�
…T .x

0/;
®
f .a/; f .b/

¯�
� dist

�
x;
®
f .a/; f .b/

¯�
�
ˇ̌
x �…T .x

0/
ˇ̌

> .0:51� 2�13/�T > 0:509�T � 0:009�T C radius2�Q0I

that is, ¹f .a/; f .b/º does not intersect an open tubular neighborhood of 2�Q0 of width
0:009�T . As a corollary, since f is uniformly continuous, there exists ı > 0 depending
on �T and the modulus of continuity of f such that

(5.8) Domain.�/\
�
Œa; aC ı

�
[
�
b � ı; b�

�
D; for every arc � 2 S�.�Q0/:
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(Below we only need to know that ı > 0.) To proceed, define collections of arcs and an
associated collection of intervals by

Ay WD
®
� 2 S.�Q0/ WUQ0 2O; y 2 Image.�/;Domain.�/� Œa; b�

¯
(5.9)

8y 2 T \Px ;

I WD
°

connected components I of
(5.10) [®

Domain.�/ W y 2 T \Px and � 2Ay
¯±
:

By definition, I is pairwise disjoint, and by (5.7) and (5.8), we have T \ Px �S
I2I f .I / and I � Œa C ı; b � ı� for all I 2 I. By Lemmas 4.15 and 4.16,

for each interval I D Œc; d � 2 I, either …T .f .c//;…T .f .d// < x or …T .f .c//;

…T .f .d// > x, where we identify Œf .a/; f .b/� with an isometric subset of R. Modulo
applying continuous reparameterizations to the domain and image of the continuous
map …T ı f W Œa; b�! Œf .a/; f .b/�, we have built a function g W Œ0; 1�! Œ0; 1� such
that

.?/: g is continuous, g.0/D 0, g.1/D 1, and there exists a pairwise disjoint
collection J of nondegenerate closed subintervals of Œ1=4; 3=4� such that the
preimage g�1.1=2/�

S
J and for all intervals J D Œc; d � 2 J, either

g.c/; g.d/ < 1=2 or g.c/; g.d/ > 1=2.

(Explicitly, send a 7! 0, b 7! 1, a C ı 7! 1=4, b � ı 7! 3=4, f .a/ 7! 0, f .b/ 7! 1,
x 7! 1=2.) By the next lemma, no such function exists. Therefore, our supposition was
false, and there exists UQ0 2 S.T / such that x 2…T .UQ0 \ T /. �

LEMMA 5.9
A function g W Œ0; 1�! Œ0; 1� with property .?/ does not exist.

Proof
Suppose that g exists. Let I denote the connected components of Œ0; 1�n

S
J2J J . Label

each interval I 2 I as left-directed or right-directed depending on whether there is an
interval J D Œc; d � 2 J such that I \J ¤; and g.c/; g.d/ < 1=2 or g.c/; g.d/ > 1=2,
respectively. This concept is well-defined by property .?/, in particular by continuity of
g and by the stated properties of J. The unique half-open interval of the form Œ0; b/ 2 I

is left-directed because g.0/D 0; the unique half-open interval of the form .a; 1� 2 I is
right-directed because g.1/D 1. All other intervals in I are open intervals .a; b/ with
g.t/ < 1=2 for all t 2 .a; b/, if .a; b/ is left-directed, and g.t/ > 1=2 for all t 2 .a; b/,
if .a; b/ is right-directed. The only restrictions on values of g.t/ for t 2 Œc; d � 2 J are
at the endpoints t D c and t D d .

Let L WD ¹t 2 Œ0; 1� W t 2 I for some left-directed interval I 2 Iº and let u WD
supL. Then g.u/ � 1=2, and so u is not contained in a right-directed interval of I.
Let’s consider the other two possibilities. First, suppose that u 2 I for some left-
directed I 2 I. Since every left-directed interval is open to the right (as the interval
containing 1 is right-directed), this would mean that u cannot be an upper bound on
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L, which is absurd. Next, suppose that u 2 J for some J 2 J. Then J D Œu; v� for
some u < v and g.u/ < 1=2. (This used the approximation property of the supremum.)
Let I 0 D .v; d/ 2 I be the interval lying immediately to the right of J . The interval
I 0 must exist since the interval containing 1 belongs to I. Since v > u, I 0 must be
right-directed. Hence, g.v/ > 1=2. Thus, g.u/ > 1=2 because Œu; v� 2 J. This con-
tradicts our observation that g.u/ � 1=2. Therefore, there does not exist a function
g W Œ0; 1�! Œ0; 1� with property .?/. �

6. Proof of Lemma I

6.1. Stage 1: Improving the coarse estimate

LEMMA 6.1 (Initial improvement of (3.6))
With notation as in Lemma I,

(6.1)

diamT � 2�T � 1:7`
�
RQ \B9rT .T /

�
C

X
UQ002F

diam2�Q00

C 1:37
X

UQ0�B9rT .T /;UQ0…NF

diamHQ0 :

Proof
Since T is an efficient subarc, …T .T /D Œf .a/; f .b/�. To start, let

(6.2) J0 D
�
f .a/C �T ; f .b/� �T

�
n
�
…T .RQ \ T /[…T

�[
F

2�Q00
��
:

By subadditivity of measures and the fact that …T is 1-Lipschitz,

(6.3)

diamT � 2�T �H1
�
…T .RQ \ T /

�
CH1

�
…T

�[
F

2�Q00
��
CH1.J0/

� `.RQ \ T /C
X
F

diam2�Q00CH1.J0/:

We shall reach (6.1) from (6.3) by making a sequence of refined estimates on H1.J0/.
More precisely, we inductively define measurable2 sets J0 � J1 � J2 � � � � withT1
iD0 Ji D ; and “pay for” H1.Ji�1 n Ji / for each i � 1 using a Borel subset Ri of

the remainder set RQ and certain cores Mi in lying in B9rT .T /. In particular, we will
prove that

(6.4) H1.Ji�1 n Ji /� 0:7`.Ri /C 1:37
X

UQ02Mi

diamHQ0 :

2. If X is not separable, pass to a separable subspace of X containing the rectifiable curve � before defining
J0 to ensure the projection…T .RQ/ is universally measurable.
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Naturally, we will arrange things so that Ri \ Rj D ; and Mi \Mj D ; for all
i ¤ j . Further, the cores in Mi will not belong to NF , the set of all cores UQ0 with
Q0 2 Child.Q/ such that UQ0 � 1:99�Q00 for some UQ00 2 F . Thus, (6.1) follows
immediately by combining (6.3) and (6.4).

Let S.T / be given as in Definition 5.7. For each i � 1, inductively define

Si WD
®
UQ0 2 S.T / W diamQ0 D 2�KMi diamQ;…T .UQ0/\ Ji�1 ¤;

¯
;(6.5)

Ji WD Ji�1 n
[

UQ02Si

…T .DQ0/:(6.6)

By Lemma 5.8, every x 2 J0 lies in the shadow …T .UQ0/ of some core UQ0 2 S.T /.
Hence,

T1
iD0 Ji D ;. Every core UQ0 2 Si (i � 1) is locally maximal (see Defini-

tions 5.1 and 5.7) because …T .UQ0/\ Ji�1 ¤ ; implies that 16Q0� 6� 1:00002Q
00
� for

any locally maximal core UQ00 2N .T / with diamQ00 > diamQ0. Indeed, the shadows
…T .DQ00/ �…T .1:00002Q

00
�/ of all locally maximal UQ00 2 N .T / with diamQ00 >

diamQ0 (which belong to S.T /) were already deleted from J0; : : : ; Ji�2 in the induc-
tive definition Ji�1.

Our next task is to bound the length of each set Ji�1 n Ji . Fix i � 1. If Ji D Ji�1,
then H1.Ji�1 n Ji / D 0. If Ji ¤ Ji�1, then by countable subadditivity of measures,
the isodiametric inequality H1.A/ � diamA for all A � R, and the fact that …T is
1-Lipschitz,

(6.7) H1.Ji�1 n Ji /�
X

UQ02Si

diam…T .DQ0/:

For each UQ0 2 Si , define an auxiliary family of cores MQ0 and Borel set ORQ0 as
follows:

� if UQ0 2N1.T /, define MQ0 to be the family in Lemma 4.7 and
ORQ0 WDRQ \FQ0 ;

� if UQ0 2N2:1.T /, define MQ0 WD ¹UQ0º and ORQ0 WD ; (cf. Lemma 4.10); and
� if UQ0 2N2:2.T /, define MQ0 to be the family in Lemma 4.12 and
ORQ0 WDRQ \FQ0 .

By Lemma 5.3, the set MQ0 WD ORQ0 [
S

MQ0 � EQ0 for all UQ0 2 Si . Furthermore,
the set MQ0 �B9rT .T / and MQ0 \NF D; by Lemma 5.4 and property (F). Define

(6.8) Mi WD
[

UQ02Si

MQ0 and Ri WD
[

UQ02Si

ORQ0 :

Then (6.4) follows immediately from (6.7), the estimates Lemma 4.7, Lemma 4.10, and
Lemma 4.12, and the second part of Lemma 5.5.

Finally, as required, Mi \Mj D; and Ri \Rj D; for all i ¤ j by the first part
of Lemma 5.5. �
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6.2. Stage 2: Iterating the improved estimate

LEMMA 6.2
Let Q 2 G and let T � T 0 2 ��UQ be an efficient subarc. If UQ0 2 N2:2.T / is locally

maximal, then there is a set MQ0 of cores UQ00 with Q00 2 Child.Q/ and UQ00 � EQ0
such that

(6.9) diamDQ0 < 1:2`.RQ \EQ0/C 0:95
X

UQ002MQ0

diamHQ00 :

Proof
Let Y be given by Lemma 4.11. We repeat the proof of Lemma 4.12 but use the
improved estimate (6.1) with F D ; instead of the coarse estimate. In effect, we are
incorporating the existence of cores UQ00 that lie nearby but do not necessarily intersect
the subarcs Y 2 Y. By Lemma 4.11 and by the assumption that UQ0 is locally maximal,
for every subarc Y 2 Y, we know that Y � FQ0 n Q0�, diamY � 0:00021diamQ0�,
rY � 2

�KM diamQ0� � 2
�100 diamQ0�, �Y � 2�AH � 2

12rY � 2
�84 diamQ0�, and

0:99999diamY � diamY � 2�Y . In addition, ¹1:00002Q0�º [ ¹B9rY .Y / W Y 2 Yº is
pairwise disjoint. Since FQ0 D 15:98Q0�, we easily obtain B9rY .Y / � 15:981Q

0
� �

15:99Q0� DEQ0 from the estimate on rY .
Let MQ0 D ¹UQ00 W Q

00 2 Child.Q/ and UQ00 � EQ0º. Now, diamQ0� �
2:00002diamHQ0 , which implies 0:68499diamQ0� � 1:37diamHQ0 . Further, for
every Y 2 Y,

0:99999diamY � diamY � 2�Y

� 1:7`
�
RQ \B9rY .Y /

�
C 1:37

X
UQ00�B9rY .Y /

diamHQ00

by (6.1) with F D ;. Also, by Lemma 4.11,
P
Y2Y 0:99999diamY � 22:45977


diamQ0�. Finally, B9rY .Y /�EQ0 . Combining these estimates, we obtain

.0:68499C 22:45977/diamQ0� � 1:7`.RQ \EQ0/C 1:37
X

UQ002MQ0

diamHQ00 :

Since diamDQ0 D 16diamQ0�, this estimate yields (6.9). �

Proof of Lemma I
Repeat the proof of Lemma 6.1, except use Lemma 6.2 in place of Lemma 4.12. Instead
of (6.4), the proof gives

(6.10)

H1.Ji�1 n Ji /� 1:2`.Ri /C 1:00016
X

UQ02Mi\N2:1.T /

diamHQ00

C 0:95
X

UQ02MinN2:1.T /

diamHQ0 :
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Therefore, instead of (6.1), we ultimately obtain

diamT � 2�T � 2:2`
�
RQ \B9rT .T /

�
C

X
UQ002F

diam2�Q00

C 1:00016
X

UQ02N2:1.T /nNF

diamHQ0(6.11)

C 0:95
X

UQ0…N2:1.T /[NF

diamHQ0 ;

where the sums in the second line may be further restricted to UQ0 contained in
B9rT .T /. Replacing the terms 0:95

P
UQ02N2:2.T /nNF

diamHQ0 with 1:00016
P
UQ02N2:2.T /nNF

diamHQ0 yields (3.9). (The purpose of this last step is to let us
avoid defining N2:1.T / in Section 3.) �

REMARK 6.3
One could continue to iterate estimates for N2:2.T / cores to further reduce the coeffi-
cient 0.95. However, iteration will never let us improve the coefficient 1:00016 associ-
ated to N2:1.T / cores.

7. Proof of Lemma II

Assume for the duration of this section that Q 2 G has small remainder in the sense of
Definition 3.3 and few non-N2.GQ/ cores in the sense of (3.11).

7.1. Existence of A and proof of (3.12)
Because GQ D f .ŒaQ; bQ�/ satisfies (3.7), Q has a small remainder, and (3.11) holds,

(7.1)

H1
�
…GQ

�[
N2.GQ/

��

� diamGQ � `.RQ/�
X

UQ0…N2.GQ/

diamUQ0

� .0:99993� 0:01� 0:05/diamHQ D 0:93993diamHQ:

(To start, write diamGQ DH1.…GQ.GQ//. Compare to the derivation of (6.1).)
We will construct A inductively using a greedy algorithm. To begin, we stratify

N2.GQ/ by size. For each i � 1, let Ui denote the set of all cores UQ0 2 N2.GQ/

such that diamQ0 D 2�KMi diamQ. Each family Ui consists of finitely many cores
because � is compact. Some (but not all) of the families may be empty.

Choose A1 to be a maximal subset of U1 such that ¹2�Q00 W UQ00 2A1º is pair-
wise disjoint. Note that A1 automatically enjoys property (F) with T D GQ because
there are no Q0 2 Child.Q/ with diamQ0 > diamQ00. If

P
UQ002A1

diam2�Q00 �
0:04diamHQ, then we halt and define A WDA1. Otherwise, we move to the induction
step.

Suppose that we have defined A1 � � � � �Ai�1 for some i � 2 so that Ai�1 satis-
fies property (F) with T DGQ and

P
UQ002Ai�1

diam2�Q00 < 0:04diamHQ. Choose
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a maximal family A0i from the collection

(7.2)

®
UQ00 2Ui W 2�Q

00 \ 2�Q0 D; for all UQ0 2Ai�1; and

2�Q00 6� 16:1Q0� when UQ0 2Child.Q/ and diamQ0 > diamQ00
¯

such that ¹2�Q00 WUQ00 2A0iº is pairwise disjoint. If it happened that 2�Q00\16Q0� ¤;
for some UQ00 2 A0i and UQ0 2 Child.Q/ with diamQ0 > diamQ00, then we would
also have 2�Q00 � 16:1Q0� by (2.7), which is impossible. Thus, the next family
Ai WDAi�1 [A0i also satisfies property (F) with T DGQ. If

P
UQ002Ai

diam2�Q00 �
0:04diamHQ, then we halt and define A WDAi . Otherwise, carry out the next step of
the induction.

We claim that the process described above always halts— i.e., there is an integer
n � 1 such that ADAn has property (F) and

P
UQ002A

diam2�Q00 � 0:04diamHQ.
Suppose for contradiction that the process does not halt. We will construct an overly
efficient cover of …GQ.

S
UQ002N2.GQ/

UQ00/. Suppose that UQ00 2Uj nAj for some

j � 1. Then, by maximality of the family A0j , at least one of the following occurs:

(i) 2�Q00 \ 2�Q0 ¤; for some Q0 2Aj with diamQ0 � diamQ00;
(ii) 2�Q00 � 16:1Q0� for some UQ0 2Child.Q/ with diamQ0 > diamQ00.

In situation (i), 2�Q00 � 6�Q0 for some UQ0 2Aj . In the event that (ii) holds, there are
two alternatives:

(iii) 2�Q00 � 16:1Q0� for some UQ0 …N2.GQ/;
(iv) 2�Q00 � 16:1Q0� � 2�Q

0 for some UQ0 2N2.GQ/ with diamQ0 > diamQ00,
and hence UQ0 2Ui for some i < j .

It follows that for each j � 1,

(7.3)
[

UQ002Uj

2�Q00 �
[

UQ02Aj

6�Q0 [
[

UQ0…N2.GQ/

16:1Q0� [

j�1[
iD1

[
UQ02Ui

2�Q0:

After recursively applying (7.3) and then letting j !1, we obtain

[
UQ002N2.GQ/

UQ00 �
[

UQ002N2.GQ/

2�Q00 �

1[
iD1

[
UQ02Ai

6�Q0 [
[

UQ0…N2.GQ/

16:1Q0�:

In particular, by countable subadditivity of measures and by the now familiar fact that
H1.…GQ.A//� diam…GQ.A/� diamA for all Borel sets A�X,

H1
�
…GQ

�[
N2.GQ/

��

� 3
X

UQ002A1[A2[			

diam2�Q00C 16:1
X

UQ0…N2.GQ/

diamUQ0

< .3 � 0:04C 16:1 � 0:05/diamHQ D 0:925diamHQ:

This contradicts (7.1). Therefore, the process above halts and ADAn for some n� 1.
We remark that A is finite because A �

Sn
iD1Ui and each Ui is finite. This proves

(3.12).
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7.2. Proof of (3.13)
The proof of (3.13) leans on techniques developed in Section 4. To begin, we describe
the large-scale geometry of �-almost flat arcs in balls around A cores. Recall that
every A core belongs to N2.GQ/. The first lemma below (Lemma 7.1) is a variant
of Lemma 4.11 in the large-scale window 2�Q00 instead of the small-scale window
16Q00�. The second lemma (Lemma 7.2) modifies the arcs obtained in Lemma 7.1 to
avoid cores UQ0 � 2�Q00 such that diamQ0 D diamQ00. This is necessary to get good
control on �X for the subarcs X that we apply Lemma I to in the third lemma below
(Lemma 7.3).

LEMMA 7.1
If UQ00 2A, then there exists a finite set Y subarcs of arc fragments in ��

1:98�Q00
such

that the neighborhoods ¹B2�M�35 diamQ00�
.Y / W Y 2 Yº are pairwise disjoint, diamY �

0:00199diam2�Q00 for all Y 2 Y, and in total
P
Y2Y diamY � 1:23diam2�Q00. (The

cardinality of Y is 2 or 3.)

Proof
Let � D f jŒa;b� 2 S.�Q00/ be a wide arc for UQ00 . By our convention in Remark 3.7,
f .a/ lies to the left of f .b/. Let T1 D �.Œc; d �/ be a subarc of Image.�/\ 1:98�Q00,
where

c WD sup
®
t 2 Œa; b� W �.t/ 2 P�UQ00

\ @.1:98�Q00/
¯

and

d WD inf
®
t 2 Œa; b� W �.t/ 2 PCUQ00

\ @.1:98�Q00/
¯
:

By (4.1) and (1.2), there exists a line L such that dist.p;L/ � 2�53 diam1:98�Q00

for all p 2 Image.�/. Since Image.�/ \ 1:00002Q00� ¤ ;, repeating the proof
of Lemma 4.3 mutatis mutandis informs us that T1 (easily) intersects 1:1Q00� �
2�11.1:98�Q00/. Further, by mimicking the proof of Lemma 4.10, we find that

diamT1 � .1� 2
�10 � 2�52/diam1:98�Q00 � 0:98903diam2�Q00:

Choose a line L� such that (4.3) holds for � , choose a J -projection …� onto L� ,
and identify L� with R. By (4.4), j…� .w/ � wj � 2

�M�47 diam2�Q00 for all w 2
Image.�/. Thus, the interval Œs1; s2� WD…� .T1/ is large in the sense that

s2 � s1 � diamT1 � 2
�M�46 diam2�Q00 � 0:98902diam2�Q00:

Since ˇS�.�Q00/.2�Q00/ � 2�M , but the excess of Image.�/ over L� is compara-
tively small, we can locate an arc � 2 S�.�Q00/ and point x 2 Image.�/ such that
dist.x;L� / � 2�M diam2�Q00. Let T2 be a subarc of Image.�/ \ 1:98�Q00 with one
endpoint in @.1:98�Q00/ and one endpoint in @.�Q00/. We can do this because the
image of every arc in ƒ.�Q00/ intersects �Q00 and Q00 …B�

0 . Then

diamT2 � 0:98 radius�Q00 D 0:245diam2�Q00(7.4)

and diamT1C diamT2 � 1:23403diam2�Q00. If

B2�M�35 diamQ00�
.T1/\B2�M�35 diamQ00�

.T2/D;;
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then we may take Y D ¹T1; T2º.
Suppose otherwise that B2�M�35 diamQ00�

.T1/ \ B2�M�35 diamQ00�
.T2/ ¤ ;. For

ease of notation, we switch from scale diamQ00� to scale diam2�Q00, recalling that
2�M�35 diamQ00� � 2

�M�48 diam2�Q00. Let L� be a line such that (4.3) holds for �
and let …� be a J -projection onto L� . Then

B2�M�48 diam2�Q00.T1/�B.2�M�48C2�M�54/diam2�Q00.L� /�B2�M�47 diam2�Q00.L� /;

B2�M�48 diam2�Q00.T2/�B.2�M�48C2�M�48/diam2�Q00.L�/�B2�M�47 diam2�Q00.L�/;

and L� intersects B2 WD B2�M�45 diam2�Q00.L�/ by the triangle inequality. Continuing
to identify L� with R, define

t1 WDmin¹z W z 2L� \B2º and t2 WDmax¹z W z 2L� \B2º:

As in the proof of Lemma 4.11, there are two cases.
For the easier case, suppose that t2 � s1 C 0:002diam2�Q00 or t1 � s2 �

0:002diam2�Q00. Choose a subarc QT1 of T1 with …� . QT1/D Œs1 C 0:002diam2�Q00;
s2 � 0:002diam2�Q00�. Then by (4.1) and (4.4), QT1 satisfies

QT1 �B2�M�53 diam2�Q00
�
Œs1C 0:002diam2�Q00; s2 � 0:002diam2�Q00�

�
;

and, by the triangle inequality, diam QT1 � s2 � s1 � .0:004C 2�M�52/diam2�Q00 �
0:98501diam2�Q00. To verify disjointness, we use the triangle inequality again to cal-
culate

gap
�
B2�M�47 diam2�Q00.L� /;B2�M�47 diam2�Q00.L�/

�
� .2�M�45 � 2�M�46/diam2�Q00:

Recalling (7.4), we see diam QT1 C diamT2 � 1:23diam2�Q00. Therefore, in this case
we may take Y D ¹ QT1; T2º.

For the harder case, suppose that

(7.5) t2 > s1C 0:002diam2�Q00 and t1 < s2 � 0:002diam2�Q00:

Our immediate goal is to show that t2� t1 is relatively small. Let y; z 2L� be such that
y D t1 and z D t2 by our identification of L� with R. Since y; z 2L� \B2, the points
y� ; z� WD…�.y/ satisfy

max
®
jy � y� j; jz � z� j

¯
� 2�M�45 diam2�Q00:

Now, define the line QL� WD L� C .y � y�/ parallel to L� which intersects y. Let
…Q�.v/ WD…�.v/C .y�y�/ and note that…Q� is a J -projection onto QL� . Recall that x 2
Image � , and define xQ� WD…Q�.x/, xQ�� WD…� .xQ�/, zQ� WD…Q�.z/, and zQ�� WD…� .zQ�/.
Then, we have

jzQ� � yj � jz � yj � jzQ� � z� j � jz� � zj � t2 � t1 � 2
�M�44 diam2�Q00;(7.6)

jzQ� � zQ�� j � 2dist.zQ� ;L� /� 2jz � zQ� j � 2jz � z� j C 2jy � y� j
(7.7)

� 2�M�43 diam2�Q00;
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jxQ� � yj � jx � yj C jxQ� � xj � .1C 2
�M�44/diam2�Q00; and(7.8)

jxQ� � xQ�� j � jx � xQ�� j � jx � xQ� j � 2
�M�1 diam2�Q00:(7.9)

By “similar triangles,” it follows that

t2 � t1 � 2
�M�44 diam2�Q00 � jzQ� � yj D jxQ� � yj

jzQ� � zQ�� j

jxQ� � xQ�� j

< .2diam2�Q00/
2�M�43

2�M�1
:

Rearranging, we see that t2 � t1 < .2�M�44 C 2�41/diam2�Q00 < 2�40 diam2�Q00.
Together with (7.5), it follows that we may choose Qt1 and Qt2 such that

Qt1 < t1 < t2 < Qt2

and Qt2 � Qt1 � 2�39 diam2�Q00. Let QT1:1 and QT1:2 be subarcs of T1 with …� . QT1:1/ D

Œs1; Qt1� and …� . QT1:2/D ŒQt2; s2�.
To see that B2�M�48 diam2�Q00.T1:1/ and B2�M�48 diam2�Q00.T1:2/ are disjoint, we

calculate

gap
�
B2�M�47 diam2�Q00

�
Œs1; Qt1�

�
;B2�M�47 diam2�Q00

�
ŒQt2; s2�

��
� .2�39 � 2�M�46/diam2�Q00 > 0:

Similarly, to see that B2�M�48 diam2�Q00. QT1:1 [ QT1:2/ and B2�M�48 diam2�Q00.T2/ are
disjoint, we estimate

gap
�
B2�M�48 diam2�Q00. QT1:1 [ QT1:2/;B2�M�48 diam2�Q00.T2/

�
� gap

�
B2�M�47 diam2�Q00.L�/;B2�M�47 diam2�Q00

�
Œs1; Qt1�[ ŒQt2; s2�

��
� .2�M�45 � 2�M�46/diam2�Q00 > 0:

We now turn to estimating the diameters of these subarcs. By (4.3) and (4.4),

QT1:1 �B2�M�53 diam2�Q00
�
Œs1; Qt1�

�
;

(7.10)
diam QT1:1 � Qt1 � s1 � 2

�M�52 diam2�Q00;

QT1:2 �B2�M�53 diam2�Q00
�
ŒQt2; s2�

�
;

(7.11)
diam QT1:2 � s2 � Qt2 � 2

�M�52 diam2�Q00:

Recalling (7.5), min¹diam QT1:1;diam QT1:2º � 0:00199diam2�Q00. Moreover, by (7.4)
and the fact that 2�39� 0:00001,

diam QT1:1C diam QT1:2C diamT2

� s2 � s1 � 0:00001diam2�Q00 � 2�M�51 diam2�Q00C diamT2

� 1:234diam2�Q00:

In this case, we may take Y D ¹ QT1:1; QT1:2; T2º. �
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Figure 6. Separated subarcs X associated to a ball 2�Q00 with UQ00 2A. When ˇS�.�Q/.2�Q/ is suffi-
ciently small, cores UQ0 with diamQ0� D diamQ00� may intersect both of the underlying arcs � and � used to
build Y.

LEMMA 7.2
If UQ00 2 A, then there exists a finite set X of efficient subarcs of arc fragments in
��
1:98�Q00

such that the set®
1:00002Q0� WQ

0 2Child.Q/;diamQ0 D diamQ00
¯

[
®
B2�M�35 diamQ00�

.X/ WX 2X
¯

is pairwise disjoint;

diamX � 0:25diamQ00� for all X 2X, and
P
X2X diamX � 1:11diam2�Q00.

Proof
For an illustration of the efficient subarcs in X, see Figure 6. Let UQ00 2 A,
say Q00 D B.x00;AH2

�k/, and let Y be given by the previous lemma. Because
¹B2�M�35 diamQ00�

.Y / W Y 2 Yº is pairwise disjoint, it suffices to construct a family
XY of efficient subarcs X of Y for each Y 2 Y such that®

1:00002Q0� WQ
0 2Child.Q/;diamQ0 D diamQ00

¯
[
®
B2�M�35 diamQ00�

.X/ WX 2XY

¯
is pairwise disjoint, diamX � diamQ00� for allX 2XY , and in total

P
X2XY

diamX �
0:904diamY . Then X D

S
Y2Y XY satisfies the required properties. In particular,X

X2X

diamX � 0:904
X
Y2Y

diamY � 1:111diam2�Q00

since
P
Y2Y diamY � 1:23diam2�Q00.

Fix Y D f .Œa; b�/ 2 Y and let � 2 S�.�Q/ be an arc for which Y is a subarc
of Image.�/\ 1:98�Q00. Note that diamY � 0:00199diam2�Q00 > 2�9 diam2�Q00 �
24 diamQ00�. Let L be a line such that (4.3) holds for � and let …L be a J -projection
onto L. By (4.4), we have j…L.x/ � xj � 2

�M�47A�1
H

diam2�Q00 � 2�M�38 diamY
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for all x 2 Image.�/. Since Y is compact and connected, I0 WD…L.Y /D Œc; d �. Con-
sidering any pair of points u;v 2 Y such that ju� vj D diamY , we see that

diamI0 �
ˇ̌
…L.u/�…L.v/

ˇ̌
� ju� vj �

ˇ̌
…L.u/� u

ˇ̌
�
ˇ̌
…L.v/� v

ˇ̌
� .1� 2�M�37/diamY:

Hence, diamI0 > 0:99999diamY > 15:999diamQ00�. Form the minimal partition P of
I0 into closed intervals with disjoint interiors that includes the set of intervals

J WD
®
I0 \…L.1:00004Q

0
�/ WQ

0 2Child.Q/;diamQ0 D diamQ00;

1:00002Q0� \B2�M�35 diamQ00�
.Y /¤;

¯
:

If J D ;, then we may simply take XY D ¹ QY º, where QY is any efficient subarc of Y
with diam QY D diamY . Thus, suppose that J is nonempty. Because every ball in X

contains a diameter parallel to L, for each J D I0 \…L.1:00004Q
0
�/ 2 J,

diamJ � diam…L.1:00004Q
0
�/D 1:00004diamQ0� D 1:00004 � 2

�k�11

with equality unless J \ ¹c; dº ¤ ;. The intervals in J are uniformly separated.
Indeed, for each J D I0 \ 1:00004Q

0
�, let xJ denote the center of Q0�, let yJ 2

B2�M�35 diamQ00�
.Y / \ 1:00002Q0�, and let zJ D…L.yj / 2 J ; then diamJ < 2�k�10

and

jxJ � zJ j � jxJ � yJ j C jyJ � zJ j

� 1:00002 � 2�k�12C 2�k�12�M�35C 2�M�47A�1H � 4�AH2
�k < 2�k�10:

Because ¹xJ W J 2 Jº is 2�k-separated, it follows that for all distinct J1; J2 2 J,

gap.J1; J2/� 2
�k � jxJ1 � zJ1 j � diamJ1 � jxJ2 � zJ2 j � diamJ2

� .1� 2�8/2�k D .1� 2�8/211 � 2�k�11 � 210 diamQ00�:

For each interval I 2P nJ, choose an efficient subarc XI of Y such that…L.XI /� I

and diamXI � diamI . If I 2 P n J and I \ ¹c; dº ¤ ;, then I lies between two
distinct intervals J1; J2 2 J and diamXI � diamI � gap.J1; J2/ � 210 diamQ00�. At
most two exceptional I 2P n I contain one of the endpoints of I0; the diameter of an
exceptional interval I may be relatively large or small. We assign

XY WD ¹XI W I 2P n J and diamI � 0:25diamQ00�º;

which contains all of the subarcs XI that we defined with at most two exceptions. (We
exclude XI from XY if exceptionally I \ ¹c; dº ¤ ; and diamI < 0:25diamQ00�.)
By design, the 2�M�35 diamQ00�-neighborhoods of the subarcs in XY do not intersectS
¹1:00002Q0� W Q

0 2 Child.Q/;diamQ0 D diamQ00º. Furthermore, any pair of dis-
tinct XI1 ;XI2 2XY enjoys

gap.XI1 ;XI2/� gap
�
…L.XI1/;…L.XI2/

�
� 1:00004diamQ00�

because I1 and I2 are separated by an interval in J 2 J that does not intersect ¹c; dº.
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It remains to estimate the total diameter in XY in terms of diamY . Let us
agree to call an interval I 2 P n I short, medium, or long if diamI < 0:25diamQ00�,
0:25diamQ00� � diamI < 210 diamQ00�, or diamI � 210 diamQ00�, respectively. Above,
we showed that any interval I 2P nJ lying between two intervals in J is long. Hence,
any short or medium interval must contain one of the endpoints of I0. Also, if I is short,
then diamI < 0:25diamQ00� < 0:016diamI0 because diamI0 > 15:999diamQ00� (look
above). After deleting any short intervals from the ends of I0, the remaining interval

I00 WD I0 n
[
¹I 2P n J WXI …XY º

has diamI00 � 0:968diamI0 � 0:96799diamY > 15:486diamQ00�. Now, if J 2 J,
then diamJ � 1:00004diamQ00� < 0:065diamI00. If J 2 J and I is long, then
diamJ � 1:00004diamQ00� < 0:001diamI . Since there the number of intervals in J is
at most one more than the number of long intervals, it follows that

X
XI2XY

diamXI >
1� 0:065

1:001
diamI00 > 0:90416diamY:

�

LEMMA 7.3
If UQ00 2 A, then there exists a family LQ00 of cores UQ0 � 1:99�Q00 with Q0 2

Child.Q/ such that

(7.12) diam2�Q00 � 2`.RQ \ 1:99�Q
00/C 0:91

X
UQ02LQ00

diamHQ0 :

Proof
Fix UQ00 2A and let X be the family of efficient subarcs of arc fragments in ��

1:98�Q00

given by Lemma 7.2. With the intention to invoke Lemma I, we define

LQ00 WD
®
UQ0 WQ

0 2Child.Q/ and UQ0 \B9diamQ00�.1:98�Q
00/¤;

¯
:

Property (F) with F D A and T D GQ tells us diamQ0 � diamQ00 for all Q0 2
Child.Q/ such that 16Q0� \ 2�Q

00 ¤ ;. This more than ensures UQ0 � 1:99�Q00 for
every UQ0 2LQ00 .

Let X 2X. By Lemma 7.2, diamX � 0:25diamQ00� and

�X � 2
�KM � 2�AH � 2

12 diamQ00� � 2
�M�84 diamQ00�(7.13)

since X \ 1:00002Q0� D ; whenever Q0 2 Child.Q/ and diamQ0 D diamQ00. It fol-
lows that diamX � 2�X � 0:99999diamX . By Lemma I, with T DX and F D;, we
obtain

(7.14) 0:99999diamX � 2:2`
�
RQ \B9rX .X/

�
C 1:00016

X
UQ0�B9rX .X/

diamHQ0 :

Finally, by Lemma 7.2, the arcs in X are well-separated from each other compared
with (7.13) and have total diameter

P
X2X diamX � 1:11diam2�Q00. Thus, summing

(7.14) over all X 2X and rearranging, we obtain (7.12). �
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Because ¹2�Q00 W UQ00 2Aº is pairwise disjoint, (3.13) follows by applying (7.12) to
each core UQ00 2A. This concludes the proof of Lemma II.

This completes our demonstration of the main theorem. In any Banach space, a
curve of length 1 rarely looks under a magnifying glass like a union of two or more line
segments.

Appendix A. Unions of overlapping balls in a metric space

Lemma A.1 bounds the radius of a ball containing the union of chains of balls with
geometric decay and good separation between balls of similar radii. Although it can be
lowered slightly by increasing the parameter � , the factor 3 in the lower bound on the
gap between balls in level k cannot be made arbitrarily small.

LEMMA A.1 (cf. [25, Lemma 2.16])
Let X be a metric space, let � > 6, and let r0 > 0. Suppose ¹B.xi ; ri /ºIiD1 is a finite
(I <1) or infinite (I D1) sequence of closed balls in X and .ki /IiD1 is a sequence
of integers bounded from below such that

(i) chain property: for all j � 2, each pair .B1;B2/ of balls in the initial
segment ¹B.xi ; ri / W 1� i � j º can be connected by a chain of balls from the
collection—i.e., there exists a finite sequence such that the first ball is B1,
the last ball is B2, and consecutive balls in the sequence have nonempty
intersection;

(ii) geometric decay: for all i � 1, we have ri � ��ki r0; and
(iii) separation within levels: for all i; j � 1 with i ¤ j , if ki D kj D k, then

gap.B.xi ; ri /;B.xj ; rj //� 3��kr0, where
gap.S;T /D inf¹dist.s; t/ W s 2 S; t 2 T º.

Then there exists a unique M � 1 such that kM Dmini�1 ki , and moreover,

(A.1)
I[
iD1

B.xi ; ri /�B
�
xM ; .1C 3=�/�

�kM r0
�
:

Proof
Let parameters � and r0, a sequence ¹B.xi ; ri /ºIiD1, and a sequence .ki /IiD1 be given
with the stated assumptions. Without loss of generality, we may assume that r0 D 1.
Because ¹ki W i � 1º is a set of integers bounded from below, we may choose and fix
M � 1 such that kM D mini�1 ki . (We prove M is unique later.) Our main task is to
prove that for all integers 1� n� I ,

(A.2)
n[
iD1

B.xi ; ri /�B
�
xm; .1C 2�

�1C 4��2C 8��3C � � � /��km
�
;

where 1�m� n is an index such that km DminniD1 ki and mDM whenever n�M .
When nD 1, there is only one ball and (A.2) is trivial by (ii). Note that the series in
(A.2) converges because � > 2. We proceed by strong induction. Let 1 � N < I and
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Figure 7. Removing the largest ball (light gray) leaves a finite number of chain-connected ball clusters (dark
gray), each of which contains a unique ball of maximal radius.

suppose that up to relabeling (A.2) holds for any chain-connected cluster of N or fewer
balls satisfying (ii) and (iii). Set n D N C 1 and choose any index 1 � m � N C 1
such that km D minNC1iD1 ki , if N C 1 < M , and set mDM , if N C 1 �M . Sort the
collection ¹B.xi ; ri / W 1 � i � N C 1º n ¹B.xm; rm/º into a finite number of maximal
chain-connected components U1; : : : ;Ul and note that each Ui contains at most N
balls. See Figure 7.

Fix a cluster UDUi . By the inductive hypothesis, there exists B.xj ; rj / 2U so
that [

U�B
�
xj ; .1C 2�

�1C 4��2C 8��3C � � � /��kj
�
:

Now, B.xj ; rj / and B.xm; rm/ both intersect
S

U by (i) and maximality of U. Hence,

(A.3) gap
�
B.xj ; rj /;B.xm; rm/

�
� diam

[
U� .2��kj /=.1� 2=�/ < 3��kj

by our requirement that � > 6. By (iii), we conclude that kj ¤ km. Thus, kj � kmC 1
because km was chosen to be the minimum level among k1; : : : ; kNC1. Ergo,[

U�B
�
xj ; �

�1.1C 2��1C 4��2C 8��3C � � � /��km
�
:

Thus, by (i) and the triangle inequality,[
U�B

�
xm; rmC 2�

�1.1C 2��1C 4��2C � � � /��km
�
:

As this conclusion is true for each family U and trivially true for ¹B.xm; rm/º, we
obtain

NC1[
iD1

B.xi ; ri /�B
�
xm; rmC 2�

�1.1C 2��1C 4��2C � � � /��km
�
:

Applying (ii) yields (A.2) for nDN C 1. Therefore, by induction, (A.2) holds for all
integers 1 � n � I . Further, reviewing the inductive step, we conclude that M is the
unique index such that kM Dmini�1 ki .
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To finish, observe that for any point z 2
SI
iD1B.xi ; ri /, there exists an index n�

M such that z 2
Sn
iD1B.xi ; ri /. By (A.2), we have

z 2B
�
xM ;

�
1C .2��1/=.1� 2=�/

�
��kM

�
:

Because � > 6 and r0 D 1, this yields (A.1). �

Appendix B. Lipschitz projections onto lines in Banach spaces

We now present a class of 1-Lipschitz projections onto a line in a Banach space. Given
a real Banach space X, let X� denote the dual of X and let J W X! X

� denote a
normalized duality mapping—i.e., a (nonlinear) map satisfying

(B.1)
ˇ̌
J.x/

ˇ̌
X�
D jxj and

˝
J.x/; x

˛
D jxj2 for all x 2X;

where hf;xi 	 f .x/ 2 R denotes the natural pairing of f 2 X� and x 2 X. Alterna-
tively, J is a subgradient of the convex function x 2 X 7! .1=2/jxj2 (see [2, 20]). The
norm on any (uniformly) smooth Banach space X is Gateaux (uniformly Fréchet) dif-
ferentiable, and thus J is uniquely determined (see, e.g., [13, Chapter Two]) when X is
smooth.

EXAMPLE B.1
When XD `p with 1 < p <1, J.x/D jxj2�p

`p
y 2 `�p D `p0 , where y D .jx1jp�2x1;

jx2j
p�2x2; : : : / and p0 is the conjugate exponent to p.

DEFINITION B.2 ([15, Definition 3.31])
Let X be a Banach space and let L be a one-dimensional linear subspace of X. Define
the J -projection …L onto L by

(B.2) …L.x/ WD
˝
J.v/; x

˛
v for all x 2X;

where J is a normalized dual mapping and v is a point in L with jvj D 1. When L is a
one-dimensional affine subspace of X, define …L 	 pC…L�p.� � p/ for any choice
of p 2L.

EXAMPLE B.3
Let XD `21 D .R

2; j � j1/, let v D .1; 0/, and let LD spanv be the x-axis. There is a
one-parameter family of J -projections onto L given as follows. For any jsj � 1=2, let
ws D .s; 1� jsj/. With respect to the basis v, ws ,

.x; y/D
�
x �

s

1� jsj
y
�
vC

� 1

1� jsj
y
�
ws for all .x; y/ 2 `21:

For any jsj � 1=2, a J -projection onto L is given by

…L.x; y/D
�
x �

s

1� jsj
y; 0

�
for all .x; y/ 2 `21:

Geometrically, the fibers …�1L .x; 0/ are lines parallel to spanws and …�1L .v/ D v C
spanws is a supporting line for the unit ball in `21. When s D 0, …L is the orthogonal
projection onto L. See Figure 1 for an illustration.
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The following lemma is easily derived from the definition of …L and (B.1); see [7,
Lemma 2.17] for sample details.

LEMMA B.4
Let X be a Banach space and let L be a line in X. Every J -projection …L onto L is
a 1-Lipschitz projection—i.e., …L.x/ 2 L for all x, …L.x/D x if and only if x 2 L,
and j…L.x/ �…L.y/j � jx � yj for all x, y. Moreover, dist.x;L/ � jx �…L.x/j �

2dist.x;L/ for every x 2X.

A separated set of points that is sufficiently close to a line admits a canonical ordering
(up to choice of orientation) and is locally finite, quantitatively.

LEMMA B.5
Let X be a Banach space. Let …L1 and …L2 be J -projections onto lines L1 and L2,
respectively. If V � X is a ı-separated set and there exists 0 � ˛ < 1=6 such that
jv�…Li .v/j � ˛ı for all v 2 V and i D 1; 2, then there exist compatible identifications
of L1 and L2 with R such that …L1.v

0/�…L2.v
00/ if and only if …L2.v

0/�…L2.v
00/

for all v0; v00 2 V . Moreover, if v1; v2 2 V and i D 1; 2, thenˇ̌
…Li .v1/�…Li .v2/

ˇ̌
� jv1 � v2j � .1C 3˛/

ˇ̌
…Li .v1/�…Li .v2/

ˇ̌
:

In particular, V is locally finite: #V \B.x; rı/� 1C 3r for every x 2X and r > 0.

Proof
Repeat the proof of [7, Lemma 2.1], mutatis mutandis. (See [7, Lemma 2.18] for a
related result.) The displayed inequality implies …Li jV is injective and …Li .V / is a
.2=3/ı-separated subset of the lineLi , whence V is locally finite. To be precise, writing
n� #V \B.x; rı/, we have .2=3/ı.n� 1/� diam…L.B.x; rı//� 2rı. �

Appendix C. Comments on Lemma 3.28 in Schul [27]

In the authors’ opinion, the proof of [27, Lemma 3.28] is incorrect and the mistake
made in the proof resists a simple fix. The error is in addition to the gap identified in
[7, Remark 3.8] and is unrelated to the issue of radial versus diametrical arcs discussed
in Remarks 1.15 and 3.5.

To describe the situation, let us quickly recall the basic setup in [27], which is
similar to Section 2 but with some differences. Given a nested sequence .Xn/1nDn0
of 2�n-nets for a rectifiable curve � in a Hilbert space H , let OG D ¹B.x;AG / W x 2

Xn; n � n0º denote the corresponding (truncated) multiresolution family for � . Let
G denote the set of all Q 2 OG such that 4Q n � ¤ ;. Choose a Lipschitz continuous
parameterization f W Œ0; 1�! � such that f .0/ D f .1/ and #f �1.¹xº/ � 2 for H1-
a.e. x 2 � . For any ball Q 2 G , define ƒ.Q/ to be the set of arcs � D f jŒa;b� such that
Œa; b� is a maximal connected component of f �1.� \Q/. For each arc � , define the
arc beta number Q̌.�/ by (1.11). Fix parameters 0 < �1; �2�AG

1. We say that � is
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almost flat and write � 2 S.Q/ if Q̌.�/ < �2ˇ�.Q/. Fix an integer J 
 log2AG and
for each Q 2 G , define cores

UQ WDU
J;1=64
Q and U xQ WDU

J;1=8
Q

using Definition 2.1 above with G in place of H . For eachQ 2 G and � 2 ¹1; 2; 4º such
that �Q 2 G , choose an arc ��Q 2ƒ.�Q/ containing the center of Q. Do this in such a
way that �2Q extends �Q and �4Q extends �2Q whenever the arcs are defined. For each
� 2 ¹1; 2; 4º, introduce the family

G�2 WD
®
Q 2 G W ��Q 2 S.�Q/ and ˇS.�Q/ > �1ˇ�.Q/

¯
:

(Schul’s G�2 balls correspond to this paper’s B� balls. Schul also defines G�1 and G�3
balls, but these are unrelated to Lemma 3.28.) Continuing to follow [27], let us focus
on the case �D 1. Choose a parameter CU 
AG

1 and define �2:1 to be the subfamily
of all balls Q 2 G 12 such that

� almost flat arcs are flatter in U xQ than in Q: ˇS.Q/.U xQ/� C
�1
U ˇS.Q/.Q/; and,

� every arc � 2ƒ.Q/ such that Image.�/\UQ ¤; is almost flat: � 2 S.Q/.

(There are also subfamilies �1 and �2:2, which are not relevant here.)

LEMMA C.1 ([27, Lemma 3.28])
For every integer 0 � j � J � 1, the family �0 D ¹Q 2 �2:1 W radiusQ D AG2

�k

for some k 	 j .mod J /º satisfiesX
Q2�0

diamQ .AG
H1.�/:

Schul’s strategy for proving Lemma C.1 is the one that we described in Section 2. It
suffices to construct Borel functions wQ W H ! Œ0;1� for each Q 2 �0, which sat-
isfy the inequalities (2.4) and (2.5) with �0 in place of G . Build weights wQ using
the cores UQ as in §2.3 with diamUQ in place of diamHQ. (The concept of max-
imal arc fragments HQ introduced in Remark 2.11 did not appear in [27], but in
any event, diamHQ � diam�Q � diamUQ because �Q is diametrical for all Q 2
�2:1.) Define the remainder set RQ as in (2.14) and define an auxiliary quantity sQ D
2`.RQ/C

P
Q02Child.Q/ diamUQ0 . By the argument in [27, Lemma 3.25, Steps 2–3] or

Lemma 2.12 above, the weights ¹wQ WQ 2�0º satisfy (2.4) and (2.5) so long as there
exists a universal constant 0 < q < 1 such that

(C.1) diamUQ � qsQ for all Q 2�0:

Unfortunately, the proof of (C.1) in [27] contains an error and is incomplete.
Fix Q D B.xQ;AH2

�k/ 2�0. Simplifying the notation from [27] slightly, write
Q� DB.xQ; .1=64/2

�k/. As long as we choose J to be sufficiently large, we have

Q� �UQ � 1:00001Q�:

Suppose that the central arc �Q D f jŒa;b�. Choose an interval Œc; d �� Œa; b� such that
Œc; d � is a connected component of ��1Q .0:99999Q�/ and f .Œc; d �/ has maximal diame-
ter among all such intervals. (This is like extractingGQ fromHQ.) Define �Q D f jŒc;d�
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Figure 8. Example of an almost flat arc � 2 S.Q/ inside of the core UQ of a Schul-type �2:1 ball Q. At the
resolution ofQ or UQ , the portion of Image.�/ inside of UQ is indistinguishable from a line segment. How-
ever, zooming in reveals a more complicated picture. The portion of Image.�/ inside of the sub-ballQ0 2�2:1
is the union of two line segments, only one of which intersects the coreUQ0 . The orthogonal projection� from
�\UQ onto the horizontal line through the center ofQ0 is 1-to-1 when restricted to the cylinder above points
in �.� \UQ0 /. This shows that [27, (3.24)] used in the proof of Lemma 3.28 is invalid.

and let L denote the line passing through Edge.�Q/ D Œf .c/; f .d/�. Because �Q is
almost flat, dist.z;L/.AG

�2 diamQ� for every z 2 Image.�Q/. Finally, let � denote
the orthogonal projection from � \ 0:99999Q� onto L. The first error in the proof is
in [27, (3.24)], which states that for all x 2 �.� \ 0:99999Q�/ n �.RQ/, there are at
least two points in � \ 0:99999Q� that project onto x. In Figure 8, we show that this
is not the case.

A second (implicit) error appears in the preamble to the proof just before [27,
Remark 3.27]. Let Q0 2 Child.Q/; in addition to the central arc �Q0 , the set S.Q0/
includes at least one other arc �Q0 with a distinct image. (In the figure, �Q0 traces the
horizontal line segment and �Q0 traces the diagonal line segment.) Let b�Q0 and b�Q0
denote the extensions of the arcs to elements in ƒ.Q/. It is implicitly suggested that
the arcs b�Q0 and b�Q0 are distinct and this together with [27, (3.24)] is what lets one
check (C.1). The example in the figure shows that it is possible for Image.b�Q0 / D
Image.b�Q0 / even though Image.�Q0/ ¤ Image.�Q0/. Ultimately, the proof of (C.1)
offered in [27] is incomplete and unconvincing.

Nevertheless, (C.1) and [27, Lemma 3.28] are correct and this can be shown using
the arguments in Sections 3–7. The essential new ingredients that let us wrap up Schul’s
proof of the analyst’s traveling salesman theorem in Hilbert space (Corollary 1.5) are
the classification of cores in Definition 3.8, the case analysis in Section 3, Lemma I,
and Lemma II.
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