
Theoretical Population Biology 153 (2023) 91–101

a

b

A

c
d
i
g
i
e
i
o

l
m
m
p
a

J

h
0

Contents lists available at ScienceDirect

Theoretical Population Biology

journal homepage: www.elsevier.com/locate/tpb

Determining themost recent common ancestor in a finite linear
habitat with asymmetric dispersal
Kyle G. Teller a,∗, James M. Pringle b

Department of Mathematical Sciences, Salisbury University, Salisbury MD 21801, United States of America
Department of Earth Sciences, and the Institute of Earth, Oceans, and Space, University of New Hampshire, Durham NH 03824, United States of
merica

a r t i c l e i n f o

Article history:
Received 22 September 2022
Available online 13 July 2023

Keywords:
Asymmetric dispersal
Coalescence
Marine population genetics
Effective population size
genetic diversity

a b s t r a c t

Many species that are birthed in one location and become reproductive in another location can be
treated as if in a one-dimensional habitat where dispersal is biased downstream. One example of such
is planktonic larvae that disperse in coastal oceans, rivers, and streams. In these habitats, the dynamics
of the dispersal are dominated by the movement of offspring in one direction and the distance between
parents and offspring in the other direction does not matter. We study an idealized species with non-
overlapping generations in a finite linear habitat that has no larval input from outside of the habitat
and is therefore isolated from other populations. The most non-realistic assumption that we make
is that there are non-overlapping generations, and this is an assumption to be considered in future
work. We find that a biased dispersal in the habitat reduces the average time to the most recent
common ancestor and causes the average location of the most recent common ancestor to move from
the center of the habitat to the upstream edge of the habitat. Due to the decrease in the time to the
most recent common ancestor and the shift of the average location to the upstream edge, the effective
population size (Ne) no longer depends on the census size and is dependent on the dispersal statistics.
We determine the average time and location of the most recent common ancestor as a function of the
larval dispersal statistics. The location of the most recent common ancestor becomes independent of
the length of the habitat and is only dependent on the location of the upstream edge and the larval
dispersal statistics.

© 2023 Elsevier Inc. All rights reserved.
1. Introduction

Dispersal has an important role in understanding the genetic
onnectivity of a population. Low dispersal tends to lead to in-
ividuals near each other being more genetically similar than
ndividuals further apart (Wright, 1943). This in turn leads to
ene flow restrictions that correlate to the amount of dispersal
n the population (Sawyer, 1977). Therefore, understanding the
ffects of dispersal on the genetic structure will help to make
nferences about the overall geographic structure of a population
f individuals.
Some of the most well-known migration models are the is-

and model (Maruyama, 1970; Wright, 1943), the steppingstone
odel (Kimura and Weiss, 1964), the spatial 3-Fleming–Viot
odel (Barton et al., 2010), and the continuous, finite, linear
opulation model (Wilkins and Wakeley, 2002). In the island
nd steppingstone models, the population is broken down into
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demes or subpopulations that are connected through migration
(Fig. 1). In the island model, there is no spatial distribution of
offspring, but all larvae migrate from a common pool. In the
steppingstone model, demes are aligned linearly, and migration
only occurs between adjacent demes. In the island model, larvae
are dispersed from a common pool and therefore would not be
a good representation of a linear population of individuals. In
the stepping-stone model, two assumptions would not work well
for a linear population of individuals. The dispersal is assumed
to occur between neighboring populations and this exchange is
assumed to be isotropic. These assumptions have been relaxed
in the literature, but it is unclear how this model can be applied
to the distribution of individuals along a linear habitat such as a
coastline or river where there are no natural barriers to subdivide
the population into subpopulations. The spatial 3-Fleming–Viot
model helps to overcome these limitations by considering a con-
tinuous Poisson point process of extinction-recolonization events.
The continuous, finite, linear model extends the spatial structure
of the steppingstone model where each individual’s offspring
are allowed to disperse continuously over a linear domain. The
individuals are uniformly distributed across the domain and the
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Fig. 1. Based on Selkoe and Toonen, 2011’s 2011 models of dispersal. The circles
represent sub-populations along a coastline. (A) Island Model: Populations can
self-recruit but also contribute to a well-mixed larval pool. (B) Steppingstone
Model: Populations tend to exchange migrants between nearest neighbors or a
population a certain distance away in both directions (i.e., 2 populations away).

locations of offspring are distributed symmetrically around their
parents. Near the edge of the boundaries, the distribution of
offspring becomes skewed towards the inside of the domain and
the distribution is not fully symmetric but still centered around
the parents’ location.

We focus on expanding the continuous, finite, linear model of
ilkins and Wakeley (2002) to one that accounts for an asymme-

ry in the dispersal of offspring; in the model presented here, the
verage offspring settles to one side, downstream, of its parents.
he continuous, finite, linear model described by Wilkins and
akeley (2002) assumes that every individual produces a very

arge number of gametes, which are distributed according to a
ormal distribution around the individual’s location with varia-
ion σm. The boundaries of the continuous, finite, linear model, are
assumed to be reflecting, meaning that gametes that land outside
the domain would end up the same distance away from the edge
but inside the domain. No physical justification is given for these
boundaries except that they would maintain a constant popula-
tion density and allow migration to be conservative. From this
model, Wilkins and Wakeley (2002) showed that the coalescent
location is biased towards the center of the domain when the
migration length is smaller than the length of the domain.

To account for the asymmetry in dispersal the model pre-
ented here assumes that individuals produce a very large num-
er of gametes that are moved an average distance downstream
rom their parents with some variation around this mean. Throu-
hout this paper, our model assumes absorbing boundary condi-
ions, where gametes that land outside the domain do not survive.
his is more realistic in most ecosystems where the habitat
eyond the extent of the population is unsuitable for survival
nd there would be high mortality. A constant population density
s assumed to be maintained by each adult producing enough
ffspring so that all of the suitable habitat is occupied. Therefore,
he model presented here represents the continuous, finite, linear
odel with asymmetric dispersal and absorbing boundaries.
One example of where this model would be applicable is

arine and riverine environments, where there is physical trans-
ort of offspring due to the currents or wind (Cruzan and Hen-
rickson, 2020; Kling and Ackerly, 2021; Pringle et al., 2011). In
hese systems, the offspring are transported an average distance
92
in a particular direction (downstream) of their parents, though
there can be a substantial deviation from the average (Siegel
et al., 2003; White et al., 2010). Thus in these environments,
there is a bias in the direction that offspring will be dispersed.
This bias in offspring movement will also create a bias in gene
flow that will be observable from different measures of genetic
diversity (Sundqvist et al., 2016).

One way to interpret the genetic diversity of a population
is through coalescent theory and the time to the most recent
common ancestor. Coalescent theory has played an important
role in population genetics since its introduction in the 1980s
by Kingman (1982). Kingman found that a larger population size
led to a proportionally larger time to the most recent common
ancestor. The Kingman coalescent has been used to develop many
models and to extract parameter values but has only recently
been applied to models with a spatial distribution of individuals
and has been termed the ‘‘structured coalescent’’ (Barton et al.,
2010; Wilkins and Wakeley, 2002; Wilkinson-Herbots, 1998). The
coalescent is the backward-in-time process that can explain how
a common gene in a population originates from a single indi-
vidual in the past. The coalescent process takes the genes in the
current population and models the ancestry back in time to the
most recent common ancestor of each of those genes. The time
it takes for all individuals that share a common gene from this
common ancestor is called the time to the most recent common
ancestor (TMRCA), and the physical location of this common an-
cestor is called the location of the most recent common ancestor
(XMRCA). Both the average time to the most recent common
ancestor and location play key roles in determining the genetic
diversity of the population.

Models of the coalescent take information that we have in
the present and use it to constrain the possible ancestry of the
individuals in the past. In his original definition of the coalescent,
Kingman assumed that there were non-overlapping generations
with a constant population size and that an individual’s ancestor
could have come from anywhere in the domain. Kingman’s last
assumption means that the location of the parent and offspring
are not correlated, however, this is not realistic for spatially
extended linear populations with physically realistic dispersal.

Our work expands upon the coalescent process described by
Wilkins and Wakeley (2002) to include asymmetric dispersal.
Estimates of the average time and location of the most recent
common ancestor are derived for a linear population. A numerical
simulation is used to validate these estimates. When the asym-
metry becomes significant the average location of the most recent
common ancestor no longer is dependent on the length of the
habitat and is located near the upstream edge. Also, the average
time to the most recent common ancestor is reduced to less than
what would be expected for a population with isotropic dispersal.
When the asymmetry is small, or the spread is large both the time
and location of the most recent common ancestor do converge to
the results of Wilkins and Wakeley (2002) and Kingman (1982).

2. The model

Many different species have quasi-one-dimensional habitats
these could be along coastlines, in rivers, in streams, or in wind-
dispersed plants. These are habitats where the length of the
habitat is much larger than the width, and the dispersal statistics
along the width are constant. This includes species like trees and
shrubs, the green crab, barnacles, and other near-shore, coastal, or
inter-tidal benthic species (Hyder et al., 1998; Kling and Ackerly,
2021; Siegel et al., 2003; Wares and Pringle, 2008; White et al.,
2010). The population that is modeled here would be represen-
tative of these species in a finite linear habitat with a current
that sends propagules a mean distance downstream with some
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Fig. 2. Depiction of two different dispersal scenarios. In both figures, P is the parent’s location and the distribution represents the possible locations of larvae. The
op figure is a depiction of isotropic dispersal where larvae are equally likely to settle in either direction away from their parent but most likely near their parent.
he bottom figure is a depiction of asymmetric dispersal where larvae are more likely downstream from their parent and have variation around that downstream
ocation. Both figures have variation around a mean labeled Ldiff , but the bottom figure has a non-zero mean that is termed Ladv .
ariation around this mean. Competition occurs through habitat
imitation with only one individual being able to occupy each
abitable location. The model assumes a uniformly distributed
opulation of individuals over a length L. All individuals are
aploid with non-overlapping generations. Each adult individ-
al has a location of birth and a location of reproduction. Each
ndividual in the population produces enough larvae such that
he population density remains constant in space and time. The
oundary conditions are assumed to be absorbing; this means
hat any larvae that land outside the habitable length of the
abitat do not survive.
To model the dynamics of parents and offspring the probabil-

ty distribution of a parent’s location (xparent) given an existing
offspring location (xoffspring) is defined by a truncated Gaussian
distribution:

f
(
xparent; xoffspring , L, Ladv, Ldiff

)
=

1
√
2∗π

∗ e
−

(xparent−(xoffspring−Ladv ))2

2∗L2diff

Ldiff ∗

⎡⎣(
1+erf

(
L−(xoffspring−Ladv )

Ldiff ∗
√
2

))
2 −

(
1+erf

(
0−xoffspring−Ladv

Ldiff ∗
√
2

))
2

⎤⎦ . (1)

There are three parameters: Ladv, Ldiff, and L, where L is the
length of the habitable domain and goes from 0 to L, Ladv is the
mean distance downstream larvae travel, and Ldiff is the stochastic
variation of larval dispersal. Ladv represents the difference be-
tween the mean settlement location of larvae from the location
of the parents and includes direction; here a positive Ladv is
downstream. Ldiff is the standard deviation of locations where
the larvae settle and accounts for the variability in the dispersal
of individual larvae (Fig. 2). In coastal oceans and rivers, this
stochastic variation is a function of the variation of alongshore
currents, the Lagrangian timescale of fluctuations of the mean
currents, and the time that the larvae spend in the plankton stage
(Siegel et al., 2003). The distribution above is normalized to unity
because a parent must have existed in the previous generation.
Therefore, probabilities for all possible locations of a parent for a
given individual must integrate to 1. If Ladv = 0 we recover the
continuous, finite, linear model of Wilkins and Wakeley (2002),
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but with absorbing boundary conditions. The results of Wilkins
and Wakeley (2002) are not qualitatively different when the
boundary conditions are changed from reflecting to absorbing. A
Gaussian dispersal kernel shifted a mean distance downstream, as
used in our model, is a good representation of the movement of
passive planktonic larvae that are dispersed by the currents along
coasts and rivers (Siegel et al., 2003).

To implement the model, every individual, in a domain of
length L, in the starting generation shares a common gene and is
labeled as a separate lineage. Time is stepped backward to deter-
mine how all the lineages coalesce into fewer and fewer lineages
as time moves into the past. The problem of clumping of individu-
als in the domain is avoided because there is habitat competition
and population density remains constant from generation to gen-
eration (Felsenstein, 1975). Each generation backward in time
the parent of an individual was found by randomly generating
the location of the parent from the probability density function
(Eq. (1)) and using the individual’s current location in the domain
along with the parameters Ldiff and Ladv. When two or more
individuals share a parent in the previous generation, a coalescent
event has occurred, and the lineages involved reduce to one
lineage. The location of each of these events is recorded. Each
coalescent event reduces the number of uncoalesced lineages by
at least 1. This process is repeated with the remaining lineages
until the final coalescent event. The location and generation of
this event were recorded. This simulation was then run thousands
of times to get an average time and location of the most recent
common ancestor.

3. Results

3.1. The source region

In a population with asymmetric dispersal, if we consider
any location more than an average dispersal distance from the
upstream edge of the habitat, it is both a source of larvae for other
locations downstream and a sink for larvae from locations further
upstream. Therefore, throughout the domain, most regions are
both sources and sinks of genes. The upstream edge of the habitat,
however, will act as a pure genetic source, as no larvae can enter
the habitat from even further upstream. Furthermore, because
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Fig. 3. Ancestry of all individuals in a population of 500 individuals. The red stars represent coalescent events. In Figure a, dispersal is symmetric (Ladv = 0), while
Figures b, c, and d exhibit asymmetric dispersal (Ladv = 5, 10, and 20 respectively). When there is no asymmetry, the linages occur throughout the domain and it
takes a much longer time to get to the most recent common ances, while as the asymmetry increases the lineages end up in the upstream edge. With increasing
asymmetry, the number of generations it takes for the asymmetry to cause lineages to be contained in the upstream edge decreases.
a
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the mean currents of the ocean send most propagules further
downstream, to maintain the constant population density, this
upstream region must be a region that is mostly maintained by
the few larvae that originated at the upstream edge and return
to the upstream edge. The dynamics at the upstream edge are
discussed in detail by Byers and Pringle (2006), Pringle and Wares
(2007), Pachepsky et al. (2008). The population range can thus be
split into two regions: a region at the upstream edge in which
most new recruits are from that region (‘‘the source region’’)
and the rest of the domain where each location in the habitat
is maintained mostly by larvae from even further upstream (the
‘‘sink region’’) (Doebeli, 1995; Lebreton et al., 2000).

The existence of an upstream source region can be illustrated
by tracing the spatial distribution of lineages back in time through
the domain. In Fig. 3, there are four ancestry diagrams for a
variety of dispersal scenarios with increasing amounts of mean
downstream dispersal of larvae (e.g., increasing Ladv). In Fig. 3a,
there is no asymmetry in the dispersal, and the ancestors of
individuals move according to the random distribution defined
by equation one. When lineages overlap in a generation, they coa-
lesce, and this coalescence would be expected to occur according
to a random distribution in space within the habitat. When the
dispersal is made asymmetric in Fig. 2b-d, (Ladv>0) as one moves
back in time the locations of ancestral lineages are found to move
nearer to the upstream edge of the habitat, and the coalescent
events are expected to occur at the upstream edge of the habitat.
When Ladv has increased in the bottom two graphs, the lineages
are seen to be constrained to the upstream edge more recently
in the past and the lineages originate closer to the upstream
edge. This upstream region that is the origin of all lineages in the
population is the population source region discussed above.
94
Since Ladv and Ldiff determine how far away from their parent
a larva disperses, the length of the population source region will
depend on Ladv and Ldiff. The upstream population source region
will be the portion of the domain where the likelihood that larvae
are moved downstream out of the domain by the mean currents
(Ladv) is balanced by the likelihood that the stochastic currents
(Ldiff) return them to this region. For the average currents, the
distance that a propagule would travel would be n*Ladv after
n generations. Then, since the stochastic spread is a diffusive
process it will move a propagule through a length of n0.5

∗ Ldiff
fter n generations (Siegel et al., 2003). Therefore, setting the
ength of movement by the mean and stochastic components

f dispersal equal, after n =
L2diff
L2adv

generations on average the
movement of propagules by the mean currents and the stochastic

variance of dispersal are equal. Therefore using n =
L2diff
L2adv

in either

length equation (n*Ladv or n0.5
∗ Ldiff ) produces the fundamental

length scale (Wares and Pringle, 2008):

LSource =
L2diff
Ladv

. (2)

This is the length of the domain over which the mean transport
and stochastic components of dispersal take the same amount of
time to move a propagule.

3.2. The location of the most recent common ancestor

Since the mean current and diffusion balance each other in
the population source region, larvae that settle in the popula-
tion source region are most likely to have had a parent from
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Fig. 4. Probability density function of the location of the most recent common ancestor with and without an asymmetry. The figure on the left is for no asymmetry
in the dispersal while the figure on the right includes asymmetric dispersal. When there is no asymmetry, the probability is centered in the middle of the domain,
while when there is an asymmetry it is skewed to the left (the upstream edge).
the population source region. In the population source region,
there is no larval input from farther upstream since there is no
population farther upstream. However, all other regions in the
domain receive more larvae from upstream than they do from
local production because the dispersal is defined (when Ladv>0)
to be biased downstream. For the neutral genetics considered
here, the populations downstream from the upstream population
source region are genetic sinks, and the genes in these regions
will over time be dominated by the contributions of migrants
from even farther upstream.

Therefore, the population source region is most likely to con-
tain the most recent common ancestor of the population. When
looking at a geographically structured population the location of
the most recent common ancestor defines the genetic structure
of the population and suggests where the genetic diversity of the
population originates (Austerlitz et al., 1997). In a finite linear
population with symmetric dispersal and nonoverlapping genera-
tions, the ancestors of individuals will have a random distribution
that is biased towards the center of the domain, as a result, the
average location of these events will occur in the middle of the
domain (Wilkins and Wakeley, 2002).

In Fig. 4, five thousand runs of the model are compiled to show
the spatial probability distribution of the location of the most
recent common ancestor of a gene found in the entire population
in runs with either symmetric or asymmetric dispersal. When
the dispersal of larvae is symmetric the probability peaks at the
center of the domain and is distributed symmetrically around the
center of the domain. However, when the dispersal is asymmetric
the highest probability of the location of the most recent common
ancestor occurs near the upstream edge. The probability of a
location being the location of the most recent common ancestor
diminishes rapidly in the downstream (to the right) direction.
This means that the ancestor of an individual living today most
likely came from the upstream edge. When there is an asymme-
try, the genes of the current population have descended from a
smaller population in the population source region.

Figs. 2 and 3 can help explain how genetic diversity is main-
tained from the population source region. Because the highest
probability of the most recent common ancestor is in the popu-
lation source region (Fig. 4) and all ancestors eventually originate
from the population source region (Fig. 4), alleles in that region
are more likely to become fixed than in the rest of the habitat.
Therefore, most alleles that become fixed in the population come
from the population source region and the most recent common
ancestor of a gene will most likely be from the population source
region.
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The location of the most recent common ancestor is biased up-
stream because dispersal is biased downstream. Each generation
into the past, the expected average location of the ancestor of
an individual should be a distance of Ladv closer to the upstream
edge. This phenomenon is shown in Fig. 3; as Ladv increases, the
location of ancestors becomes closer and closer to the upstream
edge. From Fig. 3 when Ladv = 20 after 20 generations ancestors
only come from the upper half of the domain and no further.
Further back in time the reduction of ancestors to the upstream
edge will increase until all ancestors must have come from the
population source region.

The most recent common ancestor is the culmination of sev-
eral coalescent events. A coalescent event takes place when two
or more individuals have the same ancestor in the previous
generation. Early coalescent events between individuals are ran-
domly distributed throughout the domain, but when Ladv>0, the
coalescent location is most likely to be Ladv upstream of the
individuals whose lineage combines (Fig. 3). Therefore, while co-
alescent events can take place everywhere in the habitat, they are
more likely to occur upstream of the location of the individuals
who came from a common parent. As time goes further back
and the number of distinct lineages decreases, the influence of
the asymmetry will cause the location of coalescent events to
shift towards the upstream edge. Since an ancestor is on average
a distance Ladv upstream the time it takes for all lineages to
be contained in the population source region will be dependent
on Ladv. The average time for lineages to be contained in the
upstream edge would be on the order of L/Ladv generations. After
this time all lineages and coalescent events will be very likely to
occur in the population source region (Fig. 3).

Since the length of the population source region is defined

by LSource =
L2diff
Ladv

, and it does not receive many migrants, it
follows the assumptions of a population described by Wilkins and
Wakeley (2002). Therefore, the ancestor of an individual in the
population source region will be biased towards the middle of the
population source region. The most recent common ancestor of
the population must also occur within the population source re-
gion because it serves as the source for all lineages throughout the
habitat. This suggests that the average location of the most recent
common ancestor will come from the middle of the population
source region. The resulting expression for the average distance
from the upstream edge of the most recent common ancestor is:

XMRCA =
LSource

=
L2diff (3)
2 2 ∗ Ladv
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Fig. 5. Simulation of the average coalescent location with changing mean downstream dispersal (Ladv) and constant stochastic spread (Ldiff) in a population of 100
ndividuals and a domain length of 100. The solid line is data from Monte Carlo simulation runs of the model while the dashed line represents the expression from
q. (3). For large Ladv, this does well to approximate the location but as Ladv gets smaller the expression begins to become more and more inaccurate because the
ength of the source region becomes larger than the length of the habitat. The black star represents when the source region becomes as large as the length of the
abitat.
To test the expression for the average location of the most
ecent common ancestor, simulations of the model were run with
00 individuals each separated by 1 km. The first simulation had
constant Ldiff of 15 km and an increasing Ladv that ranged from
km to 40 km (Fig. 5). The second simulation had a constant

adv of 10 km and an increasing Ldiff that ranged from 5 km to
40 km (Fig. 6). Both sets of simulations were run 5000 times.
For these simulations, the average location of the most recent
common ancestor was plotted and compared to the estimate for
the location of the most recent common ancestor (Eq. (3)). When
LSource is less than the length of the habitat L, the asymmetry
matters and Eq. (3) is a good first-order predictor of the location
of the most recent common ancestor. When LSource is greater than
L, it is not. This suggests that when the asymmetry is large enough
that the scale for the size of the source region (Eq. (2)) is smaller
than the domain size, the genetic diversity of the population is
maintained by the individuals in the population source region.

In the limit of small Ladv and/or large Ldiff, the expression for
Lsource (Eq. (2)) gives a length that is larger than the length of
the habitat. In these limits (LSource>L) the whole habitat will be
the population source region and the effects of dispersal are the
same as if it is isotropic, as the stochastic and mean components
are balanced. This leads to ancestors being biased towards the
center of the domain as in the isotropic dispersal scenario (Fig. 3a
and Fig. 4). Thus, the average location of the most recent common
ancestor will converge back to the middle of the entire domain
when Ladv is small, and the results become similar to those in
Wilkins and Wakeley (2002).

3.3. Effective population size

In the simplest model of common ancestry with random mat-
ing and no population structure, the time to the most recent
96
common ancestor is proportional to the population size (King-
man, 1982). However, many real populations do not align with
these assumptions and have some population structure. It is often
useful to define the size of the population so that the dynamics
are like those found in the simpler model of Kingman (1982).
Therefore, in many populations, the effective population size
(Ne) can be defined as the size of the population that would
give the same time to the most recent common ancestor as a
population that obeys the assumptions of Kingman. Ne often does
not represent actual individuals in the population but the number
of idealized individuals that produce the time to the most recent
common ancestor as expected by Kingman. For a population with
asymmetric dispersal, this ideal population size Ne reflects the
actual size and location of the population within the domain
whose descendants will persist in the domain. Since the popula-
tion source region is the most likely region for the location of the
most recent common ancestor the genetics and time to the most
recent common ancestor of the entire population will depend on
the population source region. Therefore, Ne would be the number
of individuals contained in the population source region.

The population of the source region is Lsource, the length of the
region, multiplied by the population density Hdens in the number
of individuals per unit length, so

Ne =
L2diff
Ladv

∗ Hdens (4)

In the limit that Ladv goes to zero or as Ldiff goes to infinity the
effective population size will get bigger than the census size (N).
Because the Ne derived above represents the actual number of
individuals in the population it cannot be larger than the popu-
lation size. The expression for Ne (Eq. (4)) is only valid when the
predicted N is less than the total population, or equivalently, that
e
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Fig. 6. Simulation of the average coalescent location with changing spread (Ldiff) and constant mean currents (Ladv) in a population of 100 individuals and a domain
length of 100. The solid line is data from Monte Carlo simulation runs of the model while the dashed line represents the expression from Eq. (3). For small Ldiff this
oes well to approximate the location, but as Ldiff gets larger, the equation becomes more inaccurate due to the source region becoming bigger than the length of
he habitat. The black star represents when the source region becomes as large as the length of the habitat.
he Lsource<L. When the Lsource>L, the entire population is retained,
nd Ne is approximately N. This estimate of Ne can be tested by
omparing the time to the most recent common ancestor in the
odel to the time to the most recent common ancestor expected

or a population of size N = Ne.

.4. The time to the most recent common ancestor

For many populations, the time to the most recent com-
on ancestor controls the diversity in the population and al-

ows an estimate of the age of evolutionary divergence (Eizirik
t al., 2010). The time to the most recent common ancestor
an also give insight into the probability of relatedness between
ndividuals given their geographic separation (Neigel et al., 1991).

Kingman assumed that any individual in a population could
ate with any other individual, unlike the assumption in this
ork where mating is with nearby individuals. Given Kingman’s
ssumptions for a haploid population with N individuals with
andom mating, the average time to the most recent common
ncestor for a sample of n individuals is 2N*(1-1/n) generations
Kingman, 1982). Although the assumptions of Kingman’s model
o not fit this model, within the source region the assumptions
re nearly met, except that everywhere in the model mating is
ith adjacent individuals and there are absorbing boundaries.
owever, in one dispersal event, every individual within the
ource region could be adjacent to another individual whose par-
nts were somewhere else within the source region. This suggests
hat the population of the source region, or Ne, could be used to
stimate the time to the most recent common ancestor.
When considering the relationship between coalescent times

nd N , a smaller coalescent time will define a N that could be
e e
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smaller than the census population size. Therefore, for a haploid
population with non-overlapping generations, the average time
to the most recent common ancestor for n individuals would be
2*Ne(1-1/n) generations. The (1-1/n) accounts for sampling only n
individuals in the population. Using the effective population size
defined above (Eq. (4)) with the average time to the most recent
common ancestor derived by Kingman, the average time to the
most recent common ancestor for individuals in the source region
for a sample of n individuals is:

TMRCA = 2 ∗
L2diff
Ladv

∗ Hdens(1 −
1
n
) (5)

when LSource<L. When LSource>L the coalescent time converges to
TMRCA = 2 ∗ N ∗ (1 −

1
n ).

The expression above (Eq. (5)) fails to account for the time it
takes lineages outside of the source region to migrate backward in
time into the source region. For lineages that start furthest from
the upstream edge of the domain, this timescale should be on
the order of L/Ladv. To correct for this time, the time it would
take descendants from the source region to move throughout
the domain, or equivalently the time in the past it would take
lineages from the downstream most part of the population to
have come from the source region, Eq. (5) must be increased by
L/Ladv. The average time to the most recent common ancestor for
individuals anywhere in the domain, for a sample of n individuals,
should then be:

TMRCA = 2 ∗
L2diff
Ladv

∗ Hdens

(
1 −

1
n

)
+

L
Ladv

(6)

To test the expressions for the average time to the most recent
common ancestor, simulations of the model were run with 100
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Fig. 7. TMRCA from the model for increasing average dispersal distance (Ladv) and constant spread (Ldiff) in a population of 100 individuals and a domain length of
00. The solid line is data from Monte Carlo simulation runs of the model while the dashed line represents the expression from Eq. (6). The scaling from Eq. (6)
atches the first-order behavior of the time to the most recent common ancestor. As Ladv becomes smaller the expression for Ne becomes larger than the census
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ndividuals each separated by 1 km. The first simulation had a
onstant Ldiff of 15 km and an increasing Ladv that ranged from
km to 40 km (Fig. 7). While the second simulation had a

onstant Ladv of 10 km and an increasing Ldiff that ranged from
km to 40 km (Fig. 8). Both simulations were run 5000 times
ver their respective ranges. For these simulations, the average
ime to the most recent common ancestor was plotted against
he changing parameter and compared to the expression above
Eq. (6)). The expression matches the first-order behavior of the
oalescent time. The addition of the L/Ladv term makes the ex-
ression more accurate when compared to the simulated data by
ccounting for the average time it takes for lineages to reach the
ource region. As with the location of the most recent common
ncestor, the expression for the time to the most recent common
ncestor (Eq. (6)) breaks down when the length of the source
egion is greater than the length of the habitat. When the length
f the source region does become larger than the length of the
abitat, every individual in the habitat nearly conforms to the
riginal assumptions of Kingman. Therefore, the time to the most
ecent common ancestor returns to 2N*(1-1/n). Overall, when the
symmetry causes Lsource to be less than the length of the habitat
he time to the most recent common ancestor decreases and is
ependent on the dispersal statistics and the population density.

.5. Effect of limited population size in model on results

In many natural populations, there are thousands to millions
f individuals in a habitat. This, however, is not feasible to repli-
ate in our numerical models due to the time it would take to
rack the genetics of the population. Therefore, the numerical
odel used to validate our estimates of the time to the most

ecent common ancestor and the location of the most recent
ommon ancestor is run with a much smaller population size
 l

98
han would be expected for most species to which this model is
pplicable. The population must be kept small because the time
t takes to make a model run scales as the number of individuals
N). The time for the model to reach equilibrium scales as N which
leads to a computer run time that scales as N2. This time becomes
impracticable for large N.

However, the estimates discussed above are still valid. The
expression for the location of the most recent common ancestor
(Eq. (3)) does not depend on population size while the expres-
sion for the time to the most recent common ancestor (Eq. (4))
accounts for the population size in the population density (Hdens)
term. In Fig. 9, an ancestry diagram for a population of 500
individuals and a population of 1000 individuals is shown with
the same Ladv and Ldiff and population densities of one. This figure
illustrates the effect of population size on the time to the most
recent common ancestor (TMRCA) and the lack of dependence on
he location of the most recent common ancestor. The location
f the final coalescent event and the length of the population
ource region do not change between the two populations. The
xpressions for the average location of the most recent common
ncestor do not depend on population size and only depend on
he sizes of Ladv and Ldiff. TMRCA has been shown above to scale
proportionally with the effective population size. In Fig. 10, the
time to the most recent common ancestor for two populations is
shown one with an Hdens = 1 and the other with an Hdens = 2.
Just as with the previous figure the population with a Hdens = 2
as a time to most recent common ancestor roughly twice the
ime for the population with Hdens = 1. Therefore, the addition of
dens in the expression for the average time to the most recent
ommon ancestor (Eq. (4)) allows this expression to work for any
opulation size.
Population density also affects the rate at which single coa-
escent events occur. The average rate of coalescent events will
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Fig. 9. Ancestry diagram of two populations with different sizes but the same average currents distance (Ladv) spread (Ldiff) and population density (Hdens = 1). Red
tars represent coalescent events. The location of the most recent common ancestor occurs in the same region regardless of population size. With a larger population
ize, the time to the most recent common ancestor is larger.
f
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c
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epend on two things, the average time to the most recent com-
on ancestor and how many pairs of individuals can coalesce.
ividing the number of pairs of individuals that can coalesce
y the average time to the most recent common ancestor gives
he average rate of coalescent events. From Eq. (6) the time to
he most recent common ancestor scales proportionally to the
umber of individuals in the population. However, the number
f pairs of individuals that coalesce is proportional to the number
f individuals squared. This means that the average rate at which
ingle coalescent events occur is approximately proportional to
he number of individuals and therefore the population density.
his can be seen in Fig. 10, as the population density increases
he total time to the most recent common ancestor increases but
99
so does the rate at which coalescent events occur. When Hdens
= 2 all but three coalescent events occur within the first 50
generations. When Hdense = 1 it takes longer than 50 generations
or there to be only three coalescent events left. Both the aver-
ge time to the most recent common ancestor and the rate of
oalescent events will scale with the population density.

. Discussion

When larval dispersal is asymmetric, due to currents in the
cean or the winds in the atmosphere, we show that there exists
n upstream source region for larvae that impacts the time to
he most recent common ancestor, the effective population size,
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Fig. 10. Ancestry diagram of two populations with different population densities but the same average currents distance (Ladv), spread (Ldiff), and length of the
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b
t

nd location of the most recent common ancestor. The size of the
opulation source region (LSource) is a function of the average dis-
ance larvae flow downstream (Ladv) and the standard deviation
f dispersal (Ldiff). LSource is the distance from the upstream edge
ver which the location of the most recent common ancestor can
e found, and the average location is in the middle of this region.
ased on LSource and the population density (Hdens) the effective
opulation size (Ne) can be determined. Ne can then be used
o determine a scaling for the average time to the most recent
ommon ancestor (TMRCA) for the population.

.1. Importance of the population source region

In the case of asymmetric larval dispersal, alleles that are
resent in the population are most likely to have come from
he population source region. Therefore, a novel allele that is
avored in the population source region and not through the
ntire habitat will tend to be retained. On the other hand, a novel
llele that is favored outside the population source region will
ost likely be lost since this region is a sink for the population
ource region. Thus, alleles that are favored in the upstream edge
ill be favored throughout the entire domain (Kawecki and Holt,
002). For example, if a population of individuals with larvae
hat are dispersed downstream is adapted to temperatures along
certain section of the coast, individuals that are moved away

rom that section of the coast may die out if they are moved into
region with water that is too warm or cold for the larvae to

unction.
One example of the importance of the population source re-

ion containing favored alleles is when climate change shifts the
abitat range. Fuchs et al. (2020) have shown that benthic or-
anisms along the Northwest Atlantic continental shelf are being
ransported to warmer regions where there is a high mortality.
he reason for this is that transport is sending larvae farther
outhward than expected. This has led to a shrinking of the
ccupied range of the species in this region. Since larvae are being
ent southward by the currents, the northern end of the domain
s the upstream edge. For the population to persist alleles must
e present in the upstream edge that favors these newer warmer
aters. When these alleles are not present in the upstream edge
he length of the habitat will shrink until the number of success-
ully recruiting larvae meets the threshold described by Byers and
ringle (2006) that depends on the population source region.
Although the population source region can hinder local adap-
ation in the sink region, selection can still play a role in allowing d
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local adaptation. When selection is strongly favored for an allele
outside the population source region it can persist throughout the
population (Pringle and Wares, 2007). This selection can be due
to changes in environmental conditions, the invasion of another
species, or any other factor that may make a heritable trait more
favored. One example of this that has been shown to be true is
in the European green crab, Carcinus maenas (Tepolt and Palumbi,
2020). Tepolt and Palumbi have shown that the European green
crab introduced along the east coast of North America had the
standing genetic variation for different temperature tolerances.
Although the upstream edge of the habitat would have a selection
that is strongly favored for cold tolerance the green crab along the
coast has been able to inherit genes for a range of temperature
tolerances. This could imply that selection for different water
temperature tolerance has been large enough that alleles that
are not favored in the upstream edge have been able to persist
throughout the population. Therefore, there is a spatial balanc-
ing selection occurring where selection for different temperature
tolerances is being maintained where the green crab has invaded.
The ability of these multiple alleles to be present in the European
green crab has made it such a successful invasive species.

4.2. Implications on effective population size

The expression for Ne (Eq. (4)) derived above illustrates that
the statistics of an asymmetric dispersal kernel can influence
Ne and therefore genetic diversity (Wright, 1931). Ne and the
population’s genetic diversity are reduced when the dispersal is
asymmetric. In many coastal oceanic species, the ratio of effective
population size to census size is small (Hedrick, 2005). There are
many reasons why this might be true such as sex ratios, selection,
and variance in the reproductive success (Wang and Caballero,
1999). The expression for Ne derived in the results gives a new
reason why Ne might be reduced in marine environments with
asymmetric dispersal. When Lsource is less than the length of the
habitat then the effective population size is reduced to the indi-
viduals contained in the population source region. Therefore, the
small Ne to N ratios seen in many oceanic species like damselfish
and angelfish could be due, in part, to the mean downstream
transport of larvae by currents in the ocean (Crane et al., 2018).

For many benthic species, the size of Ladv and Ldiff will roughly
e comparable (Pringle et al., 2011; Siegel et al., 2003). Therefore,
he length of the population source region will be one dispersal

istance away from the upstream edge. The length of the habitat



K.G. Teller and J.M. Pringle Theoretical Population Biology 153 (2023) 91–101

f
d
s
w
t
r
l
l
s

D

a

A

U
P
o

A

o

R

A

B

B

C

C

D

E

F

F

H

or a given population is almost always larger than one dispersal
istance (Trewhella et al., 1988). Thus, many benthic marine
pecies that have, essentially, a one-dimensional habitat structure
ill have reduced times to the most recent common ancestor and
he location of the most recent common ancestor will occur in a
egion one dispersal distance away from the upstream edge. This
eads to many of these species having small Ne to N ratios and
ower genetic diversity than expected for their census population
ize.
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