Fault-tolerant Consensus
in Anonymous Dynamic Network

Qinzi Zhang' and Lewis Tseng?*
IBoston University, Boston, USA
2Clark University, Worcester, USA
E-mails: !qinziz@bu.edu, *lewistseng @acm.org

Abstract—This paper studies the feasibility of reaching
consensus in an anonymous dynamic network. In our model, n
anonymous nodes proceed in synchronous rounds. We adopt a
hybrid fault model in which up to f nodes may suffer crash or
Byzantine faults, and the dynamic message adversary chooses
a communication graph for each round.

We introduce a stability property of the dynamic network
- (T, D)-dynaDegree for T > 1 and n — 1 > D > 1 — which
requires that for every 7' consecutive rounds, any fault-free
node must have incoming directed links from at least D distinct
neighbors. These links might occur in different rounds during
a T-round interval. (1, n—1)-dynaDegree means that the graph
is a complete graph in every round. (1, 1)-dynaDegree means
that each node has at least one incoming neighbor in every
round, but the set of incoming neighbor(s) at each node may
change arbitrarily between rounds.

We show that exact consensus is impossible even with
(1,n — 2)-dynaDegree. For an arbitrary 7', we show that for
crash-tolerant approximate consensus, (7, |n/2])-dynaDegree
and n > 2f are together necessary and sufficient, whereas
for Byzantine approximate consensus, (7,|(n + 3f)/2])-
dynaDegree and n > 5f are together necessary and sufficient.

Index Terms—Consensus, Approximate consensus, Byzan-
tine, Impossibility, Message adversary, Dynamic network

I. INTRODUCTION

A dynamic network is a natural model for mobile devices
equipped with wireless communication capability. Node
mobility and unpredictable wireless signal (e.g., due to
interference and attenuation) make the systems of mobile
devices inherently dynamic. For example, nodes may join,
leave, and move around, and communication links between
nodes may appear and disappear over time.

Recent works have studied consensus and other distributed
tasks in various formulations of dynamic networks. Fol-
lowing [10], [17], [22]-[24], we consider a network that
does not eventually stops changing. That is, there exists a
dynamic message adversary that controls and chooses the
set of communication links continually. More concretely,
we study computability of fault-tolerant consensus in the
anonymous dynamic network model [11], [12], [28], [29]
when nodes may crash or become Byzantine.

A. Anonymous Dynamic Network Model
We consider a fixed set of n nodes that proceed in
synchronous rounds and communicate by a broadcast prim-

*This material is based upon work partially supported by the National
Science Foundation under Grant CNS-2238020.

itive. For example, such a broadcast primitive might be
implemented by a medium access control (MAC) protocol
in a wireless network. In each round, the communication
graph is chosen by the dynamic message adversary. We do
not assume the existence of a neighbor-discovery mechanism
or an acknowledgement from a MAC layer; thus, nodes do
not know the set of nodes that received their messages.

In every round ¢, the adversary first chooses the directed
links that are “reliable” for round ¢. In other words, the links
that are not chosen will drop any messages that were sent
via them in round ¢. The adversary may use nodes’ internal
states at the beginning of the round and the algorithm
specification to make the choice. We consider deterministic
algorithms in which nodes update internal states and gener-
ate message following the specification deterministically.

The nodes do not know which links were chosen by the
adversary. Each message is then delivered to the sender’s
outgoing neighbors, as defined by the links chosen by
the adversary. After messages are received from incoming
neighbors, the nodes transition to new states, and enter round
t+1. Nodes are assumed to know n, the size of the network,
and f, the upper bound on the number of node faults.

Compared to prior works on dynamic networks, our model
are different from two following perspectives:

o Anonymity: Nodes are assumed to be anonymous [3],
[4], [16], [21], [28], [29], [35]. That is, nodes are
assumed to be identical and nodes do not have a unique
identity. Instead, nodes may use “local” communication
ports or rely on the underlying communication layer
(e.g., MAC layer) to distinguish messages received
from different incoming neighbors.

o Hybrid faults: In addition to the message adversary, up
to f nodes may crash or have Byzantine behavior.

We are interested in the formulation, because most mobile
devices are fragile and it is important to tolerate node faults.
Moreover, in practice, it it not always straightforward to
bootstrap a large-scale dynamic system so that all the nodes
have unique and authenticated identity. For example, even
though typical MAC protocols assume unique MAC address,
it is a good engineering and security practice not to rely on
this information in the upper layer.! Plus, MAC spoofing

I'There is also a privacy aspect. For example, recent versions of Android
and i0S support MAC randomization to prevent from device tracking.

is a well-known attack, which will add another layer of
complexity in handling identities when designing Byzantine-
tolerant algorithms.

This paper aims to answer the following question:

When is consensus solvable in our anony-
mous dynamic network model?

In this paper, we focus on the case when the nodes are
able to communicate directly with each other, i.e., a single-
hop network. The case of multi-hop communication is left
as an interesting future work. Our model is motivated by
the applications in drones, robots, and connected vehicles.
In this applications, a team of fixed number of nodes are
configured to communicate with each other, via dynamic
wireless networks, in order to solve certain tasks (e.g.,
search, dynamic speed configuration, and flocking). In these
applications, consensus is a key enabling primitive.

B. A Stability Property

Towards our goal, we introduce a stability property called
“(T, D)-dynaDegree” for T > 1 and n —1 > D > 1,
which quantifies the number of distinct incoming neighbors
for each fault-free node over any T-round interval.> T is
assumed to be finite, and both T and D are unknown to
nodes. We only use these parameters for analysis. We do not
assume the graph contains self-loop; hence the parameter D
is upper bounded by n — 1.

More concretely, (7', D)-dynaDegree requires that for
every T consecutive rounds in a given execution, any
fault-free node must have incoming links from at least
D distinct neighbors. These directed links might occur
in different rounds during a T-round interval. (1,n — 1)-
dynaDegree means that the graph is a complete graph
in every round. (1,1)-dynaDegree means that each node
has at least one incoming neighbor in every round, but
the incoming neighbor(s) may change arbitrarily between
rounds. Figure 1 presents an example execution in a 3-node
network that satisfies (2, 1)-dynaDegree, but does not satisfy
(1,1)-dynaDegree.

C. Contributions

We characterise the feasibility of solving consensus in our
model using the stability property. In particular, we have the
following contributions:

o We identify how (7, D)-dynaDegree is related to a
recently identified impossibility result by Gafni and
Losa [18], which then implies that exact consensus is
impossible with (1,7 — 2)-dynaDegree even when no
node may crash (f = 0). In other words, there exists
an execution such that the network satisfies the stability
property (1, n — 2)-dynaDegree, yet nodes are not able
to agree on exactly the same output.

2«dynaDegree” stands for dynamic degree.

o We identify that for crash-tolerant approximate consen-
sus, (T, |n/2])-dynaDegree and n > 2f are together
necessary and sufficient.

o For Byzantine approximate consensus, (7, |(n +
3f)/2])-dynaDegree and n > 5f are together neces-
sary and sufficient.

Section IV presents our crash-tolerant approximate consen-
sus algorithm. Section V presents our Byzantine approx-
imate consensus algorithm. The impossibility results are
presented in Section VI, which imply the necessity of the
identified conditions. We conclude and discuss extensions in
Section VII.

II. PRELIMINARIES
A. Our Model: Anonymous Dynamic Network

We consider a synchronous message-passing system con-
sisting of n anonymous nodes. Nodes only know n and
do not have unique identities. For presentation and analysis
purpose, we denote the set of nodes as the set of IDs, i.e.,
{1,...,n}. For brevity, we often denote it by [n].

Node Faults. We assume that at most f nodes may become
faulty. We consider both crash and Byzantine faults. In the
former model, a faulty node may crash and stop execution
at any point of time. The latter model assumes faulty nodes
may have an arbitrary faulty behavior, including sending
different messages to different nodes. The set of faulty nodes
is denoted by B. Nodes that are not faulty are called fault-
free. The set of fault-free nodes is denoted by .

Communication and Message Adversary. The un-
derlying communication network is modeled as a syn-
chronous dynamic network represented as a dynamic graph
G = (V,E), where V is a static set of nodes [n], and
€ : N = {(u,v) | (w,v) € E} is a function mapping a
round number ¢ € N to a set of directed links E(t). For
(u,v) € E(t), v is said to be u’s outgoing neighbor and u
is said to be v’s incoming neighbor in round ¢.

In round ¢, only messages sent over £(t) are delivered.
All other messages are lost. We consider a dynamic message
adversary that chooses £(t) in every round ¢. Note that there
are different ways of modeling a dynamic network, e.g.,
using temporal graphs [10], [17]. We adopt the definition
from [22]-[24].

We do not assume the existence of self-loop in E;
however, nodes have the ability to send a message to itself.
Such a message delivery cannot be disrupted by the message
adversary. In other words, a message sent to oneself is
always delivered reliably.

Most prior works assume that each node sends only one
message and each message is of size at most O(logn) bits
[10], [17], [22]-[24]. We adopt the same assumption of lim-
ited bandwidth of each edge. Section VII briefly discusses
when each link has different bandwidth constraints.

Anonymity and Port Number. Nodes execute the same
code, because they are identical and the only difference
is a potentially distinct input given to each node. They

communicate with each other via a broadcast primitive. The
delivery of messages are determined by the edge set chosen
by the message adversary in each round ¢, namely & (t).

Following [3], we assume that each node has a “local”
label for each incoming neighbor, i.e., a unique port number
for each incoming link. The labels are local in the sense that
two different nodes may use two different ports to identify
messages received from the same node; therefore, it is not
possible to use such information to assign global unique
identities to all nodes in our model, without using consensus.

The nodes, however, can use ports to distinguish the
sender for each received message locally. Since the ports
are assumed to be static throughout the execution of the
algorithm, upon receipt of two incoming messages m, and
ma, a node ¢ is able to identify that these two messages are
from two different senders by using the port numbers. In
addition, a node ¢ has the ability to keep track of all the
past messages received from a specific port.

Formally, for node 7, a port numbering is a bijection
function P; : {v € V} — {1,2,...,n}. Recall that we
assume each node knows n; hence, P; is well-defined. For
two different nodes ¢ and j, P; may be different from P;.
Depending on the graph GG and the message adversary, nodes
might never receive messages from a specific port.

We assume that the underlying communication layer is
authenticated in the sense that a Byzantine sender cannot
tamper with the port numbering at fault-free nodes. As a
result, Byzantine sender is not able to send bogus messages
on behalf of other nodes.

B. A Stability Property: (T, D)-dynaDegree
We characterize graphs using the following property:

Definition 1 ((T, D)-dynaDegree). A dynamic graph G =
(V, E) satisfies (T, D)-dynaDegree for a finite T > 1 and
n—1>D > 1ifforallt €N, in the static graph G; :=
(v, Uﬁif_l E(t)), the number of distinct incoming neighbors
“aggregated” over any T-round interval at any fault-free
node 1 is at least D.

On a high-level, G is the “base” communication graph
that defines the capability for sending messages when all
the links are reliable. In each round ¢, the message adversary
chooses the set of reliable links, defined as £(t) — links in
E(t) deliver message reliably. Nodes do not know G, nor €.

The property (T, D)-dynaDegree counts the number of
distinct incoming neighbors D over any T-round period.
G, is a static graph whose set of links does not change
over time. The set of links in Gy is a union of £(t),E(t +
1),-+-,E(t+T —1). Any fault-free nodes in G; must have
> D distinct incoming neighbors. Nodes do not know 7" nor
D. These parameters are only used for analysis.

By definition, the incoming neighbors required by the 7'-
interval dynamic degree does not need to be fault-free. For
example, the message adversary may choose links to deliver
messages from Byzantine neighbors.

Example. Consider Figure 1. G(V, E) has V = {1,2,3}
and E = {(1,2),(1,3),(2,1),(2,3),(3,1),(3,2)}. The ex-
ample satisfies (2,1)-dynaDegree because in any 2-round
interval, each node has at least 1 incoming neighbor. It does
not satisfy (1, 1)-dynaDegree, because in odd rounds, the
graph is disconnected.

Comparison with Prior Stability Properties. Prior papers
identified several different stability properties on dynamic
graphs for various distributed tasks. We compare (T, D)-
dynaDegree with most relevant ones:

o T-interval connectivity [22]: it requires that for every
T consecutive rounds, there exists a stable connected
spanning subgraph. The set of dynamic links are as-
sumed to be bi-directional. In other words, the graph
is strongly connected in every T'-round internal.

e Rooted spanning tree [10], [17], [38]: it requires that
in every round t, the graph contains a directed rooted
spanning tree, i.e., there exists at least one “coordina-
tor” that can reach every other node (potentially via a
multi-hop route) in the graph for round t.

Our condition is different from 7T-interval connectiv-
ity because of our assumption of directed links. (7', D)-
dynaDegree is different from rooted spanning tree, because
we allow rounds in which G(V, £(t)) does not have a “root.”

In order to solve consensus, the corresponding (7', D)-
dynaDegree requires G; to have a root node over a 7-round
interval. Hence, it is tempting to view such an interval in
our model as one “mega-round” in the prior model [10],
[17], [38]. However, the “dynamics” of how nodes change
their states is different in our model. Generally speaking,
our model captures a more fine-grained interaction between
nodes that have different “views.” This is because in a T-
round interval, some nodes may update frequently while
the other nodes only update once. Such a behavior is not
captured when using the “mega-round” formulation. This
perspective will become more clear when we discuss our
algorithms.

C. Exact Consensus and Approximate Consensus

We study both exact consensus and approximate consen-
sus problems [5], [13], [30], [32]. The former task requires
that the fault-free nodes agree on exactly the same output,
whereas the latter one only requires that the fault-free nodes
to agree on roughly the same output. Formally, we have

Definition 2. Binary exact consensus algorithms need to
satisfy the following three conditions:

(i) Termination: Each fault-free node outputs a value;
(ii) Validity: The output of each fault-free node equals to
some binary input given to a non-Byzantine node; and
(iii) Agreement: Fault-free nodes have an identical output.

Definition 3. Approximate consensus algorithms need to
satisfy the following three conditions:

(i) Termination: Each fault-free node outputs a value;

&)
O)

(a) When ¢ is odd, £(t) is empty

(b) When ¢ is even, £(t) = {(1,2),(2,1),(2,3),(3,2)}

Fig. 1: Illustration of an example message adversary. Figure la shows that during odd rounds, the message adversary
removes all the links, whereas Figure 1b shows that during even rounds, the adversary removes two links (1,3) and (3,1).

(ii) Validity: The outputs of all fault-free nodes are within
the convex hull of the non-Byzantine inputs; and

(iii) e-agreement: The outputs of all fault-free nodes are
within e of each other’s output.

Following prior work [17], [30], [36], we assume that the
range of initial inputs of all nodes is bounded. Without loss
of generality, we can scale the inputs to [0, 1] as long as they
are bounded by scaling € down by the same factor. Formally,
for approximate consensus algorithms, we assume that every
i € H has input x; € [0, 1].

D. Challenges in Anonymous Dynamic Networks

Prior fault-tolerant consensus algorithms do not work in
our model. There are mainly three categories of algorithms
in synchronous or asynchronous message-passing networks:
(i) algorithms that assume reliable message delivery, e.g.,
[13], [15], [34], [36]; (ii) algorithms that relax termination
(namely asymptotic consensus), e.g., [10], [17], [25], [40];
and (iii) algorithms that piggyback the entire history (namely
the full-information model) [38]. There are also some algo-
rithms [23], [24] that do not tolerate node faults.

The analysis and design of these prior algorithms do
not directly apply to our model because of three main
challenges: (i) we cannot implement some well-known prim-
itives such as reliable broadcast [1], [9], because nodes
are anonymous, and 7" and D are unknown; (ii) nodes
are not able to piggyback extra information because of the
anonymity and limited bandwidth assumption; and (iii) due
to anonymity, it is not easy to break a tie.

III. RELATED WORK

Distributed tasks with fault-tolerance (of both node and
link faults) have been widely studied [5], [30]. We focus on
the closely related work on dynamic networks in this section.
Early works [2], [6], [19], [37] focus on networks that even-
tually stop changing. These algorithms usually guarantee
progress or liveness only after the network stabilizes (i.e.,
when network stops changing).

Subsequently, various works investigate networks with
continual dynamic changes. Kuhn et al. propose the idea
of T-interval connectivity and study problems on election,
counting, consensus, token dissemination, and clock syn-
chronization [20], [22]-[24]. The links in their model are
assumed to be bi-directional and nodes are assumed to be

correct. Bolomi et al. [8] investigate reliable broadcast prim-
itive in dynamic networks with locally bounded Byzantine
adversary. The nodes are assumed to have an identity.

Di Luna et al. have a series of works on anonymous
dynamic networks which investigate problems like counting,
leader election, and arbitrary function computation [11],
[12], [26]-[29]. There is also a line of works on investigating
message adversary for consensus in directed dynamic graphs
[71, [10], [17], [38], [39]. These work do not assume
node faults and link bandwidth is assumed to be unlimited.
Therefore, their techniques are quite different from ours.

IV. CRASH-TOLERANT APPROXIMATE CONSENSUS

This section considers the case when nodes may crash.
We present a simple algorithm, DAC, which stands for
Dynamic Approximate Consensus and achieves approximate
consensus if n > 2f + 1 and the graph satisfies (T, [n/2])-
dynaDegree. Section VI will prove that these conditions
together are necessary. DAC shows that they are sufficient.

DAC is inspired by prior algorithms [13], [30], [36] in
which nodes proceed in phases and nodes collect messages
from a certain phase to update its local state value and
proceed to the next phase. DAC has two key changes:

e The capability of “jumping” to a future phase when
receiving a state with a larger phase index; and

« Each node uses a bit vector R; to keep track of received
messages from the same phase. This is possible because
of our assumption of port numbering (cf. Section II).

Change (i) avoids sending repetitive state values (state values
from prior phases) to handle message loss under limited
bandwidth, while preserving the same convergence rate.
Change (ii) allows node ¢ to know when it is safe to proceed
to the next phase. DAC is presented in Algorithm 1.

Each node 1 initializes its local state v; to a given input x;,
and then broadcasts its state v; in every round. It only stores
two states — Upin,; and Vp,qq,; — the smallest and largest
phase-p states observed so far, respectively. Each node i in
phase p; has two ways to proceed to a higher phase:

1) (line 5 — 8): upon receiving a message from phase
q > p;, node 7 directly copies the received state and
“jumps” to phase ¢; or

2) (line 12 — 15): upon receiving | | 4-1 phase-p; states
from different nodes, node ¢ updates its state and
proceeds to phase p + 1.

Algorithm 1 DAC: Steps at each node i in round ¢. Node ¢ outputs v; when p; = penq (identified in (2))

Initialization:
Vi, Umin,i> Vmax,i T5 > x; is the input
pi <0 > phase index
R; < zero vector of length n
RZ[Z] «— 1
1: for t <~ 0 to co do 14: pi < p;i +1
2: broadcast (i, v;, p;) to all 15: RESET()
3: M; + messages receivefi in round r N 16: if p; = pepg then > Pend in (2)
4: for each (j,v;, p;) received from port j in M; do 17: output v;
5: if p; > p; then
6: Vi — v; 18: function RESET()
7. pi < Dj 19: R;[i] < 1; and R;[j] < 0,Vj # ¢
8: RESET() 20: Umin,i, Vmax,i < Uj
9: else if p; = p; and R;[j] = O then
10: R, [ﬁ . 11 il 21: function STORE(v;)
11: STORE(v;) 22: if v; < Vpin,; then
12: if |R;| > |%] 41 then ii: 1 U.rtr.]in,i —vj .
13: v; = 5 (Vmin,i + Umax,i) 25 ¢ Se;m:i;:';‘)?x’i then

Since a node might not receive enough phase-p; messages
in a round, it uses an n-bit bit vector to keep track of
the senders. Recall that even though our model does not
assume node identity, each node can still use receiving ports
to distinguish messages received. For brevity, denote the
number of ones in vector R; by |R;|.*> Every fault-free node
repeats this process until it proceeds to the termination phase
Pend,» Which will be defined later in Equation (2).

A. Correctness of DAC

Technical Challenge. Intuitively, the algorithm is correct,
because a “future” state value is better, in terms of conver-
gence, than the current state value (i.e., the v;’s from the
current phase p). In other words, “jump” should not affect
correctness. However, because nodes do not use state values
from the same phase to update their state values, we cannot
directly apply prior proofs (e.g., [1], [13], [30], [34], [36]),
which rely on the fact that a pair of nodes receive at least
one common value for each phase (via a typical quorum
intersection argument).

In DAC, nodes may move or jump to a phase, because
they do not use the same updating rule. The key challenge
is to devise the right setup so that we can use induction to
derive a bound on the convergence rate. Our induction-based
proof is useful for handling the case when nodes may not
receive common values (due to message loss). Intuitively,
we need to find a way to replace a common value by a
common interval (that contain state values across different
phases) for proving convergence.

Algorithm DAC satisfies termination because after T'
rounds, each node must receive either |n/2| + 1 messages
in the same phase (including message received from itself)
or a message with a higher phase owing to (T, |n/2])-
dynaDegree. Validity is also straightforward because of
our updating rules and the assumption of non-Byzantine
behavior. Hence, we focus on the e-agreement below.

30ne practical optimization is to use an (n — 1)-bit bit vector. In our
design, R;[i] is always 1, since each node always has its own state value.

Notations. We introduce two useful notations.

Definition 4. Let S be a finite multiset. Define the cardi-
nality |S| as number of elements in S counting multiplicity,
the range of S as range(S) = max(S) — min(S), and the
interval of S as interval(S) = [min(5), max(S)].

Definition 5. Define V(?) as a multiset of phase-p states of
all nodes that have not crashed yet.

For a faulty node which crashed before phase p, its phase-
p state is empty and hence is excluded in V). Due to the
“jump” feature of DAC, some fault-free nodes may skip a
particular phase p. To simplify our analysis, we introduce
the following definition:

Definition 6. If a node 4 jumps from some phase p to phase
q > p, then we define its phase-p’ state value v¥ of skipped
phases (p < p’ < ¢) as v}

Denote n,, = |V (P)|. Definition 6 and the assumption that
n > 2f + 1 imply that n, > n — f > | 5] +1 for all phase
p. Without loss of generality, we order V) chronologically
such that the skipped state values are ordered last (breaking
tie arbitrarily). In other words, V(") = {v}, ... ;vh }, where
v} is the phase-p state of the k-th node that proceeded to
phase p. For nodes that skip state p, their values appear last
in VP,

With V(®) defined, we can introduce the notion of con-
vergence rate.

Definition 7 (Convergence Rate). Consider an algorithm
A in which each node 7 maintains a state value v;. Then
we say A has convergence rate p, for some p € [0, 1], if
range(VPT1) < p - range(V®)).

Finally, we need two more definitions to help our proof.

Define Vk(p) = {vf,..., v}, ie., the first k elements in
V(@) Define W) as V() sorted in ascending order of val-
ues, i.e., WP = {w?, ... ,wh } such that wi < ... <wh .

Note that W (P) is defined with respect to the values, instead

of chronological order.

Convergence Proof. For e-agreement, we first prove the
following key lemma to identify the convergence rate.
Roughly speaking, the convergence rate identifies the ratio
that the range of fault-free nodes decreases in each phase.
The base case is similar to the “common value” technique
in [1], [14], [34]. The difference lies in the inductive step
where we need to consider nodes that skip phases due to
the “jump” updating rule. Later in Section V, we generalize
the technique to handle Byzantine nodes, where the proof
naturally becomes more complicated.

Lemma 1. For eachp (0 <p < pepg—1) and k € [np11),
Wi wly i Wi,y UL,

(p+1)
[~ 2 ’ 2

)

Proof. We prove the lemma by induction on k. First, we
prove an important claim.

Claim 2. For every p > 0, if a node in phase p updates to

phase p+ 1 by receiving |n/2| + 1 phase-p states, then its

new state value v in phase p + 1 satisfies

WY A Whya Wy ng2) TR,
2 ’ 2

v E

Proof of Claim 2. In each phase, the state value v; of each
node remains unchanged until the node updates to the next
phase. Moreover, line 9 ensures that each state is received
at most once by a receiver in each phase. Therefore, if some
node in phase p receives |n/2|+ 1 phase-p states (including
from itself), then the smallest [n/2]| + 1 possible states it
can receive are wl, ..., wfn /2)1- Similarly, the maximum
possible states are w? ,...,wfl —n/2)" In conclusion, the
new state in phase p+ 1 falls in the interval in Claim 2. [J

Claim 2 proves the base case that Equation (1) holds for
fixed kK = 1 and for every p > 0 because Vl(p 1) only
consists of the state value of one node, which must update
to phase p + 1 by receiving |n/2]| + 1 phase-p states.

In the induction case, assume Equation (1) holds for every
p > 0 and for some k, and we want to prove Equation (1) for
every p > 0 and for k + 1. Note that the new node proceeds
to phase p + 1 by either receiving |n/2] + 1 phase-p state
values (including one from itself) or copying a future state.
In the former case, Claim 2 implies the induction statement,
whereas in the latter case, the range of Vk(f{l) is unchanged
and therefore Equation (1) again holds for £ + 1.]

Remark 1. By definition, n > n,. This implies that n —

[n/2] > n, — |n/2], which leads to [n/2] +1 > n, —

[n/2]. Since wP’s are ordered in the ascending order, we
P P

have Wy r9) 41 > Wy o) and thus

P
wnp—l_n/ZJ + wgp . wll” + wlfn/QJ-&-l

2 2
P _ 4P
U)np wy

- 2

range(V (P+1))

IA

= % -range(V ().

In other words, Algorithm 1 converges with rate %

This implies the following theorem, which identifies the
phase peynq in which node ¢ is able to output v;.

Theorem 3. Algorithm DAC satisfies e-agreement after
phase pend, where

Pend = log% (6) ()

Interestingly, the lower bound from [17] shows that 1/2 is
the optimal rate for any fault-tolerant approximate consensus
algorithms, even in static graphs. Hence, DAC achieves the
optimal convergence rate and optimal resilience even in the
static graph with only node crash faults.

V. BYZANTINE APPROXIMATE CONSENSUS

This section considers up to f Byzantine nodes (denoted
as set BB), and the rest of the nodes (denoted as set H) are
fault-free and always follow the algorithm specification. We
present an approximate consensus algorithm, DBAC, which
stands for Dynamic Byzantine Approximate Consensus and
is correct if n > 5f + 1 and G(V, E) satisfies (T, [(n +
3f)/2])-dynaDegree.

Algorithm DBAC and Algorithm DAC share a similar
structure, but DBAC has different update rules to cope with
Byzantine faults. Plus, nodes do not skip phases in DBAC.
The pseudo-code is presented in Algorithm 2.

Each node starts with phase 0 and initializes its local
state value v; to the given input x;. Then it broadcasts
its current local state value in every round. For each
node in phase p;, upon receiving L%?’fj + 1 state values
from phase p; or higher, it updates its local state value v;
to the average of the (f + 1)-st lowest state value and the
(f + 1)-st highest state value that have been received so
far and then proceeds to phase p + 1. To achieve the goal,
node ¢ uses R;1ow and R; high — lists that store the f 41
lowest and f+ 1 highest received states in phase p or higher,
respectively. Recall that |R;| denotes the number of ones in
R;, whereas |R; 1ow| and |R; nigh| denote the cardinality (i.e.,
the number of elements) of R; 10w and R; pnign, respectively.

Our update rule ensures that the new state value falls in
the range of fault-free state values despite of the existence
of Byzantine messages. Moreover, since at most f nodes
are Byzantine faulty and the graph is assumed to satisfy
(T, | (n + 3f)/2])-dynaDegree, this step is always non-
blocking. (Recall that a node can receive a message from
itself as well.) Every node repeats this process until phase
Pend, Whose value will be determined later in Equation (6).

DBAC is inspired by the iterative Byzantine approximate
consensus algorithm (BAC) [14], which update states using
states from the same phase. BAC relies on reliable channels;
hence, is not feasible in our dynamic network model. DBAC
can update states using messages from different phases (as
shown in the STORE(—) function below). These differences
allow us to tolerate the nature of dynamic network; however,
using messages from different phases make the correctness
proof more complicated than prior analysis.

Algorithm 2 DBAC: Steps at each node 7 in round ¢. Node ¢ outputs v; when p; = penq (identified in (6))

Initialization:
Vi < T4
pPi 0
R; < zero vector of length n
Ri [Z] «— 1
R; 1ow, Ri high + {}

> x; is the input
> phase index

1: for t <~ 0 to oo do

2: broadcast (i, v;, p;) to all

3: M; < messages received in round r

4: for each (j,v;,p;) from port j in M; do
5: if p; > p; and R;[j] = O then

6: R;i[j] + 1

7: STORE(v;)

8: if |Ri| > | %3] +1 then

9: Vi %(maX(RUOW) + min(R@high))
10: pi < pi+1
11: RESET()
12: if p; = penq then
13: output v;

14: function RESET()
150 Rylj] « 0,V] #
16: R; 1w, Ri high + {}

17: function STORE(v;)
18: if |R; low| < f+ 1 then

19: Ri,low <~ Ri,low) {vj}

20: else if v; < max(R; 1ow) then

21: replace max value in R; 10w With v;
22: if |R; high| < f + 1 then

23: R; high < Ri nigh U {v;}

24: else if vj > min(Ri’high) then

25: replace min value in R; pign with v;

There exists a Byzantine approximate consensus algo-
rithm [1] that achieves an optimal resilience n > 3f + 1 in
a static graph with only Byzantine nodes; however, it uses a
stronger primitive, reliable broadcast [9], and a technique of
witness (of certain state values). Because of the anonymity
assumption, such techniques are not possible in our model.

A. Correctness of DBAC
Theorem 4. Algorithm DBAC satisfies termination.

Proof. We prove termination by induction on phase p > 0.
Formally, we define the induction statement as: every fault-
free node proceeds to phase p for 1 < p < pepq Within finite
number of rounds. The base case holds because all nodes are
initially in phase 0. Now suppose all fault-free nodes proceed
to phase p within a finite number of rounds. Then after all
fault-free nodes are in phase p or higher, by assumption of
(T, | (n+3f)/2])-dynaDegree, every fault-free node receive
at least [(n +3f)/2] + 1 state values from fault-free nodes
in phase p or higher within 7" rounds (including one from
itself). Hence, every fault-free node proceeds to the next

phase according to line 8 — 11, which proves the induction.
O

We define V®) and W) in a similar way as we did in
the previous section. The difference is that we only consider
“fault-free nodes.” Recall that in the case of crash faults,
V(® and W®) might include nodes that crash later in
phases after phase p. In the Byzantine case, we exclude any
Byzantine state values, as the values are not well-defined.

We then sort V() = {vf,...,va(m} chronologically,
i.e., in the increasing order of round index in which the
state value is calculated (breaking ties arbitrarily). Since we
have already proved that DBAC terminates, |V (P)| = h for
all p > 0, where h is the number of fault-free nodes and
h = |H| > n — f. For easiness of calculation, we also
introduce the following notations:

Definition 8. Define W®) = {w},... w}} as V() ordered
by values, ie., v} <...<wf.

Definition 9. Define U = {uy,...,up} as a multiset of ar-
bitrary values from Byzantine nodes, where b is the number
of Byzantine nodes in the execution and b = | B| < f.

Definition 10. For round ¢ and phase p (0 < p < pend)s
define k(t,p) as the number of fault-free nodes that are in
phase p or higher at the start of round ¢.

Moreover, define Vt(p) = {of,... ’Uz(t,p)}’ i.e., the first
k(t,p) elements in the multiset V®). If k(¢,p) = 0, we
define Vt(p) = {. In other words, Vt(p) is the multiset of

phase-p states of fault-free nodes whose phases are > p at
the start of round ¢.

Remark 2. Observe the properties below for k(t, p):

1) For fixed p > 0, k(t, p) is non-decreasing with respect

to ¢, i.e., t < t' implies
k(t,p) < k(t',p) and thus Vt(p) C Vtgp).

2) For fixed t > 0, k(t, p) is non-increasing with respect

to p, i.e., p < ¢ implies
k(t,p) > k(t,q).*

3) When ¢t = 0, k(0,0) = h and k(0,p) = 0 for all
p > 0 because all nodes are initially in phase O.
Consequently, V\”) = V(© and V") = for p > 0.

4) By termination, every fault-free node updates to phase
Pend Within finite time. Therefore, there exists a finite
tend that is the last round in which a fault-free node
updates to pend. Moreover, k(tend, p) = h and V;(e’; Z‘ =
V®) for all p.

We are now ready to prove the key lemma that bounds
the range of fault-free values. Recall that interval(V) =
[min(V), max(V')] and range(V) = | max(V) — min(V)|.

4 Although it still holds that V;(p) D) Vt(Q), the proof is not immediate.
This identity turns out to be the key to the proof of Lemma 5.

Lemma 5. For every round t > 0,
interval(Vt(Q)) C interval(Vt(p)), VO<p<gqg (3

In other words, Lemma 5 suggests that in every round,
higher-phase states are within lower-phase states.

Proof. We prove the lemma by induction on ¢.
In the base case when t = 0, recall Remark 2 that VO(O) =
V(© and V") = for all p > 0, and so (3) trivially holds.
For the induction case, assume (3) holds for rounds ¢, and
we want to prove for ¢ + 1. The key is to show that

interval(‘/;(_ffl)) - interval(Vt(p)), Vp>0. (4)

Recall that Vt(p) C Vt(ﬂ by Remark 2. Together with (4),

we have interval(‘@(ffl)) C interval(Vt(f}), which proves

the induction case. The rest of the proof aims to prove (4).

If no node updates from phase p to p + 1 in round %,
then Vt(fl+ D= Vt(p 1 and (4) follows from the induction
assumption. Otherwise, consider some node 7 that updates

from phase p to p 4+ 1 in round ¢. Its new state in V;(ffl)

is of form v = % (max(R; 1ow) + min(R; pign)). For both
R; 10w and R; pign, they consist of f + 1 messages each of
which either comes from a Byzantine node or is in Vt(q) for
some g > p. Since there are at most f Byzantine nodes,

there exist ¢,¢' > p and u € Vt((I), w e Vt(q) such that
u < max(R; jow) < mMin(R; pigh) < w.

By induction assumption, Vt(Q), Vt(q/) C Vt(p). Consequently,
u<v<wandve interval(‘/;(p)). This proves (4). O

Lemma 5 implies the validity of Algorithm DBAC upon
substituting ¢ = tenq, p = 0 and g = penq into Equation (3),
which together with Remark 2 implies that

Y Pena) C interval(V(O))-

DBAC: e-agreement. We next present the proof for con-
vergence. In addition to the effect of Byzantine values, we
also need to consider the case when a node uses values from
different phases when updating. This is more complicated to
analyze than the case of DAC, since in our prior analysis, a
node simply jumps to a future state that trivially satisfies the
induction statement. Also, we cannot apply prior proofs for
the traditional Byzantine fault model with reliable channel
(e.g., [11, [14], [31], [34]) either. This is again because a pair
of fault-free nodes may not use a common value to update
their future states. A technical contribution is to identify a
setup to use induction to prove the convergence.

We need to prove that the new state value at a fault-free
node falls in a smaller interval as it updates to a higher
phase. In the base case, each node in phase p receives
non-Byzantine messages from a fixed multiset V(). By the
classical common value analysis and quorum intersection
argument [14], [31], all nodes in the base case must receive
at least one common value from a fault-free node.

In the more general inductive step, this technique no
longer works, because each node can also receive messages
from higher phase(s). We need to show that all fault-free
nodes must share some common information. Even though
each pair of fault-free nodes may not receive a common
value, we show that each fault-free node must receive at
least one non-Byzantine message in a “common multiset”
(a generalized concept of common value). We then bound
the range of this common multiset using @, and A7}, defined
below. The common multiset allows us to derive the desired
convergence rate.

Definition 11. For each p, define a} and A}, recursively as:
aiﬂ = (aj, +wY)/2, Aiﬂ = (A} +wy)/2,
with initial values af = A = wh Fay

. . . . » »
Notice two useful properties. First, since w; < wy Fi1 <
wh, we have

P p P P P
wy < ay S Wyp <AL <wy.

Moreover, using geometric series, their explicit formulas are:

k
ay =27 wh, + Z 27wl = wf + 27" (wh,) — w).
i=1
Similarly, A} = w} + 27k(w]2gf+1 —wy).

We are now ready to present the full proof below, and
the illustration of common multiset is presented in Figure 2.
Recall that v "' denotes the phase-(p + 1) state of the k-th
fault-free node that updates to phase p + 1.

Lemma 6. Suppose n > 5f + 1. Then for every k € [h],
UZ—H € [a}, AV], Vp > 0. 5

Proof. We prove the theorem by induction on k.

Base Case: In base case, fix Kk = 1 and consider phase
p > 0. Assume that node ¢* is the first fault-free node that
proceeds to phase p+1 (breaking ties arbitrarily), and denote
by Riow, Ruign the recording lists of node ¢* in phase p.
By construction, all fault-free states received by * must
be in phase p. In addition, at most f received state val-
ues are Byzantine. Therefore, max(Rjow) > w! because
max (Rl) reaches its minimum possible value in the worst
case when 7* receives these following | (n+3f)/2]+1 states:

u <oy Swy S S Wy e e f

Similarly, minz(thigh) > wf(n+3f)]/2j+1_2f. Also, since
n>5f+1, W (ni3f)/2)+1-2f = Wapit- Therefore,

p+1 max(Rioy) + min(Ryigh) wi + wng o,

= > =af.
2 2

pSymmetrically, max(Riow) < why; and min(Rpign)

W (n43f) /2| +1—2f" Recall that h = |H| > n— f and n

+1, so wlf(n+3f)/2j+172f < w}. Thus,

<
>

D P

p+1 o Y2541 T wy P

v < =A.
2

In conclusion, vf“ € [a}, AY], for all p > 0.

Induction Case: In induction case, assume Equation (5)
is true for all ¢ € [k], and we want to prove for k + 1.
Consider an arbitrary phase p and assume that node j* is
the (k + 1)-st fault-free node that proceeds to phase p + 1
in round ¢. Denote Rioy, Rhigh as recording lists of node j*
in phase p, and denote the received state values of node j*
as 71 < ... ST (n43f)/2)+1- Then max(Rjow) = r¢4+1 and
min(Rhigh) = 7 (nr35)/2)+1-7-

Note that every received state value r must come from
one of the three possible sources: (i) a Byzantine node; (ii)
r e V) or (iii) r € V;') for some ¢ > p. Let’s consider
the latter two cases.

First case: Suppose r € Vt(Q) for some ¢ > p. Then
() (i1)

r € interval(V;?) C interval(V,*T™) C la}, AP].
Here (i) follows from Lemma 5 and (ii) follows from the
induction assumption.

Second case: Suppose r € V). Recall that af < w? i1 S

A?, so we can partition interval(V'(P)) into three parts as in
Figure 2: Vi = [w},af), Vo = [a}, AY], and V5 = (A}, w}].

Vi Va V3
L 1 1 1 1
r T T T 1
P p P P P
wy ay, Wagy1 Al wy,

Fig. 2: Partition of interval(V (")) into Vi, V; and V3.

By definition of wgfﬂ, it is the (2f + 1)-st largest state
in V»). Since af <wh, ,, r < aj implies r < wh, , and
thus at most 2f state values from V®) fall in V;.

In conclusion, among the |(n+3f)/2] + 1 received state
values, at most f are Byzantine, and the rest are fault-
free and greater than or equal to w}. Moreover, among the
fault-free state values, at most 2f are less than ai. Hence,
ry+1 > wi and rsppq > af. Finally, since n > 5f + 1,
T|(n+3f)/2)+1—f > r374+1 and thus

p

P I e e (e Vo VT S L e o
= ak+1.

k+1 — 9 = 9

Symmetrically, at most h — (2f + 1) fault-free states
from V@ fall in V5 (ie., greater than AIZ). Therefore,
T_(n+3f)/2j+1—f S ’LUZ and Tf4+1 S Ai,s and thus Uii} S

A} 41+ This proves Equation (5) for k& + 1. O
Theorem 7. Algorithm DBAC satisfies e-agreement.

Proof. Lemma 6 implies that interval(V(®+1) C [a, AP].
Furthermore, by definition and geometric series, we have
ah = wy +27"(wy;,, —wy), and
. —n(, P D
Ap = wy, + 27" (wyp g — wy).
SAt most h — (3f + 1) states are greater than Ag, so the ((n— f) —
[h — (3f + 1)])-th state is less than or equal to A}. Since n > 5f + 1

and h < n, (n—f)—[h— (3f+1)] > f+ 1. This implies 77,1 <
T(n—)-[h-a7+1)] S Af-

and w} = min V® and w} = max V(). Hence, A? — a?,
gives an upper bound of convergence rate, which is 1 —27"
because range(V®*TD) < (1 — 27") range(V®)).

In conclusion, DBAC satisfies e-agreement at pe,q, where

log e

Tog(1—2-7)’ ©

Pend =
because for all p > peng, range(V(P)) < (1 — 277)Pend <
€. O

VI. IMPOSSIBILITY RESULTS
A. Exact Consensus

We first show that (1, n — 2)-dynaDegree is not sufficient
for solving binary exact consensus, even when all nodes are
fault-free. Gafni and Losa prove the following theorem for
a complete graph in a recent paper [18]:6

Theorem 8 (from [18]). Consider a synchronous model
where in every round, each node might fail to receive
one of the messages sent to it. It is impossible to achieve
deterministic binary exact consensus, even when all nodes
are fault-free.

This theorem implies the following corollary, since by the
definition of (1,n — 2)-dynaDegree, the message adversary
can force any node to drop any single message sent to it.

Corollary 1. It is impossible to achieve deterministic binary
exact consensus in the anonymous dynamic network with
(1,n — 2)-dynaDegree, even when all nodes are fault-free.

B. Crash-tolerant Approximate Consensus

Theorem 9. (T, |3])-dynaDegree and n > 2f + 1 are
together necessary for solving deterministic crash-tolerant
approximate consensus.

Proof Sketch. The proof consists of two parts. First, we
show that it is impossible to achieve deterministic approx-
imate consensus in an anonymous dynamic network with
(1, [5] —1)-dynaDegree, even when all nodes are fault-free.
The proof for the first part is by contradiction. Assume that
there exists a deterministic approximate consensus algorithm
in a dynamic graph with (1, | 5 | —1)-dynaDegree. However,
to satisfy termination, a node ¢ must be able to make decision
after communicating with only [%]| nodes (including i
itself). Therefore, it is possible for the message adversary
to pick £(t) in a way that there are two non-overlapping
groups of nodes that do not communicate with each other,
making e-agreement impossible when these two group of
nodes have different inputs.

Second, we show that there exists a finite 7" such that
it is impossible to achieve deterministic approximate con-
sensus in an anonymous dynamic network with (77, n — 1)-
dynaDegree and n < 2f. The reason that we cannot prove

6As noted in [18], the following theorem is different from, although
similar to, the main result from the seminal paper by Santoro and Widmaye
[33]. The model in [33] considers a synchronous system in which one node
fails to send some of its messages per round.

for a general T in this case is that it is trivial to design an
algorithm that works for a fixed number of 7', as each node
can simply repeat the same process for 7' rounds. However,
we argue that it is impossible to do so with an unknown 7'.

Assume that there exists a deterministic approximate
consensus algorithm A in a dynamic graph with n < 2f
and (T,n — 1)-dynaDegree for a fixed 7. Now, we need to
find a 7" so that A is incorrect, deriving a contradiction.

Observe that to satisfy termination after f nodes crash
before the execution of the algorithm, a node ¢ must be able
to make decision after communicating with only < f nodes,
since n < 2 f. Without loss of generality, assume that in this
scenario, namely Scenario 1, A takes R rounds.

Next we show that by choosing 77 = R+1, A is incorrect.
Consider the graph with (R + 1,n — 1)-dynaDegree. The
message adversary can then pick £(¢) for 1 < ¢ < R so that
there are two non-overlapping groups of nodes that do not
communicate with each other. This is possible because (i)
this scenario is indistinguishable from Scenario 1, so nodes
must output in R rounds; (ii) within R rounds, nodes only
communicate with < f nodes in A; and (iii) n < 2f.

Finally, consider the execution where these two non-
overlapping groups are given different input value 0 and
1, respectively. Since each group makes a decision without
communicating with another group, e-agreement is violated
in A, a contradiction. O]

C. Byzantine Approximate Consensus

Theorem 10. (1, L%J)—dynaDegree and n > 5f are
together necessary for solving deterministic Byzantine ap-
proximate consensus.

Proof. The proof also consists of two parts. First, we
show that it is impossible to achieve deterministic approx-
imate consensus in the anonymous dynamic network with
(1, L”E?’fj — 1)-dynaDegree and n > 3f + 1.7 Assume that
there exists a deterministic Byzantine approximate consen-
sus algorithm A.

Observe that to satisfy termination, a node ¢ must be able
to make decision after communicating with only L%?’fj
nodes, including 7 itself. Consider the following scenario:

e Divide nodes into two groups: group A con-

tains node ’L’17Z.2,...,'L.Ln+3fj, and group B contains
) ; 2 .

UESTARRTRRR Note that each group has size
L"ng |, and there are 3f nodes in the intersection of

the two groups.

¢ Nodes iL%JJ’,l? .

o The message adversary picks £(t) in a way that nodes
in group A receive only messages from group A and
nodes in group B receive only messages from group B.

. .iL nigf | are Byzantine faulty.
2

o Nodes iq,... ’iLMJ have input 0.
2

e Nodes ithl,...,in have input 1.
2

TThe necessity of n < 3f is from prior work [5], [30].

o Byzantine nodes have the following behavior: they
behave to group A, as if they had input 0; and behave
to group B, as if they had input 1. This is possible
because of the anonymity assumption. Because the
port numbering is potentially different at each node,
Byzantine nodes have the ability to equivocate without
being caught. In other words, useful primitives like
reliable broadcast is impossible.

Now, we make the following observations:

o From the perspective of group A, only nodes
Z.LMJH’ cesd ntsf have input 1. The rest have input
0. Note that the number of nodes with input 1 in this
case is exactly f.

o From the perspective of group B, only nodes
iLL;fJH, . ,z’LanfJ have input 0. The rest have input
1. Note that the number of nodes with input 0 in this
case is exactly f.

To satisfies validity, the first observation forces nodes
in group A to output 0, because there are only f nodes
with input 1 and all of them could be Byzantine faulty.
If group A outputs 1 in this scenario, then it is straight-
forward to construct an indistinguishable scenario such
that only nodes z’L LES AP 72'[nisr are Byzantine faulty
(and nodes iLnTﬂva...iLnTﬁj are fault-free), causing a
violation of validity.

Similarly, group B must output 1, violating the e-
agreement property.

The second part of proving that there exists a finite 7"
such that it is impossible to achieve deterministic Byzantine
approximate consensus in the anonymous dynamic network
with n < 5f and (T’,n — 1)-dynaDegree is similar to the
case of crash faults. We omit it here for lack of space. [

VII. CONCLUSION AND DISCUSSION

In conclusion, we study the feasibility of fault-tolerant
consensus in anonymous dynamic networks. We identify the
necessary and sufficient conditions for solving crash-tolerant
and Byzantine approximate consensus.

There are many interesting open problems in our model:

o We assume that nodes do not know the base graph G.
Does knowing the graph help?

o In practical applications, nodes might only know the
IDs for a small set of other nodes. Does this knowledge
help in increasing resilience or reducing the require-
ment for dynamic degree?

o What is the optimal convergence rate for Byzantine
approximate consensus algorithms?

o Observe that both our algorithms complete in 7" - peyqg
rounds in the worst case. For practical applications, it
is useful to assume a probabilistic message adversary
that picks £(t) randomly and investigate algorithms
achieving the optimal expected number of rounds.

o With unlimited bandwidth, one can indeed simulate the
algorithm in [13] by piggybacking the entire history of
each node’s past messages when sending the current

[1

—

[2

—

[3]

[4]

[5

=

[6

=

[7

—

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

state value. This achieves convergence rate of 1/2.
In fact, DBAC can improve the convergence rate by
piggybacking a limited set of old messages, under
limited bandwidth. It is interesting to identify the trade-
off between bandwidth and convergence rate.

REFERENCES

I. Abraham, Y. Amit, and D. Dolev. Optimal resilience asynchronous
approximate agreement. volume 3544, pages 229-239, 12 2004.

Y. Afek, B. Awerbuch, and E. Gafni. Applying static network
protocols to dynamic networks. In 28th Annual Symposium on
Foundations of Computer Science, pages 358-370. IEEE Computer
Society, 1987.

D. Angluin. Local and global properties in networks of processors
(extended abstract). In Proceedings of the Twelfth Annual ACM
Symposium on Theory of Computing, STOC ’80.

D. Angluin, J. Aspnes, D. Eisenstat, and E. Ruppert. On the power
of anonymous one-way communication. In Principles of Distributed
Systems, 9th International Conference, OPODIS 2005.

H. Attiya and J. Welch. Distributed Computing: Fundamentals,
Simulations, and Advanced Topics. Wiley Series on Parallel and
Distributed Computing, 2004.

B. Awerbuch, B. Patt-Shamir, D. Peleg, and M. E. Saks. Adapting to
asynchronous dynamic networks (extended abstract). In Proceedings
of the 24th Annual ACM Symposium on Theory of Computing, May
4-6, 1992, Victoria, British Columbia, Canada.

M. Biely, P. Robinson, U. Schmid, M. Schwarz, and K. Winkler.
Gracefully degrading consensus and k-set agreement in directed
dynamic networks. Theor. Comput. Sci., 726:41-77, 2018.

S. Bonomi, G. Farina, and S. Tixeuil. Reliable broadcast in dynamic
networks with locally bounded byzantine failures. Stabilization,
Safety, and Security of Distributed Systems - 20th International Sym-
posium, SSS 2018, Tokyo, Japan, November 4-7, 2018, Proceedings.
G. Bracha. Asynchronous Byzantine agreement protocols. Informa-
tion and Computation, 75(2):130-143, 1987.

B. Charron-Bost, M. Fiigger, and T. Nowak. Approximate consensus
in highly dynamic networks: The role of averaging algorithms. In
Automata, Languages, and Programming - 42nd International Col-
loquium, ICALP 2015, Kyoto, Japan, July 6-10, 2015, Proceedings,
Part 1.

G. Di Luna and R. Baldoni. Non Trivial Computations in Anonymous
Dynamic Networks. In E. Anceaume, C. Cachin, and M. Potop-
Butucaru, editors, /9th International Conference on Principles of Dis-
tributed Systems (OPODIS 2015), volume 46 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 33:1-33:16, Dagstuhl,
Germany, 2016. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik.
G. A. Di Luna and R. Baldoni. Brief announcement: Investigating
the cost of anonymity on dynamic networks. In Proceedings of
the 2015 ACM Symposium on Principles of Distributed Computing,
PODC ’15, page 339-341, New York, NY, USA, 2015. Association
for Computing Machinery.

D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and W. E. Weihl.
Reaching approximate agreement in the presence of faults. J. ACM,
33(3):499-516, 1986.

D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and W. E. Weihl.
Reaching approximate agreement in the presence of faults. J. ACM,
33:499-516, May 1986.

A. D. Fekete. Asymptotically optimal algorithms for approximate
agreement. In Proceedings of the fifth annual ACM symposium on
Principles of distributed computing, PODC 86, pages 73-87, New
York, NY, USA, 1986. ACM.

F. E. Fich and E. Ruppert. Hundreds of impossibility results for
distributed computing. Distributed Comput., 16(2-3):121-163, 2003.
M. Fiigger, T. Nowak, and M. Schwarz. Tight bounds for asymptotic
and approximate consensus. J. ACM, 68(6):46:1-46:35, 2021.

E. Gafni and G. Losa. Invited paper: Time is not a healer, but it
sure makes hindsight 20:20. In Stabilization, Safety, and Security of
Distributed Systems - 25th International Symposium, SSS 2023, Jersey
City, NJ, USA, October 2-4, 2023, Proceedings.

[19]

[20]

(21]

[22]

[23]

(24]

[25]

[26]

(271

(28]

[29]

[30]
(31]
[32]
(33]
[34]
[35]

[36]

[37]

[38]

(391

[40]

R. Ingram, P. Shields, J. E. Walter, and J. L. Welch. An asynchronous
leader election algorithm for dynamic networks. In 23rd IEEE
International Symposium on Parallel and Distributed Processing,
IPDPS 2009, Rome, Italy, May 23-29, 2009, pages 1-12. IEEE, 2009.
F. Kuhn, T. Locher, and R. Oshman. Gradient clock synchronization
in dynamic networks. In SPAA 2009: Proceedings of the 21st Annual
ACM Symposium on Parallelism in Algorithms and Architectures,
Calgary, Alberta, Canada, August 11-13, 2009.

F. Kuhn, N. A. Lynch, and C. C. Newport. The abstract MAC layer.
In Distributed Computing, 23rd International Symposium, DISC 2009,
Eliche, Spain, September 23-25, 2009. Proceedings.

F. Kuhn, N. A. Lynch, and R. Oshman. Distributed computation in
dynamic networks. In L. J. Schulman, editor, Proceedings of the 42nd
ACM Symposium on Theory of Computing, STOC 2010, Cambridge,
Massachusetts, USA, 5-8 June 2010, pages 513-522. ACM, 2010.

F. Kuhn, Y. Moses, and R. Oshman. Coordinated consensus in dy-
namic networks. In Proceedings of the 30th Annual ACM Symposium
on Principles of Distributed Computing, PODC 2011, San Jose, CA,
USA, June 6-8, 2011.

F. Kuhn and R. Oshman. Dynamic networks: models and algorithms.
SIGACT News, 42(1):82-96, 2011.

H. LeBlanc, H. Zhang, X. Koutsoukos, and S. Sundaram. Resilient
asymptotic consensus in robust networks. IEEE Journal on Selected
Areas in Communications: Special Issue on In-Network Computation,
31:766-781, April 2013.

G. A. D. Luna, R. Baldoni, S. Bonomi, and I. Chatzigiannakis.
Conscious and unconscious counting on anonymous dynamic net-
works. In Distributed Computing and Networking - 15th International
Conference, ICDCN 2014, Coimbatore, India, January 4-7, 2014.
Proceedings.

G. A. D. Luna, R. Baldoni, S. Bonomi, and I. Chatzigiannakis. Count-
ing in anonymous dynamic networks under worst-case adversary.
In [EEE 34th International Conference on Distributed Computing
Systems, ICDCS 2014, Madrid, Spain, June 30 - July 3, 2014, pages
338-347. IEEE Computer Society, 2014.

G. A. D. Luna and G. Viglietta. Brief announcement: Efficient com-
putation in congested anonymous dynamic networks. In Proceedings
of the 2023 ACM Symposium on Principles of Distributed Computing,
PODC 2023, Orlando, FL, USA, June 19-23, 2023.

G. A. D. Luna and G. Viglietta. Optimal computation in leaderless
and multi-leader disconnected anonymous dynamic networks. In
37th International Symposium on Distributed Computing, DISC 2023,
October 10-12, 2023, L’Aquila, Italy.

N. Lynch. Distributed Algorithms. Morgan Kaufman, 1996.

N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the
presence of faults. J. ACM, 27(2):228-234, Apr. 1980.

N. Santoro and P. Widmayer. Time is not a healer. In Proceedings
of the 6th Annual Symposium on Theoretical Aspects of Computer
Science on STACS 89, Feb. 1, 1989, pp. 304-313.

D. Sakavalas and L. Tseng. Network Topology and Fault-Tolerant
Consensus, volume 9. 05 2019.

L. Tseng and Q. Zhang. Brief announcement: Computability and
anonymous storage-efficient consensus with an abstract mac layer. In
PODC ’22: ACM Symposium on Principles of Distributed Computing,
Italy, 2022. ACM, 2022.

N. H. Vaidya, L. Tseng, and G. Liang. Iterative approximate byzantine
consensus in arbitrary directed graphs. In ACM Symposium on
Principles of Distributed Computing, PODC ’12, Funchal, Madeira,
Portugal, July 16-18, 2012.

J. E. Walter, J. L. Welch, and N. H. Vaidya. A mutual exclusion
algorithm for ad hoc mobile networks. Wirel. Networks, 7(6):585—
600, 2001.

K. Winkler, A. Paz, H. R. Galeana, S. Schmid, and U. Schmid. The
time complexity of consensus under oblivious message adversaries. In
14th Innovations in Theoretical Computer Science Conference, ITCS
2023, January 10-13, 2023, MIT, Cambridge, Massachusetts, USA.
K. Winkler, M. Schwarz, and U. Schmid. Consensus in rooted
dynamic networks with short-lived stability. Distributed Comput.,
32(5):443-458, 2019.

H. Zhang and S. Sundaram. Robustness of complex networks with
implications for consensus and contagion. In Proceedings of CDC
2012, the 51st IEEE Conference on Decision and Control, 2012.

