Subsets of rectifiable curves in
Banach spaces ll: Universal estimates for
almost flat arcs

Matthew Badger and Sean McCurdy

Abstract We prove that in any Banach space, the set of windows in which a rectifiable curve
resembles two or more straight line segments is quantitatively small with constants that are
independent of the curve, the dimension of the space, and the choice of norm. Together with
Part I (also published in this issue), this completes the proof of the necessary half of the
analyst’s traveling salesman theorem with sharp exponent in uniformly convex spaces.
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1. Introduction

1.1. Background

Given “snapshots” of a set E in a metric space X at all locations and scales, the analyst’s
traveling salesman problem (TSP) is to determine whether or not E is contained in
a rectifiable curve, and if so, to estimate the length of the shortest such curve. Full
solutions to the analyst’s TSP (characterizations of subsets of rectifiable curves) have
been found in R” [19, 24], in arbitrary Carnot groups [23], in Hilbert space [27], and
in certain fractal-like metric spaces [12]. For the related measure-theorist’s traveling
salesman problem and its solution in R” and also in Carnot groups, see [5, 6, 9]. Partial
results on the Analyst’s TSP in other metric spaces have been obtained by Hahlomaa
[16, 17] and David and Schul [11] and for higher-dimensional objects [4, 8, 18, 28].
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Refined estimates on the length of the shortest Jordan curve containing a set in R” or
Hilbert space have been given in [10, 21]. In Part I [7] and in the present paper, we
address the Analyst’s TSP on a general Banach space.

Let X be a (real) Banach space, let £ C X be a nonempty set, and let Q C X be a
set of finite, positive diameter. If £ N Q # @, we define
(1) pe(@)=inf sup XD gpg )

L xeeng diam Q

where the infimum ranges over all lines L C X. If E N Q = @, then we assign
BE(Q) =0. These are a geometric variant of least squares errors introduced in [19]
and are now called Jones’ beta numbers. If fg(Q) = 0, then the portion of the set E
inside of the “window” Q is contained in some line L; if Bg(Q) = 1, then for each
line L passing through Q, at least some part of E N Q is far away from L. An easy,
but important, consequence of the definition is

diam Q
(1.2) Pe(R) =
Thus, an estimate of flatness at one scale yields (a worse) estimate of flatness at a
smaller scale. Because any rectifiable curve I' C X admits tangents lines almost every-
where with respect to the 1-dimensional Hausdorff measure !, it is perhaps reason-
able to expect that lim, .o Br(B(x,r)) =0 at #!-a.e. x € T'. Following [19], which
marks the start of quantitative geometric measure theory as its own subject, we are

Br(Q) forall EC Fand RC Q.

interested in making this qualitative statement more precise.

In Part I [7], we established universal sufficient conditions for a set in an arbitrary
Banach space to be contained inside a rectifiable curve, as well as improved estimates
on the length of the shortest curve containing a set in uniformly smooth spaces. The
origin of this result is Jones’s criterion [19] for the existence of a rectifiable curve pass-
ing through a given set in R”, which is usually stated using systems of dyadic cubes.
However, because we work in infinite-dimensional settings, we prefer to use Schul’s
formulation [27] in terms of multiresolution families. Recall that an ¢-net for £ C X is
a maximal set X C E such that |x — y| > € for all distinct x, y € X. A multiresolution
family € for E with inflation factor Ag > 1 is a family {B(x, Ag27%) :x € Xk € Z}
of closed balls with centers in some nested family --- C X_;y C Xo C X; C--- of P
nets Xj for E. Analogously, if each set Xy is a 2-¥-separated set, but possibly one or
more of the sets X are not 2 %-nets, then we call € a partial multiresolution Sfamily
for E.

THEOREM 1.1 ([7, 19, 27])
Let X be Banach space and let 1 < p < 2. Suppose that

(1) Xis an arbitrary Banach space and p = 1; or,

(i) Xis a uniformly smooth Banach space of power type 1 < p <2; or,
(iii) Xis a Hilbert space and p =2; o,

(iv) Xis a finite-dimensional Banach space and p = 2.



Subsets of rectifiable curves in Banach spaces Il 277

If E CX, § is a multiresolution family for E with inflation factor Ag > 240, and

(1.3) Sgp(§) :=diamE + Y B£(Q)” diam Q < oo,

Qe§g
then E is contained in a rectifiable curve T C X with X1 (T') Sa, x Sg,p(§). (When
p =1, restrict the sum in the definition of Sg.1(§) to balls Q € § with diam Q <
diam £.)

REMARK 1.2

In cases (i) and (iii), the implicit constant in Theorem 1.1 in the comparison
HIT) < Ag.x SE,p(§) depends only on Ag. In case (ii), the implicit constant depends
only on A¢ and the modulus of smoothness of X. In case (iv), the implicit con-
stant depends on Ag, the dimension of X, and the bi-Lipschitz constant of a chosen
embedding X < £§m*,

In the present paper, we complete the proof of the following theorem, which is dual
to Theorem 1.1. Where the modulus of smoothness is the relevant characteristic of a
space for sufficient conditions, the modulus of convexity of the space is the relevant
characteristic for necessary conditions. The special cases X = RZand X =R*,n>3
of Theorem 1.3 are originally due to Jones [19] and Okikiolu [24], respectively. When
Xis an infinite-dimensional Hilbert space, the theorem was identified in [27], but the
proof in that paper has serious gaps (see [7, Remark 3.8] and Appendix C), and a
complete proof seems to not have been written until now. (An alternative fix of some
portions of the proof in Schul’s paper is proposed by Krandel [21].)

THEOREM 1.3
Let X be a Banach space and let 2 < p < oo. Suppose that

(i) Xis a uniformly convex Banach space of power type 2 < p < 00; or,
(i) Xis a Hilbert space and p =2; o,
(iii) X is a finite-dimensional Banach space and p = 2.

If E C X is contained in a rectifiable curve T" and § is any (partial) multiresolution
family for E, then Sg p(9) Sayx H1(T).

REMARK 1.4

Again, in case (ii), the implicit constant in the comparison Sg ,(§) Sa.,x depends
only on the inflation factor Ag. In case (i), the implicit constant depends only on Ag
and the modulus of convexity of X. In case (iii), the implicit constant depends on Ag,
the dimension of X, and the bi-Lipschitz constant of an embedding X «— Eg"“x.

Combining Theorems 1.1 and 1.3, we recover Schul’s solution of the analyst’s TSP in
Hilbert space [27]. For derivation of Jones’s and Okikiolu’s dyadic cube formulation of
Corollary 1.5 in any finite-dimensional Banach space, see [7, Section 4].
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COROLLARY 1.5
Let X be any Hilbert space. A bounded set E C X is a subset of a rectifiable curve in
Xif and only if

(1.4) > BE(Q)?diam Q < oo

Qeg
for some (for every) multiresolution family § for E with inflation factor Ag > 240. Fur-
thermore, if (1.4) holds, then E is contained in some rectifiable curve I with extrinsic

length X1 (T') Sa, Se2(9).

The solution of the analyst’s TSP in Hilbert space depends heavily on the Pythagorean
theorem as well as invariance of distances under orthogonal transformation. These spe-
cial features of Hilbert space are not available in a general Banach space. While The-
orem 1.1 gives a sufficient test for a set to lie in a rectifiable curve and Theorem 1.3
provides us necessary conditions, a complete characterization of subsets of rectifiable
curves in an infinite-dimensional non-Hilbert Banach space is still unknown. The fol-
lowing example and remarks show that a new idea is needed. See [26] for further dis-
cussion of the underlying challenges and [11] for recent partial progress.

EXAMPLE 1.6

If 1 < p < oo, then the Banach space X = £, of real-valued sequences x = (x;){° with
Ixll, = (325° |x:|7)/? is uniformly smooth of power type min{p,2} and uniformly
convex of power type max{2, p}. Let E C £, be bounded. By Theorem 1.1,

(1.5) Z BE(0)™™P2} diam Q < oo = E lies inside some rectifiable curve T.
Qeg

By Theorem 1.3,

(1.6) Z BE(0)™2:P} diam O < 0o <= E lies inside some rectifiable curve I
Qeg

Because min{p,2} < max{2, p} unless p = 2, this means that there is a strict gap
between Theorem 1.1 and 1.3 for infinite-dimensional non-Hilbert Banach spaces.

REMARK 1.7
In [7, Section 5], we constructed examples that show that the exponents in (1.5) and

(1.6) are sharp. For instance, for any 2 < p < oo, we build a curve I' in £, with
J(’elp (T) < oo and Sg,p—e(§) = oo forall € > 0.

REMARK 1.8

Equivalence of norms on finite-dimensional spaces ensures that a curve is rectifiable
independent of the choice of norm (although the length depends on the norm). By
contrast, the infinite-dimensional £, spaces are distinguished by their rectifiable curves
in the following sense. For each 1 < p < oo, there exists a curve I" in £, such that
Jle (T') = oo and JQIHG (T") < oo for all € > 0. See [7, Proposition 1.1].
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The proof of Theorem 1.3 for uniformly convex Banach spaces started in [7, Sec-
tion 3] follows the outline of the argument in [27], but with the correction noted in
[7, Remark 3.24], which required weakening Schul’s original definition of “almost
flat arcs.” More specifically, we proved Theorem 1.3 modulo verification of [7, The-
orem 3.30], which is the main theorem of this paper. Roughly speaking, the main the-
orem is a quantitative strengthening of the statement that at #!, almost every point, at
sufficiently small scales, a rectifiable curve does not resemble a union of two or more
line segments. By proving the main theorem, we shall complete the demonstration of
Theorem 1.3.

The estimates that we establish below are universal insofar as they are valid in any
Banach space. Because of the general setting, we have very few tools at our disposal.
Our primary tools are the triangle inequality, connectedness of arcs, and existence of
Lipschitz projections onto 1-dimensional subspaces (see Appendix B).

1.2. Almost flat arcs and statement of the main theorem

For the remainder of the paper fix a Banach space (X, |- |), a rectifiable curve I' in
X, a (partial) multiresolution family J¢ for I" with inflation factor Az > 1 and centers
in a family (Xy)xez of 2 ¥-separated sets for T, and a continuous parameterization
f :[0,1] = T. For the purpose of proving the main theorem below, we do not need
to (and shall not) place any restrictions on the modulus of continuity or multiplicity
of f, but if so desired, one may assume as in Part I that f is Lipschitz continuous,
#f1x} <2for H#'-ae x €T, and £(0) = f(1) (see[1]).

DEFINITION 1.9 (Classification of arcs [7])

An arc, T = f'|[4,p], of I is the restriction of f to some interval [a, b] C [0, 1]. Given
anarc 7 : [a,b] — T, define

Domain(z) = [a, b], Start(z) = t(a) = f(a), End(z) = t(b) = f(b),
Image(z) = ([a,b]) = f([a.b]) and Diam(r) = diam Image(r).
For any ball Q € # and scaling factor A > 1, let

AAQ) = {fl[a,b] : [a,b] is a connected component of f~1(I" N 210)
1.7
(47 such that AQ N f ([a,b]) # 0}.

The elements in A(AQ) are arcs in 2AQ that touch 1Q. Agree to write 8 (10)(2A0)

as shorthand for B| jqimage(r):reA(10)} (2AQ).
An arc T € A(AQ) is called x-almost flat if

dist(z, L
(18) H(6)= Fimasc (mage(@) =igt_swp TEB = S0esBaio) (2A0).
where L ranges over all lines in X and 0 < €5 < 1 is a constant depending on at most
the inflation factor Ag of J# and €; (see Definition 1.11). Denote the set of x-almost
flat arcs in A(AQ) by S*(10).
An arc © € A(AQ) is called almost flat if B(t) < €281 (Q). Denote the set of
almost flat arcs in A(AQ) by S(AQ). Anarc t € A(AQ) \ S(AQ) is called dominant.
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REMARK 1.10

We do not require that arcs be 1-to-1. By (1.2), every almost flat arc is x-almost flat
provided that A < 25. The peculiar definition of x-almost flat arc—i.e., the constant 50
in (1.8), and the focus on scaling factors A € {1,5} in arguments below are made in
order to implement the proof of [7, Lemma 3.29]. However, these choices will play no
direct role in the arguments in this paper.

Below, given an arc 7 and window Q, we write B(Q) as shorthand for Bimage(r)(Q)-
Similarly, given a set S of arcs, we write B5(Q) = B j{image(r):res} (Q)-

DEFINITION 1.11 (8 balls)
Let 0 < €; < 1 be a constant depending on at most the inflation factor A g of #. Given
A > 1, let B* denote the collection of all balls Q € # such that

() Pr(Q)#0and '\ 140 # 0

(ii) if r € A(AQ) and Image(r) intersects the net ball
(1/3A45)0Q = B(x,(1/3)27%) near the center of Q = B(x, A#27%), with
x € Xk, then 7 € S(AQ), and

(iil) Bs+10)(2AQ) > €1Bar0)(210).

Assign B = 8' U 8°.

REMARK 1.12

In Part I, we took €; = 1/126A g to prove and use [7, Lemma 3.29]. The importance
of the net balls is that they are uniformly separated in each generation—i.e., if k € Z,
X1, X2 € Xy are distinct points, and Q; = B(x;, Agg2_k) € J¢, then

(1.9) gap((1/34)01.(1/345)Q2) = (1/3)27F > 0,

where for any nonempty sets S, T C X, gap(S,T) = infses ser |5 — t| denotes the gap
between S and 7. (In harmonic analysis, the notation dist(S, 7') may be more familiar.)

If €, is very small, then at the resolution of 240, almost flat and *-almost flat arcs look
like line segments.! Roughly, the class B consists of all balls in the multiresolution
family # such that 210 contains at least two x-almost flat arcs (with distinct images)
and the union of the images of arcs in $*(1Q) is as nonflat as the union of the images of
all arcs in A(AQ). Our main theorem says that for any rectifiable curve in any Banach
space, the collection B of locations and scales with this behavior is rare relative to
FHN(T).

THEOREM 1.13 (Main theorem)

Assume that €, is sufficiently small depending only on Az and €1; €3 = 275¢, [/ Az
will suffice. For all ¢ > 0,

1. At scales much smaller than 2AQ, almost flat and *-almost flat arcs can look like any rectifiable curve.
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(1.10) Y Br(Q)diam Q Sq.uy.¢ H'(T),
QesB

where the implicit constant blows up as q | 0.

REMARK 1.14

A consequence of the main theorem is that in order to prove Theorem 1.3 for a particular
curve I', in a particular Banach space X, and for a particular exponent p, it (essentially)
suffices to prove ZQeA Br(Q)? diam Q <, 4, H(T), where Q € A C H are balls
whose net ball (1/3A44)Q is intersected by a dominant arc. (Besides # and B, there is
also a class of € balls; see [7, Section 3.3] for details.) In Part I, we do this for curves
in uniformly convex Banach spaces of power type 2 < p < oo and prove Theorem 1.3
assuming the main theorem ([7, Theorem 3.30]).

REMARK 1.15

In [27], Schul gives a version of the main theorem in Hilbert space but with some
differences. In particular, almost flat arcs T = f'|[4 5] in [27] satisfy the more stringent
requirement

Sy dist(f(c), [f(a), fF(D)])
(1.11) p(x) = et diamImage(r)

= epr(Q).

A geometric consequence is that B almost flat arcs that pass near the center of Q are
“diametrical” in the sense that diamImage(z) N Q > (1 — O(ez)) diam Q. By contrast
an almost flat arc with our definition that passes near the center of Q may be “radial”
in the sense that diamImage(z) N Q < (1/2 4 O(e;)) diam Q. The existence of radial
arcs causes substantial difficulties in the proof of the main theorem; see Remark 3.5.
For additional comments on the proof of the theorem in [27], see Appendix C.

REMARK 1.16

R. Schul (personal communication) suggested an alternate approach to handling radial
arcs. If one assumes f* is Lipschitz, then (1.10) for the subset of all Q € 8B that contain
one or more radial arcs is subsumed by the Carelson-type estimates in Azzam and
Schul’s quantitative metric differentation theorem [3]. Such an approach entails passing
between multiresolution families in the domain and image of f, which is not needed in
the direct argument below. The techniques in this paper may be better suited to proving
a converse to the Holder traveling salesman theorem [8].

We devote the remainder of the paper to the proof of the main theorem. The journey
is somewhat long, but we try to make the first few sections as easy to read as possible.
We hope that the reader who reaches the end may say that they have gained at least an
incrementally better insight into the mysteries of Banach space geometry. Sections 27
are best read in the order presented. In Section 2, we describe Schul’s clever idea to
prove (1.10) by constructing geometric martingales out of curve fragments [27]. We
show how to modify the original argument to account for the possibility of “radial”
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arcs. An important quantity introduced is diam Hg, the diameter of a “maximal arc
fragment” in the “core” Ug of a ball. In Section 3, we outline the proof of the main the-
orem, including a discussion of the underlying challenges and a plan to overcome them.
Ultimately, we reduce the proof of the main theorem to two key estimates, Lemma I
and Lemma II. Section 4 sketches the geometry of possible configurations of almost
flat arcs that we encounter in later proofs. Section 5 takes a crucial step toward better
estimates by identifying an auxiliary family of cores nearby a given arc fragment that
possesses a sufficient amount of “extra length.” A vital technical tool is Lemma 5.8,
which is proved using a topological argument.
We prove the main estimates in several stages. First, in Lemma 6.1, we show that

(1.12) diam Hp <2J¢"(I' N Rg) + 1.37) _ diam Hy.

where Rg is a “remainder” set and the sum ranges over all “children” Ugp- of the core
Ugp. While this is a substantial improvement of the coarse estimate (3.6), which holds
with 2.01 instead of 1.37, to prove the main theorem we need the estimate to hold
with the coefficient of the sum strictly less than 1! In the end, by a case analysis and
iterating the proof of (1.12), using (1.12) instead of (3.6), we obtain the key estimate
with a coefficient less than 0.96. See Section 6 (proof of Lemma I) and Section 7 (proof
of Lemma II) for details.

2. Schul’s martingale argument in a Banach space

We describe Schul’s martingale argument (see [27, Section 3.3]) for upper bounding
sums of Br(Q)? diam Q over subfamilies of B, where ¢ is any positive exponent. In
this context, martingale refers to a recursively defined sequence of geometric weights
associated to a tree of “cores” of overlapping balls. We formalize this terminology
below. Schul’s method is robust and can be implemented in any Banach space.

2.1. Start of the proof: Reduction to existence of weights

Recall that if Q € B, say Q = B(x, Az%27%) for some k € Z and x € X, then there
exists A = A(Q) € {1,5} such that every arc t € A(AQ) that intersects the net ball
B(x,(1/3)27%) is almost flat, B(r) < €281 (Q), and hence is *-almost flat, f(1) <
50€2B4(0)(2AQ). Moreover, the set S*(AQ) of x-almost flat arcs in A(AQ) satisfies
Bs+*10)(2AQ) > €1Ban0)(2A0).

Suppose that we have broken up 8 into a finite number of (possibly overlapping)
families B(1),...,B(N), where N is independent of X and A(Q) = A € {1, 5} is uni-
form across all Q in any fixed family B(n). (The partition that we eventually use is
described in Section 3.) To prove the main theorem, in particular (1.10), it suffices to
prove that for each 8’ = B(n) and ¢ > 0, we have

@1 Y~ Bs)(22Q)? diam Q g 4, H'(T)
QeB’

because Br(Q)? = Ban)(Q)! <q Baro)RA0)! <ge Bs+ro)(2AQ)? for all
0 e 8.
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We now fix a family 8’ = 8B(n) and describe a strategy to prove (2.1) for 8B’. For
the remainder of the paper, we set

2.2) K := 100 + [log, Az] > 100.

The value of K is chosen according to certain geometric requirements below, but for
now the reader may think of K as being some large positive integer that is independent
of the family B’. For the duration of the paper, for all integers M > 1 and 0 < j <
KM — 1, we let ™7 denote the set of all Q € B’ such that

e O = B(x,Ax27%) for some k = j (mod KM) and x € X, and
o 27M < Bui0)(220) <27,

Each Q € B’ belongs to precisely one of the families €M/ for some integers M > 1
and 0 < j < KM — 1. We will prove that when ¢, is sufficiently small compared to

e1/Az,
(2.3) > diam Q S, H'(T)
QegM.j

for all M and j. (We refer to €; only two more times, once in (3.1) and once in the
derivation of (4.2).) This suffices because for any g > 0,

00 KM-1
> Bsr)(2hQ) diamQ < 3" 27MDe N N diam Q 54 4, H'(T).
QeB’ M=1 J=0 QegM.j

where in the last inequality, we used ZOA;=1 M2~ (M-1)q Sqland K <4, 1iie., (2.3)
for all M and j implies (2.1) holds for the family 8B’.

We now fix integers M > 1and 0 < j; < KM — 1 and write § = €M.J1 We make
a further reduction. Suppose that for each ball Q € §, we possess a Borel measurable
function wg : X — [0, oo] which satisfies two properties:

(2.4) / wodH' 24, damQ forall Q €°;
r

(2.5) > wo(x)S1 atH'-ae xel.
Qeg

Then

> diamQ S, Y / wo d I =/ > wodd' Say H'(D):;
' r r
Qeg Qc§ Qecg
i.e., the existence of weights wg satisfying (2.4) and (2.5) implies (2.3). Our task is to
construct the weights, assuming that €, is sufficiently small.

2.2. Cores and maximal almost flat arcs

Following [27], it will be convenient to introduce a nested family of “cores” U, é’c, lying
near the center of balls Q € J. Cores are formed by joining overlapping dilations of
balls in # from future generations, skipping by J generations at a time.
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DEFINITION 2.1 ([27])
Let Q € #, say that Q = B(x, Ag%27%) for some k € Z and x € X. For any integer
J >4and 0 < ¢ <1/5, we define the (J, ¢)-core UQJ’C of Q inductively by setting

Ué:f) = B(x,c27%) = (¢/Ax)0,

J,c . J, —(k+Jj .
UQ,IC. = UQj_l U U B(y,c2=®+JDy foralli > 1,
Y€Xj 4 g jfor some j>1
B(y,cz—(kJri))mUéf_]#g

o0
J,c . J,c
Uy =Jugs.
i=0

Cores are a variation on the Christ-David “dyadic cubes” in a doubling metric space.
Although an infinite-dimensional Banach space is not a doubling metric space, we note
that the nets Xj are finite because I' is compact. For a streamlined construction of
metric cubes that starts with any nested family of locally finite nets, see [22].

LEMMA 2.2 (Properties of cores, cf. [27, Lemma 3.19])
Given J >4,0<c <1/5 and 0 < j < J —1, let U be the family of cores defined by

U= {Ué’c 0= B(x,Agg2_k)f0rs0me xe€Xpandk =j (modJ)}.

If OQ.R e ¥ with Q = B(x,A%27%) and R = B(y, Ax2™™) for some k,m =
j (mod J), x € Xy, and y € Xy, then the cores UQJ’C and UI{’C belong to the family
U and satisfy the following:

(i) Shape: B(x.c2™%) c U C B(x.(1+3/27)c27%) C B(x.(1/4)275).
(ii) Separation within levels: If k = m and x # y, then

gap(Uy“. Ug) = (1/2)27%.
(iii) Tree structure: If m > k and Ué’c N UI{’C = (, then UI{’C C Ué’c.

Proof

For (i), given Q = B(x, Aggz_k ), the first containment is immediate as B(x, 27k )=
Ué’,g - Ué’c. For the second containment, Ué’c C B(x,(1 + 3/27)c27%), apply
Lemma A.l with parameters § = 27 and ro = ¢27% and the balls B(y,c2-*+7/1)
appearing in the definition of U é’c assigned to level j. The reader should check that
the hypotheses of Lemma A.1l are satisfied, but here are the essential points: With
J > 4, the parameter £ > 16 > 6. The chain hypothesis is satisfied by the construction
of the cores. The separation hypothesis is satisfied because the centers of balls in level
j are 2~%+J7) separated and (1 — 2¢) > 3c. The final containment in (i) holds since
(143/27)c <19/80 < 1/4 when J > 4 and ¢ < 1/5. Property (ii) holds by property
(i) and fact that |x — y| > 2% when x, y € X; are distinct. When m = k, property
(iii) is immediate from property (ii). Finally, when m > k, property (iii) follows from

the construction. Indeed, UQJ’C N UI{’C £ @ only if Uéf N Ulgj £ () for some i, j, so

J,c J,c .
UR,j+lCUQ,i+j+1+l forall / > 0 since m > k. O
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DEFINITION 2.3
For all Q € # (in particular, for Q € §), let Ug denote the (J,¢)-core Ué’
parameters J = KM and ¢ = 272, with K as in (2.2), and let Q4 denote Ué’g,

¢ with

REMARK 2.4
A core Ug looks like the ball O, except that it may have “tiny bubbles” pushing
outward near the boundary dQ . of the ball. Cores are not necessarily convex.

REMARK 2.5
If Q = B(x, Ag27%) € J for some k € Z and x € Xy, then
(2.6) 0. = B(x,271227%) c Up € 1.00001Q.

by Lemma 2.2 since 1 + 3/2KM <1 4372190 < 1,00001. (Fifth decimal place pre-
cision is chosen to facilitate select estimates in Sections 3-7.) If Q € § and Q' =
B(y,A%2™™) € § for some m =k (mod KM) with m > k, then

2.7) diam21Q’ <204 527" < 32432 KM2=* < 2784 djam 0,

since 27KM < 27100 41 139 4 42~ KM <2795 and diam Q. = 271127 In particu-
lar,

2.8) 210’ N0.999990, # § = 20’ C 0. C Up.

REMARK 2.6
The core Ug of a ball Q € J is much smaller than the net ball (1/3A45)Q: 21Uy C
(1/3A4)0Q, where dilations are relative to the center of Q. When Q' € # \ {Q}
and diam Q' = diam Q, Lemma 2.2(ii) implies gap(Ug,Ug/) > 2!%diam Q, >
2° diam Uy .

REMARK 2.7 (Tree structure)
By Lemma 2.2, we may view § as a forest of trees ordered by inclusion of the cores
{Ug : Q € §}iie., we declare P € § to be the parent of Q € § if and only if P is
the unique element such that Ugp & Up and Ug C Ugr C Up for some R € § implies
R e {P, Q}. Note that
(2.9) sup diam Q < (1/14)diamI" < oo

QeB
since ' \ 14Q # @ for all Q € B and T is a rectifiable curve. Hence, every element
of § sits below a maximal element in §—i.e., a ball without a parent. Extending the
metaphor, we say that Q is a child of P if P is the parent of Q. We let Child(P) denote
the set of all Q € § such that Q is a child of P. For each ball P € §, the set Child(P)
may be empty, nonempty and finite, or countably infinite. We also view {Ug : Q € §}
as a tree ordered by inclusion and call Ug- a child of Uy if and only if Q" € Child(Q).
A child is a Ist generation descendent, a child of a child is a 2nd generation descendent,
etc.
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We now diverge slightly from [27] and introduce (possibly disconnected) fragments of
x-almost flat arcs on the image side of f. We also define a class of closed, connected
subsets of fragments called subarcs.

DEFINITION 2.8 (Fragments of x-almost flat arcs)
For each Q € ¥ and nonempty set W C 2AQ, with A € {1,5} determined by §, let
Iy, ={lmage(x) N W :t € S*(AQ)} \ {9}.

DEFINITION 2.9 (Subarcs)

Let T" € I'y,, say T’ = Image(r) N W for some arc € S*(AQ). We say that T C T’
is a subarc of T" if T = t(I) = f(I) for some nondegenerate interval I = [a,b] C
Domain(r); we say that the presentation T' = f([) is efficient if, in addition, diam 7" =

|f(@) = f(D)].

REMARK 2.10

A subarc T of an arc fragment 7’ € I'j;, may have several presentations—that is to say,
we may have T = f(I) and T = f(J) for some intervals I # J. It is possible that
the presentation 7 = f(I) is efficient, but the presentation 7 = f(J) is not efficient.
This will not hamper the arguments below so long as we recall that the term “efficient”
always refers to a particular choice of presentation of T'.

REMARK 2.11 (Choosing maximal arc fragments)

Forany O € §,say O = B(x, A2 %) for some k € Z and x € X, the set F;}Q of arc
fragments is nonempty since the core Ug is contained in the net ball B(x, (1/ 3)27k)
and x € Ug. In fact, for every set T’ € I‘;}Q, there exists an almost flat arc 7 € S(1Q)

such that 7/ = Image(z) N Uy, since Q € § and § C B* (see Definition 1.11).
Among all sets in F*Q, choose Hgp € FEQ such that

HonN(1/4)0.#0  and

(2.10)
diam Hp > diam 7’ forall T’ € F(*]Q such that T/ N (1/4) O« # 0;

i.e,, let Hp have maximal diameter among all fragments in Ug of almost flat arcs that
intersect (1/4) Q«. Let ng € S(AQ) denote any arc such that Hp = Image(no) NUop.
Existence of Hg is immediate because F(’;Q is a nonempty finite set and at least one
fragment in FZ}Q passes through the center of (1/4) Q. If there are several candidates,
pick one in an arbitrary fashion. In principle, Hg may have several connected com-
ponents; e.g., even if ng traces a line segment, the core Ug need not be a convex set.
Nevertheless, H g always contains an efficient subarc G with diameter nearly equal to
that of Hg; see (3.7) below. By comparison with an arc T € S(AQ) with x € Image(r)
and (2.6),

(2.11) 0.5diam Q. < diam Hg < 1.00001 diam Q. < 3#'(I' N Up),

where the diameter of Hg is closer to the lower bound if Hy is “radial” and closer to
the upper bound if Hg is “diametrical.” (The constant 3 is overkill.) Alternatively,

(2.12) 0.49999diam Ug < diam Hg < diamUg < 2.00002diam Hg.
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Below, we use diam Hg to the play the role that diam Ug had in [27].

2.3. Martingale construction
In probability theory [14, Chapter 4], a martingale defined with respect to an increas-
ing sequence (Fg)i>o of o-algebras is any sequence of real-valued random variables
(Yx)k>o such that each Yj is ¥ measurable and has finite expectation, and moreover,
the conditional expectations E(Yy1|Fx) = Yy for all k. The martingale convergence
theorem asserts that if (Y )x>o is a martingale and Yy > O for all k, then Y} converges
to some random variable ¥ almost surely. We will use martingales to construct weights
satisfying (2.4) and (2.5), where the background “probability” is the finite measure
C=H'LT.

Let P € § be a fixed ball. For each k > 0, let ¥ denote the o-algebra generated by
the cores Ug, where Q is a descendent of P in § of generation at most k (including P).
Thus, Fo = {0, Up, X\ Up, X} is the o-algebra generated by {Up }, F7 is the o-algebra
generated by {Up}U{Up : O € Child(P)}, etc. We remark that o C 1 C F, C --- C
Bx, the Borel o-algebra. We build (Y% )r>o inductively. First, assign Y, to be the Fo
simple function
diam Hp

t{(Up)

where Hp denotes the maximal arc fragment chosen in Remark 2.11. Note that Yy is g
measurable and | Y d{ = diam Hp. To continue, suppose that Q € § with Up C Up.
Let £ > 0 denote the unique integer such that Q is a descendant of P of generation
kiie,k=0if Q = P,k =1if Q € Child(P), etc. We will define Y; 1|v,, to take
constant values on elements of Fx4; contained in Up. If Child(Q) = @, then Q is
terminal in § and we simply set Yy 1;|u, = Yk|u, for all i > 1. Otherwise, O has at
least one and possibly 8¢ many children in §; let Q!, 02,... be an enumeration of
Child(Q). We remark that the cores Uy of children of Q are pairwise disjoint. Now
define the remainder Rg,

(2.14) Rg:=Ug\| JUg:.

(2.13) Yo = XUp

and define the auxiliary quantity sg,

(2.15) sg == 101¢(Rg) + Y _ diam H .

i
Observe that sp < 101£(Up) < co by (2.11) and countable additivity of measures.
Assign Yi41|u,, to be the function

101 diam H i
(2.16) Yk |U = Xoi / Yk d@,
+11Uo ( ZK(UQ )so 0 ) Vo

also assign Yg+i|rp = Yk+1|Rp foralli > 2. Then Y 41|y, is Fi+1 measurable, and
fUQ Yiy1dl = fUQ Yy d{. Because Ug is an atom in the o-algebra %, the equal-

ity of the integrals ensures that E(Yy41|F%) = Yx on Ugp. Repeating this construction
on each Q that sits k levels below P in § concludes the description of Y, given
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Y. We have verified that Yy, is 41 measurable and E(Yy41|F%) = Y. Further-
more, the function Yz, has finite expectation since [Yi41dl = [Ypdl =--- =
[Yodl = diam Hp < oo. Therefore, (Yi)k>o0 is a martingale relative to (Fx)x>o0-
By the martingale convergence theorem, (Y )x>o converges almost surely. Thus, we
may define the weight wp to be any non-negative Borel measurable function such that
wp = limy_o Y £-ae.

The following observation is the key to unlocking (2.4) and (2.5).

LEMMA 2.12 (cf. [27, Lemma 3.25, Steps 2-3])

Suppose there is a universal constant 0 < g < 1 such that diam Hg < gsg for all
Q €8.Then (2.4) and (2.5) hold for §.

Proof
Suppose that Qg = P, Q1 € Child(Qy), ..., Ok € Child(Qf_1) is a finite branch of
g below P. Then, forall x € Ug, ,

diam H diam H diam H
Yk(x):M/ Yio dl = —2m1o, Tl Q’H/ Yi_odl
U050, Uo, tU0, )50 SQk—2 Uo,_,
o diam Hg, diamHg,_, diamHQlf diam Hp Jt
LUg,)s0x_, SQk_» Sp Up L(Up)
diam H
<4 lam Ho, <3¢k
tUg,)
by the hypothesis of the lemma and (2.11). Similarly, for all x € R, ,
101
Yk+,-(x)=Yk+1(x)=—/ Yi dl <101g**" foralli > 2.
QO JUg,

Now, every point x € Up either belongs to some Rg and Y (x) is eventually constant,
or x is contained in an infinite branch of § and Y (x) — 0. Hence,

Yr(x) <101 forall x e Xand k >0, and
2.17)

wp(x) < 101¢g%  whenever x belongs to a branch Ug, C Ug,_, C---C Up.
Because Y; — wp f-ae. and Yj is uniformly bounded, Yy — wp in L'({) by
Lebesgue’s dominated convergence theorem. Thus,
/ wpdH! = / wpdl= lim | Yyd{=diam Hp =4, diam P
r k—o00 ’

by (2.11)—i.e., (2.4) holds.

Finally, if some ball Q¢ € § is maximal in § (i.e., Q¢ has no parent in §) and
for some branch Q; € Child(Qy), ..., Ok € Child(Qx—1) of § below Qy, a point
x €Uy, then

101
W, (x) + wo, (x) + -+ + wo, (x) < 101¢% + 101¢* 71 + .- + 101 < =

by (2.17). Since the upper bound is independent of the length of the branch and ¢ is a
universal constant, this yields (2.5). O
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2.4. Summary

All things considered, we have shown that in order to prove (2.1) for a given family
B’ C B, it suffices to verify the hypothesis of Lemma 2.12 for each subfamily § =
§M.J1 associated to B'. (Look between (2.2) and (2.3) for the definition of §.)

3. Outline of the proof of the main theorem

Recall that B = 8' U B°. Some balls in B may belong to both families, but this will
not concern us. For the remainder of the paper, we let A € {1, 5} be fixed and focus on
establishing (2.1) for 8’ = B8*. Throughout the sequel, we demand that

(3.1 €2<27%;/Agp.

which ensures that at appropriate resolutions, every point in the image of an almost
flat arc lies close to some line segment. Furthermore, this choice guarantees that any
individual *-almost flat arc T € S*(1Q) is much flatter than the union of the images of
all x-almost flat arcs in S*(1Q). See Section 4.1 for details. We do not optimize ¢,.

REMARK 3.1

If desired, one can replace the scaling factor A € {1,5} in the arguments below with
an arbitrary scaling factor A > 1. However, if A is very large, then one must adjust the
values of several parameters, including €5 in the definition of almost flat arcs, and J
and ¢ in the definition of the cores Up = Ué’c. We restrict to A € {1, 5} because these
are the values needed for the proof of Theorem 1.3 presented in [7].

Later on, we would like to assume that every almost flat arc T € S(AQ) that passes
through the net ball for Q has endpoints on the boundary of 2AQ. Exceptions may
occur if an endpoint of the full parameterization lies on the arc, but for each endpoint
this happens at most a finite number of times per scale. Checking (2.1) for such balls is
easy.

LEMMA 3.2
Let i)’é denote the set of all Q € B* for which there exists an arc T € S(AQ) such that
Image(t) contains f(0) or f(1) and Image(r) N (1/3A3)Q # @. For all g > 0,

(3.2) > Bs+()(2A0)  diam Q < Y diam O 4, H'(T).

QeB} 0eB}

Proof

Fix any z € X (e.g. z = f(0), f(1)). For the duration of the proof, let {8;“ denote
the set of all Q € 8% for which there exists an arc T € S(AQ) such that Image(r)
contains z and intersects the net ball (1/3A4%)Q. Choose ko € Z so that Ag 27 k0
is the largest radius of a ball in B? For each k > kg, let & denote all balls Q €
B? of radius A327*. Choose vp € Image(r) N (1/3A45)Q for each O € &. By
(1.9), (4.1), Lemma B.4, and Lemma B.5, the set {vg : O € &} N B(z,4AAg27k)
has cardinality at most 1 + 3644 . Thus, by (2.9), Zzo:ko > ocg, diam Q <2(1 +
36AAg)(1/14)diamT <4, H1(T). O
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Our strategy to prove (2.1) for 8’ = 8* \ Bé is to run Schul’s martingale argument.
That is to say, we must verify that the hypothesis of Lemma 2.12 holds for all Q € 9,
for each possible subfamily § = ¢M-/1 ¢ B4\ 58{}:

(3.3) Jo<q<1YMVj Yoeg diamHg <gsp,
where the maximal arc fragment Hg associated to Q was chosen in Remark 2.11 and
(3.4) so =101L(Rg)+ Y  diamHg.

Q’€Child(Q)

There will be a number of cases, depending on the geometry of arc fragments in Ugp
as well as on the geometry of arcs associated to Q' € Child(Q), the children of Q in
the tree ¥ (see Remark 2.7), and the size of the remainder Rg (2.14). Let us quickly
dispense with an easy case, which is connected to the choice of the constant 101 in
(3.4).

DEFINITION 3.3

LetQ€§.
o If {(Rgp) > (1/100) diam H o, then we say that the remainder of Q is large.
o If {(Rp) < (1/100) diam H g, then we say the remainder of Q is small.

LEMMA 3.4 (Case 1: Large remainder)
If O €8 has a large remainder, then diam Hp < 0.9901s¢.

Proof
By (3.4) and the definition of large remainder, diam Hgp < 100£(Ro) < (100/101)s¢
and 100/101 = 0.9900 < 0.9901. O

Case 1 occurs if, for example, O has no children in §. Having dealt with Case 1, we
may now make a standing assumption that any Q € § that we examine has a small
remainder. At a minimum, this assumption ensures that Child(Q) # @. In fact, the
picture that the reader should keep in mind is that Hp (imagine a line segment through
the center of Up) is intersected by many disjoint cores Ugs with Q" € Child(Q). We
emphasize that Child(Q) may be finite or infinite and diam Uy’ can be arbitrarily small
relative to diam Up.

REMARK 3.5 (Challenges)

Broadly speaking, there are two challenges to verifying (3.3) for Q € § with a small
remainder. First, as we previously noted in Remark 2.11, each fragment Hg may be
disconnected. In principle, it is possible that

(3.5) diam Hg > {(Rg N Ho)+ > diamUyp.
UQ/ﬂHQ#@

Thus, to verify diam Hp < ¢gsgp, we must locate additional cores Ugs with Q' e
Child(Q) that do not intersect Hg. In (3.5) and throughout the sequel, when we write
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Q’ inside the subscript position of a summation or union, we implicitly mean that,
in addition to any other restrictions, Q' ranges over all Q' € Child(Q), with Q fixed
nearby.

Secondly and more seriously, diam Ugs > diam H g/ for all children, but diam H o/
could be significantly smaller than diam Ug- if Hg/ is “radial.” For any closed, con-
nectedset T C T’ € FZ*JQ, the diameter bound (2.12) leads only to the coarse estimate

(3.6) diam T < £(Ro N T) + 2.00002 Z diam H /.
U/ NT#Y

This implies diam 7" < 2.00002s¢p, which is insufficient to verify (3.3) because the
coefficient 2.00002 > 1. See Lemma 4.6 for a proof of (3.6).

To sidestep the first challenge in Remark 3.5 and avoid complications near the bound-
ary, we narrow our focus to a smaller region inside of Ugp and to an efficient subarc
GQ CH Q-

REMARK 3.6 (Choosing G o)
For each Q € §, we may invoke Lemma 4.3 with 7" = Hy to choose Ip = [ag.bg] C
Domain(ng) such that Gg := f(Ig) C Hp N 0.999990 and

(3.7) | flag) — f(bo)| = diam G > 0.99993 diam Hy.

(A curious reader may jump ahead and read through the proof of Lemma 4.3 at this
stage; it depends only on the preliminary discussion and Lemmas 4.1 and 4.2 found in
Section 4.1.)

Overcoming the second challenge is more complicated. We need to account for length
in Rgp and cores Uy appearing in a neighborhood of 7" = G that do not necessarily
intersect G g. Ultimately, the reason that we can improve upon (3.6) is because we can
find a sufficient amount of “extra length” nearby G . Roughly speaking, for each Ug-
intersecting G, there exist at least two *-almost flat arcs in 210’ that intersect AQ".
To describe improved estimates for balls with a small remainder, we need to introduce
a classification of cores Ugs of Q’ € Child(Q) involving projections onto lines.

REMARK 3.7 (Projections, cylinders, and transverse arcs)
Given Q € § and a subarc T = f([a,b]) C T’ € I‘(’}Q, we define the line L1 :=
f(a) + span{ f(a) — f(b)} and choose a J-projection I17 : X — L7 onto L7 (see
Appendix B). We will often identify L7 with R. By default, we choose this identifica-
tion so that f(a) lies “to the left” of f(b). For every nonempty, bounded set W C X,
we define the cylinder Py = H}I(HT(W)) of W over Lt.If W is connected, then
Py is connected (because I17 is continuous) and its complement X\ Py, has two con-
nected components, which we label Pv“t and Py, consistent with the orientation of L.
If W is convex, then Py is convex, as well. See Figure 1.

We say that an arc T = f|(¢,q] € S*(AQ) is W-transverse if its two endpoints lie
on opposite sides of Py : Start(t) = f(c) € Pui, and End(r) = f(d) € P;E.
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f(a) w T  f(b)

Figure 1. The cylinder Py, over a ball W with respect to a J -projection I = I . in £2 (see Appendix B).

tall ~ — wide
Uy
: \
«—27Q' —\\

Figure 2. On the left, we show a core Up/ of Q’ € Child(Q) with 2AQ’ containing a tall arc . On the right,
we show Ug’ with 2AQ’ containing a wide arc 7. The full set 7 = G o associated to the larger core Uy is not
displayed; since diam Up > diam Uy, the set Go may include the union of all arcs in the figure. Cores are
much smaller than illustrated.

DEFINITION 3.8 (“Necessary” cores)

LetQe§andletT = f([a,b]) C T € FI*JQ be an efficient subarc. Let I17 be given
by Remark 3.7. Relative to T, we declare that a core Ups with Q' € Child(Q) such
that 1.00002Q’, N T # @ has

e Property (N1) if there exists an arc T € S(AQ’) such that Image(z) intersects
both 1.00002Q’, and the closed region P; oo/ \ int(4Q%); we say that t is tall.
e Property (N2) if there exists an arc T € S(AQ’) such that
Image(r) N 1.00002Q’, # @ and t is Up--transverse; we say that 7 is wide.
See Figure 2.

(These properties do not classify all cores Ugs with O’ € Child(Q).) Let N;(T') and
N, (T') denote the set of all (N1) cores, and all (N2) cores that are not (N1), respectively.
Assign N (T) := N (T) U No(T).
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REMARK 3.9

The cores in N (T') are “necessary” because we need them to improve the coarse esti-
mate (3.6). While necessary cores Ug- lie close to 7 in the sense that 1.00002Q, N T #
@, we do not require them to intersect 7. The shadows I17(Ug-) of necessary cores
cover I17(T) \ I17(Rp) up to a small error; see Section 5 for the details, especially
Definition 5.7 and Lemma 5.8.

We now record the main estimates of the paper.

LEMMA | (Improving the coarse estimate (3.6))
Let Q €§ andletT = f([a,b]) C T’ € FI*JQ be an efficient subarc. Define scales

rr :=max{diam Q/, : Q' € Child(Q), 1.000020’, N T # 0} and
3.8)

or 1= 2AAg - 22rr.
Suppose ¥ is a (possibly empty) finite family of cores Ugr with Q" € Child(Q) such
that {2AQ" : Ugr € ¥} is pairwise disjoint and ¥ satisfies

(F) Forall Ugr € ¥, we have 2AQ" N 16Q’, = @ for every core
Ug € Child(Q) with diam Q' > diam Q".

Let Ny = Na(T) and let N denote the set of all cores Ugr with Q' € Child(Q) such
that Ug: C 1.9900" for some Ugr € ¥ . Then

diam T —2pr

<220(Rg N Bor, (T)) + Y diam21Q"
(39) UQ//E.?

+1.00016 Y diamHg +0.95 > diamHy
UQ/G./Vz\eNjF UQ/¢JV2UN3:

where the sums in the second line may be further restricted to Ug: contained in
B9rT (T)

The proof of Lemma I is given in Section 6, using the setup of Sections 4 and 5. We
invite the reader to compare and contrast (3.9) with (3.6). While the coefficient 1.00016
is substantially smaller than 2.00002, it is unfortunately still not less than 1. As a con-
sequence, we must split verification of (3.3) for balls with a small remainder into two
cases.

LEMMA 3.10 (Case 2: Many non-N; cores)
If O €'§ (with or without a small remainder) and Ug has many non-N»(G ) cores in
the sense that

(3.10) Z diam Ug’ > 0.05diam Hy,
Upr¢M2(Go)
then diam Hp < 0.999sg.
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Proof
By Lemma I, with 7 = G and ¥ = 0, together with (3.7), the observation 2pGQ <
diam Hg (see (2.7), (2.11)), and the inequalities (2.12) and (3.10), we have

1.00016sg = 101.01616((Rg) + 1.00016 Y diam Hg:
Q’eChild(Q)

> diam G g — 2pG,, + (1.00016 — 0.95) diam Ho
Q o 0
UprEN2(Go)

> 0.99993 diam Hg — 0.00001 diam H¢
+ (0.05016 x 0.49999 x 0.05) diam Hg.
Rearranging, we obtain diam Hg < 0.99898...5¢. O
The final case is the most difficult, requiring us to combine estimates inside and outside

of {2A0” : Ugr € A} for a family of cores 4 C N2(Gp). The family 4 is chosen
according to the following lemma, which we prove in Section 7.

LEMMAII
If O €8 has a small remainder and Ug has few non-N,(Gg) cores in the sense that
(3.11) Y diamUg < 0.05diam Hg.

UpréN2(Go)

then there exists a finite collection A C Na(Gg) such that {2AQ" : Ugr € A} is pair-
wise disjoint, # satisfies property (F) with T = G,

(3.12) > diam21Q"” > 0.04diam Hp.  and
UQ//EA

(3.13) > diam21Q” <20(Rg)+0.91 Y diam Hor,
Upreh Upr€N 4

where Ny :={Ug/ : Q' € Child(Q),Ug’ C 1.991Q" for some Ugr € A}.

LEMMA 3.11 (Case 3: Few non-.A> cores)
If O €8 has a small remainder and (3.11) holds, then diam Hgp < 0.9963s¢.

Proof
Let + be given by Lemma II. By Lemma I, with T = Gp and ¥ = +, and (3.13),

diam G —2pg, < 4.2((Rg)+0.91 > diam Ho/+1.00016 Y diam Ho.
UQ/ €Ny UQ/ EN A

Together with (3.7) and the observation 2pg,, < diam Hg (see (2.7) and (2.11)), fol-

lowed by (3.12) and (3.13) (again), we obtain

1.00016s¢ = 101.01616((Rg) + 1.00016 > diam Ho
Q’eChild(Q)
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> diam Gg —2pg,, + (101 —4.2)((Rg)

+(1.00016—0.91) Y~ diam Hg/
UQ/G:N‘EA,

> 0.99993 diam Hg — 0.00001 diam H g
+ (0.04 x 0.09016 + 0.91) diam Hyp.
Rearranging, we obtain diam Hp < 0.99629...5¢. O

In review, the hypothesis of Lemma 2.12 is satisfied with ¢ = 0.999 < 1. This com-
pletes the proof of the main theorem, up to verification of Lemmas I and II.

4. Geometric preliminaries and coarse estimates

4.1. Basic geometry with beta numbers
Let’s record consequences of (3.1) on the flatness of almost flat and *-almost flat arcs
at some common scales. We use the fact that all beta numbers are bounded by 1, €, =
27%¢1 Az <27 /Az,and A <5<8.Let Q € g and T € A(LQ). If T is almost flat
(i.e., T € S(AQ)), then there is a line L such that

dist(x, L) < 2e,Br(Q)Diamt <27°*43' diam 210

4.1
<27%4% diam Q <27 *diam Q. Vx € Image(r).

If 7 is *-almost flat (i.e., T € S*(AQ)), then there is a line L such that

dist(x, L) < 64€28a10)(22Q) Diamt <27 A} Bs+(10)(2AQ) diam 210

4.2)

<2745 diam Q <27 ¥ diam Q. Vx € Image(r),
where in the second inequality we used €18A10)(2AQ) < Bsx(10)(2AQ) by Defi-
nition 1.11. (We shall never refer to €; again.) Recall that 27M < g s*(10)(2A0) <
2=(M=1) whenever Q € §. In particular, for any Q € § and © € S*(1Q), the line L
from (4.2) also satisfies

dist(x, L) < 27% 43 Bs+10)(2A0Q) diam 210

(4.3)
<27M=484iam2AQ Vx € Image(t).

LEMMA 4.1 (Bilateral-8 estimate for arcs)
Let T = f|[q,p) be an arc, let L be a line in X, and let I1;, be a J -projection onto L. If
dist(x, L) < B for all x € Image(t), then

4.4) {HL(x) — x| <2dist(x,L) <28 forall x € Image(r), and
4.5)  dist(y.Image(r)) <dist(y. 1. (Image(r))) +2B forall y € L.
Proof

Let y € L. Choose z € 17 (Image(t)) such that |y — z| = dist(y, [T (Image(r))) =:
8. Next, choose x € Image(r) such that 17 (x) = z. By Lemma B4, |z — x| =
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|1 (x) — x| <2dist(x, L) <2p. Thus, dist(y,Image(r)) <|y — x| <|y —z| + |z —
x| <8 +28. O

We emphasize that the following inequality (used to prove Lemma 4.3) is valid in any
Banach space; in particular, it does not require uniform or strict convexity of the norm.
It is instructive to think about the inequality in the case when X = €2 = (R2,| - |oo)
and the line segment (¢, d) is horizontal.

LEMMA 4.2
Letc,d eX, r>0,and 0 <s <1.Ifc,d € B(x,r) and the segment (c,d) intersects
B(x,sr), then |(1 —pu)c + ud — x| <r—r(1 —s)min{u,1 — u} forall 0 < p <1.

Proof

Without loss of generality, we may assume that x = 0. By assumption, there exists 0 <
p < 1such that z = (1 — p)c + pd satisfies |z| < sr. Suppose that y = (1 — u)c + ud
for some 0 <y < p. Then y = (1 —v)c + vz = (1 —vp)c 4+ vpd for some 0 <v < 1.
This shows @ = vp; in particular, u < v. Hence, |y| < (1 —v)|c| +v|z| < (1 —v)r +
vsr <r —r(1—s)u. The case p < p <1 is similar, except that ; should be replaced
by 1 — u. O

LEMMA 4.3 (Existence of Gp)

Let Q € §andletT' € F[’}Q, say T" = Image(t) N Ug for some © = f[q,5] € S(A0).
IfT'N(1/4)Q« # @, then there exists [ar,br] C [a,b] suchthat T := f(lar,br]) lies
inT'N0.99999Q., and | f(aT) — f(br)| = diam T > 0.99993 diam T"'. Moreover, the
subarc T intersects 0.25007 Q.

Proof
When the argument below is applied to 7/ = Hp and © = 179, we obtain 7 = Gg; see
Figure 3. Because 7 is almost flat, we can find a line L such that (4.1) holds. Further,
since T” intersects (1/4) Q«, it follows that diam 77 > (3/8) diam Q. > (1/4) diam Q «
and

dist(x, L) <2738 diam Q/, <273%diam 7’ Vx € Image(z);

0 2738 < 10710,

Let [Tz be a J-projection onto L. Then, by Lemma 4.1,
[T (x) — x| < 0.0000000002 diam Q"
@D < 0.0000000008 diam 7’ Vx € Image(z).
Using (4.7) and the triangle inequality, we obtain
(4.8) |z (x)—Or(y)| <|x — y| <1.00000002| Tz (x) — ML (y)|

whenever x, y € Image(tr) and |x — y| > 0.1diam 7”. Identifying L with R, we can
define

c:=min{HL(x):x€F} and d:=max{HL(x):x EF}.
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Figure 3. Exaggerated picture (curve should be flatter) of no such that Ho has two connected components.
The dots indicate points in Ho with distance equal to diam Ho . (Arc through center of QO is not displayed.)

Choosing any u, v € T’ such that |u — v| = diam T’ = diam 7’ and using (4.8), we see
that

(4.9) diam 7’ > d — ¢ > Tz (u) — M (v)| > (1.00000002) " diam 7"

Suppose ¢ + 0.00003diam 7" < p < d — 0.00003diam 7” and let x € 17! (p) N
Image(r). By the first inequality in (4.9), p = (1 — w)c + pd for some 0 < p < 1
with min{u, 1 — u} > 0.00003. We would like to use Lemma 4.2 to show that x €
0.99999Q.. Let’s check the hypothesis of the lemma. Certainly, ¢,d € 1.000011Q
and the segment (c,d) intersects 0.2500000002Q, C 0.25 - 1.000011Q since
T’ Cc Ug C 1.00001Q+, T' N (1/4)Q« # @, and (4.7) is in effect. By Lemma 4.2,
applied with s = 0.25 and min{u,1 — p} > 0.00003, we discover p € 0.9999775 -
1.000011Q+ C 0.99998850Q . Thus, by (4.7), x € 0.999990 ..

To continue, because Iz is continuous and Image(r) is connected, there must
exist [ar.br] C [a,b] such that TIz(f(dr)) = ¢ 4+ 0.00003 diam T”, HL(f(l;T)) =
d —0.00003 diam 7"’ (or vice-versa), and Iz (f(2)) lies in between for all ¢ € [ar, bT]
Define T := f([ar, bT]) On the one hand, by the previous paragraph, we have T C
Image(t) N 0.999990, = T' N 0.999990Q. since 0.99999Q, C Up and T’ € Fl*]Q
Hence, by (4.7),

diam 7’ > diam T > | f(ar) — f(br)|
>d —c¢ —0.00006diam T’ — 0.0000000016 diam T”.

Using the last inequality in (4.9), it follows that diam 7 > 0.99993997 diam 7"
On the other hand, if s,f € [a,b], TIL(f(s)) < I.(f(t)), and T.(f(s)) > ¢ +
0.0000301 diam 7" or IT1(f(#)) < d —0.0000301 diam 7", then

| f(s) = f(1)] <d —c—0.0000601 diam T’ + 0.0000000016 diam 7’
<0.99993991 diam 7"';

whence, | f(s) — f(t)| < diam 7. Choose any ar,br € [ZZT,ET] such that Tz (a7) <
[y (br) and | f(ar) — f(br)| = diam T'. By the previous computation, we necessarily
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have

Iz (ar) < c + 0.0000301 diam T’ and
(4.10)

I, (br) > d —0.0000301 diam 7"
Define T := f(lar,br]). Then T is an efficient subarc of 7' N 0.99999Q. with
diam T = diam 7 > 0.99993 diam 7"

Lastly, let y be any point such that y € (¢, d) N 0.2500000002 Q.. Shift from y to
apoint y’ € I11(T') as needed. By (4.10), we can do this in such a way that |y — y’| <
0.0000301 diam 7"". Then we can find at least one point x € T such that [Tz (x) = y’
and |x — y| < 0.00003011diam 7" by (4.7). Since diam 7" is at most 2.00002 times the
radius of the ball Q., we conclude that x € T lies in 0.25006023Q . O

4.2. Geometry of N1 cores

For each necessary core Ug’, we define neighborhoods D¢/, Eg/, and Fg. Their rela-
tionship is that Eg- is slightly smaller than D g/, Fg- is slightly smaller than E g/, and
Ug’ is smaller than Fg/. In Section 6, we use “extra length” from diam H g~ associ-
ated to cores Ug~ that intersect Fig/ and lie inside of E - to “pay for” the length of the
interval I17(Dg/). The definition of the neighborhoods depends on the type of core.
For the definition of N; cores and tall subarcs, see Definition 3.8.

DEFINITION 4.4
Let Qe§andlet T = f(Ja,b])) C T € FEQ be an efficient subarc. For all Ug/ €
N1(T'), we define neighborhoods Do D Eg’ D Fgr of Ug’ by

DQ/ = P1.04Q; N 4Q;, EQ/ = P1.03Q;< N 399Q;,
FQ/ = P1.02Q; n 398Q£’=

LEMMA 4.5 (Tall subarcs)

Let Q€S and T = f(la,b]) CT' € I‘[*]Q be an efficient subarc. If Ugr € N1(T') and
1 € S(AQ') is a tall arc, then there exists a subarc Ty of Image(t) N Fo: \ Ug’ such
that diam T; > 1.48 diam Q,.

Proof

Pick any 79,73 € Domain(z) such that z(tg) € Py 10, \ int(4Q%) and z(t3) €
1.00002Q’,. Without loss of generality, suppose that to < t3. We let ¢, > ¢y be the
first time after fo with 7(f;) € 9(1.00003Q%). Then we define #; := max{t € [tg,1>] :
7(t) € (3.979990,)}.

We claim that the subarc T := t([t1,?,]) satisfies the required conditions. Fore-
most, diam T, > |7(f1) — t(¢2)| > 2.97996 radius Q, = 1.48998 diam Q.. Also, T, C
3.9804 \ Ug’ by the way we defined #; and f,. It remains to verify that t([t1.1,]) C
Py 020, - First note that we arranged for 7(Zo) and t(72) to lie in P; o0/, . Second note
that t is almost flat. Consulting (4.1) and (4.4), we can find a line L and J -projection
I1z onto L such that

(4.11) |HL(x) — x| <2dist(x,L) <273 diam Q, for every x € Image(r).
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Hence, we can locate y,z € L nearby t(fp) and 7(f3) such that y ¢ 3.999Q,
z € 1.001Q%, and y,z € Pyo11. By convexity, the whole segment [y,z] C P; 9110,
too. From (4.11), the fact that 2737 « 0.001, and the triangle inequality, it follows
that 7([t1,72]) C By-37 giam 07, ([X, ¥]) C P1.0120/, » as well. This shows—with plenty of
room to spare—that 77 = ©([t1, f2]) is a subarc of Image(z) N Fo- \ Ug-. O

LEMMA 4.6

IfQe§ and T CI'NUg is a closed, connected set, then the coarse estimate (3.6)
holds for T

Proof

Choose x, y € T such that |x — y| = diam T and let [17 be a J -projection onto the line
through x and y; see Appendix B. Since I17 is 1-Lipschitz, I1r fixes x and y, and T
is connected, I17(T) = [x, y]. Since T C I' N Ug, we can cover T by Rp N T and the
set of cores Ug of Q' € Child(Q) such that Ug: N T # @. By countable subadditivity
of #1, the isodiametric inequality Jfl(A) < diam A for all sets A C R, and I17 being
1-Lipschitz,

diamT < #' (M7 (RgNT))+ Y H' (M7 (Ug))

U/ NT#0
(4.12)
<U(RoNT)+ Y diamUp.
UQ/OT#Z
Hence, (3.6) follows from (4.12) and (2.12). [l
LEMMA 4.7

Let Q€S andletT CT € FZ*JQ be an efficient subarc. If Ugr € N1(T), then there is
a set Mg of cores Ugr with Q" € Child(Q) and Ugr N For # @ such that

(4.13) diam 7 (Dg/) < 0.5((Rg N Fpr) +0.84 > diam Hgv.
UQ//EMQ/

Proof

Choose a tall arc T € S(AQ’) and let T; be the subarc of Image(r) N Fg/ \ Ug’ given
by Lemma 4.5. Define Mg = {Ug-} U{Ug» : Ugr N T # @}. Applying the coarse
estimate (3.6), we find that

1.48diam Q), < diam T, < £(Rg NTy) +2.00002 Y diam Hor.
UQ//EMQ/\{UQ/}

We also know that diam Q/, < diam Uy’ <2.00002diam Hg’ by (2.12). Hence,

2.38461 diam 1.04Q/, <2.48diam Q, < £(Rg N T;) +2.00002 Y diam Hor.
UQ//EMQ/

Since diamIT7 (Do) < diam 1.04Q/, and T, C Fpr, this yields (4.13). O
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4.3. Geometry of N, cores

Recall from Definition 3.8 that every core Ug’ € N, (T) admits a wide arc. To prove
Lemma I, we will need to distinguish between the case that some wide arc 7 lies near
the center of Q/, and the case that every wide arc is far from the center of Q.

DEFINITION 4.8

Let Q€S andlet T CT' € F;}Q be an efficient subarc. Suppose that Ugr € N>(T).
We say that Ugr € N, 1(T) if there exists a wide arc t such that Image(r) N
27140’ # 0. Otherwise, we say that Ugs € N »(T).

DEFINITION 4.9
Let Qegand T = f([a,b])) C T € Fl’}Q, be an efficient subarc. For all Uy’ €
N2.1(T'), we define neighborhoods Do D Egr D Fgr of Ug: by

Dgr = 1.00002Q;, Eg :=Ug, Fgr:=Ug.
For all Ug’ € M, »2(T), we define neighborhoods Do D Egr D Fgr of Ug’ by
Do :=160Q,,  Eg :=15990),,  Fo :=15980,.

LEMMA 4.10
Let Q€8 andlet T C T € F;}Q be an efficient subarc. If Ugr € Np 1(T), then
diam Do/ < 1.00016 diam H:.

Proof

Let 7 be a wide arc such that Image(r) N 271*Q’ # @. By (4.1), there exists a
line L such that dist(p, L) < 2738diam Q/, for all p € Image(r). Since 7 is wide
and Image(r) intersects 2714 Q’,, the set Image(r) meets both connected compo-
nents of dQ% N By-38 giym o/, (L); choose points y,z € Image(r) N dQ%, one from
each of the components. Let x denote the center of Q; then dist(x,Image(r)) <
2714 radius Q’, = 271° diam Q/,. By our assertions above, we can find points x’, y’,z’ €
L, with x’ lying between y’ and z’, such that |x — x’| < (27! 4 2738)diam O/,
ly —y'| <2738diam Q’,, and |z — 2’| < 2738 diam Q/,. Define y” = y’ + x — x’ and
z” =z 4+ x — x" so that y” and z” lie on a line through x, with x in between y” and
z”. Now,

' =xlz =l =1y =y =1y =yl 2 (172 =27 =27 diam 0.

Similarly, |z — x| > (1/2—271% —2737)diam Q’,. Hence, |y" —z"| = |y" — x| +|x —
2| > (1 =271 —2736) diam Q. It follows that

ly—z| =y =" =" =y'|—=1y =yl = |z" = 2| - |2/ — 2]
>(1-2"1—-27%)diam Q..

Thus, diam Hg/ > |y — z| > 0.99987 diam Q’, > 0.99985diam D o/. The lemma fol-
lows. 0
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LEMMA 4.11

Let Q€$§ andlet T C T € F[*]Q be an efficient subarc. If Ugr € Npo(T), then
there exists a finite set Y of efficient subarcs of arc fragments in F}Q/ such that
the sets {1.00002Q} U {Bs—40 4ium o, (Y) : Y € Y} are pairwise disjoint, diamY >
0.00021diam Q/, forall Y € Y, and ) "y oy diamY > 22.46diam Q. (The cardinality
ofYis3ord.)

Proof

Since Ugr € M »(T'), we can find a wide arc t € S(AQ") such that Image(r) intersects
1.00002Q’, and is disjoint from 271*Q’ . Let £ € S(AQ’) be any arc whose image
contains the center of Q. Since the image of T does not contain the center of Q’, the
arcs T and £ are distinct. The family ¥ will be built from subarcs of Image(r) N For
and Image(§) N Fop'.

Let A denote the annulus 15.98Q/ \ int(1.00004Q’), which is contained in
Fg’. Choose a subarc T; of Image(£) N A with one endpoint on 9(15.98Q’) and
one endpoint on d(1.00004Q,) so that diam 77 > 14.97996radius Q,; cf. proof of
Lemma 4.5. Similarly, we may find two subarcs 7> and T3 of Image(r) N A with end-
points in 3(15.98 Q%) N PJQ/ and 9(1.00004 Q") and endpoints in 9(15.98 Q) N P_Q,
and 9(1.00004Q",), respectively. Observe that min{diam 75, diam 73} > 14.97996 x
radius Q,, and the total diameter of the three subarcs is at least 44.93988 radius Q/, =
22.46994 diam Q’,.

Now, we show that B,—40 gium ¢/, (T2) and B,—40 4ium ¢/, (T3) are disjoint. Let L, be
a line such that (4.1) holds for L, and all x € Image(r). In particular,

B2_40 diam Q7 (T2 U T3) C B(2_38+2_40) diam Q% (LT) C 32_37 diam Q' (L‘C)
By assumption, Image(t) N 1.00002Q7, # @. Hence, there exists w € Image(z) N
1.00002Q’, such that B(w,0.00002radius Q%) C 1.00004Q/,. Let w € L, N B(w,

2738 diam Q’,). Note that B(w,0.00001 radius Q%) C 1.00004Q",. Labeling the two
connected components of L, \ B(w,0.00001 radius Q%) by L}, L7, we conclude that

8ap(By—40 gigm 07, (T2) . Bo—40 giam 0, (T3))
(4.14) > gap(By-37 giam 0/, (LT). By—37 iam 0, (LY))
> (0.00001 — 273%) diam Q’, > 0.000009 diam Q..
Observe that for any arc, we may shrink its domain as needed to produce an efficient
arc of the same diameter. Thus, it remains to obtain a subarc or subarcs of 77 which
satisfy the disjointness and diameter estimates in the conclusion of the lemma.

Let Lg be a line such that (4.1) holds with Lg and all x € Image(§). As with ,
we have

B340 giam 07, (T1) C B(3-38 12-40) giam @, (L1) C B3—37 giam 07, (Lg)-
If By—40 gigm 7, (T1) and B,—40 gigm o7, (T2 U T3) do not intersect, by the previous para-
graph we are done. If, on the other hand, By—40 gium o7, (T1) and By—40 giom ¢/, (L) inter-
sect, then B,—37 gigm o/, (L) and B,—37 gia o, (L) intersect. In this case, we will either
shrink 77 or split 77 into two subarcs to obtain the desired disjointness (see Figure 4).
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Ts T (oolu Te
T, T,

Figure 4. Separated subarcs ¥ associated to N> »(T')-type cores U . Either #¥ = 3 (left) or #¥ = 4 (right).
The arc T is not displayed.

Suppose then that By-37 g, o/, (L) intersects By—37 4 o7, (Lg). Then L inter-

sects By := B,-35 4iym o/, (L) by the triangle inequality. Define

r ::min{|z—x|:zeL§ﬁB2} and r ::max{|z—x|:zeLgﬂBz},
where, as before, x denotes the center of Q’. Our goal is to show that r, —r is relatively
small. There are two cases.

For the easier case, suppose that r, < 1.00054 radius Q, or r; > 15.9795 radius Q7.
Replace T with a subarc T} using the annulus 15.97949Q7, \ int(1.00055QY,) instead
of A. Then diam T} > 14.97894radius Q) and diamT; + diam 7, + diam T3 >
22.46943 diam Q’,. Furthermore, because T3 C Ty and T; avoids {w : |w — x| €
[r1.r2]}

gap(32—40 diam Q% (fl), B;—10 4igm )8 (T2 U T3))
> gap(By-37 giam 07, (Le N (15.979490", \ int(1.000550%,)). By—37 giam 0, (L 1))
> (0.00001 — 273¢) diam Q’, > 0.

Thus, the neighborhoods By—40 giym 0, (Ty) and B,—40 giy, 0, (T2 U T3) are disjoint.
For the harder case, suppose that

(4.15) 2 > 1.00054 radius Q’, and r1 < 15.9795radius Q’,.
Let y € Lg N Bo N dB(x,r1). Let z € Lg N B> N dB(x,r2). By translation, we may

replace L, with a line (which we relabel as L) such that y € Lg N L. Since we trans-
late by at most 273° diam Q’,, the triangle inequality implies that B,—s0 (Image(z)) C
B2_34 diam Q/, (L‘L’) and

dist(x, L;) > dist(x,Image(r)) — sup dist(w,L;) > (27'° —27*)diam QJ,.

welmage(r)
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Now, choose J-projections Ilg and II; onto Lg and (the relabeled line) L,
respectively. Then the points xg := ITg(x), Xgr := I (xg), and z; := I1(z) satisfy

. Xg — Xgg| Z | X — Xg| — [ X — Xg| = — l1am N
(4.16) £ — Xg £ ¢l > (271 —273) diam Q/,
Ixe =yl < [x — y| + |x — x¢|
@17 E S/ —38 ’ 3 /
<15.9795radius Q,, + 2 " diam Q, <2”diam Q..
(4.18) lz—y|=|z—x|—|x—y|>ry—r1, and
(4.19) |z — z¢| < 2dist(z, L) <2733diam Q.
By “similar triangles,” it follows that
4200 ra—r =lz—yl=lxe -y < 3 diam o)y — 2
. 2 1= y 3 y |Xg _XET| = * 2_15 _2_34'

Hence, r, — r; <27 diam Q7.

Since £ contains x and (4.1) is in effect, we may translate Lg (by at most
2738 diam Q) to obtain a line ig which contains x. Thus, each component of
I:g N B(x,rz) \ B(x,r;) has diameter r, — ry. By (4.1), (4.15), and the triangle
inequality, we see that each component Lgt of Lg N (B, (x) \ By, (x)) satisfies

diam Lgt <ry—r; +27¥ diam Q, < (27'* +2737) diam Q..

In particular, diam By—35 gium 0, (Lg: N (Br,(x)\ By (%)) <271 4+273% 4+ 2737) x
diam Q’, < 0.000062 diam Q’,. This estimate and the assumption (4.15) imply that we
may choose radii 7 and 7, such that

1.00047 radius Q/, < 7y < ry <ry <y < 15.97957radius Q’,

and 7, — 7, = 0.00007 radius Q,. Let T} be a subarc of 7} N B(x, 71) \ int(1.000050Q",)
with one endpoint in d(1.00005Q’,) and one endpoint in dB(x, 71). Define T}, simi-
larly using the annulus 15.97999Q", \ int(B(x, 7»)).
We now demonstrate that the neighborhoods — B;-40gigm o (71.1),
B0 giam 0, (T1.), and B340 giam o/, (T2 U T3) are pairwise disjoint. First, note that
2ap(B,-40 giam 0, (T1.1). By—40 giamn 0. (T12))
> gap(B3-37(Lg N B(x,F1)), Bs-37(L¢ N B(x,72)°))
> (0.00007 — 273%) diam Q’, > 0.

Thus, the neighborhoods Bj-40 giam o/, (T1.1) and By—s0 diam O, (Ty.2) are pairwise dis-
joint. They are also pairwise disjoint from B,—40 gium o/, (T2 U T3) because

gap(32_40diam oA (Tl.l U Tl.z), B340 gigm 0, (T2 U T3))
> gap(B,-37(Lg N (B(x,71) U B(x,72)°)). By—37 giam 0/, (L))
> (2735 —2736) diam Q/, > 0.
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By definition of 7y, 7, min{diam T, 1,diam 7~’1.2} > 0.00042radius Q’, = 0.00021 x
diam Q’, and diam Ti.1 + diam 775 > (15.97999 — 1.00005 — 0.00007) radius o, =
14.97987 radius Q’,. Thus, diam Tl,l + diam 7:1.2 + diam T, + diam T3 > 22.46989 x
diam Q’,. This concludes the proof of the lemma. 0

LEMMA 4.12
Let Q €§andlet T CT' € F(*]Q be an efficient subarc. If Ugr € Npo(T), then there
is a family Mo of cores Ugr with Q" € Child(Q) and Ugr» N Fgr # @ such that

(4.21) diam Dg: <0.7¢(Rg N For)+1.37 >~ diam Hon.
UQ//EMQ/

Proof
Given ¥ from Lemma 4.11, let Mg/ = {Up~ : Q" € Child(Q),Ug» N For # @}. If
there happens to exist Ug» € Mo/ with diam Q" > diam Q’, then

diam Hg» > 0.49999 diam Q7 > 2°% diam Q/, >> diam D¢/,

and (4.21) holds trivially. Assume otherwise that diam Q" < diam Q’ for every core
Ugr € Mgy, so that diam Ugr < 2728 diam Q/, for all Ug» € Mg’ \ {Ug’}. Because
diam Q/, < 2.00002diam Hp- and (3.6) holds for each Y € ¥, Lemma 4.11 implies
that

(422)  (1+422.46)diam Q), < £(Rg N Fo) +2.00002 Y diam Hov.
UQ//GMQ/

Since diam D o/ = 16 diam Q,, this estimate yields (4.21). i
4.4. Geometry of unnecessary cores

DEFINITION 4.13
Let 17 be a J-projection onto some line L7 in X. For any line L in X, the antislope
as(L,II7) of L relative to Tl is the unique number in [0, 1] given by

M7 (u) — Hr(v)|

(4.23) as(L,Ir) = | | for any u, v € L with u # v.
u—v

REMARK 4.14

The antislope as(L, I17) is well-defined (i.e., the quantity in (4.23) does not depend
on the choice of points u, v) by linearity of J-projections onto linear subspaces. At one
extreme, as(L, [17) = 0 if and only if L is vertical in the sense that 17 (1) = I11(v)
for every u,v € L. At the other extreme, as(L, I[17) = 1 if and only if L is parallel
to Lp.

LEMMA 4.15 (Location of endpoints)
Let Q €S andletT = f([a,b]) CT' € Fl*]Q be an efficient subarc. If Q' € Child(Q)
and 1.00002Q7, N T # @, but the core Ugs is “unnecessary” in the sense that Ug: ¢



Subsets of rectifiable curves in Banach spaces Il 305

N(T) = Ni(T)UN(T), then for all arcs T = f'|[c,a] € S(AQ’) such that Image(r) N
1.00002Q7, # @,

cither — {f(c), f(d)} C P[5, N2AQ")

or  {/(0). (@)} C Piyg, NOCAQ;
moreover, if L is any line such that (4.1) holds for t, then as(L, I17) > 0.001.

Proof

Let Q' be given as in the statement. Fix any 7 = f'|[c.4] € S(AQ’). Because Q' ¢ B¢
(see Lemma 3.2), the endpoints f(c) and f(d) of t lie on d(2AQ’). Since Uy ¢
N1(T), we know that f(c), f(d) & P;.010,- Suppose without loss of generality that
f(c) e P14._01Q; (see Remark 3.7). Since Ug: ¢ N>(T'), we have f(d) € P:‘OIQ;, as
well. To complete the proof, it suffices to show that f(c), f(d) & Py5¢;,-

Let L be a line such that (4.1) holds for 7. Since Image(zr) N 1.00002Q, # @,
it follows that L N 1.000021Q’, # @. Choose any u € L N 1.000021Q%. Similarly,
let x € Image(r) N d(4QY). Since 7 is not tall, x ¢ Py 10, . Thus, by (4.1), there
exists v € L N4.000010%, N PlJ.r00999Q;' Finally, choose w € L such that |w — f(c)| <
2738 diam Q’,. This more than guarantees w € X \ (213145 — 1)Q’, C X\ 8191Q.,.
Now,
|7 (v) — M7 (u)

v —ul
1.00999 — 1.000021
4.00001 + 1.000021

> 16.01697 radius Q.

M7 (w) = T ()| = |w—ul

> (8189radius Q)

Hence, w lies outside of Pys5916760,, and therefore f(c) certainly lies outside
of Pys¢;. An identical argument shows that f(d) lies outside of Pys5¢/, as well.
Finally, from the display, we read off as(L; I1r) > (1.00999 — 1.000021)/(4.00001 +
1.000021) = 0.00199.... O

LEMMA 4.16 (Overlapping arcs)

Let Q € G andlet T = f([a,b]) CT' € F(’}Q be an efficient subarc. Let Q°, QF €
Child(Q) with diam Q° < diam Q' and suppose that there is a point X €
T7(1.00002Q¢ N T) N TI7(1.00002Q% N T), but Ugo.Uge ¢ N(T). For any
arcs o € S(AQ?%) and t € S(AQT) such that Domain(c), Domain(r) C [a,b],
x € I (Image(o)) N I (Image(r)), and Domain(o) N Domain(t) # @, either

(i) diam Q° < diam QF and Domain(c) C Domain(z), or
(ii) diam Q¢ = diam QF and [c,d] := Domain(c) U Domain(t) satisfies

either — { f(c), f(d)} C Plp0 NPy

or {f(c),f(d)}CPl_zgg NPhLo:-
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Proof

First, suppose that diam Q¢ < diam Q7. Let x, denote the center of Q¢ and pick y, €
1.000020Q¢ N Image(o) N Px. Here Py is shorthand for Py} (see Remark 3.7). Then,
for any z, € Image(o) C 2007,

|HT(ZU) _x’ <lze = Yol = |zo — Xo| + |X6 — Yo
< (14 1.00002 - 27 13) radius 21.Q°
<2743 radius 2407 < 2% radius QL.

Thus, f(t) € Pypr forall t € Domain(o). However, the endpoints Start(z), End(z) ¢
Pisgr by Lemma 4.15. Therefore, Domain(o) N Domain(zr) # ¢ implies
Domain(o) ¢ Domain(z).

Second, suppose that diam Q¢ = diam Q% and Q¢ = QF. Since the arcs in
A(AQT) have pairwise disjoint domains (see Definition 1.9), Domain(o) " Domain(z)
implies 0 = 7. Hence, the conclusion in this case follows from Lemma 4.15.

Finally, suppose that diam Q° = diam Q7, but Q% # Q7. Let x4, Yo be given
as above; similarly, let x; denote the center of QF and choose y, € 1.00002Q% N
Image(t) N Py. Using the triangle inequality to form nested balls centered at x, and
Yo and nested balls centered at x; and y., plus the fact that radius I17(B) = radius B
for any ball B, one can show that

Plisgi - P(j1E5—2.00004)Q5: - Plizgg and
(4.24)

+ + +
Plsoe C Ps_2.00000)0t € Pizgz-

Let [¢o, ds] and [c;, d] denote the domains of ¢ and 7, respectively. If it happens that
[co,ds] C [cr,de] or [cr,d:] C [co,ds] or dy = ¢; Or dy = ¢4, then the conclusion
follows immediately from Lemma 4.15 and (4.24). Thus, without loss of generality,
we may focus on the case that ¢ = ¢; < ¢; < dy < d; = d and Start(o),End(o) €

Pl_ng CcP Suppose to reach a contradiction that Start(t), End(z) € Pngi C

1209°
PIJ; 07 We will show that this violates the antislope estimate in Lemma 4.15. Since
diam Q% = diam QF, but Q¢ # QF, the centers of the balls are far apart: |x; — x| >
2% where k € Z is the unique integer determined by Q% = B(x,,2'27%). Since
|Xg — Vo | < 1.00002-27127% and |x; — y| < 1.00002 - 27127k the triangle inequality
gives |yy — y¢| > (1 — 1.00002 - 2711)27k,
To continue, write
[c,d] = [co,cc]Ucr,do] U [do, de].
—_—— —— ——
I I I3
Choose t; € Domain(o) and t; € Domain(t) such that f(t;) = yo and f(¢;) = y:.
There are three (sub) cases, depending on which of the intervals /1, I, I3 contain 4
and 7.
Case 1. Assume that ty,t; € I U I, = [¢y,dy] = Domain(c). Choose a line L
such that (4.1) holds for o and let I1; be any J-projection onto L. Since yq,, y; €
Image(o), their projections wg := I (ys) and w, := I (y;) satisfy max{|ws —
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Yol [we — ye|} < 27%7% by (4.1) and (4.4). Hence, the estimate on |y, — y,| from
above and the triangle inequality yields |wy — w.| > (1 —2719)27%_ Since M7 (y,) =
x = Il (y;) and I17 is 1-Lipschitz, we also have |TI7(wg) — 7 (w)| < |we — Yo | +
lwe — ye| < 27487% Tt follows that

ITIr (we) — M7 (we) < 2748k
|wo — we| T (1-2710)27k
This (radically!) contradicts the antislope estimate for L from Lemma 4.15.

Case 2. Assume that ts,t; € I, U I3 = [c;, d;] = Domain(t). Repeat the argument
from Case 1 using an approximating line L for 7 instead of an approximating line L
foro.

Case 3. Assume that t, € I and t, € I5. By our supposition above, I, = [¢;, ds]
satisfies f(c;) € Pl—;Q‘,Z and f(dy) € P1_2Qg~ Because x € Py ggoo20¢ and g o f
is continuous, the intermediate value theorem produces ¢’ € (¢, dy) C Domain(c) N
Domain(z) such that II7(f(t')) = x. Write y' := f(¢') € Image(o) N Image(r).
Because |y — y| > 0.98-27% the metric pigeon hole principle implies that |ys — y'| >
0.49-27% or |y, — y'| > 0.49 - 27k say without loss of generality that |y, — y'| >
0.49-27% As in Case 1, choose any line L such that (4.1) holds for o and let I1; be
any J-projection onto L. Since y’ € Image(o), its projection w’ := I1 (y’) satisfies
|w' — y'| <274 Hence,

as(L,Ilr) = < 0.000000000000004.

lwe — w'| > |yo — | — [We — Yo| — W' —y'| >0.48-27%.

Since M7 (ys) = x = M7 (y’), we again find that [TT7(ws) — 7 (w')| < |we — yo| +
|w’ — y’| <2748~k This time it follows that

|7 (we)—Hr(w)| 2748

as(L,Ilr) = < 0.000000000000008.
|we — w’| 0.48-27%
This (again!) contradicts the antislope estimate for L from Lemma 4.15. ]
REMARK 4.17

In Lemma 4.16, the intersection of Domain(c) and Domain(z) in the case diam Q% =
diam Q7, but Q% # QF is possible. For example, consider X = {2, = (R?, |- |x), LT
horizontal, IT7 the vertical projection onto L7, and stack two squares 2A0° and 2AQ0°*
whose centers lie on a common vertical line P, with x € L7. Then one can easily draw
a picture where Ugo, Ug ¢ N (T) and End(o) = Start(r) € 92AQ7) N d(2AQ7).

5. Necessary and sufficient cores

Imagine (or see Section 6) that you want to “pay for” diam 7 = # ! (I17(T)) for some
efficient subarc T C T’ € I‘(*]Q using £(Rp) and {diam Hp~ : Q" € Child(Q)}. The
length £(R) pays for #'(IIr(Rp)) because 17 is 1-Lipschitz. We will pay for the
remaining balance #!(T17(T) \ TI7(Rg)) in installments. Loosely speaking, given a
point x € I17(T) \ I17(Rp), if we can locate a core Ug’ € N1(T') U No(T) whose
shadow I17(Ug-) contains x, then we can use Lemma 4.7, 4.10, or 4.12 to pay for
J (T (Dgr)) using {diam Hop» : Ugr N Fo: # @}. A worry that we might have is
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that there exists an exceptional point x € IT7(7T") \ TI7(Rg), which is not contained in
the shadow of a core in N7 (T') U N2(T). Another concern is that some core Ug inter-
secting Fps could have diam Q" > diam Q’, in which case Ug~» ¢ E¢’. This section
ensures that we can effectively ignore these situations.

For the definitions of N7 and N, cores, see Definition 3.8. For the definitions of
the neighborhoods Dy, Eg/, and Fg- associated to cores Ug-, see Definitions 4.4
and 4.9.

DEFINITION 5.1

Let QeGandlet T CT' € Fi‘}Q be an efficient subarc. We say that a core Ug’ €
N(T) = M(T) U No(T) is locally maximal if Q” € Child(Q) \ {Q’} and Ug» N
16Q’, # ¢ implies diam Q” < diam Q’.

REMARK 5.2

Every core Ug: € N(T) with diam Q' = 27XM diam Q is locally maximal by
Remark 2.6 and the fact that there do not exist Q” € Child(Q) with diam Q" >
diam Q’.

LEMMA 5.3

Let Q€ G andlet T CT € FZ}Q be an efficient subarc. If Ugr € N(T) is locally
maximal, then Q" € Child(Q) and Ugr» N For # @ implies Ugr C Egr. In particular,
ifUgr € Ni(T) U Noo(T) is locally maximal, then | J Mg: C Egr, where Mg/ is the
set of auxiliary cores defined in Lemmas 4.7 and 4.12.

Proof

If Ugr € N2.1(T), then Fgr = Eg/ = Ug’ and the conclusion follows since the cores
{Ugr : Q" € Child(Q)} are pairwise disjoint. Thus, suppose that Ug: € N1(T) U
MN2.2(T) is locally maximal, Q” € Child(Q), and Ug» N Fg # @. Since For C 160",
and Uy is locally maximal, either Ug» = Ugs or diam Q" < diam Q’. In the former
case, we have Ugr = Ug: C E - trivially by definition of Eg-. In the latter case,

diam Ug~ < 1.00001 diam Q7 < 2™ diam Q/, <27°° diam Q,.
When Ugr € N (T), it easily follows that Ug~ intersecting For = Py g2, N 3.980),

implies Ug» C Py 39, N 3.990,, = Eg/. Similarly, when Ug’ € N, »(T), it follows
that Up~ intersecting Fo/ = 15.98Q/, implies Ug» C 15990, = E¢-. O

LEMMA 5.4

Let Q€§,letT CT € F(’;Q be an efficient subarc, and let rr be given by (3.8). For
all Ugr € N (T), the neighborhood E o' C Boy(T'). Moreover, Eg: N 1.99A0" =0
Sor all Q" € Child(Q) such that diam Q' < diam Q" and TI7(16Q%) N (Lt \
M7 (2AQ")) # 0.

Proof
Let Ugr € N(T). Then T N 1.00002Q/, # @; choose any point y in the intersec-
tion. Letting x” denote the center of Q’, we have |x’ — y| < 1.00002radius Q’,. Let
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x € Egr C 15990, Then |x — y| < |x — x| + |x’ — y| < 16.99002radius Q, <
8.49501 diam Q/, < 9rr. Hence, Eg’ C Bg,,(T') with room to spare.

Let Q” € Child(Q) and suppose that diam Q' < diam Q” and T17(16Q%) inter-
sects the complement of T17(2AQ"). Then 16 Q7% N (X '\ 2AQ") # @ too. Note that

gap(X\ 240", 1.9910") > 0.01 radius Q" > 20.48 diam Q” > 20.48 diam Q’,.

Thus, gap(Eg/,1.9940") > gap(16Q%,1.9910") > gap(X \ 2AQ0",1.99A0") —
diam 16 Q/, > 4.48 diam Q/, > 0. Therefore, E o does not intersect 1.9910". O

LEMMA 5.5

Let Q €9 andlet T CT' € Fl*]Q be an efficient subarc. If Ug/,Ugr € N(T),
diam Q' < diam Q”, and I17(D o) intersects LT \ I1T(Dg»), then Do N Egr = @.
Also, DQ/ N DQw =0 for all UQW e N(T)\ {UQ/} such that diam QW = diam Q/.

Proof

Under the hypotheses of the lemma, diam Do/ < 160/, <272®diam Q’/ and D¢ inter-
sects X \ Dgr. Reviewing Definitions 4.4 and 4.9, we know gap(X \ Do~, Egr) >
0.00001 diam Q.. Therefore,

gap(D o, Egr) > gap(X\ Dgr, Egr) — diam Do > (0.00001 — 27°¢) diam Q7 > 0.

If Dgm € N(T) \ {Ug’} and diam Q" = diam Q’, then Do N Dow = @ by
Remark 2.6. O

LEMMA 5.6

Let Q € §andlet T CT € F(’}Q be an efficient subarc. If Ugr € N (T) is not locally
maximal, then 160/, C 1.00002Q7 for some Ugr € N (T) that is locally maximal or
for some Ugr ¢ N(T).

Proof

Assume that Ug1 € N(T) is not locally maximal. Then there exists Q? € Child(Q)
with diam Q2 > diam Q! such that Up2 N16Q, # @. Let x; and x; denote the centers
of Q! and Q2, respectively, and choose w; € Ug2N 1601 € 1.0000102N16QL. We
have

(5.1)  |x1 —x2| < |x1 —wi| 4 |wy — x2] < 16radius QL + 1.00001 radius Q2.
Since radius Q} < 27190 radius Q2, it follows that for all z € 16Q],
|z — x2| < 32radius Q1 + 1.00001 radius Q2 < (27°° + 1.00001) radius Q2.

Hence, 160 € 1.00002Q2. If perchance either Ug2 € N(T) and U2 is locally max-
imal or Up2 ¢ N(T), then we are done. The other possibility is that Up2 € N (T') and
Ug2 is not locally maximal and we repeat the argument.

Suppose that for some j > 3, we have found cores UQ1 e UQj—l € N(T), each
of which is not locally maximal, such that

(5.2) diam Q' > diam Q"' and Uy N 16041 #0 forall2<i <j —1,
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and such that the centers xp,...,x;_; of the balls Ql, e, Qj_1 satisfy
(5.3)  |xi—1 —x;| < 16radius Q' + 1.00001 radius Q% forall2 <i < j —1.

Since Q7! is not locally maximal, diam Q/~! < 272KM diam Q by Remark 5.2, and
there exists O/ € Child(Q) such that diam Q7 > diam Q/~! and UgiN 16Qi_1 #0.
Let x; denote the center of Qj and choose w;_; € UQj N 16Q£—1 C 1.00001Q£ N
16017". Then
[Xj—1 = x| < |xj—1 —wj—a| + [wj—1 — x|
(5.4) ) ,
< 16radius Q7! 4 1.00001 radius Q.
Thus, (5.2) and (5.3) also hold when i = j. Let z € 160} and write |z — x| < |z —
x1| + |x1 — xa| + -+ + |xj—1 — x;|. Since radius Q' < 27190 radius Q. for all 2 <
i <j,weget
j—1
|z —x;| < 16radius Q! + 17.00001<Zradius Qi) +1.00001 radius Q7
5.5) i=1
< (2723 4 1.00001) radius Q.

Hence, 160 C 1.00002Qi. Once again, if either Uy; € N(T') and Uy, is locally
maximal, or UQj ¢ N(T), then we are done. Otherwise, UQj € N(T) and UQ_,- is
not locally maximal and we go to the next step of the induction. The iterative scheme
eventually terminates after finitely many steps by Remark 5.2. O

DEFINITION 5.7
LetQeGandletT C T € F;Q be an efficient subarc. We say that Ugr € N (T) is

sufficient if Ugr is locally maximal or if 16Q’, C 1.00002Q” for some locally maximal
Ugr € N(T).Let 8(T) C N(T) denote the set of all sufficient cores.

The proof of the following lemma is ultimately a topological argument, which follows
from our assumption that the parameterization f : [0, 1] — I" is continuous. (Further-
more, the proof invokes Lemma 4.16, which also exploited the continuity of f.)

LEMMA 5.8 (Topological lemma)

Let Q € § andlet T = f(Ja,b]) CT' € FI*JQ be an efficient subarc. Define pr by
(3.8); that is, let pt be largest diameter of a ball 2A.Q" among all Q" € Child(Q) such
that 1.00002Q% N T # @. For all points x such that

(5.6) x € 7 (T)\ (TIr(Rg N T) U Bosipr ({f (@), £(B)})),
there exists Ugr € 8(T) such that x e 17 (Ug N T).

Proof
Let x satisfying (5.6) be given. Following the convention in Remark 3.7, f(a) € P{;}

and f(b) € P{J;}. For simplicity, we shall write P, and PxjE instead of Py, and P{j;}.
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Figure 5. (Color online) Proof of Lemma 5.8 (simplified): If no core in N7 (T) or N>(T) intersects T above
x € I7(T)\ I (Rp), with x far away from the endpoints of T, then it is impossible to reach f() from
f(a).

Consider the set U :={Up~ : Q” € Child(Q),Ug» N'T N Py # @} of cores that inter-
sect T and whose shadows contain x. Our assumption that x € II7(T) \ II7(Ro N T)
guarantees that U is nonempty and @ # T N Py C UUQ” <y Uo~. Suppose for the sake
of contradiction that no core Ug~ € U belongs to §(T"). Then, by Lemma 5.6, for all
Ug € U, there exists at least one core Up’ in

O :={Ug ¢ N(T): Q"€ Child(Q),1.000020,, N T N Py # @}
such that Ug» C 16Q% C 1.00002Q",. Hence @ # @ and

(5.7) TnpP.c () 1.000020].
UQ/EO

Further, our assumption that x € X'\ Bo.s1,,-({ f(a), f(b)}) ensures that if Ugs € O,
then 240" N {f(a), f(b)} = @. Indeed, given Ug € O, let x’ denote the center of O’
and pick y’ € 1.00002Q’, N T N Py. Since Iz is 1-Lipschitz,

|x — 7 (x")| < |y’ = x| <radius 1.00002Q), <2~ "*radius2AQ" <27 pr.

Using the fact that I17 is 1-Lipschitz once more and the fact that TT7 fixes f(a) and
f(b), we find that

dist(x", { f(a), f(D)})
> dist(Mr (X)), { f (@), f(b)}) = dist(x, { f(a), f(b)}) — |x — 7 (x)]
> (0.51 —27"%)pr > 0.509p7 > 0.009p7 + radius2AQ";

that is, { f(a), f(b)} does not intersect an open tubular neighborhood of 2AQ’ of width
0.009p7. As a corollary, since f is uniformly continuous, there exists § > 0 depending
on pr and the modulus of continuity of f such that

(5.8)  Domain(x) N ([a.a +8) U (b—8.b]) =@ forevery arc T € S*(AQ).
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(Below we only need to know that § > 0.) To proceed, define collections of arcs and an
associated collection of intervals by

Ay :={t€S(AQ"):Ugr € O,y € Image(r), Domain(z) C [a,b]}
VyeT N Py,

(5.9)

d:= {connected components I of
(5.10)

|_J{Domain(z):y e T N P and 7 e Ay}}.

By definition, 4 is pairwise disjoint, and by (5.7) and (5.8), we have T N P, C
Ujes fU) and I C [a + 8,b — 6] for all I € 4. By Lemmas 4.15 and 4.16,
for each interval I = [c,d] € d, either TI7(f(c)), 17 (f(d)) < x or IIr(f(c)),
7 (f(d)) > x, where we identify [ f(a), f(b)] with an isometric subset of R. Modulo
applying continuous reparameterizations to the domain and image of the continuous
map Il7 o f :[a,b] — [f(a), f(b)], we have built a function g : [0, 1] — [0, 1] such
that

(x): g is continuous, g(0) =0, g(1) = 1, and there exists a pairwise disjoint
collection ¢ of nondegenerate closed subintervals of [1/4,3/4] such that the
preimage g~ !(1/2) C |J ¢ and for all intervals J = [c,d] € ¢, either
g(c).g(d) <1/20rg(c). g(d) > 1/2.

(Explicitly, send a >0, b~ 1, a + 8+~ 1/4, b — 8 — 3/4, f(a)— 0, f(b) — 1,
x — 1/2.) By the next lemma, no such function exists. Therefore, our supposition was
false, and there exists Ugs € §(T') such that x € [T (Ug: N T). a

LEMMA 5.9
A function g : [0, 1] — [0, 1] with property (x) does not exist.

Proof

Suppose that g exists. Let d denote the connected components of [0, 1]\ ¢ 4 J . Label
each interval I € J as left-directed or right-directed depending on whether there is an
interval J = [c,d] € g suchthat TNJ # @and g(c),g(d) <1/20r g(c),g(d) > 1/2,
respectively. This concept is well-defined by property (), in particular by continuity of
g and by the stated properties of . The unique half-open interval of the form [0, ) € 4
is left-directed because g(0) = 0; the unique half-open interval of the form (a, 1] € 4 is
right-directed because g(1) = 1. All other intervals in J are open intervals (a, b) with
g(t)y<1/2forallt € (a,b),if (a,b) is left-directed, and g(¢) > 1/2 for all ¢ € (a, b),
if (a, b) is right-directed. The only restrictions on values of g(¢) for ¢ € [c,d] €  are
at the endpoints t =c and t =d.

Let L :={t € [0,1] : t € I for some left-directed interval I € 4} and let u :=
sup L. Then g(u) < 1/2, and so u is not contained in a right-directed interval of .
Let’s consider the other two possibilities. First, suppose that u € I for some left-
directed I € 4. Since every left-directed interval is open to the right (as the interval
containing 1 is right-directed), this would mean that ¥ cannot be an upper bound on
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L, which is absurd. Next, suppose that u € J for some J € . Then J = [u,v] for
some u < v and g(u) < 1/2. (This used the approximation property of the supremum.)
Let I’ = (v,d) € J be the interval lying immediately to the right of J. The interval
I’ must exist since the interval containing 1 belongs to 4. Since v > u, I’ must be
right-directed. Hence, g(v) > 1/2. Thus, g(u) > 1/2 because [u,v] € &. This con-
tradicts our observation that g(u) < 1/2. Therefore, there does not exist a function
g:[0,1] — [0, 1] with property (x). O

6. Proof of Lemmall

6.1. Stage 1: Improving the coarse estimate

LEMMA 6.1 (Initial improvement of (3.6))
With notation as in Lemma I,
diam T —2pr < 1.7¢(Rg N Bo,, (T)) + Y diam210”
UQ//E?
6.1)
+1.37 > diam H .
Uo/CBorp (T),Ugpr¢Ng

Proof
Since T is an efficient subarc, I[17(7) = [f(a), f(D)]. To start, let

62 Jo=[/@+pr. /) - pr]\ (Tr(Ro N TYUTIL(|J220")).
F

By subadditivity of measures and the fact that 17 is 1-Lipschitz,

diamT — 2p7 < J'(TI7(Rg N T)) + J¢! (HT(U 2)LQ”>) + 31 (Jo)
F
(6.3)
<URNT)+ > diam21Q" + H' (Jy).
F

We shall reach (6.1) from (6.3) by making a sequence of refined estimates on J1(Jp).
More precisely, we inductively define measurable? sets Jo O J; D Jo D --- with
Ni2y Ji = @ and “pay for” J¢!(J;—1 \ J;) for each i > 1 using a Borel subset R; of
the remainder set Rp and certain cores JM; in lying in Bg,,. (7). In particular, we will
prove that

(6.4) J'(Jia\Ji) SOTL(R;) +1.37 Y diam Ho.
UgreM;

2. If X is not separable, pass to a separable subspace of X containing the rectifiable curve I" before defining
Jo to ensure the projection IT7 (R o) is universally measurable.
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Naturally, we will arrange things so that R; N R; = @ and M; N M; = @ for all
i # j. Further, the cores in M; will not belong to N, the set of all cores Ug: with
Q’ € Child(Q) such that Ugs C 1.99AQ" for some Ug» € ¥ . Thus, (6.1) follows
immediately by combining (6.3) and (6.4).

Let 8§(T') be given as in Definition 5.7. For each i > 1, inductively define

6.5)  8i:={Ug € 8(T):diam Q' =2"XM" diam Q, 7 (Ug/) N Ji—1 # 0},

©.6) Ji:=Jia\ |J Mr(Do.
UQ/GX,‘

By Lemma 5.8, every x € Jy lies in the shadow I17(Ug’) of some core Ug: € 8(T).
Hence, ﬂ;’io J; = 0. Every core Up’ € 8; (i > 1) is locally maximal (see Defini-
tions 5.1 and 5.7) because I17(Ug’) N J;—1 # @ implies that 1607, ¢ 1.00002Q’, for
any locally maximal core Ug~ € N (T') with diam Q” > diam Q. Indeed, the shadows
7 (Dgr) D 7 (1.000020Q7%) of all locally maximal Ug~ € N (T') with diam Q" >
diam Q' (which belong to 8(T')) were already deleted from Jy, ..., Ji—5 in the induc-
tive definition J;_1.

Our next task is to bound the length of each set J;_1 \ J;. Fixi > 1.If J; = J;_1,
then #'(J;_y \ J;) = 0. If J; # J;_1, then by countable subadditivity of measures,
the isodiametric inequality #'(A4) < diam A for all A C R, and the fact that I17 is
1-Lipschitz,

6.7) H'(Jia\Ji) < Y diamII7(Dg).
UQ/€8i

For each Uy’ € &;, define an auxiliary family of cores Mg/ and Borel set I%Q/ as
follows:

o if Ugr € N1(T), define M- to be the family in Lemma 4.7 and

IéQr = RQ n FQ/;
o if Ug: € Ny (T), define Mo, :={Ug'} and R := @ (cf. Lemma 4.10); and
o if Ugr € N »(T), define M- to be the family in Lemma 4.12 and

ﬁQ/ :=Rg N Fypr.

By Lemma 5.3, the set Mg/ := Ro/ U|J Mg’ C Eg for all Ug: € ;. Furthermore,
the set Mo C Bo,(T) and Mo N Ng = @ by Lemma 5.4 and property (F). Define

(6.8) M; = U Mo and R; := U IQQ/.
Uyres; Upres;

Then (6.4) follows immediately from (6.7), the estimates Lemma 4.7, Lemma 4.10, and
Lemma 4.12, and the second part of Lemma 5.5.

Finally, as required, M; N M; =@ and R; N R; = @ for all i # j by the first part
of Lemma 5.5. O
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6.2. Stage 2: Iterating the improved estimate

LEMMA 6.2
Let Q€ G andlet T CT' € F;}Q be an efficient subarc. If Ugr € N»2(T) is locally

maximal, then there is a set Mo’ of cores Ugr with Q” € Child(Q) and Ug» C Eg
such that

(6.9) diam Dos < 1.20(Rg N Eg/) +0.95 > diam Ho.
UQ//EMQ/

Proof
Let ¥ be given by Lemma 4.11. We repeat the proof of Lemma 4.12 but use the
improved estimate (6.1) with ¥ = @ instead of the coarse estimate. In effect, we are
incorporating the existence of cores Ug~ that lie nearby but do not necessarily intersect
the subarcs Y € ¥. By Lemma 4.11 and by the assumption that Ug; is locally maximal,
for every subarc ¥ € ¥, we know that Y C Fo/ \ O, diamY > 0.00021 diam Q,,
ry < 27 &M diam Q/, < 271%diam Q’, py < 214y - 2'2ry < 273%*diam Q’,, and
0.99999diamY < diamY — 2py. In addition, {1.00002Q/} U {Bo,, (Y):Y € ¥} is
pairwise disjoint. Since Fgr = 15.98QY, we easily obtain By, (Y) C 15.981Q/, C
15.99Q’, = E - from the estimate on ry.

Let Mg = {UQ// : Q" € Child(Q) and Ugr C EQ!}. Now, diam Q) <
2.00002diam Ho, which implies 0.68499diam Q] < 1.37diam Hyp-. Further, for
every Y €Y,

0.99999diam Y <diamY —2py

<L74(Rg N Bor, (Y))+1.37 Y diamHgr
UprCBory (v)

by (6.1) with ¥ = 0. Also, by Lemma 4.11, ZYey 0.99999diam Y > 22.45977 x
diam QY. Finally, By, (Y') C Eg’. Combining these estimates, we obtain

(0.68499 + 22.45977) diam Q', < 1.7¢(Rg N Eg/) +1.37 Y diam Hov.
UQ//EMQ/

Since diam D g/ = 16 diam Q,, this estimate yields (6.9). (|

Proof of Lemma 1
Repeat the proof of Lemma 6.1, except use Lemma 6.2 in place of Lemma 4.12. Instead
of (6.4), the proof gives

H(Ji—1 \ Ji) < 1.24(R;) + 1.00016 > diam Hor
UpreMiNN2 1(T)
(6.10)
+0.95 > diam H:.
UpreMi\N2 1(T)
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Therefore, instead of (6.1), we ultimately obtain

diamT — 2py <2.2€(Rg N Bo,, (T)) + Y diam21.0”
UQ//ET

6.11) +1.00016 > diam H/
UpreN2 1 (T\Nx

+0.95 > diam Hoy,
Ugpr¢gN2 1 (T)UNg

where the sums in the second line may be further restricted to Ugs contained in
By, (T). Replacing the terms 0'952UQ/€N2A2(T)\N37 diam Hg, with 1.00016 x
ZUQ/GNZ_Z(T)\Nf diam Ho- yields (3.9). (The purpose of this last step is to let us
avoid defining N> 1 (T) in Section 3.) O

REMARK 6.3

One could continue to iterate estimates for N, »(T') cores to further reduce the coeffi-
cient 0.95. Howeyver, iteration will never let us improve the coefficient 1.00016 associ-
ated to N.1(T) cores.

7. Proof of Lemma Il

Assume for the duration of this section that Q € § has small remainder in the sense of
Definition 3.3 and few non-,(Gg) cores in the sense of (3.11).

7.1. Existence of A and proof of (3.12)
Because Gg = f([ag,bp]) satisfies (3.7), O has a small remainder, and (3.11) holds,

(1, (U60)

(7.1) >diamGo —€(Rg)— Y diamUp
U/ ¢N2(Go)

> (0.99993 — 0.01 — 0.05) diam Hg = 0.93993 diam Hy.

(To start, write diam Gg = H! (T, (Gg)). Compare to the derivation of (6.1).)

We will construct # inductively using a greedy algorithm. To begin, we stratify
MN2(Gg) by size. For each i > 1, let U; denote the set of all cores Ugr € N2(Gg)
such that diam Q’ = 27&M# diam Q. Each family U; consists of finitely many cores
because I' is compact. Some (but not all) of the families may be empty.

Choose #; to be a maximal subset of U; such that {2A0" : Ugr € A1} is pair-
wise disjoint. Note that +; automatically enjoys property (F) with T = G because
there are no Q' € Child(Q) with diam Q’ > diam Q”. If ZUQ//e.Al diam21Q” >
0.04 diam H g, then we halt and define 4 := +4;. Otherwise, we move to the induction
step.

Suppose that we have defined A C --- C 4;—1 for some i > 2 so that +;_; satis-
fies property (F) with T = G and ZUQ,,GAI,_] diam2AQ" < 0.04diam Hg. Choose
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a maximal family #; from the collection

{Ugr € U; :200" N20Q" =@ for all Ug: € s;_;, and
(7.2)

210" ¢ 16.1Q’, when Ug € Child(Q) and diam Q' > diam Q"'}
such that {2AQ" : Ug» € A} is pairwise disjoint. If it happened that 210" N16Q’, # @
for some Ug~ € #4] and Ups € Child(Q) with diam Q' > diam Q”, then we would
also have 240”7 C 16.1Q’, by (2.7), which is impossible. Thus, the next family
i 1= A;_1 U A also satisfies property (F) with T = Go. If ZUQ//e,A,i diam2AQ" >
0.04 diam H g, then we halt and define + := #A;. Otherwise, carry out the next step of
the induction.

We claim that the process described above always halts— i.e., there is an integer
n > 1 such that A = A, has property (F) and ZUQ,,GA diam21Q"” > 0.04diam Hy.
Suppose for contradiction that the process does not halt. We will construct an overly
efficient cover of g, (UUQ//eNZ(GQ) Ug~). Suppose that Ug» € U; \ 4 for some
j = 1. Then, by maximality of the family A’j, at least one of the following occurs:

i 210" N2AQ’" # @ for some Q' € 4 ; with diam Q' > diam Q";
(i) 24Q" C 16.1Q/, for some Uy’ € Child(Q) with diam Q' > diam Q"

In situation (i), 2AQ"” C 6AQ’ for some Ug’ € +4 ;. In the event that (ii) holds, there are
two alternatives:

(iii) 2AQ” C 16.1Q/, for some Ug ¢ N»(Gp);
(iv) 2AQ" C 16.1Q%, C 2AQ’ for some Uy’ € N>(G o) with diam Q' > diam Q"
and hence Ug’ € U; for some i < j.

It follows that for each j > 1,

j—1
(7.3) J 220"c | er@'u | 1e10,ul] | 220

Uprel, Upreh; UQ/¢N2(GQ) i=1UgyreU;
After recursively applying (7.3) and then letting j — oo, we obtain
o0
U Uerc |y 220'cly U 6rQu |J 1610,
UQ//EN2(GQ) UQ//GNz(GQ) i=1 UQ/GeA,' UQ/¢N2(GQ)

In particular, by countable subadditivity of measures and by the now familiar fact that
e7€I(HGQ (A)) < diamIlg,, (A) < diam 4 for all Borel sets A C X,

(e, (Us6(60))
<3 > diam21Q" +16.1 > diamUg
UQ//EA]U:AQU"' UQ/¢¢N'2(GQ)
< (3-0.04 +16.1-0.05) diam Hg = 0.925diam Hy.

This contradicts (7.1). Therefore, the process above halts and 4 = 4, for some n > 1.
We remark that 4 is finite because A C [ J;_; U; and each U; is finite. This proves
(3.12).
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7.2. Proof of (3.13)

The proof of (3.13) leans on techniques developed in Section 4. To begin, we describe
the large-scale geometry of x-almost flat arcs in balls around «+ cores. Recall that
every # core belongs to N>(Gp). The first lemma below (Lemma 7.1) is a variant
of Lemma 4.11 in the large-scale window 2AQ" instead of the small-scale window
16Q’. The second lemma (Lemma 7.2) modifies the arcs obtained in Lemma 7.1 to
avoid cores Ugs C 210" such that diam Q" = diam Q". This is necessary to get good
control on py for the subarcs X that we apply Lemma I to in the third lemma below
(Lemma 7.3).

LEMMA 7.1

If Ugr € A, then there exists a finite set Y subarcs of arc fragments in T'J ¢ 20" such
that the neighborhoods { By—m-35 gium o (Y) 1 Y € Y} are pairwise disjoint, diamY >
0.00199diam2AQ" for all Y € Y, and in total ) "y .y diamY > 1.23diam21Q". (The
cardinality of ¥ is 2 or 3.)

Proof
Let = f[g,5) € S(AQ") be a wide arc for Ug~. By our convention in Remark 3.7,
f(a) lies to the left of f(b). Let Ty = t(|c,d]) be a subarc of Image(r) N 1.9810",
where

c:=sup{t €la.b]:7(t) € Py,, N 3(1.9810")}  and
d:=inf{t €[a,b]: (1) € PJQ” N9(1.9820")}.

By (4.1) and (1.2), there exists a line L such that dist(p, L) < 273 diam 1.981Q"
for all p € Image(r). Since Image(r) N 1.00002Q” # @, repeating the proof
of Lemma 4.3 mutatis mutandis informs us that T; (easily) intersects 1.1Q7) C
2711(1.981Q"). Further, by mimicking the proof of Lemma 4.10, we find that

diam 7} > (1 —271% —2752) djam 1.981Q" > 0.98903 diam 210"

Choose a line L, such that (4.3) holds for 7, choose a J-projection I1; onto L.,
and identify L. with R. By (4.4), |TT;(w) — w| < 27M =47 diam 24 Q" for all w €
Image(t). Thus, the interval [sq,s5] := I1;(7T7) is large in the sense that

$2 —s1 > diam T — 2~ M =46 diam 210" > 0.98902 diam 240"

Since Bs+n07)(2AQ") > 27M | but the excess of Image(r) over L. is compara-
tively small, we can locate an arc £ € S*(AQ”) and point x € Image(§) such that
dist(x, L;) > 2~ diam21Q"”. Let T, be a subarc of Image(£) N 1.981Q" with one
endpoint in d(1.98AQ"”) and one endpoint in d(AQ”). We can do this because the
image of every arc in A(AQ") intersects Q" and Q" ¢ B{. Then

7.4 diam T, > 0.98 radius AQ"” = 0.245 diam 21.Q"
and diam T} + diam T, > 1.23403 diam21Q" . If

By—m-35 giam 0 (T1) N By—m-35 gigm ol (T2) =0,
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then we may take ¥ = {71, T>}.

Suppose otherwise that Bj—n—35 gium 07 (T1) N By—m—-35 gigm 0 (T2) # 0. For
ease of notation, we switch from scale diam Q) to scale diam21Q", recalling that
27M=35 diam Qf < 27M~48 diam21Q". Let L¢ be a line such that (4.3) holds for &
and let IT¢ be a J-projection onto Lg. Then

By—m—-18 gigm 210" (Th) C B(z—M—48+2—M—54) diam 210" (L) C By—m—47 gigm 200" (L),

Bo—11-48 giam22.07 (T2) C Ba—M—48 4 5-M-48) giam 2207 (L) C Bo=11-47 giam22.07 (L),

and L. intersects By := By-m—45 giama2 0~ (Lg) by the triangle inequality. Continuing
to identify L, with R, define

tiy:=min{z:z € LN By} and ty:=max{z:z € L; N By}.

As in the proof of Lemma 4.11, there are two cases.

For the easier case, suppose that 7, < s7 + 0.002diam2AQ” or t; > sy —
0.002diam 21Q”. Choose a subarc Ty of T; with ITo(7}) = [s1 4+ 0.002diam 210",
52 —0.002diam 2A1Q"]. Then by (4.1) and (4.4), T} satisfies

T1 C By-m—53 giamaro~ ([s1 + 0.002diam 210", s, — 0.002 diam 2A0"]).

and, by the triangle inequality, diam T} > s, — 51 — (0.004 + 2~M~52) djam 210" >
0.98501 diam2AQ". To verify disjointness, we use the triangle inequality again to cal-
culate

gaP(Bz—M—47 diam21Q” (L), By—m—a7 diam21Q" (LE))
> (27M=45 _ =M =46 diam 210"
Recalling (7.4), we see diam Ty + diam 7> > 1.23diam 20Q". Therefore, in this case

we may take ¥ = {T}, T»}.
For the harder case, suppose that

(7.5) tp > 51 + 0.002diam 210" and t1 < 55 —0.002diam 210" .
Our immediate goal is to show that #, —#; is relatively small. Let y, z € L, be such that
y =t; and z = 1, by our identification of L, with R. Since y,z € L; N B,, the points
Ve, zg i= Ig(y) satisfy

max{|y — yel, |z — z¢|} <27M~* diam 210"

Now, define the line I:E := Lg¢ + (¥ — y¢) parallel to Lg which intersects y. Let
Hg(v) := Il¢(v) + (¥ — y¢) and note that Hg is a J -projection onto L¢. Recall that x €
Image &, and define Xg = Hg(x), Xg, = Hr(xg), zg = Hg(z), and Zg, = HT(Zg).
Then, we have
(7.6) lzg—ylzlz=yl—lzg—zel = lze —z| 2o — 11 — 2~ M=% gjam 210",
|z§ - Z§T| < 2dist(z§,L,) <2|z - z§| < 2|z —zg| + 2]y — yel

(1.7)
<27M=8 diam21Q",
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(7.8) g —yl<lx—yl+lxg—xl=+ 2~M=4%y diam 210", and
(7.9) g —xg | = v —xg | —|x —xg| = 2~M=1diam 210"

By “similar triangles,” it follows that

12 = 22,|
t— 11 =27 M diam 210" < |z — y| = |xg — Y[
xg = z,|
§ Ve
—M—43
< (2diam21Q") SWT

Rearranging, we see that £, — t; < (2~M~#* 4+ 2741) diam 210" < 27*%diam 210"
Together with (7.5), it follows that we may choose 7; and 7, such that

l~1<ll<12<l~2

and 7, — 7; <273 diam2AQ". Let T;.; and Ty, be subarcs of Ty with I¢(7}.1) =
[s1,71] and T1 (T 2) = [f2, 52].

To see that By—a—48 giym2a07 (T1.1) and By—amr—as giumonp~ (T1.2) are disjoint, we
calculate

gap(Bszﬂw diam21Q” ([Sl . ]) s By—m-47 igm 210" ([;27 52]))
> (2739 —27M=40) djam 210" > 0.

Similarly, to see that B,—a—as diamZAQ”(Tl.l U T12) and By—pr—as diam2107 (T2) are
disjoint, we estimate
gap(By—M 18 giamar0” (T1.1 U Th2), By-nm—ss giam2107 (T2))
> gap(Bz—M—‘” diam220” (Lg), By—m—47 jiamon 07 ([51 1] U [12.52]))
> (27 M=45 _ =M =46) diam 210" > 0.
We now turn to estimating the diameters of these subarcs. By (4.3) and (4.4),
(7.10) Tia C By—m-53giamasg~ (51, 71]),
diam 711 > 71 —s1 — 2~ M2 diam 210",
7.11) TiaC By—m-—s3 diamZAQ”([vaSZ])’
diam Ty 5 > 55 — i» — 27752 diam 210"

Recalling (7.5), min{diam T 1,diam 7} 5} > 0.00199diam 2AQ". Moreover, by (7.4)
and the fact that 273° « 0.00001,

diam 7~"1,1 + diam Tl_z + diam 7>
> 55 — 51 —0.00001 diam 240" — 2=~ diam 210" + diam T
> 1.234diam21Q".

In this case, we may take ¥ = {7:1.1 T, T>}. O
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@ 7 e

AQ"

diam = diam Q¥

22Q"

Figure 6. Separated subarcs X associated to a ball 2AQ"” with U~ € A. When Bgx10)(2AQ) is suffi-
ciently small, cores Ugp- with diam Q/, = diam Q’/ may intersect both of the underlying arcs = and & used to
build ¥.

LEMMA 7.2
If Ugr € A, then there exists a finite set X of efficient subarcs of arc fragments in

*
F1.98/1Q” such that the set

{1.00002Q’, : Q" € Child(Q). diam Q" = diam Q"}
U {Bz—M—35 damor(X) 1 X € X} is pairwise disjoint,
diam X > 0.25diam Q7 forall X € X, and )y c o diam X > 1.11diam21Q".

Proof

For an illustration of the efficient subarcs in X, see Figure 6. Let Ugr € A,
say Q" = B(x",A%27%), and let ¥ be given by the previous lemma. Because
{By-m-354ium oy (Y) 1 ¥ € ¥} is pairwise disjoint, it suffices to construct a family
Xy of efficient subarcs X of Y for each Y € ¥ such that

{1.00002Q), : Q' € Child(Q). diam Q' = diam Q")
U {327M735diamQ;f(X) X e XY}

is pairwise disjoint, diam X > diam Q7 forall X € Xy, and in total ) XeXy diam X >
0.904diam Y. Then X = | Jy oy Xy satisfies the required properties. In particular,

> diamX >0.904 > " diamY > 1.111diam21.0"
XeX Ye¥y

since ) "yoydiamY > 1.23diam21Q".

Fix Y = f([a,b]) € Y and let T € S*(AQ) be an arc for which Y is a subarc
of Image(r) N 1.981Q". Note that diam Y > 0.00199diam21Q” > 27° diam 210" >
2% diam Q7. Let L be a line such that (4.3) holds for 7 and let T1;, be a J-projection
onto L. By (4.4), we have |1 (x) — x| <27M~47 42 diam21Q” <27 ~38 diam Y
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for all x € Image(r). Since Y is compact and connected, /o := 17 (Y) = [c, d]. Con-
sidering any pair of points u,v € Y such that |u — v| = diam Y, we see that

diam /o > |HL(u)—HL(v){ > |u—v|— {HL(u)—u| — |HL(U)—U|
>(1—-2"M=3)diamY.

Hence, diam 7y > 0.99999diam Y > 15.999 diam Q. Form the minimal partition & of
Iy into closed intervals with disjoint interiors that includes the set of intervals

g :={Io NTIL(1.00004Q%) : Q" € Child(Q), diam Q' = diam Q"
1.00002Q%, N By—m1-35 giym o (V) # o}.
If ¢ = @, then we may simply take Xy = {¥}, where Y is any efficient subarc of ¥

with diamY = diam Y. Thus, suppose that ¢ is nonempty. Because every ball in X
contains a diameter parallel to L, for each J = Iy N 11 (1.00004Q%) € ¢,

. . . —k—
diam J < diam IT7(1.00004Q",) = 1.00004 diam Q’, = 1.00004 - 2%~

with equality unless J N {c,d} # @. The intervals in § are uniformly separated.
Indeed, for each J = Iy N 1.00004Q’,, let x; denote the center of Q, let y; €
By—m-35 giam 7/ (Y) N 1.00002QY,, and let z; = [ (y;) € J; then diam J < 2710
and

Ixg —zs| < |xs—ysl+1ys—zs]
< 1.00002- 275712 4 p=k=12=M=35 4 »=M=47 q-1 . 4) A 427 < 27k=10,
Because {x : J € ¢} is 27X -separated, it follows that for all distinct J1, J, € ¢,
gap(J1, J2) > 27k |x7, —zj,| —diam J; — |x7, —z,| — diam J,
>(1-2"827F =1 -2 .27k 11 > 210 gjam Q.

For each interval I € & \ &, choose an efficient subarc X; of Y such that [Tz (X;) C I
and diam X7 > diam/.If I € P \ ¢ and I N {c,d} # @, then I lies between two
distinct intervals Jy,J, € ¢ and diam X; > diam I > gap(Jy, J>) > 21%diam Q”. At
most two exceptional I € P \ J contain one of the endpoints of I; the diameter of an
exceptional interval / may be relatively large or small. We assign

Xy :={X;:1€P\ g and diam[ > 0.25diam Q’},

which contains all of the subarcs X; that we defined with at most two exceptions. (We
exclude X; from Xy if exceptionally I N {c,d} # @ and diamI < 0.25diam Q7.)
By design, the 27M =35 diam Q”/-neighborhoods of the subarcs in Xy do not intersect
(J{1.00002Q/, : Q' € Child(Q),diam Q" = diam Q”}. Furthermore, any pair of dis-
tinct X7,, X1, € Xy enjoys

gap(Xy,. X1,) = gap(Tz(X7,). M2 (X1,)) = 1.00004 diam Q7

because /; and I, are separated by an interval in J € ¢ that does not intersect {c, d }.
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It remains to estimate the total diameter in Xy in terms of diamY. Let us
agree to call an interval I € P \ J short, medium, or long if diam I < 0.25diam Q7/,
0.25diam Q” < diam I < 2'%diam Q/, or diam I > 2'° diam Q”/, respectively. Above,
we showed that any interval I € £ \ ¢ lying between two intervals in & is long. Hence,
any short or medium interval must contain one of the endpoints of /y. Also, if I is short,
then diam / < 0.25diam Q7] < 0.016diam I because diam Iy > 15.999 diam Q] (look
above). After deleting any short intervals from the ends of I, the remaining interval

Ioo:=Io\| J{T € P\ d: X1 ¢ Xy}

has diam 79 > 0.968 diam Iy > 0.96799diam Y > 15.486 diam Q. Now, if J € ¢,
then diamJ < 1.00004 diam Q7 < 0.065diam Ipg. If J € ¢ and [ is long, then
diam J < 1.00004 diam Q% < 0.001 diam /. Since there the number of intervals in ¢ is
at most one more than the number of long intervals, it follows that

, 1-0.065 .
Z diam X; > ————— diam Ioo > 0.90416 diam Y.

X 1.001 O

LEMMA 7.3
If Ugr € oA, then there exists a family £o» of cores Ugr C 1.99A0" with Q' €
Child(Q) such that

(7.12) diam21Q” < 2((Rg N 1.994Q") +0.91 > diam Hg'.
UQ/E$Q//

Proof
Fix Ugr € 4 and let X be the family of efficient subarcs of arc fragments in I‘l* 982.0"
given by Lemma 7.2. With the intention to invoke Lemma I, we define

Lor = {UQ/ : 0’ € Child(Q) and Ugp N BgdiamQ;:(l.gSAQ”) #* @}.

Property (F) with ¥ = 4 and T = Gg tells us diam Q' < diam Q" for all Q'
Child(Q) such that 16Q’ N 21Q" # @. This more than ensures Ugs C 1.99A0" for
every Ugr € £or.

Let X € X. By Lemma 7.2, diam X > 0.25diam Q’/ and

(7.13) px <27KM 23 A4 -2'2diam Q7 <27 M =84 diam Q"

since X N 1.00002Q’, = @ whenever Q' € Child(Q) and diam Q' = diam Q" . It fol-
lows that diam X —2px > 0.99999diam X . By Lemma I, with T = X and ¥ = @, we
obtain

(7.14) 0.99999diam X <2.2((Rg N Boyy (X)) +1.00016 Y  diam Hy.
Ugp/CBory (X)

Finally, by Lemma 7.2, the arcs in X are well-separated from each other compared
with (7.13) and have total diameter ) _ y o diam X > 1.11 diam2AQ”. Thus, summing
(7.14) over all X € X and rearranging, we obtain (7.12). O
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Because {240" : Ug» € 4} is pairwise disjoint, (3.13) follows by applying (7.12) to
each core Ug» € +. This concludes the proof of Lemma II.

This completes our demonstration of the main theorem. In any Banach space, a
curve of length 1 rarely looks under a magnifying glass like a union of two or more line
segments.

Appendix A. Unions of overlapping balls in a metric space

Lemma A.1 bounds the radius of a ball containing the union of chains of balls with
geometric decay and good separation between balls of similar radii. Although it can be
lowered slightly by increasing the parameter &, the factor 3 in the lower bound on the
gap between balls in level k cannot be made arbitrarily small.

LEMMA A.1 (cf. [25, Lemma 2.16])

Let X be a metric space, let £ > 6, and let ro > 0. Suppose {B(x;, r,-)}il=1 is a finite
(I < o0) or infinite (I = o0) sequence of closed balls in X and (ki)il=1 is a sequence
of integers bounded from below such that

(1)  chain property: for all j > 2, each pair (B1, B2) of balls in the initial
segment {B(x;,r;): 1 <i < j} can be connected by a chain of balls from the
collection—i.e., there exists a finite sequence such that the first ball is B,
the last ball is B,, and consecutive balls in the sequence have nonempty
intersection;

(ii) geometric decay: for all i > 1, we have r; < & ¥iry; and

(iii) separation within levels: for all i, j > 1 withi # j, ifk; =k; =k, then
gap(B(x;,11), B(xj,r;)) > 36 Kro, where
gap(S, T) = inf{dist(s,t) : s € S,t € T}.

Then there exists a unique M > 1 such that kp = min; > k;, and moreover,

1
a1 U BCxi i) € B(xas. (1+3/6)6 4 ro).

i=1

Proof

Let parameters £ and rg, a sequence {B(x;, Vi)},-lzl,
with the stated assumptions. Without loss of generality, we may assume that ro = 1.
Because {k; : i > 1} is a set of integers bounded from below, we may choose and fix
M > 1 such that kps = min;>1 k;. (We prove M is unique later.) Our main task is to
prove that for all integers 1 <n <1,

and a sequence (ki)il=1 be given

n
(A2) | Bxi.ri) ©B(xm. (1 + 267" + 4672 8673 + .. )g75m),
i=1
where 1 <m <n is an index such that k,, = min}_, k; and m = M whenever n > M.
When n = 1, there is only one ball and (A.2) is trivial by (ii). Note that the series in
(A.2) converges because £ > 2. We proceed by strong induction. Let 1 < N < I and
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Figure 7. Removing the largest ball (light gray) leaves a finite number of chain-connected ball clusters (dark
gray), each of which contains a unique ball of maximal radius.

suppose that up to relabeling (A.2) holds for any chain-connected cluster of N or fewer
balls satisfying (ii) and (iii). Set » = N + 1 and choose any index 1 <m < N + 1
such that k,, =minfv="ilk,-, if N+1<M,andsetm = M,if N+ 1> M. Sort the
collection {B(x;,r;):1<i <N + 1} \ {B(xsu, )} into a finite number of maximal
chain-connected components Uy, ..., U; and note that each U; contains at most N
balls. See Figure 7.

Fix a cluster U = U;. By the inductive hypothesis, there exists B(x;,r;) € U so

that
(JUCB(x. (14267 + 4672 48673 + )75,
Now, B(x;,r;) and B(x,, ') both intersect ) U by (i) and maximality of U. Hence,

(A3)  gap(B(x;.7;). B(xm.rm)) < diam|_JU < 267%7) /(1 —2/8) <367Fs

by our requirement that § > 6. By (iii), we conclude that k ; # ky,. Thus, k; > k,, + 1
because k,, was chosen to be the minimum level among kq, ..., ky+1. Ergo,

JUCB(xj 1A+ 267 4572 48673 4. )5 Fm),
Thus, by (i) and the triangle inequality,
U CB(xm.rm + 267 (A4 267" +4E72 4 ) Fm),

As this conclusion is true for each family U and trivially true for {B(x,,,rm)}, we
obtain

N+1

| BGxiri) C B(xm.rm + 267 (1 4+ 267" + 4572 ) 7Fm).

i=1
Applying (ii) yields (A.2) for n = N 4 1. Therefore, by induction, (A.2) holds for all
integers 1 < n < I. Further, reviewing the inductive step, we conclude that M is the
unique index such that kps = min;>1 ;.
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To finish, observe that for any point z € UlI —1 B(x;, 1), there exists an index n >
M such that z € U:'1=1 B(xi,r;). By (A.2), we have

zeB(xp. (14 QE71)/(1—2/8)E M),
Because £ > 6 and roy = 1, this yields (A.1). O

Appendix B. Lipschitz projections onto lines in Banach spaces

We now present a class of 1-Lipschitz projections onto a line in a Banach space. Given
a real Banach space X, let X* denote the dual of X and let J : X — X* denote a
normalized duality mapping—i.e., a (nonlinear) map satisfying

(B.1) |J(x)|X* = |x| and (J(x),x) =|x*> forallx eX,

where (f,x) = f(x) € R denotes the natural pairing of f € X* and x € X. Alterna-
tively, J is a subgradient of the convex function x € X  (1/2)|x|? (see [2, 20]). The
norm on any (uniformly) smooth Banach space X is Gateaux (uniformly Fréchet) dif-
ferentiable, and thus J is uniquely determined (see, e.g., [13, Chapter Two]) when X is
smooth.

EXAMPLE B.1
When X = £, with 1 < p < o0, J(x) = |x|§;py € L3 =L, where y = (|x1]772xy,
|x2|772x5,...) and p’ is the conjugate exponent to p.

DEFINITION B.2 ([15, Definition 3.31])
Let X be a Banach space and let L be a one-dimensional linear subspace of X. Define
the J -projection 1, onto L by

(B.2) Iy (x):= (J(v), x)v for all x € X,

where J is a normalized dual mapping and v is a point in L with |[v| = 1. When L is a
one-dimensional affine subspace of X, define I[1;, = p + I1;—, (- — p) for any choice
of pelL.

EXAMPLE B.3
Let X = €2 = (R?,| - |1), let v = (1,0), and let L = spanv be the x-axis. There is a
one-parameter family of J-projections onto L given as follows. For any |s| < 1/2, let
ws = (s, 1 — |s]). With respect to the basis v, wy,
s 1 5
(x,y)= (x — —y)v + (—y)ws for all (x,y) e 7.
1—|s] 1—s|

For any |s| < 1/2, a J-projection onto L is given by
Mp(x,y)= (x - %Hy,o) for all (x,y) € E%.
—|s

Geometrically, the fibers Hzl(x,O) are lines parallel to spanw; and Hzl(v) =v+
span wy is a supporting line for the unit ball in K%. When s =0, IT, is the orthogonal
projection onto L. See Figure 1 for an illustration.
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The following lemma is easily derived from the definition of IT1; and (B.1); see [7,
Lemma 2.17] for sample details.

LEMMAB.4

Let X be a Banach space and let L be a line in X. Every J -projection I11, onto L is
a 1-Lipschitz projection—i.e., 11 (x) € L for all x, T11(x) = x if and only if x € L,
and |Tp(x) — Oz (y)| < |x — y| for all x, y. Moreover, dist(x, L) < |x — T p(x)| <
2dist(x, L) for every x € X.

A separated set of points that is sufficiently close to a line admits a canonical ordering
(up to choice of orientation) and is locally finite, quantitatively.

LEMMA B.5

Let X be a Banach space. Let 111, and 111, be J-projections onto lines L1 and L,,
respectively. If V. C X is a §-separated set and there exists 0 < a < 1/6 such that
[v—I1p,(v)| <adforallv eV andi = 1,2, then there exist compatible identifications
of L1 and L, with R such that T, (v') <z, (v") ifand only if T11, (v') < 1, (v")
for all v',v" € V. Moreover, if v1,v, €V andi = 1,2, then

[Tz, (v1) = g, (v2)| < Jv1 —va| < (14 3) [Tz, (vy) — Mz, (v2)].

In particular, V is locally finite: #V N B(x,r8) <1+ 3r for every x € X and r > 0.

Proof

Repeat the proof of [7, Lemma 2.1], mutatis mutandis. (See [7, Lemma 2.18] for a
related result.) The displayed inequality implies I1z, |y is injective and I1z, (V) is a
(2/3)8-separated subset of the line L;, whence V is locally finite. To be precise, writing
n <#V N B(x,r6), we have (2/3)8(n — 1) < diam 1 (B(x,r8)) < 2r6. O

Appendix C. Comments on Lemma 3.28 in Schul [27]

In the authors’ opinion, the proof of [27, Lemma 3.28] is incorrect and the mistake
made in the proof resists a simple fix. The error is in addition to the gap identified in
[7, Remark 3.8] and is unrelated to the issue of radial versus diametrical arcs discussed
in Remarks 1.15 and 3.5.

To describe the situation, let us quickly recall the basic setup in [27], which is
similar to Section 2 but with some differences. Given a nested sequence (X,);2,,
of 27" -nets for a rectifiable curve I" in a Hilbert space H, let g = {B(x,Ag) : x €
Xn,n > ng} denote the corresponding (truncated) multiresolution family for I'. Let
§ denote the set of all Q € € such that 40 \ T # @. Choose a Lipschitz continuous
parameterization f : [0,1] — I" such that £(0) = £(1) and #f~!({x}) <2 for #!-
a.e. x € I'. For any ball Q € ¢, define A(Q) to be the set of arcs T = f'|[4,5] such that
[a,b] is a maximal connected component of f~!(I' N Q). For each arc 7, define the
arc beta number B(r) by (1.11). Fix parameters 0 < €1,€e; <4, 1. We say that 7 is
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almost flat and write t € S(Q) if ﬁ(r) < €281(Q). Fix an integer J > log, Ag and
for each Q € §, define cores

Ug:=Uy"** and  UJ:=Up"*
using Definition 2.1 above with § in place of . Foreach Q € § and A € {1,2,4} such
that AQ € ¢, choose an arc y,p € A(AQ) containing the center of Q. Do this in such a
way that y, g extends Yo and y4¢p extends y» g whenever the arcs are defined. For each
A €{1,2,4}, introduce the family

9} :={0 €9 :y10 € S(LQ) and Bsrg) > €18r(0Q)}.

(Schul’s 6} balls correspond to this paper’s B8* balls. Schul also defines §; and §;
balls, but these are unrelated to Lemma 3.28.) Continuing to follow [27], let us focus
on the case A = 1. Choose a parameter Cy 3> 4, 1 and define A, ; to be the subfamily
of all balls Q € ¢, such that

e almost flat arcs are flatter in Ué than in Q: ,BS(Q)(Ué) < CI;I,BS(Q)(Q); and,
e every arc T € A(Q) such that Image(r) N Ug # @ is almost flat: 7 € S(Q).

(There are also subfamilies A; and A, », which are not relevant here.)

LEMMA C.1 ([27, Lemma 3.28])
For every integer 0 < j < J — 1, the family A’ = {Q € A, : radius Q = Ag2~*
for some k = j (mod J)} satisfies

> diam Q <4, H'(D).
QeA

Schul’s strategy for proving Lemma C.1 is the one that we described in Section 2. It
suffices to construct Borel functions wg : H — [0, oo] for each O € A’, which sat-
isfy the inequalities (2.4) and (2.5) with A’ in place of §. Build weights wo using
the cores Ug as in §2.3 with diamUg in place of diam Hgp. (The concept of max-
imal arc fragments Hg introduced in Remark 2.11 did not appear in [27], but in
any event, diam Hp > diamyg ~ diamUg because yg is diametrical for all Q €
A3 1.) Define the remainder set Rg as in (2.14) and define an auxiliary quantity sg =
24(Ro) + Y_ grechia(o) diam Ug'. By the argument in [27, Lemma 3.25, Steps 2-3] or
Lemma 2.12 above, the weights {wg : Q € A’} satisfy (2.4) and (2.5) so long as there
exists a universal constant 0 < ¢ < 1 such that

(C.1) diamUg <gqso forall Q € A"

Unfortunately, the proof of (C.1) in [27] contains an error and is incomplete.
Fix O = B(xg,Ax 27%) e A’. Simplifying the notation from [27] slightly, write
O+ = B(xg. (1/64)27%). As long as we choose J to be sufficiently large, we have

Q. C Up C 1.00001Q..

Suppose that the central arc yg = f|[4,5]. Choose an interval [c,d] C [a, b] such that
[c,d] is a connected component of yél (0.999990) and f'([c,d]) has maximal diame-
ter among all such intervals. (This is like extracting G from Hg.) Define np = f'|(¢,q4]
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mcmld Uy
R——

parent U, Q

Figure 8. Example of an almost flat arc T € S(Q) inside of the core Up of a Schul-type A, ;| ball Q. At the
resolution of Q or Uy, the portion of Image() inside of Uy is indistinguishable from a line segment. How-
ever, zooming in reveals a more complicated picture. The portion of Image(z) inside of the sub-ball Q" € A5 ;
is the union of two line segments, only one of which intersects the core Up-. The orthogonal projection 7 from
I' N Uy onto the horizontal line through the center of Q” is 1-to-1 when restricted to the cylinder above points
in (' N Up/). This shows that [27, (3.24)] used in the proof of Lemma 3.28 is invalid.

and let L denote the line passing through Edge(ng) = [f(c), f(d)]. Because yg is
almost flat, dist(z, L) <4, €2 diam Q. for every z € Image(ng). Finally, let w denote
the orthogonal projection from I" N 0.999990.. onto L. The first error in the proof is
in [27, (3.24)], which states that for all x € 7(I' N1 0.999990+) \ w(Rp), there are at
least two points in I" N 0.99999Q , that project onto x. In Figure 8, we show that this
is not the case.

A second (implicit) error appears in the preamble to the proof just before [27,
Remark 3.27]. Let Q' € Child(Q); in addition to the central arc yo/, the set S(Q")
includes at least one other arc 7o, with a distinct image. (In the figure, yg- traces the
horizontal line segment and 7o traces the diagonal line segment.) Let Yo’ and 7o/
denote the extensions of the arcs to elements in A(Q). It is implicitly suggested that
the arcs g’ and To/ are distinct and this together with [27, (3.24)] is what lets one
check (C.1). The example in the figure shows that it is possible for Image(yg’) =
Image(7g’) even though Image(yo’) # Image(zo/). Ultimately, the proof of (C.1)
offered in [27] is incomplete and unconvincing.

Nevertheless, (C.1) and [27, Lemma 3.28] are correct and this can be shown using
the arguments in Sections 3—7. The essential new ingredients that let us wrap up Schul’s
proof of the analyst’s traveling salesman theorem in Hilbert space (Corollary 1.5) are
the classification of cores in Definition 3.8, the case analysis in Section 3, Lemma I,
and Lemma II.
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