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Abstract – The article discusses the Crow-Kimura model in the context of random transitions
between different fitness landscapes. The duration of epochs, during which the fitness landscape
is constant over time, is modeled by an exponential distribution. To obtain an exact solution, a
system of functional equations is required. However, to approximate the model, we consider the
cases of slow or fast transitions and calculate the first-order corrections using either the transition
rate or its inverse. Specifically, we focus on the case of slow transitions and find that the average
fitness is equal to the average fitness for evolution on static fitness landscapes, but with the
addition of a load term. We also investigate the model for a small number of genes and identify
the exact transition points to the transient phase.

Copyright c© 2023 EPLA

Introduction. – The study of evolutionary dynamics
on fluctuating fitness landscapes has emerged as a key area
of modern evolutionary theory [1–37]. Fluctuations in fit-
ness landscapes can arise due to various factors, such as
the presence of toxins, changes in pH, temperature, or
other environmental changes.

According to evolutionary theory, populations adapt to
a given landscape, and non-trivial evolution arises in a
dynamic environment. It has been widely assumed that
changing environments are a key factor contributing to the
complexity of population evolution. Typically, simple gene
models are used to study the dynamics of evolutionary
adaptation in a dynamic environment [1,20]. However, we
are interested in the case of evolution with many genotypes
and epistasis, which has far-reaching implications in the
real world.

In this study, we investigate the dynamics of quasis-
pecies models in a dynamic environment with a focus
on large genome lengths. The models are studied in
a stochastic environment with small or large transition
rates [23–28]. We consider a haploid, infinite population
model with symmetric mutations, where the forward and
backward mutation rates are equal, and there is no recom-
bination. The model assumes that the genome is a chain
of L genes, with each gene being one of two types: + or −.

(a)E-mail: saakian@yerphi.am (corresponding author)

Denoting the gene type as sl, we define the fitness of the
genome s1, . . . , sL as f(s1, . . . , sL). If the fitness can be
decomposed into f(s1, . . . , sL) = f1(s1) + . . . +fL(sL),
there is no epistasis; otherwise, we encounter non-zero
epistasis. In this study, the fitness depends on the mean
number of gene types, leading to a symmetric fitness
landscape.

There have been extensive studies of quasispecies mod-
els on static fitness landscapes with a constant mutation
rate [23,28]. Exact solutions for the dynamics on a smooth
fitness landscape at the large genome limit have been ob-
tained [29,30]. In quasispecies models on static fitness
landscapes, two phases are observed: the selective phase
at small mutation rates and the non-selective phase at high
mutation rates. On the other hand, interesting qualitative
results have been derived for the quasispecies model on
fluctuating fitness landscapes [14,15] for the case of ran-
dom fluctuations in the fitness landscape. More precise
results have been obtained for the periodic change of the
single peak fitness positions [16–19] using the methodology
of our previous work [31]. An important finding reported
in [14] is that at very high levels of fluctuations, the sys-
tem can lose the selective phase, even for small mutation
rates.

Our research aims to investigate the impact of ran-
dom transitions between two general fitness landscapes
on the evolution of populations. This problem resembles
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somehow the mutator phenomenon, where the mutation
in a specific gene in the genome results in a drastic change
of the mutation rates of other genes or their fitness land-
scape [32], so we again have an evolution with two fitness
landscapes. In the case of the mutator, there is a well-
formulated mathematical model with a system of 2(L+1)
equations (where L is the genome length) [32].

However, the accurate consideration of evolution on
fluctuating fitness landscapes requires a complicated sys-
tem of functional equations, it is a much harder mathe-
matical tool than the one used in the mutator model [32].
The significant difference between the two phenomena lies
in the fact that we have macroscopic transition rates for
the mutator model, while our model of evolution on fluctu-
ating fitness landscapes assumes stochastic transitions. As
a result, the mathematical treatment of the two problems
differs significantly.

First we solve the case of slow transitions by using
our previous results for the dynamics of evolution on a
static fitness landscape, and then solve the fast tran-
sition case by introducing an effective Hamilton-Jacobi
equation.

In the next section, we present our model by formulat-
ing a large system of ordinary differential equations. In
the third section, we apply our method to solve the dy-
namics of the Crow-Kimura (CK) model [25,26] with a
given fitness function, starting from a steady state of the
model with an alternative fitness function.

In the fourth section, we apply our method to ran-
dom fluctuations in the fitness landscape and calculate the
mean fitness of the model with a fluctuating fitness land-
scape in the case of slow transitions. In the fifth section,
we solve the fast transition case.

Finally, in the sixth section, we consider a model with
few genotypes and directly calculate the transition point
to the transient phase without using the Hamilton-Jacobi
equation.

Formulation of the mathematical model. – We
consider a model with L two type genes. We denote the
gene type as ±1, which we further denote as spins. Thus
the genome is a sequence of L spins; we have 2L differ-
ent (genomes) sequences. We denote different sequences
via an index 0 ≤ i ≤ 2L − 1. The Hamming distance
d(i, j) between two sequences (genomes) is the number of
differences in the signs.

We denote by μij the mutation rate from the i-th to the
j-th state. For d(i, j) = 1, we have a mutation rate μ/L,
also μii = −μ. Thus we consider only point mutations,
and μ is the mutation rate per genome. The Crow-Kimura
model (or parallel mutation selection model [25]) is defined
via a system of equations,

dP (i, t)
dt

= (ri + μii − R)P (i, t) +
∑
j �=i

μjiP (j, t)

= (ri − μ − R)P (i, t) +
μ

L

∑
j,d(i,j)=1

P (j, t),
(1)

where the sum is over the neighbors with the Hamming
distance d(i, j) = 1, ri is the fitness of i-th genome, mean
fitness R(t) =

∑
j P (j, t)rj , P (i, t) is the fraction of i-th

genotype in the population, and there is a balance condi-
tion

∑
i P (i, t) = 1.

We define the 0th sequence as the one with only + gene
type. For the symmetric fitness case, when the fitness is a
function of the total number of mutations (steps) from the
0th sequence, we introduce a fitness function f(m), where
the variable mj is an equivalent of the magnetization in the
Ising model with L spins taking + and − spins and having
j number of − spins, mj = 1 − 2d(j, 0)/L. We give such
a definition of the variable m from the statistical physics
perspective, and the model is mapped to the system of 1-
dimensional Ising models in the transverse magnetic field,
m is the equivalent of spin [31].

We collect all of the sequences with the Hamming dis-
tance l from the 0th sequence, to the Hamming class, and
denote by p̂l the total probability of the l-th Hamming
class. There are L!

l!(L−l)! possible sequences in the l-th
class. Following [24,26] we get the following equation from
eq. (1):

dp̂l(t)
dt

= (f(xl, t) − μ − R(t)) p̂l

+ μ

(
p̂l−1

L − l + 1
L

+ p̂l+1
l + 1

L

)
, (2)

where we introduce the fitness function rl = f(xl, t),
R(t) =

∑
l f(xl, t)p̂l is the mean fitness,

∑
l p̂l = 1, and

we define xl = 1 − 2l/L. The coefficients l+1
L , L−l+1

L arise
because we work with the Hamming class probabilities in-
stead of single sequence probabilities [24,26]. For l = 0, we
drop the p̂l−1 term in eq. (2) and drop the p̂l+1 term for
l = L. Later in the article we take μ = 1 for the simplicity
of the formulas.

We can omit the nonlinear terms Rp̂l in eq. (2), solve
the system of equations and obtain a solution pl. Then we
can recover the solution for p̂l simply as

dpl(t)
dt

= (f(xl, t) − 1) pl + pl−1
L − l + 1

L
+ pl+1

l + 1
L

,

p̂l(t) =
pl∑
n pn

,

(3)

Now we describe the fluctuations of the landscape. We
have the first landscape for the period of time T1 and T2

for the duration of the second fitness landscape.
We take the fitness f(x, t) = f1(x) for the first environ-

ment with a period T1, having a distribution

π1(T1) = α1 exp(−α1T1)

and we look at the ordinary CK equation, eq. (2) in the
interval 0 < t < T1.

Then we get new duration period T2 for the choice of
fitness f(x, t) = f2(x) with the probability density

π2(T2) = α2 exp(−α2T2)
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and continue the solution in the interval T1 < t < T1 +T2,
using f(x, t) = f2(x). Let us denote the i-th period of
epoch as T̂i, where either T̂i = T1 or T̂i = T2. We perform
an averaging, obtaining the mean fitness

R =
∑

i RiT̂i∑
i T̂i

,

where Ri =
∫ ti

ti−1

∑
l r

i
l p̂l(t)dt/T̂i, ti =

∑i
l=1 T̂i and ri

l

represents the fitness of the l-th sequence during the i-th
epoch, with ri

l = f1(1−2l/N) for the first fitness landscape
and f2(1 − 2l/N) for the second fitness landscape.

The dynamics. –

Dynamics with initial δ function distribution for a static
landscape. Equation (3) is a large system of ordinary
differential equations (ODE). We assume that the fit-
ness function f(x) is a smooth function of x, so f(xl) −
f(xl+1) ∼ 1/L. With relative accuracy O(1/L) we map
the system of ODEs to the partial differential equation.
To solve the dynamics of the Crow-Kimura model (eq. (3))
with the static fitness landscape f(xl, t) = f(xl), we used
the Hamilton-Jacobi equation version of the model [30].
We make an ansatz,

pl(t) = exp[LU(x, t)], (4)

where the coordinate x = 1−2l/L ranges over the interval
[−1, 1]. We just introduced a continuous function U(x, t)
to describe the set of pl. U(x, t) is the action function if we
look at a related Hamilton-Jacobi equation, or it can be
interpreted as an energy in the stochastic thermodynamic
approach.

Then we immediately get

pl−1(x, t) = exp[LU(x + 2/L, t)] ≈ exp[LU(x, t) + 2U ′],
pl+1(x) = exp[LU(x + 2/L, t)] ≈ exp[LU(x, t) − 2U ′],

where x = 1 − 2l/L, U ′ = ∂U
∂x . Using the last equation

and l = L(1 − x)/2, (L − l) = L(1 + x)/2 from eq. (3), we
obtain the following Hamilton-Jacobi equation:

∂U(x, t)
∂t

= f [x] − 1 +
1 + x

2
e2U ′

+
1 − x

2
e−2U ′

. (5)

Consider the relaxation after large period of time. Since
eq. (3) is a linear system of differential equations, there-
fore, the asymptotic solution is pl ∼ eRtgl, where R is the
maximal eigenvalue of the matrix in eq. (3). Taking a log-
arithm of the last equation we get an asymptotic formula
for the solutions of eq. (4),

U(x, t) = Rt + Û(x). (6)

We got the following equation for the asymptotic (steady-
state) distribution:

R = f [x] − 1 +
1 + x

2
e2Û ′(x) +

1 − x

2
e−2Û ′(x). (7)

We calculate Û ′(x) from eq. (7) and then integrate to ob-
tain Û(x) in the steady state. We define the surplus of the
distribution as s =

∑
l pl(1−2l/L). If we assume that the

distribution by eq. (4) has a maximum at some point x,
then s = x with the accuracy O(1/L). Putting Û ′(s) = 0
in eq. (7), we get for the surplus a simple equation [26],

f(s) = R.

We calculate steady state mean fitness R looking for the
minimum of the r.h.s of eq. (7) via Û ′, then the maximum
via x,

R = max[f(x) +
√

1 − x2 − 1]. (8)

We need to solve the Hamilton-Jacobi equation (eq. (5))
to obtain the dynamics of the model. Having the
Hamiltonian-Jacobi equation, we define the characteris-
tics y(t) with a parameter q, see [33],

dy/dt = (1 + y)e2v − (1 − y)e−2v,

q = f(y) − 1 +
1 + y

2
e2v +

1 − y

2
e−2v,

(9)

where v = U ′.
For the given initial distribution U0(x), we can imme-

diately obtain the value of U(x, t) at point x using the
equation

U(x, t) = U0(x0) +
∫ x

x0

v(y)dy + qt, (10)

where y is the trajectory of the characteristics that starts
at the point x0 and arrives at point x at time t. Therefore,
the characteristics are defined by x0 and q.

With the solution for U(x, t) obtained from eqs. (9)
and (10), we can determine the dynamics of the distri-
bution pl(t) using eq. (4). If U(x, t) has a maximum at
point x = s, then pl(t) has a maximum at l = N(1− s)/2.
The dynamics with a smooth initial distribution.

Equation (7) describes the distribution via the number
of mutations after a long period of time for a fitness func-
tion f(x). Consider a population in steady state with
the fitness function f1(x), which evolves according to the
model with fitness function f2(x). We will investigate how
the mean number of mutations changes for the population
distribution.

For the initial distribution, we have

R1 = f1(x) − 1 +
1 + x

2
e2v +

1 − x

2
e−2v, (11)

where we denote v = Û ′(x) and the steady state mean
fitness R1 and the surplus s1 are defined by the equations

R1 = max[f1(x) − 1 +
√

1 − x2]x,

f1(s1) = R1.
(12)

The initial distribution has a maximum at the point s1.
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For the dynamics of the model with fitness function
f2(x), we examine the equation along the characteristics,

q = f2(x) − 1 +
1 + x

2
e2v +

1 − x

2
e−2v. (13)

We can examine the characteristics arriving at the maxi-
mum point with q = f2(x) and calculate the time.

As the characteristics are defined by the parameter q
and the starting point x0, we need to find x0 for the tra-
jectory arriving at point x. Equation (13) is valid for point
x0, so we set x = x0. We obtain x0 from the system of
eqs. (11) and (13),

R1 − f1(x0) = q − f2(x0) ≡ f2(x) − f2(x0). (14)

We verify that x0 changes with x, whereas in [30], we used
the same x0 for different values of x.

We define two functions for x0: x02(x) for the case of
eq. (14) and x01(x) for the alternative case,

R1 − f1(x02(x)) = f2(x) − f2(x02(x)),

R2 − f2(x01(x)) = f1(x) − f1(x01(x)).
(15)

Figures 1, 2 correspond to a scenario in which the pop-
ulation distribution is relaxed at fitness f1(x) before time
t = 0, after which the fitness changes to f2(x).

By integrating the ODE between points x02(x) and x,
we obtain

t =
1
2

∫ x

x02(x)
dy

dy

F (f2(x), y)
,

F (f(x), y) =
√

(f(x) + 1 − f(y))2 − 1 + y2.

(16)

A more advanced situation is possible with two
characteristics.

For the two-characteristics solution, we have

t =
1
2

∫ x1

x0

dy

F (f2(x), y)
+

1
2

∫ x1

x

dy

F (q, y)
, (17)

where x1 is determined by the equation

(q + 1 − f2(x1))2 − 1 + (x1)2 = 0 (18)

and q = f2(x). Thus, we examine the dynamics first along
one characteristic between the points x0 and x1, and then
along the other characteristic between the points x1 and x.

Our solution in eq. (17) becomes applicable after the
first term in eq. (16) disappears, i.e., when x0 = x1, so

F (f2(x), x1) = 0,

f1(x1) − R1 = f2(x1) − f2(x),
(19)

Then the corresponding time T̂2 is defined as

T̂2 =
1
2

∫ x1

x0

dy

F (f2(x), y)
. (20)

If x given by eq. (18) is outside the interval (s1, s2), then
we have only the solution by eq. (16).

Fig. 1: The dynamics of the maximum of distribution s = x.
The vertical axis corresponds to time, the horizontal one to x.
The smooth line is our theoretical result by eq. (16), the solid
dots are given by numerics. f2(x) = x2, L = 1000, f1(x) = 2x2.
Before the time t = 0 the fitness function f1(x) has been chosen
for the long period of time; later f2(x) starts at t > 0.

Fig. 2: The dynamics of the maximum of distribution s = x.
The vertical axis corresponds to time, the horizontal one to x.
The smooth line is our numerical result, the solid dots are given
by our analytics eq. (17). f1(x) = (2/3)x2, L = 1000, f2(x) =
x2. Before the time t = 0, the fitness function f1(x) has been
chosen for a long period of time; later f2(x) starts at t > 0. We
use a solution with one characteristics until the point x < 0.433
and two characteristics for x > 0.433.

For time periods t < T̂2, we take X2(t) to be the inverse
of t(x) given by eq. (16), and later use the inverse of t(x)
given by eq. (17). We define X1(t) in the same way re-
placing f2 → f1, f1 → f2, R1 → R2, and we numerically
derive the inverse functions of t(x).

Our analytics is well confirmed by numerics, see
figs. 1, 2.

The fluctuation load. – In the case of a fluctuating
fitness landscape, we first look at an initial distribution
given by eq. (10), or the equivalent form with the change
f1(x) → f2(x), R1 → R2. We look at the dynamics for
long periods of times, randomly drawn from the exponen-
tial distribution, with the parameters α1, α2. The first
landsape has a probability α2

α1+α2
, the second one α1

α1+α2
.

Using the exponential distribution of the epoch periods
and ignoring O(α2) terms, we get

R = R1
α2

α1 + α2
+ R2

α1

α2
− Δ,

Δ =
α1α2

α1 + α2

∫ ∞
0

dt(f1(X1(t)) − f1(s1))

+
α1α2

α1 + α2

∫ ∞
0

dt(f2(X2(t)) − f2(s2))),

(21)
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where s1 is the surplus in the statics with the first fitness
landscape, and s2 for the second fitness case. The deriva-
tion of Δ in eq. (21), supported by eqs. (15)–(20), is the
main result of the work.

How many different analytical expressions for Δ exist?
Throughout our investigations (monotonic fitness func-
tions in the interval [0, 1]) we used 1 characteristic solution
for the dynamics on one fitness landscape and 2 character-
istics solution for the dynamics with an alternative choice
of a steeper landscape.

In principle, there could be a situation with two char-
acteristic solutions in evolution on both landscapess, so at
least 3 different solutions are possible.

Let us make some speculations, looking for some formal
analogies with information therodynamics [38]. There one
considers the dynamics around several vacuums, with Fi

defined as a free energy of the statistical physics dynamics
around the i-th vacuum. If pi is the probability of the
vacuum choice, then the effective free energy is defined as

F = p1F1 + p2F2 − T ln 2. (22)

We can map our eq. (21) to eq. (22), identifying Ri with
the local free energies around the given vacuum. Our spec-
ulation is meaningful for Δ > 0, which, as we verified, is
the case. Figure 3 illustrates the accuracy of our analytical
result, eq. (21).
Random transitions between many landscapes. Con-

sider the case of multiple landscapes with each period of
residence in the i-th landscape given by αi exp(−Tiαi).
We assume there are transition probabilities Qij between
the landscapes.

We examine the Markov process with the given transi-
tion probabilities and calculate the set of probabilities of
the system moving from the i-th landscape to the j-th.
We denote this probability as yij .

If the steady-state distribution of the discrete Markov
process with transition probabilities Qij is xi, then we
obtain yij = xiQij . The mean fitness is given by

∑
i

xiRi

Pαi
+

∑
i,j

xiQij

P

∫ ∞

0

dt(fj(Xij(t)) − fj(Sj))). (23)

Here, P =
∑

i
xi

αi
and Xij(t) is the mean surplus in the

j-th landscape when we have the steady-state distribution
of the i-th landscape at the start.

The fast transitions between landscapes. – Our
aim is to derive analytical expressions for the average fit-
ness, as explained in the introduction. Equations (21)
and (23) give the first-order correction in the transition
rate to the mean fitness expression, assuming weak tran-
sition rates α. We now seek an alternative expression for
the opposite case of fast transitions, where the epoch mean
length h is smal using the Runge-Kutta scheme for numer-
ical integration.

We consider the HJE for a time period t1 with the fitness
function f1(x) and then t2 with the function f2(x). We

Fig. 3: The average fitness vs. the transition rate a, f1(x) =
(2/3)x2, L = 200, f2(x) = 3x2/2. The smooth line is our
analytical result, the solid dots correspond to our numerics.
The accuracy is better for the small transition rates.

want to calculate the small time periods, so we need to find
u(x, t) = u(x, 0)+At+Bt2+Ct3. To solve the differential
equation dy/dt = g(y) in the interval t, we use a standard
3rd-order Runge-Kutta scheme,

k1 = g(y)t, k2 = g(y + k1/2)t, k3 = g(−k1 + 2k2)t,

y(t) = y(0) +
k1 + 4k2 + k3

6
.

Using this method, we obtain the following expression for
the effective Hamiltonian for the HJE of this system:

f [x]

+(1 + df(x)h)
1 + x

2
e2p +

1 − x

2
e−2p(1 − df [x]h)

+
(

1 + x

2
e2p +

1 − x

2
e−2p

)
1
α

df2[x]
7
24

, (24)

where df(x) = f ′
2(x)−f ′

1(x), f(x) = (f1(x)+f2(x))/2, and
p = U ′. To find the steady state, we look for the minimum
of eq. (23) via p, then look for the maximum via x. We
treat the last term in eq. (24) as a perturbation, and use
it to derive the following expression for the mean fitness:

R = f(x) − 1 +
√

1 − x2

(
1 +

1
α

df2(x)
7
24

)
. (25)

Here, x is taken as the maximum point for the function
f(x) − 1 +

√
1 − x2. Figure 4 illustrates the accuracy of

our analytical result, eq. (25) derived in the limit of small
1/a.

Exact expression of the scaling index for the
model with several gene case. – In the previous sec-
tions we derived approximate expressions for the average
fitness of population, while looking for the evolution on
fluctuating fitness landscape. We have focused on the long
genome length case. Here we consider several genomes.
We are interested in exploring possible phase transitions in
the problem. We do not need a Hamilton-Jacobi equation
approach and to avoid confusion use different notations
from those used in the previous section.
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Fig. 4: f1(x) = 2x2, L = 200, f2(x) = 4x2/2. The smooth
line is our analytical result, the solid dots correspond to our
numerics.

A single peak fitness case. Let us solve eq. (2) for
L = 1 and denote r0 = J , so we have a zero fitness rl for
l ≥ 1 and we take μ = 1,

dy

dt
= (J − 1 − Jx)x. (26)

The solution for y(t) ≡ p0(t) for a static landscape with a
single gene is

y(t) =
(J − 1)

J(1 − exp(−(J − 1)(t − t0)))
, (27)

where y0 is the solution at the t = t0. After a long period
of time we have an asymptotic expression,

y(t) = Y (t) ≡ yc + c exp[−k(t − t0)], (28)

k = J − 1, yc = 1 − 1/J .
While considering the transitions with the rate α be-

tween 2 fitness landscapes with the peak fitnesses J1, J2,
we have a distribution in the support [y1c, y2c], where
y1c = 1 − 1

J1
and y2c = 1 − 1

J2
are the steady state points

in the first and second landscapes. In figs. 5, 6 we give the
distribution for p1(y), the value of x when the system is in
the first landscape. The p2(y) has a similar distribution,
with a peak at y2c. At small α we have a peak at y = y1c,
fig. 5, later the singularity disappears, fig. 6. We identify
the second case with the transient phase, as the system
has lost the memory about first landscape.

Let us derive the scaling behavior near the peak. By
considering p(y) = 〈δ(y − Y (t))〉, we obtain
∫

dtα exp(−αt)δ(y − Y (t)) = α exp(−αt)/Y ′(t), (29)

where Y (t) is given by eq. (28). We are interested in the
behavior of x near the point y → yc. We obtain

p(y) =
α

yc
exp((k − α)(tt0)) =

1
(y − yc)n−1

,

n = α/k.

(30)

We get an exact scaling index [10].
Many genes in the genome. Let us consider an evo-

lution model with more than three genes. The solution is
described by the functions Yl(t) ≡ pl for the fractions of

Fig. 5: The probability distribution p1(y), for the model by
eq. (21) with random transitions between the landscapes and
the parameters J1 = 2, J2 = 4, α = 0.1.

Fig. 6: The probability distribution p1(y), for the model by
eq. (21) with random transitions between the landscapes and
the parameters J1 = 2, J2 = 4, α = 2.

genotype groups. By dropping the nonlinear terms, we can
look at the right part as Âp, where Â is a quadratic ma-
trix. Its maximal eigenvalue is just the steady state mean
fitness. We denote the next eigenvalue by R−λ. Then for
the general case, we assume the following asymptotics for
the solution:

Yl → yle
Rt + cle

(R−λ)t, (31)

where cl is proportional to the second eigenvalue’s related
eigenvector. We can use the method of the previous sub-
section, just replacing k by R − λ. Then we get that the
mean fitness distribution will change its behavior when

α = λ. (32)

Consider the model with three genomes, with the fit-
nesses J0, J1, J2, and mutation rates μ from the first to
second and from the second to third,

dy0
dt

= (J0 − μ − R)y0 = 0,

dy1
dt

= (J1 − μ − R)y0 + μy1 = 0,

R = J0y0 + J1y1 + J2(1 − y0 − y1).

(33)

We take J0 > J1 > J2 + μ. The we get simply R =
J0 − μ, λ = J0 − J1. We verified numerically that the
behaviour of the distribution is changed when α > λ.

Conclusion. – In this article, we tackled the evolu-
tionary dynamics of a quasispecies model on a fluctuating
fitness landscape and derived an exact transition point
to the transient phase for general evolution models. The
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first result is significant, as the quasispecies model has
broad applications ranging from virus evolution to cancer
and artificial intelligence [34,35]. The second result about
the transient phase has a similar mathematical frame-
work to other models, from ecology [36] to random ma-
trix products [37]. Our focus was on a specific case of the
Crow-Kimura model with random transitions between two
landscapes and slow transition rates. The problem is ana-
lytically challenging, and we used our previous results for
the dynamics of the Crow-Kimura model on static fitness
landscapes [30]. Our goal was to calculate the mean fitness
of the model. This quantity is equal to the mean fitness
of the population averaged via several landscape cases,
minus a quantity called the load, calculated by eq. (21)
for the small transition rate α and for the high transition
rate h ≡ 1/α, see eq. (25). To solve the model, we first
mapped our large system of ordinary differential equations
to the Hamilton-Jacobi equation and then solved the lat-
ter using the method of characteristics. We observed an
analogy with information thermodynamics, where differ-
ent landscapes are the analogs of different vacuums in ther-
modynamics, while the load is the analog of the entropy of
the ensemble of vacuums. We also explored the transient
phase in the Crow-Kimura model, when the mutation-
selection balance on one landscape ceases to work. Our
mathematical result is intuitive: the transient phase arises
when the transition rate from that landscape case is higher
than the gap between two eigenvalues of the evolutionary
dynamics matrix, which is the relaxation rate in the static
landscape. Our eqs. (14)–(20) can be applied to derive the
Berry phase in evolution.
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