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Abstract—Big Data empowers the farming community with the
information needed to optimize resource usage, increase produc-
tivity, and enhance the sustainability of agricultural practices.
The use of Big Data in farming requires the collection and
analysis of data from various sources such as sensors, satellites,
and farmer surveys. While Big Data can provide the farming
community with valuable insights and improve efficiency, there
is significant concern regarding the security of this data as well
as the privacy of the participants. Privacy regulations, such
as the European Union’s General Data Protection Regulation
(GDPR), the EU Code of Conduct on agricultural data sharing
by contractual agreement, and the proposed EU AI law, have
been created to address the issue of data privacy and provide
specific guidelines on when and how data can be shared between
organizations. To make confidential agricultural data widely
available for Big Data analysis without violating the privacy
of the data subjects, we consider privacy-preserving methods
of data sharing in agriculture. Synthetic data that retains the
statistical properties of the original data but does not include
actual individuals’ information provides a suitable alternative
to sharing sensitive datasets. Deep learning-based synthetic data
generation has been proposed for privacy-preserving data shar-
ing. However, there is a lack of compliance with documented
data privacy policies in such privacy-preserving efforts. In this
study, we propose a novel framework for enforcing privacy
policy rules in privacy-preserving data generation algorithms. We
explore several available agricultural codes of conduct, extract
knowledge related to the privacy constraints in data, and use
the extracted knowledge to define privacy bounds in a privacy-
preserving generative model. We use our framework to generate
synthetic agricultural data and present experimental results that
demonstrate the utility of the synthetic dataset in downstream
tasks. We also show that our framework can evade potential
threats, such as re-identification and linkage issues, and secure
data based on applicable regulatory policy rules.

Index Terms—Data Privacy, Privacy Policy, Privacy Attacks,
Big data in Agriculture
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I. INTRODUCTION

According to the Food and Agriculture Organization (FAO)
[1], food production needs to be raised by 70% by 2050
to feed the projected population of 9.6 billion by 2050. To
meet the growing needs of an expanding population, the
farming community needs efficient ways to enhance agricul-
tural productivity, optimize resource utilization, and implement
sustainable farming practices. Technology plays an essential
role in meeting these goals. Specifically, the use of Big Data
in agriculture enables us to model large volumes of crowd-
sourced data, sensor measurement data, and environmental
information to understand emerging patterns in agriculture.
This helps us stay ahead of modern challenges such as
changing climate, farmland depletion, etc.

However, sharing data from multiple sources raises privacy
concerns. Privacy regulations, such as the European Union’s
General Data Protection Regulation (GDPR) [2], have specific
requirements on when and how such data can be shared. Even
in the absence of specific regulations, individuals may have
significant concerns about sharing their private information.
We need privacy-preserving methods of sharing agricultural
data that abide by policy regulations and encourage the farm-
ing community to participate in collective study.

The European Union’s General Data Protection Regulation
(GDPR) is one of the most comprehensive data protection
regulations globally and has implications for agricultural data
in EU member states. However, it does not specifically address
data sharing in agriculture. The EU Code of Conduct on agri-
cultural data sharing by contractual agreement [3] was created
as an addendum to the GDPR. This code of conduct (Code)
was designed to promote data-sharing leads in agriculture by
setting transparent principles, clarifying responsibilities, and



creating trust among partners. The EU A.L. Act proposed in
April 2021 by the European Commission proposed as the first
EU regulatory framework for AL It is the first regulation of
its kind to define and classify Al used in different applications
according to the risk they pose to users. Al models that pose
higher risks require stricter regulation. In this study, the EU
Code of Conduct on agricultural data sharing by contractual
agreement [3], and the E.U. A.I. Act [4] have been identified
as relevant privacy policies that can help us understand privacy
concerns related to Big Data in agriculture.

Privacy in shared data has been discussed in prior work
focusing on anonymization and encryption of data. However,
these methods can be costly and not easily scalable. Privacy-
preserving data generation refers to the process of creating
new synthetic data that maintains privacy while retaining
useful characteristics and statistical properties of the original
data. Privacy-preserving data generation is a robust way of
protecting sensitive data while still making them useful for
wide-scale sharing. Generative Adversarial Networks (GANs)
are one of the well-known models for generating synthetic
samples that can have the same distributional characteristics
as the original data. Synthetic data generated using privacy-
preserving versions of GAN have been shown to replace real
data for statistical and analytical purposes while protecting
sensitive information [5]-[8]. While previous studies have
successfully generated privacy preserving of synthetic data,
they do not consider the requirements of privacy regulations.
Thus, there is a gap between data privacy as defined by the
privacy policies and the privacy constraints in the privacy-
preserving methods.

To create a secure and privacy-preserving version of agri-
cultural data that aligns with the regulations outlined in
policy frameworks, we present an innovative framework. This
framework is designed to generate data while strictly adhering
to the guidelines established in agricultural privacy regulations.
By incorporating the definition of privacy from these regu-
lations into our model, we establish privacy constraints that
specifically address the nuances of shared agricultural data.

The resulting synthetic dataset serves as a privacy-
preserving alternative to confidential data, ensuring compli-
ance with the principles outlined in agricultural codes of
conduct. Our proposed framework effectively mitigates a range
of threats, including privacy leakage, re-identification, side-
channel, linkage, and attribute inference attacks. Through
extensive experimentation, our model demonstrates resilience
against various privacy threat models. Importantly, it achieves
this while maintaining both statistical similarity to the original
data and practical utility in downstream tasks.

The remainder of this paper is organized as follows. Sec-
tion II establishes the background and motivation for our work
in the context of potential threats against privacy-preserving
framework, privacy policy regulations, and privacy-preserving
data generation efforts. Section III presents our framework
for policy enforcement in privacy-preserving data generation
through rule extraction from privacy regulation and attribute
regulation in generative models. Section IV presents the results
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Figure 1: Overview of Potential Threats.

of our experimental work on policy-enforced data sharing
Agricultural data. Section V presents the literature review on
privacy regulations and methods to secure agriculture data
from potential threats. The conclusion and future work are
shown in Section VI

II. BACKGROUND AND MOTIVATION

A. Privacy Threat Models in Agriculture

In the agricultural domain, privacy-preserving mechanisms
are designed to protect individuals’ sensitive information while
allowing data to be analyzed and utilized for various pur-
poses. However, these mechanisms can also be vulnerable
to specific attacks that attempt to compromise the privacy
they aim to preserve. Here are some potential threats against
privacy-preserving measures, where threats are categorized as
intentional and unintentional threats.

1) Deliberate Threats:

o Attribute inference attack: In attribute inference attacks,
an attacker tries to reconstruct the original training data
or extract sensitive information from the model’s param-
eters. This type of attack is particularly concerning when
the model is used to process private or personal data.

o Re-identification Attacks: Even if individual data points
are anonymized, attackers could use auxiliary informa-
tion from other sources to link seemingly anonymous
data back to specific individuals, thereby breaching their
privacy.

o Membership Inference Attacks: These attacks attempt to
determine whether a specific data point was used during
the training process. By analyzing the model’s outputs,
an attacker can infer whether a particular data point was
part of the training dataset, potentially revealing sensitive
information about the data owner.

o Side-Channel Attacks: These attacks focus on exploiting
unintended information leakage during the execution of
privacy-preserving algorithms. By analyzing execution



time, memory usage, or power consumption, attackers
might gain insights into the data being processed.

2) Inadvertent Threats:

o Data Leakage: Confidentiality breach in agricultural data
refers to a situation where sensitive or private information
related to agriculture is unintentionally disclosed to unau-
thorized individuals or entities. This breach could involve
the exposure of data such as farming practices, crop
yields, land ownership details, financial information, and
other sensitive information that farmers or agricultural
organizations would prefer to keep confidential.
Configuration Error: A configuration error as an unin-
tentional error in agricultural data refers to a mistake
or oversight made during the setup or arrangement of
technology systems and software used in the agricultural
context. These errors occur due to misconfigurations or
incorrect settings that lead to unintended consequences or
outcomes in the collection, storage, processing, or sharing
of agricultural data.

For instance, in precision agriculture where data-driven
technologies are used to optimize farming practices, a
configuration error could involve setting incorrect pa-
rameters for sensors, drones, or automated machinery.
This might result in inaccurate data collection, leading
to flawed decisions about irrigation, fertilization, or pest
control.

Inaccurate Encryption: Inaccurate encryption as an unin-
tentional error in agricultural data refers to the incorrect
implementation or utilization of encryption techniques
meant to secure sensitive information related to agricul-
ture. Encryption is a process of converting data into a
secure, unreadable format to prevent unauthorized access
or data breaches. However, when encryption is applied
improperly or inaccurately, it can lead to unintended
consequences and compromise the confidentiality of agri-
cultural data.

For instance, if encryption keys (the codes required to
decrypt the data) are managed inadequately, there’s a risk
of unauthorized parties gaining access to the decrypted
information. Additionally, using weak encryption algo-
rithms or outdated encryption methods might render the
data susceptible to decryption by attackers with sufficient
computing power or knowledge.

Inaccurate encryption practices in agriculture data could
also involve failing to encrypt all necessary data fields or
overlooking specific data sources, leaving certain parts
of the information vulnerable to exposure. This can be
particularly concerning when dealing with sensitive data
such as crop yield projections, land ownership details, or
financial records.

Unauthorized Access: Unauthorized access as an uninten-
tional error in agricultural data refers to situations where
individuals or entities gain entry to sensitive agricultural
information without proper authorization or permission.
This error occurs due to vulnerabilities in data security

measures, misconfigured access controls, or inadvertent
lapses in safeguarding agricultural data.

For instance, if an agricultural database containing infor-
mation about crop yields, pricing strategies, or proprietary
farming techniques lacks proper access controls, unautho-
rized individuals could gain access to this information.
This could happen due to weak passwords, lack of
encryption, or overlooking permissions that restrict data
access to only authorized personnel.

Unintentional unauthorized access might also occur if
a legitimate user inadvertently shares login credentials
or access links with unintended parties or if attackers
exploit a software vulnerability to gain entry to sensitive
agricultural databases.

B. Privacy Regulations in Agriculture

Code of Conduct describes contractual relations and guides
the use of agricultural data, particularly on the rights of use
and access of the data. Code was a collaborative step between
massive institutions representing various enterprises producing
animal fertilizers, seeds, feed, or farm machinery and agents of
animal breeding organizations as well as farmer’s cooperatives
in the EU associated with the Council on Ethical & Judicial
Affairs (CEJA) [9] and Copa-Cogeca (that concentrates on
young farmers up to 40 years of age). In establishing the Code,
it was highlighted by the parties that “the Code promotes the
advantages of data sharing and allows agribusiness models,
including agri-cooperatives and other agri-businesses, to shift
into an age of digitally enhanced farming swiftly.” [3]

The European Parliament has also launched a substantial
amount of work in AL Recently, “The Al ACT” [4] has
been proposed to protect user’s data from AI risks. The
European Parliament has also launched a substantial amount
of work in Al Due to extreme technological transition in
recent years and potential challenges, the EU desires balanced
practices. The Union aims to preserve the EU’s technological
supervision and assurance that Europeans can benefit from
new technologies designed and performed according to Union
rules and regulations. Figure 2 shows the relation between the
EU Code and the Al Act.

C. Synthetic Data in Privacy

Various approaches have been proposed for privacy-
preserving data sharing. Some common approaches towards
privacy use differential privacy [10], K-anonymity [11], L-
diversity [12] and t-closeness [13]. Privacy-Preserving Genera-
tive Models use Generative models like Generative Adversarial
Networks (GANs) to generate synthetic data that closely mim-
ics the original data distribution. This synthetic data can be
shared without revealing actual individual data thus providing
privacy.

Generative adversarial Networks (GANS) is a class of deep
learning-based generative model in AI. GANs are extremely
accurate in synthetic data generation and translation, par-
ticularly for image and text data [14]-[17]. The principal
architecture in a GAN framework involves a generative model
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G that captures the data distribution, and a discriminative
model D that estimates the probability that a sample came
from the original distribution rather than G. The training
procedure for G is to maximize the probability of D making a
mistake. As the training progresses, the generator gets better
at generating new examples that plausibly come close to the
samples from the original distribution. The idea behind GAN
can be formulated as a two-player min-max game with value
function V(G, D):

mén max V(G,D) = E;pyo,a(a)llogD ()]
+Enp. () [log(1 — D(G(2)))]

(D

For agricultural data, the data is usually tabular i.e. a mix
of discrete and continuous values. Additionally, the continuous
values are not arbitrarily random and usually follow a specific
distribution within a given range. To account for this, we
need specialized versions of GAN that can accurately replicate
system data that is collected over our digital twin. In an
unconditioned generative model, there is no control over the
modes of the data being generated. Conditional Generative
Adversarial Nets (CGAN) [18] introduces the concept that by
conditioning the model on additional information, it is possible
to direct the data generation process. The objective function
of the two-player minimax game is rewritten as:

m(%n mgx V(G,D) = Eyrpyoy(2)llogD(z|y)]

2)
FE.np.(»)[log(1 = D(G(z]y)))] (

To ensure that the synthetic dataset is distributionally close
to the original dataset, and provides privacy protection by
the principle of t-closeness, Kotal et al. [8] propose the
use of Earth Mover’s distance (EMD). he The EMD of the
distribution of features in the synthetic is calculated w.r.t. the
original dataset. The sampling process continues to sample
from the trained generator till the generated distribution is
within a threshold distance of the original distribution. To
address the challenges of tabular data, the model uses three
key steps during generation: (1) Mode-specific normalization,
(2) Conditional Generator, and (3) Training by sampling.

III. PRIVACY PRESERVING DATA GENERATION WITH
PoLicY ENFORCEMENT

The various models proposed for privacy-preserving data
sharing do not take into regulations on Information Privacy.
While they can provide privacy protection for data, there is still
a gap between privacy as ensured by these models and privacy
as required by the law. Bridging this gap requires translating
legal privacy requirements into machine-enforceable values
and mechanisms. This involves understanding the key princi-
ples of data protection regulations and incorporating them into
designing and implementing privacy-preserving models. This
work proposes a novel framework for Policy Enforcement in
privacy-preserving data generation. We process the relevant
privacy regulations and extract privacy rules from the human
written document. The rules are converted into a machine-
readable and enforceable format. The privacy rule sets are then
used to guide the privacy-preserving data generation model.
Figure 3 demonstrates the overall architecture of our proposed
framework.

A. Rule Extraction from Privacy Regulations

We use a Deontic Logic Rule-based approach to extract rele-
vant rules from Privacy regulations into a machine-enforceable
format. First, we create a predefined list of modal verbs
used to express obligation types in legal domains. Next, we
tokenize each token in the set and use the Python library to get
dependency analysis and POS (part of speech) tags. The algo-
rithm searches for predefined triggers within a given sentence
to extract its position (starting index), each mention of the
trigger, and its dependency tags. Deontic modality [19] [20]
is predominantly used in legal documents to describe vendors’
prohibitions, obligations, and permissions. For instance, ‘may’,
‘must’, and ‘must not’, frame ‘permission’, ‘obligation’, and
‘prohibition’ respectively. Table I defines all the deontic types,
and Table II has all the model verbs associated with each
deontic type. Modality guides the linguistic ability to express
alternative forms the world could be and is generally repre-
sented by modal auxiliaries such as must, can, shall, will, and
may. Below are some examples from the EU Code of Conduct
for agriculture.
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Figure 3: Framework for Privacy-Preserving Data Generation in Agriculture with Privacy Policy Enforcement

Permission Rule 1: The farmer can provide data to land
owners, potato processors, the government, paying authorities,
etc. [3]

Permission Rule 2: Unless otherwise agreed in the contract,
the data originator can transmit this data to another data user.
(3]

Obligation Rule 1: Contracts must not be amended without
the prior consent of the data originator. [3]

Obligation Rule 2: Parties may not use, process, or share
data without the consent of the data originator. [3]

Prohibition Rule 1: Data cannot be owned in the same way
as physical assets. [3]

Prohibition Rule 2: Parties may not use, process, or share
data without the consent of the data originator. [3]

Table I: Deontic Types Taxonomy

Deontic Modality ~ Definition

Permission Vendor is authorized to do something.
Prohibition Vendor is forbidden to do something.
Obligation Vendor is mandated to do something.
Entitlement Vendor has the right to do something.

B. Policy enforcement in Data Generation

The rules extracted from policy documents in Section III-A
form a rule set. This rule set is used to guide the data
generation process. We use the Privetab model [8] for privacy-
preserving data generation. The principle of privacy used
in the model is t-closeness [13] which stipulates that the
distributional similarity between the original and synthetic data
should be within a threshold to ensure privacy. The threshold
value is not pre-determined and often determined based on
the needs of an organization. To ensure that these privacy
constraints meet the requirements of the privacy regulations,
we use two key steps:

Table II: Modal verbs for Deontic Types

Model Verbs

shall be required, will be required,
shall be obligated, shall, must,
will, have to, should, ought to
have, will be paid, shall be paid,
agree, agrees, acknowledges, ac-
knowledge, represents and war-
rants, shall be responsible for, will
be responsible for

shall not, will not, must not, may
not, cannot, shall have no right, can
not, shall not be allowed, will not
be allowed, shall not assist, shall be
prohibited, will be prohibited, nor
shall, not to be, neither lessor nore
lessee may, in no event shall, nor
will, will not allow, nor may

shall be permitted, shall also be
permitted, can, may, could, shall be
allowed, will be allowed, is per-
mitted, will allow, has the right,
or at landlord’s option, shall be
permitted to

Type
Obligation

Prohibition

Permissions

1) Determine Attribute Sensitivity: According to the EU
Code of Conduct and “The AI Act”, all the features in the
dataset are associated with the relevant rule and risk level.
We use the rule set extracted from the privacy policy to
determine the risk level of each attribute in the original data.
Attributes are categorized into three levels of sensitivity: low,
medium and high. Highly sensitive attributes are extremely
risky to share and thus require the highest privacy protection.
Attributes with low sensitivity are less risky and thus can be
shared with minimal risks.

2) Enforce privacy threshold based on Sensitivity category:
When generating the privacy-preserving synthetic dataset, we
have to ensure that the privacy threshold is satisfied. The value
of the privacy threshold can be tuned. Based on the attribute
sensitivity of the dataset determined from privacy regulations,



we modulate the privacy threshold for each attribute. The high-
risk attributes have the strictest threshold for privacy. The
privacy threshold for low-risk attributes is less strict. This
ensures that the privacy requirements of the regulations are met
in this process while maintaining the utility of the generated
data for downstream tasks.

IV. EXPERIMENTAL RESULTS

Our framework for privacy-preserving data generation with
policy enforcement can be used for sharing sensitive datasets.
We demonstrate the use of our framework for Agricultural
Big Data as a proof-of-concept. In this section, we use
our framework to generate a privacy-preserving version of
the ITM4Impact dataset [21]. The implementation of our
policy-enforced privacy-preserving data generation framework
is made available in a library!. We provide the experimental
results to demonstrate that our framework provides a privacy-
preserving alternative for sensitive datasets that is still useful
in downstream tasks.

A. Dataset

In this experiment, we use the ITM4Impact dataset [21]
collected by the ILRI institute to measure and determine the
impact of infection and treatment method (ITM) on farmers.
This dataset was anonymized for public release. We observe
that some of the information shared in this dataset is pri-
vacy sensitive and poses a risk towards re-identification of
participating farmers. In the ITM4Impact dataset, there are
around 800 attributes. Approximately more than 140 groups
segregate these attributes into multiple categories. According
to the EU Code of Conduct and “The AI Act”, all the features
in the dataset are associated with the relevant rule and risk
level. More than 500 attributes are related to the farmer
PII data or the data generated in the farming environment
and categorized with a “High” privacy level. More than 270
attributes, as per regulation, fall under “Medium” risk, and
only around 30 features can be public and can be shared
with the public. However, we see that many breaches have
happened often, and people end up paying huge penalties for
not securing the information by adhering to the regulation
policies. As mentioned in the regulatory document, it is crucial
that this data should be secured and cannot be shared unless
the individual has permission.

Below are some of the rules extracted from the regulation
for applying them to the relevant attributes in the dataset:
The data originator can store data in a primary location, in a
data platform, or cloud-based storage platforms. [3]

The datasets should only be kept for as long as is strictly
necessary for the relevant analyses to be carried out. [3]

If the data is being used to make decisions about the data origi-
nator “as a natural person” the GDPR applies. For instance, the
rights regarding data produced on the farm or during farming
operations are granted to (“owned by”) the farmer and may
be used extensively by them. [3]

Uhttps://github.com/Ebiquity/policy_enforced_data_generation

B. Fidelity Results

Evaluating the fidelity of synthetically generated data is a
critical step in assessing the effectiveness of your privacy-
preserving data generation framework. By measuring the re-
alisticness of synthetic data, we can determine how closely it
resembles real data and its potential for utility in downstream
tasks. We provide two fidelity metrics for our model.

1) T-SNE Visualization: For utility in downstream tasks, it
is important that the synthetic dataset provides the same data
coverage as the original dataset. As observed in Figure 4 for
privacy-preserving data generation, there is minimal loss in
coverage from the original dataset from both with and without
policy enforcement in the generation process.

Comparison of T-SNE projection without Policy enforcement
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(a) Comparison of T-SNE projection of Synthetic Data without Policy
Enforcement
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(b) Comparison of T-SNE projection of Synthetic Data with Policy
Enforcement

Figure 4: Comparison of T-SNE projection of Original and
Privacy-preserving Synthetic Data

2) Statistical Similarity: We provide an of the statistical
resemblance between the original and synthetic datasets for
attributes at the 3 different risk levels. In general, the met-
rics demonstrate a strong consistency between the synthetic
datasets generated with our framework and the original dataset.
Figure 5, 6 and 7 shows the cumulative distribution function
(CDF) graphs comparing the original and synthetic data for
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Figure 5: Comparison of CDF for Original vs Synthetic data
in Low Risk Attribute
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Figure 6: Comparison of CDF for Original vs Synthetic data
in Medium Risk Attribute

three attributes at low, medium, and high privacy risk level
respectively. The average KS statistic, which measures the
maximum difference in CDFs between the original and syn-
thetic data is 0.04 for all 3 attributes.

C. Utility Results

It is important that the resultant dataset of our framework
is still useful in replacing the original dataset for downstream
tasks. One of the most important use cases of big data is in
the field of Machine learning (ML). We show here that the
data generated from our framework can replace the original
dataset for ML prediction tasks. We evaluated ML models
trained on the original dataset against ML models trained
on the generated data. Consistent performance across both
models would signify that the synthetic data retains relevant
information for the task. It is important to note here the test
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Figure 7: Comparison of CDF for Original vs Synthetic data
in High Risk Attribute

set should be the same to compare the performance of both
models. One of the use cases of ML prediction for agricultural
data is farmer category prediction. We use 4 ML predictive
models here: Logistic Regression (LR), Decision Tree (DT),
Random Forest (RF), and Gradient Boosting Classifier (GBC).
As observed in Figure 8a and Figure 8b, the ML prediction
models have comparable performance on data generated both
with and without policy enforcement. The average accuracy of
ML models trained on the original data is 0.95. The average
accuracy of ML models trained on synthetic data generated
without policy enforcement is 0.9. The average accuracy of
ML models trained on synthetic data generated without policy
enforcement is 0.895. The average loss in accuracy for ML
models trained on synthetic data generated without policy en-
forcement is 0.05. The average loss in accuracy for ML models
trained on synthetic data generated without policy enforcement
is 0.055. Thus there is an average loss of 0.005 in accuracy of
data generated with vs without policy enforcement. Thus the
data generated from our framework retains the most relevant
information for downstream ML tasks.

D. Privacy Results

1) Attribute Inference Attack: In attribute inference attacks,
an attacker tries to reconstruct the original training data or
extract sensitive information from the model’s parameters.
In this setting, an adversary has partial knowledge of some
training records and access to a model trained on those records
and infers the unknown values of a sensitive feature of those
records. Attribute inference attacks typically use ML models
to learn about the original dataset from the predictions of
the trained model and try to predict the values of unknown
sensitive attributes with a confidence score. Efficient Attribute
Inference attacks can break privacy-preserving efforts by un-
masking the values of sensitive attributes. The lower accu-
racy of attribute inference attack models proves that privacy-
preserving algorithms are efficient in evading these attacks.
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Figure 8: Prediction performance with the model trained on
Original vs Privacy-preserving Synthetic Data

In Figure 9, we compare the results of a re-identification
attack against privacy-preserving datasets generated with and
without policy enforcement. For all 3 risk levels, the accuracy
of the attribute inference attack model is lower for the dataset
generated with our framework of policy enforcement. for
privacy-preserving data generated without policy enforcement,
the average attribute inference attack accuracy is 0.35 across
the 3 privacy risk levels. For privacy-preserving data generated
without policy enforcement, the average attribute inference
attack accuracy is 0.3 across the 3 privacy risk levels. Thus,
there is a 0.05 increase in accuracy loss for data generated with
policy enforcement. For attributes with high privacy risk, the
increase in accuracy loss is 0.08. This shows that the dataset
generated with our approach is more resistant to attribute
inference attacks.

2) Re-identification Attack: Re-identification attacks are
variations of linkage attacks where even if individual data
points are anonymized, attackers could use auxiliary informa-
tion from other sources to link seemingly anonymous data
back to specific individuals, thereby breaching their privacy.
Efficient re-identification algorithms use ML to infer infor-
mation about anonymized datasets with partial knowledge
of the original dataset or auxiliary information. It is then
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Figure 9: Comparison of Accuracy of Attribute Inference
attacks against privacy preserving data generation with vs
without policy enforcement
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Figure 10: Comparison of Accuracy of Re-identification at-
tacks against privacy preserving data generation with vs with-
out policy enforcement

used to predict de-anonymized values of sensitive attributes
in a dataset. Higher accuracy of re-identification attacks in
de-identified datasets shows that the dataset still contains
considerable privacy risk. In Figure 10, we compare the
results of the re-identification attack against privacy-preserving
datasets generated with and without policy enforcement. Data
generated without policy enforcement has a consistent accu-
racy against re-identification attacks for the 3 risk levels of
attributes (=~ 0.50). For attributes with low privacy risk, the
re-identification attack model has comparable accuracy (0.51)
against our framework with policy enforcement. However, for
attributes with medium and high privacy risk, our framework
with policy enforcement works better with an average accuracy
loss of 0.07 in re-identification attacks. Thus the dataset
generated with our approach is more resistant against re-
identification attacks.

V. RELATED WORK

In the absence of precisely elaborated rules on the ap-
propriate ways to deal with the legal implications of digital



farming technologies on agricultural companies and relation-
ships, farmers and their agribusiness organizations who deliver
digital farming technologies started to shape their policies to
enhance agricultural data management techniques and provide
a foundation for reliable data sharing. Agricultural security and
privacy principles and codes of conduct have been developed
in different parts of the world. In 2014, in the U.S., the
American Farm Bureau’s Privacy and Security Principles for
Farm Data (2019) [22] was the foremost to draw awareness to
some of the problems farmers had about how their information
was being collected and shared. After this initiative was 2014
New Zealand’s Farm Data Code of Practice [23], and more
recently, in 2019, we noticed the E.U. Code of Conduct launch
on agricultural data sharing by contractual agreement [3].

With the recent advances in Big Data, there is a gap
between the computational capabilities and the data available
for research. Data scientists are invested in gathering large vol-
umes of data with secure and privacy-preserving approaches.
Privacy-preserving methods and the impact of privacy policies
on data sharing have been an ongoing avenue of research [24]-
[28]. There has been significant research in designing privacy-
preserving data-sharing methods. However, most approaches
have a caveat associated with them. Among these various
privacy approaches, differential privacy [10], K-anonymity
[11], L-diversity [12], and t-closeness [13] are worth noting. It
has also been shown that achieving one of the privacy metrics
can ensure others [29].

Synthetic data can provide anonymity to original data with-
out loss of accuracy in downstream data analysis tasks. In
general, there is a lot of evidence of GANs being used for
synthetic data generation and translation in image and text data
[14]-[17]. However, the properties of system or device data
make it distinct from image and text data. The system data is
usually tabular i.e. contains a mix of continuous and discrete
variables, and in some cases, the sequence of consecutive rows
in the data is important. A conditional generator model can
address the issue of mixed attributes in tabular data by seeking
to minimize the distance between generated and real data given
a fixed value of the discrete variable [8], [30]-[34].

While there are privacy-preserving models for data sharing,
these models do not take into account the rules stated in pri-
vacy policies such as GDPR [35] [36], EU code of conduct [3]
etc. Hence, there is no mechanism to ensure that data shared
through these frameworks are compliant with the privacy
policies. To bridge this gap, we propose a novel framework
that learns rules from the privacy policies and inducts the
information in the generation process of a privacy-preserving
GAN to ensure that the data generated is privacy-preserving,
secure to share, and compliant with the data policies.

Gupta et al. [37] presented a vast exposure to cybersecurity
threats and vulnerabilities in smart farming environments.
This research [38] proposed PrivySharing, a blockchain-based
innovative framework for privacy-preserving and secure IoT
data sharing in a smart city environment. West [39] introduced
a principles-based framework to assess cyber-attack vulner-
abilities and also constructed a precision agriculture system

protected from cyber-attacks. Coble et al. [40] discussed a
set of analytical techniques that are increasingly relevant to
solving security and privacy issues. Kumar et al. [41] proposed
a Secured Privacy-Preserving Framework (SP2F) for smart
agricultural Unmanned Aerial Vehicles (UAVs), which handles
various cyber attacks.

In addition, several security models for protecting big data
in various domains are discussed in [42]-[48].

VI. CONCLUSION AND FUTURE WORK

Technology, particularly the integration of big data analysis,
data processing, cloud computing, and IoT devices, plays a
pivotal role in enhancing agricultural output both quantitatively
and qualitatively. Utilizing these technological advancements
enables the agricultural sector to address intricate challenges
by effectively analyzing large volumes of crowd-sourced data.
However, the sharing of data across various sources raises
privacy concerns. While GDPR and similar general privacy
regulations provide a foundation for digital data sharing, the
specific privacy risks pertinent to agricultural data remain
unclear. Defining agricultural big data is still an ongoing
debate, making it challenging to delineate privacy concerns.
This study delves into the EU Code of Conduct on agricultural
data sharing, established through contractual agreements as an
extension of GDPR and the E.U. A.L. Act, to comprehensively
understand privacy concerns in the realm of agricultural data.
Though there have been privacy-preserving efforts in data
sharing, there is a lack of policy enforcement in such efforts.

To address the challenge of data sharing while ensuring con-
sistency with privacy regulations, this paper introduces a novel
framework for enforcing policy rules in privacy-preserving
data sharing. This approach not only mitigates privacy risks
like leakage and re-identification but also bridges the gap be-
tween privacy-preserving methods and policy-defined privacy
requirements. The experimental results show that this frame-
work retains substantial statistical similarity with original data
and retains utility in downstream tasks while being resistant to
privacy threat models. In conclusion, the proposed framework
showcases a promising direction for reconciling agricultural
data sharing and privacy concerns, ensuring a sustainable and
secure future for agricultural research and advancement. In
the future, we would like to extend this framework for policy
enforcement in other domains that need privacy-preserving
efforts in data sharing, such as health, security, etc.
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