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Abstract—This paper studies the feasibility of reaching
consensus in an anonymous dynamic network. In our model, n
anonymous nodes proceed in synchronous rounds. We adopt a
hybrid fault model in which up to f nodes may suffer crash or
Byzantine faults, and the dynamic message adversary chooses
a communication graph for each round.

We introduce a stability property of the dynamic network
– (T,D)-dynaDegree for T ≥ 1 and n − 1 ≥ D ≥ 1 – which
requires that for every T consecutive rounds, any fault-free
node must have incoming directed links from at least D distinct
neighbors. These links might occur in different rounds during
a T -round interval. (1, n−1)-dynaDegree means that the graph
is a complete graph in every round. (1, 1)-dynaDegree means
that each node has at least one incoming neighbor in every
round, but the set of incoming neighbor(s) at each node may
change arbitrarily between rounds.

We show that exact consensus is impossible even with
(1, n − 2)-dynaDegree. For an arbitrary T , we show that for
crash-tolerant approximate consensus, (T, ⌊n/2⌋)-dynaDegree
and n > 2f are together necessary and sufficient, whereas
for Byzantine approximate consensus, (T, ⌊(n + 3f)/2⌋)-
dynaDegree and n > 5f are together necessary and sufficient.

Index Terms—Consensus, Approximate consensus, Byzan-
tine, Impossibility, Message adversary, Dynamic network

I. INTRODUCTION

A dynamic network is a natural model for mobile devices

equipped with wireless communication capability. Node

mobility and unpredictable wireless signal (e.g., due to

interference and attenuation) make the systems of mobile

devices inherently dynamic. For example, nodes may join,

leave, and move around, and communication links between

nodes may appear and disappear over time.

Recent works have studied consensus and other distributed

tasks in various formulations of dynamic networks. Fol-

lowing [10], [17], [22]–[24], we consider a network that

does not eventually stops changing. That is, there exists a

dynamic message adversary that controls and chooses the

set of communication links continually. More concretely,

we study computability of fault-tolerant consensus in the

anonymous dynamic network model [11], [12], [28], [29]

when nodes may crash or become Byzantine.

A. Anonymous Dynamic Network Model

We consider a fixed set of n nodes that proceed in

synchronous rounds and communicate by a broadcast prim-

*This material is based upon work partially supported by the National
Science Foundation under Grant CNS-2238020.

itive. For example, such a broadcast primitive might be

implemented by a medium access control (MAC) protocol

in a wireless network. In each round, the communication

graph is chosen by the dynamic message adversary. We do

not assume the existence of a neighbor-discovery mechanism

or an acknowledgement from a MAC layer; thus, nodes do

not know the set of nodes that received their messages.

In every round t, the adversary first chooses the directed

links that are “reliable” for round t. In other words, the links

that are not chosen will drop any messages that were sent

via them in round t. The adversary may use nodes’ internal

states at the beginning of the round and the algorithm

specification to make the choice. We consider deterministic

algorithms in which nodes update internal states and gener-

ate message following the specification deterministically.

The nodes do not know which links were chosen by the

adversary. Each message is then delivered to the sender’s

outgoing neighbors, as defined by the links chosen by

the adversary. After messages are received from incoming

neighbors, the nodes transition to new states, and enter round

t+1. Nodes are assumed to know n, the size of the network,

and f , the upper bound on the number of node faults.

Compared to prior works on dynamic networks, our model

are different from two following perspectives:

• Anonymity: Nodes are assumed to be anonymous [3],

[4], [16], [21], [28], [29], [35]. That is, nodes are

assumed to be identical and nodes do not have a unique

identity. Instead, nodes may use “local” communication

ports or rely on the underlying communication layer

(e.g., MAC layer) to distinguish messages received

from different incoming neighbors.

• Hybrid faults: In addition to the message adversary, up

to f nodes may crash or have Byzantine behavior.

We are interested in the formulation, because most mobile

devices are fragile and it is important to tolerate node faults.

Moreover, in practice, it it not always straightforward to

bootstrap a large-scale dynamic system so that all the nodes

have unique and authenticated identity. For example, even

though typical MAC protocols assume unique MAC address,

it is a good engineering and security practice not to rely on

this information in the upper layer.1 Plus, MAC spoofing

1There is also a privacy aspect. For example, recent versions of Android
and iOS support MAC randomization to prevent from device tracking.



is a well-known attack, which will add another layer of

complexity in handling identities when designing Byzantine-

tolerant algorithms.

This paper aims to answer the following question:

When is consensus solvable in our anony-

mous dynamic network model?

In this paper, we focus on the case when the nodes are

able to communicate directly with each other, i.e., a single-

hop network. The case of multi-hop communication is left

as an interesting future work. Our model is motivated by

the applications in drones, robots, and connected vehicles.

In this applications, a team of fixed number of nodes are

configured to communicate with each other, via dynamic

wireless networks, in order to solve certain tasks (e.g.,

search, dynamic speed configuration, and flocking). In these

applications, consensus is a key enabling primitive.

B. A Stability Property

Towards our goal, we introduce a stability property called

“(T,D)-dynaDegree” for T ≥ 1 and n − 1 ≥ D ≥ 1,

which quantifies the number of distinct incoming neighbors

for each fault-free node over any T -round interval.2 T is

assumed to be finite, and both T and D are unknown to

nodes. We only use these parameters for analysis. We do not

assume the graph contains self-loop; hence the parameter D
is upper bounded by n− 1.

More concretely, (T,D)-dynaDegree requires that for

every T consecutive rounds in a given execution, any

fault-free node must have incoming links from at least

D distinct neighbors. These directed links might occur

in different rounds during a T -round interval. (1, n − 1)-
dynaDegree means that the graph is a complete graph

in every round. (1, 1)-dynaDegree means that each node

has at least one incoming neighbor in every round, but

the incoming neighbor(s) may change arbitrarily between

rounds. Figure 1 presents an example execution in a 3-node

network that satisfies (2, 1)-dynaDegree, but does not satisfy

(1, 1)-dynaDegree.

C. Contributions

We characterise the feasibility of solving consensus in our

model using the stability property. In particular, we have the

following contributions:

• We identify how (T,D)-dynaDegree is related to a

recently identified impossibility result by Gafni and

Losa [18], which then implies that exact consensus is

impossible with (1, n − 2)-dynaDegree even when no

node may crash (f = 0). In other words, there exists

an execution such that the network satisfies the stability

property (1, n− 2)-dynaDegree, yet nodes are not able

to agree on exactly the same output.

2“dynaDegree” stands for dynamic degree.

• We identify that for crash-tolerant approximate consen-

sus, (T, ⌊n/2⌋)-dynaDegree and n > 2f are together

necessary and sufficient.

• For Byzantine approximate consensus, (T, ⌊(n +
3f)/2⌋)-dynaDegree and n > 5f are together neces-

sary and sufficient.

Section IV presents our crash-tolerant approximate consen-

sus algorithm. Section V presents our Byzantine approx-

imate consensus algorithm. The impossibility results are

presented in Section VI, which imply the necessity of the

identified conditions. We conclude and discuss extensions in

Section VII.

II. PRELIMINARIES

A. Our Model: Anonymous Dynamic Network

We consider a synchronous message-passing system con-

sisting of n anonymous nodes. Nodes only know n and

do not have unique identities. For presentation and analysis

purpose, we denote the set of nodes as the set of IDs, i.e.,

{1, . . . , n}. For brevity, we often denote it by [n].

Node Faults. We assume that at most f nodes may become

faulty. We consider both crash and Byzantine faults. In the

former model, a faulty node may crash and stop execution

at any point of time. The latter model assumes faulty nodes

may have an arbitrary faulty behavior, including sending

different messages to different nodes. The set of faulty nodes

is denoted by B. Nodes that are not faulty are called fault-

free. The set of fault-free nodes is denoted by H.

Communication and Message Adversary. The un-

derlying communication network is modeled as a syn-

chronous dynamic network represented as a dynamic graph

G = (V,E), where V is a static set of nodes [n], and

E : N → {(u, v) | (u, v) ∈ E} is a function mapping a

round number t ∈ N to a set of directed links E(t). For

(u, v) ∈ E(t), v is said to be u’s outgoing neighbor and u
is said to be v’s incoming neighbor in round t.

In round t, only messages sent over E(t) are delivered.

All other messages are lost. We consider a dynamic message

adversary that chooses E(t) in every round t. Note that there

are different ways of modeling a dynamic network, e.g.,

using temporal graphs [10], [17]. We adopt the definition

from [22]–[24].

We do not assume the existence of self-loop in E;

however, nodes have the ability to send a message to itself.

Such a message delivery cannot be disrupted by the message

adversary. In other words, a message sent to oneself is

always delivered reliably.

Most prior works assume that each node sends only one

message and each message is of size at most O(log n) bits

[10], [17], [22]–[24]. We adopt the same assumption of lim-

ited bandwidth of each edge. Section VII briefly discusses

when each link has different bandwidth constraints.

Anonymity and Port Number. Nodes execute the same

code, because they are identical and the only difference

is a potentially distinct input given to each node. They



communicate with each other via a broadcast primitive. The

delivery of messages are determined by the edge set chosen

by the message adversary in each round t, namely E(t).
Following [3], we assume that each node has a “local”

label for each incoming neighbor, i.e., a unique port number

for each incoming link. The labels are local in the sense that

two different nodes may use two different ports to identify

messages received from the same node; therefore, it is not

possible to use such information to assign global unique

identities to all nodes in our model, without using consensus.

The nodes, however, can use ports to distinguish the

sender for each received message locally. Since the ports

are assumed to be static throughout the execution of the

algorithm, upon receipt of two incoming messages m1 and

m2, a node i is able to identify that these two messages are

from two different senders by using the port numbers. In

addition, a node i has the ability to keep track of all the

past messages received from a specific port.

Formally, for node i, a port numbering is a bijection

function Pi : {v ∈ V } → {1, 2, . . . , n}. Recall that we

assume each node knows n; hence, Pi is well-defined. For

two different nodes i and j, Pi may be different from Pj .

Depending on the graph G and the message adversary, nodes

might never receive messages from a specific port.

We assume that the underlying communication layer is

authenticated in the sense that a Byzantine sender cannot

tamper with the port numbering at fault-free nodes. As a

result, Byzantine sender is not able to send bogus messages

on behalf of other nodes.

B. A Stability Property: (T,D)-dynaDegree

We characterize graphs using the following property:

Definition 1 ((T,D)-dynaDegree). A dynamic graph G =
(V,E) satisfies (T,D)-dynaDegree for a finite T ≥ 1 and

n − 1 ≥ D ≥ 1 if for all t ∈ N, in the static graph Gt :=
(V,∪t+T−1

i=t E(t)), the number of distinct incoming neighbors

“aggregated” over any T -round interval at any fault-free

node i is at least D.

On a high-level, G is the “base” communication graph

that defines the capability for sending messages when all

the links are reliable. In each round t, the message adversary

chooses the set of reliable links, defined as E(t) – links in

E(t) deliver message reliably. Nodes do not know G, nor E .

The property (T,D)-dynaDegree counts the number of

distinct incoming neighbors D over any T -round period.

Gt is a static graph whose set of links does not change

over time. The set of links in Gt is a union of E(t), E(t +
1), · · · , E(t+T − 1). Any fault-free nodes in Gt must have

≥ D distinct incoming neighbors. Nodes do not know T nor

D. These parameters are only used for analysis.

By definition, the incoming neighbors required by the T -

interval dynamic degree does not need to be fault-free. For

example, the message adversary may choose links to deliver

messages from Byzantine neighbors.

Example. Consider Figure 1. G(V,E) has V = {1, 2, 3}
and E = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)}. The ex-

ample satisfies (2, 1)-dynaDegree because in any 2-round

interval, each node has at least 1 incoming neighbor. It does

not satisfy (1, 1)-dynaDegree, because in odd rounds, the

graph is disconnected.

Comparison with Prior Stability Properties. Prior papers

identified several different stability properties on dynamic

graphs for various distributed tasks. We compare (T,D)-
dynaDegree with most relevant ones:

• T -interval connectivity [22]: it requires that for every

T consecutive rounds, there exists a stable connected

spanning subgraph. The set of dynamic links are as-

sumed to be bi-directional. In other words, the graph

is strongly connected in every T -round internal.

• Rooted spanning tree [10], [17], [38]: it requires that

in every round t, the graph contains a directed rooted

spanning tree, i.e., there exists at least one “coordina-

tor” that can reach every other node (potentially via a

multi-hop route) in the graph for round t.

Our condition is different from T -interval connectiv-

ity because of our assumption of directed links. (T,D)-
dynaDegree is different from rooted spanning tree, because

we allow rounds in which G(V, E(t)) does not have a “root.”

In order to solve consensus, the corresponding (T,D)-
dynaDegree requires Gt to have a root node over a T -round

interval. Hence, it is tempting to view such an interval in

our model as one “mega-round” in the prior model [10],

[17], [38]. However, the “dynamics” of how nodes change

their states is different in our model. Generally speaking,

our model captures a more fine-grained interaction between

nodes that have different “views.” This is because in a T -

round interval, some nodes may update frequently while

the other nodes only update once. Such a behavior is not

captured when using the “mega-round” formulation. This

perspective will become more clear when we discuss our

algorithms.

C. Exact Consensus and Approximate Consensus

We study both exact consensus and approximate consen-

sus problems [5], [13], [30], [32]. The former task requires

that the fault-free nodes agree on exactly the same output,

whereas the latter one only requires that the fault-free nodes

to agree on roughly the same output. Formally, we have

Definition 2. Binary exact consensus algorithms need to

satisfy the following three conditions:

(i) Termination: Each fault-free node outputs a value;

(ii) Validity: The output of each fault-free node equals to

some binary input given to a non-Byzantine node; and

(iii) Agreement: Fault-free nodes have an identical output.

Definition 3. Approximate consensus algorithms need to

satisfy the following three conditions:

(i) Termination: Each fault-free node outputs a value;
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(a) When t is odd, E(t) is empty
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(b) When t is even, E(t) = {(1, 2), (2, 1), (2, 3), (3, 2)}

Fig. 1: Illustration of an example message adversary. Figure 1a shows that during odd rounds, the message adversary

removes all the links, whereas Figure 1b shows that during even rounds, the adversary removes two links (1, 3) and (3, 1).

(ii) Validity: The outputs of all fault-free nodes are within

the convex hull of the non-Byzantine inputs; and

(iii) ǫ-agreement: The outputs of all fault-free nodes are

within ǫ of each other’s output.

Following prior work [17], [30], [36], we assume that the

range of initial inputs of all nodes is bounded. Without loss

of generality, we can scale the inputs to [0, 1] as long as they

are bounded by scaling ǫ down by the same factor. Formally,

for approximate consensus algorithms, we assume that every

i ∈ H has input xi ∈ [0, 1].

D. Challenges in Anonymous Dynamic Networks

Prior fault-tolerant consensus algorithms do not work in

our model. There are mainly three categories of algorithms

in synchronous or asynchronous message-passing networks:

(i) algorithms that assume reliable message delivery, e.g.,

[13], [15], [34], [36]; (ii) algorithms that relax termination

(namely asymptotic consensus), e.g., [10], [17], [25], [40];

and (iii) algorithms that piggyback the entire history (namely

the full-information model) [38]. There are also some algo-

rithms [23], [24] that do not tolerate node faults.

The analysis and design of these prior algorithms do

not directly apply to our model because of three main

challenges: (i) we cannot implement some well-known prim-

itives such as reliable broadcast [1], [9], because nodes

are anonymous, and T and D are unknown; (ii) nodes

are not able to piggyback extra information because of the

anonymity and limited bandwidth assumption; and (iii) due

to anonymity, it is not easy to break a tie.

III. RELATED WORK

Distributed tasks with fault-tolerance (of both node and

link faults) have been widely studied [5], [30]. We focus on

the closely related work on dynamic networks in this section.

Early works [2], [6], [19], [37] focus on networks that even-

tually stop changing. These algorithms usually guarantee

progress or liveness only after the network stabilizes (i.e.,

when network stops changing).

Subsequently, various works investigate networks with

continual dynamic changes. Kuhn et al. propose the idea

of T -interval connectivity and study problems on election,

counting, consensus, token dissemination, and clock syn-

chronization [20], [22]–[24]. The links in their model are

assumed to be bi-directional and nodes are assumed to be

correct. Bolomi et al. [8] investigate reliable broadcast prim-

itive in dynamic networks with locally bounded Byzantine

adversary. The nodes are assumed to have an identity.

Di Luna et al. have a series of works on anonymous

dynamic networks which investigate problems like counting,

leader election, and arbitrary function computation [11],

[12], [26]–[29]. There is also a line of works on investigating

message adversary for consensus in directed dynamic graphs

[7], [10], [17], [38], [39]. These work do not assume

node faults and link bandwidth is assumed to be unlimited.

Therefore, their techniques are quite different from ours.

IV. CRASH-TOLERANT APPROXIMATE CONSENSUS

This section considers the case when nodes may crash.

We present a simple algorithm, DAC, which stands for

Dynamic Approximate Consensus and achieves approximate

consensus if n ≥ 2f +1 and the graph satisfies (T, ⌊n/2⌋)-
dynaDegree. Section VI will prove that these conditions

together are necessary. DAC shows that they are sufficient.

DAC is inspired by prior algorithms [13], [30], [36] in

which nodes proceed in phases and nodes collect messages

from a certain phase to update its local state value and

proceed to the next phase. DAC has two key changes:

• The capability of “jumping” to a future phase when

receiving a state with a larger phase index; and

• Each node uses a bit vector Ri to keep track of received

messages from the same phase. This is possible because

of our assumption of port numbering (cf. Section II).

Change (i) avoids sending repetitive state values (state values

from prior phases) to handle message loss under limited

bandwidth, while preserving the same convergence rate.

Change (ii) allows node i to know when it is safe to proceed

to the next phase. DAC is presented in Algorithm 1.

Each node i initializes its local state vi to a given input xi,

and then broadcasts its state vi in every round. It only stores

two states – vmin,i and vmax,i – the smallest and largest

phase-p states observed so far, respectively. Each node i in

phase pi has two ways to proceed to a higher phase:

1) (line 5 – 8): upon receiving a message from phase

q > pi, node i directly copies the received state and

“jumps” to phase q; or

2) (line 12 – 15): upon receiving ⌊n
2 ⌋+1 phase-pi states

from different nodes, node i updates its state and

proceeds to phase p+ 1.



Algorithm 1 DAC: Steps at each node i in round t. Node i outputs vi when pi = pend (identified in (2))

Initialization:

vi, vmin,i, vmax,i ← xi ⊲ xi is the input
pi ← 0 ⊲ phase index
Ri ← zero vector of length n
Ri[i]← 1

1: for t← 0 to ∞ do

2: broadcast 〈i, vi, pi〉 to all
3: Mi ← messages received in round r
4: for each 〈j, vj , pj〉 received from port j in Mi do

5: if pj > pi then

6: vi ← vj
7: pi ← pj
8: RESET()
9: else if pj = pi and Ri[j] = 0 then

10: Ri[j]← 1
11: STORE(vj)
12: if |Ri| ≥ ⌊

n
2
⌋+ 1 then

13: vi ←
1
2
(vmin,i + vmax,i)

14: pi ← pi + 1
15: RESET()

16: if pi = pend then ⊲ pend in (2)
17: output vi

18: function RESET()
19: Ri[i]← 1; and Ri[j]← 0, ∀j 6= i
20: vmin,i, vmax,i ← vi

21: function STORE(vj )
22: if vj < vmin,i then

23: vmin,i ← vj
24: else if vj > vmax,i then

25: vmax,i ← vj

Since a node might not receive enough phase-pi messages

in a round, it uses an n-bit bit vector to keep track of

the senders. Recall that even though our model does not

assume node identity, each node can still use receiving ports

to distinguish messages received. For brevity, denote the

number of ones in vector Ri by |Ri|.
3 Every fault-free node

repeats this process until it proceeds to the termination phase

pend, which will be defined later in Equation (2).

A. Correctness of DAC

Technical Challenge. Intuitively, the algorithm is correct,

because a “future” state value is better, in terms of conver-

gence, than the current state value (i.e., the vi’s from the

current phase p). In other words, “jump” should not affect

correctness. However, because nodes do not use state values

from the same phase to update their state values, we cannot

directly apply prior proofs (e.g., [1], [13], [30], [34], [36]),

which rely on the fact that a pair of nodes receive at least

one common value for each phase (via a typical quorum

intersection argument).

In DAC, nodes may move or jump to a phase, because

they do not use the same updating rule. The key challenge

is to devise the right setup so that we can use induction to

derive a bound on the convergence rate. Our induction-based

proof is useful for handling the case when nodes may not

receive common values (due to message loss). Intuitively,

we need to find a way to replace a common value by a

common interval (that contain state values across different

phases) for proving convergence.

Algorithm DAC satisfies termination because after T
rounds, each node must receive either ⌊n/2⌋ + 1 messages

in the same phase (including message received from itself)

or a message with a higher phase owing to (T, ⌊n/2⌋)-
dynaDegree. Validity is also straightforward because of

our updating rules and the assumption of non-Byzantine

behavior. Hence, we focus on the ǫ-agreement below.

3One practical optimization is to use an (n − 1)-bit bit vector. In our
design, Ri[i] is always 1, since each node always has its own state value.

Notations. We introduce two useful notations.

Definition 4. Let S be a finite multiset. Define the cardi-

nality |S| as number of elements in S counting multiplicity,

the range of S as range(S) = max(S) −min(S), and the

interval of S as interval(S) = [min(S),max(S)].

Definition 5. Define V (p) as a multiset of phase-p states of

all nodes that have not crashed yet.

For a faulty node which crashed before phase p, its phase-

p state is empty and hence is excluded in V (p). Due to the

“jump” feature of DAC, some fault-free nodes may skip a

particular phase p. To simplify our analysis, we introduce

the following definition:

Definition 6. If a node i jumps from some phase p to phase

q > p, then we define its phase-p′ state value vp
′

i of skipped

phases (p < p′ < q) as vqi .

Denote np = |V (p)|. Definition 6 and the assumption that

n ≥ 2f + 1 imply that np ≥ n− f ≥ ⌊n
2 ⌋+ 1 for all phase

p. Without loss of generality, we order V (p) chronologically

such that the skipped state values are ordered last (breaking

tie arbitrarily). In other words, V (p) = {vp1 , . . . , v
p
np
}, where

vpk is the phase-p state of the k-th node that proceeded to

phase p. For nodes that skip state p, their values appear last

in V (p).

With V (p) defined, we can introduce the notion of con-

vergence rate.

Definition 7 (Convergence Rate). Consider an algorithm

A in which each node i maintains a state value vi. Then

we say A has convergence rate ρ, for some ρ ∈ [0, 1], if

range(V (p+1)) ≤ ρ · range(V (p)).

Finally, we need two more definitions to help our proof.

Define V
(p)
k = {vp1 , . . . , v

p
k}, i.e., the first k elements in

V (p). Define W (p) as V (p) sorted in ascending order of val-

ues, i.e., W (p) = {wp
1 , . . . , w

p
np
} such that wp

1 ≤ . . . ≤ wp
np

.

Note that W (p) is defined with respect to the values, instead



of chronological order.

Convergence Proof. For ǫ-agreement, we first prove the

following key lemma to identify the convergence rate.

Roughly speaking, the convergence rate identifies the ratio

that the range of fault-free nodes decreases in each phase.

The base case is similar to the “common value” technique

in [1], [14], [34]. The difference lies in the inductive step

where we need to consider nodes that skip phases due to

the “jump” updating rule. Later in Section V, we generalize

the technique to handle Byzantine nodes, where the proof

naturally becomes more complicated.

Lemma 1. For each p (0 ≤ p ≤ pend−1) and k ∈ [np+1],

V
(p+1)
k ⊆

[

wp
1 + wp

⌊n
2 ⌋+1

2
,
wp

np−⌊n
2 ⌋ + wp

np

2

]

. (1)

Proof. We prove the lemma by induction on k. First, we

prove an important claim.

Claim 2. For every p ≥ 0, if a node in phase p updates to

phase p+ 1 by receiving ⌊n/2⌋+ 1 phase-p states, then its

new state value v in phase p+ 1 satisfies

v ∈

[

wp
1 + wp

⌊n/2⌋+1

2
,
wp

np−⌊n/2⌋ + wp
np

2

]

.

Proof of Claim 2. In each phase, the state value vi of each

node remains unchanged until the node updates to the next

phase. Moreover, line 9 ensures that each state is received

at most once by a receiver in each phase. Therefore, if some

node in phase p receives ⌊n/2⌋+1 phase-p states (including

from itself), then the smallest ⌊n/2⌋ + 1 possible states it

can receive are wp
1 , . . . , w

p
⌊n/2⌋+1. Similarly, the maximum

possible states are wp
np
, . . . , wp

np−⌊n/2⌋. In conclusion, the

new state in phase p+1 falls in the interval in Claim 2.

Claim 2 proves the base case that Equation (1) holds for

fixed k = 1 and for every p ≥ 0 because V
(p+1)
1 only

consists of the state value of one node, which must update

to phase p+ 1 by receiving ⌊n/2⌋+ 1 phase-p states.

In the induction case, assume Equation (1) holds for every

p ≥ 0 and for some k, and we want to prove Equation (1) for

every p ≥ 0 and for k+1. Note that the new node proceeds

to phase p + 1 by either receiving ⌊n/2⌋ + 1 phase-p state

values (including one from itself) or copying a future state.

In the former case, Claim 2 implies the induction statement,

whereas in the latter case, the range of V
(p+1)
k+1 is unchanged

and therefore Equation (1) again holds for k + 1.

Remark 1. By definition, n ≥ np. This implies that n −
⌊n/2⌋ ≥ np − ⌊n/2⌋, which leads to ⌊n/2⌋ + 1 ≥ np −
⌊n/2⌋. Since wp’s are ordered in the ascending order, we

have wp
⌊n/2⌋+1 ≥ wp

np−⌊n/2⌋, and thus

range(V (p+1)) ≤
wp

np−⌊n/2⌋ + wp
np

2
−

wp
1 + wp

⌊n/2⌋+1

2

≤
wp

np
− wp

1

2
=

1

2
· range(V (p)).

In other words, Algorithm 1 converges with rate 1
2 .

This implies the following theorem, which identifies the

phase pend in which node i is able to output vi.

Theorem 3. Algorithm DAC satisfies ǫ-agreement after

phase pend, where

pend = log 1
2
(ǫ) (2)

Interestingly, the lower bound from [17] shows that 1/2 is

the optimal rate for any fault-tolerant approximate consensus

algorithms, even in static graphs. Hence, DAC achieves the

optimal convergence rate and optimal resilience even in the

static graph with only node crash faults.

V. BYZANTINE APPROXIMATE CONSENSUS

This section considers up to f Byzantine nodes (denoted

as set B), and the rest of the nodes (denoted as set H) are

fault-free and always follow the algorithm specification. We

present an approximate consensus algorithm, DBAC, which

stands for Dynamic Byzantine Approximate Consensus and

is correct if n ≥ 5f + 1 and G(V,E) satisfies (T, ⌊(n +
3f)/2⌋)-dynaDegree.

Algorithm DBAC and Algorithm DAC share a similar

structure, but DBAC has different update rules to cope with

Byzantine faults. Plus, nodes do not skip phases in DBAC.

The pseudo-code is presented in Algorithm 2.

Each node starts with phase 0 and initializes its local

state value vi to the given input xi. Then it broadcasts

its current local state value in every round. For each

node in phase pi, upon receiving ⌊n+3f
2 ⌋ + 1 state values

from phase pi or higher, it updates its local state value vi
to the average of the (f + 1)-st lowest state value and the

(f + 1)-st highest state value that have been received so

far and then proceeds to phase p + 1. To achieve the goal,

node i uses Ri,low and Ri,high – lists that store the f + 1
lowest and f+1 highest received states in phase p or higher,

respectively. Recall that |Ri| denotes the number of ones in

Ri, whereas |Ri,low| and |Ri,high| denote the cardinality (i.e.,

the number of elements) of Ri,low and Ri,high, respectively.

Our update rule ensures that the new state value falls in

the range of fault-free state values despite of the existence

of Byzantine messages. Moreover, since at most f nodes

are Byzantine faulty and the graph is assumed to satisfy

(T, ⌊(n + 3f)/2⌋)-dynaDegree, this step is always non-

blocking. (Recall that a node can receive a message from

itself as well.) Every node repeats this process until phase

pend, whose value will be determined later in Equation (6).

DBAC is inspired by the iterative Byzantine approximate

consensus algorithm (BAC) [14], which update states using

states from the same phase. BAC relies on reliable channels;

hence, is not feasible in our dynamic network model. DBAC

can update states using messages from different phases (as

shown in the STORE(−) function below). These differences

allow us to tolerate the nature of dynamic network; however,

using messages from different phases make the correctness

proof more complicated than prior analysis.



Algorithm 2 DBAC: Steps at each node i in round t. Node i outputs vi when pi = pend (identified in (6))

Initialization:

vi ← xi ⊲ xi is the input
pi ← 0 ⊲ phase index
Ri ← zero vector of length n
Ri[i]← 1
Ri,low, Ri,high ← {}

1: for t← 0 to ∞ do

2: broadcast 〈i, vi, pi〉 to all
3: Mi ← messages received in round r
4: for each 〈j, vj , pj〉 from port j in Mi do

5: if pj ≥ pi and Ri[j] = 0 then

6: Ri[j]← 1
7: STORE(vj)

8: if |Ri| ≥ ⌊
n+3f

2
⌋+ 1 then

9: vi ←
1
2
(max(Ri,low) + min(Ri,high))

10: pi ← pi + 1
11: RESET()

12: if pi = pend then
13: output vi

14: function RESET()
15: Ri[j]← 0, ∀j 6= i
16: Ri,low, Ri,high ← {}

17: function STORE(vj )
18: if |Ri,low| ≤ f + 1 then

19: Ri,low ← Ri,low ∪ {vj}
20: else if vj < max(Ri,low) then

21: replace max value in Ri,low with vj

22: if |Ri,high| ≤ f + 1 then

23: Ri,high ← Ri,high ∪ {vj}
24: else if vj > min(Ri,high) then

25: replace min value in Ri,high with vj

There exists a Byzantine approximate consensus algo-

rithm [1] that achieves an optimal resilience n ≥ 3f + 1 in

a static graph with only Byzantine nodes; however, it uses a

stronger primitive, reliable broadcast [9], and a technique of

witness (of certain state values). Because of the anonymity

assumption, such techniques are not possible in our model.

A. Correctness of DBAC

Theorem 4. Algorithm DBAC satisfies termination.

Proof. We prove termination by induction on phase p ≥ 0.

Formally, we define the induction statement as: every fault-

free node proceeds to phase p for 1 ≤ p ≤ pend within finite

number of rounds. The base case holds because all nodes are

initially in phase 0. Now suppose all fault-free nodes proceed

to phase p within a finite number of rounds. Then after all

fault-free nodes are in phase p or higher, by assumption of

(T, ⌊(n+3f)/2⌋)-dynaDegree, every fault-free node receive

at least ⌊(n+3f)/2⌋+1 state values from fault-free nodes

in phase p or higher within T rounds (including one from

itself). Hence, every fault-free node proceeds to the next

phase according to line 8 – 11, which proves the induction.

We define V (p) and W (p) in a similar way as we did in

the previous section. The difference is that we only consider

“fault-free nodes.” Recall that in the case of crash faults,

V (p) and W (p) might include nodes that crash later in

phases after phase p. In the Byzantine case, we exclude any

Byzantine state values, as the values are not well-defined.

We then sort V (p) = {vp1 , . . . , v
p
|V (p)|

} chronologically,

i.e., in the increasing order of round index in which the

state value is calculated (breaking ties arbitrarily). Since we

have already proved that DBAC terminates, |V (p)| = h for

all p ≥ 0, where h is the number of fault-free nodes and

h = |H | ≥ n − f . For easiness of calculation, we also

introduce the following notations:

Definition 8. Define W (p) = {wp
1 , . . . , w

p
h} as V (p) ordered

by values, i.e., wp
1 ≤ . . . ≤ wp

h.

Definition 9. Define U = {u1, . . . , ub} as a multiset of ar-

bitrary values from Byzantine nodes, where b is the number

of Byzantine nodes in the execution and b = | B | ≤ f .

Definition 10. For round t and phase p (0 ≤ p ≤ pend),

define k(t, p) as the number of fault-free nodes that are in

phase p or higher at the start of round t.

Moreover, define V
(p)
t = {vp1 , . . . , v

p
k(t,p)}, i.e., the first

k(t, p) elements in the multiset V (p). If k(t, p) = 0, we

define V
(p)
t = ∅. In other words, V

(p)
t is the multiset of

phase-p states of fault-free nodes whose phases are ≥ p at

the start of round t.

Remark 2. Observe the properties below for k(t, p):

1) For fixed p ≥ 0, k(t, p) is non-decreasing with respect

to t, i.e., t ≤ t′ implies

k(t, p) ≤ k(t′, p) and thus V
(p)
t ⊆ V

(p)
t′ .

2) For fixed t ≥ 0, k(t, p) is non-increasing with respect

to p, i.e., p ≤ q implies

k(t, p) ≥ k(t, q).4

3) When t = 0, k(0, 0) = h and k(0, p) = 0 for all

p > 0 because all nodes are initially in phase 0.

Consequently, V
(0)
0 = V (0) and V

(p)
0 = ∅ for p > 0.

4) By termination, every fault-free node updates to phase

pend within finite time. Therefore, there exists a finite

tend that is the last round in which a fault-free node

updates to pend. Moreover, k(tend, p) = h and V
(p)
tend

=
V (p) for all p.

We are now ready to prove the key lemma that bounds

the range of fault-free values. Recall that interval(V ) =
[min(V ),max(V )] and range(V ) = |max(V )−min(V )|.

4Although it still holds that V
(p)
t ⊇ V

(q)
t , the proof is not immediate.

This identity turns out to be the key to the proof of Lemma 5.



Lemma 5. For every round t ≥ 0,

interval(V
(q)
t ) ⊆ interval(V

(p)
t ), ∀0 ≤ p ≤ q. (3)

In other words, Lemma 5 suggests that in every round,

higher-phase states are within lower-phase states.

Proof. We prove the lemma by induction on t.

In the base case when t = 0, recall Remark 2 that V
(0)
0 =

V (0) and V
(p)
0 = ∅ for all p > 0, and so (3) trivially holds.

For the induction case, assume (3) holds for rounds t, and

we want to prove for t+ 1. The key is to show that

interval(V
(p+1)
t+1 ) ⊆ interval(V

(p)
t ), ∀ p ≥ 0. (4)

Recall that V
(p)
t ⊆ V

(p)
t+1 by Remark 2. Together with (4),

we have interval(V
(p+1)
t+1 ) ⊆ interval(V

(p)
t+1), which proves

the induction case. The rest of the proof aims to prove (4).

If no node updates from phase p to p + 1 in round t,

then V
(p+1)
t+1 = V

(p+1)
t and (4) follows from the induction

assumption. Otherwise, consider some node i that updates

from phase p to p + 1 in round t. Its new state in V
(p+1)
t+1

is of form v = 1
2 (max(Ri,low) + min(Ri,high)). For both

Ri,low and Ri,high, they consist of f + 1 messages each of

which either comes from a Byzantine node or is in V
(q)
t for

some q ≥ p. Since there are at most f Byzantine nodes,

there exist q, q′ ≥ p and u ∈ V
(q)
t , w ∈ V

(q′)
t such that

u ≤ max(Ri,low) ≤ min(Ri,high) ≤ w.

By induction assumption, V
(q)
t , V

(q′)
t ⊆ V

(p)
t . Consequently,

u ≤ v ≤ w and v ∈ interval(V
(p)
t ). This proves (4).

Lemma 5 implies the validity of Algorithm DBAC upon

substituting t = tend, p = 0 and q = pend into Equation (3),

which together with Remark 2 implies that

V (pend) ⊆ interval(V (0)).

DBAC: ǫ-agreement. We next present the proof for con-

vergence. In addition to the effect of Byzantine values, we

also need to consider the case when a node uses values from

different phases when updating. This is more complicated to

analyze than the case of DAC, since in our prior analysis, a

node simply jumps to a future state that trivially satisfies the

induction statement. Also, we cannot apply prior proofs for

the traditional Byzantine fault model with reliable channel

(e.g., [1], [14], [31], [34]) either. This is again because a pair

of fault-free nodes may not use a common value to update

their future states. A technical contribution is to identify a

setup to use induction to prove the convergence.

We need to prove that the new state value at a fault-free

node falls in a smaller interval as it updates to a higher

phase. In the base case, each node in phase p receives

non-Byzantine messages from a fixed multiset V (p). By the

classical common value analysis and quorum intersection

argument [14], [31], all nodes in the base case must receive

at least one common value from a fault-free node.

In the more general inductive step, this technique no

longer works, because each node can also receive messages

from higher phase(s). We need to show that all fault-free

nodes must share some common information. Even though

each pair of fault-free nodes may not receive a common

value, we show that each fault-free node must receive at

least one non-Byzantine message in a “common multiset”

(a generalized concept of common value). We then bound

the range of this common multiset using apk and Ap
k, defined

below. The common multiset allows us to derive the desired

convergence rate.

Definition 11. For each p, define apk and Ap
k recursively as:

apk+1 = (apk + wp
1)/2, Ap

k+1 = (Ap
k + wp

h)/2,

with initial values ap0 = Ap
0 = wp

2f+1.

Notice two useful properties. First, since wp
1 ≤ wp

2f+1 ≤
wp

h, we have

wp
1 ≤ apk ≤ wp

2f+1 ≤ Ap
k ≤ wp

h.

Moreover, using geometric series, their explicit formulas are:

apk = 2−kwp
2f+1 +

k
∑

i=1

2−iwp
1 = wp

1 + 2−k(wp
2f+1 − wp

1).

Similarly, Ap
k = wp

h + 2−k(wp
2f+1 − wp

h).
We are now ready to present the full proof below, and

the illustration of common multiset is presented in Figure 2.

Recall that vp+1
k denotes the phase-(p+1) state of the k-th

fault-free node that updates to phase p+ 1.

Lemma 6. Suppose n ≥ 5f + 1. Then for every k ∈ [h],

vp+1
k ∈ [apk, A

p
k], ∀p ≥ 0. (5)

Proof. We prove the theorem by induction on k.

Base Case: In base case, fix k = 1 and consider phase

p ≥ 0. Assume that node i∗ is the first fault-free node that

proceeds to phase p+1 (breaking ties arbitrarily), and denote

by Rlow, Rhigh the recording lists of node i∗ in phase p.

By construction, all fault-free states received by i∗ must

be in phase p. In addition, at most f received state val-

ues are Byzantine. Therefore, max(Rlow) ≥ wp
1 because

max(Rlow) reaches its minimum possible value in the worst

case when i∗ receives these following ⌊(n+3f)/2⌋+1 states:

u1 ≤ . . . ≤ uf ≤ wp
1 ≤ . . . ≤ wp

⌊(n+3f)/2⌋+1−f .

Similarly, min(Rhigh) ≥ wp
⌊(n+3f)/2⌋+1−2f . Also, since

n ≥ 5f + 1, wp
⌊(n+3f)/2⌋+1−2f ≥ wp

2f+1. Therefore,

vp+1
1 =

max(Rlow) + min(Rhigh)

2
≥

wp
1 + wp

2f+1

2
= ap1.

Symmetrically, max(Rlow) ≤ wp
2f+1 and min(Rhigh) ≤

wp
⌊(n+3f)/2⌋+1−2f . Recall that h = |H | ≥ n − f and n ≥

5f + 1, so wp
⌊(n+3f)/2⌋+1−2f ≤ wp

h. Thus,

vp+1
1 ≤

wp
2f+1 + wp

h

2
= Ap

1.



In conclusion, vp+1
1 ∈ [ap1, A

p
1], for all p ≥ 0.

Induction Case: In induction case, assume Equation (5)

is true for all i ∈ [k], and we want to prove for k + 1.

Consider an arbitrary phase p and assume that node j∗ is

the (k + 1)-st fault-free node that proceeds to phase p + 1
in round t. Denote Rlow, Rhigh as recording lists of node j∗

in phase p, and denote the received state values of node j∗

as r1 ≤ . . . ≤ r⌊(n+3f)/2⌋+1. Then max(Rlow) = rf+1 and

min(Rhigh) = r⌊(n+3f)/2⌋+1−f .

Note that every received state value r must come from

one of the three possible sources: (i) a Byzantine node; (ii)

r ∈ V
(p)
t ; or (iii) r ∈ V

(q)
t for some q > p. Let’s consider

the latter two cases.

First case: Suppose r ∈ V
(q)
t for some q > p. Then

r ∈ interval(V
(q)
t )

(i)

⊆ interval(V
(p+1)
t )

(ii)

⊆ [apk, A
p
k].

Here (i) follows from Lemma 5 and (ii) follows from the

induction assumption.

Second case: Suppose r ∈ V
(p)
k . Recall that apk ≤ wp

2f+1 ≤

Ap
k, so we can partition interval(V (p)) into three parts as in

Figure 2: V1 = [wp
1 , a

p
k), V2 = [apk, A

p
k], and V3 = (Ap

k, w
p
h].

wp
1 wp

hapk Ap
k

wp
2f+1

V1 V2 V3

Fig. 2: Partition of interval(V (p)) into V1, V2 and V3.

By definition of wp
2f+1, it is the (2f + 1)-st largest state

in V (p). Since apk ≤ wp
2f+1, r < apk implies r < wp

2f+1 and

thus at most 2f state values from V (p) fall in V1.

In conclusion, among the ⌊(n+3f)/2⌋+1 received state

values, at most f are Byzantine, and the rest are fault-

free and greater than or equal to wp
1 . Moreover, among the

fault-free state values, at most 2f are less than apk. Hence,

rf+1 ≥ wp
1 and r3f+1 ≥ apk. Finally, since n ≥ 5f + 1,

r⌊(n+3f)/2⌋+1−f ≥ r3f+1 and thus

vp+1
k+1 =

rf+1 + r⌊(n+3f)/2⌋+1−f

2
≥

wp
1 + apk
2

= apk+1.

Symmetrically, at most h − (2f + 1) fault-free states

from V (p) fall in V3 (i.e., greater than Ap
k). Therefore,

r⌊(n+3f)/2⌋+1−f ≤ wp
h and rf+1 ≤ Ap

k,5 and thus vp+1
k+1 ≤

Ap
k+1. This proves Equation (5) for k + 1.

Theorem 7. Algorithm DBAC satisfies ǫ-agreement.

Proof. Lemma 6 implies that interval(V (p+1)) ⊆ [apn, A
p
n].

Furthermore, by definition and geometric series, we have

apn = wp
1 + 2−n(wp

2f+1 − wp
1), and

Ap
n = wp

h + 2−n(wp
2f+1 − wp

h).

5At most h − (3f + 1) states are greater than A
p
k

, so the ((n − f) −
[h − (3f + 1)])-th state is less than or equal to A

p
k

. Since n ≥ 5f + 1
and h ≤ n, (n − f) − [h − (3f + 1)] ≥ f + 1. This implies rf+1 ≤
r(n−f)−[h−(3f+1)] ≤ A

p
k

.

and wp
1 = minV (p) and wp

h = maxV (p). Hence, Ap
n − apn

gives an upper bound of convergence rate, which is 1−2−n

because range(V (p+1)) ≤ (1− 2−n) range(V (p)).
In conclusion, DBAC satisfies ǫ-agreement at pend, where

pend =
log ǫ

log(1− 2−n)
, (6)

because for all p ≥ pend, range(V (p)) ≤ (1 − 2−n)pend ≤
ǫ.

VI. IMPOSSIBILITY RESULTS

A. Exact Consensus

We first show that (1, n− 2)-dynaDegree is not sufficient

for solving binary exact consensus, even when all nodes are

fault-free. Gafni and Losa prove the following theorem for

a complete graph in a recent paper [18]:6

Theorem 8 (from [18]). Consider a synchronous model

where in every round, each node might fail to receive

one of the messages sent to it. It is impossible to achieve

deterministic binary exact consensus, even when all nodes

are fault-free.

This theorem implies the following corollary, since by the

definition of (1, n− 2)-dynaDegree, the message adversary

can force any node to drop any single message sent to it.

Corollary 1. It is impossible to achieve deterministic binary

exact consensus in the anonymous dynamic network with

(1, n− 2)-dynaDegree, even when all nodes are fault-free.

B. Crash-tolerant Approximate Consensus

Theorem 9. (T, ⌊n
2 ⌋)-dynaDegree and n ≥ 2f + 1 are

together necessary for solving deterministic crash-tolerant

approximate consensus.

Proof Sketch. The proof consists of two parts. First, we

show that it is impossible to achieve deterministic approx-

imate consensus in an anonymous dynamic network with

(1, ⌊n
2 ⌋−1)-dynaDegree, even when all nodes are fault-free.

The proof for the first part is by contradiction. Assume that

there exists a deterministic approximate consensus algorithm

in a dynamic graph with (1, ⌊n
2 ⌋−1)-dynaDegree. However,

to satisfy termination, a node i must be able to make decision

after communicating with only ⌊n
2 ⌋ nodes (including i

itself). Therefore, it is possible for the message adversary

to pick E(t) in a way that there are two non-overlapping

groups of nodes that do not communicate with each other,

making ǫ-agreement impossible when these two group of

nodes have different inputs.

Second, we show that there exists a finite T ′ such that

it is impossible to achieve deterministic approximate con-

sensus in an anonymous dynamic network with (T ′, n− 1)-
dynaDegree and n ≤ 2f . The reason that we cannot prove

6As noted in [18], the following theorem is different from, although
similar to, the main result from the seminal paper by Santoro and Widmaye
[33]. The model in [33] considers a synchronous system in which one node
fails to send some of its messages per round.



for a general T in this case is that it is trivial to design an

algorithm that works for a fixed number of T , as each node

can simply repeat the same process for T rounds. However,

we argue that it is impossible to do so with an unknown T .

Assume that there exists a deterministic approximate

consensus algorithm A in a dynamic graph with n ≤ 2f
and (T, n− 1)-dynaDegree for a fixed T . Now, we need to

find a T ′ so that A is incorrect, deriving a contradiction.

Observe that to satisfy termination after f nodes crash

before the execution of the algorithm, a node i must be able

to make decision after communicating with only ≤ f nodes,

since n ≤ 2f . Without loss of generality, assume that in this

scenario, namely Scenario 1, A takes R rounds.

Next we show that by choosing T ′ = R+1, A is incorrect.

Consider the graph with (R + 1, n − 1)-dynaDegree. The

message adversary can then pick E(t) for 1 ≤ t ≤ R so that

there are two non-overlapping groups of nodes that do not

communicate with each other. This is possible because (i)

this scenario is indistinguishable from Scenario 1, so nodes

must output in R rounds; (ii) within R rounds, nodes only

communicate with ≤ f nodes in A; and (iii) n ≤ 2f .

Finally, consider the execution where these two non-

overlapping groups are given different input value 0 and

1, respectively. Since each group makes a decision without

communicating with another group, ǫ-agreement is violated

in A, a contradiction.

C. Byzantine Approximate Consensus

Theorem 10. (1, ⌊n+3f
2 ⌋)-dynaDegree and n ≥ 5f are

together necessary for solving deterministic Byzantine ap-

proximate consensus.

Proof. The proof also consists of two parts. First, we

show that it is impossible to achieve deterministic approx-

imate consensus in the anonymous dynamic network with

(1, ⌊n+3f
2 ⌋− 1)-dynaDegree and n ≥ 3f +1.7 Assume that

there exists a deterministic Byzantine approximate consen-

sus algorithm A.

Observe that to satisfy termination, a node i must be able

to make decision after communicating with only ⌊n+3f
2 ⌋

nodes, including i itself. Consider the following scenario:

• Divide nodes into two groups: group A con-

tains node i1, i2, . . . , i⌊n+3f
2 ⌋, and group B contains

i⌊n−3f
2 ⌋+1, . . . , in. Note that each group has size

⌊n+3f
2 ⌋, and there are 3f nodes in the intersection of

the two groups.

• Nodes i⌊n−f
2 ⌋+1, . . . i⌊n+f

2 ⌋ are Byzantine faulty.

• The message adversary picks E(t) in a way that nodes

in group A receive only messages from group A and

nodes in group B receive only messages from group B.

• Nodes i1, . . . , i⌊n−f
2 ⌋ have input 0.

• Nodes i⌊n+f
2 ⌋+1, . . . , in have input 1.

7The necessity of n ≤ 3f is from prior work [5], [30].

• Byzantine nodes have the following behavior: they

behave to group A, as if they had input 0; and behave

to group B, as if they had input 1. This is possible

because of the anonymity assumption. Because the

port numbering is potentially different at each node,

Byzantine nodes have the ability to equivocate without

being caught. In other words, useful primitives like

reliable broadcast is impossible.

Now, we make the following observations:

• From the perspective of group A, only nodes

i⌊n+f
2 ⌋+1, . . . , i⌊n+3f

2 ⌋ have input 1. The rest have input

0. Note that the number of nodes with input 1 in this

case is exactly f .

• From the perspective of group B, only nodes

i⌊n−3f
2 ⌋+1, . . . , i⌊n−f

2 ⌋ have input 0. The rest have input

1. Note that the number of nodes with input 0 in this

case is exactly f .

To satisfies validity, the first observation forces nodes

in group A to output 0, because there are only f nodes

with input 1 and all of them could be Byzantine faulty.

If group A outputs 1 in this scenario, then it is straight-

forward to construct an indistinguishable scenario such

that only nodes i⌊n+f
2 ⌋+1, . . . , i⌊n+3f

2 ⌋ are Byzantine faulty

(and nodes i⌊n−f
2 ⌋+1, . . . i⌊n+f

2 ⌋ are fault-free), causing a

violation of validity.

Similarly, group B must output 1, violating the ǫ-
agreement property.

The second part of proving that there exists a finite T ′

such that it is impossible to achieve deterministic Byzantine

approximate consensus in the anonymous dynamic network

with n ≤ 5f and (T ′, n − 1)-dynaDegree is similar to the

case of crash faults. We omit it here for lack of space.

VII. CONCLUSION AND DISCUSSION

In conclusion, we study the feasibility of fault-tolerant

consensus in anonymous dynamic networks. We identify the

necessary and sufficient conditions for solving crash-tolerant

and Byzantine approximate consensus.

There are many interesting open problems in our model:

• We assume that nodes do not know the base graph G.

Does knowing the graph help?

• In practical applications, nodes might only know the

IDs for a small set of other nodes. Does this knowledge

help in increasing resilience or reducing the require-

ment for dynamic degree?

• What is the optimal convergence rate for Byzantine

approximate consensus algorithms?

• Observe that both our algorithms complete in T · pend
rounds in the worst case. For practical applications, it

is useful to assume a probabilistic message adversary

that picks E(t) randomly and investigate algorithms

achieving the optimal expected number of rounds.

• With unlimited bandwidth, one can indeed simulate the

algorithm in [13] by piggybacking the entire history of

each node’s past messages when sending the current



state value. This achieves convergence rate of 1/2.

In fact, DBAC can improve the convergence rate by

piggybacking a limited set of old messages, under

limited bandwidth. It is interesting to identify the trade-

off between bandwidth and convergence rate.
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