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This paper studies the multi-task high-dimensional linear regression models where the noise among different tasks
is correlated, in the moderately high dimensional regime where sample size = and dimension ? are of the same order.
Our goal is to estimate the covariance matrix of the noise random vectors, or equivalently the correlation of the
noise variables on any pair of two tasks. Treating the regression coefficients as a nuisance parameter, we leverage
the multi-task elastic-net and multi-task lasso estimators to estimate the nuisance. By precisely understanding the
bias of the squared residual matrix and by correcting this bias, we develop a novel estimator of the noise covariance
that converges in Frobenius norm at the rate =−1/2 when the covariates are Gaussian distributed with a known
covariance matrix. This novel estimator is efficiently computable. Under suitable conditions, the proposed estimator
of the noise covariance attains the same rate of convergence as the “oracle” estimator that knows in advance the
regression coefficients of the multi-task model. The Frobenius error bounds obtained in this paper also illustrate the
advantage of this new estimator compared to a method-of-moments estimator that does not attempt to estimate the
nuisance. As byproducts of our techniques, we obtain estimates of the generalization error and out-of-sample error
of the multi-task elastic-net and multi-task lasso estimators. Extensive simulation studies are carried out to illustrate
the numerical performance of the proposed method.
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1. Introduction

1.1. Model and estimation target

Consider a multi-task (also known as multi-response) linear model with ) tasks and = i.i.d. observa-
tions (x8 ,.81,.82, . . . ,.8) ), ∀8 = 1, ..., =, where x8 ∈ R

? is a random feature vector and .81, . . . ,.8) are
responses in the model

.8C = x⊤8 #
(C ) + �8C for each C = 1, ...,) ; 8 = 1, ..., = (scalar form),

y (C ) = ^# (C ) + 9 (C ) for each C = 1, ...,) (vector form),

_ = ^H∗ + K (matrix form),

(1)

where ^ ∈ R
=×? is the design matrix with rows (x⊤

8
)8=1,...,=, y (C ) = (.1C , ...,.=C )⊤ is the response

vector for task C, 9 (C ) = (�1C , ..., �=C )⊤ is the noise vector for task C, # (C ) ∈ R
? is an unknown fixed

coefficient vector for task C. In matrix form, _ ∈ R
=×) is the response matrix with columns y (1) , ..., y () ) ,

K ∈ R
=×) has columns 9 (1) , ..., 9 () ) , and H∗ ∈ R

?×) is an unknown coefficient matrix with columns
# (1) , ..., # () ) . The three forms in (1) are equivalent.

While the = vectors (x⊤8 , H
(1)
8
, . . . , H

() )
8

)8=1,...,= of dimension ? + ) are i.i.d., we assume that for
each observation 8 = 1, ..., =, the noise random variables �81, ..., �8) are centered and correlated. The
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focus of the present paper is on estimation of the noise covariance matrix Y ∈ R
)×) , which has entries

YCC ′ = E[Y (C )1 Y
(C ′ )
1 ] for any pair C, C′ = 1, . . . ,) , or equivalently Y =

1
=
E[K⊤K] .

The noise covariance plays a crucial role in multi-task linear models because it characterizes the noise
level and correlation between different tasks: if tasks C = 1, ...,) represent time this captures temporal
correlation; if tasks C = 1, ...,) represent different activation areas in the brain (e.g., Bertrand et al.
(2019)) this captures spatial correlation.

Since Y is the estimation target, we view H∗ as an unknown nuisance parameter. If H∗ = 0, then _ = K,
hence K is directly observed and a natural estimator is the sample covariance 1

=
K⊤K. There are other

possible choices for the sample covariance; ours coincides with the maximum likelihood estimator of
the centered Gaussian model where the = samples are i.i.d. from N) (0, Y). In the presence of a nuisance
parameter H∗ ≠ 0, the above sample covariance is not computable since we only observe (^,_) and do
not have access to K. Thus we will refer to 1

=
K⊤K ∈ R

)×) as the oracle estimator for Y, and its error
1
=
K⊤K − Y will serve as a benchmark.

The nuisance parameter H∗ is not of interest by itself, but if an estimator Ĥ is available that provides
good estimation of H∗, we would hope to leverage Ĥ to estimate the nuisance and improve estimation of
Y. For instance given an estimate Ĥ such that ∥^ (Ĥ − H∗)∥2

F/=→ 0, one may use the estimator

Ŷ (naive) =
1
=
(_ − ^Ĥ)⊤ (_ − ^Ĥ) (2)

to consistently estimate Y in Frobenius norm. We refer to this estimator as the naive estimator since it is
obtained by simply replacing the noise K in the oracle estimator 1

=
K⊤K with the residual matrix _ − ^Ĥ.

However, in the regime ?/=→ W of interest in the present paper, the convergence ∥^ (Ĥ− H∗)∥2
F/=→ 0

does not hold even in the case where ) = 1 and where Ĥ is chosen as the Ridge (Dobriban and Wager,
2018) or the Lasso (Bayati and Montanari, 2012, Miolane and Montanari, 2021): The theory developed
in these papers shows that ∥^ (Ĥ − H∗)∥2

F/= has a non-vanishing limit as ?/= converges to a constant.
Simulations in Section 4 will show that the naive estimator (2) presents a major bias for estimation of Y.
One goal of this paper is to develop a estimator Ŷ of Y by exploiting a commonly used estimator Ĥ of
the nuisance so that in the regime ?/=→ W the error Ŷ − Y is comparable to the benchmark 1

=
K⊤K − Y.

1.2. Related literature

If ) = 1, the above model (1) reduces to the standard linear model with ^ ∈ R
=×? and response vector

y (1) ∈ R
=. We will refer to the ) = 1 case as the single-task linear model and drop the superscript (1) for

brevity, i.e., H8 = x⊤8 #
∗ + Y8 , where Y8 are i.i.d. with mean 0, and unknown variance f2. The coefficient

vector #∗ is typically assumed to be B-sparse, i.e., #∗ has at most B nonzero entries. In this single-task
linear model, estimation of noise covariance Y reduces to estimation of the noise variance f2 = E[Y2

8 ],
which has been studied in the literature. Fan, Guo and Hao (2012) proposed a consistent estimator for
f2 based on a refitted cross validation method, which assumes the support of #∗ is correctly recovered;
Belloni, Chernozhukov and Wang (2011) and Sun and Zhang (2012) introduced square-root Lasso
(scaled Lasso) to jointly estimate the coefficient #∗ and noise variance f2 by

( #̂, f̂) = arg min
#∈R? ,f>0

∥y − ^#∥2

2=f
+ f

2
+ _0∥#∥1. (3)

This estimator f̂ is consistent only when the prediction error ∥^ ( #̂ − #∗)∥2/= goes to 0, which requires
B log(?)/=→ 0. Estimation of f2 without assumption on ^ was proposed in Yu and Bien (2019) by



Noise Covariance Estimation 3

utilizing natural parameterization of the penalized likelihood of the linear model. Their estimator can be
expressed as the minimizer of the Lasso problem: f̂2

_
= min#∈R?

1
=
∥y − ^#∥2 + 2_∥#∥1. Consistency

of these estimators Belloni, Chernozhukov and Wang (2011, 2014), Sun and Zhang (2012), Yu and
Bien (2019) requires B log(?)/=→ 0 and does not hold in the high-dimensional proportional regime
?/=→ W ∈ (0,∞). For this proportional regime ?/=→ W ∈ (0,∞), under the assumption that x8 are
i.i.d. N(0,�), Dicker (2014) introduced a method-of-moments estimator f̂2 of f2,

f̂2
=
= + ? + 1
=(= + 1) ∥y∥

2 − 1
=(= + 1) ∥�

− 1
2 ^⊤y∥2, (4)

which is unbiased, consistent, and asymptotically normal in high-dimensional linear models with
Gaussian predictors and errors. Moreover, Janson, Foygel Barber and Candès (2017) developed an
EigenPrism procedure for the same task as well as confidence intervals for f2. The estimation procedures
in these two papers don’t attempt to estimate the nuisance parameter #∗, and require no sparsity on #∗

and isometry structure, but assume ∥� 1
2 #∗∥2 is bounded. Maximum Likelihood Estimators (MLEs)

were studied in Dicker and Erdogdu (2016) for joint estimation of noise level and signal strength in
high-dimensional linear models with fixed effects; they showed that a classical MLE for random-effects
models may also be used effectively in fixed-effects models.

In the proportional regime, Bayati, Erdogdu and Montanari (2013), Miolane and Montanari (2021)
used the Lasso to estimate the nuisance #∗ and produce estimator for f2. Their approach requires an
uncorrelated Gaussian design assumption with � = O? . Bellec (2020) provided consistent estimators of a
similar nature for f2 using more general M-estimators with convex penalty without requiring � = O? . In
the special case of the squared loss, this estimator has the form Bayati, Erdogdu and Montanari (2013),
Bellec (2020), Miolane and Montanari (2021)

f̂2
= (= − d̂f)−2{∥y − ^#̂∥2 (= + ? − 2d̂f) − ∥�− 1

2 (y − ^#̂)∥
}
, (5)

where d̂f = Tr[(m/my)^#̂] denotes the degrees of freedom. This estimator coincides with the method-
of-moments estimator in Dicker (2014) when #̂ = 0.

For multi-task high-dimensional linear model (1) with ) ≥ 2, the estimation of H∗ is studied in
Lounici et al. (2011), Obozinski, Wainwright and Jordan (2011), Simon, Friedman and Hastie (2013).
These works suggest to use a joint convex optimization problem over the tasks to estimate H∗. A popular
choice is the multi-task elastic-net, which solves the convex optimization problem

Ĥ = arg min
H∈R?×)

( 1
2=

∥_ − ^H∥2
F + _∥H∥2,1 +

g

2
∥H∥2

F

)
, (6)

where ∥H∥2,1 =
∑?

9=1 ∥H
⊤e 9 ∥2, and ∥·∥F denotes the Frobenius norm of a matrix. This optimization

problem can be efficiently solved by existing statistical packages, for instance, scikit-learn (Pedregosa
et al., 2011), and glmnet (Friedman, Hastie and Tibshirani, 2010). Note that (6) is also referred to as
multi-task (group) Lasso and multi-task Ridge if g = 0 and _ = 0, respectively. Geer and Stucky (2016)
extended square-root Lasso (Belloni, Chernozhukov and Wang, 2011) and scaled Lasso (Sun and Zhang,
2012) to multi-task setting by solving the following problem

(Ĥ, Ŷ) = arg min
H,Y≻0

{1
=

Tr
(
(_ − ^H)Y− 1

2 (_ − ^H)⊤
)
+ Tr(Y 1

2 ) + 2_0∥H∥1

}
, (7)

where ∥H∥1 =
∑

9 ,C |� 9C |. Note that the covariance estimator in (7) is constrained to be positive definite.

Molstad (2022) studied the same problem and proposed to estimate Y by (2) with Ĥ in (7), which is
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consistent under Frobenius norm loss when ∥^ (Ĥ−H∗)∥2
F/=→ 0. Chen and Banerjee (2017) considered

another multi-response model with same coefficient for different tasks but different covariates. This
literature investigated a similar joint estimation of coefficient and noise covariance. In a recent paper,
Bellec and Romon (2021) studied the multi-task Lasso problem and proposed confidence intervals for
single entries of H∗ and confidence ellipsoids for single rows of H∗ under the assumption that Y is
proportional to the identity, which may be restrictive in practice. This literature generalizes degrees of
freedom adjustments from single-task to multi-task models, which we will illustrate in Section 2.

Noise covariance estimation in the high dimensional multi-task linear model is a difficult problem.
If the estimand Y is known to be diagonal, estimating Y reduces to the estimation of noise variance
for each task, in which the existing methods for single-task high-dimensional linear models can be
applied. Nonetheless, for general positive semi-definite matrix Y, the noise among different tasks may
be correlated, hence the existing methods are not readily applicable, and a more careful analysis is
called for to incorporate the correlation between different tasks. Fourdrinier, Haddouche and Mezoued
(2021) considered estimating Y for the multi-task model (1) where rows of K have elliptically symmetric
distribution and in the classical regime ? ≤ =. However, their estimator has no statistical guarantee under
Frobenius norm loss.

Recently, for the proportional regime ?/=→ W ∈ (0,∞), Celentano and Montanari (2021) generalized
the estimator f̂2 in Bayati, Erdogdu and Montanari (2013) to the multi-task setting with ) = 2. Their
work covers correlated Gaussian designs, where a Lasso or Ridge regression is used to estimate # (1)

for the first task, and another Lasso or Ridge regression is used to estimate # (2) for the second task. In
other words, they estimate the coefficient vector for each task separately instead of using a multi-task
estimator like (6). It is not trivial to adapt their estimator from the setting ) = 2 to larger ) , and allow )

to increase with =. This present paper takes a different route and aims to fill this gap by proposing a
novel noise covariance estimator with theoretical guarantees. Of course, our method applies directly to
the 2-task linear model considered in Celentano and Montanari (2021).

1.3. Main contributions

The present paper introduces a novel estimator Ŷ in (11) of the noise covariance Y when the predictor
covariance � is known. The proposed estimator Ŷ is shown to be a consistent estimator of Y under
Frobenius norm, in the regime where ? and = are of the same order. The estimator Ŷ is based on the
multi-task elastic-net estimator Ĥ in (6) of the nuisance, and can be seen as a de-biased version of the
naive estimator (2). The naive estimator (2) suffers from a strong bias in the regime where ? and = are of
the same order, and the estimator Ŷ is constructed by precisely understanding this bias and correcting it.

After introducing this novel estimator Ŷ in Definition 2.2 below, we prove several rates of convergence
for the Frobenius error ∥ Ŷ− Y∥F, which is comparable, in terms of rate of convergence, to the benchmark
∥ 1
=
K⊤K − Y∥F under suitable assumptions.

As a by-product of the techniques developed for the construction of Ŷ, we obtain estimates of the
generalization error and out-of-sample error of Ĥ, which are of independent interest and can be used for
parameter tuning.

1.4. Notation

Basic notation and definitions that will be used in the rest of the paper are given here. Let [=] =
{1,2, . . . , =} for all = ∈ N. The vectors e8 ∈ R

=, e 9 ∈ R
? , eC ∈ R

) denote the canonical basis vector
of the corresponding index. We consider restrictions of vectors (resp., of matrices) by zeroing the
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corresponding entries (resp., columns). More precisely, for v ∈ R
? and index set � ⊂ [?], v� ∈ R

?

is the vector with (v�) 9 = 0 if 9 ∉ � and (v�) 9 = E 9 if 9 ∈ �. If ^ ∈ R
=×? and � ⊂ [?], ^� ∈ R

=×?

is such that (^�)e 9 = 0 if 9 ∉ � and (^�)e 9 = ^e 9 if 9 ∈ �. For a real vector a ∈ R
? , ∥a∥ denotes

its Euclidean norm. For any matrix G, G† is its Moore–Penrose inverse; ∥G∥F ,∥G∥op, ∥G∥∗ denote
its Frobenius, operator and nuclear norm, respectively. Let ∥G∥0 be the number of non-zero rows of
G. Let G ⊗ H be the Kronecker product of G and H, and ⟨G, H⟩ = Tr(G⊤H) is the Frobenius inner
product for matrices of identical size. For G symmetric, qmin (G) and qmax (G) denote its smallest and
largest eigenvalues, respectively. Let O= denote the identity matrix of size = for all = ∈ N. For a random
sequence b=, we write b= =$% (0=) if b=/0= is stochastically bounded. � denotes an absolute constant
and � (g, W) stands for a generic positive constant depending on g, W; their expression may vary from
place to place.

1.5. Organization

The rest of the paper is organized as follows. Section 2 introduces our proposed estimator for noise
covariance. Section 3 presents our main theoretical results on proposed estimator and some relevant
estimators. Section 4 demonstrates through numerical experiments that our estimator outperforms
several existing methods in the literature, which corroborates our theoretical findings in Section 3.
Section 5 provides discussion and points out some future research directions. The appendix provides
some technical results and proofs of all theoretical results in the paper. These technical results are futher
proved in the supplementary material Tan, Romon and Bellec (2023).

2. Estimating noise covariance, with possibly diverging number of
tasks Z

Before we can define our noise covariance estimator, we need to introduce the following building
blocks. Let Ŝ = {: ∈ [?] : Ĥ⊤e: ≠ 0} denote the set of nonzero rows of Ĥ in (6), and let |Ŝ| denote the
cardinality of Ŝ. For each : ∈ Ŝ, define N (: ) = _∥ Ĥ⊤e: ∥−1 (O) − Ĥ⊤e:e⊤: Ĥ ∥ Ĥ⊤e: ∥−2), which is the

Hessian of the map u ↦→ _∥u∥ at u = Ĥ⊤e: when u ≠ 0. Define S ∈ R
?)×?) by

S = O) ⊗ (^⊤
Ŝ
^

Ŝ
+ g=V

Ŝ
) + =

∑

:∈Ŝ

(N (: ) ⊗ e:e
⊤
: ), (8)

where V
Ŝ
=
∑

:∈Ŝ
e:e

⊤
:
∈ R

?×? . While the expression of S looks a bit long, it is obtained by differen-

tiating the multi-task estimate Ĥ in (6) w.r.t. noise �8C , in the sense that S mvec(Ĥ)
m�8C

= (eC ⊗ ^⊤
S
e8). The

detailed derivation is presented in Proof of Lemma E.6. in supplementary file Tan, Romon and Bellec
(2023). Define the residual matrix L, the error matrix N by

L =_ − ^Ĥ, N = �
1/2 (Ĥ − H). (9)

To construct our estimator we also make use of the so-called interaction matrix Â ∈ R
)×) .

Definition 2.1 (Bellec and Romon (2021)). The interaction matrix Â ∈ R
)×) of the estimator Ĥ in (6)

is defined by

Â =

=∑

8=1

(O) ⊗ e⊤8 ^)S† (O) ⊗ ^⊤e8). (10)
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The matrix Â was introduced in Bellec and Romon (2021), where it is used alongside the multi-task
Lasso estimator (g = 0 in (6)). The interaction matrix Â is essentially the derivatives of the mapping

K ↦→ ^Ĥ, in the sense that ÂCC ′ = Tr
( m^ĤeC
mKeC′

)
. Lemma E.6 in the supplementary material Tan, Romon

and Bellec (2023) gives a formal statement of this explanation. It generalizes the degrees of freedom
from Stein (1981) to the multi-task case. Intuitively, it captures the correlation between the residuals on
different tasks (Bellec and Romon, 2021, Lemma F.1). Our definition of the noise covariance estimator
involves Â, although our statistical purposes differ greatly from the confidence intervals developed in
Bellec and Romon (2021).

With the above definitions, we are now ready to introduce our estimator Ŷ of the noise covariance Y.

Definition 2.2 (Noise covariance estimator). Let L =_ − ^Ĥ and Â be defined as before, we define
our new noise covariance estimator as

Ŷ = (=O) − Â)−1
[
L⊤ ((? + =)O= − ^�−1^⊤)L − ÂL⊤L − L⊤LÂ

]
(=O) − Â)−1. (11)

The construction of above Ŷ follows from novel applications of variants of Stein’s formulae in order
to remove the bias in the naive estimator 1

=
L⊤L. The detailed derivation is presented in the Proof of

Theorem 3.3. in Appendix B.2. The estimator Ŷ generalizes the scalar estimator (5) to the multi-task
setting in the sense that for ) = 1, Ŷ is exactly equal to (5). Note that unlike in (5), here L⊤L, Â and
(=O) − Â) are matrices of size ) ×) : the order of matrix multiplication in Ŷ matters and should not be
switched. This non-commutativity is not present for ) = 1 in (5) where matrices in R

)×) are reduced
to scalars. Another special case of Ŷ can be seen in Celentano and Montanari (2021) for ) = 2 where
the matrix Â ∈ R

2×2 is diagonal and the two columns of Ĥ ∈ R
?×2 are two Lasso or Ridge estimators

computed independently of each other, one for each task. Except in these two special cases — (5) for
) = 1, Celentano and Montanari (2021) for ) = 2 and two Lasso/Ridge — we are not aware of previously
proposed estimators of the same form as Ŷ.

The definition of our estimator Ŷ involves simple algebraic operations between the matrices ^,�, the
residual L and the interaction matrix Â. The multi-task estimte Ĥ in (6) can be efficiently solved by
existing solver (e.g., sklearn.linear_model.MultiTaskElasticNet in scikit-learn library
(Pedregosa et al., 2011)), computation of L is then straightforward, and computing the matrix Â only
requires inverting a matrix of size |Ŝ| thanks to the Sherman-Morrison-Woodbury formula (Bellec and
Romon, 2021, Section 5).

3. Theoretical analysis

3.1. Oracle and method-of-moments estimator

Before moving on to the theoretical analysis of Ŷ, we state our randomness assumptions for K, ^ and
we study two preliminary estimators: the oracle 1

=
K⊤K and another estimator obtained by the method of

moments.

Assumption 1 (Gaussian noise). K ∈ R
=×) is a Gaussian noise matrix with i.i.d. N) (0, Y) rows, where

Y ∈ R
)×) is an unknown positive semi-definite matrix.

An oracle with access to the noise matrix K may compute the oracle estimator Ŷ (oracle)
def
=

1
=
K⊤K,

with convergence rate given by the following theorem, which will serve as a benchmark.
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Proposition 3.1 (Convergence rate of Ŷ(oracle)). Under Assumption 1,

E
[
∥ Ŷ (oracle) − Y∥2

F

]
=

1
=
[(Tr(Y))2 + Tr(Y2)] . (12)

Consequently, =−1 (Tr(Y))2 ≤ E
[
∥ Ŷ (oracle) − Y∥2

F

]
≤ 2=−1 (Tr(Y))2.

The next assumption concerns the design matrix ^ with rows x⊤1 , . . . , x
⊤
= .

Assumption 2 (Gaussian design). ^ ∈ R
=×? is a Gaussian design matrix with i.i.d. N? (0,�) rows,

where � is a known positive definite matrix. The matrices K and ^ are independent.

Under the preceding assumptions, we obtain the following method-of-moments estimator, which
extends the estimator for noise variance in Dicker (2014) to the multi-task setting. Its error will also
serve as a benchmark.

Proposition 3.2. Under Assumptions 1 and 2, the method-of-moments estimator defined as

Ŷ (mm) =
(= + 1 + ?)
=(= + 1) _⊤_ − 1

=(= + 1)_
⊤^�−1^⊤_ (13)

is unbiased for Y, i.e., E[Ŷ (mm) ] = Y. Furthermore, the Frobenius error is bounded from below as

E[∥ Ŷ (mm) − Y∥2
F] ≥

? − 2

(= + 1)2

[
Tr(Y) + ∥� 1

2 H∗∥2
F

]2
. (14)

By (14), a larger norm ∥�1/2H∗∥F induces a larger variance for Ŷ (mm) . Our goal with an estimate Ŷ,

when a good estimator Ĥ of the nuisance is available, is to improve upon the right-hand side of (14)
when the estimation error ∥�1/2 (Ĥ − H∗)∥F is smaller than ∥�1/2H∗∥F.

A high-probability upper bound of the form ∥ Ŷ (mm) −Y∥2
F ≤ � =+?

=2 [Tr(Y) + ∥� 1
2 H∗∥2

F]
2, that matches

the lower bound (14) when ? > =, is a consequence of our main result Theorem 3.4 in the next subsection.
Indeed, when Ĥ = 0 then Â = 0 and our estimator Ŷ from Definition 2.2 coincides with Ŷ (mm) up to
the minor modification of replacing = + 1 by = in (13). This replacement is immaterial compared to
the right-hand side in (14). Furthermore, such Ŷ corresponds to one of g or _ being +∞ in (6) and the
aforementioned upper bound follows by taking g = +∞ in the proof of Theorem 3.4 below. The empirical
results in Section 4 confirm that Ŷ has smaller variance compared to Ŷ (mm) in simulations.

3.2. Theoretical results for proposed estimator Ŷ

We have established lower bounds for the oracle estimator and the method-of-moments estimator that
will serve as benchmarks. We turn to the analysis of the proposed estimator Ŷ from Definition 2.2 under
the following additional assumptions.

Assumption 3 (High-dimensional regime). =, ? satisfy ?/= ≤ W for a constant W ∈ (0,∞).

For asymptotic statements such as those involving the stochastically bounded notation $ ? (·) or the
convergence in probability in (23) below, we implicitly consider a sequence of multi-task problems
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indexed by = where ?,), H∗, Ĥ, Y all implicitly depend on =. The assumptions, such as ?/= ≤ W above,
are required to hold at all points of the sequence. In particular, ?/=→ W′ is allowed for any limit W′ ≤ W
under Assumption 3, although our results do not require a specific value for the limit.

Assumption 4. Recall g is a regularization parameter in problem (6), we assume either one of the
following:

i) g > 0, and let g′ = g/∥�∥op.
ii) g = 0 and for 2 > 0, P(*1) ≥ 1− 1

)
and P(*1) → 1 as =→∞, where*1 = {∥ Ĥ∥0 ≤ =(1− 2)/2}

is the event that Ĥ has at most =(1 − 2)/2 nonzero rows. Finally, ) ≤ 4
√
=.

iii) g = 0, � 9 9 = 1 for all 9 ∈ [?], 0 < q∗ ≤ qmin (�) ≤ qmax (�) ≤ q∗, ) ≤ 4
√
=, ∥H∗∥0 ≤

min{2∗ (W,�), 2∗∗ (W,�)}=, _ ≥ `∗ (W,�)
√

Tr(Y)/=, where `∗ (W,�) = (30∥�∥op)1/2 (2 + √
W),

2∗ (W) = sup
2∈[0, 1

16∧W ]
{2 log(4W/2) ≤ 1/64}, 2∗ (W,�) = 2∗ (W)qmin (�)

64 ,

2∗∗ (W,�) = qmin (�)
192∥�∥op (2+

√
W)2 .

Assumption 4(i) requires that the Ridge penalty in (6) be enforced, so that the objective function is
strongly convex. Assumption 4(ii), on the other hand, does not require strong convexity but that the
number of nonzero rows of Ĥ is small enough with high-probability, which is a reasonable assumption
when the tuning parameter _ in (6) is large enough and H∗ is sparse enough. While we do not prove
in the present paper that P(*1) → 1 under assumptions on the tuning parameter _ and the sparsity of
H∗, results of a similar nature have been obtained previously in several group-Lasso settings (Lounici
et al., 2011, Theorem 3.1), (Liu and Zhang, 2009, Lemma 6), (Bellec and Romon, 2021, Lemma C.3),
(Bellec and Kuchibhotla, 2019, Proposition 3.7). However, the proofs in those papers are not valid for
the porportional regime. Under Assumption 4(iii), the following Proposition 3.3 provides a bound for
the support size of Ĥ and shows that Assumption 4(iii) implies Assumption 4(ii).

Proposition 3.3. Under Assumption 4(iii), we have P(∥ Ĥ∥0 ≤ =/3) ≥ 1 − exp(−2(W,�)=) for some

positive constant 2(W,�) depending on W,� only.

Theorem 3.4. Suppose that Assumptions 1 to 4 hold for all =, ? as =→∞, then almost surely

∥(O) − Â/=) (Ŷ − Y) (O) − Â/=)∥F ≤ Θ1=
− 1

2
(
∥L∥2

F/= + ∥N∥2
F + Tr(Y)

)
(15)

for some non-negative random variable Θ1 of constant order, in the sense that E[Θ2
1] ≤ � (g

′) () ∧
(1 + ?

=
)) (1 + ?

=
)) ≤ � (W, g′) under Assumption 4(i), and E[� (Ω)Θ2

1] ≤ � (W, 2) under Assumption 4(ii),

where � (Ω) is the indicator function of an event Ω with P(Ω) → 1.

Above, Θ1 ≥ 0 is said to be of constant order because Θ1 =$% (1) follows from E[Θ2
1] ≤ � (W, g

′) or
from E[� (Ω)Θ2

1] ≤ � (W, 2) if the stochastically bounded notation $% (1) is allowed to hide constants
depending on (W, g′) or (W, 2) only. In the left-hand side of (15), multiplication by O) − Â/= on both
sides of the error Ŷ − Y can be further removed, as

∥ Ŷ − Y∥F ≤ ∥(O) − Â/=) (Ŷ − Y) (O) − Â/=)∥F∥(O) − Â/=)−1∥2
op (16)

and the fact that ∥(O) − Â/=)−1∥op is bounded from above with high probability by a constant depending
on W, g′, 2 only. Upper bounds on ∥(O) − Â/=)−1∥op are formally stated in Appendix B.1.

We are now ready to present our main result on the error bounds for Ŷ.



Noise Covariance Estimation 9

Theorem 3.5. Let Assumptions 1 to 4 be fulfilled and ) = >(=). Then

∥ Ŷ − Y∥F ≤ $% (=−
1
2 ) (∥L∥2

F/=), (17)

∥ Ŷ − Y∥F ≤ $% (=−
1
2 ) [Tr(Y) + ∥N∥2

F] . (18)

Here the $% (=−
1
2 ) notation involves constants depending on W, g′, 2.

It is instructive at this point to compare (18) with the lower bound (14) on the Frobenius error of
the method-of-moments estimator. When ? ≥ = then E[∥ Ŷ (mm) − Y∥2

F] ≥
2
=
[Tr[Y] + ∥�1/2H∗∥2

F]
2; this

is the situation where the Statistician does not attempt to estimate H∗, and pays a price of [Tr[Y] +
∥�1/2H∗∥2

F]
2/=. On the other hand, by definition of N in (9), the right-hand side of (18), when squared,

is of order =−1 [Tr[Y] + ∥�1/2 (Ĥ − H∗)∥2
F]

2. Here the error bound only depends on H∗ through the

estimation error for the nuisance ∥�1/2 (Ĥ − H∗)∥2
F. This explains that when Ĥ is a good estimator of

H∗ and ∥�1/2 (Ĥ − H∗)∥2
F is smaller compared to ∥�1/2H∗∥2

F, the estimator Ŷ that leverages Ĥ will

outperform the method-of-moments estimator Ŷ (mm) which does not attempt to estimate the nuisance
H∗.

Finally, the next results show that under additional assumptions, the estimator Ŷ enjoys Frobenius
error bounds similar to the oracle estimator 1

=
K⊤K.

Assumption 5. SNR ≤ snr for some positive constant snr independent of =, ?,) , where SNR =

∥� 1
2 H∗∥2

F/Tr(Y) denotes the signal-to-noise ratio of the multi-task linear model (1).

Corollary 3.6. Suppose that Assumptions 1, 2, 3, 4(i), 5 and ) = >(=) hold, then

∥ Ŷ − Y∥F ≤ $% (=−
1
2 ) Tr(Y), (19)

where $% (·) hides constants depending on W, g′, snr. Furthermore,

∥ Ŷ − Y∥2
F ≤ $% ()/=)∥Y∥2

F = >% (1)∥Y∥2
F,

��∥ Ŷ∥∗ − Tr(Y)
�� ≤ $% (

√
)/=) Tr(Y) = >% (1) Tr(Y).

Corollary 3.7. Suppose that Assumptions 1, 2, 3, 4(ii) and ) = >(=) hold. If ∥H∗∥0 ≤ (1 − 2)=/2 and

the tuning parameter _ is of the form _ = `
√

Tr(Y)/= for some positive constant `, then

∥ Ŷ − Y∥F ≤ $% (=−
1
2 ) (1 + `2) Tr(Y), (20)

where $% (·) hides constants depending on 2, W, qmin (�).

The following corollary is a direct consequence of Corollary 3.7 and Proposition 3.3.

Corollary 3.8. Suppose that Assumptions 1, 2, 3, 4(iii) and ) = >(=) hold. We have

∥ Ŷ − Y∥F ≤ $% (=−
1
2 ) Tr(Y), (21)

where $% (·) hides constants depending on 2, W, qmin (�), qmax (�).
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Comparing Corollaries 3.6 to 3.8 with Proposition 3.1, we conclude that ∥ Ŷ − Y∥2
F is of the same

order as the Frobenius error of the oracle estimator in (12) up to constants depending on the signal-to-
noise ratio, W, and g′ under Assumption 4(i), and up to constants depending on `, 2, W, qmin (�) under
Assumption 4(ii).

The error bounds in (18)–(20) are measured in Frobenius norm, similarly to existing works on noise
covariance estimation Molstad (2022). Outside the context of linear regression models, much work has
been devoted to covariance estimation in the operator norm. By the loose bound ∥S∥op ≤ ∥S∥F, our
upper bounds carry over to the operator norm. The same cannot be said for lower bounds, since for
instance E

[
∥ Ŷ (oracle) − Y∥2

op

]
≍ =−1∥Y∥op Tr(Y) (see, e.g., (Koltchinskii and Lounici, 2017, Corollary

2)).

3.3. Generalization error estimation

By analogy with single task models, we define the generalization error in multi-task models as the matrix
N⊤N+Y of size ) ×) , whose (C, C′)-th entry is E[(.=4F

C −x⊤=4F ĤeC ) (.=4F
C ′ −x⊤=4F ĤeC ′ ) | (^,_)] where

(.=4F
C ,.=4F

C ′ , x=4F) is independent of (^,_) and has the same distribution as (.8C ,.8C ′ , x8) for some
8 = 1, ..., =. Estimating the generalization error is useful for parameter tuning: since

Tr[N⊤N + Y] = ∥�1/2 (Ĥ − H∗)∥2
F + Tr[Y], (22)

minimizing an estimator of Tr[N⊤N + Y] is a useful proxy to minimize the Frobenius error ∥�1/2 (Ĥ −
H∗)∥2

F of Ĥ.
The following theorem suggests an estimate for the generalization error matrix as well as a consistent

estimator for its trace (22).

Theorem 3.9 (Generalization error). Let Assumptions 1 to 4 be fulfilled. Then

∥L⊤L/= − (O) − Â/=) (N⊤N + Y) (O) − Â/=)∥F ≤ Θ2=
− 1

2
(
∥L∥2

F/= + ∥N∥2
F + Tr(Y)

)
,

for some non-negative random variable Θ2 of constant order, in the sense that E[Θ2] ≤ � (W, g′) under

Assumption 4(i), and with E[� (Ω)Θ2] ≤ � (W, 2) under Assumption 4(ii) or (iii), where � (Ω) is the

indicator function of an event Ω with P(Ω) → 1.

Furthermore, if ) = >(=) as =, ?→∞ while g′, W, 2 stay constant, then

Tr(Y) + ∥N∥2
F

∥(O) − Â/=)−1L⊤∥2
F/=

?
→ 1. (23)

In the above theorem, Y and N are unknown, while Â and L can be computed from the observed
data (^,_). Thus (23) shows that ∥(O) − Â/=)−1L⊤∥2

F/= is a consistent estimate for the unobservable
quantity Tr(Y) + ∥N∥2

F without requiring the knowledge of �. Theorem 3.9 also suggests an useful
method for selecting tuning parameter, i.e., to choose the paramter that minimizes the estimated
generalization error.

3.4. Out-of-sample error estimation

In this section, we present a by-product of our techniques for estimating the noise covariance. For
evaluating the performance of a regression method on a new data, we define the out-of-sample error for
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Table 1. Frobenius norm loss for different methods

= = 1000 = = 1500 = = 2000

Y method mean sd mean sd mean sd

full rank

naive 2.610 0.086 2.560 0.075 2.555 0.062
mm 1.970 0.549 1.586 0.621 1.475 0.381

proposed 1.206 0.114 0.982 0.098 0.853 0.081
oracle 0.652 0.061 0.534 0.052 0.469 0.045

low rank

naive 2.960 0.121 2.899 0.100 2.901 0.077
mm 1.916 0.559 1.560 0.643 1.480 0.428

proposed 1.208 0.178 0.971 0.130 0.861 0.120
oracle 0.654 0.096 0.531 0.081 0.464 0.065

4. Numerical experiments

In this section, we evaluate the empirical performance of our proposed method and compare it with
relevant methods for noise covariance estimation.

Regarding parameters for our simulations, we set ) = 20, ? = 1.5= and = equals successively
1000,1500,2000. We consider two types of noise covariance matrix: (i) Y is full-rank with (C, C′)-
th entry YC ,C ′ =

cos(C−C ′ )
1+
√
|C−C ′ |

; (ii) Y is low-rank with Y = uu⊤, where u ∈ R
)×10 has i.i.d. entries from

N(0,1/)). The design matrix ^ ∈ R
=×? is constructed by independently sampling its rows from

N? (0,�) with � 9: = 0.5 | 9−: | . To build the coefficient matrix H∗, we first set its sparsity pattern, i.e., we
define the support S with cardinality |S| = 0.1?, then we generate an intermediate matrix H ∈ R

?×) .
The 9-th row of H is sampled from N) (0, ?−1O) ) if 9 ∈ S, otherwise we set it to be the zero vector.

Finally we let H∗ = H[Tr(Y)/Tr(H⊤
�H)] 1

2 , which forces a signal-to-noise ratio of exactly 1.
For calculation of multi-task estimates Ĥ in (6), we use Python library Scikit-learn (Pedregosa et al.,

2011). More precisely we invoke MultiTaskElasticNetCV to obtain Ĥ by 5-fold cross-validation
with parameters l1-ratio=[0.5, 0.7, 0.9, 1], n_alpha=100. To compute the interaction
matrix Â we use the efficient implementation described in (Bellec and Romon, 2021, Section 5). The
full code needed to reproduce our experiments is provided in the supplementary material Tan, Romon
and Bellec (2023).

We compare our proposed estimator Ŷ (11) with relevant estimators including (1) the naive estimate
Ŷ(naive) = =

−1L⊤L, (2) the method-of-moments estimate Ŷ (mm) defined in Proposition 3.2, and (3) the

oracle estimate Ŷ (oracle) = =
−1K⊤K. The performance of each estimator is measured in Frobenius norm

error: for instance, ∥ Ŷ − Y∥F is the error for proposed estimator Ŷ. For each configurations of (=, ?) and
the aforementioned two types of noise covariance Y, we run 100 repetitions and report in Figure 1 the
boxplots of the Frobenius error from different methods, and report in Table 1 the corresponding mean
and standard deviation of the Frobenius error.

Figure 1 and Table 1 show that, besides the oracle estimator, our proposed estimator has the best
performance with significantly smaller loss compared to the naive and method-of-moments estimators.
As expected, oracle estimator outperforms all three other methods. However, since it is typically not
available in practice, we recommend using our proposed estimator because it has the nearest performance
to oracle estimator.

Since the estimation target Y is a ) ×) matrix, we also want to compare different estimators in terms
of the bias and standard deviation for each entry of Y. Figure 2 and Figure 3 present the heatmaps of bias
and standard deviation from different estimators for full-rank and low-rank Y when = = 1000. We display
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convince us that the naive estimator has large bias, though it has small standard deviation. The method-
of-moments estimator is unbiased but its variance is relatively large, which means its performance is
not stable, as was reflected in Figure 1 and Table 1. Our proposed estimator improves on both the naive
and method-of-moments estimators because it has much smaller bias than the former, while having
smaller standard deviation than the latter. Therefore, our proposed estimator is the clear winner besides
the impractical oracle estimator.

5. Limitations and future work

One limitation of the proposed estimator Ŷ is that its construction necessitates the knowledge of
�. Let us first mention that the estimator =−1∥(O) − Â/=)−1L⊤∥F of Tr(Y) + ∥�1/2 (Ĥ − H∗)∥2

F in
Theorem 3.9 does not require knowing �. Thus, this estimator can further be used as a proxy of the error
∥�1/2 (Ĥ − H∗)∥2

F, say for parameter tuning, without the knowledge of �. The problem of estimating Y

with known � was studied in Celentano and Montanari (2021) for ) = 2: in this inaccurate covariate
model and for ?/= ≤ W, our results yield the convergence rate =−1/2 for Y which improves upon the rate
=−20 for a non-explicit constant 20 > 0 in (Celentano and Montanari, 2021, Theorem 2.1).

In order to use Ŷ when � is unknown, one may plug-in an estimator �̂ in Equation (11), resulting
in an extra term of order ∥�̂−1 − �

−1∥op∥L∥F for the Frobenius error. See (Dicker, 2014, §4) for
related discussions in the ) = 1 (single-task) case. While, under the proportional regime ?/=→ W,
no estimator is consistent for all covariance matrices � in operator norm, consistent estimators do
exist under additional structural assumptions Bickel and Levina (2008), Cai, Zhang and Zhou (2010),
El Karoui (2008). If available, additional unlabeled samples (x8)8≥=+1 can also be used to construct
norm-consistent estimator of �.

Future directions include extending estimator Ŷ to utilize other estimators of the nuisance H∗ than the
multi-task elastic-net (6); for instance (7) or the estimators studied in Bertrand et al. (2019), Geer and
Stucky (2016), Molstad (2022). In the simpler case where columns of H∗ are estimated independently
on each task, e.g., if the ) columns of Ĥ are Lasso estimators ( #̂ (C ) )C∈[) ] each computed from y (C ) ,
then minor modifications of our proof yield that the estimator (11) with Â = diag(∥ #̂ (1) ∥0, ..., ∥ #̂ () ) ∥0)
enjoys similar Frobenius norm bounds of order =−1/2.

Appendix A: Proof of Propositions 3.1 to 3.3

Notation. We first introduce a few notations that will be used throughout the proofs. We use indexes 8 and
; only to loop or sum over [=] = {1,2, . . . , =}, use 9 and : only to loop or sum over [?] = {1,2, . . . , ?},
use C and C′ only to loop or sum over [)] = {1,2, . . . ,)}, so that e8 (and e;) refer to the 8-th (and ;-th)
canonical basis vector in R

=, e 9 (and e:) refer to the 9-th (and :-th) canonical basis vector in R
? , eC

(and eC ′ ) refer to the C-th (and C′-th) canonical basis vector in R
) . For any two real numbers 0 and 1, let

0 ∨ 1 = max(0, 1), and 0 ∧ 1 = min(0, 1). Positive constants that depend on W, g′ only are denoted by
� (W, g′), and positive constants that depend on W, 2 only are denoted by � (W, 2). The values of these
constants may vary from place to place.

Proof of Proposition 3.1. Let Y =
∑)

C=1f
2
C uCu

⊤
C be the spectral decomposition of Y, then ∥K⊤K −

=Y∥2
F =

∑
C∈[) ]

∑
C ′∈[) ] [u⊤C ′ ((K

⊤K − =Y)uC ]2. We now compute the expectation of one term indexed
by (C, C′). The random variable u⊤

C ′ (K
⊤K − =Y)uC is the sum of = i.i.d. mean zero random variables with

the same distribution as IC ′ IC − u⊤
C ′YuC where (IC , IC ′ ) ∼ N2 (0,diag(f2

C , f
2
C ′ )). Thus

E[(u⊤C ′ (K⊤K − =Y)uC )2] = =Var[IC ′ IC − u⊤C ′YuC ] = =2f4
C �C=C ′ + =f2

C f
2
C ′ �C≠C ′
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due to Var[j2
1] = 2 if C = C′ and independence if C ≠ C′. Summing over all (C, C′) ∈ [)] × [)] yields

2=
∑)

C=1f
4
C + =

∑
C≠C ′ f

2
C f

2
C ′ = =

∑)
C=1f

4
C + =(

∑)
C=1f

2
C )2 = =∥Y∥2

F + =[Tr(Y)]2 as desired.
The inequality simply follows from ∥Y∥2

F ≤ [Tr(Y)]2 since Y is positive semi-definite. ■

Proof of Proposition 3.2. Without loss of generality, we assume � = O? . For general positive definite

�, the proof follows by replacing (^, H∗) with (^�− 1
2 ,�

1
2 H∗).

We first derive the method-of-moments estimator Ŷ (mm) . Under Assumptions 1 and 2 with � = O? , ^
has i.i.d. rows from N? (0, O?), K has i.i.d. rows from N) (0, Y), and ^ and K are independent. Then,
the expectations of _⊤_ and _⊤^^⊤_ are given by

E(_⊤_) = E
[
(^H∗ + K)⊤ (^H∗ + K)

]
= =(H∗⊤H∗ + Y), (24)

and

E(_⊤^^⊤_) = E
[
(^H∗ + K)⊤^^⊤ (^H∗ + K)

]

= E(H∗⊤^⊤^^⊤^H∗) + E(K⊤^^⊤K)
= H∗⊤

E(^⊤^^⊤^)H∗ + E(K⊤^^⊤K)
= =(= + ? + 1)H∗⊤H∗ + =?Y, (25)

where the last line uses

E(^⊤^^⊤^)

= E

[ =∑

8=1

(x8x⊤8 )
=∑

;=1

(x;x⊤; )
]

=

∑

8≠;

E(x8x⊤8 x;x⊤; ) +
∑

8=;

E(x8x⊤8 x;x⊤; )

= =(= − 1)O2
? + =E(x1x

⊤
1 x1x

⊤
1 )

= =(= − 1)O? + =[2O2
? + Tr(O?)O?]

= =(= + ? + 1)O? ,

and

E(K⊤^^⊤K) = E
[
E(K⊤^^⊤K |K)

]
= E

[
K⊤

E(^^⊤)K
]
= =?Y.

Solving for Y from the system of equations (24) and (25), we obtain the method-of-moments estimator

Ŷ (mm) =
(= + ? + 1)
=(= + 1) _⊤_ − 1

=(= + 1)_
⊤^^⊤_ ,

and E[Ŷ (mm) ] = Y.

Now we derive the variance lower bound for Ŷ (mm) . Since E[Ŷ (mm) ] = Y, E
[
∥ Ŷ (mm) − Y∥2

F

]
=

∑
C ,C ′ Var

{
[Ŷ (mm) ]C ,C ′

}
. By definition of Ŷ (mm) ,

[Ŷ (mm) ]C ,C ′ =
= + ? + 1
=(= + 1) [y

(C ) ]⊤y (C ′ ) − 1
=(= + 1) [y

(C ) ]⊤^�−1^⊤y (C
′ ) .
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Since y (C ) = ^# (C ) + 9 (C ) , y (C
′ ) = ^# (C ′ ) + 9 (C ′ ) , for C ≠ C′, without loss of generality, we assume

# (C )
= 00e1 and # (C ′ )

= 01e1 + 02e2 for some constants 00, 01, 02. If necessary, we could let u1 =

# (C )/∥# (C ) ∥, and u2 = ũ2/∥ũ2∥ where ũ2 = # (C ′ ) − Vu1 #
(C ′ ) , and completing the basis to obtain an

orthonormal basis {u1, u2, . . . ,u?} for R? . Let [ = [u1, u2, . . . ,u?], then [ is an orthogonal matrix,
hence ^[ and ^ have the same distribution, only the first coordinate of [⊤# (C ) is nonzero, and only
the first two coordinates of [⊤# (C ′ ) are be nonzero. That is, we could perform change of variables by
replacing (^, # (C ) , # (C ′ ) ) with (^[,[⊤# (C ) ,[⊤# (C ′ ) ).

Therefore, y (C ) and y (C
′ ) are independent of {^e 9 : 3 ≤ 9 ≤ ?}. Let F = f(y (C ) , y (C ′ ) , ^e1, ^e2) be

the f−field generated by (y (C ) , y (C ′ ) , ^e1, ^e2), then

Var
{
[Ŷ (mm) ]C ,C ′

}
≥ E

[
Var

{
[Ŷ (mm) ]C ,C ′ |F

}]
=

1

=2 (= + 1)2
E
[
Var

{
[y (C ) ]⊤^^⊤y (C

′ ) |F
}]
.

Note that in the above display,

[y (C ) ]⊤^^⊤y (C
′ )
=

2∑

9=1

[y (C ) ]⊤^e 9 e
⊤
9 ^

⊤y (C
′ ) +

?∑

9=3

[y (C ) ]⊤^e 9 e
⊤
9 ^

⊤y (C
′ ) ,

where the first term is measurable with respect to F , and the second term is a quadratic form

?∑

9=3

[y (C ) ]⊤^e 9 e
⊤
9 ^

⊤y (C
′ )
=

?∑

9=3

e⊤9 ^
⊤y (C

′ ) [y (C ) ]⊤^e 9 = /⊤�/,

here / = [e⊤3 ^
⊤, . . . , e⊤?^

⊤]⊤ ∼N(0, O=(?−2) ), and � = O?−2 ⊗ y (C
′ ) [y (C ) ]⊤. Thus, for C ≠ C′,

Var
{
[Ŷ (mm) ]C ,C ′

}
≥ 1

=2 (= + 1)2
E

{
Var

{
/⊤�/ |F

}}

=
1

=2 (= + 1)2
E

{
∥�∥2

F + Tr(�2)
}

≥ 1

=2 (= + 1)2
E[∥�∥2

F]

=
? − 2

=2 (= + 1)2
E[∥y (C ) ∥2∥y (C ′ ) ∥2] .

For C = C′, using a similar argument we obtain

Var
{
[Ŷ (mm) ]C ,C ′

}
≥ ? − 1

=2 (= + 1)2
E[∥y (C ) ∥2∥y (C ′ ) ∥2] .

Summing over all (C, C′) ∈ [)] × [)] yields

E
[
∥ Ŷ (mm) − Y∥2

F

]
≥ ? − 2

=2 (= + 1)2

∑

C ,C ′
E[∥y (C ) ∥2∥y (C ′ ) ∥2]

=
? − 2

=2 (= + 1)2
E[∥_ ∥4

F]

≥ ? − 2

=2 (= + 1)2
(E[∥_ ∥2

F])
2
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=
? − 2

(= + 1)2
[Tr(Y) + ∥H∗∥2]2.

■

Proof of Proposition 3.3. Let us first introduce the following two lemmas and defer their proofs to the
end of this section.

Lemma A.1 (deterministic bound for ∥ Ĥ∥0). For the multi-task Lasso estimator

Ĥ = arg min
H∈R?×)

( 1
2=

∥_ − ^H∥2
F + _∥H∥2,1

)
,

we have

∥ Ĥ∥0 ≤ ∥^∥2
op max

{
2∥K∥2

F

=2_2
,

4∥H∗∥0

=^2

}
,

where ^2 = infH∈R?×) :∥H∥2,1≤∥H∗ ∥2,1

∥^ (H−H∗ ) ∥2
F

=∥H−H∗ ∥2
F

.

Lemma A.1 is a short deterministic argument that provides an upper bound for ∥ Ĥ∥0 of the multi-task
Lasso. It follows the same lines as that for the Lasso in (Bellec, 2020, Scetion 10). This argument is
sufficient in the = ≍ ? regime of the present paper; in the regime B≪ =≪ ? regime, sharper bounds
are available ((Lounici et al., 2011, Theorem 3.1), (Liu and Zhang, 2009, Lemma 6), (Bellec and Romon,
2021, Lemma C.3), (Bellec and Kuchibhotla, 2019, Proposition 3.7)).

Lemma A.2 is a generalization of (Lecué and Mendelson, 2017, Lemma 2.7) to the multi-task setting
and will be useful to provide a lower bound for ^ in Lemma A.1.

Lemma A.2. Let ^ ∈ R
=×? , : ∈ [?], X > 0 be such that

inf
b∈R? :∥b∥0≤:

∥^b∥
√
=∥b∥

≥ X, (26)

then for any matrix G ∈ R
?×) we have

(1 − 1
:
)
∥^G∥2

F

=
≥ X2 (1 − 1

:
)∥G∥2

F −
(∑?

9=1∥G
⊤e 9 ∥)2

:

[∑

9

(
` 9

∥^e 9 ∥2

=
− X2

)]
,

where ` 9 =
∥G⊤e 9 ∥∑
9 ∥G⊤e 9 ∥

.

Our first step is to bound ^ from below using Lemma A.2. To this end, we first verify condition (26)
by finding suitable expressions for : and X. Note that

inf
b∈R? :∥b∥0≤:

∥^b∥
√
=∥b∥

≥ q1/2
min (�) inf

b∈R? :∥b∥0≤:

∥`�1/2b∥
√
=∥�1/2b∥

= q
1/2
min (�) inf

�⊆[?]
|� |=:

inf
u∈+�

∥`u∥
√
=∥u∥

,

where ` = ^�−1/2 ∈ R
=×? is a matrix with iid N(0,1) entries, and +� = {�1/2b : b ∈ R

? , supp(b) ⊆
� ⊆ [?], |� | = :}. The linear subspace +� has dimension : and we consider a matrix & ∈ R

?×: such
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that its columns form an orthonormal basis of +� . By construction, &&⊤ is the orthogonal projection
onto +� and &⊤& = �: . For any u ∈ +� , let v =&⊤u, so that

∥`u∥
√
=∥u∥

=
∥`&v∥
√
=∥v∥

≥ qmin (`&)√
=

,

where the matrix `& ∈ R
=×: has iid N(0,1) entries since &⊤& = �: . Using (Davidson and Szarek,

2001, Theorem II.13) on the smallest singular value of a Gaussian matrix, we have for every C ≥ 0

P(qmin (`&) ≥
√
= −

√
: − C) ≥ 1 − 4−C2/2. (27)

We take C =
√
=

4 , and choose : such that
√
: ≤

√
=

4 , so that
√
= −

√
: − C ≥

√
=

2 . Taking all the
(?
:

)

combinations of support set � such that � ⊆ [?] and |� | = : , we obtain

P

(
inf

b∈R? :∥b∥0≤:

∥^b∥
√
=∥b∥

≥ q1/2
min (�)/2

)
≥ 1 −

(
?

:

)
4−=/32 ≥ 1 − 4: log(4?/: )−=/32.

We take : = 2∗ (W)= with 2∗ (W) = sup
2∈[0, 1

16∧W ]
{2 log(4W/2) ≤ 1/64}, then

P

(
inf

b∈R? :∥b∥0≤:

∥^b∥
√
=∥b∥

≥ q1/2
min (�)/2

)
≥ 1 − 4−=/64.

With X = q1/2
min (�)/2, and : = 2∗ (W)=, then condition (26) holds with probability at least 1 − 4−=/64. In

other words, letting

�0 = { inf
b∈R? :∥b∥0≤2∗ (W)=

∥^b∥
√
=∥b∥

≥ q1/2
min (�)/2},

then P(�0) ≥ 1 − 4−=/64. Now we are ready to bound ^2 in Lemma A.1 using Lemma A.2. To this
end, we first derive a cone condition for H − H∗ using ∥H∥2,1 ≤ ∥H∗∥2,1. By rearranging the terms and
Cauchy-Schwarz inequality, we have

∑

9∈S2

∥H⊤e 9 ∥ ≤
∑

9∈S

(∥H∗⊤e 9 ∥ − ∥H⊤e 9 ∥) ≤
∑

9∈S

∥(H − H∗)⊤e 9 ∥ ≤
√
|S|∥H − H∗∥F.

Since
∑

9∈S2 ∥(H − H∗)⊤e 9 ∥ =
∑

9∈S2 ∥H⊤e 9 ∥ ≤
√
|S|∥H − H∗∥F, we obtain the cone condition

?∑

9=1

∥(H − H∗)⊤e 9 ∥ ≤ 2
√
|S|∥H − H∗∥F. (28)

Let �1 =
{
max 9∈[?]

∥^e 9 ∥2

=
≤ 1.1

}
, then under the assumption that � 9 9 = 1 for all 9 ∈ [?], we have

P(�1) ≥ 1 − 4−2 (W)= by (Laurent and Massart, 2000, Lemma 1). Now we apply Lemma A.2 to G =

H − H∗, using the cone (28) and
∑

9 ` 9 = 1, we have on the event �1,

∥^ (H − H∗)∥2
F

=
≥ X2 (1 − 1

:
)∥H − H∗∥2

F −
4.4|S|
:

∥H − H∗∥2
F.
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Since 1 − 1
:
= 1 − 1

2∗ (W)= ≥ 1/2 for = large enough, with |S| ≤ : X2

17.6 ≤ : X2

16 , we have

∥^ (H − H∗)∥2
F

=
≥ X2

4
∥H − H∗∥2

F, (29)

and thus ^ ≥ X
2 with X = q1/2

min (�)/2.

Now we are ready to bound ∥ Ĥ∥0 using Lemma A.1. Let �2 = {∥^⊤^∥op ≤ ∥�∥op (2 + √
W)2=},

�3 = {∥K∥2
F ≤ 5 Tr(Y)=}, then P(�2) ≥ 1 − exp(−=/2) by (Davidson and Szarek, 2001, Theorem II.13),

and P(�3) ≥ 1 − exp(−=) by (Laurent and Massart, 2000, Lemma 1). On the event �0 ∩ �1 ∩ �2 ∩ �3,
we have

∥ Ĥ∥0 ≤ ∥^∥2
op max

{
2∥K∥2

F

=2_2
,

4∥H∗∥0

=^2

}

≤ ∥�∥op (2 + √
W)2 max

{
10 Tr(Y)
_2

,
4∥H∗∥0

^2

}

≤ ∥�∥op (2 + √
W)2 max

{
10=

`2
,

64∥H∗∥0

qmin (�)

}
,

where the last inequality uses _ = `
√

Tr(Y)/=, and ^ ≥ X/2 = q
1/2
min (�)/4.

To guarantee ∥ Ĥ∥0 ≤ =/3, we need (1) ∥�∥op (2 + √
W)2 10

`2 ≤ 1/3, that is, ` ≥ `∗ (W,�) :=

(30∥�∥op)1/2 (2+√W), and (2) ∥�∥op (2+
√
W)2 64∥H∗ ∥0

qmin (�) ≤ =/3, that is, ∥H∗∥0 ≤ qmin (�)
192∥�∥op (2+

√
W)2 =. Recall

that we also need ∥H∗∥0 ≤ : X2

16 ≤ 2∗ (W)qmin(�)
64 = := 2∗ (W,�)= to ensure (29). So under the Assumption

4(iii), on the event �0 ∩ �1 ∩ �2 ∩ �3, we have ∥ Ĥ∥0 ≤ =/3. Using the union bound for the events
�0, �1, �2, �3, we have

P

(
∥ Ĥ∥0 ≤ =/3

)
≥ 1 − exp(−2(W)=) > 1 − 1

)

if ) ≤ 4
√
=. ■

To complete the proof of Proposition 3.3, we now provide proofs for Lemmas A.1 and A.2.

Proof of Lemma A.1. The KKT conditions for Ĥ read ^⊤ (_ − ^Ĥ) = =_m∥ Ĥ∥2,1. Let Ŝ be the

support of Ĥ, then for each 9 ∈ Ŝ, we have e⊤
9
^⊤ (_ − ^Ĥ) = =_

e⊤
9
Ĥ

∥ Ĥ⊤
e 9 ∥

. Taking squared norm on both

sides and summing over 9 ∈ Ŝ gives

(=_)2 |Ŝ| =
∑

9∈Ŝ

∥e⊤9 ^⊤ (_ − ^Ĥ)∥2 ≤ ∥_ − ^Ĥ∥2
F∥^

⊤^∥op. (30)

Now we bound ∥_ − ^Ĥ∥2
F. Multplying the KKT conditions by Ĥ − H∗ gives

∥^ (Ĥ − H∗)∥2
F + ∥_ − ^Ĥ∥2

F ≤ ∥K∥2
F + 2=_(∥H∗∥2,1 − ∥ Ĥ∥2,1).

We bound the RHS by comparing the two terms. If ∥K∥2
F ≥ 2=_(∥H∗∥2,1 − ∥ Ĥ∥2,1), then

∥_ − ^Ĥ∥2
F ≤ ('�() ≤ 2∥K∥2

F.
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Otherwise ∥K∥2
F ≤ 2=_(∥H∗∥2,1 − ∥ Ĥ∥2,1), then we have

∥^ (Ĥ − H∗)∥2
F + ∥_ − ^Ĥ∥2

F ≤ 4=_(∥H∗∥2,1 − ∥ Ĥ∥2,1)

≤ 4=_
√
|S|∥H∗ − Ĥ∥F

≤ 4
√
=_

√
|S|^−1∥^ (Ĥ − H∗)∥F.

where S is the support of H∗. Using 401 ≤ 402 + 12 with 0 =
√
=_

√
|S|^−1 and 1 = ∥^ (Ĥ − H∗)∥F,

then the term 12 cancels out in both sides. We have

∥_ − ^Ĥ∥2
F ≤ 4=_2 |S|^−2.

Plugging the maximum of the previous two bounds for ∥_ − ^Ĥ∥2
F into (30) gives the desired inequality.

■

Proof of Lemma A.2. Replacing G by G/∑?

9=1 ∥G
⊤e 9 ∥ if necessary, we assume with out of generality

that
∑?

9=1 ∥G
⊤e 9 ∥ = 1 and we also assume for simplicity that ∀ 9 ∈ [?], G⊤e 9 ≠ 0. Define a discrete ran-

dom matrix Ã by P(Ã = e 9 e
⊤
9
G/` 9 ) = ` 9 , where ` 9 = ∥G⊤e 9 ∥. Then we have EÃ = G. Let Ã1, ...Ã:

be iid copies of Ã and set Ḡ =
1
:

∑:
<=1 Ã<, then Ḡ is :−row sparse by construction and condition (26)

gives ∥^ Ḡ∥2
F/= ≥ X

2∥ Ḡ∥2
F. Hence

E[∥^ Ḡ∥2
F/=] ≥ X

2
E[∥ Ḡ∥2

F] . (31)

Note that all expectations are conditionally on ^ and the randomness stems from Ã1, ..., Ã: . Now
we calculate the expectations (conditionally on ^) by expanding the squares. For D ≠ E, we have
E⟨^ÃD, ^ÃE⟩ = ∥^G∥2

F by independence. For D = E, using ` 9 = ∥G⊤e 9 ∥, we have

E[∥^ÃD∥2
F/=] =

∑

9

` 9 ∥^e 9 e
⊤
9 G∥2

F/(`
2
9=) =

∑

9

` 9 ∥^e 9 ∥2/=.

Therefore,

E[∥^ Ḡ∥2
F/=] =

(
1 − 1

:

)
∥^G∥2

F/= +
1
:

∑

9

` 9 ∥^e 9 ∥2/=.

The same argument gives

E[∥ Ḡ∥2
F/=] =

(
1 − 1

:

)
∥G∥2

F +
1
:

∑

9

` 9 =

(
1 − 1

:

)
∥G∥2

F +
1
:
.

Plugging the above two equalities into (31) gives the desired bound. ■

Appendix B: Proof of main results

We first present two lemmas and three propositions in Appendix B.1. Based on these technical results,
we prove the main results of the paper in Appendix B.2. The proofs of technical results in Appendix B.1
are deferred to the supplementary material Tan, Romon and Bellec (2023).
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B.1. Preliminary results

The following Lemmas B.1 and B.2 provide operator norm bounds for O) − Â/= and (O) − Â/=)−1

under suitable conditions.

Lemma B.1. Suppose that Assumption 2 holds. If g > 0 in (6) with g′ = g/∥�∥op, then

(i) ∥O) − Â/=∥op ≤ 1.

(ii) In the event
{
∥^�− 1

2 ∥op < 2
√
= + √

?
}
, we have ∥(O) − Â/=)−1∥op ≤ 1 + (g′)−1 (2 +

√
?/=)2.

Furthermore, E[∥(O) − Â/=)−1∥op] ≤ 1 + (g′)−1 [(1 +
√
?/=)2 + =−1] .

Lemma B.2. Suppose that Assumption 2 holds. If g = 0 in (6), then

(i) In the event*1, we have ∥O) − Â/=∥op ≤ 1.

(ii) In the event*1, ∥(O) − Â/=)−1∥op ≤ � (2). Hence, E[� (*1)∥(O) − Â/=)−1∥op] ≤ � (2).

The proof of main results rely on the following three propositions, which are derived from non-trivial
applications of second-order Stein’s identity (Bellec and Zhang, 2021).

Proposition B.3. Suppose that Assumption 1 holds.

Let W1 =
1
=

(
L⊤L+N⊤`⊤L−Y (=O)−Â)

)

∥Y
1
2 ∥F ( ∥L ∥2

F/=+Tr(Y) )
1
2 =

− 1
2

, then E[∥W1∥2
F] ≤ 4.

Proposition B.4. Suppose that Assumptions 2, 3 and 4 hold. Let

W2 =

1
=2

(
L⊤``⊤L − L⊤L(?O) − Â) + (=O) − Â)N⊤`⊤L

)

(∥N∥2
F + ∥L∥2

F/=)=−
1
2

,

then E[∥W2∥2
F] ≤ � (g′) () ∧ (1 + ?

=
)) (1 + ?

=
) under Assumption 4(i), and E[� (Ω)∥W2∥2

F] ≤ � (W, 2)
under Assumption 4(ii) for some set Ω with P(Ω) → 1.

Proposition B.5. Suppose that Assumptions 2, 3 and 4 hold. Let Ξ = (=O) − Â)N⊤`⊤L, and

W3 =

1
=2

(
?L⊤L − L⊤``⊤L − (=O) − Â)N⊤N(=O) − Â) − Ξ − Ξ⊤)

(∥N∥2
F + ∥L∥2

F/=)=−
1
2

,

then E[


W3




F] ≤ � (W, g

′) under Assumption 4(i), and E[� (Ω)


W3




F] ≤ � (W, 2) under Assumption 4(ii)

for some set Ω with P(Ω) → 1.

B.2. Proofs of main results

With the preliminary results in previous section, we are ready to present the proofs of main results.

Proof of Theorem 3.4. Recall definition of Ŷ in Definition 2.2, and let W1, W2 be defined as in Propo-
sitions B.3 and B.4. With ` = ^�−1/2, we obtain

=2
[
W2 (∥N∥2

F + ∥L∥2
F/=)=

− 1
2 − =−1 (=O) − Â)W1

(
∥Y 1

2 ∥F
(
∥L∥2

F/= + Tr(Y)
) 1

2 =−
1
2
) ]



22

=
(
L⊤``⊤L − L⊤L(?O) − Â) + (=O) − Â)N⊤`⊤L

)

−
[
(=O) − Â) (L⊤L + N⊤`⊤L − Y(=O) − Â))

]

=
(
L⊤``⊤L − L⊤L(?O) − Â)

)
− (=O) − Â) (L⊤L − Y(=O) − Â))

= L⊤``⊤L + L⊤LÂ + ÂL⊤L − (= + ?)L⊤L + (=O) − Â)Y(=O) − Â)
= (=O) − Â)Y(=O) − Â) + L⊤LÂ + ÂL⊤L − L⊤ ((= + ?)O) − ``⊤)L

= (=O) − Â)Y(=O) − Â) − (=O) − Â) Ŷ(=O) − Â)

= (=O) − Â) (Y − Ŷ) (=O) − Â).

Therefore, by the triangle inequality and ∥O) − Â/=∥op ≤ 1 in Lemmas B.1 and B.2,



(O) − Â/=) (Y − Ŷ) (O) − Â/=)




F

≤ ∥W2∥F=
− 1

2 (∥N∥2
F + ∥L∥2

F/=) + ∥O) − Â/=∥op∥W1∥F=
− 1

2 ∥Y 1
2 ∥F

(
∥L∥2

F/= + Tr(Y)
) 1

2

≤ ∥W2∥F=
− 1

2 (∥N∥2
F + ∥L∥2

F/=) + ∥W1∥F=
− 1

2 ∥Y 1
2 ∥F

(
∥L∥2

F/= + Tr(Y)
) 1

2

≤ ∥W2∥F=
− 1

2 (∥N∥2
F + ∥L∥2

F/=) + ∥W1∥F=
− 1

2
1
2

[
Tr(Y) +

(
∥L∥2

F/= + Tr(Y)
) ]

≤ (∥W2∥F + ∥W1∥F)=−
1
2 (∥N∥2

F + ∥L∥2
F/= + Tr(Y)).

Therefore,


(O) − Â/=) (Y − Ŷ) (O) − Â/=)




F ≤ Θ1=

− 1
2 (∥N∥2

F + ∥L∥2
F/= + Tr(Y)),

where Θ1 = ∥W1∥F + ∥W2∥F. Note that we have E[∥W1∥2
F] ≤ 4 from Proposition B.3. By Proposition B.4,

we have

(1) under Assumption 4(i), E[∥W2∥2
F] ≤ � (g′) () ∧ (1 + ?

=
)) (1 + ?

=
). Hence

E[Θ2
1] ≤ 2E[∥W1∥2

F + ∥W2∥2
F] ≤ 2[4 +� (g′) () ∧ (1 + ?

=
)) (1 + ?

=
)]

≤ � (g′) () ∧ (1 + ?
=
)) (1 + ?

=
).

(2) under Assumption 4(ii), E[� (Ω)∥W2∥2
F] ≤ � (W, 2) with P(Ω) → 1. Thus,

E[� (Ω)Θ2
1] ≤ 2E[∥W1∥2

F + � (Ω)∥W2∥2
F] ≤ � (W, 2).

■

Proof of Theorem 3.9. From the definitions of W1,W2,W3 in Propositions B.3, B.4 and B.5, we have

(W⊤
2 +W3)=−

1
2 (∥N∥2

F + ∥L∥2
F/=) + (O) − Â/=)W1=

− 1
2 ∥Y 1

2 ∥F
(
∥L∥2

F/= + Tr(Y)
) 1

2

=
1
=
L⊤L − (O) − Â/=) (N⊤N + Y) (O) − Â/=)

= (O) − Â/=)
[
=−1 (O) − Â/=)−1L⊤L(O) − Â/=)−1 − (N⊤N + Y)

]
(O) − Â/=)
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= (O) − Â/=) ( X̂ − X) (O) − Â/=),

where X̂
def
= =−1 (O) − Â/=)−1L⊤L(O) − Â/=)−1, and X

def
= N⊤N + Y.

Therefore, by the triangle inequality and ∥O) − Â/=∥op ≤ 1 from Lemmas B.1 and B.2,

∥(O) − Â/=) ( X̂ − X) (O) − Â/=)∥F

≤ (∥W2∥F +


W3




F)=

− 1
2 (∥N∥2

F + ∥L∥2
F/=) + ∥W1∥F=

− 1
2 ∥Y 1

2 ∥F
(
∥L∥2

F/= + Tr(Y)
) 1

2

≤ (∥W2∥F +


W3




F + ∥W1∥F)=−

1
2 (∥L∥2

F/= + ∥N∥2
F + Tr(Y))

= Θ2=
− 1

2 (∥L∥2
F/= + ∥N∥2

F + Tr(Y)),

where Θ2 = ∥W1∥F + ∥W2∥F + ∥W3∥F. By Propositions B.3, B.4 and B.5, we obtain E[Θ2] ≤ � (W, g′)
under Assumption 4(i) and E[� (Ω)Θ2] ≤ � (W, 2) with %(Ω) → 1 under Assumption 4(ii).

Furthermore, since Θ2 =$% (1), and


(O) − Â/=)−1




op =$% (1) from Lemmas B.1 and B.2,

∥ X̂ − X∥F ≤ ∥(O) − Â/=)−1∥2
opΘ2=

− 1
2 (∥L∥2

F/= + ∥N∥2
F + Tr(Y))

=$% (=−
1
2 ) (∥L∥2

F/= + ∥N∥2
F + Tr(Y)).

Since 1
=
L⊤L = (O) − Â/=) X̂(O) − Â/=), taking trace of both sides gives 1

=
∥L∥2

F ≤ ∥ X̂∥∗ thanks to
∥(O) − Â/=)∥op ≤ 1. Note that ∥X∥∗ = ∥N∥2

F + Tr(Y) by definition of X, we obtain

∥ X̂ − X∥F ≤ $% (=−
1
2 ) (∥ X̂∥∗ + ∥X∥∗). (32)

Since X̂ and X are both ) ×) positive semi-definite matrices, whose ranks are at most ) ,
��∥ X̂∥∗ − ∥X∥∗

�� ≤ ∥ X̂ − X∥∗ ≤
√
) ∥ X̂ − X∥F

≤ $% (()/=)
1
2 ) (∥ X̂∥∗ + ∥X∥∗) = >% (1) (∥ X̂∥∗ + ∥X∥∗),

thanks to ) = >(=). That is,
��∥ X̂∥∗ − ∥X∥∗

��

∥ X̂∥∗ + ∥X∥∗
≤ $% (()/=)

1
2 ),

which implies ∥X∥∗
∥ X̂∥∗

− 1 =$% (()/=)
1
2 ), i.e.,

Tr(Y) + ∥N∥2
F

∥(O) − Â/=)−1L⊤∥2
F/=

− 1 =$% (()/=)
1
2 ) = >% (1).

■

Proof of Theorem 3.5. This proof is based on results of Theorems 3.4 and 3.9. We begin with the
result of Theorem 3.9,

Tr(Y) + ∥N∥2
F

∥(O) − Â/=)−1L⊤∥2
F/=

?
→ 1.
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In other words,

Tr(Y) + ∥N∥2
F = (1 + >% (1))∥(O) − Â/=)−1L⊤∥2

F/=.
Thus, the upper bound in Theorem 3.4 can be bounded from above as follows

∥(O) − Â/=) (Ŷ − Y) (O) − Â/=)∥F

≤ Θ1=
− 1

2 (∥L∥2
F/= + ∥N∥2

F + ∥Y 1
2 ∥2

F)

≤ Θ1=
− 1

2 (∥L∥2
F/= + (1 + >% (1))∥(O) − Â/=)−1L⊤∥2

F/=)

≤ Θ1=
− 1

2
(
1 + (1 + >% (1))∥(O) − Â)−1∥2

op
)
∥L∥2

F/=

= $% (=−
1
2 )∥L∥2

F/=.

Using ∥(O) − Â)−1∥op =$% (1) again, it follows

∥ Ŷ − Y∥F ≤ $% (=−
1
2 )∥L∥2

F/=. (33)

A similar argument leads to

∥ Ŷ − Y∥F ≤ $% (=−
1
2 ) (Tr(Y) + ∥N∥2

F). (34)

■

Proof of Corollary 3.6. Under Assumption 4(i) and 5, we proceed to bound ∥L∥2
F/= in terms of Tr(Y).

Let ! (H) = 1
2= ∥_ − ^H∥2

F + _∥H∥2,1 + g
2 ∥H∥2

F be the objective function in (6), then ! (Ĥ) ≤ ! (0) by

definition of Ĥ. Thus,

1
2=

∥L∥2
F ≤ 1

2=
∥L∥2

F + _∥ Ĥ∥2,1 +
g

2
∥ Ĥ∥2

F ≤ 1
2=

∥_ ∥2
F.

Now we bound 1
=
∥_ ∥2

F by Hanson-Wright inequality. Since _ = ^H∗ + K, the rows of _ are i.i.d.

N) (0,�y) with �y = (H∗)⊤�H∗ + Y, then vec(_⊤) ∼ N (0, On ⊗ �y), and /
def
= [O= ⊗ �y]−

1
2 vec(_⊤) ∼

N (0, O=) ). Since ∥_ ∥2
F = [vec(_⊤)]⊤ vec(_⊤) = /⊤ (O= ⊗ �y)/, we apply the following variant of

Hanson-Wright inequality.

Lemma B.6 (Lemma 1 in Laurent and Massart (2000)). For / ∼N(0, O# ) and matrix G ∈ R
#×# ,

the following inequality holds for any G > 0,

P(/⊤G/ − Tr(G) ≤ 2
√
G∥G∥F + 2G∥G∥op) ≥ 1 − exp(−G).

In our case, we take G = (O= ⊗�y), then Tr(G) = =Tr(�y), ∥G∥F =
√
=∥�y ∥F ≤

√
=Tr(�y), ∥G∥op =

∥�y ∥op ≤ Tr(�y), thus with probability at least 1 − exp(−G),

∥_ ∥2
F − =Tr(�y) ≤ 2

√
=G Tr(�y) + 2G Tr(�y).

Take G = =, then with probability at least 1 − exp(−=),

∥L∥2
F/= ≤ ∥_ ∥2

F/= ≤ 5 Tr(�y).
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Thus, ∥L∥2
F/= =$% (1) Tr(�y). Together with (33), we obtain

∥ Ŷ − Y∥F ≤ $% (=−
1
2 ) Tr(�y).

Note that by Assumption 5, Tr(�y) = ∥� 1
2 H∗∥2

F + Tr(Y) ≤ (1 + snr) Tr(Y). Therefore, we obtain

∥ Ŷ − Y∥F ≤ $% (=−
1
2 ) Tr(Y).

Furthermore, since Tr(Y) ≤
√
) ∥Y∥F and ) = >(=), we have

∥ Ŷ − Y∥F ≤ $% (
√
)/=)∥Y∥F = >% (1)∥Y∥F.

Finally, since ∥Y∥∗ = Tr(Y), by the triangular inequality

��∥ Ŷ∥∗ − Tr(Y)
�� ≤ ∥ Ŷ − Y∥∗ ≤

√
) ∥ Ŷ − Y∥F ≤ $% (

√
)/=) Tr(Y) = >% (1) Tr(Y).

■

Proof of Corollary 3.7. For g = 0, by the optimality of Ĥ in (6),

1
2=

∥L∥2
F + _∥ Ĥ∥2,1 ≤

1
2=

∥K∥2
F + _∥H

∗∥2,1.

Note that L = K − ^ (Ĥ − H∗) = K − `N, expanding the squares and rearranging terms yields

∥`N∥2
F ≤ 2⟨K, `N⟩ + 2=_(∥H∗∥2,1 − ∥ Ĥ∥2,1) ≤ 2⟨K, `N⟩ + 2=_∥ Ĥ − H∗∥2,1. (35)

From assumptions in this corollary, Ĥ − H∗ has at most (1 − 2)= rows. Thus, in the event*2, we have

=[∥N∥2
F = =[∥�1/2 (Ĥ − H∗)∥2

F ≤ ∥^ (Ĥ − H∗)∥2
F = ∥`N∥2

F.

We bound the right-hand side two terms in (35) by Cauchy-Schwarz inequality,

∥ Ĥ − H∗∥2,1 ≤
√
(1 − 2)=∥ Ĥ − H∗∥F ≤

√
(1 − 2)=

√
qmin (�)

∥N∥F ≤
√

1 − 2√
[qmin (�)

∥`N∥F,

and ⟨K, `N⟩ ≤ ∥K∥F∥`N∥F ≤ ∥Y 1
2 ∥F∥KY− 1

2 ∥op∥`N∥F.

Therefore, by canceling a factor ∥`N∥F from both sides of (35), we have

√
=[∥N∥F ≤ ∥`N∥F ≤ 2∥Y 1

2 ∥F∥KY− 1
2 ∥op +

2
√
(1 − 2)=_

√
[qmin (�)

.

Using (0 + 1)2 ≤ 202 + 212,

∥N∥2
F ≤ 4

=[
Tr(Y)∥KY− 1

2 ∥2
op +

4(1 − 2)=_2

[2qmin (�)
.
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Hence, using _ is of the form `
√

Tr(Y)/=, we have

Tr(Y) + ∥N∥2
F

≤ (1 + 4[−1=−1∥KY− 1
2 ∥2

op) Tr(Y) + 4(1 − 2)`2

[2qmin (�)
Tr(Y)

≤ $% (1) (1 + `2) Tr(Y),

where we used that =−1∥KY− 1
2 ∥op = $% (1) by (Davidson and Szarek, 2001, Theorem II.13) and

) = >(=). Now, by Theorem 3.5,

∥ Ŷ − Y∥F ≤ $% (=−
1
2 ) [Tr(Y) + ∥N∥2

F] ≤ $% (=−
1
2 ) (1 + `2) Tr(Y),

where the $% (·) hides constants depending on W, 2, qmin (�) since [ is a constant that only depends on
W, 2. ■

Proof of Theorem 3.10. From the definitions of W2,W3 in Propositions B.4 and B.5, we have

W2 +W⊤
2 +W3

=
=−2 (L⊤``⊤L + ÂL⊤L + L⊤LÂ − ?L⊤L − (=O) − Â)N⊤N(=O) − Â)

(∥N∥2
F + ∥L∥2

F/=)=−
1
2

.

Therefore,



(O) − Â/=)N⊤N(O) − Â/=) − =−2 (L⊤``⊤L + ÂL⊤L + L⊤LÂ − ?L⊤L
)



F

= ∥W2 +W⊤
2 +W3∥F (∥N∥2

F + ∥L∥2
F/=)=

− 1
2

≤ Θ3 (∥N∥2
F + ∥L∥2

F/=)=
− 1

2 ,

where Θ3 = 2∥W2∥F +


W3




F. The conclusion thus follows by Propositions B.4 and B.5. ■
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Additional simulation results and proofs of results in Appendix B.1.

Supplement II

Code for reproducing the numerical experiments in the main paper and the Supplemnt I.
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(ii) Note that ∥(O) − Â/=)−1∥op = (1 − ∥Â/=∥op)−1 ≤ 1 + q̂1
g
, where q̂1 = ∥ 1

=
^⊤

Ŝ
^

Ŝ
∥op ≤

∥ 1
=
^⊤^∥op ≤ 1

=
∥^⊤

�
− 1

2 ∥2
op∥�∥op. Therefore,

(1) in the event {∥^�− 1
2 ∥op < 2

√
= + √

?}, we have

∥(O) − Â/=)−1∥op ≤ 1 + g−1 (2 +
√
?/=)2∥�∥op = 1 + (g′)−1 (2 +

√
?/=)2.

(2) E[q̂1] ≤ E[=−1∥^⊤
�
− 1

2 ∥2
op∥�∥op] ≤ [(1 +

√
?/=)2 + =−1] ∥�∥op by (36). Hence,

E∥(O) − Â/=)−1∥op ≤ 1 + g−1
E[q̂1] ≤ 1 + (g′)−1 [(1 +

√
?/=)2 + =−1] .

■

Proof of Lemma B.2. (i) For g = 0, using the same argument as proof of Lemma B.1, we obtain

u⊤Âu ≤ ∥u∥2 Tr[^⊤
Ŝ
^

Ŝ
(^⊤

Ŝ
^

Ŝ
)†] ≤ ∥u∥2 |Ŝ|.

Thus, in the event*1, we have ∥Â∥op/= ≤ |Ŝ|/= ≤ (1 − 2)/2 < 1, hence

∥O) − Â/=∥op ≤ 1.

(ii) In the event*1, we have ∥(O) − Â/=)−1∥op = (1− ∥Â/=∥op)−1 ≤ (1− (1− 2)/2)−1. Furthermore,
E[� (*1)∥(O) − Â/=)−1∥op] ≤ (1 − (1 − 2)/2)−1.

■

E. Preliminary results needed for proving Propositions B.3 to B.5

Let us first introduce two events besides the event*1 =
{
∥ Ĥ∥0 ≤ =(1 − 2)/2

}
in Assumption 4(ii), we

define events*2 and*3 as below,

*2 =
{

inf
b∈R? :∥b∥0≤(1−2)=

∥^b∥2/(=∥� 1
2 b∥2) > [

}
,

*3 =
{
∥^�− 1

2 ∥op < 2
√
= + √

?
}
.

Under Assumptions 2 and 3, (Bellec and Zhang, 2019, Lemma B.1) guarantees P(*2) ≥ 1 −
� (W, 2)4−� (W,2)= for some constant [ that only depends on constants W, 2. Under Assumption 2, (David-
son and Szarek, 2001, Theorem II.13) guarantees P(*3) > 1 − 4−=/2 and there exists a random variable

I ∼ N(0,1) s.t. ∥^�− 1
2 ∥op ≤

√
= + √

? + I almost surely. Therefore, under Assumptions 2 and 3, we
have

E[∥=− 1
2 ^�− 1

2 ∥2
op] ≤ (1 +

√
?/=)2 + =−1 ≤ � (W). (36)

Furthermore, under Assumptions 2, 3 and 4(ii), P(*1 ∩*2 ∩*3) → 1 by a union bound, and for large
enough =,

P
{
(*1 ∩*2 ∩*3)2

}
<1/) +� (W, 2)4−=/� (W,2)

=
1
)
(1 +)� (W, 2)4−=/� (W,2) )
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<
1
)
(1 +� (W, 2)4

√
=−=/� (W,2) )

<
1
)
� (W, 2). (37)

E.1. Lipschitz and differential properties for a given, fixed noise matrix E

We need to study Lipschitz and differential properties of certain mappings when the noise matrix K is
fixed. Let 6 : R?×) → R defined by 6(H) = g∥H∥2

F/2 + _∥H∥2,1 be the penalty in (6). For a fixed value
of K, define the mappings

` ↦−→ N(`) = arg min
N̄∈R?×)

1
2=

∥K − `N̄∥2
F + 6(�

−1/2N̄) (R=×? → R
?×) ) (38)

` ↦−→ L(`) = K − `N(`) (R=×? → R
=×) ) (39)

` ↦−→ � (`) = (∥N(`)∥2
F + ∥L(`)∥2

F/=)
1/2 (R=×? → R). (40)

Next, define the random variable ` = ^�− 1
2 ∈ R

=×? , and let us use the convention that if arguments
of N,L or � are omitted then these mappings are implicitly taken at the realized value of the random

variable ` = ^�− 1
2 ∈ R

=×? where ^ is the observed design matrix. With this convention and by
definition of the above mappings, we then have N = N(`) = �

1/2 (Ĥ − H∗) as well as L = L(`) =
_ − ^Ĥ and � = [∥N∥2

F + ∥L∥2
F/=]

1/2 so that the notation is consistent with the rest of the paper (in
particular, with (9) in the main paper).

Finally, denote the (8, 9)-th entry of ` by I8 9 throughout this supplement, and the corresponding
partial derivatives of the above mappings by m

mI8 9
.

Lemma E.1. For multi-task elastic-net (i.e., g > 0 in (6)), the mapping ` ↦→ �−1L/
√
= is =−

1
2 !-

Lipschitz with ! = 8 max(1, (2g′)−1), where g′ = g/∥�∥op.

Lemma E.2. For multi-task group Lasso (i.e., g = 0 in (6)). we have

(1) In*1 ∩*2, the map ` ↦→ �−1L/
√
= is =−

1
2 !-Lipschitz with ! = 8 max(1, (2[)−1).

(2) In *1 ∩*2 ∩*3, the map ` ↦→ �−1`⊤L/= is =−1/2 (1 + (2 +
√
?/=)!)-Lipschitz, where ! =

8 max(1, (2[)−1) as in (1).

Corollary E.3. Suppose that Assumption 4 holds, then

(1) Under Assumption 4(i) that g > 0 and g′ = g/∥�∥op, we have

∑

8 9

( m�
mI8 9

)2
≤ =−1�2 [4 max(1, (2g′)−1)]2.

This implies that =�−2 ∑
8 9 ( m�

mI8 9
)2 ≤ � (g′).

(2) Under Assumption 4(ii) that g = 0 and P(*1) → 1, in the event*1 ∩*2, we have

∑

8 9

( m�
mI8 9

)2
≤ =−1�2 [4 max(1, (2[)−1)]2.
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This implies that =�−2 ∑
8 9 ( m�

mI8 9
)2 ≤ � ([) = � (W, 2) since [ is a constant that only depends on

W, 2.

Note that with a fixed noise K, Lemmas E.1 and E.2 guarantee that the map ` ↦→ L is Lipschitz,
hence the derivative exists almost everywhere by Rademacher’s theorem. We present the formula for
derivative of this map in Lemma E.4.

Lemma E.4. Recall L = _ − ^Ĥ with Ĥ defined in (6). Under Assumption 4(i) g > 0, or under

Assumption 4(ii) g = 0 and in the event *1 ∩ *2, for each 8, ; ∈ [=], 9 ∈ [?], C ∈ [)], the following

derivative exists almost everywhere and has the expression

m�;C

mI8 9
= �;C

8 9 + Δ
;C
8 9 ,

where �;C
8 9
= −(e⊤

9
N ⊗ e⊤

8
) (O=) − T) (eC ⊗ e;), and Δ;C

8 9
= −(e⊤C ⊗ e⊤

;
) (O) ⊗ ^)S† (O) ⊗ �

1
2 )
(
L⊤ ⊗

O?
)
(e8 ⊗ e 9 ). Furthermore, a straightforward calculation yields

=∑

8=1

�8C
8 9 = −e⊤9 N(=O) − Â)eC .

Lemma E.5. Suppose that Assumption 4 holds.

(1) Under Assumption 4(i) that g > 0 and g′ = g/∥�∥op, we have

1
=

∑

8 9






m (L/�)
mI8 9






2

F
≤ 4 max(1, (g′)−1 () ∧ ?

=
)) + 2=−1 [4 max(1, (2g′)−1)]2

︸                                                                  ︷︷                                                                  ︸
5 (g′ ,),=, ?)

.

(2) Under Assumption 4(ii) that g = 0 and P(*1) → 1, in the event*1 ∩*2, we have

1
=

∑

8 9






m (L/�)
mI8 9






2

F
≤ 4 max(1, ([)−1 () ∧ ?

=
)) + 2=−1 [4 max(1, (2[)−1)]2

︸                                                               ︷︷                                                               ︸
5 ([,),=, ?)

.

Furthermore, the right-hand side in (1) can be bounded from above by � (g′) () ∧ ?
=
), and the right-hand

side in (2) can be bounded from above by � (W, 2) in the regime ?/= ≤ W.

E.2. Lipschitz and differential properties for a given, fixed design matrix

We also need to study Lipschitz and derivative properties of functions of the noise K when the design ^

is fixed. Formally, for a given and fixed design matrix ^, define the function K ↦→ L(K) by the value
_ − ^Ĥ of the residual matrix when the observed data (^,_) is (^, ^H∗ + K) and with Ĥ the estimator
(6). Note that this map is 1-Lipschitz by (Bellec and Tsybakov, 2016, Proposition 3), Rademacher’s
theorem thus guarantees this map is differentiable almost everywhere. We denote its partial derivative
by m

m�8C
for each entry (�8C )8∈[=],C∈[) ] of the noise matrix K. We present its derivative formula in

Lemma E.6 below.
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Lemma E.6. For each 8, ; ∈ [=], C, C′ ∈ [)], the following derivative exists almost everywhere and has

the expression

m�;C

m�8C ′
= e⊤; e8e

⊤
C eC ′ − e⊤; (e

⊤
C ⊗ ^)S† (eC ′ ⊗ ^⊤)e8 .

As a consequence, we further have

=∑

8=1

m�8C

m�8C ′
= e⊤C (=O) − Â)eC ′ ,

=∑

8=1

me⊤
8
`NeC

m�8C ′
= e⊤C ÂeC ′ .

E.3. Probabilistic tools

We first list some useful variants of Stein’s formulae and Gaussian-Poincaré inequalities. Let 5 ′ denote
the derivative of a differentiable univariate function. For a differentiable vector-valued function f (z) :
R
= → R

=, denote its Jacobian (derivative) and divergence respectively by ∇ f (z) and div f (z), i.e.,
[∇ f (z)]8,; = m 58 (z )

mI;
for 8, ; ∈ [=], and div f (z) = Tr(∇ f (z)).

Lemma E.7 (Second-order Stein’s formula Bellec and Zhang (2021)). The following identities hold

provided the involved derivatives exist a.e. and the expectations are finite.

i) I ∼N(0,1), 5 : R→ R, then

E[(I 5 (I) − 5 ′ (I))2] = E[ 5 (I)2] + E[( 5 ′ (I))2] .

ii) z ∼N= (0, O=), 5 : R= → R
=, then

E[(z⊤ f (z) − div f (z))2] = E
[
∥ f (z)∥2 + Tr[(∇ f (z))2]

]
≤ E

[
∥ f (z)∥2 + ∥∇ f (z)∥2

F

]
,

where the inequality uses Cauchy-Schwarz inequality.

iii) More generally, for z ∼N= (0,�), f : R= → R
=, then

E[(z⊤ f (z) − Tr(�∇ f (z))2] = E
[
∥� 1

2 f (z)∥2 + Tr[(�∇ f (z))2]
]

≤ E
[
∥� 1

2 f (z)∥2 + ∥(�∇ f (z)∥2
F]
]
,

where the inequality uses Cauchy-Schwarz inequality.

Lemma E.8 (Gaussian-Poincaré inequality Boucheron, Lugosi and Massart (2013)). The following

inequalities hold provided the right-hand side derivatives exist a.e. and the expectations are finite.

i) I ∼N(0,1), 5 : R→ R, then

Var[ 5 (I)] ≤ E[( 5 ′ (I))2] .
ii) z ∼N= (0, O=), 5 : R= → R, then

Var[ 5 (z)] ≤ E[∥∇ 5 (z)∥2] .

iii) z ∼N= (0, O=), f : R= → R
<, then

E[∥ f (z) − E[ f (z)] ∥2] ≤ E[∥∇ f (z)∥2
F] .
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iv) More generally, for z ∼N= (0,�), f : R= → R
<, then

E[∥ f (z) − E[ f (z)] ∥2] ≤ E[∥� 1
2 ∇ f (z)∥2

F] .

Now we present a few important lemmas, whose proofs are based on Lemma E.7 and Lemma E.8.

Lemma E.9. Assume that Assumption 1 holds. For fixed ^, we have

E

[
∥K⊤L/�̃ − Y(=O) − Â)/�̃∥2

F

]
≤ 4 Tr(Y),

where �̃ =
(
∥L∥2

F + =Tr(Y)
) 1

2 .

Lemma E.10. Let [,\ : R=×? → R
=×) be two locally Lipschitz functions of ` with i.i.d. N(0,1)

entries, then

E

[


[⊤`\ −
?∑

9=1

=∑

8=1

m

mI8 9

(
[⊤e8e

⊤
9 \

)



2

F

]

≤ E∥[∥2
F∥\∥2

F + E

∑

8 9

[
2∥\∥2

F






m[

mI8 9






2

F
+ 2∥[∥2

F






m\

mI8 9






2

F

]
.

Corollary E.11. Assume the same setting as Lemma E.10. If on some open set Ω ⊂ R
=×? with P(Ω2) ≤

�/) for some constant �, we have (i) [ is =−1/2!1 -Lipschitz and ∥[∥F ≤ 1, (ii) \ is =−1/2!2 -Lipschitz

and ∥\∥F ≤  . Then

E

[
� (Ω)




[⊤`\ −
?∑

9=1

=∑

8=1

m

mI8 9

(
[⊤e8e

⊤
9 \

)



2

F

]

≤  2 + 2� ( 2!2
1 + !

2
2) + 2E

[
� (Ω)

∑

8 9

(
 2






m[

mI8 9






2

F
+





m\

mI8 9






2

F

)]
.

Lemma E.12. Let [,\ : R=×? → R
=×) be two locally Lipschitz functions of ` with i.i.d. N(0,1)

entries. Assume also that ∥[∥F ∨ ∥\∥F ≤ 1 almost surely. Then

E

[


?[⊤\ −
?∑

9=1

( =∑

8=1

m8 9[
⊤e8 −[⊤`e 9

) ( =∑

8=1

m8 9 e
⊤
8 \ − e⊤9 `

⊤\
)




F

]

≤ 2∥[∥m∥\∥m +
√
?
(√

2 + (3 +
√

2) (∥[∥m + ∥\∥m)
)
,

where m8 9[
def

= m[/mI8 9 , and ∥[∥m
def

= E[∑=
8=1

∑?

9=1∥m8 9[∥2
F]

1
2 .

Lemma E.13. Let T = (O) ⊗ ^)S† (O) ⊗ ^⊤), we have ∥T∥op ≤ 1.
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Lemma E.14. We have

∑

8 9

L⊤`e 9 e
⊤
8

mL

mI8 9
= P1 − L⊤`N(=O) − Â),

∑

8 9

( mL
mI8 9

)⊤
`e 9 e

⊤
8 L = P2 − ÂL⊤L.

where P1 =
∑

8 9 L
⊤`e 9

∑
C Δ

8C
8 9
e⊤C with ∥P1∥F ≤ =

1
2 ∥L∥2

F, and P2 =
∑

8 9;C eC�
;C
8 9
e⊤
;
`e 9 e

⊤
8
L with

∥P2∥F ≤ = 1
2 ∥`∥op∥N∥F∥L∥F.

F. Proofs of Propositions B.3 to B.5

F.1. Proof of Proposition B.3

Proof of Proposition B.3. Note that W1 =
K⊤L/�̃−Y (=O)−Â)/�̃

∥Y
1
2 ∥F

, where �̃ =
(
∥L∥2

F + =Tr(Y)
) 1

2 is de-

fined in Lemma E.9. Now, apply Lemma E.9, we obtain

E∥W1∥2
F = E

[
∥K⊤L/�̃ − Y(=O) − Â)/�̃∥2

F

] 1
Tr(Y) ≤ 4.

■

F.2. Proof of Proposition B.4

Proof of Proposition B.4. We first apply Lemma E.10. To be more specific, let [ = =−
1
2 L/� and

\ = =−
1
2 `⊤[ with � = (∥L∥2

F/= + ∥N∥2
F)

1
2 , then ∥[∥F ≤ 1, ∥\∥F ≤ =− 1

2 ∥`∥op. Lemma E.10 yields

E

(


[⊤`\ −
?∑

9=1

=∑

8=1

m

mI8 9

(
[⊤e8e

⊤
9 \

)



2

F

)
(41)

≤ E[∥[∥2
F∥\∥2

F] + E

∑

8 9

[
2∥\∥2

F






m[

mI8 9






2

F
+ 2∥[∥2

F






m\

mI8 9






2

F

]

≤ E
(
=−1∥`∥2

op
)
+ 2E

(
=−1∥`∥2

op

∑

8 9






m[

mI8 9






2

F

)
+ 2E

(∑

8 9






m\

mI8 9






2

F

)
(42)

≤ 4?
=

+ E
(1
=
∥`∥2

op
)
+ 6E

(
=−1∥`∥2

op

∑

8 9






m[

mI8 9






2

F

)
,

where the last inequality uses the following bound derived using \ = =−
1
2 `⊤[, and ∥[∥F ≤ 1,

∑

8 9






m\

mI8 9






2

F
=

∑

8 9

=−1





m`⊤

mI8 9
[ + `⊤ m[

⊤

mI8 9






2

F
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≤ 2=−1
(
?∥[∥2

F + ∥`∥2
op

∑

8 9






m[

mI8 9






2

F

)

≤ 2?
=

+ 2=−1∥`∥2
op

∑

8 9






m[

mI8 9






2

F
. (43)

Note that E[(=− 1
2 ∥`∥op)2] ≤ (1 +

√
?/=)2 + 1/= by (36). Now we establish the connection between W2

and the term inside Frobenius norm in (41). By definitions of [ and \,

[⊤`\ = =−
3
2 �−2L⊤``⊤L. (44)

Next, by product rule,

?∑

9=1

=∑

8=1

m

mI8 9

(
[⊤e8e

⊤
9 \

)

= =−
3
2

?∑

9=1

=∑

8=1

m

mI8 9

(
L⊤e8e

⊤
9 `

⊤L�−2
)

= =−
3
2

?∑

9=1

=∑

8=1

( mL⊤

mI8 9
e8e

⊤
9 `

⊤L�−2

︸                   ︷︷                   ︸
(8)

+L⊤e8e
⊤
9

m`⊤L

mI8 9
�−2

︸                   ︷︷                   ︸
(88)

+L⊤e8e
⊤
9 `

⊤L
m�−2

mI8 9︸                   ︷︷                   ︸
(888)

)
.

We now rewrite the above three terms (8), (88) and (888).

(i) For term (8), by Lemma E.14,

=−
3
2 �−2

?∑

9=1

=∑

8=1

mL⊤

mI8 9
e8e

⊤
9 `

⊤L

= =−
3
2 �−2 [P1 − L⊤`N(=O) − Â)

]⊤

= =−
3
2 �−2 [P⊤1 − (=O) − Â)N⊤`⊤L

]
.

(ii) For term (88), by product rule and Lemma E.14,

=−
3
2 �−2

?∑

9=1

=∑

8=1

L⊤e8e
⊤
9

m`⊤L

mI8 9

= =−
3
2 �−2

(
?L⊤L +

?∑

9=1

=∑

8=1

L⊤e8e
⊤
9 `

⊤ mL

mI8 9

)

= =−
3
2 �−2

(
?L⊤L + (P2 − ÂL⊤L)⊤

)

= =−
3
2 �−2 (?L⊤L − L⊤LÂ + P⊤2

)
.
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(iii) For term (888), by chain rule,

=−
3
2

?∑

9=1

=∑

8=1

L⊤e8e
⊤
9 `

⊤L
m�−2

mI8 9

= − 2=−
3
2 �−3

?∑

9=1

=∑

8=1

L⊤e8e
⊤
9 `

⊤L
m�

mI8 9

= − =− 3
2 �−2

(
2�−1

?∑

9=1

=∑

8=1

L⊤e8e
⊤
9 `

⊤L
m�

mI8 9

)

︸                                       ︷︷                                       ︸
P3

Combining (44) and the above three expressions for (i)-(ii)-(iii),

[⊤`\ −
?∑

9=1

=∑

8=1

m

mI8 9

(
[⊤e8e

⊤
9 \

)

= =−
3
2 �−2

[
L⊤``⊤L + (=O) − Â)N⊤`⊤L − ?L⊤L + L⊤LÂ

− P⊤1 − P⊤2 + P3

]

= W2 − =−
3
2 �−2 (P⊤1 + P⊤2 − P3).

That is,

W2 =[⊤`\ −
?∑

9=1

=∑

8=1

m

mI8 9

(
[⊤e8e

⊤
9 \

)
+ =− 3

2 �−2 (P⊤1 + P⊤2 − P3). (45)

Note that Lemma E.14 implies that

=−
3
2 �−2∥P1∥F ≤

∥L∥2
F/=

∥L∥2
F/= + ∥N∥2

F

≤ 1, (46)

and

=−
3
2 �−2∥P2∥F ≤

[
=−

1
2 ∥`∥op

∥L∥F=
− 1

2 ∥N∥F

∥L∥2
F/= + ∥N∥2

F

]
≤ 1

2
(=− 1

2 ∥`∥op). (47)

Since P3 = 2�−1 ∑?

9=1

∑=
8=1 L

⊤e8e⊤9 `
⊤L m�

mI8 9
, by Cauchy-Schwarz inequality

=−3�−4∥P3∥2
F =

∑

C ,C ′
( [P3]C ,C ′ )2

= 4=−3�−6
∑

C ,C ′

[∑

8, 9

e⊤C L
⊤e8e

⊤
9 `

⊤LeC ′
m�

mI8 9

]2

≤ 4=−3�−6
∑

C ,C ′

[∑

8, 9

[e⊤C L⊤e8e
⊤
9 `

⊤LeC ′ ]2
∑

8, 9

( m�
mI8 9

)2
]
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= 4=−3�−6∥L∥2
F∥`

⊤L∥2
F

∑

8, 9

( m�
mI8 9

)2

= 4=−3�−6∥L∥4
F∥`∥

2
op

∑

8, 9

( m�
mI8 9

)2
.

(1) Under Assumption 4(i) that g > 0. By Corollary E.3, we have
∑

8, 9

(
m�
mI8 9

)2 ≤ � (g′)=−1�2. Then,

=−3�−4∥P3∥2
F ≤ � (g′)=−4�2∥L∥4

F∥`∥
2
op ≤ � (g′)=−2∥`∥2

op, (48)

by ∥L∥2
F/(=�2) ≤ 1.

By (45) and triangular inequality, we have

E[∥W2∥2
F] ≤ 2E

[
∥[⊤`\ −

?∑

9=1

=∑

8=1

m

mI8 9

(
[⊤e8e

⊤
9 \

)
∥2

F

]

+ 2E[∥=− 3
2 �−2 (P⊤1 + P⊤2 − P3)∥2

F] .

(49)

By (46), (47), (48), the second term in (49) can be upper bounded by

6E[(1 + 1
4
=−1∥`∥2

op) +� (g′)=−2∥`∥2
op)] ≤ � (g′) (1 + ?

=
), (50)

where the last inequality uses (36).
For the first term in (49), since

∑
8 9 ∥ m[

mI8 9
∥2

F ≤ � (g′) () ∧ ?
=
) by Lemma E.5, we have

E

(


[⊤`\ −
?∑

9=1

=∑

8=1

m

mI8 9

(
[⊤e8e

⊤
9 \

)



2

F

)

≤ 4?
=

+ E
(
=−1∥`∥2

op
)
+ 6E

(
=−1∥`∥2

op

∑

8 9






m[

mI8 9






2

F

)

≤ 4?
=

+ [1 +� (g′) () ∧ ?

=
)]E

(
=−1∥`∥2

op
)

≤ 4?
=

+ [1 +� (g′) () ∧ ?

=
)] [(1 +

√
?/=)2 + 1/=]

≤ � (g′) () ∧ (1 + ?
=
)) (1 + ?

=
).

Therefore, under Assumption 4(i), we obtain

E[∥W2∥2
F] ≤ � (g

′) () ∧ (1 + ?
=
)) (1 + ?

=
).

(2) Under Assumption 4(ii), let Ω = *1 ∩*2 ∩*3, then we have P(Ω2) ≤ � (W, 2) 1
)

by (37). By
Lemma E.2, on Ω, we have (i) The map ` ↦→[ is =−1/2!1-Lipschitz, where !1 = 8 max(1, (2[)−1),
and ∥[∥F ≤ 1, (ii) The map ` ↦→ \ is =−1/2!2-Lipschitz, where !2 = (1 + (2 +

√
?/=)!1), and
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∥\∥F ≤ (2 +
√
?/=). Applying Corollary E.11 with  = 2 +

√
?/= yields

E

[
� (Ω)∥[⊤`\ −

?∑

9=1

=∑

8=1

m

mI8 9

(
[⊤e8e

⊤
9 \

)
∥2

F

]

≤  2 +� (W, 2) ( 2!2
1 + !

2
2) + 2E

[
� (Ω)

∑

8 9

(
 2






m[

mI8 9






2

F
+





m\

mI8 9






2

F

)]

≤ � (W, 2),

where the last inequality holds because  ≤ � (W), !1 = � (W, 2), !2 = � (W, 2), and on Ω,∑
8 9 ∥ m[

mI8 9
∥2

F ≤ � (W, 2) from Lemma E.5, and E[∥ m\
mI8 9

∥2
F] ≤ � (W, 2) by product rule. Therefore,

under Assumption 4(i), we obtain

E[� (Ω)∥W2∥2
F] ≤ 2E

[
∥[⊤`\ −

?∑

9=1

=∑

8=1

m

mI8 9

(
[⊤e8e

⊤
9 \

)
∥2

F

]

+ 2E[∥=− 3
2 �−2 (P⊤1 + P⊤2 − P3)∥2

F]

≤ � (W, 2),

where the last inequality used (46), (47), and that =−3
E[�−4∥P3∥2

F] ≤ � (W, 2) in analogy to (48).

■

F.3. Proof of Proposition B.5

Proof of Proposition B.5. We will apply Lemma E.12. Let [ = \ = =−
1
2 �−1L with � = (∥L∥2

F/= +
∥N∥2

F)
1
2 , then ∥[∥F = ∥\∥F ≤ 1. Let ]0 = ?[⊤[ − ∑?

9=1

(∑=
8=1

m[⊤e8
mI8 9

− [⊤`e 9
) (∑=

8=1
m[⊤e8
mI8 9

−
[⊤`e 9

)⊤, then Lemma E.12 gives

E[∥]0∥F] ≤ 2∥[∥m∥\∥m +
√
?
(√

2 + (3 +
√

2) (∥[∥m + ∥\∥m)
)

= 2∥[∥2
m +

√
?(
√

2 + 2(3 +
√

2)∥[∥m).

We will prove under Assumption 4(i), and the proof under Assumption 4(ii) on set Ω =*1 ∩*2 ∩*3
follows from almost similar arguments with g′ replaced by [, which is a constant that depends only on
W, 2.

By definition of ∥[∥m and Lemma E.5, ∥[∥2
m
=
∑

8 9 E∥ m[
mI8 9

∥2
F ≤ � (W, g′). Thus E[∥]0∥F] ≤

� (g′, W)√?.

Now we establish the connection between ]0 and W3. Since [ = =−
1
2 �−1L, by product rule,

=∑

8=1

m[⊤e8
mI8 9

−[⊤`e 9

= =−
1
2

( =∑

8=1

m�−1L⊤e8
mI8 9

− �−1L⊤`e 9
)
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= =−
1
2

( =∑

8=1

�−1 mL
⊤e8

mI8 9
− �−1L⊤`e 9

)
+ =− 1

2

=∑

8=1

L⊤e8
m�−1

mI8 9

= =−
1
2 �−1

( =∑

8=1

mL⊤e8
mI8 9

− L⊤`e 9
)
− =− 1

2 �−2
=∑

8=1

L⊤e8
m�

mI8 9
.

For the first term in the last display, we have by Lemma E.4

=∑

8=1

me⊤
8
L

mI8 9
=

=∑

8=1

)∑

C=1

me⊤
8
LeC

mI8 9
e⊤C =

∑

8C

(�8C
8 9 + Δ

8C
8 9 )e

⊤
C = −e⊤9 N(=O) − Â) +

∑

8C

Δ
8C
8 9 e

⊤
C .

Hence,

=∑
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m[⊤e8
mI8 9

−[⊤`e 9

= =−
1
2 �−1 [ − (=O) − Â)N⊤e 9 +

∑
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Δ
8C
8 9 eC − L⊤`e 9

]
− =− 1

2 �−2
=∑
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L⊤e8
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mI8 9

= − =− 1
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]
e 9 + =−

1
2 �−1

∑

8C

Δ
8C
8 9 eC − =

− 1
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=∑
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L⊤e8
m�

mI8 9
. (51)

Let ]1 = −=− 1
2 �−1

[
(=O) − Â)N⊤ + L⊤`

]
be the first term in (51). For the second term in (51), recall

Δ;C
8 9
= −(e⊤C ⊗ e⊤

;
) (O) ⊗ ^)S† (O) ⊗ �

1
2 )
(
L⊤ ⊗ O?

)
(e8 ⊗ e 9 ) in Lemma E.4,

=−
1
2 �−1

∑
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Δ
8C
8 9 eC

= − =− 1
2 �−1

∑
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eC (e⊤C ⊗ e⊤8 ) (O) ⊗ ^)S† (O) ⊗ �
1
2 )
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L⊤e8 ⊗ e 9

)

= − =− 1
2 �−1

∑

8

(O) ⊗ e⊤8 ^)S† (O) ⊗ �
1
2 )
(
L⊤e8 ⊗ O?

)
e 9

= − =− 1
2 �−1

=∑
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(O) ⊗ e⊤8 ^)S† (O) ⊗ �
1
2 ) (L⊤e8 ⊗ O?)e 9

=]2e 9 ,

where ]2 = −=− 1
2 �−1 ∑=

8=1 (O) ⊗ e⊤
8
^)S† (O) ⊗ �

1
2 ) (L⊤e8 ⊗ O?). For the third term in (51),

−=− 1
2 �−2L⊤

=∑

8=1

e8
m�

mI8 9
=]3e 9 ,
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where ]3 = −=− 1
2 �−2L⊤ m�

m`
, here we slightly abuse the notation and let m�

m`
denote the = × ? matrix

with (8, 9)-th entry being m�
mI8 9

. Therefore, (51) can be simplified as

=∑

8=1

m[⊤e8
mI8 9

−[⊤`e 9 =
[
]1 +]2 +]3

]
e 9 .

Furthermore,

]0 = ?[
⊤[ −

?∑
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( =∑

8=1

m[⊤e8
mI8 9

−[⊤`e 9
) ( =∑

8=1

m[⊤e8
mI8 9

−[⊤`e 9
)⊤

= ?[⊤[ − []1 +]2 +]3] []1 +]2 +]3]⊤

= =
1
2 W3 −]1 (]2 +]3)⊤ − (]2 +]3)]⊤

1 − (]2 +]3) (]2 +]3)⊤,

where the last equality is due to

?[⊤[ −]1]
⊤
1

= =−1�−2
[
?L⊤L − L⊤``⊤L − (=O) − Â)N⊤N(=O) − Â)

− (=O) − Â)N⊤`⊤L − L⊤`N(=O) − Â)
]

= =
1
2 W3.

Therefore,

W3 = =
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2

[
]0 +]1 (]2 +]3)⊤ + (]2 +]3)]⊤

1 + (]2 +]3) (]2 +]3)⊤
]
. (52)

We then bound the norms of ]1,]2,]3. For ]1,

∥]1∥F = =−
1
2 �−1∥(=O) − Â)N⊤ + L⊤`∥F

≤ = 1
2
(
�−1∥N∥F + =−1�−1∥L∥F∥`∥op

)

≤ = 1
2 + = 1

2
(
�−1∥L∥F/

√
=


`/

√
=




op

)

≤ = 1
2 (1 + ∥`/

√
=∥op),

where we used ∥O) − Â/=∥op ≤ 1 by Lemma B.1 , �−1∥N∥F ≤ 1, and �−1∥L∥F/
√
= ≤ 1.

For ]2,

∥]2∥op = =
− 1

2 �−1





=∑

8=1

(O) ⊗ e⊤8 ^)S† (O) ⊗ �
1
2 ) (L⊤e8 ⊗ O?)





op

≤ =− 1
2 �−1

=∑

8=1

∥(O) ⊗ e⊤8 ^)S† (O) ⊗ �
1
2 ) (L⊤e8 ⊗ O?)∥op
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≤ =− 1
2 �−1

=∑

8=1

∥(O) ⊗ e⊤8 ^)S† (O) ⊗ �
1
2 )∥op∥(L⊤e8 ⊗ O?)∥op

≤ =− 1
2 ∥�∥

1
2
op�

−1
=∑

8=1

∥(O) ⊗ e⊤8 ^) (O) ⊗ (^⊤
Ŝ
^

Ŝ
+ =gV

Ŝ
)†)∥op∥(L⊤e8 ⊗ O?)∥op

= =−
1
2 ∥�∥

1
2
op�

−1
=∑

8=1

∥O) ⊗ [e⊤8 ^Ŝ
(^⊤

Ŝ
^

Ŝ
+ =gV

Ŝ
)†] ∥op∥L⊤e8 ∥

≤ =− 1
2 ∥�∥

1
2
op�

−1∥^
Ŝ
(^⊤

Ŝ
^

Ŝ
+ =gV

Ŝ
)†∥op

=∑

8=1

∥L⊤e8 ∥

≤ =− 1
2 �−1=−

1
2 (g/∥�∥op)−

1
2 =

1
2 ∥L∥F

≤ (g′)− 1
2 ,

where the third inequality uses S† ⪯ O) ⊗ (^⊤
Ŝ
^

Ŝ
+ =gV

Ŝ
)†, the fourth inequality uses the result

that ∥e⊤
8
G∥op ≤ ∥G∥op, the penultimate inequality uses ∥^

Ŝ
(^⊤

Ŝ
^

Ŝ
+ =gV

Ŝ
)†∥op ≤ (=g)−1/2 and

the Cauchy-Schwarz inequality, the last inequality follows from =−1/2�−1∥L∥F ≤ 1. It immediately
follows that ∥]2∥F ≤

√
)� (g′) since the rank of ]2 is at most ) .

For ]3, using =−
1
2 �−1∥L∥F ≤ 1, and



m�
m`




F ≤ =− 1

2 �� (g′) from Corollary E.3, we obtain

∥]3∥F = =−
1
2 �−2∥L⊤ m�

m`
∥F ≤ =− 1

2 �−2∥L∥F






m�

m`






F
≤ �−1






m�

m`






F
≤ =−1/2� (g′).

The desired inequality follows by combining (52) and the bounds for ]0,]1,]2,]3. ■

G. Proof of technical results in Section E

G.1. Proofs of results in Section E.1

Proof of Lemma E.1. Fixing K, if ^, ¯̂ are two design matrices, and Ĥ, H̄ are the two corresponding

multi-task elastic net estimates. Let ` = ^�− 1
2 , ¯̀ = ¯̂ �− 1

2 , N̄ = �
1
2 (H̄ − H∗), L̄ = _ − ¯̂ H̄, and

�̄ = [∥N̄∥2
F + ∥L̄∥2

F/=]
1
2 . Without loss of generality, we assume �̄ ≤ �. Recall the multi-task elastic

net estimate Ĥ = arg minH∈R?×)
( 1

2= ∥_ − ^H∥2
F + 6(H)

)
, where 6(H) = _∥H∥2,1 + g

2 ∥H∥2
F. Define

i : H ↦→ 1
2= ∥K + ^ (H∗ − H)∥2

F + 6(H), k : H ↦→ 1
2= ∥^ (Ĥ − H)∥2

F and Z : H ↦→ i(H) − k(H). When
expanding the squares, it is clear that Z is the sum of a linear function and a g-strong convex penalty, thus
Z is g-strongly convex of H. Additivity of subdifferentials yields mi(Ĥ) = mZ (Ĥ) + mk(Ĥ) = mZ (Ĥ). By
optimality of Ĥ we have 0?×) ∈ mi(Ĥ), thus 0?×) ∈ mZ (Ĥ). By strong convexity of Z , Z (H̄) − Z (Ĥ) ≥
⟨mZ (Ĥ), H̄ − Ĥ⟩ + g

2 ∥ H̄ − Ĥ∥2
F =

g
2 ∥ H̄ − Ĥ∥2

F, which can further be rewritten as

∥^ (Ĥ − H̄)∥2
F + =g∥ Ĥ − H̄∥2

F ≤ ∥K − ^ (H̄ − H∗)∥2
F − ∥K − ^ (Ĥ − H∗)∥2

F + 2=(6(H̄) − 6(Ĥ)),

i.e.,

∥`(N − N̄)∥2
F + =g∥�

− 1
2 (N − N̄)∥2

F ≤ ∥K − `N̄∥2
F − ∥K − `N∥2

F + 2=(6(H̄) − 6(Ĥ)).
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Summing the above inequality with its counterpart obtained by replacing (^, Ĥ,N) with ( ¯̂ , H̄, N̄), we
have

(!�()
def
= ∥`(N − N̄)∥2

F + ∥ ¯̀ (N − N̄)∥2
F + 2=g′∥N − N̄∥2

F

≤ ∥`(N − N̄)∥2
F + ∥ ¯̀ (N − N̄)∥2

F + 2=g∥�− 1
2 (N − N̄)∥2

F

≤ ∥K − `N̄∥2
F − ∥K − `N∥2

F + ∥K − ¯̀ N∥2
F − ∥K − ¯̀ N̄∥2

F

= ⟨`(N − N̄),L + L̄ + ( ¯̀ − `)N̄⟩ + ⟨− ¯̀ (N − N̄),L + L̄ + (` − ¯̀ )N⟩

= ⟨(` − ¯̀ ) (N − N̄),L + L̄⟩ + ⟨`(N − N̄), ( ¯̀ − `)N̄⟩ + ⟨ ¯̀ (N̄ − N), (` − ¯̀ )N⟩

≤ ∥` − ¯̀ ∥op∥N − N̄∥F (∥L∥F + ∥L̄∥F) + ∥` − ¯̀ ∥op∥`(N − N̄)∥F∥N̄∥F

+ ∥` − ¯̀ ∥op∥ ¯̀ (N − N̄)∥F∥N∥F

≤ ∥` − ¯̀ ∥op

[√ (!�()
2=g′

(∥L∥F + ∥L̄∥F) +
√
(!�() (∥N̄∥F + ∥N∥F)

]

≤ ∥` − ¯̀ ∥op

√
(!�() (� + �̄) max(1, (2g′)− 1

2 )

where g′ = gqmin (�−1) = g/∥�∥op. That is,

√
(!�() ≤ ∥` − ¯̀ ∥op2�max(1, (2g′)− 1

2 ).

Therefore,

=−
1
2 ∥L − L̄∥F = =−

1
2 ∥`N − ¯̀ N̄∥F

≤ =− 1
2 [∥`(N − N̄)∥F + ∥(` − ¯̀ )N̄∥F]

≤ =− 1
2 [∥`(N − N̄)∥F + ∥` − ¯̀ ∥op∥N∥F]

≤ =− 1
2 [
√
(!�() + ∥` − ¯̀ ∥op�]

≤ =− 1
2 ∥` − ¯̀ ∥op� [2 max(1, (2g′)− 1

2 ) + 1] .

So far we obtained

∥N − N̄∥F ≤
√

(!�()
2=g′

≤ =− 1
2 ∥` − ¯̀ ∥op� (2g′)− 1

2 2 max(1, (2g′)− 1
2 ),

=−
1
2 ∥L − L̄∥F ≤ =− 1

2 ∥` − ¯̀ ∥op� [2 max(1, (2g′)− 1
2 ) + 1] .

Let W = [N⊤,L⊤/
√
=]⊤ and W̄ = [N̄⊤

, L̄
⊤/

√
=]⊤, then � = ∥W∥F, �̄ = ∥W̄∥F. By triangular inequality,

|� − �̄ | ≤ ∥W − W̄∥F ≤ ∥N − N̄∥F + ∥L − L̄∥F/
√
=

≤ =− 1
2 ∥` − ¯̀ ∥op� [4 max(1, (2g′)−1)],
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where the last inequality uses the elementary inequality max(0, 1) (0 + 1) ≤ 2[max(0, 1)]2 for

0, 1 > 0 with 0 = 1, 1 = (2g′)− 1
2 . Let m�

m`

def
=

m�
mvec(` ) ∈ R

1×=? , then


m�
m`



 ≤ =−
1
2 �!1 with !1 =

[4 max(1, (2g′)−1)]. Hence,

∑

8 9

( m�
mI8 9

)2
=






m�

m`






2

≤ =−1�2!2
1.

Furthermore, by triangle inequality




W
�

− W̄

�̄





F
≤ 1
�
∥W − W̄∥F +

��� 1
�

− 1

�̄

���∥W̄∥F

=
1
�
∥W − W̄∥F +

|� − �̄ |
��̄

∥W̄∥F

≤ 1
�
∥W − W̄∥F +

1
�
∥W − W̄∥F

≤ =− 1
2 ∥` − ¯̀ ∥op!,

where ! = 8 max(1, (2g′)−1). Therefore, when g > 0, we obtain the two mappings ` ↦→ �−1L/
√
=, and

` ↦→ �−1N are both =−
1
2 !-lipschitz with ! = 8 max(1, (2g′)−1), where g′ = g/∥�∥op. ■

The proof of Lemma E.2 uses a similar argument as proof of Lemma E.1, we present it here for
completeness.

Proof of Lemma E.2. For multi-task group Lasso (g = 0), we restrict our analysis in the event*1 ∩*2,

where*1 =
{
∥ Ĥ∥0 ≤ =(1 − 2)/2

}
,*2 =

{
infb∈R? :∥b∥0≤(1−2)= ∥^b∥2/(=∥� 1

2 b∥2) > [
}
.

Since the only randomness of the problem comes from ^ and K, there exists a measurable set
U such that *1 ∩*2 = {(^,K) ∈ U}. For some noise matrix K, consider ^, ¯̂ two design matrices
such that (^,K) ∈ U and ( ¯̂ ,K) ∈ U. We slightly abuse the notation and let Ĥ, H̄ denote the two
corresponding multi-task group-Lasso estimates. Thus, the row sparsity of Ĥ− H̄ is at most =(1− 2). Let

N̄ = H̄ − H∗, L̄ =_ − ¯̂ H̄, and �̄ = [∥N̄∥2
F + ∥L̄∥2

F/=]
1
2 . Without loss of generality, we assume �̄ ≤ �.

Since when g = 0, the multi-task group Lasso estimate is Ĥ = arg minH∈R?×)
( 1

2= ∥_ − ^H∥2
F + 6(H)

)
,

where 6(H) = _∥H∥2,1. Define i : H ↦→ 1
2= ∥K + ^ (H∗ − H)∥2

F + 6(H), k : H ↦→ 1
2= ∥^ (Ĥ − H)∥2

F and
Z : H ↦→ i(H) − k(H). Under g = 0, by the same arguments in proof of E.1 with the same functions
i(·), k(·), Z (·), we obtain

∥^ (Ĥ − H̄)∥2
F ≤ ∥K − ^ (H̄ − H∗)∥2

F − ∥K − ^ (Ĥ − H∗)∥2
F + 2=(6(H̄) − 6(Ĥ)).

Summing the above inequality with its counterpart obtained by replacing (^, Ĥ,N) with ( ¯̂ , H̄, N̄), we
have

∥^ (Ĥ − H̄)∥2
F + ∥ ¯̂ (Ĥ − H̄)∥2

F

≤ ∥K − `N̄∥2
F − ∥K − `N∥2

F + ∥K − ¯̀ N∥2
F − ∥K − ¯̀ N̄∥2

F.

Note that in event*1 ∩*2, we have

[=∥� 1
2 (Ĥ − H̄)∥2

F ≤ ∥^ (Ĥ − H̄)∥2
F, [=∥� 1

2 (Ĥ − H̄)∥2
F ≤ ∥ ¯̂ (Ĥ − H̄)∥2

F.
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Thus, 2[=∥(N̂ − N̄)∥2
F ≤ ∥`(N − N̄)∥2

F + ∥ ¯̀ (N − N̄)∥2
F, and

(!�() def
= max(2[=∥N − N̄∥2

F, ∥`(N − N̄)∥2
F + ∥ ¯̀ (N − N̄)∥2

F)

= ∥`(N − N̄)∥2
F + ∥ ¯̀ (N − N̄)∥2

F

≤ ∥K − `N̄∥2
F − ∥K − `N∥2

F + ∥K − ¯̀ N∥2
F − ∥K − ¯̀ N̄∥2

F.

Now, in*1 ∩*2, the Lipschitz property of the map ` ↦→ �−1L/
√
= follows from the same arguments

in proof of Lemma E.1, with g′ in E.1 replaced by [ in this proof.
Furthermore, in the event*1∩*2∩*3, the Lipschitz property of ` ↦→ �−1`⊤L/= follows by triangle

inequality. To see this, let [ = �−1L/
√
=, and \ = �−1`⊤L/= = =−1/2`⊤[, thus by triangle inequality

∥\ − \̄∥op = =
−1/2∥`⊤[ − ¯̀ ⊤[̄∥op

= =−1/2 [∥(` − ¯̀ )⊤[∥op + ∥ ¯̀ ⊤ ([ − [̄)∥op]

≤ =−1/2 [∥` − ¯̀ ∥op + ∥ ¯̀ ∥op∥[ − [̄∥op]

≤ =−1/2 (1 + =−1/2∥ ¯̀ ∥op!)∥` − ¯̀ ∥op

≤ =−1/2 (1 + (2 +
√
?/=)!).

where the last line uses ∥ ¯̀ ∥op ≤ 2
√
= + √

? in the event*3. ■

Proof of Corollary E.3. Corollary E.3 (1) is a direct consequence of the intermediate result |� −
�̄ | ≤ =− 1

2 ∥` − ¯̀ ∥op� [4 max(1, (2g′)−1)] in proof of Lemma E.1, while Corollary E.3 (2) is a direct

consequence of the intermediate result |� − �̄ | ≤ =− 1
2 ∥` − ¯̀ ∥op� [4 max(1, (2[)−1)] in proof of

Lemma E.2. ■

Before proving the derivative formula, we restate Ĥ (defined in (6) of the full paper) below,

Ĥ = arg min
H∈R?×)

( 1
2=

∥_ − ^H∥2
F + _∥H∥2,1 +

g

2
∥H∥2

F

)
, (53)

where ∥H∥2,1 =
∑?

9=1 ∥H
⊤e 9 ∥2.

For the reader’s convenience, we recall some useful notations. V
Ŝ

=
∑

:∈Ŝ
e:e

⊤
:

. For each : ∈ Ŝ,

N (: ) = _∥ Ĥ⊤e: ∥−1
2

(
O) − Ĥ⊤e:e⊤: Ĥ ∥ Ĥ⊤e: ∥−2

2

)
. Ñ =

∑
:∈Ŝ

(N (: ) ⊗ e:e
⊤
:
). S1 = O) ⊗ (^⊤

Ŝ
^

Ŝ
+

g=V
Ŝ
), S = S1 + =Ñ ∈ R

?)×?) , and let T = (O) ⊗ ^)S† (O) ⊗ ^⊤).

Proof of Lemma E.4. We first derive m�;C

mG8 9
. Since L =_ − ^Ĥ = K − ^ (Ĥ − H∗), by product rule,

m�;C

mG8 9
= e⊤;

mK − ^ (Ĥ − H∗)
mG8 9

eC = −e⊤; ( ¤̂ (Ĥ − H∗) + ^ ¤H)eC ,

where ¤̂ def
=

m^
mG8 9

= e8e
⊤
9
, and ¤H def

=
mĤ
mG8 9

.

Now we derive vec( ¤H) from KKT conditions for Ĥ defined in (53):
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1) For : ∈ Ŝ, i.e., Ĥ⊤e: ≠ 0,

e⊤: ^
⊤ [K − ^ (Ĥ − H∗)

]
− =ge⊤: Ĥ =

=_

∥ Ĥ⊤e: ∥2

e⊤: Ĥ ∈ R
1×) .

2) For : ∉ Ŝ, i.e., Ĥ⊤e: = 0,



e⊤: ^⊤ [K − ^ (Ĥ − H∗)

]
− =ge⊤: Ĥ




 < =_.

Here the strict inequality is guaranteed by Proposition 2.3 of Bellec (2020).

Keeping K fixed, differentiation of the above display for : ∈ Ŝ w.r.t. G8 9 yields

e⊤:

[
¤̂ ⊤L − ^⊤ [ ¤̂ (Ĥ − H∗) + ^ ¤H] − =g ¤H

]
= =e⊤:

¤HN (: ) ,

with N (: ) = _∥ Ĥ⊤e: ∥−1
2

(
O) − Ĥ⊤e:e⊤: Ĥ ∥ Ĥ⊤e: ∥−2

2

)
∈ R

)×) . Rearranging and using ¤̂ = e8e
⊤
9
,

e⊤:

[
e 9 e

⊤
8 L − ^⊤e8e

⊤
9 (Ĥ − H∗)

]
= e⊤: [(^

⊤^ + =gO?) ¤H + = ¤HN (: ) ] .

Recall V
Ŝ
=
∑

:∈Ŝ
e:e

⊤
:

. Multiplying by e: to the left and summing over : ∈ Ŝ, we obtain

V
Ŝ

[
e 9 e

⊤
8 L − ^⊤e8e

⊤
9 (Ĥ − H∗)

]
= V

Ŝ
(^⊤^ + =gO?) ¤H + =

∑

:∈Ŝ

e:e
⊤
:
¤HN (: ) .

Since Ŝ is locally constant in a small neighborhood of ^, Ĥ
Ŝ2 = 0, supp( ¤H) ⊆ Ŝ. Hence, V

Ŝ
¤H = ¤H,

and ^ ¤H = ^
Ŝ
¤H. The above display can be rewritten as

V
Ŝ
e 9 e

⊤
8 L − ^⊤

Ŝ
e8e

⊤
9 (Ĥ − H∗) = (^⊤

Ŝ
^

Ŝ
+ =gV

Ŝ
) ¤H + =

∑

:∈Ŝ

e:e
⊤
:
¤HN (: ) .

Vectorizing the above display using property vec(GHI) = (I⊤ ⊗ G) vec(G) yields

(L⊤ ⊗ V
Ŝ
e 9 ) vec(e⊤8 ) − ((Ĥ − H∗)⊤e 9 ⊗ ^⊤

Ŝ
) vec(e8)

= [O) ⊗ (^⊤
Ŝ
^

Ŝ
+ =gV

Ŝ
) + =

∑

:∈Ŝ

(N (: ) ⊗ e:e
⊤
: )] vec( ¤H)

= (S1 + =Ñ) vec( ¤H)

= S vec( ¤H),

where S1 = O) ⊗ (^⊤
Ŝ
^

Ŝ
+ =gV

Ŝ
), and Ñ =

∑
:∈Ŝ

(N (: ) ⊗ e:e
⊤
:
).

Under Assumption 4(i) that g > 0, it’s obviously that rank(O) ⊗ (^⊤
Ŝ
^

Ŝ
+ =gV

Ŝ
)) = ) |Ŝ|. Under

Assumption 4(ii) that g = 0 with P(*1) → 1. In the event *1 ∩*2, we know rank(^
Ŝ
) = |Ŝ| from

(Bellec and Romon, 2021, Lemma C.4), hence rank(O) ⊗ (^⊤
Ŝ
^

Ŝ
+ =gV

Ŝ
)) = ) |Ŝ|. In either of the

above two scenarios, we thus have dim(ker(O) ⊗ (^⊤
Ŝ
^

Ŝ
+ =gV

Ŝ
))) = ) (? − |Ŝ|) by rank-nullity

theorem. Since [O) ⊗ (^⊤
Ŝ
^

Ŝ
+ =gV

Ŝ
)] (eC ⊗ e:) = 0 for C ∈ [)], : ∈ Ŝ2. Let + = {(eC ⊗ e:) : C ∈
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[)], : ∈ Ŝ2} be a vector space, then the elements of + are linear independent, and dim(+) = ) (?− |Ŝ|).
Thus, + forms a basis for ker(O) ⊗ (^⊤

Ŝ
^

Ŝ
+ =gV

Ŝ
). Since for any (eC ⊗ e:) ∈ + , we also have

Ñ(eC ⊗ e:) = 0, ker(O) ⊗ (^⊤
Ŝ
^

Ŝ
+ =gV

Ŝ
)) ⊆ ker(O) ⊗ (^⊤

Ŝ
^

Ŝ
+ =gV

Ŝ
) + =Ñ). On the other hand,

if any vector v s.t. [O) ⊗ (^⊤
Ŝ
^

Ŝ
+ =gV

Ŝ
) + =Ñ]v = 0, since these matrices are all positive semi-

definite, we have O) ⊗ (^⊤
Ŝ
^

Ŝ
+ =gV

Ŝ
)v = 0, which implies that ker(O) ⊗ (^⊤

Ŝ
^

Ŝ
+ =gV

Ŝ
) + =Ñ) ⊆

ker(O) ⊗ (^⊤
Ŝ
^

Ŝ
+ =gV

Ŝ
)). Therefore,

ker(O) ⊗ (^⊤
Ŝ
^

Ŝ
+ =gV

Ŝ
) + =Ñ) = ker(O) ⊗ (^⊤

Ŝ
^

Ŝ
+ =gV

Ŝ
))

= span{(eC ⊗ e:) : C ∈ [)], : ∈ Ŝ
2},

and

range(O) ⊗ (^⊤
Ŝ
^

Ŝ
+ =gV

Ŝ
) + =Ñ) = span{(eC ⊗ e:) : C ∈ [)], : ∈ Ŝ}.

Since ¤H = V
Ŝ
¤H, vec( ¤H) = (O) ⊗ V

Ŝ
) vec( ¤H), then vec( ¤H) ∈ col(O) ⊗ V

Ŝ
) = range(S). Since S

is symmetric, S†S is the orthogonal projection on the range of S. Therefore,

vec( ¤H) = S†S vec( ¤H) = S† [(L⊤ ⊗ e 9 ) − ((Ĥ − H∗)⊤e 9 ⊗ ^⊤)]e8 . (54)

Since supp( ¤H) ⊆ Ŝ, ^ ¤H = ^
Ŝ
¤H, we have

m�;C

mG8 9
= −e⊤; ( ¤̂ (Ĥ − H∗) + ^ ¤H)eC

= −(e⊤; e8e
⊤
9 (Ĥ − H∗)eC + e⊤; ^Ŝ

¤HeC )

= −(e⊤; e8e
⊤
9 (Ĥ − H∗)eC + (e⊤C ⊗ e⊤; ^Ŝ

) vec( ¤H))

= −e⊤; e8e
⊤
9 (Ĥ − H∗)eC − (e⊤C ⊗ e⊤; ^Ŝ

)S† [(L⊤ ⊗ e 9 ) − ((Ĥ − H∗)⊤e 9 ⊗ ^⊤)]e8

= −(4⊤9 (Ĥ − H∗) ⊗ e⊤8 ) (eC ⊗ e;) + (e⊤C ⊗ e⊤; ^Ŝ
)S† ((Ĥ − H∗)⊤e 9 ⊗ ^⊤e8)

− (e⊤C ⊗ e⊤; ^Ŝ
)S† (L⊤ ⊗ e 9 )e8

= −(4⊤9 (Ĥ − H∗) ⊗ e⊤8 ) (eC ⊗ e;) + (4⊤9 (Ĥ − H∗) ⊗ e⊤8 )T(eC ⊗ e;)

− (e⊤C ⊗ e⊤; ^Ŝ
)S† (L⊤ ⊗ O?) (e8 ⊗ e 9 )

= −(4⊤9 (Ĥ − H∗) ⊗ e⊤8 ) (O=) − T) (eC ⊗ e;) − (e⊤C ⊗ e⊤; ^)S
† (L⊤ ⊗ O?) (e8 ⊗ e 9 )

Now we calculate m�;C

mI8 9
. Since ^ = `�

1
2 , G8: =

∑?

9=1 I8 9 (�
1
2 ) 9: , mG8:

mI8 9
= (� 1

2 ) 9: ,

m�;C

mI8 9
=

?∑

:=1

m�;C

mG8:

mG8:

mI8 9
=

?∑

:=1

m�;C

mG8:
(� 1

2 ) 9: = �;C
8 9 + Δ

;C
8 9 ,

where

�;C
8 9 = −

?∑

:=1

(e⊤: (Ĥ − H∗) ⊗ e⊤8 ) (O=) − T) (eC ⊗ e;) (�
1
2 ) 9:
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= −(e⊤9 �
1
2 (Ĥ − H∗) ⊗ e⊤8 ) (O=) − T) (eC ⊗ e;)

= −(e⊤9 N ⊗ e⊤8 ) (O=) − T) (eC ⊗ e;),

and

Δ
;C
8 9 = −

?∑

:=1

(e⊤C ⊗ e⊤; ) (O) ⊗ ^)S† (L⊤ ⊗ O?
)
(e8 ⊗ e:) (�

1
2 ) 9:

= −(e⊤C ⊗ e⊤; ) (O) ⊗ ^)S† (L⊤ ⊗ O?
)
(e8 ⊗ �

1
2 e 9 )

= −(e⊤C ⊗ e⊤; ) (O) ⊗ ^)S† (O) ⊗ �
1
2 )
(
L⊤ ⊗ O?

)
(e8 ⊗ e 9 )

It follows that

=∑

8=1

�8C
8 9 = −

=∑

8=1

(e⊤9 N ⊗ e⊤8 ) (O=) − T) (eC ⊗ e8)

= −e⊤9 N
[ =∑

8=1

(O) ⊗ e⊤8 ) (O=) − T) (O) ⊗ e8)
]
eC

= −e⊤9 N(=O) − Â)eC ,

where the last line follows from definition of Â in (10). ■

Proof of Lemma E.5. (1) For g > 0, by formula of m�;C

mI8 9
in Lemma E.4, we have

∑

8 9






mL

mI8 9






2

F
=

∑

8 9

∑

;C

( m�;C
mI8 9

)2
=

∑

8 9

∑

;C

(
�;C

8 9 + Δ
;C
8 9

)2

≤ 2
∑

8 9 ,;C

(�;C
8 9 )

2 + 2
∑

8 9 ,;C

(Δ;C
8 9 )

2

= 2∥(N ⊗ O=) (O=) − T)∥2
F + 2∥(O) ⊗ ^)S† (O) ⊗ �

1
2 ) (L⊤ ⊗ O?)∥2

F

≤ 2=∥N∥2
F + 2∥(O) ⊗ ^

Ŝ
)S† (O) ⊗ �

1
2 ) (L⊤ ⊗ O?)∥2

F.

Since 0 ⪯ S† ⪯ O) ⊗ (^⊤
Ŝ
^

Ŝ
+ g=V

Ŝ
)†,

∥(O) ⊗ ^
Ŝ
)S† (O) ⊗ �

1
2 ) (L⊤ ⊗ O?)∥2

F

≤ ∥(O) ⊗ ^
Ŝ
)S† (O) ⊗ �

1
2 )∥2

op∥(L⊤ ⊗ O?)∥2
F

≤ ?∥�∥op∥L∥2
F∥(O) ⊗ ^

Ŝ
)S†∥2

op

≤ ?∥�∥op∥L∥2
F∥(^

⊤
Ŝ
^

Ŝ
+ g=V

Ŝ
)†^⊤

Ŝ
∥2

op

≤ ?

=g
∥�∥op∥L∥2

F
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=
?

=g′
∥L∥2

F,

where the last inequality uses ∥(^⊤
Ŝ
^

Ŝ
+ g=V

Ŝ
)†^⊤

Ŝ
∥op ≤ (=g)−1.

On the other hand, we also have

∥(O) ⊗ ^
Ŝ
)S† (O) ⊗ �

1
2 ) (L⊤ ⊗ O?)∥2

F

≤ ∥(O) ⊗ ^
Ŝ
)S†∥2

F∥(O) ⊗ �
1
2 ) (L⊤ ⊗ O?)∥2

op

≤ ∥(O) ⊗ ^
Ŝ
) (O) ⊗ (^⊤

Ŝ
^

Ŝ
+ g=V

Ŝ
)†)∥2

F∥L∥
2
F∥�∥op

≤ ) ∥^
Ŝ
(^⊤

Ŝ
^

Ŝ
+ g=V

Ŝ
)†∥2

F∥L∥
2
F∥�∥op

≤ ) Tr
[
(^⊤

Ŝ
^

Ŝ
+ g=V

Ŝ
)†^⊤

Ŝ
^

Ŝ
(^⊤

Ŝ
^

Ŝ
+ g=V

Ŝ
)†
]
∥L∥2

F∥�∥op

≤ ) Tr
[
(^⊤

Ŝ
^

Ŝ
+ g=V

Ŝ
)†
]
∥L∥2

F∥�∥op

≤ ) (g)−1∥L∥2
F∥�∥op

≤ ) Tr
[
(g=V

Ŝ
)†
]
∥L∥2

F∥�∥op

≤ ) (g)−1∥L∥2
F∥�∥op

=
)

g′
∥L∥2

F,

Therefore,

1
=

∑

8 9






mL

mI8 9






2

F
≤ 2∥N∥2

F + 2(g′)−1 () ∧ ?

=
)∥L∥2

F/=

≤ 2 max(1, (g′)−1 () ∧ ?

=
)) (∥L∥2

F/= + ∥N∥2
F)

= 2 max(1, (g′)−1 () ∧ ?

=
))�2.

Now by product rule and triangle inequality

1
=

∑

8 9






mL/�
mI8 9






2

F

≤ 2�−2 1
=

∑

8 9






mL

mI8 9






2

F
+ 2

1
=

∑

8 9





L
m�−1

mI8 9






2

F

= 2�−2 1
=

∑

8 9






mL

mI8 9






2

F
+ 2�−4 1

=
∥L∥2

F

∑

8 9

( m�
mI8 9

)2

≤ 2�−2 1
=

∑

8 9






mL

mI8 9






2

F
+ 2�−4 1

=
∥L∥2

F=
−1�2 [4 max(1, (2g′)−1)]2
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≤ 2�−2 1
=

∑

8 9






mL

mI8 9






2

F
+ 2=−1 [4 max(1, (2g′)−1)]2

≤ 4 max(1, (g′)−1 () ∧ ?

=
)) + 2=−1 [4 max(1, (2g′)−1)]2

:= 5 (g′,), =, ?),

where the second inequality is by Corollary E.3.
(2) For g = 0, by Lemma E.2, in the event*1 ∩*2, we obtain the same upper bounds as in the first

case (1) with g′ replaced by [. To see this,

∥(O) ⊗ ^
Ŝ
)S† (O) ⊗ �

1
2 ) (L⊤ ⊗ O?)∥2

F

≤ ∥(O) ⊗ ^
Ŝ
)S† (O) ⊗ �

1
2 )∥2

op∥(L⊤ ⊗ O?)∥2
F

= ∥(O) ⊗ �
1
2 )S† (O) ⊗ ^⊤

Ŝ
^

Ŝ
)S† (O) ⊗ �

1
2 )∥op?∥L∥2

F

≤ ∥(O) ⊗ �
1
2 )S† (O) ⊗ �

1
2 )∥op?∥L∥2

F

≤ ? ∥L∥2
F

1
=[

=
?

=[
∥L∥2

F,

where the third inequality is by Lemma B.2. Also, we have

∥(O) ⊗ ^
Ŝ
)S† (O) ⊗ �

1
2 ) (L⊤ ⊗ O?)∥2

F

≤ ∥(O) ⊗ ^
Ŝ
)S† (O) ⊗ �

1
2 )∥2

F∥(L
⊤ ⊗ O?)∥2

op

≤ Tr
[
(O) ⊗ ^⊤

Ŝ
^

Ŝ
)S† (O) ⊗ �

Ŝ,Ŝ
)S†] ∥L∥2

F

≤ Tr
[
(O) ⊗ �

Ŝ,Ŝ
)S†] ∥L∥2

F

≤ Tr
[
(O) ⊗ �

Ŝ,Ŝ
) (O) ⊗ (^⊤

Ŝ
^

Ŝ
)†)

]
∥L∥2

F

= ) Tr
[
�

Ŝ,Ŝ
(^⊤

Ŝ
^

Ŝ
)†
]
∥L∥2

F

≤ ) Tr
[
(=[)−1^⊤

Ŝ
^

Ŝ
(^⊤

Ŝ
^

Ŝ
)†
]
∥L∥2

F

≤ )

[
∥L∥2

F,

where the penultimate inequality uses �
Ŝ,Ŝ

⪯ (=[)−1^⊤
Ŝ
^

Ŝ
in the event*1 ∩*2. Therefore, on

*1 ∩*2, we have

1
=

∑

8 9






mL/�
mI8 9






2

F
≤ 4 max(1, ([)−1 () ∧ ?

=
)) + 2=−1 [4 max(1, (2g′)−1)]2

:= 5 ([,), =, ?),
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where the function 5 is the same as in case (1). The only difference is that g′ in the upper bound
for case (1) is replaced by [ in case (2).

■

G.2. Proofs of results in Section E.2

The following proof of Lemma E.6 relies on a similar argument as proof of Lemma E.4, we present the
proof here for completeness.

Proof of Lemma E.6. Recall the KKT conditions for Ĥ defined in (6):

1) For : ∈ Ŝ, i.e., Ĥ⊤e: ≠ 0,

e⊤: ^
⊤ [K − ^ (Ĥ − H∗)

]
− =ge⊤: Ĥ =

=_

∥ Ĥ⊤e: ∥2

e⊤: Ĥ ∈ R
1×) .

2) For : ∉ Ŝ, i.e., Ĥ⊤e: = 0,



e⊤: ^⊤ [K − ^ (Ĥ − H∗)

]
− =ge⊤: Ĥ




 < =_.

Here the strict inequality is guaranteed by Proposition 2.3 of Bellec (2020).

Let ¥H =
mĤ

m�8C′
, ¤K =

mK
m�8C′

. Differentiation of the above display for : ∈ Ŝ w.r.t. �8C ′ yields

e⊤: ^
⊤ ( ¤K − ^ ¥H) − =ge⊤: ¥H = =e⊤:

¥HN (: )

with N (: ) = _∥ Ĥ⊤e: ∥−1
2

(
O) − Ĥ⊤e:e⊤: Ĥ ∥ Ĥ⊤e: ∥−2

2

)
∈ R

)×) . Rearranging and using ¤K = e8e
⊤
C ′ ,

e⊤: ^
⊤e8e

⊤
C ′ = e⊤: [= ¥HN

(: ) + (^⊤^ + =gO?×?) ¥H] .

Recall V
Ŝ
=
∑

:∈Ŝ
e:e

⊤
:
∈ R

?×? . Multiplying by e: to the left and summing over : ∈ Ŝ, we obtain

V
Ŝ
^⊤e8e

⊤
C ′ = =

∑

:∈Ŝ

e:e
⊤
:
¥HN (: ) + V

Ŝ
(^⊤^ + =gO?×?) ¥H,

which reduces to the following by supp( ¥H) ⊆ Ŝ and ^ ¥H = ^
Ŝ
¥H,

^⊤
Ŝ
e8e

⊤
C ′ = =

∑

:∈Ŝ

e:e
⊤
:
¥HN (: ) + ^⊤

Ŝ
^

Ŝ
¥HO) + =gV

Ŝ
¥HO)

= =
∑

:∈Ŝ

e:e
⊤
:
¥HN (: ) + (^⊤

Ŝ
^

Ŝ
+ =gV

Ŝ
) ¥HO) .

Vectorizing the above yields

(eC ′ ⊗ ^⊤
Ŝ
) vec(e8) = [=

∑

:∈Ŝ

(N (: ) ⊗ e:e
⊤
: ) + O) ⊗ (^⊤

Ŝ
^

Ŝ
+ =gV

Ŝ
)] vec( ¥H)

= (=Ñ + O) ⊗ (^⊤
Ŝ
^

Ŝ
+ =gV

Ŝ
)) vec( ¥H)

= S vec( ¥H).
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A similar argument as in Proof of Lemma E.4 leads to

vec( ¥H) = S†S vec( ¥H) = S† (eC ′ ⊗ ^⊤
Ŝ
)e8 .

Therefore, by ^ ¥H = ^
Ŝ
¥H,

m�;C

m�8C ′
= e⊤;

mK − ^ (Ĥ − H∗)
m�8C ′

eC

= e⊤;
(
e8e

⊤
C ′ − ^ ¥H

)
eC

= e⊤; e8e
⊤
C ′ eC − e⊤; ^

¥HeC
= e⊤; e8e

⊤
C ′ eC − (e⊤C ⊗ e⊤; ^Ŝ

) vec( ¥H)

= e⊤; e8e
⊤
C ′ eC − (e⊤C ⊗ e⊤; ^Ŝ

)S† (eC ′ ⊗ ^⊤
Ŝ
)e8

= e⊤; e8e
⊤
C ′ eC − e⊤; (e

⊤
C ⊗ ^

Ŝ
)S† (eC ′ ⊗ ^⊤

Ŝ
)e8

= e⊤; e8e
⊤
C ′ eC − e⊤; (e

⊤
C ⊗ ^)S† (eC ′ ⊗ ^⊤)e8 ,

where the last equality is due to S† = (O) ⊗ V
Ŝ
)S† (O) ⊗ V

Ŝ
).

Now the calculation of
∑=

8=1
m�8C

m�8C′
is straightforward,

=∑

8=1

m�8C

m�8C ′
=

=∑

8=1

[
e⊤8 e8e

⊤
C eC ′ − e⊤8 (e⊤C ⊗ ^)S† (eC ′ ⊗ ^⊤)e8

]

= =e⊤C eC ′ − Tr[(e⊤C ⊗ ^)S† (eC ′ ⊗ ^⊤)]
= =e⊤C eC ′ − e⊤C ÂeC ′

= e⊤C (=O) − Â)eC ′ ,

where the third equality is due to the formula of Â in (10).

Noting that L = K − `N, it follows that
∑=

8=1
me⊤

8
`NeC

m�8C′
= e⊤C ÂeC ′ . ■

G.3. Proofs of results in Section E.3

Proof of Lemma E.9. Let z = vec(K), then z ∼N(0,Q) with Q = Y ⊗ O= by Assumption 1. For each
C0, C

′
0 ∈ [)], let M (C0 ,C ′0 ) = LeC ′0

e⊤C0 , and f (z) (C0 ,C ′0 ) = vec(M)�̃−1. For convenience, we will drop the

superscript (C0, C′0) from M (C0 ,C ′0 ) and f (z) (C0 ,C ′0 ) in this proof. By Tr(G⊤H) = vec(G)⊤ vec(H), we
obtain

e⊤C0K
⊤L�̃−1eC ′0

= Tr(K⊤LeC ′0 e
⊤
C0
)�̃−1

= Tr(K⊤M�̃−1) = z⊤ f (z). (55)

By product rule, we have

∇ f (z) = m vec(M)
m vec(K) �̃

−1 + vec(M) m�̃−1

m vec(K)
︸               ︷︷               ︸

Rem

, (56)



Noise Covariance Estimation 55

where Rem = uv⊤ with u = vec(M) ∈ R
=)×1, v⊤ =

m�̃−1

mvec(K ) ∈ R
1×=) . It follows that

Tr(Q∇ f (z)) = Tr
(
Q
m vec(M)
m vec(K)

)
�̃−1 + Tr(QRem). (57)

Since Q = Y ⊗ O= and M = LeC ′0
e⊤C0 , Q8C ,;C ′ = (CC ′ � (8 = ;), and �8C = �8C ′0

� (C = C0). It follows

Tr
(
Q
m vec(M)
m vec(K)

)
=

∑

8,C

∑

;,C ′
Q8C ,;C ′

m�8C

m�;C ′
=

∑

C ′
(C0C ′

∑

8

m�8C ′0

m�8C ′
= e⊤C0Y(=O) − Â)eC ′0 , (58)

where the last equality used Lemma E.6 and that Â is symmetric.
Now we rewrite the quantity we want to bound as

E

[
∥K⊤L/�̃ − Y(=O) − Â)/�̃∥2

F

]

=

∑

C0 ,C
′
0

E

[(
e⊤C0K

⊤L�̃−1eC ′0
− e⊤C0Y(=O) − Â)eC ′0 �̃

−1
)2]

=

∑

C0 ,C
′
0

E

[ (
z⊤ f (z) − Tr(Q∇ f (z)) + Tr(QRem)

)2
]

≤ 2
∑

C0 ,C
′
0

{
E

[ (
z⊤ f (z) − Tr(Q∇ f (z))

)2
]
+ E

[ (
Tr(QRem)

)2
]}
, (59)

where the second equality follows from (55), (57) and (58), and the last inequality uses elementary
inequality (0 + 1)2 ≤ 2(02 + 12). We next bound the two terms in (59). First term in (59). By second-
order Stein formula in Lemma E.7,

∑

C0 ,C
′
0

E
(
z⊤ f (z) − Tr(Q∇ f (z))

)2
=

∑

C0 ,C
′
0

E

[
∥Q 1

2 f (z)∥2
F + Tr

[ (
Q∇ f (z)

)2] ]
. (60)

Now we bound the two terms in the right-hand side of (60). For the first term, recall f (z) = vec(M)�̃−1,
and M = LeC ′0

e⊤C0 , we obtain

∥Q 1
2 f (z)∥2

F = �̃−2∥(Y 1
2 ⊗ O=) vec(M)∥2

F = �̃−2∥MY
1
2 ∥2

F = �̃−2∥Y 1
2 eC0 ∥2

F∥LeC ′0 ∥
2
F.

Summing over all (C0, C′0) ∈ [)] × [)], we obtain

∑

C0 ,C
′
0

∥Q 1
2 f (z)∥2

F = �̃−2∥L∥2
F Tr(Y). (61)

For the second term in RHS of (60), recall ∇ f (z) = mvec(M)
mvec(K ) �̃

−1 + Rem,

Tr
[ (
Q∇ f (z)

)2]

= �̃−2 Tr
[(
Q
m vec(M)
m vec(K)

)2]
+ Tr[(QRem)2] + 2�̃−1 Tr

[
Q
m vec(M)
m vec(K) QRem

]
. (62)



56

By property of vectorization operation, vec(M) = vec(LeC ′0 e
⊤
C0
) = (eC0 e⊤C ′0 ⊗ O=) vec(L), hence

m vec(M)
m vec(K) = (eC0 e⊤C ′0 ⊗ O=)

m vec(L)
m vec(K) ,

where ∥ mvec(L )
mvec(K ) ∥op ≤ 1 since the map vec(K) ↦→ vec(L) is 1-Lipschitz by (Bellec and Tsybakov, 2016,

proposition 3).
Now we bound the three terms in (62). For the first term, by Cauchy-Schwarz inequality,

�̃−2 Tr
[(
Q
m vec(M)
m vec(K)

)2]

= �̃−2 Tr
(
Q (eC0 e⊤C ′0 ⊗ O=)

m vec(L)
m vec(K) Q (eC0 e⊤C ′0 ⊗ O=)

m vec(L)
m vec(K)

)

≤ �̃−2∥(e⊤
C ′0
⊗ O=)

m vec(L)
m vec(K) Q (eC0 ⊗ O=)∥2

F.

For the second term in (62), recall Rem = uv⊤, and u = vec(M), v⊤ =
m�̃−1

mvec(K ) from (56), then

Tr[(QRem)2] = Tr(Quv⊤Quv⊤) = (v⊤Qu)2, thus,

Tr[(QRem)2]

=

[ m�̃−1

m vec(K) Q vec(M)
]2

= �̃−6
[

vec(L)⊤ m vec(L)
m vec(K) Q (eC0 e⊤C ′0 ⊗ O=) vec(L)

]2

≤ �̃−6∥vec(L)⊤ m vec(L)
m vec(K) Q (eC0 ⊗ O=)∥2∥(e⊤

C ′0
⊗ O=) vec(L)∥2.

where the second equality uses m�̃−1

mvec(K ) = − 1
2 �̃

−3 m∥L ∥2
F

mvec(K ) = −�̃−3 vec(L)⊤ mvec(L )
mvec(K ) by chain rule, and

the inequality uses Cauchy-Schwarz inequality.

For the third term in (62), recall Rem = uv⊤, and u = vec(M), v⊤ =
m�̃−1

mvec(K ) , then we have

Tr
[
Q

mvec(M)
mvec(K ) QRem

]
= v⊤Q mvec(M)

mvec(K ) Qu, hence

2�̃−1 Tr
[
Q
m vec(M)
m vec(K) QRem

]

= 2�̃−1 m�̃−1

m vec(K) Q
m vec(M)
m vec(K) Q vec(M)

= − 2�̃−4 vec(L)⊤ m vec(L)
m vec(K) Q (eC0 e⊤C ′0 ⊗ O=)

m vec(L)
m vec(K) Q (eC0 e⊤C ′0 ⊗ O=) vec(L)

≤ 2�̃−4∥(e⊤
C ′0
⊗ O=) vec(L) vec(L)⊤ m vec(L)

m vec(K) Q (eC0 ⊗ O=)∥F

∥(e⊤
C ′0
⊗ O=)

m vec(L)
m vec(K) Q (eC0 ⊗ O=)∥F,
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where the last inequality uses Cauchy-Schwarz inequality.
Summing over all (C0, C′0) ∈ [)] × [)] for these three terms in (62), using ∥ mvec(L )

mvec(K ) ∥op ≤ 1, Q = Y⊗ O=,

and ∥Y∥F ≤ ∥Y 1
2 ∥2

F = Tr(Y), we obtain

∑

C0 ,C
′
0

Tr
[ (
Q∇ f (z)

)2]

≤ �̃−2∥Q∥2
F + �̃

−6∥L∥2
F∥Q∥2

F∥L∥
2
F + 2�̃−4∥L∥2

F∥Q∥2
F

= �̃−2=∥Y∥2
F + �̃

−6∥L∥4
F=∥Y∥

2
F + 2�̃−4∥L∥2

F=∥Y∥
2
F

≤
[
�̃−2=Tr(Y) + �̃−6∥L∥4

F=Tr(Y) + 2�̃−4∥L∥2
F=Tr(Y)

]
Tr(Y). (63)

Second term in (59). Recall that Rem = uv⊤, hence [Tr(QRem)]2 = Tr[(QRem)2]. By calculation of
second term in (62), we obtain

∑

C0 ,C
′
0

[Tr(QRem)]2
=

∑

C0 ,C
′
0

Tr[(QRem)2] ≤ �̃−6∥L∥4
F=Tr(Y)2. (64)

Combining the results (59), (60), (61), (63), (64), we obtain

E

[
∥K⊤L/�̃ − Y(=O) − Â)/�̃∥2

F

]

≤ 2
[
�̃−2∥L∥2

F + �̃
−2=Tr(Y) + 2�̃−6∥L∥4

F=Tr(Y) + 2�̃−4∥L∥2
F=Tr(Y)

]
Tr(Y)

≤ 4 Tr(Y),

thanks to �̃2 = ∥L∥2
F + =Tr(Y). ■

Proof of Lemma E.10. Apply (Bellec, 2020, Proposition 6.3) with 1 =[eC ,( =\eC ′ , we obtain

E

[


[⊤`\ −
?∑

9=1

=∑

8=1

m

mI8 9

(
[⊤e8e

⊤
9 \

)



2

F

]

=

)∑

C ,C ′=1

E
(
e⊤C [

⊤`\eC ′ −
?∑

9=1

=∑

8=1

m

mI8 9
eC[

⊤e8e
⊤
9 \eC ′

)2

≤
)∑

C ,C ′=1


E
[
∥[eC ∥2∥\eC ′ ∥2] + E

∑

8 9

[
2∥\eC ′ ∥2






m[eC

mI8 9






F
+ 2∥[eC ∥2






m\eC ′

mI8 9






F

]

= E∥[∥2
F∥\∥2

F + E

∑

8 9

[
2∥\∥2

F






m[

mI8 9






2

F
+ 2∥[∥2

F






m\

mI8 9






2

F

]
.

■

Proof of Corollary E.11. By Kirszbraun’s theorem, there exists an !1-Lipschitz function [̄ : R=×? →
R
=×) such that [̄ =[ on Ω, and an !2-Lipschitz function \̄ : R=×? → R

=×) such that \̄ =\ on Ω. By
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projecting [̄ and \̄ onto the Euclidean ball of radius 1 and  if necessary, we assume without loss of
generality that ∥[̄∥F ≤ 1 and ∥\̄∥F ≤  . Therefore,

E

[
� (Ω)∥[⊤`\ −

?∑

9=1

=∑

8=1

m

mI8 9

(
[⊤e8e

⊤
9 \

)
∥2

F

]

= E

[
� (Ω)∥[̄⊤

`\̄ −
?∑

9=1

=∑

8=1

m

mI8 9

(
[̄
⊤
e8e

⊤
9 \̄

)
∥2

F

]

≤ E

[
∥[̄⊤

`\̄ −
?∑

9=1

=∑

8=1

m

mI8 9

(
[̄
⊤
e8e

⊤
9 \̄

)
∥2

F

]

≤ E

[ (
∥[̄∥2

F∥\̄∥2
F

)
+ 2

∑

8 9

(
∥\̄∥2

F






m[̄

mI8 9






2

F
+ ∥[̄∥2

F






m\̄

mI8 9






2

F

)]

≤  2 + 2E
[∑

8 9

(
 2






m[̄

mI8 9






2

F
+





m\̄

mI8 9






2

F

)]

=  2 + 2E
[
� (Ω)

∑

8 9

(
 2






m[̄

mI8 9






2

F
+





m\̄

mI8 9






2

F

)
+ � (Ω2)

∑

8 9

(
 2






m[̄

mI8 9






2

F
+





m\̄

mI8 9






2

F

)]

=  2 + 2E
[
� (Ω)

∑

8 9

(
 2






m[

mI8 9






2

F
+





m\

mI8 9






2

F

)
+ � (Ω2)

∑

8 9

(
 2






m[̄

mI8 9






2

F
+





m\̄

mI8 9






2

F

)]

≤  2 + 2E
[
� (Ω)

∑

8 9

(
 2






m[

mI8 9






2

F
+





m\

mI8 9






2

F

)]
+ 2� ( 2!2

1 + !
2
2),

where the last inequality uses
∑

8 9 ∥ m[̄
mI8 9

∥2
F ≤ =) (=−1/2!1)2 = )!2

1,
∑

8 9 ∥ m\̄
mI8 9

∥2
F ≤ )!2

2 by Lipschitz

properties of [̄, \̄, and %(Ω2) ≤ �/) . ■

Proof of Lemma E.12. For each 9 ∈ [?], let E 9 (·) denote the conditional expectation E[·|{`4: , : ≠
9}]. The left-hand side of the desired inequality can be rewritten as

E

[

?[⊤\ −
?∑

9=1

(E 9[
⊤` − R⊤)e 9 e⊤9 (`⊤

E 9\ − R̂)




F

]

with R ∈ R
?×) defined by R⊤e 9 = E 9[

⊤`e 9 −[⊤`e 9 +
∑=

8=1 m8 9[
⊤e8 and R̂ defined similarly with [

replaced by \. We develop the terms in the sum over 9 as follows:

?[⊤\ −
∑

9

(E 9[
⊤` − R⊤)e 9 e⊤9 (`⊤

E 9\ − R̂)

=

∑

9

(
[⊤\ − E 9 [[⊤]E 9\

)
(65)

+
∑

9

(
E 9 [[⊤]E 9\ − E 9[

⊤`e 9 e
⊤
9 `

⊤
E 9\

)
(66)
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− R⊤ R̂ (67)

+
∑

9

(
E 9[

⊤`e 9 e
⊤
9 R̂

)
+
(
R⊤e 9 e

⊤
9 `

⊤
E 9 [[]

)
. (68)

First, for (67), by the Cauchy-Schwarz inequality E
[
∥R⊤ R̂∥F

]
≤ E

[
∥R∥2

F

] 1
2 E

[
∥ R̂∥2

F

] 1
2 . For a fixed

9 ∈ [?] and C ∈ [)],

E[(e⊤9 R4C )2] ≤
=∑

8=1

E[(e⊤8 (E 9 [[] −[)4C )2] + E

=∑

8=1

=∑

;=1

( e⊤
8
m[4C

mI; 9

)2

≤ 2E
=∑

8=1

=∑

;=1

( e⊤
8
m[4C

mI; 9

)2
,

where the two inequalities are due to the second-order stein inequality in Lemma E.7, and Gaussian-
Poincaré inequality in Lemma E.8, respectively. Summing over 9 ∈ [?] and C ∈ [)] we obtain E[∥R∥2

F] ≤
2E

∑
; 9 ∥m; 9[∥2

F = 2∥[∥2
m

. Combined with the same bound for R̂, we obtain E[∥(67)∥2
F] ≤ 2∥[∥m∥\∥m.

We now turn to the two terms in (68). By the triangle inequality for the Frobenius norm,

E

[
∥
∑

9

E 9[
⊤`e 9 e

⊤
9 R̂∥F

]
≤
∑

9

E

[
∥E 9[

⊤`e 9 ∥2∥e⊤9 R̂∥2

]

≤ E[
∑

9

∥E 9[
⊤`e 9 ∥2

2]
1
2 E[

∑

9

∥e⊤9 R̂∥2
2]

1
2

≤ (?E[∥[∥2
F])

1
2 E[∥ R̂∥2

F]
1
2 ,

where we used that ∥ab⊤∥F = ∥a∥2∥b∥2 for two vectors a, b, the Cauchy-Schwarz inequality,
E[∥Gz 9 ∥2

2 |G] = ∥G∥2
F if matrix G is independent of z 9 ∼ N(0, �=) (set z 9 = `e 9 ), and Jensen’s in-

equality.
Next, we decompose (65) as

∑
9[

⊤ (\ − E 9\) +
∑

9 ([ − E 9[)⊤E 9\. We have by the submultiplica-
tivity of the Frobenius norm and the Cauchy-Schwarz inequality

E[∥[⊤
∑

9

(\ − E 9\)∥F] ≤ E[
∑

9

∥[∥F∥\ − E 9\∥F]

≤ E[?∥[∥2
F]

1
2 E[

∑

9

∥\ − E 9\∥2
F]

1
2 .

By the Gaussian Poincaré inequality applied ? times, E[∑ 9 ∥\ − E 9\∥2
F] ≤ ∥\∥2

m
, so that the previous

display is bounded from above by
√
?∥\∥m. Similarly, E[∥∑ 9 (E 9 [[] −[)⊤E 9\∥F] ≤

√
?∥[∥m and

E[∥(65)∥F] ≤
√
?(∥[∥m + ∥\∥m).

For the last remaining term, (66), we first use E[∥(66)∥F] ≤ E[∥(66)∥2
F]

1
2 by Jensen’s inequality and

now proceed to bound ∥(66)∥2
F. We have

∥(66)∥2
F = ∥

∑

9

E 9[
⊤
E 9\ − E 9[

⊤-e 9 e
⊤
9 `

⊤
E 9\∥2

F =

∑

9 ,:

Tr[S⊤
9 S:],
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where S 9 = E 9[
⊤
E 9\ −E 9[

⊤`e 9 e⊤9 `
⊤
E 9\. We first bound

∑
9 ∥S 9 ∥2

F. Since the variance of a⊤b −
a⊤gg⊤b for standard normal g ∼N(0, �?) is 2∥(ab⊤ + ba⊤)/2∥2

F ≤ 2∥a∥2
2∥b∥

2
2, applying this variance

bound on each pair of coordinates (C, C′) ∈ [)] × [)] gives
∑

9 ∥S 9 ∥2
F ≤∑

9 2∥E 9 [[] ∥2
F∥E 9\∥2

F ≤ 2?.
We now bound

∑
9≠: Tr[S⊤

9 S:]. Setting z 9 = `e 9 ∼N(0, �=) for every 9 ∈ [?], we will use many
times the identity

E[(z⊤9 5 (`) −
∑

8

m8 9 5 (`)⊤e8)6(`) = E[
∑

8

5 (`)⊤e8m8 96(`)] (69)

which follows from Stein’s formula for 5 : R=×? → R
= and 6 : R=×? → R. With 5 CC

′ (`) =

(z⊤9 E 9 [[]eC ′ )E 9\4C and 6CC
′ (`) = e⊤

C ′S:4C , we find

ETr[S⊤
9 S:] = ETr[S⊤

9

∑

C

eC ′ e
⊤
C ′S:] = E[

∑

CC ′
4⊤C S

⊤
9 eC ′ e

⊤
C ′S:4C ]

= E

∑

CC ′

(
z⊤9 5

CC ′ (`) −
∑

8

e⊤8 m8 9 5
CC ′ (`)

)
6CC

′ (`)

= E

∑

CC ′

∑

8

e⊤8 5
CC ′ (`)m8 96CC

′ (`).

where 6CC ′ (`) = (4⊤C E:\
⊤
E:\4

′
C − 4⊤C E:[

⊤z: z⊤:E:\4
′
C ) and

m8 96CC ′ = m8 9 e
⊤
C ′S:4C = e⊤C ′m8 9 [E:[

⊤
E:\]4C − z⊤: m8 9 [E:[eC ′ e

⊤
C E:[

⊤]z: .

Now define 5̃ CC
′ (`) = m8 9 [E:[eC ′ e

⊤
C E:[

⊤]z: and 6̃CC
′ (`) =∑

8 e
⊤
8
5 CC

′ (`). By definition of 5̃ CC
′ (`),

the previous display is equal to z⊤
:
5̃ CC

′ (`) −∑
; m;:e

⊤
;
5̃ CC

′ (`). We apply (69) again with respect to z: ,
so that

ETr[S⊤
9 S:] =

∑

8;,CC ′
e⊤8 m;: [ 5 CC

′ (`)]e⊤; 5̃
CC ′ (`)

=

∑

8;,CC ′

(
e⊤8 m;:

[
E 9\4C e

⊤
C ′E 9[

⊤
]
z 9

) (
e⊤; m8 9

[
E: [[]eC ′4⊤C E: [\]⊤

]
z:

)
.

To remove the indices C, C′, we rewrite the above using
∑

C eC e
⊤
C = �) and

∑
C ′ eC ′ e

⊤
C ′ = �) so that it equals

E

∑

8;

Tr
{
m;:

[
E 9[

⊤z 9 e
⊤
8 E 9\

]
m8 9

[
E: [\]⊤z:e⊤; E: [[]

]}
.

Summing over 9 , : , using Tr[G⊤H] ≤ ∥G∥F∥H∥F) and the Cauchy-Schwarz inequality, the above is
bounded from above by

{
E

∑

9:,8;




m;:
[
E 9[

⊤z 9 e
⊤
8 E 9 [\]

]



2

F

} 1
2
{
E

∑

9:,8;




m8 9
[
E: [\]⊤z:e⊤; E: [[]

]



2

F

} 1
2
.

At this point the two factors are symmetric, with (\,[) in the left factor replaced with ([,\) on the
right factor. We focus on the left factor; similar bound will apply to the right one by exchanging the
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roles of \ and [. If z 9 is independent of matrices �(@)
E 9 [∥

∑=
@=1 (e⊤@ z 9 )�(@) ∥2

F =
∑=

@=1 ∥�(@) ∥2
F so

that with �(@) = m;: [E 9[
⊤e@e⊤8 E 9[], the first factor in the above display is equal to

{
E

∑

9:,8;@




m;:
(
E 9[

⊤e@e
⊤
8 E 9\

)



2

F

} 1
2

(i)
=

{
E

∑

9:,8;@




m;:
(
E 9[

⊤
)
e@e

⊤
8 E 9 [\] + E 9 [[]⊤e@e⊤8 m;:

(
E 9 [\]

)



2

F

} 1
2

(ii)
≤

{
E

∑

9:,8;@




m;:
(
E 9 [[⊤]

)
e@e

⊤
8 E 9 [\]





2

F

} 1
2 +

{
E

∑

9:,8;@




E 9[
⊤e@e

⊤
8 m;:

(
E 9 [\]

)



2

F

} 1
2

(iii)
=

{
E

∑

9:,8;@




E 9 [m;:[]⊤e@





2

2




e⊤8 E 9\





2

2

} 1
2 +

{
E

∑

9:,8;@




E 9[
⊤e@





2

2




e⊤8 E 9 [m;:\]





2

2

} 1
2

(iv)
=

{
E

∑

9:,;




E 9 [m;:[]⊤





2

F




E 9\





2

F

} 1
2 +

{
E

∑

9:,;




E 9[
⊤





2

F




E 9 [m;:\]





2

F

} 1
2
,

where (i) is the chain rule, (ii) the triangle inequality, (iii) holds provided that the order of the derivation
m;: and the expectation sign E 9 can be switched and using ∥ab⊤∥2

F = ∥a∥2
2∥b∥

2
2 for vectors a, b, and

(iv) holds using
∑

8 ∥Ge8 ∥2
2 = ∥G∥2

F =
∑

@ ∥Ge@ ∥2
2 for a matrix G with = columns. Finally, by Jensen’s

inequality, the above display is bounded by

{
E

∑

:,;




m;:[





2

F

∑

9




E 9 [\]





2

F

} 1
2 +

{
E

∑

:,;




m;:\





2

F

∑

9




E 9 [[]





2

F

} 1
2
.

Since ∥[∥F ∨ ∥\∥F ≤ 1 almost surely, the previous display is bounded by
√
?(∥[∥m + ∥\∥m). In

summary,

E[∥(66)∥2
F]

1
2 ≤ (2? + [2√?(∥[∥m + ∥\∥m)]2) 1

2 ≤
√

2? + 2
√
?(∥[∥m + ∥\∥m).

Combining the bounds on the terms (65)-(66)-(67)-(68) with the triangle inequality completes the proof.
■

Proof of Lemma E.13. Since S† ⪯ S
†
1 = O) ⊗ (^⊤

Ŝ
^

Ŝ
+ g=V

Ŝ
)†,

∥T∥op = ∥(O) ⊗ ^)S† (O) ⊗ ^⊤)∥op

≤ ∥(O) ⊗ ^) (O) ⊗ (^⊤
Ŝ
^

Ŝ
+ g=V

Ŝ
)†) (O) ⊗ ^⊤)∥op

= ∥^
Ŝ
(^⊤

Ŝ
^

Ŝ
+ g=V

Ŝ
)†^⊤

Ŝ
∥op

≤ 1,

where the first inequality uses ∥GHG⊤∥op ≤ ∥GIG⊤∥op for 0 ⪯ H ⪯ I. ■

Proof of Lemma E.14. By Lemma E.4, m�;C

mI8 9
= �;C

8 9
+ Δ;C

8 9
, where

�;C
8 9 = −(e⊤9 N ⊗ e⊤8 ) (O=) − T) (eC ⊗ e;), (70)
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Δ
;C
8 9 = −(e⊤C ⊗ e⊤; ) (O) ⊗ ^)S† (O) ⊗ �

1
2 )
(
L⊤ ⊗ O?

)
(e8 ⊗ e 9 ). (71)

For the first equality, since e⊤
8

mL
mI8 9

=
∑

C (�8C
8 9
+ Δ8C

8 9
)e⊤C , we have

=∑

8=1

?∑

9=1

L⊤`e 9 e
⊤
8

mL

mI8 9

=

∑

8 9

L⊤`e 9

)∑

C=1

(�8C
8 9 + Δ

8C
8 9 )e

⊤
C

=

∑

8 9

L⊤`e 9
∑

C

�8C
8 9 e

⊤
C +

∑

8 9

L⊤`e 9
∑

C

Δ
8C
8 9 e

⊤
C

︸                     ︷︷                     ︸
P1

,

where the first term can be simplified as below

?∑

9=1

=∑

8=1

L⊤`e 9

)∑

C=1

�8C
8 9 e

⊤
C

= −
?∑

9=1

=∑

8=1

L⊤`e 9

)∑

C=1

(e⊤9 N ⊗ e⊤8 ) (O=) − T) (eC ⊗ e8)e⊤C

= − L⊤`N
[∑

8

(O) ⊗ e⊤8 ) (O=) − T) (O) ⊗ e8)
]

= − L⊤`N(=O) − Â).

For the second equality, since mL
mI8 9

=
∑

;C e; (�;C
8 9
+ Δ;C

8 9
)e⊤C ,

∑

8 9

( mL
mI8 9

)⊤
`e 9 e

⊤
8 L =

∑

8 9C;

eC�
;C
8 9 e

⊤
; `e 9 e

⊤
8 L

︸                     ︷︷                     ︸
P2

+
∑

8 9C;

eCΔ
;C
8 9 e

⊤
; `e 9 e

⊤
8 L,

where the second term can be simplified as below,

∑

8 9C;

eCΔ
;C
8 9 e

⊤
; `e 9 e

⊤
8 L

=

∑

8 9C;

eCΔ
;C
8 9 (e8 ⊗ e 9 )⊤ (L ⊗ `⊤e;)

= −
∑

8 9C;

eC (e⊤C ⊗ e⊤; ) (O) ⊗ ^)S† (O) ⊗ �
1
2 )
(
L⊤ ⊗ O?

)
(e8 ⊗ e 9 ) (e8 ⊗ e 9 )⊤ (L ⊗ `⊤e;)

= −
∑

;

(O) ⊗ e⊤; ) (O) ⊗ ^)S† (O) ⊗ �
1
2 ) (L⊤ ⊗ O?) (L ⊗ `⊤e;)
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= −
∑

;

(O) ⊗ e⊤; ) (O) ⊗ ^)S† (L⊤L ⊗ ^⊤e;
)

= −
∑

;

(O) ⊗ e⊤; ) (O) ⊗ ^)S† (O) ⊗ ^⊤e;
)
L⊤L

= − ÂL⊤L,

where the last line uses the expression of Â in (10).
It remains to bound the norm of P1 and P2. To bound ∥P2∥F, recall the definition of P2,

P2 =
∑

8 9;C

eC�
;C
8 9 e

⊤
; `e 9 e

⊤
8 L

= −
∑

8 9;C

eC (e⊤9 N ⊗ e⊤8 ) (O=) − T) (eC ⊗ e;)e⊤; `e 9 e
⊤
8 L

= −
∑

8 9;C

eC (e⊤C ⊗ e⊤; ) (O=) − T) (N⊤e 9 ⊗ e8)e⊤; `e 9 e
⊤
8 L

= −
∑

8 9;

(O) ⊗ e⊤; ) (O=) − T) (N⊤e 9 ⊗ e8)e⊤; `e 9 e
⊤
8 L

= −
∑

;

(O) ⊗ e⊤; ) (O=) − T) (N⊤`⊤e; ⊗ L).

Since T is non-negative definite with ∥T∥op ≤ 1, ∥O=) − T∥op ≤ 1,

∥P2∥F ≤
∑

;



(O) ⊗ e⊤; ) (O=) − T) (N⊤`⊤e; ⊗ L)




F

≤
∑

;



(O) ⊗ e⊤; ) (O=) − T)




op



(N⊤`⊤e; ⊗ L)




F

≤
∑

;



(N⊤`⊤e; ⊗ L)




F

=

∑

;



N⊤`⊤e;




F∥L∥F

≤ = 1
2 ∥`N∥F∥L∥F

≤ = 1
2 ∥`∥op∥N∥F∥L∥F.

To bound ∥P1∥F, recall the definition of P1,

P1 =
∑

8 9

L⊤`e 9
∑

C

Δ
8C
8 9 e

⊤
C .

For each C, C′ ∈ [)],

e⊤C ′ P1eC = e⊤C ′
[∑

8 9

L⊤`e 9
∑

C

Δ
8C
8 9 e

⊤
C

]
eC
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=

?∑

9=1

=∑

8=1

e⊤C ′L
⊤`e 9Δ

8C
8 9

= −
∑

8

(e⊤8 L ⊗ e⊤C ′L
⊤)T(eC ⊗ e8)

= −e⊤C ′
∑

8

(e⊤8 L ⊗ L⊤)T(O) ⊗ e8)eC .

Thus, P1 =
∑

8 (e⊤8 L ⊗ L⊤)T(O) ⊗ e8), and hence

∥P1∥F = ∥
∑

8

(e⊤8 L ⊗ L⊤)T(O) ⊗ e8)∥F

≤
∑

8

∥(e⊤8 L ⊗ L⊤)T(O) ⊗ e8)∥F

≤
∑

8

∥(e⊤8 L ⊗ L⊤)∥F∥T(O) ⊗ e8)∥op

≤
∑

8

∥e⊤8 L∥∥L∥F

≤ = 1
2 ∥L∥2

F,

where the first inequality is by sub-additivity of Frobenius norm, the second inequality uses ∥G1G2∥F ≤
∥G1∥F∥G2∥op for any matrices G1, G2 with appropriate dimensions, the third inequality is by ∥T∥op ≤ 1
from Lemma E.13, the last inequality is by Cauchy-Schwarz inequality. ■
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