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In materials, certain approximated symmetry operations can exist in a lower-order approximation
of the effective model but are good enough to influence the physical responses of the system, and
these approximated symmetries were recently dubbed “quasi-symmetries” in Ref. [Nat. Phys. 18,
813-818 (2022)]. In this work, we reveal a hierarchy structure of the quasi-symmetries and the
corresponding nodal structures that they enforce via two different approaches of the perturbation
expansions for the effective model in the chiral crystal material CoSi. In the first approach, we
treat the spin-independent linear momentum (k) term as the zero-order Hamiltonian. Its energy
bands are four-fold degenerate due to an SU(2)xSU(2) quasi-symmetry. We next consider both the
k-independent spin-orbit coupling (SOC) and full quadratic-k terms as the perturbation terms and
find that the first-order perturbation leads to a model described by a self-commuting “stabilizer
code” Hamiltonian with a U(1) quasi-symmetry that can protect nodal planes. In the second
approach, we treat the SOC-free linear-k term and k-independent SOC term as the zero-order.
They exhibit an SU(2) quasi-symmetry, which can be reduced to U(1) quasi-symmetry by a choice
of quadratic terms. Correspondingly, a two-fold degeneracy for all the bands due to the SU(2)
quasi-symmetry is reduced to two-fold nodal planes that are protected by the U(1) quasi-symmetry.
For both approaches, including higher-order perturbation will break the U(1) quasi-symmetry and
induce a small gap ~ 1 meV for the nodal planes. These quasi-symmetry protected near degeneracies

play an essential role in understanding recent quantum oscillation experiments in CoSi.

I. INTRODUCTION

Symmetry describes the invariance of a system under
certain operations and plays a fundamental role in almost
all branches of physics. In condensed matter physics,
different quantum states of matter and the phase tran-
sition between them can be characterized via the prin-
ciple of spontaneous symmetry breaking, as formulated
in the Landau-Ginzburg theory [1]. For example, the
crystallization of a solid breaks continuous translation
to discrete translation and the formation of ferromag-
netism in a magnet breaks the full rotation symmetry,
even though the microscopic interaction in these systems
has full translation and rotation symmetries [2].

In the scenario of spontaneous symmetry breaking, the
high-symmetry states appear at a high energy scale (or
high temperature); when the energy scale is lowered,
symmetry-breaking states start appearing. However, the
opposite scenario also exists, and a high-symmetry state
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can emerge in the low-energy sector of a system [3, 4].
For example, the Lorentz symmetry is accompanied by
the emergence of the two-dimensional Dirac equation as
a low-energy effective theory in graphene or at the sur-
face of topological insulators, although both systems are
non-relativistic [5-11]. The existence of Dirac fermions
and Lorentz symmetry leads to several exotic physical
properties of graphene and topological insulators, mak-
ing them appealing platforms to test quantum relativis-
tic phenomena in table-top experiments [12]. Besides the
space-time symmetry, emergent symmetries can also ex-
ist for the internal degree of freedom. For example, due
to the spin and valley degrees, graphene has an additional
SU(4) symmetry, which leads to intriguing physical phe-
nomena, such as SU(4) quantum Hall ferromagnets[13—
15].

Recently, we introduce the concept of “quasi-
symmetry” to describe such emergent internal symme-
try [16]. More precisely, we refer to quasi-symmetry as
a symmetry operator that only exists in a lower-order
approximation of the effective Hamiltonian but is good
enough to influence the physical responses of the mate-
rial. The crystalline symmetry of solid material without
magnetic order, described by 17 space groups in two di-
mensions (2D) and 230 space groups in 3D [17], gives a
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strong constraint on the form of the low-energy effective
model (in the spirit of k - p type of Hamiltonian) around
high symmetry momenta in the Brillouin zone [18-22].
As a consequence, if one only keeps lower-order-k terms
in the expansion, the effective Hamiltonian can generally
possess additional symmetries, beyond the crystalline
symmetry itself. With keeping further powers of k in the
k - p expansion, these additional symmetries will gradu-
ally be broken by the higher-order-k terms or other per-
turbations [e.g., spin-orbit coupling (SOC)], thus forming
a hierarchy structure of quasi-symmetry groups.

This work aims in revealing such a hierarchy structure
of quasi-symmetries in the low-energy effective Hamil-
tonian expansion for different orders of the momentum
k for the material compound CoSi with a chiral crys-
tal structure (space group No. 198). Recent experimen-
tal and theoretical work [16] has shown that the quasi-
symmetry exists in this compound and leads to the near-
nodal-planes that are located at non-high-symmetry mo-
menta, which are essential in understanding the trans-
port measurement of quantum oscillations in CoSi. In
this work, we will systematically discuss two approaches
to constructing the effective Hamiltonian perturbatively
for CoSi, and reveal the hierarchy structure of quasi-
symmetries in different orders of the perturbation expan-
sion. As discussed in Fig. 2, our first approach treats the
SOC-free linear-k term as the zero order, which leads to
a four-fold degeneracy protected by SU(2)xSU(2) quasi-
symmetry. Then we consider both the k2 terms and SOC
as the perturbation and project them into the subspace
of these four-fold degenerate bands. The resulting effec-
tive Hamiltonian shows a striking “self-commuting” fea-
ture that results in a U(1) quasi-symmetry for the pro-
tection of nodal planes in non-high-symmetric momenta
(Fig. 1 (b)). Our second approach (Fig. 3) treats both
linear-k term and SOC as the zero order Hamiltonian
and shows all the bands are doubly degenerate due to
the orbital SU(2) quasi-symmetry. We then consider k2
terms as a perturbation and classify them into three dif-
ferent groups with each group selectively breaking the
SU(2) quasi-symmetry into U(1) quasi-symmetry along
a certain direction, which can also protect nodal planes.
In both approaches, the second-order perturbation can
induce a tiny gap (~ 1 meV for CoSi). In this sense, we
dubbed these quasi-symmetry protected nodal planes to
be near-nodal planes.

II. EFFECTIVE k:-p MODEL FOR COSI

The crystal CoSi family crystallizes in a chiral cubic
structure of space group (SG) P2;3 (No. 198) without a
center of inversion [23]. Its cubic lattice with the lat-
tice constant ag = 4.433 A, as shown in Fig. 1 (a),
contains four Si atoms and four Co atoms in one unit
cell. The corresponding Brillouin zone (BZ) is shown
in Fig. 1 (c), where high-symmetry points including T,
R, and M are marked. With the Seitz notation for the
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FIG. 1. (a) One unit-cell with four Co and Si atoms, and the
Brillouin zone with high-symmetry points (I, R, X, M). (b)
shows the quasi-symmetry protected nodal-planes. (c) Elec-
tronic band structure of CoSi along I' — R — M lines. The
irreps of the energy states at high-symmetry points are la-
belled. (d) The DFT bands along the (—0.0357, —0.0357, k)
direction and the inset shows the tiny gap ~ 0.4 meV.

non-symmorphic symmetry operations, the three gener-
ators of SG 198 are Sy, = {ng%%O}, Sy = {ng|0%% ,
and C3 = {C3,111)|000}. The system has also time-
reversal symmetry 7. With the density function theory
(DFT) calculations, we obtain the electronic band struc-
ture with SOC, as shown in Fig. 1 (c) along the '— R— M
lines. Hole Fermi pockets are found around I' while
electron Fermi pockets exist around R, kg = (7,7, 7).
Here we focus on the electronic bands around R. For
the SOC-free band structures, there are four-fold degen-
erate states (without spin degeneracy) at the R point,
which disperse linearly around R and give rise to the
electron Fermi pockets. The corresponding single-valued
irreducible representation (irrep) is R;R3 based on the
notations in the Bilbao Crystallographic Server [24-26].
Taking into account the spin degree of freedom, the eight-
fold degenerate states at R are split by SOC into higher-
energy six-fold degenerate states [27] (double-valued ir-
rep R;R7) and lower-energy two-fold degenerate states
(double-valued irrep RsRg) with a gap ~ 30 meV.

As described in Ref. [16] and Appendix A , the effec-
tive model to describe the energy bands around R is con-
structed based on the little group at R point generated
by S2z, S2y, C3 and T. Up to k2 order, the Hamiltonian
contains three parts

HR:Hl +Hsoc+H2, (1)

where H; = Cy + 2A1s0(k - L) includes a constant and
linear-k term, and Hgoe = 2Ao(s - L). Here we define the
operators

_1 1 _ 1
L, = 50y70, Ly = 50,7y, L. = —50.7, (2)

which satisfies the angular momentum commutation rela-
tion [L;, L;| = i€ Ly, with Levi-Civita symbol €;;; and



i = x,y,2. s represents the Pauli matrix in the spin
space and both o, 7 for the Pauli matrices in the orbital
space. The basis for four orbitals of the o, 7 matrices are
mainly (> 80%) composed of the mixing between the to
and e, orbitals of the four Co atoms, as justified by the
DFT calculations. And the detailed forms of the wave
functions are shown in Appendix B.

In addition, the k2 order effective Hamiltonian H. in
Eq. (1) shows an intriguing structure and can be grouped
into three classes,

Ho = Hamy + Ham, + Hamss (3)

where Ho a1, = g - J; for i=1,2,3. Here we define

g1 = (Cgkmky, —Cgkxkz, Clkykz), (43.)
g2 = (CSkxky7 Clkxk27 702kykz)a (4b)
g3 = (Clkﬁk‘y, Cgk‘zkz, —Cgkyk'z). (40)
and
Ji = (UxTxa —0:Tx, UOTz)v (53')
Jo = (0272,0.72,0072), (5b)
J3 = (0270, 0270, 0yTy). (5¢)

The parameters for CoSi are obtained by fitting with
the DFT bands [16] and listed in Table. (I). It should
be noted that all the bands at the k; = m-planes (i =
x,y,z) are doubly degenerate as a consequence of the
anti-unitary symmetries So, 7, S2, 7 and S, 7T in these
planes [16, 28, 29]. Furthermore, the DFT calculations
show near-nodal planes with tiny gaps ~ 0.5 meV at
non-high-symmetry momenta shown in Fig. 1 (d), and
we next discuss how to apply the perturbation theory
to the model Hamiltonian Hg in Eq. (1) to understand
these near-nodal planes, as well as the underlying quasi-
symmetries.

Parameter| Cy B1 A, Ch Co Cs Ao
Value [-0.18 2.123 0.853 -0.042 0.546 3.345 0.0075
Unit eV eV-A% eV.4 eV-A?% eV-A? eV-4%2 eV

TABLE I. The parameters for the k - p Hamiltonian Hrg.

Below, we consider two approaches to understand the
underlying reason of nearly degenerate nodal planes.

III. APPROACH I: SELF-COMMUTING
HAMILTONIAN

We now precisely formulate the hidden quasi-
symmetry that may appear at low-energy in the physics
of the model Hamiltonian, and start with the linear-k-
order Hamiltonian, SOC-free H; in Eq. (1), which is in-
variant under the spin SU4(2) symmetry group. More-
over, an additional hidden SU,(2) symmetry also exists

Hg=H;tHsoctH,
Approach T |jemo= ) +hy,
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FIG. 2. The summary of the hierarchy of quasi-symmetry
with the approach I (self-commuting Hamiltonian). We plot
the band splitting along the non-high-symmetry direction
within the spherical coordinate (6 = ¢ = w/3). The left panel
shows the SU(2)xSU(2) quasi-symmetry protect the four-fold
degeneracy. In the middle panel, all the bands split but there
exists the U(1) quasi-symmetry protecting the nodal plane.
The right panel shows a tiny gap appears once high-order
perturbation corrections are involved.

for H; in the orbital space, and can be generated by the
operators

Mi s = 3{s00yT=, S00yTs, 50007y}, (6)

which all commute with H; and satisfy the commutation
relations [M;, M| = ie; j xMy. Thus, we refer to it as
the SU,(2) quasi-symmetry group for H;. As a result,
the SUs(2)xSU,(2) quasi-symmetry group protects the
four-fold degeneracy for each band (E+ (k) = +A1k+Ch)
at any nonzero k (see Fig. 2 (a)). Hereafter, we absorb
the constant energy Cj into Fermi energy Ep.

We now consider the perturbation from Hg.. and Hs.
Without loss of generality, we choose four degenerate
bands with positive energy (E; (k) = Aik) as the ba-
sis, {|U+ s4)} with s =1, and i=1,2, and project Hsoc
and Hs into this subspace. Shown in Appendix C, the
projected four-band model is given by

Ha D (k) = Bo + HED (k) + 73" (K),  (7)

sSocC

where

Eo = Co+ A1k + B1k?, (82)
2T (k) = Ao (k - 8)wo, (8b)
Hs™ () = CR2 s (dyaews + dysewy + depe),  (8¢)

with ¢ = C; — Cy + C5. Here wy is identity matrix
and w; (i = z,y,z) are the Pauli matrices for the two
spinless bands. The coefficients d; x depend on k, and
the detailed forms are given in Appendix C. Such per-
turbation process can be well justified by satisfying both

A1k > Mg and A1k > @C’k{ which results in the valid



momentum range 0.01 < k < 1 (A‘l)7 corresponding
to a wide Fermi energy range 8.5 < Ep < 850 (meV).
Thus, the obtained effective model is relevant for the re-
alistic experimental situations (Ep in CoSi is 180 meV).
Strikingly, we notice that the two terms in this effective
Hamiltonian are self-commuting, namely

SocC

HEI (), 15T (k)| = 0, (9)

which implies that Hamiltonian (7) is a stabilizer code
Hamiltonian [30-33]. The commutation relation in
Eq. (9) can be easily seen since Hif;fél) (Hgfm)) contains
an identity matrix in the w-space (spin s-space). The
self-commuting property implies the existence of a uni-
tary symmetry operator Seg = %Two that commutes with

the whole Hamiltonian H;ﬁ(l) for any momentum. Seg
describes an internal symmetry and can be viewed as the
generator of a U(1) group.

Due to the self-commuting nature, the eigen-state of
the Hamiltonian in Eq. (7) can be explicitly solved with
its eigen-energy given by

Eo5 = Eo +aXg + BV3C|kok k.| /k, (10)

with a, 8 = £1, where « labels the eigenvalues of Seg.
We notice that two eigen-energies £ _ and E_ | can be
equal when the condition

Ao = V3C|kkyk.|/k (11)

is satisfied. It determines nodal planes of the effective
model in Eq. (7) in the whole momentum space. Fig. 2
(b) shows the U(1) quasi-symmetry protected two-fold
degeneracy along a non-high-symmetry line (0§ = ¢ =
7/3), where the spherical coordinator (k,0,¢) is used
with polar angle 6§ and azimuthal angle ¢. The Fermi
sphere crosses the nodal planes to form nodal rings at
the Fermi energy, which can be extracted by combining
Er = E4 _ with Eq. (11). Explicitly, the nodal rings at
a fixed Fermi energy Er can be determined by

243\ 2B, Er 4B Er

(12)

where fn(0,¢) = |sin2¢sin20sinf|. We notice that
Eq. (12) has solution only when Ep > Ew with Ey =

%(Al VV3C g +2B1)\). Tt coincides to the energy of
Weyl point Eyw & 114.4 meV, smaller than Er in CoSi.
Thus, we expect the Fermi energy crosses the nodal plane
in a ring form for CoSi. Therefore, up to the first order
perturbation, we obtain a hierarchy of quasi-symmetry
for CoSi, represented by (Fig. 2)

(Hsoc+H2>H1
SUL(2) x SUG(2) — 5 U(1),  (13)

and the corresponding energy bands are split from four-
fold degeneracies at any momenta down to two-fold de-
generacies that form nodal planes. Including further

second-order perturbation corrections generate a tiny gap
for the near-nodal planes, as shown in Fig. 2 (c). At
Er = Eyw, the near-nodal rings at the Fermi energy
shrink into nodal points, the Weyl points, which are sta-
ble to any order and do not rely on quasi-symmetries.
The quasi-symmetry Seg is essential in protecting the
gapless nature of the near-nodal planes in the four-band
effective model. To see that, we may consider a generic
four-band Hamiltonian commuting with Seg for any mo-
menta, which can only include the following terms

Hs =posowo + p[(k - s)wo]+

palso(f - )] + palll- ) w). Y

Here po,123 are all positive constants, f(k) =
(1K), £2(K), f(Kk)) and g(k) = (g1(K), g2 (k) g3 (K)) are
two vectors of generic functions of k. Hg contains all the
terms in Eq. (7). The eigen-energies of Hg are

Eop(k) = po + apak) + Bluof (k) + apskg(k)|  (15)

with «,8 = +£. Generally, all the bands are non-
degenerate at generic momenta k once f(k) and g(k)
are non-zero. Accidental degeneracy can occur when (1)
pof (k) = apskg(k) for E, + = E, _, which gives a nodal
point, and (2) 2u1k — >-,_, |pef (k) + auskg(k)| = 0
for Ey _(k) = E_ 4(k), which defines plane solutions
for the degenerate subspace in 3D momentum space. In
our model, the former corresponds to the degeneracy at
k = 0, while the latter gives the nodal planes. It should
be noted that a two-level degeneracy usually requires
three constraint equations (codimension 3), and thus only
Weyl nodes are stable in 3D momentum space [34, 35].
The presence of quasi-symmetry Seg reduces the number
of the constraint equation to 1 (codimension 1), making
the nodal planes stable. This can be viewed as a general-
ization of the Wigner-Von Neumann codimension theory.

IV. APPROACHII

In our second approach, Hi + Heoc is treated as the
zeroth order Hamiltonian and Hy as the perturbation.
For H1 + Hsoe, we find that the spin SU4(2) symmetry
is broken by SOC while the orbital SUy(2) symmetry
generated by M 23 remains. The existence of SU,(2)
is due to the fact that spin s as a pseudo-vector be-
haves exactly the same as a vector due to the lack of
inversion, mirror, etc. in chiral crystals, so Hgoc can be
obtained by replacing k by s in H;. The correspond-
ing energy bands are given by Ej (k) = A1k + Ao
and Es 4 (k) = £/ A2k% + 403 — Ao, and each band has
two-fold degeneracy, as required by SU,(2). The SOC-
induced splitting between the E; 4 (k) and Es 1 (k) is 2X¢
for a large momentum &, which is depicted along the non-
high-symmetry line (6 = ¢ = 7/3) in Fig. 3 (a).

Generally, the k? terms of Hz break the SU,(2) quasi-
symmetry and lead to the splitting of all bands. One
can show [J;, M;] = 0 and {J;, M,} = 0 for ¢ # j, so



that [Ha m,, M;] = 0. Without loss of generality, we can
pick up one term, say Ha rq,, which commutes with M3
but anti-commutes with M; and Ms. We show such
choice of specific k?-terms are general in Appendix D.
As a result, the term Ha aq, breaks the SU,(2) quasi-
symmetry group down into a U, (1) group generated by
M. Thus, the two-fold degenerate bands E; 1 (k) and
Es (k) are split by H2 v, as shown in Fig. 3 (b). The
new eigen-states |E; o g(k)) with i = 1,2 are the common
eigen-states of H1 + Hgoc + Ho, M, and Ms,

Blas = Bo+ay/ fie + 2841 Chokyk. + Ao,

Baas = Bo+ ] fie + 2841 Chaky k. + 403 — Ao,
(16)

where «, 3 = +, Eg = B1k? and fy2 = A3k? + C%kgkg +
C3k2k2 + C3k2E2. The index f labels the eigen-values of
the M3 operators (see details in Appendix D). When the
splitting 24, Ckykyk.//frz by Ha,m, reaches the SOC-
induced splitting 2o, the condition

By (K)=FEyy +(k), Vk € kkyk. >0 (17)

is satisfied and leads to the band crossings that form
nodal planes. Since Ha aq, increases with k2 while the
SOC-induced splitting 2\ is independent of k, the con-
dition (17) can always be satisfied at large enough k. As
the two bands that form the nodal planes possess the
opposite 8 values (M3 parities), we expect the nodal
planes are protected by quasi-symmetry. Turning on all
the remaining k2-terms break the U(1) quasi-symmetry
and generates a tiny gap of nodal planes, as shown in
Fig. 3 (c). The hierarchy structure of quasi-symmetries
for the approach II is summarized in Fig. 3 as

SUL(2) x SU(2) s SUL(2) e Uo(1). (18)

V. CONCLUSIONS AND OUTLOOKS

In this work, we describe two different perturbation
approaches to reveal the hierarchy structure of quasi-
symmetry and near-degeneracy in electronic band struc-
tures of chiral crystal materials CoSi. Both approaches
describe the physical consequence of near-nodal planes
and thus are physically equivalent. The approach I re-
veals a self-commuting Hamiltonian in the first-order per-
turbation, while the approach II treats both the SOC and
linear-k term as the zeroth order. We anticipate such a
hierarchy structure of quasi-symmetry in the context of
k - p expansion of the effective models can generally ap-
pear in 230 space groups [20, 21], which will be left for the
future work. The hierarchy structure of quasi-symmetry
also provides a natural starting point to discuss physi-
cal phenomena in different energy scales of the effective
models. For example, in CoSi, the smallest energy scale

Hg=H,+HsoctH,
ApproaCh II [Hé,M3=H1+HSOC+HZ,M3]
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FIG. 3. The hierarchy of quasi-symmetries by the Approach
I1. Here we plot the band splitting along a non-high-symmetry
line with 8 = ¢ = w/3. The left panel shows the band splitting
of H1 4+ Hsoc is shown and each band is two-fold degeneracy
required by the SU,(2) quasi-symmetry. In the middle panel,
all the bands split but there still exists a two-fold degeneracy
which is protected by the U(1) quasi-symmetry. The right
panel shows all the quasi-symmetries are broken and a tiny

gap appears.

~ 1meV of the gap for near-nodal planes will easily be
overcome by perturbations, e.g. disorder, and thus not
be felt by electrons that take the cyclotron motion un-
der magnetic fields, which is crucial in understanding the
nearly angle-independent quantum oscillation spectrum
in CoSi [16], as well as other experiments [28, 36-39).
It is worth to note that the iso-structural compounds
PtGa [40-42], PdAl [43], PdGa [44, 45] and RhSi [46, 47]
share the similar electronic band structure. Therefore,
quasi-symmetry is also expected to play a major role
in understanding their physical properties which require
further experimental and theoretical attentions.
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Appendix A: The effective k - p Hamiltonian around the R point

In this work, we mainly focus on the electronic bands of Cobalt Silicide (CoSi) around the R-point kg = (7,7, 7)
(band structure is shown in Fig. (1) in the main text), specifically, the four electron-type Fermi surfaces (FSs) around
the Fermi energy. To understand the low-energy physics, we construct the effective Hamiltonian. For this purpose,
in this appendix, we first discuss the space group 198 and its symmetry operators’ matrix representations at the R
point. Then, we use the k - p theory to construct the effective model with the parameters fitting to the DF'T bands.

Fig. 4(a) summarizes the general routines to construct the effective models with/without spin degree of freedom.
First, we obtain the spin-orbit coupling (SOC)-free 4-band spinless model. Secondly, the spin degree of freedom is
taken into account by considering the on-site atomic SOC, resulting a 8-band spinful model. This is valid when SOC
is relatively weak. Based on this 8-band model, we then discuss the emergent internal quasi-symmetries and the
corresponding hierarchy structure by using two approaches (discussed in the main text), illustrated in Fig. 4(b). The
details of the approach I will be discussed in Sec. C, and the details of the second approach will be discussed in Sec. D.

(a) The effective R-model

Spinless fermions k / Spinful fermions Spinful fermions

Without SOC . Without SOC Soc, With SOC
4-fold degeneracy 8-fold degeneracy 6-fold @ 2-fold
at R point , ; at R point at R point

(b) The perturbative models with quasi-symmetry

4-band P-model

> Approach | SU(2)xSU(2) — U(1)
Spinful fermions HY™™® = (Hgpe + Hy)n,
With SOC
8-band R-model <
Hg = H; + Hgoc + H,
Hy = Hypy, + Hyp, + Ho, 8-band R’-model
\, Approachll SU(2) - u(1)

Hpy = Hy + Hsoc + Hy

FIG. 4. A brief summary of model analysis for the hierarchy of quasi-symmetry groups. (a) shows the schematic process to
construct the 8-band k - p effective Hamiltonian, labeled as R-model. At R point, a 4-dimensional single-valued irreducible
representation (Irrep) is our starting point, specifically, the basis for the 4-band spinless model. With the electron’s spin
degeneracy, it becomes a 8-fold degeneracy, which is split into a 6-fold degeneracy and a 2-fold degeneracy by the on-site atomic
SOC. (b) shows the two approaches used in the main text to identify the quasi-symmetry with the perturbation theory. In the
“Approach I”, we use first-order perturbation theory to project the effective low-energy 4-band P-model, and find the hierarchy
of quasi-symmetry from SU(2)xSU(2) down to U(1). In the “Approach II”, we add specially selected terms of the k*-order
Hamiltonian into the H1 + Hsoc to identify the hierarchy of quasi-symmetry from SU(2) down to U(1).

1. The Crystalline space group No. 198 and representations

As described in the main text, the CoSi crystallizes in a chiral cubic structure of space group (SG) P2:3 (No. 198)
without a center of inversion. Its lattice structure with lattice constant a, = ay, = a, = 4.433 A, containing four Si
atoms and four Co atoms in one unit cell. The corresponding Brillouin zone (BZ) is also cubic. The SG 198 has 12
symmetry operations in addition to the translation sub-group. The three generators of SG 198 are: one threefold
rotation symmetry along the (111) axis and two twofold screw rotation symmetries along the x and y axis. Hereafter,
the Seitz notation is taken for the non-symmorphic symmetry operations, i.e., a point group operation O followed by
a translation v = v;t;, labeled as O = {O|v} or O = {O|vyvquz}, with t; (i = 1,2, 3) representing three basis vectors



for a Bravais lattice in three dimensions. The rules for multiplication and inversion are defined as

{02|v2}H{O1v1} = {0204 vy + Oavy },

Al
(O}t ={07 ! -0 v} (AD)

In addition to the translation operator E, = {E|v}, the three symmetry generators of SG 198 are
521: = {CQI|%%0}’ S2y = {02y|0%%}7 CB = {03,(111)|000}7 (A2)

defined by SQJ‘ : (xvyaz) - (JJ + %a -y + %a _Z)a S2y : (a:,y,z) - (_'r’y + %7 —z+ %)v and CE’) : (x’ywz) - (y,z,a:).
Thus, one can check that Sy, = {C’gz|%0%} can be given by the combination of Sy, and Say,

205y = {E|001}Ss. 2 Ego1Sas. (A3)

In addition, the threefold rotation can also be along (111), (111), and (111) axis. Therefore, the lattice of CoSi has
three twofold and four threefold rotation or screw axes.

Next, we use the commutation relations of the symmetry group generators to directly construct the corresponding
matrix representations. Alternatively, they can be found on the on the notations in the Bilbao Crystallographic
Server [24-26]. The band calculation based on the density-functional theory (DFT) without SOC shows that all
states are fourfold degenerate at R point, which should belong to one 4D irreducible representation (Irrep). As
mentioned in the main text, the 4D Irrep for the four-fold degenerate states close to the Fermi energy can be denoted
as the single-valued Irrep R;R3 on the Bilbao [24-26]. Below, we discuss how this 4D Irrep can be established by
considering the twofold screw rotations Sa;, Say, and time reversal (TR) symmetry 7. At R-point, we have

Sgl = ‘9223/ =-1, SQxSZy = _52y521;7 [521’77—] = [52y77—] =0. (A4)

Without loss of generality, for the spinless fermions, the TR symmetry operator can be chosen as 7 = K. Based on
the above commutation relations, we construct the matrix representations denoted as Gy 23 for the twofold screw
rotations Sa, Say, and the threefold rotation Cs, respectively. Let’s choose W as the eigen-state of G'; with eigenvalue
A, and the eigen-values for different states at the R point constructed from ¥ are given in the following table.

V| G¥| TU GTVY
Gi|A| =X [ A= =A== A

With G2 = —1, X is a purely imaginary number. By using (G27)? = —1, G2 T is an anti-unitary symmetry operator,
leading to the Kramer’s degeneracy, namely (¥|G2T¥) = 0. This leads to two orthogonal states: ¥ and GoTW¥. We
now apply G2 on these two states to generate the other two states, GoW and T V¥, which are also eigen-states of Gy
with the eigenvalue —A. The Ga-generated states have opposite G1-eigenvalues compared with that of U or GoT V.
Therefore, GoW¥ and 7V are orthogonal to ¥ and G>T ¥, so

(U|G2¥) = (U|TT) = (G2 TP|G2¥) = (G TY|TT) = 0. (A5)

Therefore, the four-fold degeneracy is formed by the four eigen-states at R,
{0,G0, TV, G TV} (A6)

In principle, a general basis of this 4D Irrep at R-point can be presented as
{101), [W2), [W3), [ Wa)} 7, (A7)

which serves as the basis for the effective SOC-free 4-band k - p Hamiltonian denoted as Hno-soc,r (k). Hereafter, k
is the relative momentum to R point. In this work, we construct it up to k2 order. Without loss of generality, we
assume |¥;) with ¢ = 1,2, 3,4 are all real so that the representation for TR symmetry in this basis is given by

T = I4x4K, (A8)

where Iy, 4 is the 4-by-4 identity matrix and K is the complex conjugate.

Next, we construct the matrix representations denoted as Gy, G2, G3 (4-by-4 matrices) for the twofold screw ro-
tations So;, Say, and the threefold rotation Cs, respectively. For the spinless case, their commutation relations are
summarized as

Gs=1,G? =G% = —1, G1Gy = —G2G1, G3'G1G3 = G, G3'GoG3 = —G1Gla, (A9)
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because of [T,G1] = [T, Gz] = 0, we have G; = G} and G = G3. Moreover, G = G3 = —1, and then both G; and
G4 are anti-symmetric matrices, G2 = _G{,?' Thus, G1, G2 can only be chosen from the following matrix set

{ioyTo, 10y Ty, 10y T,, 100Ty, 10Ty, 10, Ty }, (A10)

where both 0, . and 7., . represent the Pauli matrices, and og, 79 are two-by-two identity matrices. Considering
{G1,G2} = —1, one can choose the representations as

G1 =ioyTo and Go = i0,Ty. (A11)

Similarly, we now discuss how to construct G3. According to the Bilbao [24-26], there are two 4D single-valued Irreps:
R1R3 and RRs of the little group at R point. It also shows the trace of Gg for the Ry Ri-Irrep (R2Ro-Irrep) is 1
(=2). According to the DFT calculation without SOC (see the Sec. B below), we find that the four states at R point
of CoSi near the Fermi energy are belonging to the R; Rs-Irrep, because of

Tr[Cs] = 1+ 1+ €™ e ™0 =1, (A12)

where wy = 27/3, since we numerically check that these four states carry angular momentum 0,0,1,—1 of C3. To
further satisfy both Tr[C3] = 1 and the commutation relations in Eq. (A9), we can choose

0

Gy = -1

o O O

(A13)

S O O =
o = O O

0
-1 0
Please note that the choice of G3 is not unique in the symmetry construction, while different choices of representation
matrices just correspond to unitary transformation between different basis. For instance, the representation matrices
G1,Go,G3 and T are different form those on the Bilbao. This matrix chosen here is simple enough to make the
construction of the effective k - p Hamiltonian become simper. Besides, in the supplementary materials [48] [see
Sec. A], we try to construct the basis made of the five 3d-orbitals of the four Co atoms for the 4D Irrep RjR3. And
the orbital basis can be explicitly shown by comparing to the Wannier functions from the DFT calculations.

2. The spin-independent effective 4-band R-model

In this section, we construct the spin-independent 4-band k - p model Hamiltonian denoted as Hno-soc.r(k) by
using the matrix representations G1,G2,Gs and TR symmetry 7 of the R; Rs-Irrep. The general 4-by-4 SOC-free
Hamiltonian Hpo-soc,r (k) is give by

Hno—soc,R(k) = Z hul/ (k)auTVa (A14)
y73%

which should be invariant with any symmetry operators g € {Saz, 2y, C3, T} at the R-point. Here k is the momentum
with reference to kg = (7, 7, 7). Therefore, the Hamiltonian should satisfy

AT(g)[Hno—soc,R(gk)}A(g) = H(k)’ (A15)

where A(g) is the matrix representation for symmetry g, specifically, Gy, G2, G3 and T. The classification of matrices
(0,1 with g, v = 0,2,y, z) and momentums (k;, k;k; with 4, j = x,y, ) are summarized in Table. II and Table. III,
respectively, from which the 4-by-4 Hamiltonian to the leading order becomes

Hi(k) = Coooro + Ai(kgoymo + kyooTy — ko0.7y). (A16)

The sign of A is related to chirality of the crystal, which is chosen to be positive in this work. Moreover, we notice
that the spin-independent Hamiltonian #; (k) in Eq. (A16) is isotropic with the full rotation symmetry. To see that,
we could define the emergent angular momentum operators as

1 1 1
Lw = §O'y7'o’ Ly = §Uw7-ya Lz = _§Oz7—y7 (A17)
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which satisfies the commutation relation [L;, L;| = i€;;, Ly with Levi-Civita symbol €, and i = z,y, z. Therefore,
H1(k) can be re-written as

Hl(k) = C()O'QT() + 2A1(k . L) (AIS)

It is the linear-k Hamiltonian presented in the main text (below Eq. [1]). In addition, by similar symmetry analysis,
the k2 order effective Hamiltonian is given by

Ho(k) = By (k2 + ki + k5 + Ci(kzkyo.m0 + kyk.o0T, + kok.0.T.)

A19
+ Co(kykyooTe — kyk.00Ty + kzk,0570) + Cs(kpkyoa s — kyk.oyTy — kok,0:7s), ( )

which can be re-organized into a compact way as presented in the main text, by noticing that the k? order effective
Hamiltonian Hs shows an intriguing structure and can be grouped into three classes,

Ha(k) = Haa, (k) + Hom, (K) + Haom, (K), (A20)
where

Ha,m, (k) = gi(k) - Ji, (A21)

for i=1,2,3. Here we define the parameter-momentum vectors

g1 (k) = (Cgkzky, —Cgkzkz, Clkykz)7 (A22a)
go(k) = (Cskgky, Cikzk,, —Cakyk.), (A22b)
g?z(k) = (Clkxkya Cok, k., _C3kykz)' (A22C)
And the operator vectors are
J; = (Jsz —0:Tx, 007'2)7 (A23a)
‘]2 = (J$Tza 02Tz, 007_1)7 (A23b)
J3 = (0.7, 0470, 0yTy). (A23c)

The meaning of the subscript M; is to be the role of quasi-symmetry operators, which has been explained in the main
text and will be also discussed later in Sec. C with details.
Combining Eq. (A16) and Eq. (A19), we finally get the effective 4-by-4 SOC-free Hamiltonian up to k2-order,

Hno—soc,R(k> = Hl(k) + H2 (k)7 (A24)

which is called the SOC-free R-model Hamiltonian for short in the following discussions.

ouTy | S2z = ioyTo|S2y = 1027y |T = K|C3 in Eq. (A13)
070 + + + o070
00Tz, 00Tz + - + —04T0,02T
00Ty + + — —OyTz
070 — + + Oz Ta
OxTe,O0xTz - - + —00Tz, —OyTy
OzTy — + - —0:Ty
Oy To + — — OzTy
OyTa,; OyTz + + — —00Ty, OyTa
OyTy + — + 0Tz
0270 - - + 00Tz
O2Tx, 02Tz - + + —0zT2,0:T0
0zTy — - - —0yTo

TABLE II. The classification of the Pauli matrices under the space group symmetry operators and time-reversal symmetry.
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Moreover, we notice that the linear-k Hamiltonian #; (k) in Eq. (A18) has a full rotational symmetry. This rotation
is a combined rotation in both k-space and orbital-space simultaneously. To show that, without loss of generality, we
can first define a rotation in the momentum space to make

R(0,8)(ky, ky, k)T = k(0,0,1)7, (A25)

where k = k(sin 6 cos ¢, sin 0 sin ¢, cos ), and the rotation in the momentum space is

cosf 0 —sinf cos¢ sing 0 cosfcos¢d cosfsing —sind
R(0,6) £ Ry(-0)R.(—¢)=| 0 1 0 —sing cosp 0| = —sing  cos¢ 0 |. (A26)
sinf 0 cosé 0 0 1 sinf cos¢ sinfsin¢g cosb

To keep k - L invariant under rotations, we then define the associated rotation for the orbital subspace,

cos (g) cos (%) cos (g) sin % sin (g) sin % —sin (g) cos (%)
R(0.6) & 0L, i _ — Co8 (g) sin %) cos (g) cos % sin (g) cos g sin (g) sin (%) (A27)
7 —sin (g) sin %) —sin (g) cos % cos (g) cos % — Ccos (%) sin (%) ’
sin (g) cos (%) —sin (%) sin % cos (%) sin % cos (g) cos (%)

Since k is rotated to the z-axis, we only need to compute the L,

—~

0, ¢) after the rotation,

0 icos(6) —isin(f) cos(¢) —isin(f) sin(¢)
_ 1 _ 1 —icos(d) 0 isin(f) sin(¢) —isin(0) cos(e) A28
L:(0,¢) = R(9,¢)L-R"(6,¢) 2 | isin(0)cos(¢p) —isin(0)sin(¢) 0 —icos(6)  (A28a)
isin(6) sin(¢) isin(0) cos(¢) icos(6) 0
= [sin(0) cos(¢) L + sin(8) sin(¢) L, + cos(0)L.], (A28D)
=L fi. (A28c)

Here 71y = % is the direction of k. Therefore, the linear-k Hamiltonian becomes Hi(k,0,¢) = Co + 2A1kL.(0, ®),
which indicates the invariant of this Hamiltonian under the combined rotation R(6,¢) in the momentum space and
R(0,¢) in the orbital space keeps. Note that the helicity operator for low-energy Dirac fermions in spin-momentum
coupled crystals is defined as PE = S - 7k with S the spin matrix. For Hamiltonian that commutes with ’PE, such
as, H ~ S - k, whose eigenstates at fixed k can be labeled by the eigenvalues p = £1/2 of P2, (S - k)|p) = pk|p),
and these two states | == 1/2) represent left-handed or right-handed states. Following this spirit, we define a similar
helicity operator ’PIE‘ = L7y to reveal the angular momentum polarization along the moving direction in the absence
of spin-orbit coupling. Thus, we obtain

Ha(k,0,6)| £ 1) = (Co £ Ark)| = 1) (A29)
Here, j:% are the eigenvalues of PL. Each state has fourfold degeneracy if spin degeneracy is accounted. And, the

explicit form of the eigen-wavefunctions will be given in Sec. C.

3. The spinful 8-band R-model with spin-orbit coupling

In this section, we further take spin degree of freedom into account and derive the effective 8-by-8 Hamiltonian
with SOC. With the spin degree of freedom {t,/}, the spinful basis becomes

{1904), Wo1), [Wag), [Wa )} @ {[W10), [Pa,), [Wa), [Wa )}, (A30)
where |¥; ;) =|¥;) ® |o) with ¢ =1,2,3,4 and o =1, ]. Thus, the spinful R-model consists of two parts,
HR<k) = S0 ® Hno—soc,R(k) + Hsoca (A31)

where the spin-independent part Hposoc,r(k) is given by Eq. (A24) and Hsoc represents the k-independent SOC
Hamiltonian. Here Hgoc is also constructed from the symmetry principle, and is in a similar form as H; (k). To show
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that, we need to consider the full rotation operators acting in both spin and orbital spaces,

Saq = (isg) ® (ioyTo), (A32)
Soy = (18y) ® (io,7y), (A33)

10 00

i 00 -10
Ca — 13\/§(sm+sy+sz) ® , A34
P 00 01 (434)

0-10
T = (zsy) & O'QT()IC. (A35)
We use sz .. to be the Pauli matrices acting on the spin subspace, which obey

Cs : (Sa, Sy, 52) = (84,52, 52), (A36)

which is the same as the transformation as momentum (k;, ky, k.) under Cs. It is because the material CoSi is a
chiral crystal, so that the electron spin (pseudo-vector) behaves the same as the k-vector (see their classifications in
Table. III). Therefore, the lowest-order SOC Hamiltonian reads

Hsoe = Ao(S20yTo + Sy0xTy — $.0.Ty) = 4o (S - L), (A37)

which is obtained by just replacing (ky, ky, kz) by (Sz,8y,5.). Here we take the notation: the spin operators S =
1(sz, 8y, 5-) and the angular momentum operators L given by Eq. (A17). The SU(2) algebra for the angular momentum
operators is represented as

[Si, Sj] = i€ijr Sk, (A38a)
[Li, L;] = i€ Ly. (A38b)

Moreover, in the next Sec. B, we will use two approaches for the justification of the above SOC Hamiltonian.
In addition to the on-site SOC in Eq. (A37), the linear-k SOC Hamiltonian generally reads

Hi.soc(k) = M (kpSy + kysy + k2.8.) @ 0070 + A2(kesyouTe — kyS.00Ts + k2850,70)
+ A3(kySp0aTe — k25y00Ts + kp5.0070) + Aa(kaSyoaTs — kyS.0yTy — k.500.7)

( (A39)
+ A5 (kySz02Ts — k28y0yTy — ke8:0.Tz) + A6(kaSy0:T0 + kys.00T, + k28,0.7;)
(

+ A (kysz0.7m0 + ky8y00Ts + kgS,0.T2).

Combining the SOC-free R-model in Eq. (A24) with the SOC Hamiltonians in Eq. (A37) and Eq. (A39), we finally
get the effective 8-band k - p Hamiltonian with SOC as

HR(k) =58 [Hl(k) + HQ (k)] + Hsoc + Hk,soc(k)a (A40)

which is called the 8-band R-model with SOC for short in the following discussions. The basis for the R-model is
made of the five d-orbitals of the four Co atoms, whose details are shown in Sec. B. Since the SOC is relatively weak in
CoSi, the linear-k SOC terms are neglected in the main text. Nevertheless, their influence on the quasi-nodal planes
will be addressed in the supplementary materials [48] [see Sec. C].

4. The sixfold degenerate states at R point for spin-1/2 fermions

Next we briefly discuss the energy level splitting of the R-model in Eq. (A40) at R point (i.e., k = 0) due to the
presence of the on-site SOC Hamiltonian Hyoc. Solving Hg(k = 0) gives rise to a six-fold degeneracy (energy Ag) and
a two-fold degeneracy (energy —3Xp). The DFT calculation also implies that Ag > 0, so that the sixfold degenerate
states have higher energy than the twofold states. And the sixfold is the double-valued RgR7 irrep while the twofold
is the RsRg irrep based on the irrep notations on the Bilbao [24-26]. Here we analytically solve the on-site SOC
Hamiltonian. To do that, we first apply a unitary transformation

UZS()®00®< Z. 1>7 (A41)
—i
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Momentums|Cay |Cay | T| Cs,(111)
ks + == Ay
ky — |+ |[— k-
k. - | = |- ks
K2 k2, k2 | 4+ | 4 |+ |k2E2 K2
kyky — +|  kyk
kaok. — | 4+ |+| kyke
kyk- + +| kake
Sz + — Sy
Sy - |+ = Sz
s= - - s

TABLE III. The momentums and spin operators under the space group symmetry operators and time-reversal symmetry.

which transforms Hs,. into a block diagonal form

Ut = (750 0 ) (A2)
0 H_(0)
where the subscript + labels the eigenvalues of 7, and two blocks are given by
H1(0) =Co+ Ao (8204 + 840z — $,0.) = Co+ Ao(s- '), (A43)
H_(0) = Co + X (5504 — 8405 + $:0.) = Co + Ao(s - "), (A44)

where ¢’ and ¢ are defined as (0,0, —0;) and (0y, —04,0.), respectively. In fact, these two blocks, H(0) and
H_(0), are related by TR symmetry. To show it, please notice that the TR symmetry is presented as 7 = is,0070K
in the original basis. After the unitary transformation, it becomes Ty = is,007, K.

We take H, (0) as an example, where o’ can be treated as pseudo-spin, so it preserves J = %s + %O’l . Therefore,
the addition of two spin-1/2 naturally leads to one singlet state and three degenerate triplet states as % ® % =1®0.
By using the identity

(s-0") =2[I° = (35)? — (20)?] =2+ 1) — 4 x & x 2), (Ads)

where 7 = 0 for singlet state and j = 1 for triplet states, we can solve the eigen-energies as Es = Cy — 3\ for the
singlet state and F; = Cy + Ao for the three-fold triplet states. Similarly, the H_(0) block also has one singlet state
with energy Es = Cy — 3o and three triplet state with energy E; = Cy+ A\g. Therefore, the on-site SOC Hamiltonian
splits the eight states at R point into a six-fold degeneracy and another two-fold degeneracy.

Alternatively, the sixfold degeneracy can be viewed from the spin-1 excitation with its time-reversal (TR)-related
partner. And we examine the sixfold degenerate states by symmetry arguments [27]. At the R point, we have the
following commutation relations for spin-1/2 fermions,

Gs = —1,G? = G35 =1,G1Gy = GoG4, G5 ' G1G3 = Ga, G5 ' G2 G3 = GG, (A46)
which provides the sufficient condition for a 3D Irrep at the R point. With G1¥ = \{¥ and G2V = A\, ¥, we have
G1(G3¥) = X2(G3V¥), G2(G3¥) = M Ao (G3Y), (A47)
G1(G30) = M (G3T),  Go(G3W) = A\ (G3D).

If either A\; # 1 or A # 1, ¥, G3V¥ and G2V all carry different eigenvalues under G} and Go. Thus, it can lead to
the basis for a 3D Irrep represented by {¥, G3W¥, G2V}, as proved in Ref. [27]. Next, let us discuss the effect of TR
symmetry for the spin-1/2 system, and consider the eigenvalues of the states 7;. Because [T,G1] = [T, G2] = 0 and
the eigenvalues of G; and G2 are real, TV, has the same eigenvalues of G; and G2 as ¥; with ¥; € {¥, G5V, G§\I/}
So, all these six basis functions are orthogonal with each other

{0, GV, GV} @ {TU, G5 TV, G3T U}, (A48)

which generally forms the sixfold degeneracy [27].
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Appendix B: The justification of the SOC Hamiltonian and The 3d-orbital basis of the R-model

In this section, we justify the on-site SOC Hamiltonian obtained by the symmetry argument (see Eq. (A37)).
Based on the full tight-binding (TB) model based on the Wannier function method [49], we can obtain the exact wave
functions and thus provide the 3d-orbital basis of the R-model.

First of all, we discuss the four spinless degenerate wave functions (i.e., Ry Rs-Irrep) via a full TB model without
SOC based on the Wannier function method from the DFT calculations. The model Hamiltonian (a 52-by-52 matrix)
includes four Co atoms (4s, 4p, 3d-orbitals) and four Si atoms (3s, 3p-orbitals) in one uni-cell. In each simple cubic
unit cell, these Co and Si atoms are located at

Rco, = (0.14,0.14,0.14), Rgo, = (—0.14,—-0.36,0.36),
Rco, = (—0.36,0.36, —0.14), Rco, = (0.36,—0.14, —0.36), (B1)
Rsi, = (—0.157,-0.157,—0.157), Rg;, = (0.157,0.343, —0.343),
Rsi, = (0.343,—-0.343,0.157), Rg;, = (—0.343,0.157,0.343),
which are in the unit of the lattice constant ag = 4.45 A. The atomic orbitals of the full TB model are
\IITB = {¢Col,48a ¢002,4sa ¢C03,4S7 ¢CO4,4S> ¢Col,4py ’ ¢Col,4pz 5 ¢Col,4pw y ¢C02,4py 5 ¢Coz,4pz ) ¢C02,4pw 5 ¢003,4pya
¢003,4pz ) ¢Co;;,4px 5 ¢CO4,4py ) ¢CO4,4pz ) ¢CO4,4pT, P QSCol,Bdmy ) ¢Col73dyz ) ¢Col 3dg2 19 ¢Col,3dmz ’ ¢Col,3d127y2 )
¢002,3d2y1 ¢C02,3dyz ) ¢Coz,3d3z271 ) ¢C02,3d12 ) ¢COQ,3dw27y2 ) ¢C03,3d1y ) ¢Coz,3dyz ) ¢C03,3d3z271 ) ¢C03,3d22 ) (B2)

PCos,3d,2_ 2> PCos,3day s PCos,3d,.» PCos3dy 2, > PCos,3duss PCos,3d,2_ 20 PSin, 35, PSia,3s, PSis,3s> PSiy,3s

BSiy apy s PSiv Ap- > PSiy Apa > PSia.dpy > PSia.dp. » PSiz Ap, » PSis Apy s PSis ap. s PSis Apas PSia dpy > PSis dp. » PSia,dp, }-

Here s, p, d are the real atomic orbitals. In the atomic orbital basis, we now discuss the crystal symmetries at R point.
For instance, the spinless symmetry operator C5 is constructed as

C3 = [C3,c0] ® [C3,c0 ® C3p] @ [C3,00 @ C3,4] @ [C3,51] @ [Cs,51 @ C3], (B3)
where
1000 01 0 0 O
0001 010 00 0 1 O
Cs,00 =Cs51 = , Csp=1001|, Csa=|00 -1 0 2 (B4)
0100 100 10 0 0 O
0010 o
00 -0 -1

Similarly, at R point, the symmetry operator S, is represented by

S2a: = [0293700] S¥ [0293700 ® C2x7p] 2 [CQI7CO & Cqu,d] @ [029:7Si] S [C2w,Si & 02w7p] ) <B5)
where
-1
0 0 10 00 00
0 0 01 -1 0 O 010 00
C2:v,Co = CQz,Si = 1.0 00 ’ C2:v,p = 0 —-10/{, CQw,d = 001 00 (BG)
0 —100 0 0 1 0 00 —-10
000 0 1

1. Atomic d-orbital basis: the complex wavefunctions for the single-valued R;Rs3 Irrep

We then numerically solve the full SOC-free 52 x 52 TB model for the wavefunctions. At the R point, all states are
fourfold degenerate. In this work, we only focus on those four degenerate wave functions, whose energy is closest to
the Fermi energy, as labeled by |¥rpg)
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Other bands that are far away from the Fermi energy are neglected. Even though the dimension of each spinless
wavefunction (|[¥3%)) is 52, we notice that the 3d-orbitals of Co contribute to 80% of total density of states. Then,
it is reasonable to ignore the other contributions (4s and 4p-orbitals of the four Co atoms and all orbitals of the four
Si atoms). The dimension is reduced to 20 since we only keep the five 3d-orbitals of the four Co atoms. Therefore,
the dimension-reduced subspace at the R point is expanded by

{CO1, Coo, C03, 004} (9 {dzy, dyz, d3s2_1,dgs, dmz,yz}. (BS)

The three-dimensional Cartesian coordinates are used for defining the d-orbitals of the cubic lattice CoSi, whose
definitions are given in the supplementary materials [48] [see Sec. A]. This convention is used throughout this work.

This set of basis for these five d-orbitals is used throughout this section. Therefore, the spinless basis in Eq. (B2)
is reduced to

{¢C01,3dzy ) ¢C01,3dyz ) ¢Co1,3d3z271 ) ¢C01,3dmz ) ¢C01,3dm27y2 ) ¢C02,3d1y ) ¢C02,3dyz ) ¢C02,3d32271 ) ¢C02,3dzz ) ¢C02,3d127y2 )

2y PC04,3duy s PCo4,3dy. » PCo4,3dy2_,+ PCos,3ds ) PCos,3d,2_ 25 -
(B9)

PCo3,3day s PCos,3d,y- s PCos,3d5,2_, + PCog,3dy- » PCos,3d,

-y

In this dimension-reduced basis, the symmetry operator C3 in Eq. (B3) and Ss, in Eq. (B5) become
CS = CB,CO by C3,dv and SQI = C2:c,Co ® C2:c,d~ (B]-O)

These two are now 20 x 20 matrices. Correspondingly, the four degenerate states at the R point, |\I/£3 ) with
i =1,2,3,4 are correspondingly reduced and renormalized (i.e., dimension 20). By symmetry principle, these four
degenerate states form a 4D single-valued irrep. Thus, they can be used to construct the matrix representations of
the symmetry operators of SG 198 and time-reversal. This can be helpful to check these fourfold degeneracy belongs
to Ry R3 Irrep or Ry Ry Irrep. As we mentioned in Sec. A 1, the trace of G5 for the Ry R3-Irrep (RgRo-Irrep) is 1 (—2).
For this purpose, the matrix representation G3 for symmetry Cj is calculated via

[Gsl; ;= (V2 |Cs| RS, (B11)

with 4,5 = 1,2, 3,4. Similarly, the matrix representation G; for S, is given by (¥rg|S2.|¥rs). And the numerical
results for the wavefunctions are listed in Table. IV, which are orthogonal to each other
(PRIIVED) = dij, (B12)

N

here §; ; is the Kronecker delta function. This also leads to the following relations
Tr[G3] = 1 and Tr[G4] = 0. (B13)

This confirms these states form the R;R3 Irrep, as mentioned in the main text and Sec. A1l. Furthermore, it
is also ready to construct a basis under which the matrix representations of symmetry operators (Cs, Saz, Say
and T) are exactly given in Sec. A 3. Because the SOC Hamiltonian can be justified once the d-orbital basis is
constructed. To do that, we first take a proper unitary transformation, i.e., linear combination of these states
|\Il£€> with ¢ = 1,2, 3,4, to make these states \Wg‘?) are eigen-states of C5. Under this d-orbital basis, the matrix
representations are correspondingly constructed as follows. The G3 is given by

Gs = Diag [1,e"°,1,e7"°] (B14)

where wy = 27/3. These are complex wave functions and the TR symmetry requires \IIE’BI = (\Ilgg)* and \11%32 =
(‘Ilﬁﬁ)*. The time-reversal symmetry operator T is given by

T:

0
(1) K, (B15)

o O O
o O =
o = O

0100

where K is complex conjugate operator. Moreover, the matrix representation G for Ss, is given by

2 eV
2 4/ 0 0
Gy = \/o; Z\({; N (B16)
0 0 \/g iy/L



Complex basis from TB |®z5) |®z5) |wz%) |wz5)
1 3d,, 0.065—0.038i | 0.2773—0.2632i | 0.065+0.038i | 0.2773 + 0.2632i
2 3d,, 0.065—0.038i | 0.0893+0.3718i | 0.065+0.038i | 0.0893 — 0.3718i
3 Co, 3dy,_y 0 —0.1185 + 0.0901i 0 —0.1185 — 0.0901i
a4 3d,, 0.065 —0.038i | —0.3666 —0.1086i | 0.065 + 0.038i | —0.3666 + 0.1086i
5 3d,2_y2 0 —0.0901 — 0.1185i 0 —0.0901 + 0.1185i
6 3d,y 03213 +0.1262i | —0.1516 — 0.0986i | 0.3213 —0.1262i | —0.1516 + 0.0986i
7 3d,, —0.2045 + 0.2525i | 0.215+ 0.0099i | —0.2045 — 0.2525i | 0.215 — 0.0099i
8 Co, 3ds,2_, 01121+ 0.047i | —0.052 —0.0684i | 0.1121—0.047i | —0.052 + 0.0684i
9 3d,, 0.051+0.266i | 0.0623 —0.2732i | 0.051—0.266i | 0.0623 + 0.2732i
10 3d,2_y2 —0.047 +0.1121i | 0.0684 —0.052i | —0.047 —0.1121i | 0.0684 + 0.052i
11 3d,, —0.2045 + 0.2525i | —0.0989 — 0.1912i | —0.2045 — 0.2525i | —0.0989 + 0.1912i
12 3d,, 0.051+0.266i | —0.2678 +0.0826i | 0.051 —0.266i | —0.2678 — 0.0826i
13 Cog 3ds,2_, —0.0968 + 0.0736i | —0.052 — 0.0684i | —0.0968 — 0.0736i | —0.052 + 0.0684i
14 3d,, 03213 +0.1262i | —0.0096 + 0.1806i | 0.3213 —0.1262i | —0.0096 — 0.1806i
15 3d,2_y2 —0.0736 — 0.0968i | 0.0684 —0.052i | —0.0736 + 0.0968i | 0.0684 + 0.052i
16 3dy, 0.051+0.266i | 0.2054+0.1906i | 0.051—0.266i | 0.2054 — 0.1906i
17 3d,, 03213 4+ 0.1262i | 0.1612—0.082i | 0.3213 —0.1262i | 0.1612 + 0.082i
18 Co, 3ds,2_, —0.0153 — 0.1206i | —0.052 — 0.0684i | —0.0153 + 0.1206i | —0.052 + 0.0684i
19 3d,, —0.2045 + 0.2525i | —0.1161 + 0.1812i | —0.2045 — 0.2525i | —0.1161 — 0.1812i
20 3d,2_ 2 0.1206 — 0.0153i | 0.0684 —0.052i | 0.1206 +0.0153i | 0.0684 + 0.052i

17

TABLE IV. The numerically calculated complex wavefunctions at the R point, where the first column represents the component
number of the wavefunctions. Since these wave functions are made of the five 3d-orbitals of the four Co atoms, shown in the
second and third columns. These four wavefunctions \\Ilgf Y with ¢ = 1,2,3,4 are the common eigenstates of the Hamiltonian
and the CTB operators with the CZ P-eigenvalues 1,e0,1,e %0 respectively. These wavefunctions also show that time-
reversal symmetry relates \Ilgﬁ (\I’EBQ) and \I’gg (\Ilgﬁ) by applying a complex conjugate.

In addition, one can also check that the matrix representation G for the symmetry Sy, is obtained to obey the
commutation relations in Eq. (A9).

We now consider the band splitting induced by the atomic SOC. For the full TB model at the R point, one can
add the on-site atomic SOC Hamiltonian for the Co atoms,

4
7
7'LZ)’d,soc = )\soc E S; - L3d7

i=1

(B17)

where 7 labels the four Co atoms, L3, represents the three angular momentum operators based on the five d-orbitals
(i.e., {dpy,dyz,ds,2_1,dyz,dy2_y2 }), and s are Pauli matrices acting on the spin subspace. We assume the SOC terms
from other orbitals are small enough to be neglected. The explicit forms of operators s and Lgy are given by

$+:sz+isy: 01 ,S_:sz—isy: 00 s 1/2 0 7 (B18)
2 00 2 10 0 —1/2
0 -1 0 —i 0 0 1 0 —i 0 0 0 00 2
1 0 —iv3 0 —i -1 0 —iv/3 0 —i 0 0034 0
Lza+=10ivV3 0 V3 0|, Lsa—=|0 iv/3 0 -3 0 |,Lsag-=] 0 0 000 (B19)
i 0 —V/3 0 1 i 0 V3 0 -1 0 —i 000
0 i 0 -1 0 0 i 0 1 0 -2 0 00 0
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Here we have defined L3q + = (L3qz £ iL3q,)/2. With this d-orbital basis (R;R3 Irrep) shown in Table. IV, we next
project the atomic SOC terms into the effective k - p Hamiltonian to justify the k-independent SOC Hamiltonian in
Eq. (A37). To do that, we consider the basis at the R point with spin degree of freedom,

{1 @|¥r), 1) @[¥rp)}

={IN@WEL), | 1) @ YRS, | 1) @ [PR5), [ 1) @ WD), [ 1) @ [WER), [ 1) @ [OF5), [ 1) @ [WEE), [ 1) @ [WE5)}
(B20)

where |\I/£E ) with ¢ = 1,2,3,4 have been shown in Table. IV. After projecting Hsq soc onto the spinfull basis at the
R point in Eq. (B20), the effective SOC Hamiltonian at the R point reads

Hcff,soc = )\cff,socs . i‘ (B21)
Here, the effective angular momentum operators, denoted as L,, f/y, L,, are given by
[La)ij = (UED| Iixa ® Laaa |9R5) (B22)

where the index a = {x,y, 2}, 4,5 = 1,2, 3,4, and I4x4 is a 4-by-4 identity matrix. And the numerical results of these
4-by-4 matrices are given by

—aq iaz 0 0
p,=| ez @ 0 0 (B23a)
0 0 a1 ias
0 0 —iag —aq
—aq —agei“’() 0 0
.Z/y _ —age "0 al 0 0 o ’ (B23b)
0 0 a;  ase Wo
0 0 agei“’é —ay
—aq @e‘iwé 0 0
[,=| ®2¢" & 0 o 1 (B23c)
0 0 a1 —age'o
0 0 —age” 0 —q

where w) = 7/6, a1 = 1/(2v/3) and ay = 1/4/6. Moreover, the above effective angular momentum operators satisfy
the standard (anti-)commutation relations

Li, L;] = ieijiLy, (B24a)
where i,j,k = {z,y,2}, §;; is the Kronecker delta function, and ¢;;; is the Levi-Civita symbol. Moreover, we

also notice that the eigenvalues of Hefrsoc are —3Aefisoc (twofold) and Aemrsoc (sixfold), by diagonalizing the SOC
Hamiltonian (B21). This explains the energy splitting at the R due to the presence of SOC, indicting that the
important role of SOC in the low-energy physics. This is consistent with the analysis in Sec. A 4.

2. The real wavefunctions: atomic d-orbital basis for the 8-band R-model

In this section, we construct the d-orbital basis for the R-model in the main text (details are shown in Sec. A2 and
Sec. A 3). Recall that the spinful 8-band R-model in Eq. (A40) is constructed only by symmetry arguments, but the
corresponding physical basis has not been derived. To solve this issue, we take the following unitary transformation
U, which connects these two representations,

Matrix representations in the Complex basis +— Matrix representation for the 8-band R model. (B25)
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Once this is proved, the important on-site SOC Hamiltonian Hgo. can be easily justified. Practically, U needs
to be mathematically constructed to make the matrix representations (Gp for Sa, and G5 for C3) be transferred
correspondingly as

UGsU = , (B26)

o O O O O =
\
—_

(B27)

where the matrices G3 and G; are given by Eq. (B14) and Eq. (B16), respectively. The right side are the matrix
representations used for the 8-band R model in Sec. A 1. Solving this problem is equivalently to define the following
basis transformation based on the complex wavefunctions given by Table. IV,

[URS ) real = 12[ D+ I19ED], (B28a)
WEen = =i VA - I\Ifﬁ,@]f%[aZI\P%H%I\P%], (B2sb)
O eat = %[mf D~ 195)) - = (ES) + 1vRA)] (B28c)
VE e = i (V) = 195)) + = [0, WE3) + 0 9] (B28d)

where a, = exp(i§). Please notice that time-reversal is just a complex conjugate used for the construction of the
8-band R model in Sec. A1, we have to define the real wavefunctions by the above basis transformation. In other
words, the time-reversal symmetry in the complex basis is given by Eq. (B15), which needs to be transformed to

T = L1k, (B29)

with I4x4 a 4-by-4 identity matrix and K the complex conjugate. It is only possible for real basis wavefunctions.
Therefore, the corresponding unitary transformation matrix U is represented as

1 i i i
V2 V6 V6 V6
9p _ 1 ap
u-| % i (B30)
2 2 ’
V2 Ve NV
0 —% _ 1 9
3 V3 V3
which is unitary transformation because of UUt =UU = T4 and it gives rise to
(|\11£Bi>v |\Il£€>v |\I/£E§>v |\I’£Ezi>) U= (|Q£§>rcalv ‘\I]£2>rcalv |\Ij£,B3>rcala |\Il£i>rcal) ) (B?’l)

Therefore, the new wavefunctions are also orthogonal to each other, real(ﬁ/TB | UL s ]>re11 d; ;. Each component of the
real wavefunctions are shown in Table. V. Fo the R point, we can use this real d-orbital basis in Table. V to construct
the on-site SOC Hamiltonian in Sec. A 3. To show that, after the transformation, the projected angular momentum



20

operators in Eq. (B23) become

00— O
~ 1 7
ULt = g 0 8 8 OZ 2 L, (B32a)
i
0i 0 O
0 0 0 —i
~ 1
U LU = 5 8 _OZ é 8 2 Ly, (B32b)
i 000
0— 0 0
- 1 i
U= | | 8 8 Ofar. (B32¢)
i
00 —0
These matrices in the right side are L, = %O'yTo, L, = %Umry, L,= —%UZTy, which are just the angular momentum

operators defined in Eq. (A17). According to Eq. (B21), the on-site SOC Hamiltonian becomes U™ Heft socd =
4Xo(S - L), with S = 3(sg,sy,s:) and L = (Ly, Ly, L.). The SU(2) algebra for the angular momentum is given by
[Si, S5] = i€iju Sk, {5:, S} = %5”— and [L;, L;] = i€;j5Lg, {Li, L;} = %&j. As a brief conclusion, we have numerically
found the real basis function for the 8-band R-model, and also confirmed the form of the angular momentum operators,
which are required for the construction of the on-site SOC Hamiltonian. The wavefunctions in Table. V shows that
the mixing of t5, and e, orbitals are essential for the on-site SOC Hamiltonian in the spinful R model, as mentioned
in the main text.

Appendix C: Approach I for the hierarchy of the quasi-symmetry

In this section, we use the perturbation theory to identify the hierarchy of quasi-symmetry. This is Approach I
mentioned in the main text. Here we explain the necessary details. The linear-k-order SOC-free Hamiltonian H; (k),

Hl(k) = 000'07'0 + 2A1(k . L), (Cl)

where the angular momentum operators are L, = %O'yTQ, L, = %O’wTy, L, = —%O’ZTy defined in Eq. (A18). Notice
that H; (k) is invariant under the spin SU(2) symmetry group. Moreover, we notice that an additional hidden SU,(2)
symmetry also exists for H;(k) in the “orbital” space that can be generated by the following operators

M1,2,3 = %{S(]UyTz,SkoTx,SOUOTy}, (02)

which is shown in the main text (see Eq. (2)), and M2 3 all commute with (k) and satisfy the commutation
relations

[Mi,./\/lj] = i6i7j7k/\/lk7 (C3a)
1
Mo, My} = 2615 (C3b)

Here i,j =1,2,3, €; j 1 is the 3D Levi-Civita symbol, and d; ; is the Kronecker delta function. Thus, we refer to it as
the orbital SU,(2) quasi-symmetry group for H; (k) + Hsoe because of

[M’i, Hl(k) + Hsoc] = Oa (C4)
where the on-site SOC Hamiltonian is given by Eq. A37,
Hsoe = 4Xo(S - L), (C5)

where we use S = %(sw, Sy, Sz) for the spin-1/2 angular momentum operators. And [S;,S;] = i€, Sk. In addition, we
consider the k2-order Hamiltonian that can be represented in a compact form,

Ha(k) = Ha m, (k) + Ham, (k) + Ha i, (k), (C6)



Real basis from TB |Y&1) .0t Yz3) |W&3), oy R eal

1 3dyy 0.0920 0.0721 —0.2892 0.4544
2 3d,, 0.0920 —0.4544 —0.0721 —0.2892
3 Coq 3ds,0_, 0 ~0.0217 0.1369 ~0.1585
4 3d,, 0.0920 0.2892 0.4544 -0.0721
5 3dx2—y2 0 0.1706 0.1040 0.0665
6 3dyy 0.4544 0.2892 0.0721 —0.0920
7 3d,, —0.2892 0.0721 —0.4544 —0.0920
8 Co, 3ds,_, 0.1585 0.1369 0.0217 0

9 3dy, 0.0721 0.4544 —0.2892 0.0920
10 3dxz_y2 —0.0665 0.1040 —0.1706 0

11 3dyy —0.2892 0.4544 —0.0920 —-0.0721
12 3d,, 0.0721 0.2892 0.0920 —0.4544
13 Cos 3ds,2_, ~0.1369 0.1585 0 ~0.0217
14 3d,, 0.4544 —0.0721 —0.0920 —0.2892
15 3dx2_y2 —0.1040 —0.0665 0 0.1706
16 3dyy 0.0721 —0.0920 —0.4544 —0.2892
17 3d,, 0.4544 0.0920 —0.2892 0.0721
18 Co, 3d,,0_, ~0.0217 0 0.1585 0.1369
19 3dy, —0.2892 0.0920 —-0.0721 —0.4544
20 3dx2—y2 0.1706 0 —0.0665 0.1040

21

TABLE V. The numerically calculated real wavefunctions at the R point, the first column represents the component num-
ber of the wavefunctions. Since these wave functions are made of the five 3d-orbitals of the four Co atoms, shown in the
second and third columns. These real wavefunctions are obtained via a unitary transformation in Eq. (B30) on the com-
plex wavefunctions in Table. IV. In these new spinless basis, time-reversal symmetry is just a complex conjugate. This basis
becomes the spinless basis for the 8-band R model after taking the spin degree of freedom into account, represented by
| T> ® {|W§ﬁ>real7 |W£g>real7 |q]£g>real7 |\I]£i>real}7 | \l/) & {‘Wg,%)real; |\I}£,B2>rea17 |\I}£g>realy |\I}£€1>real}~

where each part of Ha(k) is given by
HQ,Ma; (k) =8 Ji) (07)
for i = 1,2,3. Here we define the k-dependent vectors as

gl(k) (CQkxkya _CBkzkz,Clkykz)v
go(k) = (Cskgky, Cikyk,, —Cakyk.), (C8)
gg(k) (C1k‘xky,02k‘xkz, —ng'ykz).

And the corresponding vectors of operators

[

1= (02Tyy =0Tz, 00T2),
Js

J3 = (0270, 0270, 0yTy).

(Uszy Uz7z700793>7 (CQ)

In addition, we also realize that the k? terms of Hx (k) break this orbital SU,(2) quasi-symmetry generated by {M 2 3}
and lead to the splitting of all bands. However, different parts of the entire k2-terms can lead to the reduction from
SU,(2) to a orbital U(1). To show that, as we discussed in the main text, we find that

[J;, M;] =0 and {J;, M;} =0 for i # j, (C10)
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which implies
[(H2,pm,(k), M;] = 0. (C11)
This can be also found in the main text and Sec. A 2. Below, we focus on how to identity the quasi-symmetry based
on the effective perturbation theory (Approach I). Note that alternative Approach II will be presented in Sec. D.
Furthermore, we notice there is a conservation of total angular momentum at fixed k for H;(k) + Hsoe = Co +

2A;(k-L) +4X(S - L). As we have discussed in Sec. A 4, the total angular momentum S + L is conserved at k = 0.
But it does not commute with the Hamiltonian #; (k) + Hsoc at the nonzero k. However, we notice that

[(S+ L) - ik, H1(k) + Hsoe] =0, (C12)
where 7 = % is the direction of the momentum k. And (S + L) - 7ix is physically similar to the helicity operator at
nonzero k. Also, Eq. (C12) can be proved as follows,

e Spin and orbital are independent degree of freedoms, so we have [S,L] = 0. Therefore, [(S + L) - 7ix, H1 (k)] =
[L - 7ix, Co + 24 (k - L)] = 0.

e We can define total angular momentum Loy = S + L, so that Heoe = 2Ao(LE, — S? — L?) = 2X\o(LE, — 3 — 2).
Then one can check

(Liot,i» Litot,j] = [Si, Sj] + [Li, Lj] = i€;j1 Sk + i€ijnLi, = i€ijxLiot k- (C13)

Besides, we have [Liot, LZ] = 0 (i.e., the square of the angular momentum commutes with any of the compo-
nents), which leads to [Lyot, Hsoc] = 0. Therefore, we have
[Ltot : ﬁka Lfot] = 0. (014)

This proves that Ly - 7 is a symmetry operator of H; (k) + Hgoe at any nonzero k.

1. Approach I: the U(1) quasi-symmetry protected nodal planes

We solve the eigen-problem of the Hamiltonian H; (k) in Eq. (A16) or Eq. (A18). Due to the full rotation symmetry,
we choose the spherical coordinate with the momentum k = (k;, ky, k.) = k(sin 6 cos ¢, sin @ sin ¢, cos ). The eigen-
energies of H; (k) have two branches Fx = Cy+ Ak with each branch twofold degeneracy (fourfold if spin degeneracy
is involved). In this work, we assume A; > 0, and the two degenerate eigen-wave functions |V 4,5, (6,¢)) of the
positive energy branch (E, ) and |V 4,5 (0, ¢)) of the negative energy branch (E_) are given by

WA/ (0,0)) = E+|Va,p4(0,9)),
Halk {\I'A/B(97¢)> =E_|Vyp_(0,9), (C15)

where the index + represent the eigenvalues of L - 7iy, and the eigen-states in the spherical coordinator are given by
‘\IIAJr (03 ¢)> =
Upi(0,0) =
(0,9))
0

) =

The solution is not unique, since there exists a twofold degeneracy between |¥ 44 (6, ¢)) and |¥p (0, ¢)) at arbitrary
k, protected by the orbital SU(2) symmetry generated by {Mi, My, M3} in Eq. (C2). Moreover, the subscript
A(B) can represent the eigenvalues of the quasi-symmetry operator defined as (M1, Ma, M3) - 7 with a specific real
normalized vector 7 = (n1,ng2,n3). For the basis in Eq. (C16a) and Eq. (C16b), the 7i-vector reads

71 = (—sin(0) cos(¢), sin(0) sin(¢), — cos(6)) . (C17)

C0S0005¢—isinqS,—cos&singb—icos¢70,sin9)T,

) (Cl16a)

.. .. . . T
1sinf cos ¢, —isinfsinp, 1, —icosh)" |

(C16b)

(
(—isin@ cos @, isinfsin ¢, 1,icosd
(
(

ISR

cos@cos¢+isin¢,—cos@sin¢+icos¢,0,sin9)T.

And one can check

(M) [Vay(0,0)) = [Vai(0,0)), (C18a)
(M-70)|Wa_(0,0)) = [Pa-—(0,9)), (C18b)
(M) |[Wpi(0,9)) = —Vpi(0,9)), (C18c)
(M- i) Vp_(0,¢)) = —|¥p_(0,9)). (C18d)
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But 7 can be arbitrary due to this twofold degeneracy (fourfold if spin degeneracy is accounted). This means the
choice of eigen-states are not unique. Besides, another set of wavefunctions chosen as eigen-states of M3 will be shown
in Sec. D2 by fixing 7 = (0,0, 1). Furthermore, we can project the angular momentum operator L into the eigenstate
subspace,

(Vax(0,0)|L|VAL(0,0)) = (Y5L(0,0)|L|VpL(0,0)) = ﬁ: (C19)
(Wa+(0,0)|L|Vp(0,0)) = (Vp+(0,9)|L|VaL(0,4)) = 0. (C20)

Here, Egs. (C19) and (C20) mean the emergent angular momentum operator L is along the momentum direction
after the projection. Besides, with involving the spin degree of freedom, the corresponding four-fold degenerate
wave-functions are labelled as

[U1) ={[Pat1(0,0)), [¥B+1(0,9)), [Waty(6,0)), [Vp1y(0,0))}, (C21)
where
(Wait(0,9)) = (1,0)" @ [War(6,9)),
Wpi1(0,0)) = (LO); ®[¥p1(0,90)), (C22)
|Wat4(6,0)) =(0,1)" ® |¥as(0,9)),
Vg (0,0) = (0,1)" @ [¥py(6,9)),

where (1,0)7 and (0, 1)7 label the spin-up and spin-down wave functions, respectively. The above set of wave functions
serves as the basis for the projected 4-band perturbation model via the first-order perturbation theory, dubbed as
“the P-model”. We treat both the on-site SOC in Eq. (A37) and the k2-terms in Eq. (A19) as perturbations,

Hperb(k) = Hsoc + 50 ® HZ (k) (C23)
The projected Hamiltonian (¥4 |Hpers| ¥4 ) is given by

H (1) = (B + Bik®)sowo + HILL () + 1270 (1), (C24)

which is marked as the P-model around R-point. And
HET D () = o (Aose + Aysy + As.) @ wo, (C25a)
HATD (k) = Ck?s0 @ (dpws + dywy + daw.) . (C25b)

where C = Oy — Cy + Cs, and w, 4 . are Pauli matrices for the {A+, B+} band subspace. The coefficients A, . are
defined as

(A, Ays Az) = (sinf cos ¢, sin B sin ¢, cos f) = %, (C26)

On the other hand, the coefficients d , . are given by
d, = 1 sin@sin(20) sin(2¢)(cos ¢ + sin ¢),
dy = 1 sin 0sin(20) sin(2¢)(sin 0 + cos O(cos ¢ — sin ¢)), (C27)
d. = 1sin0sin(20) sin(2¢)(cos 0 — sin O(cos ¢ — sin ¢)).

Furthermore, we use the symmetry to understand the above first-order perturbation Hamiltonian. The basis
function in Eq. (C21) can be labeled by eigen-values of symmetries,

[Pas1(0,0)) = | 1) ®Ip=+5,0=+1), (C28a)
[T544(0,0) = 1) @ lp=+3,9=-1), (C28b)
[Pary(0,0)) = 1) ®Ip=+5,0=+1), (C28¢)
[Tp4.(0,0) = 1) @ lp=+5,4=-1), (C28d)

Here we take p = £1/2 as the eigenvalues of L - 7y and ¢ = %1 as the eigenvalues of M - ii. All these four states are
degenerate with eigen-energy of H, as Cy + A1k. The linear-k Hamiltonian has both orbital SU(2) symmetry and
spin SU(2) symmetry. Specifically, the orbital SU(2) symmetry generated by {M; 23} indicates that the vector 7 is
arbitrary. And the spin SU(2) symmetry implies that | 1 / |) can be any direction in the spin subspace. Then, to
show the origin of the hidden quasi-symmetry of the P-model, we individually do the projection for the on-site SOC
and k2-order Hamiltonian,
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e Only do the projection of the on-site SOC Hamiltonian. In this case, the orbital SU(2) symmetry generated by
{M 2,3} preserves, because of [M;, H1(k) + Hsoc] = 0 with ¢ = 1,2, 3. Thus, we obtain

<HSOC>H1
SUL(2) % SU,(2) = Uy(1) x SUq(2), (C29)

where the spin U(1) symmetry generator depends on k. To understand this, we recall the conservation of
(S+ L) - iy for Hi(k) + Hsoe = Co + 2A1k - L + 4XgS - L. Then, for a fixed nonzero k, one can take the
eigen-states in Eq. (C28) as eigen-states of the helicity operator (S + L) - 7ix by choosing

[Tast(0,0) = Is = +3) ®Ip = +35,0 = +1), (C30a)
[T514(0,0)) = s =+3) ®lp=+3,9=-1), (C30b)
[Pasi(0,0) = Is = —3) ®Ip=+35,0=+1), (C30¢)
(Tp11(0,0) = s =—3)®Ip=+5,q=~1). (C30d)

Here we use s = £1/2 as elgenvalues of S 7ix. Here we use 7, 7}, and 7ij to be the set of 3D orthogonal
coordinates at the fixed k and 7l is the direction of k (i.e., 7ix = (sin 6 cos ¢, sm951n ¢,cos0)). Namely, |7x| =
|7 = |7 = 1, and @y - 7, = Ak - 7y, = 7). - 7y = 0. Then7 the first-order projection of S - L = [(S - 7ix)(L -
fix) + (S -7 ) (L - ity ) + (S - 7i)) (L - 71y)] onto these four states in Eq. (C30) leads to
[(Hsoc)ay, Jii = 420 (Wi(0,9)[S - L|¥;(0, ¢)),
= Ao (W(0, $)I(S - ire) (L - i) + (S - g ) (L - 71y ) + (S - i) (L - 7130 ) [ W5 (6, 6)), (C31)
= 4o (Wi(0, 9)|(S - 7ire) (L - ) [ (6, ).,

where i, 7 = {A+ 1, B+ 1, A+ |, B+ |}. Thus, the first-order perturbation for on-site SOC Hamiltonian is

10 0 O
01 0 O
Hsoc)zy, = A C32
S A (c32)
00 0 -1

Please notice that (Hsoc)q,, can be also obtained after diagonalizing H:‘fchr)(k) in Eq. (C25). At nonzero k, we
find that the fourfold degenerate states [Co + A1k for H1(k)] are split by the on-site SOC Hamiltonian Hgo. into
two states and each state has tow fold degeneracy stemming from the orbital SU(2) symmetry, E = Co+A1k+Ag.
And the eigen-states are just Eq. (C30). And the spin-polarization along the direction of k represents the spin

U(1) symmetry.
e Only do the projection of the k?-order Hamiltonian. In this case, the spin SU(2) symmetry preserves. Since the

k?-order Hamiltonian is spin-independent. Thus,

<H2>H1
SUs(2) x SU,(2) ——— SUL(2) x Uy(1). (C33)

We do not have an elegant picture for the <H2>H1' But we know it does not dependent on spin, as shown in
Eq. (C25). The four-fold degeneracy is split into two states, and each state has two fold degeneracy (i.e. spin
degeneracy). And, the two-by-two matrix in the {4, B}-subspace itself severs as the orbital U(1) symmetry.

Therefore, up to the first order perturbation, we obtain a hierarchy of quasi-symmetry for CoSi mentioned in the
main text (see Eq. (7)),

<Hsoc+H2>’H1
SUL(2) x SUL(2) Us(1) x U (1). (C34)

And [Ug(1),Uy(1)] = 0, as shown below.

2. The analytical properties of the effective perturbation 4-band P-model

The P-model has the self-commuting structure at every k. Explicitly,

[Heff(l)(kl) Heff(l)(kg)} =0, Vk; & Vky in the whole momentum space (C35)

soc,+
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as discussed in the main text, which is known as the projected stabilizer code Hamiltonian and directly leads to the
U(1) quasi-symmetry group. Below, we provide some analytical study on the properties of the effective P-model. The
eigen-energies of the P-model in Eq. (C24) are

Eop(k,0,¢) = Co + B1k* + Ark + aXo + 6§C~'k2| sin 2¢ sin 260 sin ], (C36)

where o = + and 8 = +. Here sin 2¢sin 20 sin 0 = 4k, k,k./k>, indicating that there are two-fold degeneracy on high
symmetry planes (k; =0 or ky, =0 or k, =0).
For the ' — R— M plane, ¢ = w/4 so sin2¢ = 1. The eigen-energies along high symmetry lines are listed as follows:

1.) Along the R — M line.
0 =0,s0 E, =Cy+ B1k*>+ Ak + a)g. All the bands are two-fold degenerate.

2.) Along the R — Z line.
0 =7/2, 50 Eo = Co + B1k? + A1k + a)g. All the bands are two-fold degenerate.

We then analyze the perturbation along these two high symmetry lines (i.e., the R — M line and the R — Z line) to
identify the band crossing types of the Fermi surface (linear or quadratic). For a given Ey, the Fermi surface shape
of the momentum k. for the upper four bands is determined by the quadratic equation

Bik* + Ajk 4+ C, =0, (C37)

where C, = aXg + Cy — Ey with oo = £. This equation leads to the solution

1 /
ka,&:o = kaﬂzﬂ/Q = E (_Al + A% — 4BlCa) . (C38)

We firstly focus on the R — M line by expanding Eq. (C36) around 6 = 0. In this case, we have § = 0 + 0y and
k = kq,9=0 + 0. Then, the Eq. (C37) should be replaced by

0= Cy + Bik? + Ark + B2 Ck?| sin 2 sin 20 sin 6, (C39)
which leads to
0= Co + Bi (kag=0 + 0%) + A1 (ka.o—0 + 01) + ﬂ@é (ka,0=0 + 81)” | sin 20/(262). (C40)

After neglecting the 67 terms, we find

N ol 9 2 e 2
5k7ﬂ _ _Bﬁ C| S ¢|56 (k~79—.0) . ) (C41)
2 2Blko¢79:0 + A+ ﬂ\/§0| Sin 2¢|(59 ka,g:o

To the 67 order, we have

V3 C|sin 26| (ka.o=0)>
__pV3 , 42
Ok.5 2 2Bikagot AL % )

which indicates that the exact crossing along the R — M line is quadratic in momentum &k = , /k2 + k2, as illustrated

in Fig. 5 (a) around the R — M line.
For 6 = 7/2 (i.e., the R — Z line), we then expand Eq. (C36) around 6 = 7/2 + Jp. Because

sin 260 sin @ — sin(7 4 23¢) sin(7/2 + 65) — —28¢ + O(53), (C43)

It leads to the solution for k at a fixed Ey,

V3 C|sin 26| (kg o= /2)?
Opp = —BY2 ’ b 44
ko =0 Brkogco + Ar x |dg], (C44)

which indicate the exact crossing along k. is linear, as illustrated in Fig. 5 (b) around the R — Z line.

In addition, we discuss the emergent nodal lines on Fermi surfaces for the P-model. The comparison of the FSs
between the 8-band k - p effective Hamiltonian, the R-model (e.g. see Eq. (A40) in Sec. A3) and the first-order-
perturbation 4-band Hamiltonian, the P-model (e.g. see Eq. (C24) in Sec. C1) are shown in Fig. 6. The P-model
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(a) The four Fermi surfaces intheI' — R — M plane
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FIG. 5. The four distinct Fermi surfaces of CoSi are numerically calculated, as shown in (a) for the I' — R — M plane. These
high-symmetry points are marked in the first Brillouin zone [left panel in (a)]. And these four Fermi surfaces are labeled by four
different colors. The middle two have a “crossing” behavior with a tiny gap. And the analytical results for the band dispersions
(see Eq. (C36)) of the P-model along the R — M line in (b) and the R — Z line in (c). The two dashes black lines represents the
Fermi surfaces with o = +1 and 8 = 0. The S-term leads to the quadratic band splitting around the R — M line in (a) with
8k ~ 03, and the linear band splitting around the R — Z line in (b) with 8 ~ ds. Here, the orange line is for a = —1,8 = —1,
the blue line is for @« = —1,8 = +1, the green line is for « = +1,8 = —1, and the yellow line is for « = +1,8 = +1. Once
the band splitting caused by the S-term is large enough, the band crossing between the blue line (8 = +1) and the green line
(8 = —1) may happen at arbitrary momenta, which are exact and protected by the quasi-symmetry.

shows exact degeneracy at non-high-symmetry points. The crossings from two bands can be obtained from the
constraint equation

Eo=t1,8=—1 = Ea=—1,8=11, (C45)
of which the solution
|kgkyk|
k

generally leads to nodal planes. The obtained nodal planes do not intersect with high symmetry planes, e.g. k, =0
or ky =0 or k, = 0. At the Fermi energy, we require an additional constraint equation

Ef = Ea:+1752_1 = Ea:_1,5:+1. (047)

Ao = @ékﬂ sin 2¢ sin 20sin ] = V/3C (C46)
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FIG. 6. Comparison of the Fermi surfaces with the R-model in (a) and the P-model in (b) around the quasi nodal points in
the I' — R — M plane. (a) shows a tiny gap in the blue circle, and (b) shows the exact quasi-symmetry protected degeneracy.

By solving the above equation, we find the curve equation for the emergent nodal lines at the Fermi energy

T N S A2) 2B, (E; — Co) ABy(E; — Cp)
— V3 = 7 _ -7 C48
V3C 3 7°C| sin 2¢ sin 26 sin 0| 2(E; — Co)? [1 + yE +4/1+ X . (C48)

For a fixed Fermi energy Ey, solving Eq. (C48) generally gives rise to a line solution in the 6 — ¢ plane. It represents
a nodal line because of Eq. (C46): solving 6 and ¢ at fixed Ey from Eq. (C48) will fix k simultaneously. However, the
existence of such a line solution for Eq. (C48) depends on the value of Ey. For a critical E;, there is no line solution
from the curve equation (C48), instead, we can only get a point solution. To find this minimal Ey, we set ¢ = 7/4,

and notice that the function |sin 20 sin 6| reaches its maximum when 6 — arcsin /2, we find the minimal Ey as

A1vCido + Bido + CoCy

Ey .= 3

(C49)
Thus, Ef . is the energy for the single nodes with twofold degeneracy on the corresponding nodal planes. Based on
this analysis, we realize that the quasi-nodal-line will emerge into single nodes when decreasing the Fermi energy.
For Ey < Ey ., no solution of Eq. (C48) can be obtained anymore. Therefore, one can conclude that each nodal
line emerges into a single point after decreasing Ey down to Ef.. Moreover, when the nodal plane is split due to
high-order perturbations, this point becomes a Weyl point pinned along the (111)-axis. Thus, we conclude that, nodal
lines exist only when E¢ > Fy ..

3. The second-order perturbation: gap out the quasi-nodal planes

Next we consider the second-order perturbation corrections for the 4-band P-model (e.g. see Eq. (C24) in Sec. C1),
which can open a tiny gap for the emergent nodal lines obtained from Eq. (C48) at generic momenta. Recall that the
first order perturbation Hamiltonian, the P-model, is based on the basis in Eq. (C21)

(W4 2 [Wupper) = {(1,0)" @ [Wa1(0,0)), (1,0)" @ [W54(0,9)), (0,1)" @ [Ta4(0,9)), (0,1)" @ [¥54(6,0))}, (C50)

which are all eigen-states of H; with the same eigen-energy E, = Cy + Aik. And the spinless wavefunctions
|V 4/5+(0,0)) are given by Eq. (Cl6a),

W44 (0,90)) = % (cos B cos ¢ — isin ¢, — cos O sin ¢ — i cos ¢, 0, sin 0)T , (C51a)
[Upi(0,0)) = % (—isinfcos ¢, isinfsin ¢, 1,14 cos H)T, (C51b)

where A/B represent the eigen-values of M - ii. The second-order perturbation theory has been presented in the
supplementary materials in Ref. [16]. To make sure the completeness of this appendix, we repeat the discussion
of the second-order perturbation in this sub-section. Here, we consider the inter-band correction via second-order
perturbation. The fourfold degenerate eigen-states of H; with lower energy (E_ = Cy — A1k) are given by

|\I/lo1uer> = {(17 O)T ® |\IJB—(0a ¢)>7 (17 O)T ® ‘\I/A— (07 ¢)>’ (07 1)T ® |\IJB— (07 ¢)>a (07 1)T ® |\IJA—(07 ¢)>} s (052)
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which are all eigen-states of of H; with the same eigen-energy E_ = Cy — A1k. And the spinless wavefunctions
|V 4/5-(0,9)) are given by Eq. (C16b),

[TA_(0,0)) = % (¢sinf cos ¢, —isinfsin ¢, 1, —icos ),
[Tp_(0,0)) = \1[ (cos @ cos ¢ + isin ¢, — cos O sin ¢ + i cos ¢, 0, s1n9)

Therefore, the second-order perturbed Hamiltonian is given by

1

AP0 =

<<\Ilupper|(7'lsac + HQ (k))-plower (Hsoc + H2 (k))|\llupper>) )

(C53a)
(C53b)

(C54)

where AE = E, — E_ = 2A;k is the energy difference between the upper-energy-band the lower-energy-band, and
the projection operator Power = |¥iower) (Piower| onto the lower four bands in Eq. (C52). The mixed terms of Hsoc
and Ho (k) for the second order perturbation are given by

with the matrix elements of AHp

and

. 1
AH ff(Q)( ) AE (<\Ijupper|Hsoc|\I/lower><\Ijlower|H2 (k)|\11uppe'r'>) + h.C.,
efF(2)
AHSTD] = 25in2(0) sin(6) cos(6) (sin®(0) sin(¢) + sin(0) cos?(6) cos(¢) — cos®(0)) ,

:A%;f / <2>: . sin®(6) cos(¢) (sin(6) sin(2¢) + 2i cos(6) sin(4) (cos(6) (cos(8) cos(¢b)

+sin(f)) + sin(¢)(sin?(0) + i cos(h)))),

:A%;f ! <2>: = Le™ sin(6) cos(6) (sin(2¢) (sin(30) sin(¢) + 4 cos®(8)) — 8sin(0) cos?(6)
sin(¢) cos®(¢) + 8i cos(6) sin®(¢) + (—32 + 6i) sin(6) cos(¢) + (2 + 2i) sin(9)
cos(3¢)),

{A?—li,ff@)} e e~ sin(0)((cos(0) — 1)(cos? () cos(¢) + i sin(6) sin(¢p) cos(d)(— cos?(6)
+ sin(#)(cos(8) + 1) cos(¢)) + sin(8) cos(8) sin®(¢)(—1 — isin(#) cos()))
— 2i cos® () (—icos?(0) cos(¢) cos(26) + sin(¢) cos(¢)((cos®(8) + cos(h))
cos(¢) — isin?(0) cos(¢) + sin(#) cos?(0)) + sin(f) cos(6) sin?(¢)(sin()

cos(¢) +1)))
ISR bp= sin5(9) sin(¢) sin(2¢)
(cot?()(—4 cot(6) csc(¢) + 4 cot(¢) — 1) + csc®(0) + 3)
[Ayﬁ,f ! ﬂ vy e~ ¢sm(9) cos(8)(—4sin(¢)(sin(6) sin(¢) + (2 + 2i) sin (%)c052(¢))+

cos?(0) sin(2¢)(—4i sin (g) cos(¢) + 2isin(f) + csc(¢)) + cos(d) csc(p)
(—(2 + 2i) sin®(%) sin®(2¢) + sin®*(§) sin(4¢) + 4i sin®(0) sin®(¢) cos(¢)
+sin(29))),

[AH;“(Z)} s —Le " sin(0) cos(0)(8 cos®(0) sin(2¢) — 16 sin(0) cos®(9) sin(¢) cos®(¢)
+ 163 cos() sin?(¢) + cos(¢)(4sin(36) sin? (@) + (—3 + 12i) sin(6))
+ (3 + 44) sin(0) cos(39)),

(C55)

(C56)

(C57)

(C58)

(C59)

(C60)

(C61)

(C62)
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and
[mff 1@ }373 = —Lsin®(0) sin(¢) sin(26)
(cot?(0)(—4 cot () csc(¢) + 4 cot(¢) — 1) + csc®(0) + 3) (C63)
[AH;f f <2>L74 = —isin?(6) sin(6) cos(¢)(2 cos® (0) cos(¢) + 2 cos?(6) (sin(8) + i sin(e))
+ sin(6) (sin(26) sin() — 2isin(8) cos(¢))), (C64)
and
[AH;f f <2>} = 2sin2(8) sin() cos() (sin®(8) sin() + sin(8) cos?(8) cos(¢) — cos(9)). (C65)
The other parts are related by complex conjugation [A’H,ef 1 2>] = [A’H;f f (2)};

Appendix D: Approach II for the hierarchy of the quasi-symmetry

In this section, we discuss the approach II for the hierarchy of the quasi-symmetry and the perturbation theory
based on the solution of H; (k) + Hsoc for the Ha (k). Please note that the algebra of the orbital SU(2) quasi-symmetry
defined in Eq. (C2) in Sec. D1,

Mi o5 = 5{s00yT=, S00yTa, 50007y}, (D1)

which all commute with H; (k)+Hsoc, but do not commute between themselves. And [M;, M;] = ie; ; x M. Moreover,
we can also defined the rotation for this orbital SU(2) quasi-symmetry group

u(07 ¢) — ei0M3€i¢M2
D2
= cos (g) coS <¢) S000To + 4 sin (g) cos (%) M3 +icos (g) sin (%) My +isin (g) sin (%) M. (D2)
Clearly, U(0, ¢) commutes with so @ H1(k) + Hsoc for any values of 6 and ¢. The U(0, §) can rotate M; to M,

™ - 2
UO, =) =e2M = TZ50 @ (gm0 + 10T

= U0, MU0, T) = Ms.

SR

For better readability of this section, here, we first repeat the linear-k Hamiltonian, on-site SOC Hamiltonian and
k2-order Hamiltonian,

Hl(k) = Coog7o + 241 (k . L)7 (D4a)

Hsoe = 4X0(S - L), (D4b)

Ha(k) = Ham, (k) + Hom, (k) + Homy (k), (Dic)

where the spin angular momentum S = %(smsy,sz)7 and the orbital angular momentum operators are L =
(10,70, 20,7y, —10.7,). And each part of Hs (k) is given by

Haom, (k) = gi(k) - Ji, (D5)

for i = 1,2,3. Here we define the k-dependent vectors as
g1 (k) = (Ckaky; _C3kwkz7 Clkykz>7
g2(k) = (Cskyky, Cikok., —Cakyk.), (D6)
gg(k) = (Clkzky, Ckak‘z, —Cgkykz)

and the corresponding vectors of operators

Ji = (Usza —0:Tg, UOTz)a
Jy = (O'xTZa 02Tz, UOTx)7 (D7)

J3 = (0,70, 0470, 0yTy).
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In addition, we also realize that the k2 terms of Hs (k) break this orbital SU,(2) quasi-symmetry generated by {M; 2 3}
and lead to the splitting of all bands. However, different parts of the entire k2-terms can lead to the reduction from
SU,(2) to a orbital U(1). To show that, as we discussed in the main text, we find that

[Ji, M;] =0 and {J;, M;} =0 for i # j, (D8)

which implies

[Ho.a, (), M;] = 0. (DY)

1. The algebra for the orbital SU(2) quasi-symmetry for the k*-order Hamiltonian

In this subsection, we discuss the algebra of the orbital SU(2) quasi-symmetry in Eq. (C2). To show the generality
of the breaking of the orbital SU(2) quasi-symmetry down to U(1) quasi-symmetry by the k2-order Hamiltonian. We
can rewrite the H2(k) into the form

Ha(k) = ik, (G - T) + kok (Cp - B) + kyk. (Co - ), (D10)
where the three k-independent parameter-vectors are

Cr = (Co,—C3,01),
Cp = (—C3,C4, Ca), (D11)
C_:Q = (Cl,—CQ,—Cg),

and the corresponding operator-vectors are given by

(UxTxa —O0xTz, O'zTO)a

( UzT;mUzTZaO'a:TO)a (D12)

J =
P
g= (00T2, 00Ty, OyTy)-

Moreover, we notice that

[jaa Mb] = ieabcjca
[Paa Mb} = Z'eabctpc» (D13)
[Qaa Mb} = ieachca

where €43 is the three-dimensional Levi-Civita symbol with a,b,c = 1,2,3. Therefore, for arbitrary real normalized
vector @ = (n1,ne,n3), we have the following commutation relations

(T -, M-ii] =[P-it, M -ii] = [3- i, M - ii] = 0. (D14)

These can be easily shown, for example,

3 3 3
Z Nan[JTas Mol =Y Y " nany, (icapeJe)

a=1b=1

||
Mw

a=1b

(D15)

I
NE
Mw

NaNp (ieabcjc + iebacjc) =0

Q
Il
_

b=a+1

Here we have used €gpe + €pac = 0. Therefore, we find a general symmetry-breaking case with the orbital SU(2)
quasi-symmetry down to the U(1) quabl symmetry For any three normalized and orthogonal vector, 7, i’ and 7",
satisfy |77| = |f'| = || = 1l and @ L @/, @ L ©” and @’ L ©”. Then we can do the projection for the k2- order
Hamiltonian,

Ha(k) = Ha (k) + Hom (k) + Ha (k) (D16)
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where we project the parameter-vectors (éj, Cp, ég) into the {7, 7', 7"} space,

G, =ii(Cy-A)+ 7 (Cy-i)+7"(Cy-i"), (D17a)
p = it(Cp - 7t) + i (Cp - i) + 7" (Cp - @), (D17b)
Co =it(Cq -7t) 4+ (Cq - ') + " (Cq - i), (D17c¢)
Therefore, the first term in Eq. (D16) is given by
Hon(K) = hihy (Cr - 70) x (7 T ) + kuko(Cp - ) x (70 P) 4+ kykz(Co - 7) (- G) (D18)
which commutes with M - 7,
[M - it, Ha 5(k)] = 0. (D19)

Especially, in the main text, we have mentioned three cases,
e i1 =(1,0,0). The Hs 7(k) Hamiltonian is given by H2 a4, (k) in Eq. (C6).
e 7 =(0,1,0). The Hs 7 (k) Hamiltonian is given by Ha a1, (k) in Eq. (C6).
e ii=(0,0,1). The H5 ;(k) Hamiltonian is given by Hs (k) in Eq. (C6).

Moreover, the U(1) quasi-symmetry protected nodal-plane for Ha a4, is discussed in the main text. More details will
be discussed in the following Sec. D 2, Sec. D 3, and Sec. D 4.

2. Analytical solutions by using the U(1) quasi-symmetry

Furthermore, we show the important role of the orbital SU(2) quasi-symmetry operators (i.e. M 2 3) in analytically
solving the eigen-state problem. Here, we take H;(k) in Eq. (A16) or Eq. (A18) as an example,

Hi(k) = Co + A1 (kgoymo + kyouTy — ko0.7y), (D20)

which commutes with the orbital SU(2) quasi-symmetry. Here we choose the eigen-states of H;(k) to be the common
eigen-state of M3 = oo, in Eq. (C2). It is equivalently to apply a unitary transformation

V2

to the R-model, which only leads to a rotation in the (7., 7, 7,) subspace

X y
U=t s oo0® G ,Z> , (D21)
2

Ut = 7'(),1/{TzZ/IJr = Ty,UTyuT = TZ,Z/[TZUT = T,. (D22)

Therefore, the quasi-symmetry M3 becomes UMl = oy7.. Note that the spin Pauli matrix is dropped here. As a
result, the linear-k Hamiltonian becomes

UH1 (k) — Cold" = [H1 ma=r1(K)]g00 & [H1Ma=—1(K)] 5y
_ (Hl,Mg—H(k) 0 ) ’ (D23a)

0 H1my=—1(k)
Hl,/\/l;a:-i-l(k) = Al(kway + kyam - kzaz)7 (D23b)
IHLMSZ*l(k) = Al(kway - kyaa: + kzaz)' (D23C)

It is easy to analytically find the eigen-states of the 2-by-2 Hamiltonian #; aq,—+1(k), in the spherical coordinate
with the momentum k = (ky, ky, k,) = k(sin 6 cos ¢, sin 0 sin ¢, cos §). The eigen-states are given by

1

HI,M3:+1(k)|A_> = _A1k|A_>7 with |A_> = m(i(cos@ + 1),€_i¢ sin 9)T, (D24a)
1 )
Hiptg=r1(K)|A+) = Ajk|A+), with |[A+) = (i(cos —1),e " sin )T, (D24b)

V2/1 = cos @
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and by substituting the replacement (ky,ky,k.) — (ku,—ky,—k.) (ie., (0,6) — (6 + 7,7 — ¢)), then cost —
—cosf,sinf — —sinf, e~ — —e'® into the above solution, it results in

1

Hl,Mngl(k)|B_> = _Alle_>’ with |B_> = m(l(_ cosf + 1), €i¢ sin 9)T7 (D25a)
1 )
Himo=1(k)|B+) = Ak|B+), with |B+) = m(i(—cos@ —1),e%sin6)7, (D25b)

where the subscripts A(B) represent the eigenvalues +1(—1) of the quasi-symmetry Ms. Therefore, the eigen-state
of H,(k) are given by

Hi(k)|Va/p4(0,0)) = E+|Va/p4(0,0)), (D264a)
H(K)W a5 (6,0)) = E-[Way5(0,0)), (D26D)

where EL = +A 1k and the corresponding eigen-states are given by

|Wa-(0,9)) =[A-) ® (—%, %)T, (D27a)
WA (6,0)) = |A+) ® <—%, %)T, (D27b)
Us_(6,6)) = |B—) @ % %)T, (D27¢)
U5 (60,0)) = |B+) @ (ﬁ %)T. (D27d)

Due to the presence of the orbital SU(2) symmetry, one can also find the common eigen-states of #H;(k) and M -7
for arbitrary real vector 77, which is a rotation acting on the solution in Eq. D27. Thus, the eigen-state solution is not
unique due to this twofold degeneracy, protected by the orbital SU(2) symmetry. Note that the degeneracy will be
doubled if spin degeneracy is taken into account.

Similarly, we can further analytically solve H;(k) + Hsoe by using the U(1) quasi-symmetry generator Mjs. The
R-model in Eq. (A40) becomes

UHRUT = U [50 @ H1(K) + Hsoc + 50 @ Ha (k)] UT. (D28)

The first two parts, so @ H1(k) + Hsoe, preserves the orbital SU(2) symmetry, while some specific terms of the k-
order Hamiltonian can break the SU(2) quasi-symmetry down to U(1). This shows the hierarchy structure of the
quasi-symmetry, which will be discussed in details in Sec. D. Here we focus on so ® Hi(k) + Hsoc, which becomes
block-diagonal after this unitary transformation defined in Eq. (D21),

B Hak) 0O
U [s0 @ Hi(k) + Heoe|UT = Co + ( 0 s (k)> , (D29)

where the index A(B) represent the eigenvalues +1(—1) of quasi-symmetry M3, and H 4(k) and Hp(k) are given by

Ha(k) = A15o @ (kyoy + kyoy — k.0.) + Ao (S30y + S$y0p — $:02) , (D30)
Hp(k) = A150 Q (kyoy — kyoy + k.05) + Ao (S00y — Sy0g + 5,0) . (D31)

First, one can check that the Hamiltonian can be reduced back to that in Eq. (D23) by setting Ao = 0. In addition,
Ha(k) and Hp(k) are related to each other by time-reversal symmetry

Hp(k) = T[Ha(—k)]T". (D32)

Here 7 = is,K with K the complex conjugate. Therefore, we only need to solve the four eigen-states for H (k).
After straightforward calculation, the four eigen-energies of H (k) are given by

E(k) =Co+{iA1k+>\o, i\/M—/\O}. (D33)
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Drop the constant Cy for short, the two positive upper bands are

Ea(k) = Ak + Ao, (D34a)

Ea_(k) = \/A2k2 +4X2 — ), (D34b)

which both have increasing energy as k increases, and + are the band index. Note we have assumed A; > 0. And
we notice that E4 1(k =0) = E4_(k =0) and E4 (k) > E4 _(k) for any nonzero k. It indicates that the SOC-
induced gap between them, E4 y(k) — E4 _(k), approaches to 2o as k — co. By time-reversal symmetry, the four
eigen-energies of Hp(k) are the same. Therefore, each state has twofold degeneracy at any nonzero k. This is due to
the presence of the orbital SU(2) symmetry.

Moreover, we can also solve the eigen wavefunctions of U [sg ® H1(k) + Hsoc] U . For instance, for the two positive
upper bands of H 4(k), the corresponding wavefunctions are given by,

B+ (k) = Eat ()| Ea 1 (K),
Halld {EAv—(k» = Ea—(k)|Ea—(k)). (D35)

And the corresponding eigen-wavefunctions are given by

. . T
Eas09 = g (e ) (D362)
1Ba-00) = 5 (1 Ak = b0+ B (), As(h k). Ay (s + ) Anks = Do + E,-(K) . (D36b)
where the normalization factors are
Na (k) =2k/ k2 + K, (D37a)
Na_(kK) =2/(Ea_(k))2 — A2Z. (D37h)

In addition, we discuss the band index =+ that are actually eigen-values of symmetry. To show that, we emphasize
that one can also obtain the common eigen-states for Hj (k) + Hsoc and M -7i. As we discussed in Eq. (C12), there is
a helicity-type symmetry operator that commutes with H; (k) + Hgsoc, which indicates the index + in the eigen-state
solution |E4 +(k)) are eigen-values of (S + L) - 7. Explicitly, one can check that

(S + L) - 7| Eat (K) = [ Ea s (K)), (D38a)
[(S+1L) - i | B, (K)) = 0. (D38b)

It represents the eigen-values of the z-component angular moment of the total angular momentum at nonzero k.

3. Approach II: The U(1) quasi-symmetry protected nodal planes

As discussed in Sec. D 1, parts of the entire k?-order Hamiltonian break the SU(2) quasi-symmetry down to the
U(1) quasi-symmetry. For example, we consider

My (k) = koky(Cr - 1) x (ﬁ : j) + ok, (Cp - 1) x (ﬁ : 75) + kyk.(Co - 1) (ﬁ : Q) : (D39)
which commutes with M - 7,
M -7, Ha (k)] = 0. (D40)

For an illustration, we can choose 7 = (0,0, 1) without loss of generality, so that M3 is the symmetry generator for
the remaining U(1) quasi-symmetry. Therefore, we consider the Hamiltonian Hgsr(k) that commute with M3 as,

Hqu(k) = Hl(k) + HSOC + HZ,Mg (k)v (D4].a)
Hi(k) = Coooro + 24 (k- L), (D41b)
Hsoc = 4M0(S - L), (D41c)

)

HQ,Mg (k) =83- J3 = (Olkwkya Ckakza _CSkyk;z) : (UZT07 070, O'yTy), (D41d
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where L, = %011707 L, = %UITy, L, = —%UZTy. Notice that M3 = o¢7y is the quasi-symmetry operator. It is easy to
check [M3, Hysr(k)] = 0. We next solve the common eigen-states of Mg and Hgsr(k). To do that, we only need to
diagonalize the 7,-term for H,sr(k). In other words, we apply a unitary transformation

1 1 —
Up, = —=S0 R 09 ® , D42
e Lome (1) o
which leads to the rotating in the (7, 7, 7,) subspace
Z/{M:;TOZ/ILS = TQ,Z/stTmZ/{le3 = Ty,uM3TyUL3 = TZ,UMSTZL{;\AS = Ty (D43)

Therefore, after this unitary transformation, the U(1) quasi-symmetry generator M3z becomes

0
Upiy MUy, 2 Mg, = (‘BO _00) . (D44)

And we take this unitary transformation on the #4sr (k) Hamiltonian and obtain

oA _ o (Hi(k) 0
Ut Hasr Ky, 2 Hon(19) = Co o Bak (P B ) (D45a)

where

Hg_(k) = So [ [(Alkz — Cgkykz)dy —+ (Alk'y —+ Cgkzk'z)()'x — (Alkz — Clk'zky)(fz] —+ AO (SICTy —+ SyO'm — SZO'Z) , (D46)
H (k) =5 & [(Alk':c + C3kykz)ay - (Alky - OQk'xkz)gx =+ (Alkz + Clkxky)gz] + Ao (Sxay — 5y0q + Szaz) ) (D47)

This means that we have chosen the eigen-states of Hysr(k) to be the common eigen-state of M3 or My,. Due to
the presence of the U(1) quasi-symmetry, we dubbed Hysr as the quasi-symmetric R-model (“qsR”). Therefore, the
subscript & for H/, (k) represent the different eigenvalues of M3 or M,,. Besides, H/, (k) and H’ (k) are related to
each other by TR T = is,K with K complex conjugate,

H (k) =TH, (-k)T". (D48)
Next, we compute the eigen-energy of the gsR-model. The energy of the upper four bands are given by
Eya(k) = Co + Bik? + \AIK2 + C2E2R2 + C3h2k2 + C2h2k2 — 24, Clhoy bz + No, (D49)
Ey2(k) = Co + B1k? + \/ A3k? + C2k2k2 + C2k2k2 + C2k2k2 — 241 Chgkyk, + 423 — Ao, (D50)
E_1(k) = Co+ Bik* + \/AW + C2h2K2 + C3k2k2 + C3k2k2 + 2A,Chykyk. + o, (D51)
E_ (k) = Co + B1k? + \/ A3k? + C2k2k2 + C2k2k2 + C2k2k2 4 2A1Chykyk. + 423 — Ao, (D52)

where C' = € — Cy 4+ C5. The gsR-model breaks the Cs,(111) rotation symmetry because of Cy # Cz # Cs. Moreover,
the & index for F ; means the eigenvalues of Mg,

Hesr(K)|Ex,i(k)) = By i(k)[Exi(k)), (D53)

Mgs|Exi(k)) = £|Ex i(k)),
where ¢ = 1,2 is the band index. E; ;(k) = E_ ;(—k) is required by TR symmetry. The quasi-symmetry protected
nodal planes are given by

D54
kokyks < 0, B4 2(k) = E_ (k). (D54)

)

{kxkykz >0,E. (k) = E_»(k),

The crossings are between the bands with different eigenvalue of quasi-symmetry Ms or M, and thus we find nodal
planes at generic momenta with the protection from the quasi-symmetry Mg,. By further imposing the Fermi energy
constraint, there will be nodal lines on the Fermi surface, shown in Fig. 7. In Fig. 7(a), the four Fermi surfaces are
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015 (a) ) (b) E+,2(k) = E—,1(k) = Ef (C) E+,1(k) = E—,z(k) =Ef
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FIG. 7. The exact crossings of the 8-band gsR-model. In (a), the Fermi surfaces with exact crossing are shown in the ' — R— M
plane. In (b) and (c), we show the exact nodal lines on the FSs. These nodal lines are protected by the U(1) quasi-symmetry.

plotted in the I' — R — M plane, where two inner FSs intersect with each other and generate the quasi-symmetry
protected exact crossings (marked as purple circles). In Fig. 7 (b) and (c), the solution of Eq. (D54) are explicitly
depicted, showing the exact nodal lines on the FSs.

Next, let us discuss the terms that break the quasi-symmetry. By including the remaining k2-order Hamiltonian
Ha, i, (k) + Ha am, (k), the full Hamiltonian is given by

Hr (k) = Hosr(K) + Unty [Ho ity () + Haoan, (KU, (D55)

where the U(1) quasi-symmetry breaking terms are given by

Ha,qsb(K) = Uny [Hom, (k) + Haa, (k)]ujwa, = <So ®OH(T2) %0 ®OH(2)> , (D56a)
Hs) = Ci(kyk.o0 + kok.0.) + Co(—ikykyoy + ikyk.o0) + C3(kykyos + ikak.0)
+ (C1 +iCo)kyk.o0 + (Cr +iC3)kyk.0, + (—iCo + C3)kgkyos. (D56b)
Therefore, we have
Mo, Ha g ()] = 2 ( hIZ ” h@gfk)) £o0. (D57)
where
hi) = (C1 +iCo)kyk.oq + (C1 + iCs)kyk.0. + (—iCo + C3)kykyos. (D58)

For this Hamiltonian, [Mgs, Ha ¢sb(k)] = 0 only occurs for k = (0,0,0) (the R-point). Therefore, for any Fermi
surface that does not cross the R-point, the nodal planes will be gapped. This leads to the quasi-symmetry hierarchy
mentioned in the main text (see Eq. (10)),

Hsoc H27Mi
SUL(2) % SU,(2) s SU,(2) s Ug(1). (D59)

More interestingly, as we discussed in Sec. D1, we have shown that the choice of Ha aq, is just one specific case,
instead, for any real vector @ of Ha 7 that commute with M - @ (see Sec. D1 for details) can generally lead to the
same quasi-symmetry hierarchy results. Because we have

[M ’ ﬁa S0 ® Hl(k) + Hsoc + S0 @ HZ,ﬁ(k)] =0. (DGO)

Thus, one can conclude that this analysis for the reduction from SU(2) quasi-symmetry down to U(1) quasi-symmetry
is general, which can help to protect quasi-nodal-plane at generic momenta.
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To show this nodal plane ude to the remaining U(1) quasi-symmetry in our approach II more explicitly, we next
consider the perturbation to Hs (k). Here we emphasize that one can also obtain the common eigen-states for
Hi(k)+Hsoc and M-7i. Different from Approach I in Sec. C, here we take the eigen-state solution of so@H1(k)+Hsoc,
and do the perturbation for the k?-order Hamiltonian. Below we choose 7i = (0,0, 1) and the corresponding U(1) quasi-
symmetry opeator is M -7t = Ms. Recall that H; (k) 4+ Hsoc becomes block-diagonal after this unitary transformation
defined in Eq. (D21),

Ha(k) 0
U [so ® Hi(k) + Heoe]UT = Co + : D61
0 Ha ) + Haoe UT = Co ( A (D61)
where H 4,p(k) are given by
Ha(k) = A1so ® (kyoy + kyoy — k.0.) + Ao (8204 + 5405 — $:02), (D62)
Hp (k) = A150® (klay - kyazc + szz) + Ao (Sa;Uy — 5y0g + Szaz) . (D63)

Again, note that the index A(B) represent the eigenvalues +1(—1) of the quasi-symmetry Mjs. Therefore, after this
unitary transformation, the U(1) quasi-symmetry generator M3 becomes

Uniy Ml 2 My, = ("0 0 ) . (D64)
0 —00
The analytical solution for the two upper bands (i.e. Eq. (D36a)) of #H; (k) + Hsoc in Sec. D2 are given by
1 ky —iky —iky +k, O\
Ea (k) = g e T D
| A,Jr( )> NA7+(k) < %, k— kz Tk + kz ’ ) ; ( 65&)
1 . . . T
|Fa,—(k)) = N (0 (z(fAlkz —Xo+ Ea_(k)), A1 (—ky +iky), A1 (—iky + ky), Ark, — X + EA,_(k)) . (D65b)

where the index + in the eigen-state solution |EA7i(k)) are eigen—values of (S+1L)- ﬁk for nonzero k. And the
normalization factors are given by Na (k) = 2k/,/k2 + k2, and Na (k) = 2/(Ea, - — A3. Moreover, note

that they are the two positive upper bands with eigen-energles,

EA,JF(k) = A1k + Ao, (D66a)

Ea_(k) = \/A2k2 +4)2 — ), (D66b)

which have increasing energy as k increases. And, the eigen-states of the Hp(k) block can be related to those of
Ha(k) by time-reversal symmetry,

|Ep,+(k)) = T|Ea,+(-k)), (D67a)
|Ep,—(k)) = T|Ea,-(—k)), (D67D)

and
Hp(k)|Ep +(k)) = Eax(k)|Ep+(k)), (D68)

where E4 1 (—k) = E4 1 (k) has been used. Therefore, we have the four bands as a basis,

{1940} = {(1,0)7 @ [Ba i (), (1,0)7 @ |Ea,(K)), (0,1)7 @ | B+ (K)), (0,1)7 @ | Ep, (k) }. (D69)
In this basis, the H; (k) + Hsoc is diagonal,
H1(k) + Heoc = Co + Diag[E4 +(k), Ea,—(k), Ea+(k),Ea,_(k)]. (D70)

After straightforward calculation, we next project the k*-term Ha g, (k) onto the basis in Eq. (D69), and we arrive
at the quasi-symmetry P-model (gsP-model) as,

Ey (k) + fi(k)  di(k) —ida(k) 0 0
| di(k) +ida(k)  Ely (k) + fa(k) 0 0
Hasr () = 0 ’ 0 EA (k) — fik) di(k) —ida(k) |’ (b11)

1
0 0 di(k) +idy(k)  E} (k) = fa(k)
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where E/ , (k) = Co + Bik* + E4 +(k). For the projected four-band gsP-model, we check the protection from
quasi-symmetry as

Mg, Hgsp (k)] = 0. (D72)
And all the other components are given by
~kokyk,
filk) = —C=="=, (D73a)
fok) = — 4,0 ——zbuls (D73b)

VATR2 + 4%

_ 2(Baq(k) — Ea—(k))koky _ k2
dq(k) = NA,+./V'A,_ C1+ (Cy — Cs) 2+ kg% , (D73c¢)
2E44 (k) — Ea_(K))k.k C2k2 + Csk?
K) = : ’ . D73d
(k) N N R (D73

The eigen-energies of the gsP-model are given by

1
Eap(k) = 5 [AE (k) + 8/ (AE(ak)? + Eay, . (D74)
with o, 8 = +. And a = £ are eigenvalues of M s and 8 = £ are for the band index. Here we have defined

Eq,, (k) =4 [(dl (k))2 + (dQ(k))2] ) (D75a)
AEL(k) = E)y (k) + fi(k) = (E)y (k) + f2(k)). (D75b)

Similar to the discussion for the nodal plane of the gsR-model (see Eq. (D54)), the quasi-symmetry protected nodal
planes of the gsP-model are give by

kﬂckykz < 07E+,—(k) = E—H‘(k)’ (D76)
kxkykz > 07E+7+(k) =F

The crossings happen for bands with different eigenvalue of quasi-symmetry M,s. We numerically check these exact
crossings on the I' — R — M planes, which is consistent with the results in Fig. 7 (a).

4. Perturbation theory for tiny gap of the nodal plane in Approach II

The above discussion on the nodal planes in the approach II requires a choice of specific k2-order terms, but in real
materials, all the coefficients before the k?-order terms can generally be non-zero and at the same order. Thus, our
current approach does not directly explain the near nodal plane seen in real materials. We notice that we treat the
SOC terms accurately in our approach II without any approximation, while the existence of near nodal planes in real
materials actually require the SOC strength to be much smaller than the Fermi energy. Therefore, we below consider
the limit of the SOC strength A\g < A1kp (kp is the Fermi momentum) in our Approach II, taking into account all
non-zero k2-order terms.

Following the same procedure of the perturbation projection as in the last section, we project all the k2-order terms
Ha,m, (k) + Ho am, (k) + Ho am, (k) onto the basis in Eq. (D69), and get the entire perturbation Hamiltonian,

By 04 A0 ) —id()  gu(k) 0(1)
di(k) +ida(k)  El (k) + fa(k) g3(k) ga(k)
Hasprasn (k) 4i (k) GR) By (00— A0 di(k)— ida(k) (B77)
43 (k) Gk k) +id®) By () — k)

Here the terms dy, da, f1, fo have been given by Eq. (D73). In addition, the off-diagonal terms g; 2 34 are generally to
open a gap for the quasi-nodal plane. Because these off-diagonal terms break the quasi-symmetry M,s. And, they
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are given by

(k) = (1 - o eks (D78a)
~ kok,k
k)= (i— 1)A,C—2Y¥"= D78b
anlk) = (i = DA C (D7sb)
2

5206) = G N (g L€ Ok 1 (B9 = Ea ()

+ (Cy +iC3)kyk, (Ark k* — ikyk,(Fa (k) — Ea 4 (k) — kok(Ea— (k) — Ao))
+ (Cy — iCy ) kyk, (Arkyk? + ikok.(Ea— (k) — Ea 4 (k) — kyk(Ea— (k) — \o)), (D78c)

2 .
9309 = T agA  L (C2 IO bk + 1) (B () = Ea (1)

+(Cy + iC3)kgks (A kok® + ikyk.(Ea— (K) — Ea 4 (K)) — kak(Ea_ (k) — Ao))
+(Cy — iCy)kyk (Arkyk? — ikok. (Ea_(K) — Ea 4 (K)) — kyk(Ea_ (k) — )\0))}. (D78d)

Here g3(k) = —g2(—k). The nodal planes are completely gapped out. Now we use perturbation to explain why the
gap is tiny by realizing that the SOC in CoSi is weak enough for doing a perturbation expansion for the coefficients
fi2(k), di2(k), and g1,234(k). By setting A\g/A1kr — 0, we obtain

Fu(k) = fall) = ~C ke (D79a)
di(k) = dz(k) = 0, (D79b)
91(k) = —ga(k) = (1 - z)é’fz%’“ﬁ (D79¢)
92(k) = gs(k) = 0. (D79d)

for the zeroth-order terms. Please notice that only the diagonal energies E1’47 . that are eigen-energies of so@H1+Hsoc
involve the SOC \g. As a result, the perturbation Hamiltonian in Eq. (D77) to the zeroth-order in A\g becomes

Ey (k) + f1(k) 0 91(k) 0
(0) _ 0 By (k) + fi(k) 0 —g1(k) .
HQsP-{-qu (k) - QT (k) A 0 E;"_,'_(k) B fl (k) 0 ) (DSO )
0 —91 (k) 0 Ey (k) = f1(k)

_ By (k) + fi(k) g1(k) B\ _(k)+ fi(k) —g1(K)
( g1 (k) Ey (k) - fl(k)> K < —gi (k) E, (k) — f1(k)> (D80b)

where the diagonal terms are Yy , (k) = Co+ B1k*+ A1k + Ao and E)y _ (k) = Co+ B1k* +\/ ATk? + 4§ — Xo. Thus,
the eigen-energies are given by

El,j:(k) = CO —|— Blk'z + Alk' —|— )\0 + \/|f1 (k)|2 —|— |gl(k)|2, (D81a)
By 1(k) = Co + Bik? + ([ ATk + 403 — X0 + /[ f1(K) % + |91 (k) 2, (D81b)
which leads to the equation for the nodal-plane solution
B (k) =Eai(k) = Ak — /A2 + 40 +2X0 = 2V/[ 1K) + [g1 (k)| (D82)
In the k — oo limit, this equation becomes
~ | kykyk,
o = VIAKE+]g ()P = V3C| === (D83)

Note that C' > 0 in this work. And it is exactly the same Eq. (C46) obtained from the Approach I in Sec. C. At small
k, they differs from each other. Moreover, the first-order correction from Ay will open a tiny gap for the nodal planes,
which is actually the second-order perturbation theory in Approach I. Based on this analysis, we conclude that the
results of Approach II is equivalent from those of Approach I.
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